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Abstract: Venoms from cone snails (Conidae) have been extensively studied during the 

last decades, but those from other members of the suborder Toxoglossa, such as of 

Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the 

effects of venom and gland extracts from three species of the superfamily Terebridae. By 

2-electrode voltage-clamp technique the gland extracts were tested on Xenopus oocytes 

expressing nicotinic acetylcholine receptors (nAChRs) of rat neuronal (α3β2, α3β4, α4β2, 

α4β4, α7) and muscle subtypes (α1β1γδ), and expressing potassium (Kv1.2 and Kv1.3) and 

sodium channels (Nav1.2, 1.3, 1.4, 1.6). The extracts were shown to exhibit remarkably high 

inhibitory activities on almost all nAChRs tested, in particular on the α7 subtype suggesting the 

presence of peptides of the A-superfamily from the venom of Conus species. In contrast, 

no effects on the potassium and sodium channels tested were observed. The venoms of 

terebrid snails may offer an additional source of novel biologically active peptides. 
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1. Introduction 

Marine gastropods of the suborder Toxoglossa comprise three major superfamilies: the cone snails 

(Conidae, about 800 species), the auger snails (Terebridae, 300 to 400 species) and the turrids 

(Turridae, more than 10,000 species) [1–3]. These are predatory, carnivorous snails which capture their 

prey, i.e., worms and to less extent snails and fish, by injecting venom. Over the last decades, 

biochemical and pharmacological research focussed mainly on cone snails (Conus spp.) leading to the 

discovery of a great variety of biologically active peptides and proteins that affect neurotransmissions 

by acting on nervous structures such as ligand- and voltage-gated ion channels, transporters and 

receptors [4–6]. However, in contrast to the impressive progress made in understanding the toxinology and 

ecology of cone snails, very few studies have been performed on the venoms of Terebridae and Turridae.  

Several peptides have been identified in the venom of two terebrids, Terebra subulata [7] and 

Hastula hectica [8], and in the venom of some turrid snails, Polystira albida [9,10],  

Lophiotoma olangoensis [11], Gemmula speciosa [12], G. periscida and Clathurella cincta [13]. These  

disulfide-rich peptides consist of 11 to 41 amino acids and show features similar to those of 

conopeptides. The cysteine framework of peptides from the venom of Terebra subulata and  

Hastula hectica was found to be similar to that of peptides of the O-superfamily of Conus  

species [7,8]. However, the signal sequence of their precursor region shows no homology to that of  

O-superfamily conotoxins. Peptides, i.e., teretoxins from Hastula hectica, exhibit divergent signal 

sequences, although the cysteine frameworks of the mature peptides are consistent with those for O 

and P conotoxins. Moreover, terebrid peptides seem to be less post-translationally modified than  

conotoxins [7]. However, the biological activity of terebrid peptides is still not known. Some of these 

venom components have been tested on the nematode Caenorhabditis elegans, which showed an 

uncoordinated twisting syndrome after injection, but no unusual behavioural symptomatology was 

observed in mice following intracranial application [7,8]. 

In the present study, the effects of gland extracts obtained from three Terebridae species were tested 

on nicotinic acetylcholine receptors (nAChR) as well as on voltage-gated Na+- and K+-channels 

expressed in Xenopus oocytes using voltage-clamp technique. The results indicate the presence of peptides 

in the gland secretions, most likely the venom, which are predominantly selective for nAChRs. 

2. Results  

2.1. Venom Apparatus of the Terebridae 

The two Terebra species examined in this study, namely, Terebra argus and T. consobrina, have a 

venom apparatus which is similar to that of Conus snails consisting of a radular sac, a venom duct and 

venom bulb. Characteristic harpoon-like, hypodermic radula teeth were detected in both species by 

dissection of the radula sac (Figure 1).  
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Figure 1. SEM-pictures of radula teeth from two Terebridae species, Terebra consobrina and T. argus. 

 

No such radula teeth were found in Oxymeris maculata (formerly Acus). However, the tissue excised 

from the foregut used for extraction was found to contain a gland, most probably a salivary gland.  

2.2. Electrophysiological Analysis of the Venom Gland Extracts 

Gland extracts were prepared by homogenizing the glandular tissue from the three Terebridae 

species in 10% acetic acid followed by centrifugation and lyophilization of the supernatant and were 

qualitatively tested on nAChRs. Remarkable blocking activity between 50% and 100% on neuronal as 

well as on muscle nAChR subtypes was detected in the gland extracts from the three species (Table 1, 

Figure 2). In the species Oxymeris and Terebra consobrina even 10-fold dilutions of the stock solution 

caused significant inhibitory effects on the α4β2 and α7 receptors. The muscle nAChR subtype, α1β1γδ, 

was mainly affected by the Oxymeris gland extract, but less by the extract from T. consobrina.  

