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Abstract

We combine intuitionistic logic and classical logic into a new, first-order logic called Polar-

ized Intuitionistic Logic. This logic is based on a distinction between two dual polarities which

we call red and green to distinguish them from other forms of polarization. The meaning of

these polarities is defined model-theoretically by a Kripke-style semantics for the logic. Two

proof systems are also formulated. The first system extends Gentzen’s intuitionistic sequent

calculus LJ. In addition, this system also bears essential similarities to Girard’s LC proof sys-

tem for classical logic. The second proof system is based on a semantic tableau and extends

Dragalin’s multiple-conclusion version of intuitionistic sequent calculus. We show that sound-

ness and completeness hold for these notions of semantics and proofs, from which it follows

that cut is admissible in the proof systems and that the propositional fragment of the logic is

decidable.

1 Introduction

One of Gentzen’s goals in designing the sequent calculus was to construct an analytic approach
to proofs that could work for both classical and intuitionistic logic [Gen69]. While his natural
deduction proof system did not allow him to prove the Hauptsatz uniformly for both of these
logics, his design of the sequent calculus did allow the cut-elimination theorem to be proved for
both logics using the same algorithm. This early attempt at providing a unity of logic also presented
the first demonstration of the importance of structural rules in the presentation of proof systems:
in particular, the rule of contraction is not allowed on the right of Gentzen’s intuitionistic sequent
calculus (LJ) while it is allowed on the right in his classical sequent calculus (LK). While his
approach has provided us with a common framework for the proof theory of these two logics, it did
not provide us with one logic that combines classical and intuitionistic logics. Translating between
and combining these logics has been repeatedly considered over the past several decades.

An important property of intuitionistic logic is its ability to embed classical logic: for an
overview of several such double-negation translations by Kolmogorov, Gödel, Gentzen, and others,
see [FO10]. This ability suggests that intuitionistic logic already contains the potential to serve as
a platform for combining intuitionistic and classical reasoning. The double negation translations
not only embed classical logic within intuitionistic logic but also help to explain the differences
between the two.

In Gentzen’s original sequent calculi, contraction is not applicable to right-hand-side formula
occurrences in intuitionistic sequents but it is available for such formula occurrences in classical
sequents. One way to describe double negation translations is that they overcome this restriction
in intuitionistic sequents by moving some right-hand-side formula occurrences in classical sequent
proofs to negated left-hand-side formula occurrences in intuitionistic sequent proofs (where con-
traction is available). As has been shown by Lamarche [Lam08] and others, a different way to
see the differences between sequent calculus proofs for both classical and intuitionistic logic is to
use a one-sided sequent calculus but with a system of polarization—annotations such as input and
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output—that distinguishes those formula occurrences that are subject to structural rules from those
that are not. One might argue that the polarized approach is nothing but double-negation in dis-
guise. However, our goal is not to see classical logic as a fragment of intuitionistic logic but rather
to build proof systems and semantics in which all connectives—classical and intuitionistic—may
mix freely.

An attempt to achieve such mixtures with a double negation translation must address at least
the following questions:

1. If intuitionistic connectives are mixed with classical connectives that have been translated via
a double-negation, how does one distinguish the parts of a formula that represent classical
formulas from the parts that are just intuitionistic?

2. Even more crucially, how does one obtain cut-elimination in such a mixed setting? In the
context of sequents, a double-negation represents classical formulas on the left-hand side.
However, the cut rule

¬A,Γ ⊢ B A,Γ ⊢ B

ΓΓ′ ⊢ B

is admissible in classical logic but not in intuitionistic logic. Is cut-elimination possible at all
when intuitionistic and classical formulas can mix?

These questions point to the consideration of a logic in which classical connectives are added as
primitives alongside intuitionistic connectives. Furthermore, it is well known that the “purely
intuitionistic” connectives of implication and universal quantification exhibit characteristics that
decisively distinguish them from the other connectives. In order to guarantee that these connectives
do not collapse into their classical counterparts in this mixed setting, we shall rely on a polarization
of connectives.

Assume for the moment that ∨i is the intuitionistic “or” that gives us the disjunction property,
and that ∨c is the classical “or” that is subject to structural rules. If we are allowed to freely
mix these connectives with the purely intuitionistic ones, questions arise that challenge our under-
standing of classical and intuitionistic logics. The two versions of disjunction would naturally give
rise to two versions of false: assume that these are ⊥ for ∨c and 0 for ∨i. We know that A ∨i ¬A
should not be provable. But what about A ∨c ¬A? If negation is defined in terms of intuitionistic
implication and 0 (i.e., A ⊃ 0) then the answer is still no. The constant 0, being associated with
∨i, should not be subject to weakening. One might notice that this argument is essentially one
of linear logic, and that the observations concerning structural rules do not necessarily apply in
intuitionistic proof theory. In this paper, however, we shall provide a semantic explanation of the
above phenomenon independently of linear logic. If we tried to explain the above non-provability
in terms of a traditional double-negation translation in intuitionistic logic, we will find that neither
¬¬(A ∨ ¬A) nor ¬(A ∧ ¬A) are accurate translations, since they are intuitionistically provable.

To formulate a system in which the law of excluded middle can safely and transparently coexist
with the disjunction property, we also require a classical notion of negation that exhibits the
expected De Morgan dualities. In order to extend these dualities to a setting where arbitrary
connectives may mix, there will be dual connectives to intuitionistic implication and universal
quantification. The twin notions of negation also give rise to distinct levels of consistency: a
characteristic that we explain by an enrichment of Kripke models. In particular, we shall admit
imaginary possible worlds that may validate ⊥ (but never 0). These models translate to Heyting
algebras with an embedded boolean algebra, one that is different from the skeleton induced from
Glivenko’s transformation. We refer to this logic as polarized intuitionistic logic (PIL). Double
negations will be crucially important in the semantic exposition of PIL, but the syntax and proof
theory of PIL are independent of them.

This paper is organized as follows. Section 2 defines the syntax of formulas and their polarity
assignments, without giving any meaning to these assignments. Section 3 defines the Kripke
semantics for the propositional fragment of PIL. A translation to the Heyting algebra representation
is also provided. The mixing of classical and intuitionistic quantifiers pose certain challenges. Thus
we will present the first-order semantics separately in Section 5. Section 4 introduces the sequent
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Figure 1: Classification of PIL Connectives

calculus LP and discusses its relationship to LJ and LC. Section 6 establishes the soundness and
completeness of LP (with respect to the full first-order logic). The admissibility of cut follows from
semantic completeness. In Section 7, we present another proof system for PIL based on semantic
tableau. From the correctness of this system it is also shown that the propositional fragment of
PIL is decidable. In Section 8, we discuss related works, which include various double-negation
translations, dual-intuitionistic logic, linear logic, polarized linear logic, LU and LC, as well as
some of our own work. We summarize in Section 9.

2 Syntax

The formulas of PIL are constructed from the following polarized connectives. The term “polarity”
has been used in many contexts. Although our form of polarization is not entirely unrelated to
these other uses, to avoid confusion and misconception we have chosen a pair of terms that are
entirely neutral.

Red-Polarized: ∨, ∧, ∃, 0, 1, ⊃, Π.
Green-Polarized: ∧e, ∨e, ∀, ⊤, ⊥, ∝, Σ.
Throughout the paper we shall use the letter R to represent red-polarity formulas and E to

represent green-polarity formulas, with frequent reminders of this convention.
The group of connectives ⊃, Π, ∝ and Σ will also be referred to as the purely intuitionistic

or PI-connectives. The set ∨, ∧, ∃, ∨e, ∧e and ∀ are referred to as the classically-oriented or
LC-connectives. The rationale for these designations will be clarified in subsequent sections. For
each propositional LC-connective there is an associated logical constant: 0 for ∨, ⊥ for ∨e, ⊤ for ∧e

and 1 for ∧. These symbols are obviously borrowed from linear logic. While we make no deliberate
attempt to hide the influence of linear logic, in this paper we present PIL as an independent system.
The classification of PIL connectives is also illustrated in Figure 1.

We assume that there are denumerably many parameters (aka terms), variables and predicate
symbols. An atomic formula has the form p(t1, . . . , tn) for predicate symbol p and parameters and
variables t1, . . . , tn. We designate that all atomic formulas are red-polarized.1. For every atom a we
also admit its dual a⊥, which is green-polarized. De Morgan negation is extended to all formulas
using the following dualities: 1/⊥, 0/⊤, ⊃/∝, Σ/Π, ∨/∧e, ∧/∨e, ∃/∀. It is a syntactic identity that
A⊥⊥ = A for all formulas A. We use the term literal to refer to atoms and their duals. An atom
a is not considered a subformula of the literal a⊥. All formulas are written in negation normal
form: the negation (·)⊥ has only atomic scope. Intuitionistic implication is also dualized into the
connectives ⊃ (red) and ∝ (green). However, the dual of A ⊃ B is A ∝ B⊥, and not A⊥ ∝ B⊥.
We make this choice because we wish to think of ∝ as a form of (non-commutative) conjunction.
The symbol ∝ was selected to convey an asymmetrical product. The red and green polarities are
duals of each other: given A and A⊥, one is red-polarized and the other is green-polarized.

Another form of negation in PIL is intuitionistic negation, which we write as ∼A, and is defined
to be abbreviation for A ⊃ 0. Still other forms of negation can be defined in PIL, including A ⊃ ⊥

1This is an arbitrary choice for the sake of a smoother presentation - it is also possible to arbitrarily assign
polarity to atoms.
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(which will not always be equivalent to A⊥).
The polarity of a formula is determined entirely by its top-level connective. Intuitionistic logic in

the traditional sense uses only red-polarized formulas (including subformulas). PIL is an extension
of intuitionistic logic that places no restriction on how formulas are composed using its connectives,
constants, and literals. A sample mixed formula in PIL is [A ∧ ((C ⊃ B) ∨e C)] ⊃ (A ∝ C).

3 Semantics: the Propositional Case

The two versions of falsehood—⊥and 0—suggest that there are two notions of inconsistency and,
hence, two notions of consistency. In our semantics 0 ⊃ A will always be valid while ⊥ ⊃ E
will only be valid for green formulas E. An important aspect of PIL is that these two notions of
inconsistency are allowed to coexist.

3.1 Kripke Models of Polarized Formulas

In a standard Kripke model for intuitionistic logic, the terminal nodes of the ordering relation
represent classical worlds where intuitionistic implication collapses into a classical one and the
excluded middle becomes valid. Because of the two notions of consistency, worlds above classical
worlds will be needed. To account for the richer formulas of PIL, we allow possible worlds that
can be inconsistent in terms of ⊥ (but never in terms of 0). The use of inconsistent possible worlds
is not without precedent [Vel76, ILH10] (though not in the context of two levels of consistency).
While some authors referred to them as “exploded worlds,” we prefer the term imaginary world in
analogy to

√
−1 being an imaginary number. These worlds also distinguish PIL from some other

efforts to semantically combine classical and intuitionistic logic [CH96].
We first define the semantic interpretation for the propositional fragment of PIL as it is self-

contained and requires a simpler model structure and definition of “forcing” than first-order PIL.
We define a propositional Kripke hybrid model as a structure 〈W,�,C, |=〉 where (W,�) is a
non-empty Kripke frame of possible worlds W and � is a transitive and reflexive relation on W.
The set C, the set of “classical worlds,” is a subset of W. The component |= is a binary relation
between elements of W and (red-polarized) atomic formulas.

Let △u = {k ∈ C | u � k}, i.e., the set of all classical worlds above u. We say that a world
u is imaginary , or ⊥-inconsistent, if △u is empty. We also require the following conditions for all
propositional models:

• |= is monotone: that is, for any u,v ∈ W and atom a, if u � v then u |= a implies v |= a

• △k = {k} for all k ∈ C, i.e., there are no classical worlds properly above other classical
worlds.

The satisfiability or forcing relation extends |= from atoms to all propositional formulas using
the following induction (on the structure of formulas). The key idea here is that a green formula
is valid in a world u if it is valid in all classical worlds above u. First, we define the red-polarity
cases: here, u,v ∈ W. When a is atomic, whether u |= a holds is given by the model. All other
red-polarized cases are given below.

• u |= 1 and u 6|= 0

• u |= A ∨B iff u |= A or u |= B

• u |= A ∧B iff u |= A and u |= B

• u |= A ⊃ B iff for all v � u, v |= A implies v |= B

The red connectives are thus interpreted in exactly the same way as in Kripke’s semantics for
intuitionistic logic. Next, we define the cases for green formulas, but only over classical worlds:
here, c ∈ C and v ∈ W.

• c |= a⊥ iff c 6|= a, where a is an atom.
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• c |= ⊤ and c 6|= ⊥

• c |= A ∝ B iff for some v � c, v |= A and v 6|= B⊥

• c |= A ∨e B iff c |= A or c |= B

• c |= A ∧e B iff c |= A and c |= B

The |= relation is extended to all green formulas E in any world u ∈ W by the condition

• u |= E if and only if for all c ∈ △u, c |= E.

That is, a green formula is considered valid in world u if it is valid in all classical worlds at or
above u. The |= relation is well-defined: in particular, if u is classical, then the clauses above
defining |= for classical worlds coincide since △u is the singleton set {u}. Furthermore, if △u is
empty, then all green formulas are satisfied vacuously in u.

The following lemma formalizes the essential characteristics of the possible worlds of a model.

Lemma 1 In a propositional Kripke hybrid model, for every u,v ∈ W, every c ∈ C, and every
(propositional) formula A, the following hold.

a. if u � v, then u |= A implies v |= A (monotonicity)

b. c |= A iff c 6|= A⊥ (excluded middle)

c. u |= A and u |= A⊥ for some formula A iff △u is empty (u is imaginary).

The first two properties are proved by induction on formulas. Crucially, in the case of monotonicity
for green formulas, assume that u � v. Then it holds by transitivity that △v ⊆ △u, and thus
u |= E implies v |= E for green formulas E. This argument includes the case where △v is empty.
The third property follows from the first two. An equivalent version of the third property is that
u 6|= E for some green formula E iff △u is non-empty.

We make some additional observations about these semantic definitions.

• At first examination, the use of “for some v � u . . .” in the clause defining the semantics
of ∝ may appear to break the monotonicity condition. In particular, if c and c′ are two
classical worlds such that c � c′, why should c |= A ∝ B imply c′ |= A ∝ B since they
could use different witnesses for the existential quantification “for some...?” The reason is
simple: since △c is a singleton, c = c′. Our interpretation of ∝ is a “dual” of intuitionistic
implication in the De Morgan sense, unlike in some versions of dual-intuitionistic logic or
bi-intuitionistic logic [Rau74, Gor00].

• Let v be a world above the classical world c. The condition v 6|= A⊥ is in fact stronger than
v |= A. This property follows from (the contrapositive of) the monotonicity property and
the excluded middle property of classical worlds. The condition v 6|= A also implies that
either v = c or A is a red formula.

