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Abstract

In a context of global carbon emission reduction goals, buildings have been
identified to detain valuable energy-saving abilities. With the exponential increase
of smart, connected building automation systems, massive amounts of data are
now accessible for analysis. These coupled with powerful data science methods and
machine learning algorithms present a unique opportunity to identify untapped
energy-saving potentials from field information, and effectively turn buildings
into active assets of the built energy infrastructure. However, the diversity of
building occupants, infrastructures, and the disparities in collected information
has produced disjointed scales of analytics that make it tedious for approaches
to scale and generalize over the building stock. This coupled with the lack
of standards in the sector has hindered the broader adoption of data science
practices in the field, and engendered the following questioning:

How can data science facilitate the scaling of approaches and bridge
disconnected spatiotemporal scales of the built environment to deliver enhanced

energy-saving strategies?

This thesis focuses on addressing this interrogation by investigating data-driven,
scalable, interpretable, and multi-scale approaches across varying types of an-
alytical classes. The work particularly explores descriptive, predictive, and
prescriptive analytics to connect occupants, buildings, and urban energy planning
together for improved energy performances.

First, a novel multi-dimensional data-mining framework is developed, producing
distinct dimensional outlines supporting systematic methodological approaches
and refined knowledge discovery. Second, an automated building heat dynamics
identification method is put forward, supporting large-scale thermal performance
examination of buildings in a non-intrusive manner. The method produced 64%
of good quality model fits, against 14% close, and 22% poor ones out of 225
Dutch residential buildings. Third, a pioneering hierarchical forecasting method
was designed, bridging individual and aggregated building load predictions in
a coherent, data-efficient fashion. The approach was evaluated over hierarchies
of 37, 140, and 383 nodal elements and showcased improved accuracy and
coherency performances against disjointed prediction systems. Finally, building
occupants and urban energy planning strategies are investigated under the prism
of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants
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were determined to significantly impact optimal energy community designs in
the context of weather and economic uncertainties.

Overall, the thesis demonstrated the added value of multi-scale approaches in all
analytical classes while fostering best data-science practices in the sector from
benchmarks and open-source implementations.
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Chapter 1
Introduction

Overview

• Why is data science key to unlock augmented building energy performances?
• State of the art: obstacles for the broader adoption of data science practices in

the building sector
• Contributions and novelty of this thesis
• Thesis structure overview

"Knowledge is power."
Thomas Jefferson

“We are living in the era of information” is a popular dictum; truly, however, we are living
in the data era. In 2020, the total amount of data created, captured, copied, and consumed
globally reached a new high of 64.2 zettabytes, and is projected to grow to more than 180
zettabytes over the next five years up to 2025 [1]. This exponential increase in accessible data
volume is due to the rapid advancement of powerful data collection and storage appliances
coupled with the computerization of our society. Businesses worldwide generate colossal data
sets, which, combined with the universal accessibility of data makes our time undeniably the
data age [2]. In turn, functional and effective tools to automatically uncover the richness of
information from gigantic amounts of data and transform it into organized knowledge soon
became a necessity. This has led to the prominent ascension of data science.

Concurrently, the world is facing its greatest challenge to date: global warming. To tackle
the global climate crisis and meet net-zero targets set by the European Green Deal [3], in line
with the Paris agreement [4], countries around the world urgently need to decarbonize their
economies by 2050. This requires them to simultaneously reduce their current energy demand
while significantly increasing the penetration of renewable energy sources in decentralized
energy systems [5]. However, the volatility of weather-driven renewable energy sources has
introduced a shift in the electrical grid paradigm; originally unidirectional grid systems,
providing energy to end-consumers from large dispatchable power plants, have effectively
turned to bidirectional (smart-grid) systems, where energy consumers become prosumers
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Chapter 1. Introduction 2

by producing a portion of the energy they consume [6]. This restructuring of the power
grid demands adequate planning, monitoring, and automatic control supported by sensors,
actuators hardware, telecommunication links, and computer-based algorithms. Such tools
back optimal energy management techniques to match produced renewable energies to the
varying energy demands supplied by the network for reduced carbon emissions.

Under these circumstances, buildings were identified as the largest energy consumer in
the world, accounting for over one-third of overall final energy consumption [7], and from
40% to nearly 70% of global energy-related CO2 emissions [8] by the Organisation for
Economic Cooperation and Development (OECD). This effectively places buildings as a
key centerpiece for reaching environmental and sustainability goals. Activating improved
energy efficiencies in buildings, while ensuring smart energy management in a grid-connected
context, has attracted a considerable amount of attention from industry and research both
[9], [10]. Supported by building automation systems (BAS) [11], building planning and
operational strategies have shifted from fixed schedules to smart, adaptive, responsive more
energy-efficient ones. The abundance of collected data from buildings has opened the doors
to a myriad of data-driven applications serving enhanced energy performances, such as
automated-fault detection and diagnosis [12], building retrofitting [13], anomaly detection
[14], load prediction [15], and demand-side management [16], supporting predictive control
strategies [17].

However, the full exploitation of data science techniques is challenging for the sector. Indeed,
due to the aging and exceedingly heterogeneous building stock [18], collected information
is often disparate [19] which, coupled with the lack of established benchmarks [20], has
hindered the development of data science practices in the sector. This development fostered
the subsequent interrogation:

"How can data science support the decarbonization of the building sector?"

Let us investigate the potential of data science in uncovering knowledge from data and the
specific challenges facing the building sector in embracing data science principles.

Data science to uncover knowledge from data

Data science is formally defined as a set of fundamental principles, processes, and techniques
for understanding phenomena via the (automated) analysis of data [21] supporting decision-
making processes. It provides practitioners with structure and methods to systematically
approach the extraction of useful knowledge from data in order to avoid a "data rich
but information poor" outcome [2]. This multi-disciplinary subject integrates combined
techniques from mathematics and statistics, domain knowledge, and machine learning thanks
to high-performance computing, as showcased by Figure 1.1. Machine learning is a category
of artificial intelligence that enables computers to learn and resolve problems on their own.
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Data 
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Figure 1.1: Data science in the context of computer science, domain knowledge, and
mathematical and statistics (left), and data analytics and machine learning taxonomies in
the context of data science (right).

The general learning problem was defined by Tom Mitchell as a computer program that
learns from experience E with respect to some class of tasks T and performance measure P,
if its performance on T, as measured by P, improves with experience E [22]. The data-driven
foundations of machine learning techniques particularly provide high generalization capacities
[23] which, in a context of high data availability, has allowed the method to strive.

Data science is commonly dissected into three classes of analytics: (i) descriptive analytics
"what is happening?", (ii) predictive analytics "what is likely to happen?", and (iii) prescriptive
analytics "what should be happening?" [15].

(i) Descriptive analytics aim to quantify events, report on them, and are a first step in
turning data into actionable insight. They are diagnostic application-oriented analytics
and intend on achieving a better understanding of the causes of a given process, e.g.,
identifying patterns or abnormal behaviors. Descriptive techniques have been judged
most capable at discovering formerly unknown knowledge from large data sets [24]
and are commonly related to unsupervised learning techniques which can organize
instances without pre-specified attributes. These aim at finding underlying associations
or data structures between variables from clustering and association rule mining (ARM)
algorithms, but also visualization and data characterization techniques.

(ii) Predictive analytics intend on determining the likelihood of future events from
historical data. From the analysis of sufficient numbers of training sets, i.e., data objects
for which the desired output is known, it approximates a model or function to forecast
future variable realizations. Predictive analytics are logically associated with predictive
or supervised learning, its equivalent machine learning taxonomy. Supervised machine
learning methods attempt to capture complex and nonlinear relationships between
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inputs (independent) and outputs (dependent variable) of an observable phenomenon
[25] by learning from historical data. It is then employed to predict the discrete or
continuous value of observations yet unforeseen. Popular supervised methods comprise
classification [26] and regression [27] methods.

(iii) Prescriptive analytics provide enterprises with automated, time-dependent, adaptive,
and optimal decisions [28] and are exploited to generate more value to businesses
thanks to strategic and operational decisions [29]. They derive optimal decision
recommendations to assist decision-makers in reaching a desired outcome from either:
mathematical optimization models and predictions, or actionable predictive models
and their associated feedback data [30]. The former employs optimization, simulation,
and evaluation methods [31], while the latter exploits a purely data-driven technique,
i.e., reinforcement learning a computational approach to understand and automate
goal-directed learning and decision-making [32].

The inherent capabilities of data science and machine learning to learn patterns from large
datasets while generalizing acquired knowledge to new, unseen data have changed the status
quo. Combined, they provide efficient and computationally tractable methods for big data
knowledge extraction, resulting in improved operations, reduced costs, and increased system
efficiency.

In the building sector, data science techniques are notably applied to support the optimization
of energy consumption [33], reduce operational costs, and improve building performance [34].
Predictive models are exploited to forecast maintenance needs, thus reducing downtime and
increasing building equipment lifespan [12], [35]. By analyzing measurements collected from
BAS, building operators can effectively reduce energy usage and identify factors that affect
building performance [36]–[38].

However, barriers in the sector still persist, preventing the full exploitation of data science
potential for buildings.

State of the art: a multitude of approaches for a multitude of
buildings

The main obstacles to a broader adoption of data science practices in the building sector
can be grouped into three problematics:

(i) a lack of standards in building data analytics practices,

(ii) the tedious scalability and generalization capabilities of data-driven approaches over
highly heterogeneous buildings and occupants,

(iii) the multiple yet disconnected scales linking smart buildings to smart cities.
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These challenges are here briefly summarized while a more detailed review is later presented
in their dedicated chapters.

On the need for standards in building data analytics

While data science extensively demonstrated its value potential for buildings due to its ability
to generalize and scale from large data-driven insights, obstacles still persist preventing
domain professionals from exploiting its full potential.

To start with, developed research methods commonly follow disparate steps, increasing
analytical uncertainty with unsystematic analytical procedures. Data mining framework
showcased clustering of energy time series as a data preprocessing step prior to predictive
learning or association rule mining applications [39], [40]. C. Fan et al. [25] proposed a
mining method tailored to large building automation system data encompassing data cleaning
and transformation methods (preprocessing) while presenting the data partitioning phase
separately. Data mining references, however, report data cleaning, integration, selection, and
transformation as separate steps prior to knowledge discovery [2]. This has consequently left
building professionals with the tedious task of determining which analytical steps to follow
for targeted building analytics.

Secondly, the lack of consistency across building data sets hinders the widespread adoption of
proposed data-driven solutions and increases the cost of scaling these applications and systems
to different buildings [19]. Additionally, studies commonly relied on predefined problems
employing only a small subset of available building data [40] with few established benchmarks
to compare results from one investigation to the next. E. Keogh and S. Kasetty [41] notably
exposed a need for a set of time series benchmarks coupled with more careful empirical
evaluations of data mining research. Else contributions made would offer a negligible amount
of improvements if not tested on sufficient representative real-world datasets. Establishing
benchmarks in the building sector would effectively support the identification of the most
suitable technique to a given application [20]. Building performance open data sets were
introduced yet still necessitate a wider adoption, e.g., Building Data Genome project [20],
Pecan Street [42], Low Carbon London [43].

Highly heterogeneous buildings and occupants

The existing and aging building stock is known to be highly diverse, consequently producing
a challenge for the building industry. The International Energy Agency (IEA) reports
that at least 40% of buildings in developed economies were built before 1980 [44]. In
the United kingdom, it is estimated that over 75% of buildings in use today will still be
standing in 2050 [45]. Building performances can consequently vary significantly based on
factors such as building age, size, occupancy patterns, and geographic location [46]. For
example, energy consumption in office buildings can vary by up to 200% due to differences
in occupancy patterns and equipment use [47]. Similarly, A. Thornton et. al showed that
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heating, ventilation, and air conditioning (HVAC) energy use in commercial buildings can
vary by up to 60% due to differences in building systems, design, and occupancy [48]. The
global building stock is highly diverse and fragmented, with over 70% of buildings in the
world being either small or medium-sized [18]. This exacerbates further the heterogeneity
challenge as there are few standardized approaches for building performance management
across varying building types and sizes.

What’s more, building occupants are a notoriously unpredictable constituent of building
energy systems resulting in a myriad of energy needs, referred to as occupant behavior. Driven
by multiple contextual, sociological, or psychological factors, occupant behavior is exceedingly
tedious to characterize [49]. It has consequently become the leading source of uncertainty
in predicting building energy use [50], [51] inducing the so-called building performance gap
[52]. These behaviors commonly include interactions with thermostats, plug-in appliances,
operable lights, windows, or blinds. The energy-saving potential originating from occupant
behavior is evaluated to stand between 10-25% for residential buildings, and 5-10% for
commercial buildings [53].

All in all, the unique characteristics of buildings and their occupants make the building
stock a highly heterogeneous body. The development of tools and methodologies for building
performance analysis and management that can scale across buildings is crucial to improve
building energy efficiency and reducing carbon emissions.

From buildings to cities: a landscape of multi-disconnected scales

As of today, buildings and city energy system analytics encompass multiple spatiotemporal
scales often disconnected.

In a predictive analytical context, this implies that produced forecasts from separate individual
buildings (spatial scale) or hour-ahead estimations (temporal scale) do not typically match
with their aggregated counterpart predictions, i.e., district-level (spatial) and day-ahead
(temporal) ones. This results in inconsistencies in produced information across energy
networks which prevent energy management strategies from being optimally conducted.
Indeed accurate and coherent predictions across varying aggregation levels and horizons of
the considered energy system are required for optimal decision-making, else decision-makers
would be planning using separate and possibly conflicting views of the future.

From a prescriptive analytical perspective, this disconnect between spatiotemporal scales
is commonly due to the differences in modeling details between building-focused energy
management problems and strategic urban energy planning problems [54]. Energy plan-
ning problems at the neighborhood, city, or country scale typically need to reduce the
encompassed dimensionality through spatial and temporal aggregations to render resulting
optimization problems computationally tractable. For example, the planning of a residential
neighborhood would consider both a typical, representative, year of operation, to reduce the
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temporal dimension of the problem, as well as aggregated energy demands from clusters of
buildings or apartments to simultaneously downscale its spatial granularity by using weighted
representative elements only. Yet, these necessary simplifications deprive planners from
exploiting the full extent of available synergies between prosumers of energy communities.
Activating untapped energy flexibility potentials such as demand-side management in the
planning phase could significantly improve system efficiency and reduce planning costs.
The question of relevant scale identification in urban energy planning is in fact, not a new
one. Cajot et al. [55] stated that it should be regarded rather as an open question, for
future research to provide planners and decision-makers with rigorous and systematic tools
necessary to quantify the gains and losses of different boundaries. And while extensive
works have focused on the integration of smart buildings to grid-level energy management
problems, the long-term provisioning of energy and sizing of power-system elements are
typically not considered due to their resulting problem complexity [56]. This often results
in over-simplified models of the grid edges and its users, as illustrated by the conclusion
of Chiroma et al. [57], which state that building occupants and smart grid end users still
require extensive research to be successfully incorporated to the smart grid operation scheme.
Addressing the gap between these two distinct scales is essential for a holistic approach and
linking user behavior assortment to smart city energy infrastructure planning.