In contrast to these specific blockades, none of the gland extracts showed effects on common 

potassium (Kv1.2 and Kv1.3) or sodium channels (Nav1.2, 1.3, 1.4, 1.6). 

Table 1. Blocking activity of gland extracts from Terebridae species, undiluted (10 to  

13 µg) and diluted 1:10, on neuronal (α3β2, α3β4, α4β4 and α7) and muscle subtype nAChRs 

(α1β1γδ) expressed in Xenopus oocytes using voltage-clamp technique.  

 Oxymeris maculata Terebra argus Terebra consobrina 
α3β2 ++ +/− ++ 
1:10 + − + 
α3β4 + − + 
1:10 − − − 
α4β2 +++ + +++ 
1:10 + − + 
α4β4 +++ +/− ++ 
1:10 − − − 
α7 +++ + +++ 

1:10 + − + 
α1β1γδ +++ − + 
1:10 + − − 

+++ indicates complete blockage; ++ more than 80%; +50% to 80%; +/− less than 50%; − no blockage. 
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Figure 2. Effects of Terebra consobrina venom gland extract (12.9 μg) on six nicotinic 

acetylcholine receptor (nAChR) subtypes. 100 µM ACh or nicotine (in the case of the α7) 

were applied for 2 s in 4 min intervals. Two current responses before application of gland 

extracts, one response directly after extract application (horizontal bar, 3 min incubation) 

and two subsequent responses after washout of the extracts are shown for each subtype. 

 

In a preliminary mass-spectrometric analysis (LC-MS-TOF), compounds representing molecular 

weights between 1138 and 4446 Da were identified in the extracts, predominating in the range of 1.1 and 

2.1 kDa. Lack of material prevented further studies such as HPLC-fractionation. 

3. Discussion 

The present pharmacological study on extracts of venom glands (Terebra argus, T. consobrina) and 

of other, probably salivary glandular tissue (Oxymeris maculata) from three Terebridae species 

revealed high inhibitory activities to nAChRs predominantly of the neuronal subtype, whereas no 

effects on K+- and Na+-channels were found. The observed effects are similar to those produced by  

α-conopeptides from the venom of cone snails which consist of 13 to 19 amino acids cross-linked by 

two disulfide bonds and exhibit molecular weights between 1.4 and 2.1 kDa [14]. For example, in the 

terebrid gland extracts some components were found to be in the same order of magnitude (1449 Da in 

Terebra consobrina, 1443 Da in Oxymeris maculata gland extracts, respectively) like that of the GI  

α-conopeptide (1437 Da) from the venom of Conus geographus [15]. 

The inhibitory activity of the gland extracts on the neuronal nAChRs follows the order:  

α7 > α4β2 > α4β4 > α3β2 > α3β4. The affinity of peptides in the extracts to nAChRs containing α4 subunits 

seems to be higher than to receptors containing α3 subunits, when combined with the β2 subunit. In the 

α3β4 subtype inhibition is low. α4-containing nAChR-subtypes are not predominantly targeted by most 

cone snail venoms and no conopeptide exhibiting high affinity to these receptors has been identified, so 

far [16,17]. This might suggest the presence of pharmacologically active peptides with a novel 

selectivity profile in the terebrid gland extracts. It is interesting to note that only the gland extract from 
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Oxymeris maculata produced a complete blockage of the muscle-type receptor α1β1γδ. However, more 

conclusive results may be obtained when peptides from the extracts are isolated and tested on  

these receptors.  

The absence of effects on K+- and Na+-channels could be due to: (i) the complete absence of 

peptides modulating K+- and Na+-channels; (ii) the presence of peptides with only low affinity to these 

ion channels; and/or (iii) the low concentration in the extracts of peptides of interest.  

Recently, Castelin et al. [18] demonstrated that there exists a great disparity of the terebrid foregut 

anatomy such as the presence or absence of the proboscis and venom glands as well as a great variety 

of radula structures. In the species of the present study, venom glands and harpoon-like radula teeth 

were present in the two Terebra species, but absent in Oxymeris maculata, which, on the other hand, 

has salivary glands in the foregut suggesting that the active components in the extract originate from 

this gland. Although salivary glands were considered to play a minor role only in prey envenoming, 

Biggs et al. [19] have found that α-conopeptides are also expressed in the salivary gland of  

Conus pulicarius. Based on the analysis of the terebrid molecular phylogeny, five [20,21], and in a 

recent study [18] six terebrid lineages have been distinguished. Among these, Oxymeris (Acus) species 

were supposed to have independently lost its venom apparatus.  