• While 0 and ⊥ are clearly distinct in this semantics, 1 and ⊤ are, in fact, equivalent: they are
simply red and green-polarized versions of the same truth value. This equivalence does not
affect cut-elimination for the full logic. In general, it is possible for green-polarized formulas
to be logically equivalent to red-polarized ones.

We say that a model M satisfies A, or M |= A, if u |= A for every u ∈ W. A formula is valid
if it is satisfied in all models.

Our definition of classical satisfiability is similar to the notion of “covers” found in Beth models
[Bet59]. In these models, w |= A ∨ B if there exists a cover above w in the sense that every
maximal path through w intersects the cover, and for each world v in the cover, v |= A or v |= B.
All finite Beth models are classical models since the leafs cover all worlds. In PIL’s hybrid models,
the “cover” of w is fixed to be △w, which could be empty. A key difference between our semantics
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and those of Beth and Kripke is polarization. The cover is only used in the interpretation of the
green connectives while the red ones are interpreted as in Kripke models. Non-classical models
can remain finite. All hybrid models are Kripke models with a refined classification of possible
worlds into three disjoint sets: classical, imaginary, and non-classical worlds with a non-empty
cover. We prefer a Kripke-style semantics because of its simplicity and utility: for example, much
of the difference between classical and intuitionistic logic can be explained clearly by a few small
Kripke models. This characteristic is preserved in PIL.

3.2 Important Countermodels

We give two important examples of invalid formulas and their countermodels. Both examples
involve formulas that are not found in traditional intuitionistic logic.

The formula ∼a ∨e ∼∼a is not valid. Despite using the classical ∨e, this version of the excluded
middle does not hold in PIL precisely because there may be imaginary worlds above the classical
worlds. A countermodel is

s1 : {a, a⊥} s2 : {a⊥}
տ ր
k : {a⊥}

The notation is intended to indicate that the classical world k does not satisfy a (so it must satisfy
a⊥), but k also does not satisfy a ⊃ 0 since there is a world s1 above k that satisfies a. The world
k does not satisfy ∼∼a because no world above s2 satisfies a. The same model shows that a∨e ∼a
is also not valid (s2 is not needed here). Intuitionistic implication does not collapse into a classical
one even when interpreted at the classical level. The excluded middle is valid in the form a∨e a⊥.

The formula (p ∧e q) ⊃ p is not valid. A countermodel is:

k : {p, q}
↑

s : {}

Although every classical world above s satisfies p and q, s does not satisfy p. The same model shows
that several other formulas, including (p∨e q) ⊃ (p∨q), are not valid. The key characteristic of this
model is the gap between the classical worlds and the possible worlds beneath them. Such models
show how the mixture of intuitionistic and classical reasoning must be restricted. They suggest
the need of special proof-theoretic devices that are required for cut-elimination. For example, in
designing a proof system involving sequents, restrictions must be made on the application of the
following kind of introduction rule, which may at first appear harmless:

P,Γ ⊢ R Q,Γ ⊢ R

P ∨e Q,Γ ⊢ R
∨eL

This small model in fact explains an invariant of PIL proofs found in the following section, one
that extends the stoup concept found in Girard’s LC system [Gir91].

3.3 An Algebraic Perspective

Our refinement of Kripke models translates to Heyting algebras in a natural way. The purpose
of this translation is to expose some additional properties of PIL, especially its relationship to
double negation. Since every hybrid model is also a Kripke model, this translation will extend the
standard one (see [Fit69]).

Every Kripke frame corresponds to a Heyting algebra. Specifically, from a hybrid model
〈W,�,C, |=〉 we define the Heyting algebra H = 〈U(W),⊑,⊔,⊓,→,0〉 where U(W) is the set
of all upwardly closed subsets of W: a set S is upwardly closed if, whenever a ∈ S and a � b,
b ∈ S. The ordering relation ⊑ of H is just the regular subset relation. Join and meet are defined
by set union (⊔) and intersection (⊓) respectively. We have chosen to use different symbols from
⊆, ∪, ∩ so as to distinguish the algebra’s operations from other statements concerning sets.
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The relative pseudo-complement A → B is the largest x ∈ U(W) such that (A⊓x) ⊑ B. It can
be shown that this element is in fact the largest upwardly closed subset (interior) of (W−A)∪B
where “−” represents set subtraction. The least element of U(W), denoted by 0, is the empty set.
Formulas A are interpreted in this algebra by a mapping h defined as

h(A) = {u ∈ W : u |= A}

Each h(A) is upwardly closed by the monotonicity of |=. A formula A is valid in the algebra if
h(A) = W: that is, when u |= A for all u ∈ W.

All this is well known. But now notice that the set of all imaginary worlds in W is an upwardly
closed set. This set corresponds to a unique element of U(W), which we can call ⊥⊥:

⊥⊥ = {u ∈ W : △u is empty} = {u ∈ W : u |= ⊥}

If there are no imaginary worlds in W then, indeed, ⊥⊥ = 0. Clearly h(⊥) = ⊥⊥. It is now
possible to characterize the interpretation of all formulas in terms of operations inside the algebra.
Every green formula is the dual of a red formula. A green formula is interpreted by the pseudo-
complement of its dual relative to ⊥⊥. From this semantic perspective the most important addition
to intuitionistic logic found in PIL is ⊥.

Lemma 2 The following holds for h:

• h(A ∨B) = h(A) ⊔ h(B), h(A ∧B) = h(A) ⊓ h(B), and h(A ⊃ B) = h(A) → h(B).

• h(R⊥) = h(R) → ⊥⊥ for all green formulas R⊥.

Proof The cases for ∨, ∧ and ⊃ are exactly the same as in intuitionistic logic. The first two
cases are trivial; for the third case, see [Fit69, Chapter 1]. We shall prove the new property for
green-polarized formulas R⊥. Let P = h(R) → ⊥⊥. This means that for any X in H, h(R)⊓X ⊑ ⊥⊥
if and only if X ⊑ P . The forward direction holds because h(R) ⊓ h(R⊥) ⊑ ⊥⊥ (by Lemma 1c)
and thus h(R⊥) ⊑ P since P is assumed to be largest. In the other direction, suppose u ∈ P .
Assume that u 6∈ h(R⊥), which means that u 6|= R⊥. Since R⊥ is green-polarized, this implies
that for some k ∈ △u, k 6|= R⊥. Since k is classical, this means that k |= R, so k ∈ h(R). But
k ∈ P because P is upwardly closed, so k ∈ h(R) ⊓ P . This implies k ∈ ⊥⊥, which contradicts the
assumption that k is classical. 2

In particular, h(A∨eA⊥) = W since h(A∧A⊥) ⊑ ⊥⊥ and so h(A∧A⊥)⊓W ⊑ ⊥⊥, which means
that h(A ∧A⊥) → ⊥⊥ = W. The lemma implies that h(R⊥) is also equivalent to h(R ⊃ ⊥). Thus
in PIL, R⊥ ≡ R ⊃ ⊥ for all red formulas R, but the same is not true of green formulas: E ⊃ ⊥ is
not equivalent to E⊥. In fact, we can show the important equivalence (R ⊃ ⊥) ⊃ ⊥ ≡ (R ∨e ⊥):

h(R ∨e ⊥) = h(R⊥ ∧ 1) → ⊥⊥ = h(R⊥) → ⊥⊥ = (h(R) → ⊥⊥) → ⊥⊥ = h((R ⊃ ⊥) ⊃ ⊥)

The double-negation “lifts” R to a green formula (but remember that R may contain more than
just conjunction and disjunction). This form of “double-negation,” however, is in terms of ⊥,
which is green-polarized as opposed to 0 or some arbitrary atom, which are red-polarized.

The equivalence R⊥ ≡ R ⊃ ⊥ is the same as E ≡ E⊥ ⊃ ⊥. However, the fact that the green
connectives can be defined in terms of red connectives and ⊥ does not mean that a system in
which they are considered primitive is not useful: for example, most presentations of classical logic
contain a full set of connectives despite the well known fact that every one of them can be defined
in terms of the others. The lifting of the green connectives to first-class status clearly simplifies
the combination of classical connectives with the intuitionistic ones.

Note that whether ⊥ can be considered a “unit” is dependent on the interpretation of “equiv-
alence:” classical equivalence should not be defined in terms of intuitionistic implication. For all
green-polarity formulas, E ∨e ⊥ is always equivalent to E, in the sense that h(E ∨e ⊥) = h(E).
From the properties of h we also see that A ⊃ E is equivalent to the classical implication A⊥ ∨e E
(for green-polarized E), since

h(A ⊃ E) = h(A) → (h(E⊥) → ⊥⊥) = (h(A) ⊓ h(E⊥)) → ⊥⊥ = h(A ∧ E⊥) → ⊥⊥ = h(A⊥ ∨e E)
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Figure 2: The algebraic interpretation of a sample Kripke-hybrid model

The same is not true for A ⊃ R: properly intuitionistic implication will require a red formula at
the head.

Since R 6≡ (R ⊃ ⊥) ⊃ ⊥, the operation (.) → ⊥⊥ is not an involutive operation in the algebra.
To find such an operation, we will first identify a proper boolean algebra embedded within the
Heyting algebra. It is well known that the powerset of any set forms a boolean algebra. Let
B = 〈2C,∪,∩, {}〉 be the boolean algebra formed from the subsets of C. This algebra is embedded
within H as:

BH = {⊥⊥ ∪K : K ⊆ C}
For any subset K of classical worlds, ⊥⊥ ∪K is an upwardly closed set since ⊥⊥ is upwardly closed
and △k = {k} for all k ∈ C in propositional models. Since K and ⊥⊥ are disjoint, the implied
mapping from B to BH is clearly one-to-one. The least element of the embedded algebra2 is ⊥⊥.
It is easy to see that BH is closed under ∪ and ∩ (and thus under ⊔ and ⊓). However, it is not
closed under →. That is to say, intuitionistic implication requires “escaping” the boolean algebra
into the larger Heyting algebra. The diagrams in Figure 2 illustrate a sample frame of a hybrid
model where c and k are considered classical, the corresponding Heyting algebra, and the boolean
algebra in its embedded and independent forms. Every choice of C corresponds to some boolean
algebra that is already embedded within the Heyting algebra. In the example of Figure 2, if u
is considered classical, which means that all the other worlds are imaginary, then the embedded
boolean algebra consists of only the top two nodes of the Heyting algebra.

Contrast the algebra BH with the boolean algebra identified by Glivenko [Gli29], with which
many double-negation translations correspond. Glivenko showed that the skeleton of a pseudo-
complemented lattice, consisting of all points of the form x → 0 (equivalently all points of the form
(x → 0) → 0), can form a boolean lattice. However, unlike BH it is not a sublattice as it does not
preserve joins: joins inside the skeleton boolean lattice must be redefined as ((a⊔b) → 0) → 0. With
this double-negation, intuitionistic implication cannot be embedded inside a classical disjunction
without losing its strength. This form of double-negation confines intuitionistic implication inside
the skeleton from whence there is no escape.

We now define a mapping of formulas into BH based on the double negation (A ⊃ ⊥) ⊃ ⊥. Let
3 = ⊥⊥ ∪C, the top element of BH (not to be confused with 1). For K ⊆ C, let K represent the
complement of K in the boolean algebra B. Extend this operation to BH so that K ∪ ⊥⊥ = K ∪⊥⊥.
In the boolean algebra B, K is just C −K. Define the secondary mapping h′ from formulas into
BH by:

h′(A) = h(A ∨e ⊥) ⊓3

To further analyze the properties of h′, we can divide it into separate cases for red formulas R and
green formulas E:

2It is not technically a “subalgebra” since it does not preserve the least element of H; it is a sublattice.

8



• h′(E) = h(E ∨e ⊥) ⊓3 = h(E) ⊓3 = (h(E) ∩C) ∪ ⊥⊥

• h′(R) = h(R ∨e ⊥) ⊓3 = (h(R ∨e ⊥) ∩C) ∪ ⊥⊥ = (h(R) ∩C) ∪ ⊥⊥.

To see the equalities above, note that h(E) always contains ⊥⊥ (all green formulas are valid in
imaginary worlds). Also classical worlds do not satisfy ⊥, so h(E ∨e⊥) = h(E) and h(R∨e⊥)∩C

= h(R) ∩C.
Thus for every formula A, h′(A) is always inside the embedded algebra BH and in fact h′(A)

can be defined as (h(A) ∩C) ∪ ⊥⊥.
Now by the property that c |= A iff c 6|= A⊥ for all c ∈ C, we see that

• h′(A) = (h(A) ∩C) ∪ ⊥⊥ = (h(A⊥) ∩C) ∪ ⊥⊥ = h′(A⊥)

• h′(A) = h′(A)

We have our involutive operator that interprets A⊥. The following properties can also be estab-
lished:

• h′(1) = h′(⊤) = 3

• h′(⊥) = h′(0) = ⊥⊥

• h′(A ∧B) = h′(A ∧e B) = h′(A) ⊓ h′(B)

• h′(A ∨B) = h′(A ∨e B) = h′(A) ⊔ h′(B)

Inside the boolean algebra ∨e and ∨ are equivalent, as are ∧e and ∧. 0 and ⊥ also become
equivalent. However, the homomorphic properties for h′ do not extend to →. That is, although
intuitionistic implication can be mapped by h′ into the embedded boolean algebra, it does not
hold that h′(A ⊃ B) = h′(A) → h′(B). To demonstrate this, consider the Kripke frame of Figure
2, but as part of a model where C = {u} and with i |= a and k |= b. Then ⊥⊥ = {cvik} and
h′(a ⊃ b) = ⊥⊥ but h′(a) → h′(b) = W. Neither h′ nor h is a perfect homomorphism: h fails
with respect to De Morgan negation and h′ fails with respect to intuitionistic implication. Each
compensates for a deficit in the other. A perfect homomorphism in either case would represent a
collapse into classical logic.

The satisfiability of a green formula E in a hybrid model is entirely determined by its satisfia-
bility in the classical worlds. Thus it follows that

• h′(E) = 3 if and only if h(E) = W

The interpretation of green formulas by h can be replaced by that of h′. However, the fact that h(R)
and h′(R) are distinct for red formulas R allows us to combine classical and intuitionistic logics
in a way that does not destroy the latter. This pair of pseudo-homomorphisms will correspond to
two distinct modes of derivation in the proof theory of PIL: any correct proof system for PIL must
implement this distinction.