Contributions and outline of the thesis

This thesis contributes to overcoming these limitations, thus bridging the gap between the
different spatiotemporal layers of the built environment, grounded on data-driven, scalable,
interpretable, and multi-dimensional methods. Particularly, connecting occupant behavior
to urban energy system planning lead this thesis to explore descriptive, predictive, as well as
prescriptive analytics. The main research question of this work can be defined as:

How can data science facilitate the scaling of approaches and bridge disconnected
spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?

To further deconstruct the research question, we formulate four sub-questions to examine all
analytical classes, namely descriptive, predictive, and prescriptive. These are formulated as
follows:

Analytics ■ How can data mining support the deconstruction of multi-dimensional
analytics for the building sector?

Descriptive ■ What data-driven methods can best provide scalable and interpretable
models for building heat dynamics?

Predictive ■ What is the added value of a unified bottom-up and top-down predictive
learning approach for building load forecasting?

Prescriptive ■ Can occupant behavior (bottom layer) affect city energy planning
(top layer)?
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Figure 1.2: Thesis analytical and spatiotemporal scale frames.

To answer this question, the thesis proposes the following methodological contributions:

Chap. 2 ■ Data cube mining for buildings
A generic method is first framed to define best practices for data-driven analytics in the
building sector in a high multi-dimensional data context. The framework particularly
leverages data cubes as a foundation on which to structure dimensional frames of
interest. The approach is exemplified by an automated pattern identification application
of building performance data. The work notably puts forward the inherent connections
between dimensional frames of interest and the insights uncovered from common data
analytics approaches, namely bottom-up, top-down, and temporal drill-in.

Chap. 3 ■ Scalable building heat dynamics identification
To better identify and characterize the impact of occupant behavior on building energy
demands, the thermal dynamics of residential buildings need to be identified in a
scalable and interpretable manner. This is explored employing two principal data-
driven modeling technics: grey- and black-box models. While black-box models are
inherently powerful at scaling across multiple (buildings) data sets, their black-box
analogy betrays a lack of interpretability. On the other hand, grey-box approaches
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are endowed with physical knowledge of the modeled system thus producing highly
meaningful models, yet their scaling across the building stock is tedious. This work
proposes to tackle both of these shortcomings and produces, from a similar case study
of 250 occupied residential buildings, interpretable, calibrated, building thermal models;
an essential foundation of all building to grid energy management applications.

Chap. 4 ■ Hierarchical building load forecasting
To bring forecasted scales of the built environment together, i.e., building to cities,
hierarchical forecasting is investigated as a holistic solution for multi-dimensional
forecasts. Spatiotemporal hierarchical structures are first defined, and a novel approach
is then introduced, producing coherent individual and aggregated forecasts of building
energy time series data. The developed hierarchical regressor is further tested on
varying deep neural network architectures echoing typical hierarchical structures to
demonstrate the value brought by the coherency information of the multi-scale forecast.
The outcome is a single, coherent forecast of an entire energy community, allowing
aligned decision-making across the energy network.

Chap. 5 ■ From building occupants to urban energy planning
Finally, bringing together the different layers of the built environment, i.e., occupant
behavior (bottom layer) and the urban energy system (top layer), a scalable, dis-
tributed, stochastic, and multi-objective energy planning solution for communities
is designed. Calibrated building thermal models are exploited, providing detailed
granular information to the urban energy planning problem. The stochastic opti-
mization problem produces policies accounting for future uncertainties of the system,
i.e., climate, economic, and occupant behavior, in a decentralized framework suitable
for real-world deployment. Lastly, the impact of user-behavior uncertainty on the
overall system design is estimated within the context of other system uncertainties,
thus demonstrating the relative impact of occupants on urban energy systems, and
effectively bridging both these scales.

To secure research reproducibility this thesis open-accesses produced codes for all chapters
under distinct public GitHub repositories. These are regrouped under one account1 with
each contribution specified in the overview of their associated Chapter. Produced results
are additionally anchored onto open-data-based benchmarks for Chapters 2, 4, and 5.
The methodological contributions of the work particularly focus on tackling scalability
purposes while uniting multi-disconnected scales together across analytical categories. The
spatiotemporal scope of the presented work is illustrated under Figure 1.2.

The outline of the thesis is illustrated in Figure 1.3, where Chapter 2 presents a generic
multi-dimensional data analytical framework applied to automated pattern identification.

1https://github.com/JulienLeprince

https://github.com/JulienLeprince
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Figure 1.3: Thesis structure overview.

Chapter 3 puts forward an automated building heat dynamics identification applied to 250
Dutch residential buildings while Chapter 4 introduces hierarchical learning regressors as
a novel coherent forecasting method applied to energy networks. In Chapter 5 occupant
behavior is connected to the urban energy planning system scale while considering future
system uncertainties. The latter generates optimal strategies evaluated and compared against
varying uncertainty scenarios. Finally, concluding remarks summarize the main findings,
provide recommendations and guidance for the broader adoption of multi-scale data science
practices in the building sector, and envision future perspectives.

Annex A is complementary to Chapter 3 and details a black-box approach for the identification
of building heat dynamics. The work uses symbolic regression as a means to identify
interpretable analytical expressions from a similar data set. Its results are compared to
typical grey-box lumped resistance capacity models.



Chapter 2
Data cube mining for buildings

Chapter overview

• Presentation of a multi-dimensional framework for building data analytics
• Application to automated pattern identification
• Case study: Building Data Genome Project 2 (BDG2) open dataset
• GitHub repository: /multidimensional-building-data-cube-pattern-identification

Data cube

Lattice exploration
{a, b, c}

Analytical framework

1. Pre-mining
2. Mining
3. Confirmatory-analysis
4. Post-mining

Insight-driven
application

a. Bottom-up approach
b. Top-down diagnostic
c. Temporal drill-in

analysis

Figure 2.1: Overview of the multi-dimensional data (cube) analytical method

This chapter has been published as Leprince et al. [58].

"The real voyage of discovery consists not in seeking
new lands but in seeing with new eyes."

Marcel Proust

2.1 Preface

As briefly introduced in the Introduction, advances in information systems, computing
power and control technologies for optimal resource management, have endowed building
automation systems (BAS) with enhanced energy savings ranging from 20 to 35% [59], while
generating a huge amount of data from a wide range of appliances every day. These include
essential building indoor environment quality condition processes such as ventilation, lighting,
air conditioning, and heating but also home appliances such as dishwashers, laundry, kitchen
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devices, and home entertainments. Yet, BAS data are rarely fully exploited and interpreted.
Improving building energy efficiencies with such pools of data remains a challenge; how does
one approach the analysis of various associations and correlations amongst multi-temporal,
i.e., seconds to hourly resolutions, with daily to decades horizons, and high dimensional
data? What methods to follow to acquire useful, interpretable insights on building energy
performance and reduce its consumption? Such questions root upon causes usually involving
poor data quality, resulting from a large share of missing values and outliers, coupled to lack
of efficient and convenient analytical tools and methods for large data sets. Additionally,
most BASs only perform basic data analytics and visualizations, such as historical tracking,
moving averages, and threshold-based anomaly detections which have pushed the building
automation industry to new data-driven methods and tools to harvest these data pools,
namely, data mining.

2.1.1 Data mining

Data mining (DM) has grown from a promising technology to an established powerful and
effective analytical tool to interpret massive and complex data. In 2001, MIT reviewed
DM as one of the top 10 emerging technologies that will change the world [60], while it
has now accumulated over a hundred thousand publication records over the last 20 years
in a wide variety of fields [61], including medicine, retails telecommunication, financial
services, and target marketing [62]. In the building sector, the effervescence surrounding
the technology was such that recent reviews employed text mining tools to fully uncover
the extent of developments in the field [63]. DM is a multi-disciplinary subject, integrating
combined techniques from statistics, machine learning, and artificial intelligence thanks
to high-performance computing. It is the core process of identifying valid, useful, and
understandable patterns from large and complex datasets, known as Knowledge Discovery
in Databases (KDD). The DM taxonomy established by Oded and Lior [62] distinguishes
two preeminent types of DM: verification oriented, where the system verifies a proposed
hypothesis, and discovery-oriented, where the system identifies new rules and patterns
autonomously. Verification methods include traditional statistical tests such as goodness
of fit test, test of hypotheses (i.e. t-test of means, one sample Z-test), and analysis of
variance (ANOVA). Discovery methods, on the other hand, are based on inductive learning,
where a model is constructed from generalized sufficient numbers of training examples,
assuming its applicability to future unseen data. Another terminology, widely used within
the machine learning community, preferably considers discovery-oriented DM and separates
the techniques into supervised and unsupervised learning. Supervised methods attempt to
discover complex and non-linear relationships between input and output target attributes
(referred to as independent and dependent variables respectively) by learning from historical
data. This type of process largely composes the predictive learning component of DM
discovery methods. It has been applied to the building operational stage [63] as it is directly
linked to occupant comfort and responsible for 80-90% of the building’s total green gas
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emissions [24]. Applications of supervised learning notably include predictions of building
energy consumption [64]–[67], thermal load [68], [69], indoor environment [70], [71], and
system performance indices [72]–[74]. Popular supervised methods comprise two predominant
groups: classification [75] and regression [26]. Unsupervised learning, also recognized as
descriptive learning, groups techniques used to organize instances without pre-specified
attributes. It aims at finding underlying associations or data structures between variables.
The prominent advantage of unsupervised analytics is its ability to discover formerly unknown
knowledge [2], [27]. Well-established techniques involve clustering, association rule mining
(ARM), and anomaly detection. Visualization and summarization techniques, for instance,
are DM descriptive methods that are not regarded as unsupervised learning. In opposition
to predictive learning, descriptive learning can be viewed as a more flexible application
that does not require model training or predefined targets during knowledge discovery. Its
main applications encompass fault/anomaly detection and building performance diagnostics
[76]–[78].

2.1.2 Cube multidimensional analytics

Dealing with the large volumes, velocities, and varieties characterizing high-dimensional
big building data is a complex task. Common analytical tools developed to tackle mul-
tidimensional data rely on exploring different dimensional associations at different levels
of aggregation leveraging the structures of a data cube [27]. A data cube is defined as a
multidimensional data model allowing data exploration from its structured dimensions, i.e.
dimension table and facts. A data cube is commonly organized around a central theme,
represented by a fact table, which contains names of the different facts, or numeric values,
and relational attribute keys. For example, a building fact table could include time, location
or energy flow attribute keys linking them to their dimension table. Given a fixed set of
dimensions, a cuboid can be generated for each subset of the given dimensions. Their combi-
nations result in a lattice of cuboids, presenting the data at specific levels of summarization
from which a multi-dimension analytical map can be defined. Cuboids forming the lowest
level of summarization are denoted base cuboid, while the 0-D cuboid, holding the highest
level of summarization, is designated the apex cuboid (typically referred to by all) [27], [79].
This lattice of cuboids defines the data cube. While data cubes are commonly represented
as 3-D geometrical structures, they are naturally n-dimensional, where each dimension
represents objects intended to keep record off. In BAS data, hierarchical relationships are
often found within dimension tables, e.g., the time dimension includes a natural tree structure
rooted in the year attribute, and progressively branching out to months, weeks, days, and
hours. Other hierarchically structured dimensions typically include geographical location
and site measurements. Multidimensional cube space analytics rely on the high-dimensional
structure of the data to explore multi-lattice and abstraction levels of the cube. Common
dimensional exploration methods rely on bottom-up, top-down approaches, namely rollup,
where fine granularities are gradually aggregated in coarser ones, and drilldown, starting
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from coarser dimensional granularities down to finer ones. This navigation across multiple
cube spaces of interest is called OnLine Analytical Processing (OLAP) [80]. By summarizing
and aggregating data subsets at different abstraction levels, this tool has greatly assisted
multidimensional analytics. Leveraging this approach, R. Ramakrishnan and B. Chen [81]
have put forward a cube-space mining method, taking advantage of the data-cube structure
to define and select cuboids of interest to mine over. This way, data mining can be used as a
building block within the OLAP analysis to exploit multi-scale knowledge discovery in a
defined dimensional frame. Characteristics of the cube-space data mining scheme involve
the following three steps: (1) relying on cube space to determine the space of candidates
for mining, (2) employing OLAP queries to explore features and targets for mining and
(3) adopting data-mining models as building blocks within a multi-step mining process.
This exploratory multidimensional DM approach, also known as OnLine Analytical Mining
(OLAM) [2], allows the user to effectively select and analyze a relevant subset of data at
different granularities and present discovered knowledge at different abstraction levels.

2.1.3 Motivation

This being said, OLAM has, to the best of the authors knowledge, little to none been
practiced in the built environment sector, and while DM extensively demonstrated strength
and performance in this domain, barriers still persist avoiding professionals from exploiting
the full potential of DM analytics. Previous studies usually relied on predefined problems
using only a small subset of building data with few established benchmarks to compare results
from one investigation to the next [81]. Additionally, developed research methods commonly
follow disparate steps, increasing complexity with unsystematic mining analytical procedures.
With the variety and complexity of the most recently developed DM techniques as well as
the highly dimensional building data, it has become increasingly challenging for building
professionals to (i) effectively target which data dimensions to explore and consider in their
analytics, (ii) determine what analytical steps to follow for targeted building data mining
and (iii) select the most suitable DM technique for a particular case study from established
references. Realizing the prevalent demand for a common DM framework, noticeable studies
have proposed methods applied to BAS data [24], [40], [82]. However, developed frameworks
were usually tailored to DM application-specific cases and failed to address multi-dimensional
analytical approaches from orderly steps required for systematic and benchmarked building
data analytics. Detailed stepwise generic approaches with established good practices for
preprocessing, application-specific and benchmarking procedures are frequently overlooked
yet desperately needed. In order to adopt systematic analytical steps from a common
framework within the building analysts and research community, several steps still need to
be undertaken; (i) establishing and following a common DM framework and (ii) developing
and employing open building data toy sets to serve both as benchmarks to case-specific
studies while allowing (iii) the development of replicable implementations of typical building
energy management applications for valuable knowledge transfer. Ensuing these steps would
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cultivate more generalizable findings and insights while vastly contributing to the practical
adoption of a common analytical frame. This study proposes a response to this appeal and
puts forward a multi-dimensional analytical method grounded on a generic data mining
framework for building data analysis. It puts together reviewed analytics best practices in
a step-wise method tailored to DM application for systematic knowledge discovery in big
building data. Contributions of this work can be summarized as three-fold;

• Putting forward a generic building-tailored DM framework for unified and systematic
analytics,

• Framing a multi-dimensional analytical approach to big building data, cutting down
the complexity endowed by high-dimensionality, and

• Providing an open access implementation of the presented method relying on a large
and open building data set, serving as benchmarks to similar studies and appealing to
more reproducible, comparable, and empirically validated analytics.

