8 research outputs found

    Analysis of Strain Transfer to FBG’s for Sensorized Telerobotic End-effector Applications

    Get PDF
    Sensorized instruments which cater for the measurement of interaction forces during surgical procedures are not available on current commercial Minimally Invasive Robotic Surgical (MIRS) systems. This paper investigates the ef-fectiveness of advanced optical sensing technology (Fiber Bragg Grating) as sur-gical end effector strain/force sensors. The effects of adhesive bonding layer thickness and length are specifically addressed owing to their importance for ef-fective strain transfer and ensuring compactness of the resulting sensing arrange-ment. The strain transfer characteristics of the compound sensing arrangement are evaluated by the examination of shear transfer through the fiber coating and adhe-sive layers. Detailed analysis of the sensing scheme is facilitated through the use of FEA. Validation of the resulting models is achieved through experimentation carried out on an application-specific evaluation platform. Results show that strain values from an FBG are comparable to that of an electrical strain gauge sensor

    Minimally invasive robotic surgery: force and torque analysis

    Get PDF
    La cirugía mínimamente invasiva y la incorporación de la robótica en este tipo de procedimientos representa grandes ventajas para el paciente, el cirujano y los sistemas de salud. Sin embargo, los dispositivos comerciales disponibles en la actualidad no cuentan con realimentación de fuerza y tacto, que faciliten al cirujano la identificación de los tejidos y consecuentemente, la reducción de errores en los procedimientos quirúrgicos; por lo cual, el desarrollo de sistemas que cuenten con este tipo de realimentación se convierte en un tema de interés a nivel mundial. El presente artículo contiene una revisión del estado de la técnica con respecto a los sistemas comerciales y experimentales desarrollados en esta área. También, se presentan algunos sensores y modelos matemáticos utilizados para calcular las fuerzas y torques en cirugía mínimamente invasiva.Minimally Invasive Surgery and the adaptation of robotics to these procedures represent many advantages for the patient, the surgeon, and the health program. However, commercial devices used nowadays lack haptic feedback. This fact makes the tissue identification more difficult and increments the injuries risk during the surgical procedure. The development of systems with this kind of feedback has become a topic of interest throughout the world. The present article contains a revision of the state of the art about commercial and experimental systems developed in this area. Models for the force and torque propagation, used in Minimally Invasive Surgery, are also presented

    Laparoscopic robotic surgery : current perspective and future directions

    Get PDF
    Just as laparoscopic surgery provided a giant leap in safety and recovery for patients over open surgery methods, robotic-assisted surgery (RAS) is doing the same to laparoscopic surgery. The first laparoscopic-RAS systems to be commercialized were the Intuitive Surgical, Inc. da Vinci and the Computer Motion Zeus. These systems were similar in many aspects, which led to a patent dispute between the two companies. Before the dispute was settled in court, Intuitive Surgical bought Computer Motion, and thus owned critical patents for laparoscopic-RAS. Recently, the patents held by Intuitive Surgical have begun to expire, leading to many new laparoscopic-RAS systems being developed and entering the market. In this study, we review the newly commercialized and prototype laparoscopic-RAS systems. We compare the features of the imaging and display technology, surgeons console and patient cart of the reviewed RAS systems. We also briefly discuss the future directions of laparoscopic-RAS surgery. With new laparoscopic-RAS systems now commercially available we should see RAS being adopted more widely in surgical interventions and costs of procedures using RAS to decrease in the near future

    Haptic Feedback Control Methods for Steering Systems

    Get PDF
    Haptic feedback from the steering wheel is an important cue that defines the steering feel in the driver-vehicle interaction. The steering feedback response in an electric power assisted steering is primarily dependent on its control strategy. The conventional approach is open loop control, where different functions are implemented in a parallel structure. The main drawbacks are: (a) limited compensation of the hardware impedance, (b) hardware system dependent steering feedback response and (c) limitation on vehicle motion control request overlay. This thesis investigates closed-loop control, in which the desired steering feedback response can be separated from the hardware dynamics. Subsequently, the requirements can be defined at the design stage. The closed-loop architecture constitutes of a higher and lower level controller. The higher level control defines the reference steering feedback, which should account for both driver and road excitation sources. This thesis focuses on the driver excitation, where a methodology is proposed for developing such a reference model using the standard vehicle handling maneuvers. The lower level control ensures: (a) reference tracking of the higher level control, (b) hardware impedance compensation and (c) robustness to unmodeled dynamics. These interdependent objectives are realized for a passive interaction port driving admittance. The two closed-loop possibilities, impedance (or torque) and admittance (or position) control, are compared objectively. The analysis is further extended to a steer-by-wire force-feedback system; such that the lower level control is designed with a similar criteria, keeping the same higher level control.The admittance control is found limited in performance for both the steering systems. This is explained by a higher equivalent mechanical inertia caused by the servo motor and its transmission ratio in electric power assisted steering; and for steer-by-wire force-feedback, due to the uncertainty in drivers\u27 arm inertia. Moreover, it inherently suffers from the conflicting objectives of tracking, impedance compensation and robustness. These are further affected by the filtering required in the admittance lower level control. In impedance control, a better performance is exhibited by its lower level control. However, the required filtering and estimation in the impedance higher level control is its biggest disadvantage. In closed-loop setting, the angular position overlay with a vehicle motion control request is also relatively easier to realize than open loop

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller

    The Role of Visualization, Force Feedback, and Augmented Reality in Minimally Invasive Heart Valve Repair

    Get PDF
    New cardiovascular techniques have been developed to address the unique requirements of high risk, elderly, surgical patients with heart valve disease by avoiding both sternotomy and cardiopulmonary bypass. However, these technologies pose new challenges in visualization, force application, and intracardiac navigation. Force feedback and augmented reality (AR) can be applied to minimally invasive mitral valve repair and transcatheter aortic valve implantation (TAVI) techniques to potentially surmount these challenges. Our study demonstrated shorter operative times with three dimensional (3D) visualization compared to two dimensional (2D) visualization; however, both experts and novices applied significantly more force to cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Subsequently, using an innovative robotics-assisted surgical system design, we determined that direct haptic feedback may improve both expert and trainee performance using robotics-assisted techniques. We determined that during robotics-assisted mitral valve annuloplasty the use of either visual or direct force feedback resulted in a significant decrease in forces applied to cardiac tissue when compared to robotics-assisted mitral valve annuloplasty without force feedback. We presented NeoNav, an AR-enhanced echocardiograpy intracardiac guidance system for NeoChord off-pump mitral valve repair. Our study demonstrated superior tool navigation accuracy, significantly shorter navigation times, and reduced potential for injury with AR enhanced intracardiac navigation for off-pump transapical mitral valve repair with neochordae implantation. In addition, we applied the NeoNav system as a safe and inexpensive alternative imaging modality for TAVI guidance. We found that our proposed AR guidance system may achieve similar or better results than the current standard of care, contrast enhanced fluoroscopy, while eliminating the use of nephrotoxic contrast and ionizing radiation. These results suggest that the addition of both force feedback and augmented reality image guidance can improve both surgical performance and safety during minimally invasive robotics assisted and beating heart valve surgery, respectively

    Robotic Assisted Fracture Surgery

    Get PDF
    corecore