4 Sequent Calculus

We present the sequent calculus LP for PIL in Figure 3. Although a semantics for first-order quan-
tifiers is not presented until later in Section 5, we find it convenient to include these quantifiers in
LP at this point. In all rules, Γ and Θ are multisets of formulas, E is a green formula, R is a red
formula, and a is any atom. Although our use of polarization eliminates the need for two-sided se-
quents, we nevertheless choose this style in presenting LP because it improves readability and offers
a better correspondence to the semantics. We use the symbols ⊢◦ and ⊢• to represent two modes
of proof. In terms of the algebraic interpretation, ⊢◦ corresponds to the pseudo-homomorphism h
and ⊢• corresponds to h′. We write ⊢∗ to denote either ⊢◦ or ⊢•. The interpretation of a sequent
Γ ⊢◦A is the formula

∧
Γ ⊃ A where

∧
Γ is the ∧-conjunction over formulas in Γ, with an empty
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Structural Rules and Identity

Γ ⊢•E
Γ ⊢◦E

Signal
A⊥,Γ ⊢•Θ
Γ ⊢•A,Θ

Store
A⊥,Γ ⊢◦A
A⊥,Γ ⊢•

Load
a,Γ ⊢◦ a I

Right-Red Introduction Rules

Γ ⊢◦A Γ ⊢◦B
Γ ⊢◦A ∧B

∧R Γ ⊢◦Ai

Γ ⊢◦A1 ∨A2

∨R
A,Γ ⊢◦B
Γ ⊢◦A ⊃ B

⊃R

Left-Red Introduction Rules

A,B,Γ ⊢◦R
A ∧B,Γ ⊢◦R ∧L

A,Γ ⊢◦R B,Γ ⊢◦R
A ∨B,Γ ⊢◦R ∨L

A ⊃ B,Γ ⊢◦A B,Γ ⊢◦R
A ⊃ B,Γ ⊢◦R ⊃L

Right-Green Introduction Rules

Γ ⊢•A Γ ⊢•B
Γ ⊢•A ∧e B

∧eR
Γ ⊢•A,B

Γ ⊢•A ∨e B
∨eR

Γ ⊢◦A Γ ⊢•B
Γ ⊢•A ∝ B

∝R

Rules for Quantifiers

Γ ⊢◦A[t/x]
Γ ⊢◦ ∃x.A ∃R Γ ⊢◦A

Γ ⊢◦Πy.A ΠR
A,Γ ⊢◦R

∃y.A,Γ ⊢◦R ∃L
A[t/x],Πx.A,Γ ⊢◦R

Πx.A,Γ ⊢◦R ΠL

Γ ⊢•A[t/x]
Γ ⊢•Σx.A ΣR

Γ ⊢•A
Γ ⊢• ∀y.A

∀R In all rules, y is not free in Γ and R.

Rules for Constants

Γ ⊢◦ 1 1R
Γ ⊢◦R
1,Γ ⊢◦R 1L

0,Γ ⊢◦R 0L
Γ ⊢•

Γ ⊢•⊥ ⊥R
Γ ⊢•⊤ ⊤R

Figure 3: The LP proof system

Γ representing 1; the interpretation of Γ ⊢• Θ is
∧
Γ ⊃ ∨

Θ where
∨

Θ is the ∨e-disjunction over
Θ, with an empty Θ representing ⊥.

An important requirement of LP is that the end-sequents of proofs have the form Γ ⊢◦A, where
A can be of any polarity. The theorems of PIL are those formulas A such that ⊢◦A is provable.

The introduction rules of LP are classified both by the polarity of the principal formula and
by the side of the sequent where it occurs. Thus a classification such as left-red refers to red
formulas on the left-hand side. The rules of LP can be divided into three groups: the right-red
and left-red rules, the right-green rules, and the structural rules. The rules for quantifiers and
constants follow the same pattern of classification as the propositional cases. Below, we provide
some further explanation of each group of rules.

Red Introduction Rules: The LJ Fragment. These rules correspond to those of Gentzen’s
LJ sequent calculus, with some common variations in the handling of contraction and weakening
and in the ∧L rule. These variations are well known to be equivalent to Gentzen’s original presen-
tation (see the system “G3i” in [TS96]). LP is thus clearly an extension of LJ. Rules of this group
use the ⊢◦ mode exclusively. A formula is purely red if all of its subformulas are red. If a sequent
with ⊢◦ is also composed exclusively of purely red formulas then only red-introduction rules will
ever be applicable in any attempted derivation of the sequent. Thus LJ is contained in LP in a
very strong sense: an LP proof of an intuitionistic sequent is an LJ proof.

It would be wrong, however to exclusively associate ⊢• with classical deduction and ⊢◦ with
intuitionistic deduction. Classical deduction can also use the ⊢◦ mode.
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We have chosen to use multisets in this presentation of LP, although it is also possible to use
sets. Using multisets allow us to avoid some unnecessary contractions such as in the left-red rules
for ∨ and ∧.
Structural Rules. A green-polarized formula can occur on the right-hand side of ⊢◦ because,
for example, such a formula can be embedded inside the scope of a red connective. When this
polarity switch occurs, the sequent must be preceded from above by a Signal rule in proofs. The
structural rules Signal, Store and Load are critical because they allow classical and intuitionistic
logics to coexist as more than disjoint fragments. These rules allow the green and red connectives
to mix without restriction. The Store rule is a generalized form of reductio ad absurdum. The Load
rule allows even classical proofs to use the ⊢◦ mode, after a contraction.

Right-Green Introduction Rules. We have chosen to allow introduction rules for the green-
polarity connectives to occur only on the right-hand side. The reason for this choice is twofold.
The first is one of economy: the missing “left-green” rules are not needed because the Load rule,
which embodies a contraction, can be used to move a green formula to the right-hand side of
the sequent. The second reason is that such a choice will force even classical proofs to have an
intuitionistic structure, in the style of LC (see below). Specifically, when a green formula on the
left is moved to the right, it becomes red-polarized and subject to introduction rules in the ⊢◦
mode. Left-green introduction rules will be used in an alternative proof system in Section 7. Of
the right-green introduction rules, ∝R is the only rule outside of the structural rules that involves
a switch between the ⊢• and ⊢◦ modes.

A critical invariant of LP is that no green introduction rule is possible in the ⊢◦ mode. This
invariant defines the limitations of combining classical and intuitionistic reasoning, as explained
by PIL’s semantics. It is crucial to cut-elimination.

Contraction and weakening do not appear as explicit rules in LP except for the embedded
contraction in Load and embedded weakening in I. Contraction and weakening are admissible by
the following lemma, which is proved by induction on the structure of proofs. We also include the
usual first-order substitution rule in this lemma.

Lemma 3 If A,A,Γ ⊢∗ Θ is provable, then A,Γ ⊢∗ Θ is provable. If Γ ⊢∗ Θ is provable, then
A,Γ ⊢∗ Θ is provable. If x is not free in Γ and Γ ⊢∗ A is provable then Γ ⊢∗ A[t/x] is provable for
any term t.

The following lemma, which follows from the admissibility of weakening, further relates the ⊢◦ and
⊢• modes of proof.

Lemma 4 If Γ ⊢◦ A is provable then Γ ⊢• A is also provable. Furthermore, the sequent ⊢• A is
provable if and only if A⊥ ⊢◦A is provable.

Another important property, proved by induction on formulas, is that the initial rule can be applied
to all formulas, not just atomic formulas.

Lemma 5 A,Γ ⊢◦A is provable for all formulas A.

The two modes ⊢◦ and ⊢• naturally define two forms of equivalence. A is equivalent to B in PIL
if ⊢◦ (A ⊃ B)∧ (B ⊃ A) is provable. On the other hand, we also have a classical notion of provable
equivalence, which holds if A ⊢•B and B ⊢•A are both provable. We can refer to this latter form
as green-equivalence.

In the context of the sequent calculus, we say that a set of formulas Γ is 0-consistent if Γ′ ⊢◦ 0 is
not provable for any finite subset Γ′ of Γ, and that the set is ⊥-consistent if Γ′ ⊢◦⊥ is not provable
for any finite subset Γ′ of Γ. If a set is ⊥-consistent, then it is also 0-consistent, but the reverse
does not hold. The set {a, a⊥} is not ⊥-consistent, but it is 0-consistent. In intuitionistic logic only
red-polarized formulas are used, so one cannot even speak of ⊥-inconsistency. In classical logic, 0
is equivalent to ⊥, so again the problem is nullified. The discrepancy appears because we allow
the classical and intuitionistic polarities to mix freely in PIL.
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It must be emphasized that it would be wrong to simply associate ⊢• with green formulas and
⊢◦ with red formulas. Red formulas may also occur to the right-side of ⊢• . When ∨ occurs on the
right-side of ⊢•, the availability of contraction (via Store and Load) renders it equivalent to ∨e.

In PIL, the law of excluded middle is provable in the form ⊢◦A∨e A⊥ as well as ⊢•A∨A⊥. On
the other hand, the disjunction and existence properties are also retained in the forms ⊢◦A∨B and
⊢◦ ∃x.A. As further examples, Peirce’s formula ((p ⊃ q) ⊃ p) ⊃ p becomes provable by replacing
the outermost and innermost ⊃ with classical implication (definable as A⊥ ∨e B), while keeping
the middle one intuitionistic. We give a detailed proof below of this version of Peirce’s formula as
an illustration of how to use the LP system. The formula in negation normal form that we shall
prove is ((p⊥ ∨e q) ∝ p⊥) ∨e p:

p⊥, p, q⊥ ⊢◦ p
I

p⊥, p, q⊥ ⊢•
Load

p⊥ ⊢• p⊥, q
Store× 2

p⊥ ⊢• p⊥ ∨e q
∨eR

p⊥ ⊢◦ p⊥ ∨e q
Signal

p, p⊥ ⊢◦ p
I

p, p⊥ ⊢•
Load

p⊥ ⊢• p⊥
Store

p⊥ ⊢• (p⊥ ∨e q) ∝ p⊥
∝R

⊢• (p⊥ ∨e q) ∝ p⊥, p
Store

⊢• ((p⊥ ∨e q) ∝ p⊥) ∨e p
∨eR

⊢◦ ((p⊥ ∨e q) ∝ p⊥) ∨e q
Signal

The following version of Markov’s Principle is also directly provable.

[(Πx. ∼P (x)∨ ∼(P (x)⊥)) ∧(∼∼ ∃x.P (x))] ⊃ Σx.P (x)

Of course, had we written a purely classical version of the formula, using De Morgan negation
instead of ∼, the principle would become trivialized. This particular mixture of green and red
polarities is more meaningful, however, because its proof must invoke the Π clause, which states
the “decidability” of P in yet another form of the excluded middle that is possible in PIL. For any
valid term t one of P (t) and P (t)⊥ is red-polarized and the other is green-polarized. Assuming
that P (t) is red-polarized, the meaning of ∼P (t)∨ ∼ (P (t)⊥) is either P (t) is never true or there
will always be future classical worlds in which it is true (see Section 5 for formal semantics). All
the admissible rules of intuitionistic logic are inherited by PIL, which is clear from the strong
embedding of LJ inside LP.

4.1 The LC Fragment

The purely classical fragment of PIL consists of all connectives except ⊃, ∝, Π and Σ. Classical
end-sequents can be of the form ⊢◦ A1 ∨e . . . ∨e An ∨e ⊥ or ⊢• A1, . . . , An. In this fragment, ∨
and ∨e, as well as ∧ and ∧e, are provably equivalent. One can show, for example, that A ∨e B ⊢•
A ∨ B is provable for each possible polarity combination of A and B (the equivalence is also
semantically provable). The constants 0 and ⊥ are also classically equivalent. However, even
in the ⊢• mode, that is to say, even when contraction is available, intuitionistic implication and
universal quantification do not collapse into their classical counterparts (classical implication should
be defined from disjunction). This phenomenon has been well explained in our semantics.

The completeness of this fragment with respect to classical logic can be proved by showing the
admissibility of the rules of LK. However, the classical fragment of LP bears closer resemblance to
LC [Gir91] than to LK. LC defines the polarities “positive” and “negative.” In terms of PIL, ∨, ∧,
∃, 1 and 0 would be considered positive while their duals are negative. Thus if we stay exclusively
within the classically-oriented fragment, positive formulas are red-polarized and negative ones are
green-polarized. However, the polarity of an LC formula is also dependent on the polarity of its
subformulas. When A and B are both positive, A ∨ B in LC is interpreted as A ∨ B in PIL;
otherwise, it is A ∨e B (and dually for ∧). LC sequents with a non-empty “stoup” correspond to
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the ⊢◦ mode while those without a stoup correspond to ⊢•. LC introduction rules on the stoup
formula correspond to right-red introduction rules in LP; the introduction rules for “negative”
connectives in the presence of a stoup correspond to left-red rules while those without a stoup
correspond to right-green rules. The following are representative examples of LC rules and their
equivalents in LP. Here, P is positive and N is negative. The formula to the right of the semicolon
is the stoup.

⊢ Γ, N, P ;S

⊢ Γ, N ∨ P ;S 7−→
Γ, P,N ⊢◦ S
Γ, P ∧N ⊢◦ S ∧L

⊢ Γ, N, P ;

⊢ Γ, N ∨ P ; 7−→
Γ ⊢•N,P

Γ ⊢•N ∨e P
∨eR

⊢ Γ;P ⊢ ∆, N ;

⊢ Γ∆;P ∧N 7−→
Γ∆ ⊢◦P

Γ∆ ⊢•N
Γ∆ ⊢◦N

Signal

Γ∆ ⊢◦P ∧N
∧R

The structural rules of LC, including weakening and contraction outside of the stoup, are admissible
in LP. The splitting of the context in the LC ∧-rule does not change classical provability (we could
have done the same in LP). Except for different styles in the management of sequents, LC is a
fragment of LP. An important difference is that the original LC does not contain intuitionistic
implication. While it allows classical logic to share the structure of intuitionistic proofs, it does not
allow the two logics to mix at the level of formulas. In our version of LC the classical connectives
can also join formulas containing purely intuitionistic connectives.

The original LC sequent calculus contains an invariant that no positive introduction rule can
be applied outside of the stoup. This invariant is subsumed by the LP invariant that no green
introduction rule is possible in the ⊢◦ mode3.

4.2 Cut-Elimination

The admissible cut rule of LP in terms of end-sequents appears as follows:

Γ ⊢◦A A,Γ′ ⊢◦B
ΓΓ′ ⊢◦B

Cut

With the two modes of sequents in PIL, several other cuts are also admissible, including:

Γ ⊢•A,Θ A,Γ′ ⊢•Θ′

ΓΓ′ ⊢•ΘΘ′
cut

Γ ⊢◦A A,Γ′ ⊢•Θ′

ΓΓ′ ⊢•Θ′
cut

Γ ⊢◦A Γ′ ⊢◦A⊥

ΓΓ′ ⊢•
cut

Still other forms can be written, but Cut is the principal one with a conclusion in the ⊢◦ mode.
The admissibility of other forms of cut may also depend on the polarity of the cut formula.