2.2 Method

Resulting from an in-depth analysis of DM methods and a comprehensive review of domain
application-driven techniques we propose a generic DM framework tailored to multidimen-
sional building data. The developed method is founded on established methodology from
the literature. Notable existing frameworks typically involve four major phases, i.e. data
preprocessing, data partitioning, knowledge discovery (data mining), and post-mining. In
particular, the generic framework developed by C. Fan, F. Xiao, and C. Yan [24] designed
for BAS data knowledge discovery englobed building performance assessment, diagnosis,
and optimization as possible applications. Our method follows similar steps yet extends
it from a multidimensional viewpoint leveraging both descriptive and predictive mining
techniques while importantly stressing prerequisites for reproducible and generalizable results
from benchmarks. It puts forward a generic feed-forward and back process to follow while
attempting any building mining process and differentiates mining application-dependent steps
from generic DM ones from a unified and interpretable method. Our method is illustrated
in Fig. 2.2 where two tasks are performed in the data preprocessing phase, including data
integration and data cleaning. Multidimensional data exploration then follows, incorporating
benchmark reports and cube lattice selection with OLAP exploration. After, a pre-mining
phase incorporates data transformation and mining-specific steps. Next, the mining stage
takes place and an important confirmatory analysis phase is thereafter carried out with
validation methods leading to algorithm selection. A feedback loop linking confirmatory anal-
ysis to the mining and pre-mining blocks is included in the framework to indicate potential
iterative sequence allowing pre-mining steps and mining to be repeated to converge to the
desired results for algorithm optimal selection. And the OLAM feedback loop illustrates the
repeated mining process over different cube lattices for multidimensional mining. Knowledge
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interpretation and extraction is then proceeded within the post-mining phase, supported by
visualization tools. Finally, discovered knowledge can be used for a defined application, or
serve as a preliminary step to another mining phase, as illustrated with the last feedback
arrow. This is often the case when mining for association rules or undertaking predictive
learning with prior profile clustering for example [82], [83]. Details of the evoked phases are
developed in the following subsections.

Pre-Mining

(1) Data Selection        (2) Data transformation
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Figure 2.2: A generic multidimensional data mining framework for building data.

2.2.1 Preprocessing

Data preprocessing completes two main tasks, i.e. data integration and data cleaning (outlier
identification, missing value handling). Data integration refers to the selection of a suitable
structure format and data model for the later analysis. Cleaning aims at enhancing data
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quality to obtain suitable results out of the intended analytics. It has been reported in
DM literature that data cleaning should be performed prior to data integration, allowing
information industry to benefit from clean ‘usable’ data stored in data warehouses [2].
This work considers the analytical process from a scientific point of view, where data may
be cleaned in different ways consequently impacting the later analysis, which is why we
recommend the data be stored raw rather than preprocessed1.

Data integration

Data integration is composed of a first data model definition phase, from which the later
integration process can be undertaken. Data model definition constitutes a fundamental first
step to structure the multidimensional BAS data under a given schema. Data integration
techniques can later be applied consequently providing consistency in naming conventions,
encoding structures, and attribute measures [2].

Data cube map
Establishing the building data mapping serves as an imperative step to the framing and
structuring of its various dimensions. Additionally, obtaining clear delineated dimensions
allows leveraging the design of a data cube into decomposed lattices that will serve in
shaping the later OLAM analytics. A common approach to the data cube model definition
originates from the formulation of the analysts’ interrogations. Specifying questions such
as “what is the energy consumption relationship to time?”, framing the analysis under the
energy and time dimension, or “what was the total energy consumption of a building in
a certain location during a specific time interval?”, here querying along three dimensions,
serves in the conceptualization of the state space to explore and, thus, in the definition of
the data cube dimensions. Building data gathers six types of recorded data, from building
operations to metadata combined [38], echoing quite conveniently the 6 facets of a cube; i.e,
time, location, building data encapsulating operational and meta-data, climate conditions,
occupant-related information and equipment data. Time data serve as a reference index to
the other measured attributes, and indicates Year, Month, Day, Hour, Minute, Second, Day
Type, generally formatted under the ISO 8601 [84] recognized complete format “YYYY-MM-
DDTHH:MM:SSZ”, e.g., 2019-07-16T19:20:30+01:00. Location straight forwardly regroups
spatial delineations such as geographic coordinates or address, which can be divided into
numerous granularities, i.e., device, room, zone, system, building, street, district, city,
state and country. Building data regroups building characteristics and operational data.
Operations cover energy demands originating from building comfort maintenance with
heating and cooling loads, lighting and ventilation systems through electric power loads,
heat flows, or natural gas consumption, but can also cover also water supply. Metadata

1Ideally, if data storage space permits it, both raw and preprocessed versions of the data should be stored,
to allow preprocessing reproducibility evaluation as well as alternative variants that could be considered in
other studies.
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evokes the building’s physical characteristics commonly encasing floor area, number of floors,
global insulation coefficient, window-to-wall ratio, date of construction, and building type
(school, dwelling, office building, hospital, education. . . ). Climate conditions assemble indoor
or external environmental conditions with attributes such as dry-bulb temperature, relative
humidity, irradiance, wind speed, precipitations, pressure, and air quality but also non-
temporal characteristics such as the Köppen climate classification [85]. Occupant information
can deal with both occupant characteristics and comfort data. Occupant characteristics
are seldom collected as a result of their privacy-sensitive nature as well as tediousness to
gather through costly surveys. They cover attributes of age, gender, education, lifestyle,
annual income, and other socio-economic parameters [53], [86]. Occupant comfort data
relate to physiological, psychological, and environmental factors influencing human comfort
perception, i.e. thermal, visual, and aural comfort [87]. Equipment data possess a non-
temporal and operational entity, namely equipment characteristics, i.e. equipment type,
efficiency, capacity, and operating system settings, i.e. set-point temperature, inlet and
outlet equipment temperatures or pressures, control parameters, and events accompanied
with eventual respective causes (human or agent initiators) [88]. Given these dimensions, one
can group study-specific available data to form a dimensional mapping of the cube. Given an
n-dimensional cube, each dimensional-element di, with i ∈ [1, n] can thus be associated into
groups of increasing size, i.e. cuboids. Cuboids of a given size compose a lattice, where each
lattice l ∈ [0, n] will thus be composed of P(n, l) possible partition cuboids from equation

pn,l =
(

n

l

)
= n!

l!(n − l)! . (2.1)

Figure 2.3 illustrates a 4D cube mapping example given the building cube dimensions:
time (T), resource consumption (R), External conditions (E), and location (L). The cube
can then be reduced by eliminating non-relevant dimensional associations from analyst
inspection. Here the 2D cuboid association T, L can be eliminated as location is, by essence,
non-temporal. Consequently, all emerging cuboids can also be eliminated from the cube
space, resulting in a reduced state space mapping. Establishing the cube data mapping
provides a conceptual and structured model, dividing data into clear separate dimensions,
on which the later analytical processing can be founded on. It may also be noted that the
hierarchical structure inherent to some dimensions, e.g., time or location, possess abstraction
levels called footprints which represent granularities accessible for later OLAP exploration of
the cube space [2].

Data cube integration
Integrating the data cube to a suitable format for mining processing then follows. Building
data are typically recorded in two dimensional tables where a set of attributes (columns)
representing a variable are stored across different instances (rows). Within the defined
dimensions stated earlier, different levels of measurements are often required for in-depth
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Figure 2.3: Building 4D data cube mapping and space reduction example, where (T) relates
to time, (R) resource consumption, (E) External conditions and (L) location.

building energy performance analytics, i.e. from building site scale to room, equipment
or component-point measurements, increasing data dimensionality and complexity. For
instance, HVAC systems often require multiple outlet temperature, pressure, and air-flow
point measurements, with one aggregated component energy consumption. Differentiating
these relationships in an ergonomic and analytically efficient way becomes crucial for effective
DM. A prevalent adopted solution proposes common markup language and data structure to
organize the collected information: Project Haystack [89]. Data are organized hierarchically
from three entities, i.e. site, a single building with a unique street address, Equip, physical or
logical pieces of equipment within a site, and Point, referring to sensors, actuators or set point
values of an equipment. Following this reference, a multi-column format is proposed where
sets of attributes are grouped hierarchically under common sites, consequently structuring
attributes from similar buildings under a common table.

Data cleaning

Data cleaning is a crucial step to efficient DM analytics aiming to improve data quality by
dealing with duplicates, clearing outliers, and filling missing values from raw BAS data. It is
unfortunately still common to find little to no information on the data cleaning phase of
many studies [82], [90], [91]. This first major phase of DM legitimately effects the outcome of
the later analysis and should always be clearly reported to assure proper result benchmarking.
To the best of the author’s knowledge, every existing BAS analytics from the literature
perform missing values filling prior to outlier detection, as a consequence of the few existing
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methods robust to missing values. This work introduces a shift in this established order to
avoid using tampered sets for missing value filling which can result in a greater share of
produced outliers, consequently making them harder to identify in the later step.

Duplicate data handling
Duplicates in data sets consist of data objects that are corresponding or identical to one
another to some extent. In BAS data, these can consist of redundant attributes within a
data set, or multiple attributes stored in a common instance (timestamp), sometimes with
different values, also referred to as inconsistencies. Their sources cover use of denormalized
tables, inaccurate data entry or updating some but not all data occurrences [2]. They can
create major issues when merging data from heterogeneous sources and should be handled
first within the cleaning phase. Duplicates handling is seldom depicted in BAS literature
and usually consists of candid duplicate attribute, or instance, lookup functions coupled to
targeted removals if the duplicates are identical. Handling inconsistencies however yields
different alternatives, i.e., keep only one duplicate over the others, average the inconsistencies
out or remove them from the data. Knowledge on the origin of a set of duplicates can help
identify erroneous data and chose an appropriate strategy for duplicate handling.

Outlier detection
An outlier can be defined as data point that is significantly dissimilar to other data points
or that does not imitate the expected behavior of others [92], [93]. In BAS data, outliers
can come from measurement faults (sensor), transmission or transcription anomalies due
system changes or human errors. Natural outliers reveal unusual but occasional behaviors
of the monitored phenomenon. Outliers can be grouped in two main groups, i.e., point
and subsequences outliers [93]. This phase of DM should only consider point outliers
identification as recommended by the work of Fan et. al. [25], not to later overlap with
mining typical/atypical patterns. Outlier detection methods include prediction models, profile
similarity approaches, and deviants identification [93]. Prediction models spot-out outliers
by comparing measured values from predicted ones with an outlier score threshold-based
comparison. The primary variation across models concerns the particular prediction model
considered (supervised, unsupervised). The profile similarity approach is based on a reference
normal profile built upon historical data to which new time points are compared to. Outliers
are then identified from time-dependent normal profiles and variance vector comparison with
anomaly score. The deviant-based method estimates outliers from a minimum description
length (MDL) standpoint originating from information theory. If the removal of a point in a
time sequence results in a significantly simpler sequence to describe, then it is considered an
outlier.

Missing value filling
Missing data in BAS are commonplace, with multiple processes being monitored from
seconds to hourly frequencies on a yearly basis, gaps are typical within raw BAS data.
Missing data originate from error or omissions when data is recorded or transferred [94],
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imperfect procedures of manual data entry, incorrect measurements, and equipment error
[25]. Discontinuities may lead to serious obstacles when analyzing findings [95], e.g., loss
of efficiency, complications in data handling and analysis, bias estimates from dissimilar
lengths of data, and reduction of statistical power (inefficient estimates) [96]. Selecting an
appropriate method for missing data handling depends on the time series pattern and the
missing data mechanism [97]. Challenges related to these techniques involve, maximizing
available data use to preserve covariance structure in multivariate data [98], and incorporating
variance estimates of the uncertainty rooted on imputed data [99]. If the gaps represent
more than 60 percent of the set, however, then no method is judged suitable to cure the set
[25]. Missing value-filling methods cover either deterministic approaches, known as single
imputation, or stochastic ones, also referred to as multiple imputations, where several values
are generated for each missing observation to reflect the uncertainty of the missing data [95].
This work proposes a single imputation approach dependent on the length of the missing
sections. Explicit modeling with regression can be chosen for missing data sections smaller
than 3 consecutive hours, i.e., moving average [25], while longer sections call for implicit
modeling using the hot deck method, i.e., where missing values are averaged from identical
time intervals and day of the week using sections of 2 weeks. Interested readers are invited
to refer to the work of M. Norazian Ramli et. al. [100] for in-depth review of imputation
methods.

Multidimensional exploratory analysis

This section intends on framing multidimensional data exploration leveraging the BAS data
cube representation. It holds the essential role of identifying data structures, distributions,
and trends, needed for benchmarking purposes and defining appropriate mining approaches for
the investigated set. Additionally, it supports more generalizable, interpretable, and framed
analytics by (i) cutting down the complexity of big data from cube lattice selection with
OLAP exploration and (ii) putting forward important benchmark reporting characteristics.
Exploratory Data Analysis (EDA) was originally defined by John W. Turkey as the act of
“looking at data to see what is seems to say” [101], [102]. It aims at collecting insights into
data characteristics to help with the following analysis by answering questions such as; what
does the data look like? How can one visualize the data to get a better sense of it all? How
are the values distributed and can similarities between attributes be measured [2]? Existing
explored characteristics comprise attribute types, i.e., nominal, binary, ordinal, numeric,
discrete or continuous, and statistical descriptions, i.e., central tendency, dispersion, variance,
and correlations. Attribute-type exploration is carried out during the first data integration
phase, however, statistical feature inspection can be performed a priori or posteriori, to data
cleaning. EDA is here presented a posteriori to data preprocessing in the DM framework as
a necessary step to encase multidimensional mining. First benchmark reporting presents
the dimension-specific data structures, providing necessary insights to the later pre-mining
phase to which follows, lattice/cuboid selection and OLAP exploration.
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Benchmark reporting
EDA serves as a necessary data structure reporting appliance to any scientific study. As
the work of B. Yildiz et. al. demonstrates, BAS data characteristics should systematically
be described to allow validation of a study’s true success thanks to a defined analytical
framework [103]. Yet, too many studies fail to report these features. Description of
household characteristics such as dwelling types, age and physical condition, household
loads statistical components and climatic conditions using established classifications, e.g.
Köppen Climate Classification [85], should henceforth systematically be reported [103].
While undertaking EDA, it becomes necessary to define what the authors propose to call the
analytical window frame which encompasses three elements, i.e., data granularity, horizon and
frame. Granularity refers to the sampling rate of the data set over the selected dimensions.
The horizon entails the largest dimensional attribute considered and the frame defines the
dimensional region of interest within the analysis. For example, typical building energy
pattern analytics tend to use temporal analytical windows with 15-min to hourly granularity,
yearly horizon and daily frame [35]. Statistical features examination is often performed
through data visualization. It communicates data structures and tendencies clearly and
effectively from graphical representation endowing users with a straightforward understanding
of the data [2]. A series of three data visualization techniques are hereby presented capturing
the data dimensions’ inter- and/or intra-attribute structures.