Major targets of these gland secretions seem to be nAChRs. This is in good agreement with the 

observation that the inhibition of nAChRs by peptides acting like those of the A-superfamily of Conus 

species, is a very effective mode to rapidly paralyze prey and that the nAChR is a target of a wide 

variety of venomous animals and poisonous plants. Whether further glandular components of the 

Terebridae are present acting for example on neuronal calcium channels requires further investigation. 

4. Experimental Section  

4.1. Materials 

Terebridae specimens (Oxymeris maculata, Terebra argus, T. consobrina) were collected in the 

reefs of Cebu, Philippines. All specimens were kept frozen at −20 °C until preparation. The venom 

ducts (Terebra species) or glandular tissue from the foregut (Oxymeris) were dissected and placed in 

10% acetic acid. Extracts were prepared by homogenizing the glands in 10% acetic acid, separating the 

mixture by centrifugation at 3000 rpm for 15 min and recovering the supernatant that was lyophilized 

and stored at −20 °C. 

4.2. Electrophysiology 

nAChR cDNAs were provided by J. Patrick (Baylor College of Medicine, Houston, TX, USA) and 

subcloned into the oocyte expression vector pNKS2. cRNA was synthesized with the SP6 mMessage 

mMachine kit (Ambion, Austin, TX, USA) and Xenopus laevis (Nasco International, Fort Atkinson, 

WI, USA) oocytes were injected with 50 nL aliquots of cRNA (0.5 mg/mL). One to three days after 

injection two-electrode voltage clamp recordings were performed on Xenopus oocytes. The activity of 

the extracts dissolved in 1.0 mL ND96 solution (96 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 

and 5 mM Hepes, pH 7.4) was investigated qualitatively on nicotinic acetylcholine receptors 

(nAChRs) of rat neuronal (α3β2, α3β4, α4β2, α4β4, α7) and muscle subtypes (α1β1γδ). Current responses 



Toxins 2013, 5 1048 

 

 

to 100 µM acetylcholine or 100 µM nicotine (used for the α7 subtype) were measured at a holding 

potential of −70 mV using a Turbo Tec 05X Amplifier (NPI Electronic, Tamm, Germany) and Cell 

Works software. Currents were filtered at 200 Hz and digitized at 400 Hz. The perfusion medium was 

automatically switched between ND96 with or without agonist using a custom-made magnetic valve 

system. A fast and reproducible solution exchange (<300 ms) was achieved using a 50 µL funnel-shaped 

oocyte chamber combined with a fast solution flow fed through a custom-made manifold mounted 

immediately above the oocyte. Agonist pulses were applied for 2 s at 4 min intervals. After each 

application, the cell was superfused for 1 min with agonist-free ND96, before the flow was stopped for 

3 min and the gland extract was immediately mixed into the bath. Each extract dilution was tested on 

at least three oocytes.  

For testing effects of the gland extracts on Na+- and K+-channels, two-electrode voltage-clamp 

recordings were performed at room temperature (18–22 °C) using a Geneclamp 500 amplifier 

controlled by a pClamp data acquisition system (Molecular Devices, Sunnyvale, CA, USA). Whole 

cell currents from Xenopus oocytes were recorded expressing Na+- and K+-channels 1–4 days after 

injection. Bath solution composition was ND96 and HEPES, 5 mM (pH 7.4) or HK (96 mM NaCl,  

2 mM KCl, 1.8 mM CaCl2, 2 mM MgCl2) and HEPES, 5 mM (pH 7.4). Voltage and current electrodes 

were filled with 3 M KCl solution. Resistances of both electrodes were kept between 0.5 and 1.5 MΩ. 

The elicited currents were filtered at 1 kHz and sampled at 0.5 kHz (for potassium currents) or at 20 

kHz (for sodium currents) using a four-pole low-pass Bessel filter. Leak subtraction was performed 

using a −P/4 protocol. KV1.2 and KV1.3 potassium currents were evoked by 500 ms depolarizations to 

0 mV followed by a 500 ms pulse to −50 mV. From a holding potential of −90 mV, sodium current 

traces were evoked by 100 ms depolariarions to Vmax (the voltage corresponding to maximal sodium 

current in control conditions). In order to investigate the current-voltage relationship, current traces 

were evoked by 10 mV depolarization steps from a holding potential of −90 mV. 

5. Conclusions  

In contrast to the extensively studied venom from cone snails, the pharmacological activities of 

Terebridae venoms are completely unknown. This first study on three Terebridae species demonstrates 

that venom or salivary gland extracts are producing distinct inhibitory effects on a variety of neuronal 

and muscle nAChR subtypes. Venoms from this snail superfamily represent an untapped resource and 

offer the opportunity to discover novel pharmacologically active peptides with pharmaceutical and 

therapeutic potentials.  
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