Cut-elimination can be proved in the usual way, although here we formally derive the result
semantically in Section 6. It is worthwhile, however, to also point out the most important aspects of
the syntactic proof. Such proofs are tedious because they involve many cases, but ones that require
special attention are those where the cut formula is subject to contraction. The LP invariant that
no green introduction rule is possible in the ⊢◦ mode, which we motivated semantically in Section
3, is needed syntactically because some but not all formulas are subject to contraction in proofs.

The syntactic proof is by a simultaneous induction on the several variants of cut. The inductive
measure is the usual lexicographical ordering on the size of the cut formula and the height of
subproofs. The size of all literals is one, so A and A⊥ are always of the same size. Also needed
is a strengthening of Lemma 3, which not only admits weakening and contraction on the left side
but also preserves the height of proofs. Cuts are separated into key cases, where the cut formula is
principal in both premises, and parametric cases, where at least one cut formula is not immediately
principal. Parametric cuts are shown to be always permutable to cuts of smaller height measures.

3Because it so happens that all red-polarized classical connectives are positive, the LC version of the invariant
accidentally resembles focusing. Completely focusing LP is much more difficult (see Section 8 for a brief discussion).
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Cut-elimination in LP diverges from that of LJ when a formula is contracted as a result of
Load. Here the polarities and special structural rules of LP become relevant. We show one of the
most representative cases. Suppose the cut to be reduced is of the form

A⊥, B⊥,Γ ⊢•
Γ ⊢•A,B

Store× 2

Γ ⊢•A ∨e B
∨eR

Γ ⊢◦A ∨e B
Signal

A ∨e B,Γ′ ⊢◦A⊥ A ∨e B,Γ′ ⊢◦B⊥

A ∨e B,Γ′ ⊢◦A⊥ ∧B⊥
∧R

A ∨e B,Γ′ ⊢•
Load

ΓΓ′ ⊢•
cut

Crucially, a key-case cut on such a green-polarized formula can only occur in this form, with the
right-side subproof ending in the ⊢• mode, because of the invariant concerning the ⊢◦ mode. We
can show that, without loss of generality, the sequent Γ ⊢• A,B can be assumed to be preceded
from above by two Store rules. This cut is permuted into the following form:

Γ ⊢◦A ∨e B A ∨e B,Γ′ ⊢◦B⊥

ΓΓ′ ⊢◦B⊥
Cut

Γ ⊢◦A ∨e B A ∨e B,Γ′ ⊢◦A⊥

ΓΓ′ ⊢◦A⊥
Cut

A⊥, B⊥,Γ ⊢•
B⊥,ΓΓ′ ⊢•

cut

ΓΓ′ ⊢•
cut

We have implicitly used the strengthened form of Lemma 3 here to avoid writing copies of Γ and
Γ′. The original cut is reduced to four cuts: the lower two cuts involve smaller cut formulas while
the upper two involve smaller height measures.

The other cases of the syntactic cut-elimination proof for LP are either variations of the above
case or are the same as those of a typical cut-elimination proof for an intuitionistic sequent calculus
based on LJ.

Although syntactic cut-elimination is expected of any Gentzen-style system, the mostly me-
chanical procedure does not reveal all the subtleties that allow the process to succeed. One way
to understand Gentzen’s analysis of cut-elimination for intuitionistic logic is that the following cut
must not be admissible:

P,Γ ⊢ Q ∼P,Γ′ ⊢ Q

ΓΓ′ ⊢ Q
wrong-cut

Allowing this cut is equivalent to admitting the law of excluded middle as a global axiom. Gentzen’s
solution to excluding this cut is to force the conclusion of the cut to be written in the following
form: ΓΓ′ ⊢ Q,Q. Then, by restricting proofs to single formulas on the right, this conclusion
obviously has no cut-free proof.

The single-conclusion invariant of LJ has been extended to a more generic form in LP, which
is worth repeating: green-polarity introduction rules are not available in the ⊢◦ mode. The “wrong
cut” in the context of LP can also have the following form:

Γ ⊢•P P,Γ′ ⊢◦Q
ΓΓ′ ⊢◦Q

bad-cut

Here, P and Q are both red-polarized. The non-admissibility of this cut is easily shown seman-
tically: the validity of P in classical worlds does not imply its validity in all worlds. During the
permutation of cuts, an attempted cut of the above form is never encountered. Now suppose we
had violated the ⊢◦ invariant and allowed the following introduction rule:

A,A ∧e B,Γ ⊢◦R
A ∧e B,Γ ⊢◦R naive-∧eL

Then given the following cut

Γ ⊢•A Γ ⊢•B
Γ ⊢•A ∧e B

∧eR

Γ ⊢◦A ∧e B
Signal

A,A ∧e B,Γ′ ⊢◦R
A ∧e B,Γ′ ⊢◦R

naive-∧eL

ΓΓ′ ⊢◦R
Cut
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we would be led to attempt the following, invalid reduction:

Γ ⊢•A
Γ ⊢◦A ∧e B A,A ∧e B,Γ′ ⊢◦R

A,ΓΓ′ ⊢◦R
Cut

ΓΓ′ ⊢◦R
bad-cut

This kind of subtlety can easily be missed in a mechanical, inductive proof. The ability to reason
semantically about the proof system complements the inductive procedure. We return to semantics
in the following sections.

5 The Semantics of First-Order PIL

The interpretation of the propositional fragment is self-contained and relatively clear. The propo-
sitional fragment already illustrates many of the essential characteristics of the full semantics. The
introduction rules for the quantifiers in LP are fairly standard: indeed proof-theoretically the first-
order quantifiers are rather mundane. The same is not true in model theory, much of which is
centered on the interpretation of predicate logic. The extension of PIL semantics to the first-order
case also cannot merely follow the example of first-order intuitionistic model theory.

First-order PIL poses the following challenge. In order to preserve the excluded middle property
at classical worlds c, what should be the domain D(c) of these worlds? If the classical domains are
universal (i.e., contain all possible terms), then the intuitionistic Π would collapse into the classical
∀ when interpreted in the classical worlds, a fact that is inconsistent with the interpretation of ⊃. It
is also not clear how to specify a proof system for this interpretation that preserves cut-elimination
(the LP invariant will have to be compromised). With a restricted domain, each classical world can
no longer claim to be maximally ⊥-consistent in the sense that “c |= A if and only if c 6|= A⊥.” For
some new parameter (term) tn, adding a proposition p(tn) may result in a ⊥-consistent extension.
Each classical world can at most claim to be maximally consistent with respect to its domain. This
entails that there could be more than a single “layer” of classical worlds, and that the restriction
△c = {c} can no longer be observed. There could now be classical worlds above other classical
worlds as well as non-classical worlds in between them. Most importantly, there can be infinite
chains of classical worlds without bound. In this context there is a danger of loosing monotonicity
for the green connectives, most notably in the case of the classical universal quantifier ∀. The
simultaneous preservation of monotonicity and an acceptable form of the excluded middle property
becomes a challenge.

A first-order Kripke hybrid model is a structure 〈W,�,C, |=,D〉 where W, �, C, and |= are
as in the propositional case. The component D is a domain function mapping elements of W
to non-empty sets of parameters. D(u) is called the domain of u. For convenience we do not
distinguish predicates and parameters in the syntax from their semantic interpretation, since this
correspondence is quite standard. Let Pm(A) represent the set of all parameters appearing in
formula A. Let L(D) be the set of all formulas with parameters in the set D. The following
conditions are also required of any model:

1. For u,v ∈ W and atomic formula a, if u � v then u |= a implies v |= a.

2. if u � v then D(u) ⊆ D(v).

3. if u |= p(t1, . . . , tn) then t1, . . . , tn ∈ D(u)

The definition of |= for the first-order case not only defines the cases for the quantifiers, but must
modify the green propositional cases as well. The red-polarity cases are not modified and remain
identical to their definition in traditional Kripke models for intuitionistic logic. For convenience
however, we list all the cases. All cases of |= are now defined with the understanding that they
contain the implicit stipulation that u |= A only if all parameters of A are in D(u).

We assume c,k ∈ C but that v and u represent arbitrary worlds. Again, △c is {k ∈ C : k � c}.

• u |= Πx.A iff for all v � u, and for all t ∈ D(v), v |= A[t/x].
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• u |= ∃x.A iff for some s ∈ D(u), u |= A[s/x].

• u |= 1 and u 6|= 0

• u |= A ∨B iff u |= A or u |= B

• u |= A ∧B iff u |= A and u |= B

• u |= A ⊃ B iff for all v � u, v |= A implies v |= B

• c |= ∀x.A iff for all k ∈ △c and all t ∈ D(k), k 6|= A[t/x]⊥.

• c |= Σx.A iff for all k ∈ △c, there exist some v � k and some s ∈ D(v) such that v 6|=
A[s/x]⊥.

• c |= ⊤ and c 6|= ⊥

• c |= a⊥ iff for all k ∈ △c, k 6|= a, for all green literals a⊥.

• c |= A ∝ B iff for all k ∈ △c, there exists some v � k such that v |= A and v 6|= B⊥.

• c |= A ∨e B iff for all k ∈ △c, k 6|= A⊥ or k 6|= B⊥.

• c |= A ∧e B iff for all k ∈ △c, k 6|= A⊥ and k 6|= B⊥.

The critical “lifting” rule for green-polarized E at all worlds is retained, and remains consistent
with the definition of |= in classical worlds:

• u |= E iff for all k ∈ △u, k |= E.

Note that if we can assume the property △c = {c}, as in the propositional fragment, then the
definitions for the green-polarity cases will collapse into forms that are exact duals of the red cases.
Then it follows easily that c |= A if and only if c 6|= A⊥. Therefore, the definition of |= in the
propositional cases would become equivalent to their original forms in Section 3. The first-order
semantics is thus entirely consistent with the propositional one and a completeness proof for the
first-order semantics would be valid for all of PIL. In fact, if we can only assume that there can be
no infinite chains of classical worlds, then these new definitions would also not be needed.

The core properties of Lemma 1 are now modified. Monotonicity is sustained, but the excluded
middle property for classical worlds takes on a weakened but adequate form:

Lemma 6 In a first-order Kripke hybrid model, for every u,v ∈ W and every c,k ∈ C:

a. If u � v, then u |= A implies v |= A (monotonicity)

b. If c |= A then c 6|= A⊥

c. If c 6|= E then for some k ∈ △c, k |= E⊥, for all green formulas E.

The three properties are easily verified from the definitions. Monotonicity is built in to the defini-
tions of the green connectives by using “for all k ∈ △c, . . .,” which precedes all clauses.

Although the following arguments are implied by the completeness proof to follow, we provide
them here separately as illustrations of reasoning within this semantics.

• c |= A ∨e A⊥

This property shows that the definitions of |= in the green polarity cases, although not
precisely “duals” of their red counterparts, nevertheless preserve the classical disjunction.
To see this, assume that for some classical c, c 6|= A ∨e A⊥, then by the third property of
the lemma above there is some classical k � c such that k |= A⊥ ∧A. But this implies that
k |= A and k |= A⊥, which contradicts the second property of the lemma.
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• It is no longer the case that c |= A ∨ A⊥, which holds in propositional models. However,
this failure does not contradict the classical equivalence of ∨ and ∨e. Recall that in LP,
the provability of the sequent ⊢•A ∨A⊥ should actually be interpreted as the provability of
⊢◦ (A ∨ A⊥) ∨e ⊥. Thus we should be asking if c |= (A ∨ A⊥) ∨e ⊥. This holds as follows:
suppose c 6|= (A ∨A⊥) ∨e ⊥, then there is some classical k � c such that k |= A⊥ ∧e A. But
this means that for all k′ ∈ △k, k

′ 6|= A and k′ 6|= A⊥. However, k ∈ △k and either A or A⊥

must be green-polarized: without loss of generality, assume it is A. By the third property of
the lemma, there is some k′ ∈ △k such that k′ |= A⊥: a contradiction.

• Although the new definition of |= for ∀ resembles intuitionistic universal quantification, it is
in fact still classical. Assume that c |= ∀x.(A ∨e B) where x does not occur free in A. The
∀ quantifier allows A to “escape its scope,” for it also holds that c |= A ∨e ∀x.B. To see
this, suppose c 6|= A∨e ∀x.B, then for some k ∈ △c, k |= A⊥ ∧ ∃x.B⊥. But by monotonicity
we also have that k 6|= A⊥ ∧ B⊥[t/x] for any t ∈ D(k): a contradiction follows. The same
argument fails for Π, the dual of which is Σ: from k |= Σx.B⊥ we get that for some v � k,
v 6|= B[s/x] for some s ∈ D(v), which leads to no contradiction.

Now consider the sentence

(⊥ ⊃ 0) ∧ ∀x.p(x) ∧ Σy.p(y)⊥

This sentence is consistent in the given semantics. However, it can only have infinite models, with
no upper-bound to classical worlds. The clause ⊥ ⊃ 0, which is consistent, excludes models with
any imaginary worlds (without this clause the two green-polarized formulas can be satisfied by a
model with a single imaginary world). This suggests a model with the following structure:

Domain |=
...

...
t1, t2, t3 c3 |= p(t1), p(t2), p(t3)
t1, t2, t3 v2 |= p(t1), p(t2)
t1, t2 c2 |= p(t1), p(t2)
t1, t2 v1 |= p(t1)
t1 c1 |= p(t1)

There must be some classical world c1 in any model of this sentence where p(s) is forced for every
parameter s in D(c1). In order to satisfy Σy.p(y)⊥, there also needs to be a new world v1 above c1
such that v1 6|= p(t) for some t ∈ D(v). To satisfy monotonicity with respect to the classical world,
the domain of v1 must be expanded with a t 6∈ D(c1). However, there must be another classical
world c2 above v1 since v1 cannot be imaginary. To satisfy the monotonicity of ∀x.p(x), p(t)
must now be satisfied in c2, which necessitates another world v2 with yet another new parameter,
resulting in an infinite chain of alternating classical and non-classical worlds. Under the restriction
△c = {c}, there is no model for this sentence. The generalized definition of |= is required to
distinguish the classical quantifiers from the purely intuitionistic ones.

From the definitions of |= for ∨e and ∀, one might observe that the set of classical worlds in
a hybrid model in fact forms a Kripke model on their own. In this submodel, these classical con-
nectives are interpreted almost as if they were intuitionistic ones (thinking of classical implication
as A⊥ ∨e B). However, there is an important distinction: instead of “k |= A” we say “k 6|= A⊥,”
which can be considered as another form of double negation.

When restricted to intuitionistic logic (purely red-polarized formulas), the interpretation of the
connectives and quantifiers preserves intuitionistic validity. Every hybrid model can be considered
a regular Kripke model by simply ignoring the definition of |= on green formulas.