1. Combined half-violin and boxplots allow appreciation of central tendency, distribution
and variance with an assessment of statistical inference at a glance via overlaid boxplots
[104], while avoiding the redundant mirrored probability density functions of violin
plots.

2. Scatterplot matrix coupled to correlation matrix display the marginal dependence
structure of the data [105], granting examination of intra-attribute correlations and at-
tribute distributions from bivariate relationships. These plots are favored as particularly
effective for feature engineering and visualization [106].

3. Weekly framed heat maps are suggested as a substitute to run charts, enabling inspection
of per attribute patterns leveraging a weekly to daily analytical frame of interest using
hourly resolution and yearly horizon.

Lattice exploration
Lattice exploration embodies the starting step of the iterative cube-space mining, i.e.,

OLAM loop [81]. A cuboid is firstly chosen from the established data cube dimensions for
OLAP exploration of the multidimensional data. For instance, given a 3-D building data
cube covering time, site and attributes dimensions, see Fig. 2.4, three sets of 2-D cuboids
can be iteratively selected and explored, i.e. time, site, time, attribute and site, attribute.
Typically, analytical frames explored in building performance mining encompass only one
of the three presented cuboids, i.e., top-down, bottom-up and the less common temporal
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Figure 2.4: Building 3D data cube mapping with Benchmark reporting and lattice explo-
ration.

drill-in approach, respectively corresponding to cuboids A time, site, B time, attribute and
C site, attribute. By examining varying levels of abstractions through lattice exploration,
information and insights sharing between them can be exploited; a concept also employed in
transfer learning [107]. C. Fan et. al. [108] recently demonstrated its value across buildings
for short-term building energy predictions, particularly when measured data are limited.
Multidimensional mining can then exploit varying levels of data abstractions from drilling,
pivoting, filtering, dicing and slicing of the data cube. Leveraging data visualization to these
ends notably expands the power and flexibility of data mining [2].

2.2.2 Pre-mining

Pre-mining is by nomenclature the phase completed prior to mining. Customarily, this process
is treated within pre-processing as it shares the objective of preparing the data for mining
[2], [24], [25], [38], [40], [109]. This study suggests differentiating application-independent
steps from the dependent ones and introduces pre-mining in the DM framework as a mining-
specific preprocessing phase which can be iterated over in response to confirmatory analysis
results. Pre-mining englobes two principal functions, i.e. data selection, for targeted and
computationally efficient mining, and data transformation, to prepare the data to a suitable
type and range for mining.

Data selection

Data selection, also referred to as data reduction, answers to a necessary step in big-data
mining originating from the sheer volume and high dimensionality of the data. Indeed,
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addition of data volumes from keeping irrelevant attributes or loss of decisive information
from withdrawing relevant ones will likely be detrimental to the mining process; it may slow
the mining algorithm employed while leading to discovered patterns of poor quality [2] and
has been recognized to play an equally important role as ML model development throughout
the pipeline of DM [106]. To that end, data selection encompasses measures that are attribute
selection, sampling, and dimensionality reduction techniques. Attribute selection proposes
to straightforwardly reduce the data set dimension by removing irrelevant or redundant
attributes (or features). Note that this process can also involve the creation of new attributes,
from combined information of removed ones. Its aims at finding a minimum set of attributes
while keeping the original probability distribution of the classes as unaffected as possible
[2]. Feature selection is commonly conducted by sequential backward selection (SBS), where
attributes are sequentially removed till the reduced space contains the desired number of
features [106]. Existing techniques commonly evaluate and rank individual or subsets of
data attributes, e.g., information gain attribute ranking, relief, principal component, and
correlation-based feature selection [110]. Data sampling involves using statistical techniques
to select, manipulate and analyze a representative (sub)set of data, usually resulting from the
need to reduce the size (dimension) of the enormous data set considered, i.e. under-sampling.
Over-sampling on the other hand is less frequent within the big data era, as a result of
the overabundance of already collected data. Yet, over-sampling can be used to test the
robustness of mining results and highlight sensitivity of the approach to sampled realizations.
Dimensionality reduction techniques, or data reconstruction methods [24], serve as a means
to reach reduced representations of the data while minimizing information loss [2]. Main
techniques include wavelet transform, which provides high and low frequency decompositions
of signals based on wavelet approximation coefficients [111], and principal component analysis,
where low-dimensional attributes are created from orthogonal linear transformations of the
original high-dimensional ones.

Data transformation

Data transformation addresses data conversion to suitable types, ranges and noisiness to
serve as DM algorithms input. Indeed, depending on the mining technique considered
different data formats are required, e.g. categorical or numerical, while BAS data can exhibit
varying units, scales and data type [25]. To this end, this phase covers data normalization,
aggregation, smoothing and discretization. Normalizing a time series consists in scaling its
attributes within, or around a smaller range or value, typically [-1, 1] or [0, 1]. This step is
commonly performed to allow scaled comparisons between dissimilar ranges of attributes, e.g.
normalizing features allows balanced contributions in the update of model weights during
the training phase of predictive learning. Typical normalization methods cover min-max,
z-score and decimal point normalizations [2]. Aggregation similar data groups together, also
known as binning or bucketing, consists in applying summary operations to the data. For
instance, sample-rate conversions resample the data by aggregating values together at regular
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instances, i.e., down-sampling, where daily intervals are reduced to weekly or monthly ones.
The reverse operation, interpolates data across larger resolutions, e.g. up-sampling to convert
hourly instances to 15 minutes interval ones. Smoothing serves to remove noise from data
which is frequently used to uncover trends in noisy time series and can alleviate overfitting
pitfalls of regression models. Usual techniques include binning, with either equal width
or frequency, regression or clustering [2]. It can be interestingly noted that the previously
presented down-sampling rate conversion method, can also achieve smoothing effects as a
data binning technique. Discretization involves data type transformations such as converting
numeric features to interval or conceptual labels [2], e.g., 30-50, 50-70 or adult, senior,
respectively. This step is consistently required for mining algorithms such as Association
Rule Mining (ARM), i.e., the frequent-pattern growth and Apriori algorithms that can only
handle categorical data [24]. It should be noted that feature construction relates more to
data transformation, as the work of J. Han et al. reports [2]. Yet, because this framework
treats the ordering in which these steps should be taken, it was chosen to include it within
feature selection, to apply data transformation techniques a posteriori to feature engineering.

2.2.3 Mining

Mining, or knowledge discovery, encapsulates the algorithmic mining of the data which entails
a large number of varying techniques. Selecting the appropriate one for a given application
is part of the difficulties most data practitioners are faced with and is, naturally, function
of the nature of the problem and the given data set, or case study. Going towards more
interpretable DM analytics, we propose to group these techniques in two application-oriented
groups, i.e., descriptive and predictive techniques. These groups echo the, well-established
machine-learning families that constitute unsupervised and supervised learning respectively,
while clearly distinguishing the typical end goals one can expect from such methods. It
is beyond the scope of this study to give a complete review of all existing DM methods,
however, principal mining groups will here be revised.

Descriptive techniques

By definition, descriptive techniques are diagnostic application-oriented analytics and intend
on achieving a better understanding of the causes of a given process, i.e., identifying patterns
or abnormal behaviors. Descriptive DM techniques, as opposed to predictive ones, have
been judged more capable at discovering previously unknown knowledge from BAS data [24].
Descriptive techniques cover the important DM groups of clustering, and Association Rule
Mining (ARM). Clustering is the process of grouping a set of data objects (or observations)
into subsets or clusters. Each object within a cluster is similar to one another, yet dissimilar
to objects in other clusters. Similarities and dissimilarities are assessed based on attribute
values describing the objects and often involve distance measures, or metrics [2]. Clustering
algorithms have been broadly applied to identify typical building operation patterns, e.g.,
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building energy demand patterns, indoor environment distribution and building energy
system operation patterns. Main clustering algorithms involve k-means clustering with
many variants including adaptive k-means and k-shape clustering, Fuzzy C-Means (FMC),
support vector clustering, hierarchical clustering or decision tree-based clustering and Self-
Organizing Maps (SOM) [35]. ARM is a powerful tool designed to extract association rules
amongst attributes from large amounts of operation data. Association rules are commonly an
implication of the form “A→B”, where A is defined as the antecedent and B the consequent.
In general, ARM can be viewed as a two-step process where all frequent item sets are firstly
identified, from which strong association rules from the frequent item sets satisfying minim
support and confidence can then be generated [2]. Variations of ARM recently applied in
BAS data include Temporal Association Rule Mining (TARM), or sequential rule mining, to
encapsulate the temporal dimension within the discovered rule. Common ARM algorithms
encompass TRuleGrowth, Weighted ARM, QuantMiner, Apriori, ParaMiner and CloseGraph.
Some notable TARM algorithms include TRuleGrowth, SPADE and CMRules [25].

Predictive techniques

Predictive mining intends on determining the likelihood of future events from historical data.
It constructs a model, or function from the analysis of sufficient numbers of training sets,
i.e., data objects for which the desired output is known. Predictive DM is often employed
to capture complex and nonlinear relationships between inputs (independent) and outputs
(dependent variable) of an observable phenomenon [25]. It is then employed to predict
the discrete or continuous value of observations yet unforeseen. Familiar DM predictive
techniques comprise regression and classification-based methods. Regression analysis is a
statistical methodology most often applied for numeric prediction of missing or unavailable
data values. It also covers the identification of distribution trends from available data
[2]. Methods include Artificial Neural Networks (ANN), deep neural networks, Support
Vector Machines (SVM), Decision-Trees (DT), Genetic Algorithms (GA) and ensemble
learning [112]. On the other hand, classification predicts categorical labels (unordered,
discrete). Classification forms an analysis that identifies a model describing the data into
distinguishable classes or concepts. The models are built on targeted attributes fitted to the
value of predictor attributes. Data classification aims to classify data into distinct predefined
classes, providing the description categorization and generalization of a given database [82].
It includes algorithms such as Artificial Neural Networks (ANN), Support Vector Machines
(SVM), K-Nearest Neighbor (KNN), Decision-Trees (DT), Bayesian Network (BN) and
ensemble models, i.e., random forest . [113]

2.2.4 Confirmatory analysis

Confirmatory analysis provides answers to the questions of model accuracy estimation; “what
are appropriate measures of a model’s goodness?” and, if there are multiple models to choose
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from, “how to selection the best model?” from them. These inquiries relate to method
validation, and model selection respectively. This phase embottles the two earlier pre-mining
and mining phases and constitutes the keystone of this iterative process. It defines the
method around which the mining will be performed and consequently arises as a founding
phase of the analytical approach. Confirmatory analysis in DM echoes the statistical process
of evidence evaluation from significance, inference, and confidence tests; it is the phase where
findings and arguments are put to trial. This phase is usually implicitly included in the
earlier mining step and explicitly framing such a key step of the mining process is becoming
imperative to approach more interpretable mining analytics. The confirmatory analysis step
ergo includes validation method and model selection.

Validation Method

Determining what decides the goodness of a mining’s process and how to assess it is
by all means what the validation method deals with. The what serves to quantify the
evaluated characteristics, commonly employing performance metrics. These characteristics
can cover speed, robustness, scalability, interpretability, and mining-dependent validity
indicators, e.g., purity, similarity index, or accuracy [2]. The how works towards obtaining
representative evaluated characteristics and assures reliable results are obtained. Common
methods employed for model assessment contain cross-validation, bootstrap, sensitivity
analysis, and hyper-parameter tuning. Defining how a mining model is validated and under
what criteria is the fundamental foundation of any mining process.

Algorithm Selection

With evaluation characteristics, metrics, and validation method defined and undertook, model
and associated parameters are selected from multi- or single-criteria assessments. Most DM
work evaluate model quality from one criterion at a time such as accuracy or interestingness
with a single-criterion assessment [114]. Some works have proposed multi-criteria evaluation
methods to combine multiple measures in their model selection. The review of Aruldoss et
al. cover a few of them, namely fuzzy and non-fuzzy analytics hierarchy process, TOPSIS,
grey theory, data envelopment analysis, weigthed sum models [115]. Panapakidis and
Christoforidis have notably developed a multi-criteria decision method for optimal selection
of clustering algorithms applied to load profiling applications [116].

2.2.5 Post-mining

Post-Mining intends on bridging practical applications with mined discovered knowledge.
This step requires domain expertise for knowledge selection and interpretation which can
become particularly time-consuming [24], [76]. Knowledge selection can refer to varying
application-dependent processes, e.g., characterizing identified load profiles from clusters
[117], [118], or selecting relevant rules for interpretation amongst massive ARM outputs [25].
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Typical end-use applications of building data mining englobe building energy load prediction,
predictive maintenance, fault detection, and diagnosis, building performance analysis, and
energy management optimization.

2.3 Implementation
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Figure 2.5: Diagram of three-dimensional cube space SAX pattern mining steps.

We implement the given method on an established automated pattern filtering application
for building performance analysis proposed by Miller et. al, namely DayFilter [76]. Using
time series Symbolic Aggregate approXimation (SAX) daily profiles are first segmented
into W equal sized segments, piece-wise approximated across each of these segments and
finally transformed to alphabetic characters according to a chosen alphabet size A, creating
breakpoints of equiprobable regions from Gaussian distribution. For example, fixing W=4
and A=3 could produce the sequence ‘abca’ where each alphabet character would correspond
respectively to a ‘low-medium-high-low’ segment values. SAX transformation results in
reduced representations of daily profiles allowing computationally efficient differentiation
of daily motifs from discords. The method steps are visually presented under Fig. 2.5,
where the arrows in the diagram designate the sequence execution flow from steps 1 to 6.
The iterative cube space OLAM process is repeated within steps 3 to 6, where each cuboid
selection orients the analysis to either prevalent top-down, bottom-up or temporal drill-in
approaches. The complete code implementation of the reported study can be found under
an open github repository2, for more interpretable as well as transparent knowledge transfer.

