150 research outputs found

    Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus

    Get PDF
    International audienceWe give a simple intuitionistic completeness proof of Kripke semantics for intuitionistic logic with implication and universal quantification with respect to cut-free intuitionistic sequent calculus. The Kripke semantics is ``simplified'' in the way that the domain remains constant. The proof has been formalised in the Coq proof assistant and by combining soundness with completeness, we obtain an executable cut-elimination procedure. The proof easily extends to the case of the absurdity connective using Kripke models with exploding nodes à la Veldman

    Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus

    Get PDF
    International audienceWe give a simple intuitionistic completeness proof of Kripke semantics for intuitionistic logic with implication and universal quantification with respect to cut-free intuitionistic sequent calculus. The Kripke semantics is ``simplified'' in the way that the domain remains constant. The proof has been formalised in the Coq proof assistant and by combining soundness with completeness, we obtain an executable cut-elimination procedure. The proof easily extends to the case of the absurdity connective using Kripke models with exploding nodes à la Veldman

    Kripke Models for Classical Logic

    Get PDF
    We introduce a notion of Kripke model for classical logic for which we constructively prove soundness and cut-free completeness. We discuss the novelty of the notion and its potential applications

    Polarizing Double Negation Translations

    Get PDF
    Double-negation translations are used to encode and decode classical proofs in intuitionistic logic. We show that, in the cut-free fragment, we can simplify the translations and introduce fewer negations. To achieve this, we consider the polarization of the formul{\ae}{} and adapt those translation to the different connectives and quantifiers. We show that the embedding results still hold, using a customized version of the focused classical sequent calculus. We also prove the latter equivalent to more usual versions of the sequent calculus. This polarization process allows lighter embeddings, and sheds some light on the relationship between intuitionistic and classical connectives

    Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic

    Get PDF
    International audienceWe combine intuitionistic logic and classical logic into a new, first-order logic called Polarized Intuitionistic Logic. This logic is based on a distinction between two dual polarities which we call red and green to distinguish them from other forms of polarization. The meaning of these polarities is defined model-theoretically by a Kripke-style semantics for the logic. Two proof systems are also formulated. The first system extends Gentzen's intuitionistic sequent calculus LJ. In addition, this system also bears essential similarities to Girard's LC proof system for classical logic. The second proof system is based on a semantic tableau and extends Dragalin's multiple-conclusion version of intuitionistic sequent calculus. We show that soundness and completeness hold for these notions of semantics and proofs, from which it follows that cut is admissible in the proof systems and that the propositional fragment of the logic is decidable

    Failure of interpolation in the intuitionistic logic of constant domains

    Full text link
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde

    Failure of interpolation in the intuitionistic logic of constant domains

    Get PDF
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde
    corecore