6 Soundness and Completeness

The soundness and completeness of LP with respect to the Kripke-style semantics are proved with
respect to cut-free proofs. We use the notation M |= (Γ ⊢◦A) to mean M |= ∧

Γ ⊃ A, where
∧
Γ
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is the ∧-conjunction of formulas in Γ. Sequents Γ ⊢• A1, . . . , An are included in this definition as
Γ ⊢◦A1 ∨e . . . ∨e An ∨e ⊥ (so Γ ⊢• is treated as Γ ⊢◦⊥).

We prove the results for the full first-order semantics, which subsumes the propositional case.

Theorem 7 (Soundness) If Γ ⊢◦A is provable, then M |= (Γ ⊢◦A) for every Kripke hybrid model
M .

The soundness direction is proved by induction on the structure of proofs. We show two cases.
The most interesting case is that of the structural rule Store. Without loss of generality, assume
that the context Θ contains a single formula B (which could be ⊥). Assume that for all models
M and all u in M, u |= (A⊥ ∧∧

Γ) implies u |= (B ∨e ⊥). Now to prove the conclusion, assume
u |= ∧

Γ. For all classical worlds cu � u in the model, we need to show that cu |= A ∨e B. Now,
for all c ∈ △cu , it is thus assumed that c 6|= (A⊥ ∧

∧
Γ) or c |= B ∨e ⊥ (since c is itself a world

in M). If c |= B ∨e ⊥, then by definition, for all k ∈ △c, k 6|= B⊥ (since k |= ⊥⊥ = 1). If
c 6|= (A⊥ ∧∧

Γ), then c 6|= A⊥, since c |= ∧
Γ by monotonicity. In either case we have shown that

that for all c ∈ △cu , c 6|= A⊥ or c 6|= B⊥ and thus by definition cu |= A ∨e B. In the case of ΣR,
the assumption is that u |= ∧

Γ implies cu |= A[t/x] for all cu ∈ △u, which implies cu 6|= A[t/x]⊥

by Lemma 6. Then either t ∈ D(cu) or the substitution is vacuous. If it is not vacuous, then t is
the existential witness and since cu � cu, cu |= Σx.A. If the substitution is vacuous, then since
D(cu) is always non-empty, we can select any element of D(cu) as the witness. The other cases of
the proof are either similar or straightforward.

The organization and presentation of our completeness proof follows that of Fitting [Fit69],
which is in turn based on Kripke’s proof [Kri65] and relies on showing the existence of Hintikka-
type saturations. This style of proof shows the existence of a countermodel given an unprovable
formula. Another style of proof follows the strategy of Henkin in creating maximally consistent sets,
which in turn creates a canonical countermodel that falsifies every unprovable formula. We wish
to have a completeness proof that suggests a procedure for constructing countermodels. While our
proof here is designed to invalidate a given formula, we also rely on the existence of Henkin-style
maximally consistent saturations in forming the classical worlds. Additionally, our proof is given
directly for a primarily single-conclusion system as opposed to a multiple-conclusion one (i.e., the
Beth-Fitting tableau system). First, we modify LP as given by using sets (on the left-hand side) as
opposed to multisets in the representation of sequents. We also assume that the principal formula
is always persistent in the left-side context in the premise of each inference rule: this assumption
is valid by the admissibility of weakening and contraction (Lemma 3).

We define an antisequent to be a pair of enumerable sets of formulas Γ and ∆, which we write
as Γ 6⊢◦ ∆. An antisequent Γ 6⊢◦ ∆ is defined to be consistent if for all finite subsets Γ′ of Γ and
for all formulas A ∈ ∆, Γ′ ⊢◦ A is not provable in LP; otherwise, it is inconsistent. Antisequents
associated with the initial rules of LP, such as a,Γ 6⊢◦ a,∆ and 0,Γ 6⊢◦ ∆, are clearly inconsistent.
If ⊥ appears on the right-hand side of a consistent antisequent, then the left-hand context is ⊥-
consistent in the sense of Section 4. Intuitively, an antisequent represents a (possibly infinite)
multiple conclusion sequent, or a set of signed formulas in a tableau with formulas in Γ signed T
and formulas in ∆ signed F .

We define a Hintikka-Henkin pair as a pair of sets of consistent antisequents of the form (H,K),
where H is a non-empty set of the form {S1, S2, . . . , Si, . . .} and K is a (possibly empty) subset of
H, and is enumerable in the form {K1,K2, . . . ,Kj , . . .}. Given an antisequent Si = Γi 6⊢◦ ∆i, let
Pm(Si) now also represent the set of all parameters occurring in Γi or ∆i. For each Si in H there
is also an associated non-empty set of parameters DSi such that Pm(Si) ⊆ DSi . Every antisequent
Si in each set of the pair must satisfy the following properties. Here, E is again a green-polarity
formula:

1. if A ∧B ∈ Γi, then A ∈ Γi and B ∈ Γi

2. if A ∨B ∈ Γi, then A ∈ Γi or B ∈ Γi

3. if A ⊃ B ∈ Γi, then either A ∈ ∆i or B ∈ Γi.
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4. if A ∧B ∈ ∆i then either A ∈ ∆i or B ∈ ∆i.

5. if A ∨B ∈ ∆i then A ∈ ∆i and B ∈ ∆i.

6. if A ⊃ B ∈ ∆i then there exists an Sj = Γj 6⊢◦ ∆j in H such that DSi ⊆ DSj , A,Γi ⊆ Γj

and B ∈ ∆j .

7. if ∃x.A ∈ Γi, then A[t/x] ∈ Γi for some t ∈ DSi .

8. if Πx.A ∈ Γi, then A[t/x] ∈ Γ for all t ∈ DSi .

9. if ∃x.A ∈ ∆i, then A[t/x] ∈ ∆i for all t ∈ DSi .

10. if Πx.A ∈ ∆i, then there is an Sj = Γj 6⊢◦ ∆j in H such that DSi ⊆ DSj , Γi ⊆ Γj and for
some t ∈ DSj , A[t/x] ∈ ∆j .

11. if E ∈ ∆i then there exists a Kj = Γj 6⊢◦∆j in K such that DSi ⊆ DKj

and E⊥,Γi ⊆ Γj .

12. ⊥ ∈ ∆i for each Ki = Γi 6⊢◦∆i in K.

13. given Ki = Γi 6⊢◦ ∆i in K, for any formula A with parameters in DKi

, either A ∈ Γi, or
A,Γi 6⊢◦⊥ is inconsistent.

14. given Ki = Γi 6⊢◦ ∆i in K, for any formula A with parameters in DKi

, either A ∈ ∆i or
Γi 6⊢◦A is inconsistent.

Note that the rules for the red connectives ∧, ∨ and ⊃ are the same for the K antisequents. These
rules also cover derivations such as

A,B,A ∧B,Γ ⊢•
A ∧B,Γ ⊢•A⊥, B⊥

Store× 2

A ∧B,Γ ⊢•A⊥ ∨e B⊥
∨eR

A ∧B,Γ ⊢◦A⊥ ∨e B⊥
Signal

A ∧B,Γ ⊢• Load

and

A ⊃ B,Γ ⊢◦A
A ⊃ B,B,Γ ⊢•
A ⊃ B,Γ ⊢•B⊥

Store

A ⊃ B,Γ ⊢•A ∝ B⊥
∝R

A ⊃ B,Γ ⊢◦A ∝ B⊥
Signal

A ⊃ B,Γ ⊢• Load

Introduction rules for the green connectives are thus also accounted for by these properties. Com-
pleteness of provability is preserved by aggressively applying Store (this holds by the admissibility
of weakening). While the first ten clauses correspond to introduction rules of LP, the last few
describe the saturation of structural rules. A significant distinction in LP is that all introduction
rules satisfy the subformula property, while the structural rules only satisfy this property up to
duality. For example, by clause 14, if E ∈ Γi, then E⊥ ∈ ∆i since if the conclusion of Load is
consistent, then so must be its premise.

The following critical lemma shows that a collection satisfying the above properties forms a
model that is consistent with its antisequents.

Lemma 8 Given a Hintikka-Henkin pair (H,K), for all Si = Γi 6⊢◦∆i in H, let Sa � Sb if Γa ⊆ Γb

and DSa ⊆ DSb . Let D(Si) = DSi . Let Si |= a for atomic formulas a if a ∈ Γi. Extend |= as
defined for hybrid models, with K used as the classical worlds. Then 〈H,�,K, |=,D〉 is a hybrid
model, and

1. if A ∈ ∆i then Si 6|= A for all formulas A.

2. if A ∈ Γi then Si |= A for all formulas A.

Proof That this structure is a model is easily verified since transitivity and monotonicity are
consequences of the definition of � by ⊆. The two remaining properties of the lemma are proved
by a simultaneous induction on formulas. The intuitionistic red-polarity cases are as in Fitting’s
proof. For green formula E, if E ∈ Γi then either Si |= E vacuously, or for each Kj ∈ K such
that Kj � Si, E ∈ Γj (with Kj = Γj 6⊢ ∆j). Then by the Load rule and properties 12 and 14 of
Hintikka-Henkin pairs, E⊥ ∈ ∆j . We need to show that Kj |= E; then by the conditions of forcing
it will follow that Si |= E. Proceed for each case of E:
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• If E is a green literal d⊥, where d is a red atom, then d⊥ and d cannot both be in Γj because
⊥ ∈ ∆j . Thus by the definition of the extension of the |= relation, Kj 6|= d and this also
holds for all Kl � Kj since d⊥ ∈ Γl. Thus Kj |= d⊥.

• If E is A∨e B, then it is also in all Γl for all Kl � Kj , and thus A⊥ ∧B⊥ ∈ ∆l (by the Load
rule), which means that either A⊥ or B⊥ is in ∆l. Then by inductive hypothesis it follows
that Kl 6|= A⊥ or Kl 6|= B⊥, thus Kj |= A ∨e B.

• If E is A ∧e B, then it is also in all Γl for all Kl � Kj . Thus (A⊥ ∨ B⊥) ∈ ∆l and so both
A⊥, B⊥ ∈ ∆l and by inductive hypothesis we have Kl 6|= A⊥ and Kl 6|= B⊥, and thus by
definition Kj |= A ∧e B.

• If E is A ∝ B, then (A ⊃ B⊥) ∈ ∆l for all Kl � Kj since A ∝ B ∈ Γl, and there is some
Sm in H such that A,Γl ⊆ Γm and B⊥ ∈ ∆m, and so by inductive hypothesis Sm |= A and
Sm 6|= B⊥, and by definition of |=, Kj |= A ∝ B.

• If E is Σx.A then Πx.A⊥ ∈ ∆l for all Kl � Kj . But then there exists a Sm � Kl and
t ∈ DSm such that A[t/x]⊥ ∈ ∆m and so again by inductive hypothesis Sm 6|= A[t/x]⊥ and
so by the definition of |=, Kj |= Σx.a.

• if E is ∀x.A then ∃x.A⊥ ∈ ∆l for all Kl � Kj . But then A[t/x]⊥ ∈ ∆l for all t ∈ DKl

thus

by inductive hypothesis, Kl 6|= A[t/x]⊥ for all t ∈ DKl

and so Kj |= ∀x.A.

• The cases of ⊥ and ⊤ are trivial.

For the other half of the mutual induction, if E ∈ ∆i, then by property 11 there is some Kj in
K such that E⊥,Γi ⊆ Γj , and similar inductive arguments on the red E⊥ can then be applied to
show Kj |= E⊥, which implies Kj 6|= E. This half of the argument mirrors the cases of R ∈ Γi for
red formulas R.

• In the case E⊥ is an atomic formula d, then Kj |= d and thus Kj 6|= d⊥, both by definition.

• If E⊥ is A ⊃ B, then by monotonicity of ⊆ for each Sm � Kj , A ⊃ B ∈ Γm, and thus either
A ∈ ∆m or B ∈ Γm. By inductive hypothesis Sm 6|= A or Sm |= B, and so by definition of
|=, Kj |= A ⊃ B.

• If E⊥ is Πx.A, then it is also found in Γm for all Sm � Kj , and thus A[t/x] ∈ Γm for each
t ∈ DSm .

The other cases are similar. 2
As an added consequence of the lemma, if Si ∈ K we also have that if A ∈ Γi then Si 6|= A⊥ by

virtue of the Load rule.
The completeness proof continues by showing that a Hintikka-Henkin pair exists for every

unprovable sequent. Given an antisequent S = Γ 6⊢ ∆, we identify generators that will form new
antisequents as follows. An s-generator antisequent of an antisequent S is of the form Γ 6⊢◦A ⊃ B
if (A ⊃ B) ∈ ∆. A k-generator antisequent of S is Γ 6⊢◦ E if E ∈ ∆ for some green formula E.
Finally, we also define a π-generator antisequent of S as Γ 6⊢◦Πx.A, if Πx.A ∈ ∆.

The generators are kernels of two types of closures: the s- and π-generators will form Hintikka-
style downward saturations relative to some set of parameters P , labeled S∗

P , while the k-generators
will form a Henkin-style maximally consistent set with existential witnesses, also relative to some
parameters P , labeled S∗∗

P . Each such maximal antisequent, generated from a k-generator, will
represent a classical world. Both types of saturations will satisfy the requirements of a Hintikka-
Henkin pair.

Some intricacy is required to define the domain of parametersDs associated with each saturated
antisequent S in a monotonic manner.

To form S∗

P from a generator G0 = Γ 6⊢◦B, first let t1, t2, . . . be a denumerable set of parameters
disjoint from Pm(G0). Let Ds

0 be some set of parameters that contains Pm(G0) and let P =
Ds

0 ∪ {t1, t2, . . .}. Fix an enumeration of all the subformulas of formulas in Γ, B, with parameters
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in P, as A1, A2, . . .. We generate a sequence of antisequents G0, . . . , Gn, . . ., as well as a sequence
of sets of parameters Ds

0, . . . , D
s
n, . . ., as follows. For each Gn already formed, define a secondary,

finite sequence R0
n, . . . , R

n
n. Let R

0
n = Gn = Γ0

n 6⊢◦∆0
n. For each i > 0, consider the subformula Ai.

Ai can be in at most one of Γi−1
n and ∆i−1

n because of the assumption of consistency. Define Ri
n

as follows:

• if Ai is in neither Γi−1
n nor in ∆i−1

n , let Ri
n = Ri−1

n

• The cases of Ai ∈ ∆ where Ai is of the form A ⊃ B, Πx.A and green formula E are ignored,
as these cases represent s-, π- and k-generators. For each such Ai, let R

i
n = Ri−1

n .

• if Ai ∈ Γi−1
n and is of the form A ⊃ B, then let Ri

n = Γi−1
n 6⊢◦∆i−1

n , A if it is consistent, else
let Ri

n = B,Γi−1
n 6⊢◦∆i−1

n (one of these must be consistent).