We use the open data set from the Building Data Genome project 2 (BDG2) [20]. This open
set was chosen to allow reproducibility of the given analytics while illustrating how large
open-source reference sets can be beneficial for DM analytics benchmarking. The BDG2

2https://github.com/JulienLeprince/multidimensional-building-data-cube-pattern-identification

https://github.com/JulienLeprince/multidimensional-building-data-cube-pattern-identification
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includes 3,053 energy meters from 1,636 non-residential buildings located in Europe and,
principally, North America. The set covers two full years (2016-2017) at an hourly resolution
with multi-meter building measurements as well as weather and building meta-data.

We consider a simple 3D data cube regrouping dimensions of time, site, attribute, recall
Fig. 2.4, to illustrate the given pattern identification. The attribute dimension encapsulates
weather and building meter-data combined to allow a simplified space cube mapping where
its 2D lattice echoes typical study frames of inter- and intra-building analytics. The inter-
building analytical frame, i.e. A=time, site cuboid, is typically relevant for building stock
diagnosis or benchmarking given a fix attribute, while the intra-building frame, i.e. B=time,
attribute cuboid, serves for within-site diagnosis for the selected building across time. The
rather unfamiliar C cuboid regrouping site, attribute dimensions, allows diurnal drill-in
exploration of cross-building/attributes combined information from a certain time slice of
interest. To grasp the complexity endowed with high dimensionality while keeping the use
case relatively simple, we select temporal attributes of electricity, gas, hot water and chilled
water of site meter energy consumptions and pair them with external condition attributes of
air temperature and sea level pressure. Meter data contained approximately 4.74%, 6.20%
and 6.94% of missing values for electricity, hot and chilled water respectively with maximum
lasting periods ranging between 0.25 and 1.5 days, lower and upper quantiles for electricity
respectively. First, the Hampel filter, an outlier robust rolling window method, was applied to
detect point-wise outliers with a window size of 6 time-steps (hours) and a standard-deviation
threshold of 3 [119]. A moving average was then used to fill in missing data points for
consecutive gaps smaller than 4 hours. Greater gaps were averaged from identical time
intervals and days of the week using sections of 2 weeks. The dimension-dependent EDA
of the building stock meta-, weather, and meter-data can be found under the publication’s
GitHub repository [20] and will thus not be repeated here.

The 2D lattice is then selected for cube-space exploration as it encompasses typical study
frames while paving the way to the dimensionally more complex 3D base cuboid. The
following mining steps treat the OLAM iterative process of data selection, transformation,
clustering, validation and knowledge interpretation, over the selected 2D lattice of the cube.
The time series are first normalized through a z-scale transform to obtain an approximate
mean of 0 with standard deviations approaching 1 [120]. Echoing the work of Miller et al.
[76] we do not normalize the series based on individual sub-sequences and rather take the
full temporal scope of the time series into consideration. This allows us to discover patterns
leveraging both the magnitude and shape of the original profiles revealing the seasonality
within the series. SAX transformation then serves as a blended data dimensionality reduction,
aggregation and smoothing technic. It is performed over the time series considering segments
W=4 and alphabet size A=3. This selection of SAX parameters is driven by the desired
signal granularity and coarseness of the reduced time series approximation. More detailed
patterns could be generated with increasing segment and alphabet size, however, ensuing
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the findings of Miller et al. these parameters have been found to provide the best balance
between the number of patterns generated and detailed resolution required to filter discords
in a diurnal frame context. Heuristically, we set an absolute count threshold at 10 to
filter motifs from discords, to which succeeds Euclidean distance-based K-means clustering,
further reducing the pattern groups. We validate the optimal number of clusters through an
elbow method assessment using two similarity indexes, i.e. within-cluster sum of squares
(WCSS) and silhouette score. Finally, we present results using expressive visualization
tools, allowing human result inspection for efficient and interpretable knowledge extraction.
Diurnal heatmaps were retained as a particularly impacting visualization plot allowing
3-dimensional inspections within a 2D domain. The below sub-sections present the cuboid-
specific analytical particularities and diagnostic focus of the evoked pre-mining, mining,
confirmatory analysis and post-mining steps, i.e., building benchmarking, in-site view, and
temporal drill-in analysis, with a closing multi-cube-space visualization interpretation step.

2.3.1 Building benchmarking

Figure 2.6: Heatmap of electric meter consumption SAX counts accross building stock.

A high-level top-down building stock diagnosis is first undertaken to gather insights from
building energy consumption profile ranges and orient the subsequent lattice exploration.
The time, site dimensions are sliced from the building data cube, and the site electric
meter consumption attribute is chosen as both a conventional and representative energy
resource consumption metric. Time series normalization is performed per site and across
time, capturing each buildings’ energy consumption profile shape and seasonal range. SAX
sequences are obtained from the z-scaled time series and discords are filtered out from the
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Figure 2.7: Cluster similarity index assessment of cross-building stock from electric-meter
SAX motif counts.

settled count threshold. Fig. 2.6 presents the motif counts obtained across the stock, from
which the most frequently observed motif count is aaaa, a constant low to null consumption
steady-state sequence accounting for 12.58% of overall building stock SAX sequence counts.

To group buildings into similarly operating clusters we leverage the dimensionality reduction
brought by the SAX transformation and alleviate the computational burden that would follow
undertaking clustering on the original daily profiles. We consequently perform clustering on
the motif sequence cumulated counts across the building pool. This allows to group buildings
together based on their motifs distribution across the entire time horizon considered, while
being very computationally light. A limitation of considering solely motif counts in the
clustering process is however that the similarity between sequences is not accounted for, e.g.,
aaba will be considered as different from ccbc as aaaa, although it is naturally much closer
to the later. While the authors are conscious of this limitation, it is beyond the scope of this
work to develop a clustering method accounting for SAX sequences similarities. From the
confirmatory analysis results presented in Fig. 2.7, we fix the optimal number of clusters as
6; a value showing a peak in silhouette score, indicating a slightly higher cluster cohesions,
while displaying a sufficiently lowered WCSS and acceptably large number of clusters. The
clustering results present the distribution of motifs across the obtained clusters under Fig.
2.8. Cluster 2 stands out as being composed solely of flat daily profiles from either aaaa,
bbbb or cccc sequences. These electrical yearly consumption typically point to constant
daily rule-based operationally controlled buildings, here mainly present in education, office,
assembly and public type buildings, as Figure 2.9 shows. Clusters 3 and 5 behave quite
similarly, with predominant flat profiles and low numbers of different sequences across the
time horizon. Cluster 4 presents a variety of patterns yet with a clear predominant abcc
sequence across the temporal horizon. Clusters 0 and 1 both show a diversity of profiles,
although cluster 1 presents less variability in SAX counts, a likely consequence of it being
less populated than cluster 0, the most populated of all 6 groups, collecting close to 400
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Figure 2.8: Building stock electric-meter SAX motifs distribution across clusters. Bar plots
represent the sequence count median value while the error bars indicate the lower and upper
quantiles.

Figure 2.9: Building type distribution across identified clusters.
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buildings. We turn our attention to cluster 0, the most populated cluster of the six, also
presenting an interesting variety of motifs across both evaluated years. In the following
sub-section, we explore a within-building analytical frame and switch to cuboid B for an
in-site, bottom-up, analytical approach.

2.3.2 In-site view

This analytical frame follows more closely the presented DayFilter process of Miller et al., yet
extends it with a multi-attribute temporal exploration through the time, attribute cuboid,
further bridging the gap between top-down and bottom-up approaches. We explore buildings
grouped within the afore-determined cluster 0, thus substantially reducing the initially
considered cube-space, and iteratively slice the reduced cube by selecting individual buildings
on which to perform automated pattern filtering. Time series are scaled within each attribute
dimensional-frame, transformed to SAX sequences and filtered for motif identification using
the same formerly presented process. Fig. 2.10 presents the sax-grouped daily profiles of

Figure 2.10: SAX sequences across Fow_education_Melinda attributes illustrated by daily
heatmaps normalized per attribute. SAX motifs are explicitly referenced while discords are
plotted but not tagged.

building Fow_education_Melinda in the form of a cascade heatmap, where motif sequences
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Figure 2.11: Cluster similarity index assessment of cross-attributes from
Fow_education_Melinda building diurnal motifs. Scatter points illustrate median val-
ues of the evaluated similarity index across attributes, while the error bars cover the upper
and lower quantiles, representing value variance.

are explicitly tagged. This allows impactful visual representation of the profiles, as well as
their per-sequence group size, in a cross attribute context.

Links between distributions of patterns from one dimensional attribute to the other can thus
be visually explored, e.g. two largest presented sequences within air temperature across the
time horizon are cccc and aaaa (can also include aaba), referring quite straightforwardly to
typical winter and summer periods, while chilled water possess two similar principal groups,
i.e., cccc and aaaa, hinting to these identical seasonal periods. While this visualization display
is powerful, the complexity endowed from exponentially increasing association possibilities
between cross-attribute motifs can be limiting for human inspection. The dimensionality
reduction provided by the ensuing clustering step takes up this problem, in an attribute
dimensional-frame. After visual inspection of the confirmatory analysis’ similarity indexes
presented in Figure 2.11, we fix the cluster number across attributes to be 4. This value
shows low WCSS range and norm while serving as an acceptable trade-off between a
reduced number of pattern groups and sufficiently high group variety for detailed attribute
pattern characterization. The clustering results depicted under Figure 2.12 exhibit close
to homogeneous cluster sizes for air temperature alluding to the four seasons of temperate
climate zones. Hot and chilled water meter patterns seem to behave in a mirrored fashion
with consumption peaks and drops located in either mornings and evenings or evenings
and mornings respectively. The electricity meter group size repartition seems closer to hot
water consumption for this education building which both seems to testify on the building’s
operational activity; with three clusters presenting strong daily trends and one close to null
consumption, hinting at weekend and holiday-type profiles. As we inspect the temporal
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Figure 2.12: Dirunal pattern clusters across Fow_education_Melinda attributes illustrated
by daily heatmaps normalized per attribute.

depth of the cuboid and how attribute patterns are cross-distributed, our final cube-space
exploration step approaches temporal drill-in analysis, where the complexity of multi-site,
multi-attribute dimensions in a set time-space frame is examined.

2.3.3 Temporal drill-in analysis

We investigate the site, attribute dimensions of cuboid C from iterative daily slices of the
building data cube. Supported by the temporal cross-attribute exploration of the former
cuboid B, we target the most represented cluster group within the temporal dimension, i.e.
a typical day within the summer season, below illustrated by the selection of the day 2016-
06-07. Selected daily profiles are z-scaled per attribute, across the building stock then SAX
transformed, resulting in a singular daily sequence per cuboid dimensions. Given the lack of
temporal depth of the sequences, notions of patterns and discords become meaningless along
the time dimension. We therefore divert these notions to the site dimension, where buildings
would be examined across their attributes as either behaving similarly to other buildings
or not, i.e. motifs and discords respectively, given a certain threshold. We enumerate
buildings displaying similar cross-attribute sequences and consider motifs for groups larger
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Figure 2.13: Grouped building motifs SAX sequences across building stock and attributes
on 2016-06-07. Group member counts are presented on the right-hand side by a bar chart,
and daily aggregate attribute-specific consumptions are illustrated as heatmaps, echoing the
classic OLAP approach..

than 5 members. Figure 2.13 presents aggregated daily attribute values annotated with SAX
sequences and building group motifs member counts. From this cross-sectional view, it can
be seen that the three most important aggregates possess only electrical meter data with
SAX sequences of the three constant aaaa, bbbb and cccc profiles. Discord buildings are
filtered out following which clustering can be performed from a weighted average of the daily
multi-attribute time series.

Weights were designed to favor resource energy consumption data from weather conditions.
In particular, electric meter was weighted as the preponderant attribute accounting for 70% of
the time series weighted average, as reported under Table 2.1. The reduced one-dimensional
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Figure 2.14: Cluster similarity index assessement of cross-building motifs stock from
weighted averaged one-dimensional time-series from 2016-06-07.

Table 2.1: Attribute averaging weights.
Electricity Hot water Chilled water Air temperature Sea level pressure

0.7 0.1 0.1 0.05 0.05

daily-series are then clustered across sites. Selection of the optimal number of cluster is
performed from visual inspection of the confirmatory analysis results presented under Figure
2.14. We select this number to be 4, given an over average silhouette score of 0.6 and a
flattening WCSS trend. Clustering results are delineated under Figure 2.15 in the form
of quantile-profile heatmaps for each attribute across the four obtained building clusters,
granting a cross-site, attribute dimensional inspection of patterns. The larger building cluster
aggregates a total of 813 buildings together while the smaller one only 19. Electrical patterns
across the stock seem to follow overall comparable trends, with consumption increases and
drops ranging between 6-10am and 7-9pm for their lower and upper quantiles respectively.
This comes as a surprising read given the prevalence of the constant SAX sequences previously
mentioned and could appear as a notable pitfall of the quantile heatmap visualizations,
which solely show hourly quantiles across the cluster instead of original daily profiles. Quite
similarly to the previously observed finding within cuboid B, chilled water appears to be
positively correlated to outside air temperature across the building stock, with similar
daily-temporal tendencies, i.e., lower morning values increasing from 10am, peaking around
2pm and decreasing in the evening with ranges from 6 to 9pm. Hot water, for the two
smaller clusters, behaves in reverse to chilled water, with a prominent daily peak in the early
morning, suggesting bathroom hot water consumption, while the larger N=813 building
group possess a very flat to null consumption over the day, with faint lower and higher
demands in the morning and evening respectively. Finally, the temperatures patterns across
this selected day are quite typical of warm summer seasons with steep morning increases
and smoother afternoon decays.
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Figure 2.15: Motif-building clusters across attributes from day 2016-06-07 illustrated by
quantile heatmaps normalized per attribute. Top and lower horizontal heatmap lines report
the upper 75% and lower 25% quantiles per hour respectively, with a range of 10 gradually
decreasing quantiles in between.

