289 research outputs found

    Granger Causality Based Hierarchical Time Series Clustering for State Estimation

    Get PDF
    &nbsp;&nbsp;&nbsp;&nbsp; Clustering is an unsupervised learning technique that is useful when working with a large volume of unlabeled data. Complex dynamical systems in real life often entail data streaming from a large number of sources. Although it is desirable to use all source variables to form accurate state estimates, it is often impractical due to large computational power requirements, and sufficiently robust algorithms to handle these cases are not common. We propose a hierarchical time series clustering technique based on symbolic dynamic filtering and Granger causality, which serves as a dimensionality reduction and noise-rejection tool. Our process forms a hierarchy of variables in the multivariate time series with clustering of relevant variables at each level, thus separating out noise and less relevant variables. A new distance metric based on Granger causality is proposed and used for the time series clustering, as well as validated on empirical data sets. Experimental results from occupancy detection and building temperature estimation tasks show fidelity to the empirical data sets while maintaining state-prediction accuracy with substantially reduced data dimensionality.</p

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    Safety impact of connected and autonomous vehicles on motorways: a traffic microsimulation study

    Get PDF
    Connected and Autonomous Vehicles (CAVs) promise to improve road safety greatly. Despite the numerous CAV trials around the globe, their benefit has yet to be proven using real-world data. The lack of real-world CAV data has shifted the focus of the research community from traditional safety impact assessment methods to traffic microsimulation in order to evaluate their impacts. However, a plethora of operational, tactical and strategic challenges arising from the implementation of CAV technology remain unaddressed. This thesis presents an innovative and integrated CAV traffic microsimulation framework that aims to cover the aforementioned shortcomings.A new CAV control algorithm is developed in C++ programming language containing a longitudinal and lateral control algorithm that for the first time takes into consideration sensor error and vehicle platoon formulation of various sizes. A route-based decision-making algorithm for CAVs is also developed. The algorithm is applied to a simulated network of the M1 motorway in the United Kingdom which is calibrated and validated using instrumented vehicle data and inductive loop detector data. Multiple CAV market penetration rate, platoon size and sensor error rate scenarios are formulated and evaluated. Safety evaluation is conducted using traffic conflicts as a safety surrogate measure which is a function of time-to-collision and post encroachment time. The results reveal significant safety benefit (i.e. 10-94% reduction of traffic conflicts) as CAV market penetration increases from 0% to 100%; however, it is underlined that special focus should be given in the motorway merging and diverging areas where CAVs seem to face the most challenges. Additionally, it is proven that if the correct CAV platoon size is implemented at the appropriate point in time, greater safety benefits may be achieved. Otherwise, safety might deteriorate. However, sensor error does not affect traffic conflicts for the studied network. These results could provide valuable insights to policy makers regarding the reconfiguration of existing infrastructure to accommodate CAVs, the trustworthiness of existing CAV equipment and the optimal platoon size that should be enforced according to the market penetration rate.Finally, in order to forecast the conflict reduction for any given market penetration rate and understand the underlying factors behind traffic conflicts in a traffic microsimulation environment in-depth, a hierarchical spatial Bayesian negative binomial regression model is developed, based on the simulated CAV data. The results exhibit that besides CAV market penetration rate, speed variance across lanes significantly affects the production of simulated conflicts. As speed variance increases, the safety benefit decreases. These results emphasize the importance of speed homogeneity between lanes in a motorway as well as the increased risk in the motorway merging/diverging areas.</div

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Behavioural ecology and conservation of the Egyptian Vulture in human-dominated landscapes: insights from long-term monitoring and movement ecology

    Get PDF
    327 p.Human activities transformed virtually all landscapes worldwide to fulfil their basic needs (e.g., resource extraction, agriculture or leisure activities). By doing so, they also affect species inhabiting these human-dominated landscapes. Due to their historical link to human activities, apex predators, especially vultures, are especially vulnerable to human-induced behavioural alterations and have undergone population declines worldwide. Therefore, finding a solution that reconciles vulture conservation and human activities in such landscapes is necessary. By using a set of behavioural indicators (e.g., breeding, occupancy/detectability and space use) from long-term monitoring and movement ecology, this thesis aims to build links between behaviour and conservation of Egyptian vulture Neophron percnopterus in human-dominated landscapes. The current dissertation shows that the species invests similar effort in parental care and that incubation and hatching are important tipping points during the breeding season (Chapter 1). This information could be, in turn, used to design cost-effective monitoring while accounting for imperfect detection and breeding phenology and other environmental variables that could help to adapt monitoring programs to different available budgets (Chapter 2). Similarly, the knowledge of breeding behaviour of the species could be used to infer the impact of habitat alterations on species nest occupancy and reproduction patterns and to improve conservation programs (Chapter 3), and test whether management programs and collaboration networks resulted effective in reducing the synergistic effect of various human disturbances (Chapter 4). Finally, it poses an advance in the understanding of how certain human activities that provide continuous and predictable food pulses, such as farming, could alter species space use and favour residency in partial migratory species (Chapter 5), and that human-driven changes in migratory behaviour could even have consequences on fitness and energy use of different migratory phenotypes (Chapter 6). Overall, this work demonstrates the utility of increasing vulture behaviour knowledge to ascertain the effects of human activities on the species and find coherent conservation solutions that favour its persistence and promote vulture-human coexistence in anthropogenic landscapes

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society
    corecore