• if Ai ∈ ∆i−1
n and is of the form A ∨ B, then let Ri

n = Γi−1
n 6⊢◦ ∆i−1

n , A,B; the case of
A ∧B ∈ Γi−1

n is similarly defined.

• if Ai ∈ ∆i−1
n and is of the form A ∧B, then let Ri

n = Γi−1
n 6⊢◦∆i−1

n , A if it is consistent, else
let Ri

n = Γi−1
n 6⊢◦ ∆i−1

n , B (one of these must be consistent). The case of A ∨ B ∈ Γi−1
n is

similarly defined.

• if Ai is ∃x.A ∈ Γi−1
n , let tj be the first unused parameter in t1, t2, . . ., and mark it as used.

Let Ri
n = A[tj/x],Γ

i−1
n 6⊢◦∆i−1

n .

• if Ai is ∃x.A ∈ ∆i−1
n , let ∆i

n = ∆i−1
n ∪ {A[t/x] : t used or t ∈ Ds

n} and let Ri
n = Γi−1

n 6⊢◦∆i
n.

The case of Ai = Πx.A ∈ Γi−1
n is treated symmetrically to this case.

Let Gn+1 = Rn
n and let Ds

n+1 be Ds
n plus all parameters that were marked as used. Let S∗

P
=

⋃
Gn

and let Ds =
⋃

Ds
n.

The style of enumeration, using the secondary sequence, assures that each Π-formula in Γi
n

and each ∃-formula in ∆i
n is instantiated with all the new parameters that may be introduced for

∃-formulas in Γi
n. We do not have cases for green formulas, for these are only considered in classical

worlds, which requires a different style of saturation. Since the initial set G0 contains the original
antisequent, all subformulas will be considered.

The S∗

P
antisequents are not downward-saturated for any green formula, as that is left to the

next form of closure.

The formation of K∗∗

P from a k-generator K0 = Γ 6⊢◦E is in several stages. Here, K is assumed
to be of the form E⊥,Γ 6⊢◦ ⊥, which is consistent if and only if K0 is consistent. We first define
a multi-stage operation that extends any given antisequent K = Γ 6⊢◦ ∆, with ⊥ ∈ ∆, to a
maximally consistent antisequent, then we add the existential witnesses. First let Dk

0 be some set
of parameters that contains Pm(K).

1. Extend Γ to a maximally consistent set: fix an enumeration of all formulas of L(Dk
0 ) as

A1, A2, . . .. Let Γ0 = Γ. For each Ai, if Ai,Γi−1 6⊢◦∆ is consistent, let Γi = Ai,Γi−1; else let
Γi = Γi−1. Let Γ

M =
⋃
Γn. Define K1

DK
0

= ΓM 6⊢◦∆. This set has the following maximality

property, which holds by the admissibility of weakening: for all formulas Ak in L(Dk
0 ), if

Ak,Γ
M 6⊢◦∆ is consistent, then Ak ∈ ΓM .

2. Extend K1

Dk
0

to a set K12

Dk
0

as follows. Let ∆0 = ∆. For each formula Ai (as defined above), if

ΓM 6⊢◦∆i−1, Ai is consistent, then let ∆i = Ai,∆i−1; else, let ∆i = ∆i−1. Let ∆
M =

⋃
∆m.

Define K12

Dk
0

= ΓM 6⊢◦∆M .

Certain key characteristics of K12 are easily verified. Every formula Ai is in at most one
side of the antisequent. Furthermore, by virtue of the Load and Store rules, if A ∈ ΓM then
A⊥ ∈ ∆M , since ⊥ ∈ ∆M , and that if a green formula E ∈ ∆M then E⊥ ∈ ΓM . These
properties are among those required by a Hintikka-Henkin pair.
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3. The final stage is to introduce existential witnesses for ∃ in ΓM (but not for Σ, as that forms
a π-generator). Each new term added will require the antisequent to be further extended
over the larger domain via the first two stages. We do not need to be concerned with the ∀
quantifier as its dual will be on the opposite side of the antisequent. Let G0 = K12

Dk
0

= Γ0 6⊢◦
∆0. Let t1, t2, . . . be a denumerable set of parameters and let P = Dk

0 ∪ {t1, t2, . . .}, as in
the definition of S∗

P . Enumerate all formulas of L(P) as A1, A2, . . .. Each successive Gi is
formed from Gi−1 as follows: find the first Ak = ∃x.A ∈ Γi−1 such that A[s/x] 6∈ Γi−1 for
any s. Let tn be the first new (unused) parameter in t1, t2, . . . that’s not in Dk

i−1, and mark
it as used. Let Dk

i = Dk
i−1 ∪ {tn}. Let Gi = (A[tn/x],Γ

i−1 6⊢◦∆i−1)12
Dk

i

. If there is no such

Ak, let Gi = Gi−1 and Dk
i = Dk

i−1. Finally, let K
∗∗

P
=

⋃
Gn and let Dk =

⋃
Dk

n.

We now show how a model can be formed starting from any consistent antisequent.
Given an unprovable sequent ⊢◦ A4, let S0 be the antisequent 6⊢◦ A and let T0 = Pm(S0). If

Pm(S0) is empty then let T0 = {g} for some reserved parameter g, so that it is always non-empty.
Assume that some denumerable subset of the set of all parameters is disjoint from T0, and is
enumerated as follows:

T1 : t11, t21, t31, . . .
T2 : t12, t22, t32, . . .
T3 : t13, t23, t33, . . .

. . . . . .

Let Pn = T0 ∪ T1 ∪ T2 ∪ . . . ∪ Tn.
Let S1 = ( 6⊢◦ A)∗

P1
, with DS1

0 = T0. Take the first generator in S1 and proceed to form S2 as
follows:

• for s-generator Γ 6⊢◦A ⊃ B, let S2 = (A,Γ 6⊢◦B)∗
P2

, with DS2

0 = DS1 .

• for k-generator Γ 6⊢◦E, let S2 = (E⊥,Γ 6⊢◦⊥)∗∗
P2

, with DS2

0 = DS1 .

• for π-generator Γ 6⊢◦Πx.A, let S2 = (Γ 6⊢◦A[t12/x])∗P2
, with DS2

0 = DS1 ∪ {t12}.

• If there are no (more) generators found in S1, let S2 = S1 and DS2 = DS1 .

The result of the above step is a sequence S1, S2. Now take the next generator in S1 and form S3

relative to P3, and the first generator in S2 and form S4 relative to P4, as above. Now we have
a sequence S1, S2, S3, S4. After each stage n we have a sequence S1, S2, . . . , S2n Proceed to stage
n+ 1 by taking the next available generators in each Si and create either a S∗

P2n+i
or a K∗∗

P2n+i
as

above. This will double the sequence to S1, S2, . . . S2n+1 , and so on. This defines an enumerable
sequence: our model will remain countable.

The Hintikka-Henkin pair (H,K) is formed with H being the set of all Si and K being the set of
all K∗∗

Pn
that were generated from k-generators. For each Si, there is an associated DSi as defined.

Note that a k-generator of aK∗∗

P closure in the sequence will only produce the same antisequent,
since the left-hand side of the closure is already maximally consistent and because we have fixed the
enumeration of subformulas. A s-generator will either lead to the same set, or to a left-hand side
that’s ⊥-inconsistent, representing an imaginary world. That is, classical worlds are only created
above other classical worlds when there is a need to extend the domain.

To finish the completeness proof we just need to verify that (H,K) forms a Hintikka-Henkin pair.
All of the cases are direct consequences of our definitions. For example, let Si = S∗

P = Γ 6⊢◦ ∆. If
A ⊃ B ∈ Γ, then at some point of the double-sequence enumeration (depending on the parameters
in the formula) A ⊃ B would be encountered. By the ⊃ L rule, since the antisequent is consistent,
either Γ 6⊢◦ A is consistent, or B,Γ 6⊢◦ ∆ is also consistent, and thus either A ∈ ∆ or B ∈ Γ. If
A ⊃ B ∈ ∆, then Γ 6⊢◦A ⊃ B will be an s-generator of S, which will then generate (A,Γ 6⊢◦B)∗

Pn
.

Since by definition each Pn includes all parameters of Pn−1,Pn−2, . . . ,P1, the domain of this
closure will contain the domain of S. Other cases are similar.

By Lemma 8, S1 6|= A. And thus we have a countermodel for A and completeness follows:

4generalizable to any unprovable sequent Γ ⊢◦A
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Theorem 9 (Completeness) If a formula is satisfied in all Kripke hybrid models, then it is prov-
able.

The soundness and completeness of the semantics yield a trivial proof of the admissibility of
cut: if M |= (Γ ⊢◦A) and M |= (A,Γ′ ⊢◦B), then it follows directly that M |= (ΓΓ′ ⊢◦B).

Corollary 10 The Cut rule is admissible in LP.

Several other versions of cut can also be shown to be admissible and countermodels can be given
for those that are not.

The relationship between the details of the countermodel construction and Lemma 8 is a subtle
one. For example, it would not be correct to assume that if an antisequent Γ 6⊢◦ ∆ has a ⊥-
consistent Γ, then this antisequent will be beneath some classical world. As a simple example of
the “procedure” suggested by the completeness proof, consider the sequent ⊢◦ d where d is a (red-
polarized) propositional atom. From the initial antisequent 6⊢◦ d, the procedure creates only one
world, using the S∗-type saturation, that does not force d. In fact the unextended |= relation maps
this world to the empty set. Since ⊥ was never added to the right-hand side, there is no k-generator.
Therefore, K is empty and this world is considered imaginary and forces ⊥. This interpretation is
technically consistent. Even if we only considered models that contained solely imaginary worlds,
they would still be enough to interpret traditional intuitionistic logic. An important difference
between the S∗-type closure and the K∗∗-closure is that the former only enumerates subformulas
in S, while the maximally consistent closure enumerates through all formulas and their duals. We
do not create classical worlds unless there is the need to create one, as indicated by the existence
of a k-generator antisequent.

The Propositional Restriction

In the propositional case we can show that models can stay finite. The sequence S0, S1, . . . can
be finite. First we note that in LP, all introduction rules exhibit the subformula property. The
premises of the structural rules consist of either subformulas of the conclusion or their duals. The
S∗ closures are already formed from an enumeration of all subformulas of formulas in S. Given an
initial antisequent 6⊢◦A, it is also valid to restrict the enumeration of formulas in the definitions of
and K∗∗ to all subformulas of A and their duals A⊥. In the propositional case, this enumeration
is clearly finite. Since we are using sets instead of multisets, it is immediate that the number
of possible antisequents consisting of subformulas of A and their duals is bounded. Furthermore,
property 13 of Hintikka-Henkin pairs enforces the restriction△c = {c} for all classical worlds. That
is, an s-generator of a K∗∗-type antisequent can only create the same closure or an antisequent
with a ⊥-inconsistent left-hand side, i.e., an imaginary world.

7 Semantic Tableaux and Propositional Decidability

The antisequents used in the completeness proof of Section 6 are suggestive of a semantic tableau.
However, the Henkin-type K∗∗ closures used in the proof prevent the tableau from becoming
a reasonable proof system directly. In particular, it does not suggest a decision procedure for
the propositional fragment of PIL. Such a procedure can be shown to exist from the subformula
property (up to duality) of cut-free LP proofs directly. However, we shall take the opportunity to
define an alternative proof system for PIL. In this system, the distinction between ⊢◦ and ⊢•will be
replaced by a distinction between an empty right-hand side (corresponding to ⊢•) and a non-empty
one (corresponding to ⊢◦). While LP is seen as an extension of Gentzen’s LJ, this proof system
will be an extension of the multiple-conclusion sequent calculus of Dragalin [Dra88]. The proof
system, called LPM is shown in Figure 4.

An LPM sequent Γ ⊢ ∆ consists of a pair of finite sets, not multisets. The syntax A,Γ does not
preclude the possibility that A ∈ Γ. The right-green introduction rules of LP have been replaced
by the generalized left-red rules of LPM, which are applicable regardless of whether the right-hand
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Right-Red Rules

Γ ⊢ A,B,∆

Γ ⊢ A ∨B,∆
∨R

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A ∧B,∆
∧R

A,Γ ⊢ B

Γ ⊢ A ⊃ B,∆
⊃R

Γ ⊢ 1,∆
1R

Left-Red Rules

A,Γ ⊢ ∆ B,Γ ⊢ ∆

A ∨B,Γ ⊢ ∆
∨L

A,B,Γ ⊢ ∆

A ∧B,Γ ⊢ ∆
∧L

A ⊃ B,Γ ⊢ A B,Γ ⊢ ∆

A ⊃ B,Γ ⊢ ∆
⊃L

0,Γ ⊢ ∆
0L

Left-Green Rules

A,Γ ⊢ B,Γ ⊢
A ∨e B,Γ ⊢ ∨eL

A,B,Γ ⊢
A ∧e B,Γ ⊢ ∧eL

A,Γ ⊢ B⊥

A ∝ B,Γ ⊢ ∝ L ⊥,Γ ⊢ ⊥L

The Lift Rule and Identity

E⊥,Γ ⊢
Γ ⊢ E,∆

Lift
a,Γ ⊢ a,∆

Ir a, a⊥,Γ ⊢
Iℓ

E is a green formula and a is an atomic formula

Figure 4: The Proof System LPM

side (∆) is empty. The role of the Load rule in LP has been replaced by the left-green introduction
rules of LPM. The Lift rule replaces Signal and Store. The intuitionistic fragment of this proof
system corresponds to that of Dragalin with some discrepancies. The syntax of Dragalin’s system is
in the style of a sequent calculus in contrast to traditional tableaux using signed formulas: this we
have adopted. However, Dragalin’s system used lists instead of sets. More importantly, a sequent
with an empty right-hand side in Dragalin’s calculus should be interpreted here as Γ ⊢ 0, since we
reserve the empty right-side to represent ⊥. The classical proof system embedded here resembles
less that of LC: in particular there is no longer a rule to load the stoup. Since the left-red rules
are applicable with an empty right-hand side, LPM contains all the rules of a one-sided classical
sequent calculus, albeit it is the left-hand side that’s used. The additional identity rule Iℓ allows
classical proofs to use only the left-hand side after an initial Lift. Once a classical sequent Γ ⊢ is
reached in a bottom-up proof construction, the non-classical mode can only be returned to when
a subformula containing ⊃ or ∝ is encountered. When the right-hand side of a sequent is empty,
clearly ∨ and ∨e become equivalent, as are ∧ and ∧e, as well as ⊥ and 0.

An LPM sequent with a non-empty right-hand side, Γ ⊢ A1, . . . , An, has the same meaning as
the LP sequent Γ ⊢◦A1∨ . . .∨An. The LPM sequent Γ ⊢, however, is equivalent to Γ ⊢• in LP. The
end-sequents of LPM are required to have a non-empty right-hand side. It may be more intuitive
to regard an LPM sequent Γ ⊢ ∆ as the antisequent Γ 6⊢ ∆.