2.3.4 Towards multi-cube-space visualization

From the examined 2-dimensional lattice of the cube, we reach for a multi-dimensional
visual exploration of the highly-dimensional 3D base-cuboid. Daily heatmaps have proven to
be powerful visualization tools for 3-dimensional plots, yet the complexity endowed from
base-cube visualization needs to be cut-down. To this end we propose combining visual
insights from the three afore-examined cuboids to a recomposed, flattened, dimensional
visualization of the cube; as if one were studying the cube’s pattern rather than the assembled
3-dimensional structure. Figure 2.16 presents this multi-cube space visualization, where
cuboid A, grouping site, time dimensions, is presented on the lower left corner, cuboid B
with attribute, time in the top right corner and cuboid C, gathering site, attribute links
both visuals from aligned dimensional sections. Additional rehashed insights from cuboids
including time dimensions were supplemented with aggregated temporal outlooks, here
illustrated with barplots resuming the SAX sequences across the temporal study frame. This
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Figure 2.16: Data cube base-cuboid pattern visualization from 2-dimensional cuboid lattice
insights, i.e., {site, time} bottom left, {attribute, time} top right and {site, attribute} bottom
right..

multi-dimensional view allows distinct knowledge transfer and analytical examination from
one dimensional and diagnostic-specific study frame to the next. For instance, while the
electricity SAX sequence distribution of cluster 0 within cuboid A should echo that of cuboid B,
a building-element subset of cluster 0, the sequence distributions presented are quite different
from one another. This stems from the differences in pre-mining normalization frames,
where cuboid A scaled electricity consumption over the entire building stock, while cuboid B
considered a fixed site selected subset, consequently resulting in different alphabetical ranges
and breakpoints during the SAX transformation process. Yet similar heatmap tendencies
may be observed from one cuboid view to the next, i.e., both possess clear summer and winter
typical consumption trends with a flat weekend-like aaaa consumption profile. This highlights
the importance of per cuboid diagnostic focus; as data analytic choices might be relevantly
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made for isolated cuboids, mining result comparisons from one cube sub-space to the next
ought to be treated cautiously, as a result of different cuboid-specific mining steps. For a
common and global multi-dimensional analytical diagnostic, it becomes necessary to follow
identical mining tasks at every step of the process. For this work, the importance of framing
insight-specific steps was chosen to further highlight the significant role of dimensional-frame
determination within the process of cube space mining.

2.4 Discussion

From the definition of a unified multidimensional data mining framework tailored to building
analytics, this work intends on bridging the gap between the complexity endowed with big
data’s high-volume, high-variety and progress towards more interpretable and reproducible
research for building analysts. The objective is to link applications to specific diagnostic
approaches from dimensionally-reduced cube-space regions. In this context, results of the
proposed mining framework implementation are here discussed while considering other
possible applications as well as limitations encountered.

2.4.1 Insight-driven mining

On the road towards more interpretable building analytics, definition of the cube dimensional
space linked to application-driven insights per cuboid sub-regions has demonstrated great
value. From the exploration of the 2D cube lattice, we have covered the established
preeminent analytical methods, namely bottom-up site, time and top-down attribute, time
approaches, all the while extending them with a temporal drill-in site, attribute analysis.
While an identical descriptive pattern filtering mining technique was applied over the lattice,
we meet each cuboid with a different analytical angle and diagnostic-objective. It then
becomes interestingly relevant to contemplate the more complex analytics that would arise
approaching the last, most dimensionally-dense, base-cuboid site, attribute, time region
of the cube. Given the previously defined analytical methods, one could imagine tackling
this cuboid from three subsequent angles, i.e., including either multiple attributes, sites
or temporal-units of interest within the existing analytical frames of cuboids A, B and C
respectively. As a conceptual illustration, approaching the base-cube from cuboid A, would
involve a classical top-down analytical approach of building benchmarking extended through
multi-attribute considerations. While descending from cuboid B, through the antagonist
bottom-up approach, would imply in-site diagnostic methods extended to other buildings,
e.g., testing a methods’ scalability. The temporal drill-in analytical method of cuboid C,
lastly, would examine additional days within its frame, adjusting time-specific insights
to a larger temporal frame of interest. Additionally, while our implementation depicts a
descriptive mining technic, predictive applications share equal benefits from cube space
conception. Indeed, how to effectively evaluate and select large number of feature, for
example, fit naturally within OLAM supported by explicit cube dimensional-space mapping.
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Assessing contributions of feature combinations to the predictive learning performance over
the cube-space, allows systemic optimal feature selection in the confirmatory analysis phase.
Machine leaning workflows could incorporate such techniques as an a priori mining analysis
to improve model performance. Employing pre-trained models within cuboids are another
example of how cube space-driven mining can be practiced in predictive applications [108].
Investigation of this application, while outside the scope of this study, reveals a promising
future direction for this framework. It subsequently becomes clear that the mining process
is fully application- as well as insight-driven. Applications such as energy performance
benchmarking and model calibration compel to top-down approaches, while automated fault
detection and diagnosis, energy saving management, or rule-base knowledge discovery entail
classical bottom-up approaches. Likewise, temporal feature engineering can necessitate
temporal drill-in methods for, per time-slice, cross-attribute, -building insights. These
connect reduced cube-space regions of interest to undertaken applications.

2.4.2 Visualizing knowledge

The importance of knowledge visualization for effective and impactful result inspection is well
established. However, when it comes to high-dimensions it becomes particularly complex, yet
crucial to appropriately represent and link insights together. Interactive OLAP visualization
tools have already been developed and widely used for data cube exploration, analysis, and
pattern extractions in the financial field [121], but, to the best of the authors knowledge, close
to none in the building sector. The proposed 3 dimensional data cube-pattern visualization
paves the way to the development of OLAM interactive visualization tools, where one could
imagine iteratively scrolling through the fixed dimensional items of a cuboid. The building
analyst could subsequently employ navigational tools such as drilldown or rollup, through
the dimensional hierarchical relationships, e.g. the day slice width considered in cuboid C
could be rolled-up to weekly slices or drilled-down to quarter days for SAX sequence analysis.

2.4.3 Limitations

A notable limitation encountered from cube space mining was the iterative need to reformat
the data as well as adapting visualization tools to every studied dimensional frame, which are
very time-consuming tasks within the data mining process. In then comes into consideration
that developing interactive visual tools tailored to OLAM analytics could provide interesting
solutions, yet not without challenging limitations. Computational burden resulting from the
mining process may render the interactivity of the visual exploration too slow to fully profit
from the tool itself. Nonetheless, a priori computation of the visual cube from a set of fixed
parameters could be envisioned as a means to initially coarsely characterize the cube and
tackle exploratory responsiveness issues.
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2.5 Summary

With this work, we have delineated a multi-dimensional, generic data mining framework
tailored to big building data, effectively framing which analytical techniques to follow
in a step-wise procedure. We appeal to benchmarking methods and apply the proposed
DM framework to an automated pattern filtering application using a large building open
data set for reproducible, comparable, and empirically validated results. Furthermore,
we delineate the existing underlying link between building data dimensional space and
building management applications. This pushes further down the existing barriers separating
building professionals from effective building data dimensional-space targeting given defined
applications and insights of interest. Future research challenges could entail in-depth cube
space exploration for comprehensive building management application studies such as multi-
automated fault diagnosis and detection. Another interesting research focus emanating from
this work could undertake the determination of how dimensional analytical window frames,
i.e. data granularities, window frame, and horizon, influence building data analytics and
their outcome.
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Chapter overview

• Building thermal model identification method
• Automated method extension suitable for building stock scalability
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– Open implementation - /fiftyshadesofgrey
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Figure 3.1: Overview of the model identification method

The content of this chapter is building upon material published in [122], [123].

"All models are wrong, but some are useful."
George E. P. Box

3.1 Preface

As briefly introduced in the Introduction, the building sector has embraced data as the
new fuel to harvest, at scale, the power of building performance modeling. This grants
valuable insights into the dynamics driving the energy demand of buildings. The building
sector has investigated multiple strategies over the last decade to reduce, adapt and better
anticipate its energy load on the power network. Well-established techniques such as building
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retrofitting [13], demand side management [16], energy forecasting [15], and building to grid
energy management schemes emerging from model predictive control [17] or reinforcement
learning [124], have, and still are, at the center of a considerable amount of attention
from both research and industry. All, however, require knowledge of the building thermal
dynamics in order to effectively perform, consequently placing our ability to effectively
identify building thermal behavior(s) as the backbone of building applications. Yet, despite
its momentum, building modeling is still faced with the fundamental challenge of scaling
across the heterogeneous building stock, and relies primarily on assumptions rather than
field performance data.

3.1.1 Modeling methods

Main existing modeling methods can be divided in three preeminent categories: physics-based
methods (white-box), purely data-driven (black-box) and hybrid approaches (grey-box) [125].
The first, physics and knowledge-based models, solves mathematical equations based on
physical laws to characterize the energy behavior of buildings. They require exhaustive
information on the building and are usually mathematically complex. Yet, they can yield
high accuracies if calibrated correctly and are often employed in building performance
simulation softwares, e.g., Energy-Plus [126], or using powerful modeling languages, e.g.,
Modelica [127]. White-box modeling, however, is time-consuming with performances largely
depending on accurate energy model calibration consequently making it difficult to scale up.
It requires the definition and update of many input parameters along the building’s lifetime
[128], a process reliant on expert analysis that needs repetition for every considered building.
Moreover, their copious amount of parameters makes white-box models non-structurally
identifiable, which often becomes problematic when an unknown parameter needs estimating.
The second category constitutes data-driven models, often referred to as black-box models.
They consist of statistical regressions and machine learning algorithms typically fitted on
the input and output time-series data of the system. Its ’black-box’ analogy stresses the
relationship between model input and output as being hardly transposable to physics-based
analysis, making it challenging to produce interpretable models [125]. While significant
developments in this field might alleviate the persisting barriers of domain knowledge
inclusion or interpretability, progress is still desperately needed for trustworthy and scalable
applications within the building sector. Lastly, machine learning approaches require large
amounts of quality data to guarantee satisfying accuracies of models from training. This
implies data consistency, assessing coherent matching of various attributes, data completeness
(no missing values) and accuracy (absence of outliers) [129]. Finally, grey-box models work
as a hybrid approach between the aforementioned data-driven and physics-based models.
This approach profits from dominant physical properties of the system to build the model
structure while employing measurements to fix the model parameters. A common approach
to modeling building heat dynamics adopts lumped resistance-capacity models, i.e. RC
models, resulting in an electric circuit representation of the thermal conditions of the building
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[130]. In this way, grey-box approaches capitalize on the inclusion of physical knowledge in
their models. This results in smaller amounts of required experimental data to train the
model compared to black-box, thus making grey-box models better at generalization while
staying interpretable [131].

3.1.2 Challenges

A common problem with model identification lies in finding a model in agreement with both
the physical reality as well as the level of information embedded in the data, meaning the
model should avoid both under-fitting and over-fitting the measurements. To tackle this,
Bacher and Madsen [132] suggested an extensive stochastic model identification procedure
to identify building heat dynamics from numerous RC models of different orders. Models
were evaluated based on likelihood ratio tests and selection procedure was carried out
through significance improvement evaluation from simpler to more complex models, to avoid
over-fits in the model selection phase. It was argued by Yu et. al. [128] that first- and
(simple) second-order models are sufficient to capture the thermal dynamics of buildings to
fend off the aforementioned problem. The research foundation for this claim is, however,
built upon findings emerging either from simulated data sets or fairly simple and isolated
single-building measurements. Our intuition would argue that to determine the dynamics of
real-world occupied buildings from measurements, larger model orders are not only relevant
but necessary to encapsulate the, often different, thermal inertiae of buildings and bring
forth most-needed comprehensive thermal behavioral insights. Assuming low-order models
without the consideration of higher-order ones is, within our field, a judgmental bias that
desperately needs tackling. As of today, there is very little work studying building model
identification from large and occupied building stocks. Hossain et. al. [133] notably evaluated
the performance of Bayesian neural networks for nRnC grey-box thermal model identification
from 8’834 Canadian homes with 3 months worth of data. Their study demonstrated the
value brought by transfer learning for smaller available building data sets as well as the
overall better performance of their Bayesian approach to other black-box models based on
root-mean-squared error-metric. Yet, R and C parameters of the fitted models could not be
uniquely identified. This, prevents the physical interpretation of parameters in the model
evaluation phase, a step most studies do not comment on, along with the identifiability of
their assumed model structures as mentioned by Deconinck and Roels [134].

3.1.3 Motivation

This chapter proposes to put forth an automated model selection and evaluation procedure
for stochastic model identification of building heat dynamics, providing a much needed
scalable method tailored to the existing heterogeneous residential building stock. Leveraging
the procedure proposed by Bacher and Madsen [132], RC models of rising complexity are
evaluated over 247 Dutch residential buildings. Identified thermal parameters are then
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examined and employed to support building envelope performance analysis; providing large-
scale, non-intrusive insulation insights into the existing building stock. Important application
perspectives to the approach are finally provided illustrating the impact of building model
identification from measurements at scale.

3.2 Methodology

This section first describes the formulation of stochastic differential equations for building
heat dynamics modeling. Evaluated RC models are then detailed followed by the automated
model selection and evaluation procedure.

3.2.1 Grey-box models of a dynamic system

Using prior physical knowledge as well as information embedded in data, grey-box models
are established by sets of partially observed first-order stochastic differential equations,
also referred to as stochastic linear state-space models in continuous-discrete time. These
equations describe lumped RC models of the heat dynamics of the building. Typically
building thermal models consider the heat exchanges between inside and outside conditions,
i.e., temperature differences, solar radiation gains but can also include long wave radiations,
as well as convection and infiltration driven by wind-speed if available data permits it
[135]. The building envelope consequently embodies the most crucial component of the
model, regulating heat transfers between these two environments. Further, diverse indoor
components such as space-heating inertia, measurement errors present in the input variables
and additional building zones are modelled using additional temperature state points.

We refer to the work of Bacher and Madsen [132] for the developed models as well as their
evaluation and selection procedure. A typical first-order stochastic differential equation can
be expressed as

dTi = 1
RiaCi

(Ta − Ti)dt + 1
Ci

Φhdt + 1
Ci

AwΦsdt + σidωi , (3.1)

where T, R and C refer to temperature, resistance and capacitor respectively, while Φ is
an energy flux and Aw the window area. The subscript i points to the inside temperature,
while a refers to the ambient temperature, h to the heater and s to solar. ω describes a
standard Wiener process, and σ stands for the incremental variances of the Wiener process
which encapsulate model approximations and non-recognized or modeled phenomena [136].