Contraction is naturally available by the use of sets. Weakening is admissible on the left-side
of the sequents; on the right-side, it is admissible only if the right-side is already non-empty. This
requirement is necessary because here we are using the right-side context to serve two distinct
purposes. With weakening and contraction we will be able to assume in the completeness proof
that, without loss of generality, the principal formula of an introduction rule is always persistent in
the premises except in ⊃R and Lift, where the right-side context ∆ is deleted. Introduction rules
for the quantifiers can be added in a predictable way, but here we shall focus on the propositional
fragment5.

5The quantifier rules should be the following:

Γ ⊢ A
Γ ⊢ Πy.A,∆

ΠR
Γ ⊢ A[t/x],∆

Γ ⊢ ∃x.A,∆
∃R

A[t/x],Γ ⊢ ∆

Πx.A,Γ ⊢ ∆
ΠL

A,Γ ⊢ ∆

∃y.A,Γ ⊢ ∆
∃L

A[t/x],Γ ⊢

∀x.A,Γ ⊢
∀L

Γ ⊢ A⊥

Σy.A,Γ ⊢
ΣL

As usual, y is not free in Γ, ∆.
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We now independently prove the propositional completeness of LPM. An LPM (anti)sequent
is defined to be consistent if it is not provable. Clearly, if the conclusion of any inference rule is
consistent, then at least one of its premises must also be consistent. The lone sequent found in the
initial rules Ir, Iℓ, 0L, ⊥L and 1R are obviously inconsistent. Following the tradition of tableau,
we call sequents of these forms closed. A branch of an LPM proof tree is closed if it terminates
in a closed (anti)sequent, otherwise it is open. Every LPM “proof” is in fact a refutation that the
concluding sequent is not provable.

Four rules of LPM stand out from the others: ⊃R, ⊃L, ∝ L, and Lift. We can now define the
following closure procedure:

Given a sequent S = Γ ⊢ ∆, we identify the following four types of formula occurrences found
in the sequent as “generators.” Each generator generates a new possible world.

1. A ⊃ B ∈ ∆

2. E ∈ ∆ for any green formula E

3. A ∝ B ∈ Γ and ∆ is empty

4. A ⊃ B ∈ Γ, B 6∈ Γ and ∆ is empty.

We say that a sequent S′ is safe with respect to S if both of the following conditions hold:

1. S is the conclusion of some instance of an inference rule, S′ is a premise of the inference
rule, and the principal formula of the inference rule is not a generator formula.

2. The principal formula of the inference rule persists in S′

We define a saturated branch of LPM as a consistent sequence of (anti)sequents as follows. Let
S0 be some given, consistent end-sequent Γ0 ⊢ ∆0. S1 is formed from S0 using a secondary sequence
as follows. Let T 0

0 = S0. Each successive T j
0 is a premise of an inference rule that is consistent and

safe with respect to T j−1

0 . Each step preserves all formulas in the previous sequent. For example,

if T j−1

0 = C ⊃ D,Γ ⊢ A∨B,∆, then T j
0 can be (C ⊃ D,Γ ⊢ A,B,∆) or (C ⊃ D,D,Γ ⊢ A∨B,∆).

By the subformula property (up to duality), each sequence T 0
0 , T

1
0 , T

2
0 , . . . must terminate in some

finite, saturated closure T ∗

0 . Let S1 = T ∗

0 .
Let F1, . . . , Fn be the generator formulas found in S1 = Γ1 ⊢ ∆1. For each generator Fi, form

Si+1 as follows:

• if Fi is of the form A ⊃ B ∈ ∆1 or A ∝ B⊥ ∈ Γ1 with ∆1 empty, let Si+1 = T ∗

i , where
T 0
i = A,Γ1 ⊢ B. Here, T ∗

i is defined using the same procedure as T ∗

0

• if Fi is a green polarity formula E ∈ ∆1, let Si+1 = T ∗

i , where T 0
i = E⊥,Γ1 ⊢. Furthermore,

mark Si+1 as a k-candidate.

• if Fi is A ⊃ B ∈ Γ1, B 6∈ Γ1 and ∆1 is empty, let Si+1 = T ∗

i , where T 0
i = Γ1 ⊢ A.

This defines the sequence S0, S1, S2, . . . Sk. Now take S2 = Γ2 ⊢ ∆2, enumerate all generator
formulas in S2, then form Sk+1, Sk+2, etc ... Repeat the process exhaustively. Since we are using
sets, the number of sequents consisting of subsets of a finite set of subformulas and their duals is
clearly finite.

Given a consistent saturated branch S1, S2, . . ., define a (propositional) hybrid model as follows.
Let W be the set of all Si. If Si = Γi ⊢ ∆i and Sj = Γj ⊢ ∆j , then let Si � Sj if Γi ⊆ Γj . Let C,
the set of classical worlds, consist of all k-candidate sequents k that are maximal in the sense that
if k � s, then either s = k or s is not a k-candidate. All k-candidates have the form Γ ⊢. Thus we
have the property that △k = {k} for all k ∈ C. This definition by maximality is of course only
valid in the propositional case, where infinite models are not considered. Now let Si |= a if the
atomic formula a is in Γi. This forms a model 〈W,�,C, |=〉. We now prove a version of Lemma 8
for LPM:

Lemma 11 In the model 〈W,�,C, |=〉 formed from the consistent sequence S1, S2, . . ., the follow-
ing holds for each Si = Γi ⊢ ∆i:
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1. if A ∈ Γi then Si |= A

2. if A ∈ ∆i then Si 6|= A

Proof The proof is again by a simultaneous induction on both properties. The first six properties,
and property 11, of Hintikka-Henkin pairs used in the first-order completeness proof still apply
here. There are also additional properties such as: if A ∧e B ∈ Γ and Γ ⊢ ∈ C, then A,B ∈ Γ.
We show some of the cases, including those that differ significantly from Lemma 8

• Assume that A ∝ B ∈ Γi. Then it is also in Γj for all Kj = Γj ⊢ in C such that Kj � Si.
Then A ∝ B becomes a generator for Kj so there exists an Sm � Kj such that A ∈ Γm and
B⊥ ∈ ∆m. Thus by inductive hypothesis Sm |= A and Sm 6|= B⊥ and therefore Si |= A ∝ B.

• if A ⊃ B ∈ Γi, then it is in all Γj for Sj � Si. For each Sj , there are two cases. If ∆j

is non-empty, then either A ∈ ∆j or B ∈ Γj (since at least one premise of ⊃L is safe), so
Sj 6|= A or Sj |= B. If ∆j is empty (i.e., Sj is a k-candidate), then it must be either B ∈ Γj ,
or, there exists an Sm � Sj such that A ∈ ∆m. By inductive hypothesis, Sj |= B or Sm 6|= A.
But if Sm 6|= A then by monotonicity Sj 6|= A. Thus again we have that Sj 6|= A or Sj |= B.
Thus Si |= A ⊃ B.

• if A ∨e B ∈ Γi, then A ∨e B ∈ Γj for all classical Kj � Si. Let Kj = Γj ⊢. Then either
A ∈ Γj or B ∈ Γj and so by inductive hypothesis Kj |= A or Kj |= B and so Si |= A ∨e B.
The case of A ∧e B ∈ Γ is similar.

• if A ⊃ B ∈ ∆i, then there exists an Sj � Si such that A ∈ Γj and B ∈ ∆j , so by inductive
hypothesis Sj |= A and Sj 6|= B thus by definition Si 6|= A ⊃ B.

• if A ∝ B ∈ ∆i, then since this is a green formula, there exists a Kj = Γj ⊢ such that
Kj � Si and A ⊃ B⊥ ∈ Γj . By the same argument already given above, Kj |= A ⊃ B⊥ so
Kj 6|= A ∝ B.

2

With this lemma, it clearly follows that LPM is semantically complete: if 6⊢ A is consistent
then S1 6|= A.

The soundness of LPM is proved by induction on proofs. We show some of the more interesting
cases.

• In the case of the Lift rule, the inductive hypothesis allows us to assume that for all u, if
u |= L⊥ and u |= ∧

Γ then u is imaginary (u |= ⊥). Now assume that v |= ∧
Γ. We will

show that v |= L, which proves the case. Assume that v 6|= L. Then there is a classical
k ∈ △v such that k 6|= L, so k |= L⊥. But we also have that k |= ∧

Γ by monotonicity, so we
must have that k |= ⊥, which contradicts the assumption that k is classical. Note that this
argument can also be generalized to the first-order case by the third property of Lemma 6.

• In the case of ∝ L, assume that for any world u, u |= A ∧
∧
Γ implies u |= B⊥. We need

to show that if v |= A ∝ B ∧
∧
Γ then v |= ⊥ (v is imaginary). But if v |= A ∝ B and △v

is non-empty, then for any k ∈ △v there is some w � k such that w |= A and w 6|= B⊥.
Furthermore, w |= ∧

Γ by monotonicity since v |= ∧
Γ. But by the assumption, it must be

the case that w |= B⊥, a contradiction. Thus △v is empty and v |= ⊥ vacuously.

• In the case of ⊃ L, let ∆̄ represent the ∨-disjunction of formulas in ∆ if ∆ is non-empty;
otherwise, let ∆̄ represent ⊥. Assume that v |= A ⊃ B and v |= ∧

Γ. Then v 6|= A or v |= B.
But if v 6|= A, then by the inductive hypothesis on the left premise (Γ ⊢ A), v 6|= ∧

Γ, a
contraction. Thus it must be that v |= B, and now by the inductive hypothesis on the right
premise (B,Γ ⊢ ∆), v |= ∆̄.

The other soundness cases are similar or trivial. We therefore have

Theorem 12 (Soundness and Completeness of LPM) A formula is provable in LPM if and only
if it is valid in all propositional hybrid models.
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The admissibility of several forms of cut follows directly from soundness and completeness:
these include

Γ ⊢ A A,Γ′ ⊢ ∆′

ΓΓ′ ⊢ ∆′
cut

Γ ⊢ A,∆ A,Γ′ ⊢ B,∆′

ΓΓ′ ⊢ B,∆∆′
cut

The first cut requires a single conclusion in the left premise and the second cut requires a non-
empty right-hand side in the right premise. These restrictions are required because of the multiple
roles of the right-hand sides of LPM sequents. A cut between Γ ⊢ A,∆ and A,Γ′ ⊢ ∆′ is not
generally admissible. In particular, a cut between Γ ⊢ A,B and A,Γ′ ⊢ is not admissible if B is
a red formula, since u |= ⊥ does not imply u |= B. These syntactic restrictions are not serious
impediments to the application of cut, since one can replace proofs of Γ ⊢ with proofs of Γ ⊢ ⊥.

Besides the analysis of cut-rules for LPM, we can now also derive the decidability of the propo-
sitional fragment. Instead of a sequence S0, S1, . . . representing a saturated branch of consistent
sequents, we can generate a tree consisting of all such branches without assuming consistency.
That is, when there is a choice of which safe premise of an inference rule can be used to form the
T ∗

i closure, we form two branches for each possibility. In considering the sequent A ⊃ B,Γ ⊢, we
also regard A ⊃ B as a generator even if B ∈ Γ. A branch can be terminated when an initial
sequent (i.e., obviously inconsistent sequent) is encountered. Since each branch is finite and the
branching factor is at most two, by König’s Lemma, the tree is also finite. Each saturated branch
represents a maximal branch in a proof tree. If each branch contains an initial sequent, then the
tree represents a proof. Each open branch represents a countermodel. We thus have:

Corollary 13 The propositional fragment of PIL is decidable.

8 Related Topics

A logic should be understandable from a variety of perspectives. In this paper, we have presented
PIL in traditional terms such as two-sided sequent calculus, semantic tableau, and Hintikka sets.
Thus, we have followed an approach similar to that of, for example, Kripke [Kri65] and Fitting
[Fit69]. Below we present several related perspectives on the general goal of unifying provability
in intuitionistic and classical logics.

8.1 Double Negation Translations

It is known that the double-negation translations of Kolmogorov, Gödel-Gentzen, Kuroda, and
certain others are equivalent in the sense that their representations of classical formulas are provably
equivalent in intuitionistic logic (see [FO10]). The differences between these translations can be
seen in the structure of proofs of the translated formulas. The earliest translation of Kolmogorov
places ∼∼ in front of every subformula; e.g, implication becomes ∼∼ (∼∼ A ⊃∼∼ B). There
is little room for intuitionistic structure to survive underneath the excessive double negations.
Using fewer double negations, the Gödel-Gentzen translation preserves the “negative” connectives.
Kuroda’s translation places ∼∼ only at the very outset of a formula (plus the double-negation
shift on ∀), thereby preserving much of the structure of an intuitionistic proof. By identifying
polarities in classical logic, Girard’s version of double negation [Gir91] explains LC. A new kind
of classical proof is formulated that shares the stoup of intuitionistic logic. Girard’s translation
is still logically equivalent to the traditional translations: this is in fact how LC was argued to
be correct6. These translations allow classical and intuitionistic logics to share varying degrees of
structure in their proofs, but they do not show how to integrate classical and intuitionistic logics at
the level of formulas and proofs. They offer no explanation as to the limit of this kind of complete
integration, in particular the extent to which cuts are admissible.

The question remains, however, as to whether a double-negation type of translation from PIL
to intuitionistic logic exists. It may be said that the most important addition to intuitionistic logic

6In an earlier work [LM09], the authors used a modified version of the LC translation to formulate a focused

proof system for classical logic called LKF. The correctness of this system was likewise proved by a reduction to the
Gödel-Gentzen translation.
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found in PIL is the distinction between 0 and ⊥ (see section 3.3). The LP “classical” sequent Γ ⊢•R
is equivalent to Γ ⊢◦ R ∨e ⊥, and R ∨e ⊥ is equivalent to (R ⊃ ⊥) ⊃ ⊥. Of course (R ⊃ ⊥) ⊃ ⊥
is a form of double-negation. There is a clear difference between this form of double negation and
(R ⊃ 0) ⊃ 0: intuitionistic implication is collapsed into a classical one when placed inside the
scope of ∼∼. Most of the known double-negation translations can also use minimal-logic negation
(with an adjustment required in the case of Kuroda’s translation - see [FO10]). The PIL negation
A ⊃ ⊥ is closer to minimal-logic negation than to intuitionistic negation. However, there is still
a difference if false in the sense of minimal logic is to coexist with that of intuitionistic logic. If
the minimal false is treated as an arbitrary propositional atom φ, then for every choice of this
atom there are formulas of PIL that cannot be accurately translated using a minimal-logic double
negation. In particular, A ∨e (A ⊃ ⊥) is valid in PIL but not A ∨e (A ⊃ φ). If we translated
the classical disjunction in A ∨e (A ⊃ φ) using a double negation in minimal logic, the resulting
formula would be equivalent to ((A ∨ (A ⊃ φ)) ⊃ φ) ⊃ φ, which is provable. This problem aside,
however, it should be possible to translate PIL into intuitionistic logic as long as intuitionistic logic
is extended to include both ⊥ and 0 as distinct logical constants. There must be at least one green
formula.