This physical part of the model is coupled to a data-driven one, linking the data observations
to the model for parameter estimation. The discrete time measurement equation is

Yt = Ti,t + et , (3.2)

where t is the measurement point in time, Yt the measured interior temperature and et is the



Chapter 3. Scalable building heat dynamics identification 47

measurement error [136], assumed to be Gaussian white noise as the fitted model accurately
captures the dynamics of the system. With observations represented by

YN = [YN , YN−1, ..., Y1, Y0], (3.3)

the maximum likelihood estimates of the grey-box model parameters can be identified from
the joint probability density [137]

L(θ; YN ) =
(

N∏
k=1

p(Yk|Yk−1, θ)
)

p(Y0, θ), (3.4)

where p(Yk|Yk−1, θ) represents the conditional density designating the probability of ob-
serving Yk given the preceding observations and the parameters θ, and where p(Y0, θ) is a
parameterization of the starting conditions. This is done by introducing an expected value
of the initial states and the associated covariance matrix. Maximum likelihood estimates of
the parameters can then be found from

θ̂ = argm
θ

ax{L(θ; YN )}, (3.5)

which can be calculated using an optimization algorithm over a Kalman filter. We refer to
the work of Kristensen et al. [137] for a detailed description of the approach.

Applied models

This study considers grey-box models ranging from the simple first order Ti model, explicitly
described in Eq. (3.1), where the inside temperature state-point Ti and its RC parameters
Ria and Ci are solely treated, to 5th order ones, where the addition of sensor Ts, medium Tm,
heater Th and building envelope Te state points along with their respective RC parameters
each add a variety of model extensions to choose from. Additionally, the building envelope
component proposes additional parameter extensions modeling direct inside to outside heat
exchanges and facade solar gains, which are here considered as a block extension AeRia.

The full model TiTmTeThTsAeRia is visually displayed in Fig. 3.2 and the set of stochastic
differential equations describing its heat flows in continuous time are [132]

Sensor: dTs = 1
RisCs

(Ti − Ts)dt + σsdωs , (3.6)

Interior: dTi = 1
RisCi

(Ts − Ti)dt + 1
RimCi

(Tm − Ti)dt

+ 1
RihCi

(Th − Ti)dt + 1
RieCi

(Te − Ti)dt

+ 1
RiaCi

(Ta − Ti)dt︸ ︷︷ ︸
Ria component

+ 1
Ci

AwΦsdt + σidωi , (3.7)
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Medium: dTm = 1
RimCm

(Ti − Tm)dt + σmdωm , (3.8)

Heater: dTh = 1
RihCh

(Ti − Th)dt + 1
Ch

Φhdt + σhdωh , (3.9)

Envelope: dTe = 1
RieCe

(Ti − Te)dt + 1
ReaCe

(Ta − Te)dt

+ 1
Ce

AeΦsdt︸ ︷︷ ︸
Ae component

+σedωe , (3.10)

where the subscripts s, m, and e point to sensor, medium and envelope components respec-
tively. The discrete time measurement equation is

Yt = Ts,t + et , (3.11)

as observed temperature is encumbered with measurement error. We refer to an applied
model as a combination of its corresponding state-point(s) Tx component and block model
component extension AeRia, highlighted in the under-brackets of Eqs. (3.7) and (3.10). For
example, the model TiTeTh comprises the first order model Ti with envelope Te and heater
Th component extensions, but without the inclusion of the AeRia block extension of the
envelope. For a detailed description of the models, the reader is suggested to refer to the
work of Bacher and Madsen [132].
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Figure 3.2: The full model TiTmTeThTsAeRia with all considered model extension parts
presented and individually indicated. The model consequently depicts all parts included in
any of the other applied models. Reprinted from the work of Bacher and Madsen [132] with
the authors approval.

It should be noted that while our approach proposes to apply the RC models put forward
by Ref. [132], our proposed automated model selection and evaluation procedure, describe
in the following subsection, can be applied to any set of increasing complexity of grey-box
models.
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Figure 3.3: Forward model selection scheme

3.2.2 Automated model selection and evaluation procedure

The scaling up of grey-box approaches for automated model selection can be challenging.
Initial values of parameters are usually tuned to the case study from expert inspection while
model extensions are iteratively built and evaluated. Here we present the proposed model
selection and evaluation procedure.

Model selection

The model selection procedure employs a likelihood ratio test to statistically determine
whether a more complex model performs significantly better, or not, compared to a simpler,
sub-model. Likelihood ratio tests are particularly effective at comparing two competing
statistical models with no unknown parameters and have been demonstrated by the Neyman-
Pearson lemma to have the highest statistical power amongst all other contestants [138].
This implies that the test is able to make the most efficient use of the available data. A
forward selection procedure is proposed beginning with the simplest feasible model, Ti, and
extending it iteratively with the component presenting the most significant improvement.
The procedure terminates when no model extension yields a p-value below the pre-specified
limit, commonly fixed at 5%. Possible candidates for model improvement are selected from
a set of predefined extensions, resulting from the combination possibilities of the different
considered model components, i.e., Te, Th, Tm, Ts, AeRia. Figure 3.3 presents the overall
model selection scheme. Possible model combinations are mapped and linked, visually
exposing the different existing paths of the forward selection procedure. The process has
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been adapted from [132] to assure more coherent ranges of evaluated parameters within each
iteration phase. We refer to this model selection method as fms1.

Capturing occupant-driven heat gains - An additional degree of freedom to the model
selection phase was later included to capture aggregated heat gains from hot water usage.
Indeed diverse dynamics linked to hot-water demanding appliances, e.g., kitchen or laundry,
were suspected of having a significant influence on the thermal dynamics of these buildings.
In this model selection variation, the first-order model Ti is estimated under three competing
heat input signals:

1. the original central heating set-point temperature, comprising space heating demand,

2. the new hot-water set-point temperature, representing hot-water heat demands, and

3. the aggregated boiler set-point temperature, which englobes both space heating and
hot water heat demands.

The heat input signal producing the more likely model is then selected, following which the
forward model selection carries on. We refer to this model selection variant as fms2.

Model evaluation

Finally, we extend the existing model evaluation phase of [132] to render the process suitable
for automated deployment. This last step leverages the commonly employed qualitative
appreciation of model fits from cumulated periodograms of the residuals. A periodogram,
or sample spectrum, is obtained by Fourier transforming the autocovariance function of
a stationary process [139]. Typically, an appropriate model will produce residuals with
Gaussian white-noise properties, which in the frequency domain, denotes a theoretical
constant periodogram [139]. Observing whether obtained model residuals are located around
this straight line, e.g. within a surrounding confidence interval, consequently serves as an
appropriate indicator of a model’s quality.

By calculating the frequency differences between a selected model’s Cumulated Periodogram
(CP) and its confidence interval, we obtain boundary excess values which, in turn, can
be summed into a unique numerical indicator, i.e., the Cumulated Periodogram Boundary
Excess Sum (CPBES). This indicator characterizes the amount of auto-correlation present
in the considered input time-series, which implies white noise properties when close to zero.
CPBES consequently allows the differentiation of poor, suitable and good models resulting
from the previous forward selection procedure. To allow fair comparisons of CPBES between
times series of different lengths we normalize it by length and obtain the normalized CPBES
(nCPBES).

Quite concretely, the CP is calculated from the normalized sum of the Discrete Fourier
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Transform (DFT) of the time series

CP(k) = 1
K

k∑
j=1

∣∣∣∣DFT(xj)
∣∣∣∣2. (3.12)

Here x denotes the input time series, k the considered Fourier frequency of the periodogram,
and K is the last Fourier frequency of the domain, which corresponds to the times series
length, i.e. N , minus one. The periodogram confidence interval, or boundaries (B), are
obtained from the Kolmogorov-Smirnov test for distributions at a given probability (1 − α)
[139]. The obtained bounds are characterized from the slope and intersection coefficients

Bintersect =
√

2 · Kα ·
(

K − 1
2 − 1

)−1/2
, (3.13)

Bslope = 2T , (3.14)

where Kα is equal to 1.358 for confidence intervals of 95%, and T corresponds to the period, or
the frequency inverse, of the input time-series [140]. Finally the nCPBES can be determined
from:

CPBE(k) =

top boundary excess︷ ︸︸ ︷
max

(
0, CP(k) − Bslope · k − Bintersect

)
+ max

(
0, Bslope · k − Bintersect − CP(k)︸ ︷︷ ︸

bottom boundary excess

)
,

(3.15)

nCPBES = 1
K

K∑
k=1

CPBE(k)︸ ︷︷ ︸
CPBES

. (3.16)

Figure 3.4, illustrates how nCPBES is obtained from a given cumulated periodogram. It
should be noted than while nCPBES is suited for automated model selection as a unique
numerical indicator, its cumulated periodogram or derived boundary excess curve still present
valuable qualitative information, indicating the frequencies of the dynamics the model is not
capturing. These can be employed for in depth model analysis a posteriori to the automated
model selection process. For instance, the boundary excess curve of Fig. 3.4 presents two
lumps located around frequencies of 0.2 and 0.4 (2/h) which correspond to periods of 10 and
5 hours respectively. This allows the analyst to identify the frequencies of the dynamics still
present in the residuals which can later drive the design of model extensions or suggest the
need for additional measurements.
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Figure 3.4: Model residual cumulated periodogram transformed to normalized Cumulated
Periodogram Boundary Excess Sum (nCPBES) for automated model evaluation.

3.3 Implementation

Our study considers a total of 247 homes located in the Netherlands, a European region
under the Köppen climate classification index [141] Cfb which describes mild temperate,
fully humid, and warm summer regions. Anonymized measurements are collected from the
Toon smart thermostats proposed by the energy distributor Eneco. In the remainder of this
thesis, we refer to this case study as 2NECO. Measured data include inside temperature and
boiler (heater) set-point temperature, at granularities of 15-minute intervals. Few building
meta-data are made available by users as self-reported information such as building type,
floor surface, and family size.

Boiler set-point temperature can here be considered to act as the centralized space heating
input signal of buildings. Indeed, centralized heating systems of dwellings are commonly
operated by adjusting delivery temperatures, i.e., measured (boiler) set-point temperature,
while a pump maintains a constant pressure across the building’s pipelines. This setup implies
eventual non-homogeneous power outputs throughout radiators, should their combined valve
positions be readjusted, even with fixed boiler set-point temperatures. Commonly, though,
radiator valves are set to fix positions by building occupants, and house temperature is
adjusted directly from the thermostat. Such variations can therefore be considered negligible
and the boiler set-point a good indicator of space heating input signal. The input signal
information ϕh is included in the models with Φh = r·ϕh, where r is a scaling factor parameter
calibrated from maximum likelihood estimates to adjust the input signal information to the
space heating needs of the building.

Hourly weather data are collected from the publicly available Royal Netherlands Meteorolog-
ical Institute (KNMI) weather stations [142]. Stations are paired to each building thanks
to a geo-localization process using 4 (over the 6) ZIP code digits; an aggregation level that
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Figure 3.5: Distance distribution between building province and its nearest KNMI weather
station, showcasing both a boxplot (top) and histogram (bottom) for a more informed
distribution appreciation.

allows no anonymized user to be geographically isolated nor identified. Figure 3.5 shows
the distribution of distances between the building’s province and its nearest KNMI station.
Obtained distances are centered principally between 5 and 12 kilometers, while a few larger
distances can be found above 20 kilometers. While these measurements cannot encapsulate
local weather conditions particular to micro urban surroundings, they provide a sufficient
approximation of building outside conditions.

To capture the thermal dynamics of a building, we consider minimum measurement periods
of 2 months and limit the maximum times-series horizon to 4 months. We filter available
data to obtain the most recent continuous measurement period for each building resulting
in periods ranging from February 1st to the end of May 2021, which holds a notably cold
start of spring season at the beginning of April. Weather data are re-sampled to 15-minute
resolutions to fit thermostat measurements. While finer granularities, typically 1 or 5 minutes,
are better suited to capture the thermal dynamics of building systems, 15-minute resolutions
are sufficient to do so. Cumulative missing values larger than 2 hours are imputed while
smaller gaps are interpolated via a moving average using a window size of 8 hours. Table 3.1
summarizes the resulting data set characteristics.

Table 3.1: Data set characteristics

Input measurements Ti, Φh, Ta, Φs

Resolution 15 minutes
Period of measurement fms1 01.02.2021 - 31.05.2021

fms2 01.02.2021 - 30.11.2022
Input time series length 2 months ≤ input ≤ 4 months

Grey-box models are implemented using the computer software CTSM-R [143] developed
at the Technical University of Denmark. It produces maximum likelihood estimates of
model parameters thanks to an optimization algorithm performed over a Kalman filter. The
code developed for this study is made available under an open-access github repository,
i.e. https://github.com/JulienLeprince/fiftyshadesofgrey, to encourage dissemination and

https://github.com/JulienLeprince/fiftyshadesofgrey
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Figure 3.6: Models residual cumulated periodograms, boundary excess curves, and cumu-
lated nCPBES of fms1

support its reproducibility.

3.4 Results and Discussion

We describe the outcome of the implementation section here with a first model evaluation
subsection. Estimated model parameters and highlighted links to building characteristics are
then presented, followed by a final illustrative building performance application, leveraging
model parameter estimates for city-scale building envelope insights.

3.4.1 Model evaluation

The normalized cumulated periodogram boundary excess sum indicators are used to differen-
tiate good from close and poor model fits. Figure 3.6 presents the cumulated periodogram,
boundary excess, and nCPBES of all final models obtained from the forward selection
procedure fms1. After an attentive inspection of the CPs and their respective nCPBES,
threshold values of 0.03 and 0.01 nCPBES were fixed to differentiate regions of poor, close
and good quality fits as illustrated in Fig. 3.6. In total, 93 models are determined as good
fits, 95 as close fits and 59 are categorized as poor fits. It can also be noted that most
close fits present boundary excess lumps located around frequencies of 0.15 and 0.4, which
indicates that these models are not capturing dynamics occurring at periods of 13 and 5
hours respectively. Both these dynamics might be caused by occupant usage of appliances
generating heat inputs not covered in the measurements, e.g., kitchen appliances. A 13-hour
period for instance typically represents daily unoccupied residential kitchen-usage schedules
with morning to late evening activities, i.e., 7:00-20:00, while a 5 hour period corresponds
better to an occupied daily Dutch kitchen-usage schedule, where dinner is prepared rather
early, i.e., 7:00-12:00-17:00.
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(a) Forward model selection fms1

(b) Forward model selection fms2

Figure 3.7: Flow diagram of forward model selection paths. The figure presents flows
and nodes to illustrate the selection path of models, with their width being proportional
to the number of final models using this selection path. A final selected model TiTeTh for
instance, could be obtained by a selection path either following Ti > TiTh > TiTeTh or
Ti > TiTe > TiTeTh. The width of the flows entering the designated TiTeTh node is therefore
proportional to the number of final models considering the TiTeTh model in their forward
selection path. Nodes may possess fewer number of flows exiting it (right-hand side) than
entering it (left-hand side). Taking the same example of the TiTeTh node, this means the
model TiTeTh was considered final for a number of cases proportional to the missing existing
flow of the node. As the selection procedure moves forward (from left to right), fewer flows
are represented as more and more models are identified as final in earlier stages, consequently
making the presented selection path flows non-conservative over the flow diagram.