When devising the translation one must still be careful not to produce forms that would collapse
intuitionistic implication. It is not enough to simply “do not translate the intuitionistic connec-
tives” since these connectives can join classical subformulas, and vice versa. Thus we are lead to
define the translation in the form (A ⊃ B)t = At ⊃ Bt, etc. A ⊃ B must not be translated into a
form that is equivalent to ¬¬(¬¬A ⊃ ¬¬B), which is suggested by Kolmogorov’s translation and is
equivalent to a classical implication even if ¬ is taken to represent minimal negation. One possible
translation, suggested by the algebraic analysis of section 3.3 and labeled ≈, is the following (for
the propositional fragment). Here, a again represents only atomic formulas.

⊤≈ = 1≈ = 1 0≈ = 0 ⊥≈ = ⊥
a≈ = a a⊥≈ = a ⊃ ⊥ for atomic a
(A ∨B)≈ = A≈ ∨B≈ (A ∧e B)≈ = (A⊥≈ ∨B⊥≈) ⊃ ⊥
(A ∧B)≈ = A≈ ∧B≈ (A ∨e B)≈ = (A⊥≈ ∧B⊥≈) ⊃ ⊥
(A ⊃ B)≈ = A≈ ⊃ B≈ (A ∝ B)≈ = (A≈ ⊃ B⊥≈) ⊃ ⊥

This translation is distinct from known double-negation translations not only because it preserves
the intuitionistic (red) connectives and 0, but also because it relies on the De Morgan negation
A⊥.

The fact that it may be possible to embed PIL inside another logic does not negate its signifi-
cance. Many examples of embedding one logic into another exist. An embedding does not obviate
all the properties of a logic. In particular, the admissibility of cut in the embedded logic does
not immediately follow from the corresponding property in the embedding logic: we still have to
show that cut-free proofs exist that observe the invariants of the embedded logic. Likewise, the
semantics of the embedding logic may not be fine-grained enough to explain the properties of the
embedded logic. We have at the very least simplified the integration of classical and intuitionistic
logics by providing proof systems that enable it, and refined semantics that explain the limits of
this integration. In PIL the classical and intuitionistic components of both formulas and proofs
are clearly distinguished. The proof system LP has the structure of LC without losing the most
important connectives of intuitionistic logic.

8.2 Linear Logic

We have designed a combination of intuitionistic and classical logics and we have tried to validate
that design using principles taken from the literatures of these two logics. It is possible, however, to
use a third logic, linear logic, to give a proof-theoretic “semantics” for PIL, especially when PIL is in
the form of LP. Green formulas have the proof-theoretic characteristics in LP of ?-formulas and red
formulas correspond to !-formulas. The dual connectives ⊃ and ∝ reflect Girard’s decomposition of
intuitionistic implication into O and its dual ⊗. The formula A ∝ B can be interpreted as roughly
?(!A⊗?B) (of course the exact translation would have to be recursive). The translations of the
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classically oriented connectives are based on the linear logic interpretation of LC. For example,
A∨e B is roughly equivalent to ?AO ?B and A∨B is !A⊕ !B. The translation of atomic formulas
will have to assume the existence of atoms with the inherent property a ≡ !a, but this extension
of linear logic is known [Gir93, Lau02]7.

Despite this translation, to describe PIL as simply a fragment of linear logic would leave too
many questions unanswered. For example, we still would have to show that a proof system can be
formulated for the logic that preserves cut-elimination. We also would have to justify separately
the decidability of the propositional fragment, which does not hold in linear logic. Semantically,
if we simply used an interpretation of linear logic, such as phase spaces, to interpret PIL, then
something is sure to be lost in the translation. A Heyting algebra with an embedded boolean
algebra is a more specific structure than a phase space or even a topolinear space. Had we used
linear logic as the starting point, most of the work presented in this paper, in some equivalent
form, would still have to be completed.

One of the ways to view linear logic is that it generalizes the principles of Gentzen in terms
of the conditions under which cut-elimination is possible. Given that LP extends LJ and LC
and preserves cut-elimination, it should not be surprising that a translation of LP into linear logic
exists. Moreover, the translation will largely preserve the structure of proofs (with some difficulties
concerning 0). However, such a translation will not explain LPM. The semantics of linear logic
emphasize the interpretation of proofs as opposed to just formulas. However, to say that a Kripke-
style semantics is merely a “truth-value” semantics, with little impact on structural proof theory, is
not correct. The Beth-Fitting tableau, and the sequent calculus of Dragalin, are proof systems that
correspond directly to Kripke semantics. They cannot be easily understood as valid intuitionistic
systems outside of Kripke’s view of intuitionistic logic (e.g., the disjunction and existence properties
are no longer obvious). In LPM, contraction and weakening are available on both the left- and
right-hand sides and ∨ appears as a multiplicative. The explanation that intuitionistic logic is
“classical on the left, linear on the right” no longer applies. There is a possibility that if linear
logic is extended with subexponentials [NM09], i.e., extra pairs of exponentials that are weaker
than ! and ?, that this kind of intuitionistic proof system can then be captured. But our goal here
is to combine intuitionistic logic with classical logic. Thus, instead of seeking a refinement of linear
logic, we sought a refinement of Kripke semantics.

8.3 The Unified Logic LU

Using themes from LC and linear logic, Girard developed the LU proof system [Gir93] that contains
classical, intuitionistic, and linear logics as fragments. Where well-formed formulas in different
logics intersect, LU proofs in different proof fragments can mix via cut-elimination. PIL has many
of the same motivations that Girard had for LU: in fact, the fragment of the LU sequent calculus
that contains intuitionistic and classical logics is similar to LP. There are, however, a range of
differences between LU and PIL. For example, LU contains a great many inference rules but our
use of the Signal rule allowed PIL to have a much smaller proof system. LU does not contain a
dual to intuitionistic implication. In fact, LU can be translated into linear logic and it is clear
from the translation tables that the De Morgan dualities do not always hold for arbitrary mixtures
of polarities, even for conjunction and disjunction. LU’s ability to mix connectives from different
logics in the same formula is limited as is its (largely unexplored) ability to perform cut-elimination
across different logics. Thus, LU does not encompass PIL.

The intuitionistic fragment of LU contains a “stoup” on the left-hand side in addition to the
right-side stoup. This refinement is significant, but it is a characteristic of focusing and not a
characteristic of the logic itself. Once focusing is formulated for a logic the left-side stoup is not
only recovered but will take on a stronger form. Indeed the stoup, as a form of focusing, is available
as an option in both classical and linear logics. In intuitionistic logic, it is also optional on the
left-hand side. The right-side stoup of intuitionistic logic is the only one that is necessitated by
the logic itself.

7The constants ⊤ and 1 translate to themselves. However, a translation of formulas should be accompanied by
a translation of “equivalence.” In linear logic, ⊤ −◦ 1 does not hold but !⊤ −◦ 1 does.
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Another difference between PIL and LU, and linear logic upon which it is largely based, is
the approach to the definition of “polarity.” In LU and linear logic, one can define this concept
in terms of the availability of structural rules: “positive”formulas are those such that A ≡ !A
and “negatives” are such that B ≡ ?B. This definition is acceptable in linear logic because the
question of where structural rules can be applied has an unambiguous answer. The same is not true
in intuitionistic logic. The multiple-conclusion sequent calculus admits contraction everywhere.
Gentzen’s sequent calculus can be formulated as either having exactly one formula on the right-
hand side, or at most one. There are also contraction free versions of intuitionistic proof systems
[Dyc92]. Trying to define an intuitionistic notion of “polarity” in terms of proof-theoretic features
is highly problematic. The meaning of polarity in PIL, however, is defined model theoretically.

8.4 Polarized Linear Logic

Despite the similarity in name, PIL is not subsumed by Polarized Linear Logic (LLP) [Lau02]. Like
LLP, PIL may also be seen as a generalization of LC, at least in the form LP, but it is a different
kind of generalization. A fundamental difference between our approach and that of LC and LLP
is our separation of positive/negative polarization from red/green polarization. Only in the LC
fragment do these polarities coincide. Only the red/green polarization is directly meaningful in
our semantics. In PIL, the connectives ⊃ and Π, and their duals ∝ and Σ, exist on a different axis
of polarization than LC (see the diagram in Figure 1 of Section 2). The form of polarization that
defines LLP is a generalization of that of LC and still does not account for the polarization of the
purely intuitionistic connectives. Also, LLP formulas are restricted in that negative connectives
may only join negative subformulas, and dually for positives. For other formulas, a polarity switch
in the form ?A or !B is required before they can be joined. PIL places no restriction on how
formulas of different polarities can be composed. For example, the law of excluded middle in the
form A∨e ∼A, if translated into linear logic, would be something equivalent to ?A O ?!(?A⊥

O 0).
Such a form is not allowed in LLP.

8.5 Focusing

Another concept related to polarization and likewise originated from the study of linear logic is
focusing [And92]. The LP proof system is not focused, at least not in the sense of the synchronous
(positive) versus asynchronous (negative) duality. On the other hand, the LP invariant in the
⊢◦ mode means that red-polarized introduction rules must be applied exhaustively until a green-
polarized subformula is encountered (reading proofs up from the endsequent). Thus, there is some
“focusing” behavior along the red-green polarities instead of the positive-negative ones.

An early version of PIL was in fact developed that took the form of a sequent calculus that
focused in the positive-negative sense. However, this system was not entirely satisfactory because
it relied too much on a translation to linear logic, which imposed unnatural restrictions on syntax.
In linear logic, focusing must stop before a ! or a ?. This implies that a translation of PIL into
linear logic needs to remove as many of these operators as possible in order to preserve focusing.
For example, ?(?A O ?B) need to be recognized as equivalent to ?A O ?B and ?(!A ⊗ ?B) as
equivalent to ?(!A⊗B). In terms of the semantics of linear logic, these transformations also allow
for the preservation of associativity at the denotational level. However, there is also a price to
be paid when these operators are removed: is “A O B” supposed to represent an intuitionistic
implication, or a classical disjunction? Without the exponential operators, the information is no
longer available to restrict linear logic proofs to mimic proofs in the logic that it embeds. The cost
of focusing (and denotational associativity) was a loss of “full adequacy” of the translation. In
order to accurately represent a PIL focused proof in linear logic, we had to restrict intuitionistic
implication A ⊃ B to require that A must be red-polarized. This meant that ∼(A∨eB) had to be
written in the form ∼((A∨eB)∧1) instead. Other restrictions were also imposed, removing forms
that would require a “double-exponential” such as ?!(?A O B). These restrictions to the syntax
of PIL seemed reasonable when viewed in the context of the proof theory and semantics of linear
logic. However, they make little sense in terms of intuitionistic and classical logics. Focusing in
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PIL requires a re-examination of this principle independently of focusing in linear logic, and we
leave this to another occasion.

8.6 Dual-Intuitionistic Logic

Our use of a dual connective to intuitionistic implication may invoke comparisons to some versions
of “Dual-Intuitionistic Logic” [Rau74], some of which also contains a “dual” to intuitionistic impli-
cation. However, the main aim of PIL is to mix classical and intuitionistic reasoning, which requires
a De Morgan dual to all connectives. In the Kripke semantics defined for dual-intuitionistic logic
(see [Gor00]), the dual of intuitionistic implication is interpreted as being valid in a possible world
if it is valid in all worlds in the past, i.e., beneath the current world. While such a definition
preserves monotonicity, it is not the De Morgan dual of intuitionistic implication. We have shown
how such a dual can be defined in our semantics without destroying monotonicity.

8.7 Other Kripke and Algebraic Semantics

We chose a Kripke-like semantics for PIL because it provided some insights into particular aspects
of mixing classical and intuitionistic logic (e.g., double-negation translations). As we mentioned
before, the papers [ILH10, Vel76] also generalize Kripke semantics to allow for worlds that are
inconsistent. There are also a number of papers that dig into various semantic and algebraic
considerations behind intermediate and non-classical logics. It will be particularly interesting to
see how well the semantic models of this paper might fit into the broad algebraic setting described
in papers such as [CST09, CGT11].

8.8 LKU and ICL

Finally, we briefly mention two pieces of our own related work. In [LM11] we presented LKU,
a unified, focused proof system. LKU extends our understanding of what is possible in focused
proof systems and it provides generalized criteria for cut-elimination and completeness. We also
formulated a mixed intuitionistic-classical logic as a fragment of LKU in which intuitionistic con-
nectives can join classical subformulas, but not vice versa. This limitation was due to the fact that
polarization in LKU is based on fundamentally classical principles and thus did not provide for
the full inclusion of the intuitionistic connectives.

The semantic analysis of PIL has led to the development of a related logic we currently call
Intuitionistic Control Logic (ICL). The choice of this name is related to its ability to extend the
Curry-Howard isomorphism and represent programming language control operators such as call/cc
while preserving much of intuitionistic logic. Semantically the idea is exceedingly simple: restrict
to rooted Kripke frames and designate the root to be the only classical world, which means that
all other worlds are imaginary. In this (propositional) logic, the excluded middle in the form
A∨ (A ⊃ ⊥) holds without a second version of ∨. Polarization and negation in the form A⊥ are no
longer used. However, unlike PIL, which combines classical and intuitionistic logics, ICL has more
of the characteristics of an intermediate logic. It is not a fragment of PIL. ICL will be presented
in another paper.

9 Conclusion

We have introduced a logic that combines intuitionistic logic with classical logic. One might say
that, since intuitionistic proofs are classical proofs, classical logic is already such a combination:
but this sense of combination misses the point about the kind of invariants one wishes to have
in the proofs of a logic. On the other hand, by virtue of traditional double-negation translations,
one can argue that intuitionistic logic is already such a combination: but such translations do not
clarify how classical and intuitionistic formulas can mix. We wish to know whether the critical
intuitionistic connectives of implication and universal quantification can retain their strength when
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combined with classical connectives. One might also say that linear logic is already such a combi-
nation: but using linear logic for this purpose also leaves some questions unanswered, such as, why
should a combination of classical and intuitionistic logics lose the decidability of its propositional
fragment?

PIL can be summarized as adding the distinction between 0 and ⊥, a concept borrowed from
linear logic, to intuitionistic logic. From this perspective it can be said that the traditional form
of intuitionistic logic was missing its other half. The addition of ⊥ allows intuitionistic logic to
unite with its other half, without becoming classical logic or linear logic. We have shown both
semantically and proof-theoretically that PIL stands on its own as a new logic.
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