In fact, findings from related work leveraging symbolic regression knowledge discovery
on a similar data set, reported under Annex A, revealed the preferred use of gas-meter
measurements over heat input signal for the heat dynamics identification of 24 of these
buildings [144]. Indeed, Dutch homes typically employ gas to supply both space heating and
kitchen appliance needs. This underlines the impact and importance of these appliances on
building heat inputs.

The forward selection paths adopted in both model selection phases are illustrated in Figure
3.7.

The forward model selection fms1 displays an overall even distribution of models amongst
the 2nd iteration phase, with a slight preference for TiTh models, while in the 3rd iteration
phase, TiTmTs comes out as the most likely choice. This seems to indicate favored additional
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degrees of freedom around the inside temperature in the forward selection procedure. It can
be noted that only one AeRia envelope extension is selected out of the 2nd iteration phase,
yet more envelope model extensions are preferred in the later phases of the selection. The 4th

iteration distinctly denotes TiTmTeTs as the most preferable choice, yielding a consequent
share of final models. Finally, the 5th and 6th iterations largely compose final selected models
with little to be noted from their selection paths.

On the other hand, the forward model selection fms2 portrays a close to even distribution of
models amongst the 2nd iteration phase, with an under-representation of TiTe models, while
in the 3rd iteration phase, TiTmTs comes out as the clear most likely choice, similarly to
fms1. The 4th iteration distinctly denotes TiTmTeTs as the most preferable choice, yielding
a consequent share of final models. It can be noted that AeRia envelope extensions only
appear from the 4th iteration phase on, while the 5th iteration portraits TiTmTeTsAeRia as
the preferred (final) model. The forward selection path logically terminates at iteration 6.

Identified models are presented in Figure 3.8 along with their residual standard deviation, pa-
rameter significance, proportions of fit quality as well as available building meta-information,
i.e. home size, home type and family size, which will be discussed in the following sub-section.
Residuals’ standard deviation values are displayed from violin plots in panel one, while panel
two depicts in a similar manner the distribution of parameter significance proportions per
group, i.e., the number of estimated parameters possessing a significant p-value over the
total number of estimated parameters per model. Panel three shows the iteration phase
in which the forward model selection procedure stopped. These are logically homogeneous
for any given individual model (bottom panel). Panel four presents either the proportion
of model components across the groups (top) or model fit quality (bottom), as these are
insights specific to their opposing panel. Panels five to seven offer the proportions of available
meta-data information as self-reported by occupants, namely home size, family size, and
home type. Lastly, panel eight displays the number of members per group while highlighting
the portion of meta-information self-reported, or not, within them.

fms1 - First, the standard deviations of obtained model residuals serve to illustrate the
amplitude of forecasting errors produced. These range between values of 0.05 and 2°C
for the most extreme cases, and possess central tendencies grouped between values of 0.1
and 0.2°C. The grouping of residual standard deviations per model fit quality (top Figure
3.8) clearly demonstrates a decrease in residual amplitude as the fit increases in quality,
although a larger tail persists amongst good model fits, compared to close ones. It should be
noted, however, that residual amplitudes are an indication of the degree of noise variations
present in the measurements, and are independent from residual covariance, i.e., model fit
quality. A residential home with 4 occupants might result in a larger amount of noise, i.e.,
higher standard deviations, while possessing a thermal model accurately capturing all of
its dynamics, with residuals demonstrating white noise properties, i.e., nCPBES close to
zero. The aforementioned observation consequently comes rather as a fortuity than the
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Figure 3.8: Identified models grouped per fit quality (top) and RC model (bottom) with
their respective (left to right) residual standard deviation distribution, parameter significance,
iteration phase, modeling components (top), or model fit quality (bottom), selected heat
input signal (fms2 only), meta-data proportions, and group size.
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result of a correlation between these two features. Secondly, parameter significance reveals
whether estimated model parameters exhibit substantially likely probabilities and support
the evaluation of model robustness. The comparison of parameter significance grouped by
model fit quality shows that good fits present slightly larger central tendencies of significant
parameter proportions compared to poor and close fits, although all three groups present
similar distribution tails reaching down to 20%. Thirdly, the forward model selection iteration
phase proportions show no 1st order model selected as best fit in either of the categories, and
no 2nd order models are either present in close and good model fits. This finding confirms
our initial assumptions that first- and second-order models would not be sufficient to capture
thermal dynamics of buildings. The iteration proportions clearly display larger iteration
phases becoming more important from poor to good model fits, suggesting that to obtain
a good fit it is likely the model will be more complex. Lastly, it is found that the four
most considered models are TiTmTeTsAeRia, TiTmTeTs, TiTmTeThTs and TiTmThTs, which
all employ the sensor, Ts, and medium, Tm, model components. The two largest of them
notably possess the greatest proportion of good fits, reaching 50%, while being sensibly
similar models with common components Ti, Tm, Te and Ts.

fms2 - The forward model selection variant displays a much larger share of good model
fits than fms1, with 64% of good fits (144 counts), 14% of close (31 counts) and 22% of
poor quality model fits (50 counts). This significant increase in good model fit quality can
be attributed to either the different and more recent data set employed in fms2 or to the
additional degree of freedom given to the forward selection procedure fms2 in selecting
a more likely heat input signal. The aggregated central heating and hot water demand
heat input signal (boiler set-point) shows to be the dominant choice favored in the forward
selection process, with 142 models over 46 selecting central heating and 37 hot water. This
finding confirms the assumption that hot-water demands link to a significant heat input
contribution to residential buildings from either kitchen, laundry, or bathroom appliances.

3.4.2 Parameters and building characteristics

Identified parameters and models coupled with available building characteristics constitute a
valuable examination analysis that has the potential to unveil meta-data links to exposed
building thermal dynamics. The building meta-data distributions of Figure 3.8 reveal that
poor to good model fits possess increasing proportions of smaller home sizes along with
larger shares of family sizes of 2. This supports the intuitive thought that smaller, thus
simpler, residential homes are more likely to result in good model fit.

Estimated thermal capacities, C, and resistance, R, parameters are presented per model
component under Figure 3.9 with highlighted model quality fit and parameter significance
to allow visual appreciation of their coupled distributions.

fms1 - Results display thermal capacities of sensor and heater components as relatively
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Figure 3.9: Scatter plots of RC parameter estimated per model component, with model
fit quality and parameter significance. Good from poor model fits are differentiated, where
close fits are here grouped together with poor fits, while the scatter point crossover between
two parameters will be considered significant only if both represented parameters are so.

aggregated around 0 kWh/K, while medium and envelope capacities are relatively split
between their lower upper bound values, 0 and 20 kWh/K respectively. On the other hand,
resistance estimates are mostly comprised between values of 0 to 5 K/kW at the exception of
Ria which spreads quite evenly from 0 to 50 K/kW. The scatters show no apparent correlation
between estimated parameter values and their relationship to fit quality or significance.

fms2 - The scatters show no apparent correlation between estimated parameter values and
their relationship to fit quality or significance, yet components display varying distribution
trends. Component capacities, notably the sensor component, typically exhibit concentration
around values of 0 kWh/K, while, on the contrary, medium and envelope capacities both
spread till upper bound values of 20 kWh/K. Resistance distributions are most dispersed for
the inside component while the sensor one, again, presents skewed characteristics towards
values of 0 K/kW.
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3.4.3 Building envelope performance

Identified building heat dynamics can be leveraged to calculate building envelope insulation
properties such as the Heat Transfer Coefficient (HTC). HTC is defined in ISO 13789:2017
[145] as the heat flow rate from the internal air mass to the surrounding external environment
divided by the indoor-outdoor air temperature difference [146]. Its estimation is obtained
from the sum of heat flow rates due to ventilation UAV , and transmission UAT , which
includes plane building envelope elements as well as thermal bridges. Linking these elements
to the identified thermal resistances R of the model, the HTC can be derived from [128]

HTC =

UAT︷ ︸︸ ︷
1

1
UAie

+ 1
UAea

+
UAV︷ ︸︸ ︷
UAia

(
WK−1), (3.17)

HTC = 1
Rie + Rea︸ ︷︷ ︸

∀Te∈M

+ 1
Ria︸︷︷︸

∀TeRia∈M or Te /∈M

(
WK−1), (3.18)

where M stands for the model component ensemble of the final selected model. HTC can be
expressed in absolute units, i.e., W/K as defined above, or in useful floor area relative units,
i.e., W/(K·m2) as recalled in ISO 52016:2017 [147] with

HTCnorm = HTC

Ause

(
WK−1m−2), (3.19)

where HTCnorm refers to the area normalized HTC and Ause to the total useful floor area
of the considered building. The latter naturally being better suited to benchmark insulation
performances thanks to building floor surface independence.

With useful floor area unavailable across this study’s building stock however, we proceed
to identify absolute building HTCs and total thermal capacities jointly. This allows a
relatively fair comparison of building thermal properties together. Indeed, investigating these
parameters by pair presents the advantage of providing a complete overview of a building
stocks’ thermal properties. The inclusion of total thermal masses in this frame puts the
absolute HTC into perspective while providing an efficient way to identify groups of similar
buildings, as well as singling-out poorly insulated home envelopes for instance. Figure 3.10
presents these identified characteristics along with highlighted building type and poor quality
fits.

fms1 - results show a strong concentration of total thermal capacities between values of 20
and 24 kWh/K with few values reaching above 40 kWh/K and below 10 kWh/K. HTCs
present a strong positively skewed distribution, mostly concentrated between 0.02 to 0.05
kW/K, with a smaller peak centered around 0.1 kW/K. The scatter reveals a main cluster
of points originating from the strong concentrations of both thermal parameters around
their central distributions. Building types do not appear correlated to the presented thermal
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Figure 3.10: Scatter plot of building envelope Heat Transfer Coefficient (HTC) versus sum
of total heat capacities, with highlighted building types. Poor model fits here englobe both
close and poor fits.
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properties. A larger share of isolated dwellings (town building type) are present at the center
of the cluster, yet their vast larger proportion within the data set biases this observation.
Identified good model fits presenting HTC values above 0.20 kW/K can thus be considered of
poor thermal insulation. This constitutes a non-intrusive, scalable and quite simple building
envelope characterization which can support city-scale building stock analytics. Retrofit
potentials could consequently be evaluated from the granted insights and provide users with
impactful energy saving opportunities from recommended insulation upgrades.

fms2 - results display a strong concentration of total thermal capacities between values of
20 and 30 kWh/K, with few values dropping below 10 kWh/K and none reaching above 40
kWh/K. HTCs present a strong, positively skewed distribution, mostly concentrated between
0.02 and 0.25 kW/K. The scatter reveals a central cluster, although building types do not
appear correlated to the presented thermal properties.

3.5 Applications and Outlooks

The development of methods that focus on the scalability of analysis across the building
stock unlocks the potential of several important applications. The results of this method
illustrate its effectiveness on a set of buildings that could be replicated in other contexts.
This section outlines a review of those results related to several applications.

3.5.1 Building performance benchmarking

Benchmarking the building stock enables the owners and occupants to understand how
their building compares to its peers. Defining just what a peer is for a certain building
is a challenge in itself. A certain amount of metadata, or characteristic attributes are
necessary to undertake fair benchmarks between buildings. Notable building geometry-
related characteristics proportionally influencing heating and cooling demands encompass
area-to-volume ratios such as shape factor, i.e., an envelope surface to heated volume [148]
or surface [149] ratio. Yet the collection of these information at scale is tedious [150]. The
automated creation of dynamic models could enhance this process by enriching existing
metadata with identified building thermal properties [151], ranging from model structures to
parameter estimates which could be employed within the benchmarking process.

For instance, building performances are typically evaluated from key performance indicators
(KPI) such as CO2 emissions reductions, energy costs savings, energy balance, thermal/light
comfort, system efficiency or peak demand reduction [152]. A common approach employed to
compare the energy performance of a heterogeneous building set consists in area-normalizing
their respective energy consumption [153]. However, floor surface does not provide a complete
characterization of a building’s thermal mass. Knowledge of buildings thermal capacities can
provide a much richer description of their heating and cooling inertiae for fairer thermal load
comparisons. Building thermal capacities C can either encapsulate their internal environment
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with units in J/K, or air and furniture areal capacity considering units of J/(K·m2) [147].
The latter, similarly to HTCnorm, includes useful floor area information and can serve in
benchmarks for the consideration of not only building thermo-physical properties, but also
geometry. When undertaking such energy performance benchmarks, heating and cooling
demands Φd could consequently be normalized as follows,

Φd,norm = Φd∑
j Cj

(3.20)

where Φd,norm here either stands for the internal environment capacity normalized heat load
of a building, with C in J/K and Φd,norm in K/s, or the air and furniture areal capacity
normalized heat load, with C in J/(K·m2) and Φd,norm in Km2/s. The subscript j refers to
the components of the fitted grey-box model.

This scaling approach makes it possible to compare design assumption, i.e., useful floor area,
with field performance, i.e., heating/cooling demands, at scale. Indeed, through the inclusion
of building geometry information in the scaling process of identified thermal characteristics, it
becomes possible to compare actual building thermo-physical properties to design parameters
from technical standards on a building stock level.

3.5.2 Building stock scenario modeling

One of the key benefits of white box modeling is the ability to test possible future scenarios
of performance enhancement [154]. Undertaking this effort on a large building stock is a
significant challenge [155]. The automated creation of physics-informed models enables this
in a scalable and effective way, allowing renovation influences or policy decisions impact
assessments up to a city or district-scale. This type of effort has been explored on non-
residential buildings in the direction of inference of higher granularity data from annual and
district-level public data [156]. Quite concretely, one could imagine varying identified HTC
distributions within the building stock to predict insulation renovations’ impact on thermal
loads.

3.5.3 Decomposition of energy meter into end-use loads at a city-level

The integration of more dynamic influences on energy grids from renewable sources such
as wind and solar have a significant impact on their operation. The ability to characterize,
at scale, energy-consuming dynamics of large numbers of buildings can improve optimal
grid operations. Policies aiming at enhancing grid stability using technologies like storage
unavoidably profit from more accurate energy demand characterizations [157]. Additionally,
the decomposition of energy-meter information into load-influencing factors sets the founda-
tions for factor-dependent energy predictions, which support scenario-specific predictions at
city level. For example, with identified climate’s influence on overall building stock load, one
could predict how a city’s energy demand might change under varying weather scenarios, or



Chapter 3. Scalable building heat dynamics identification 64

account for per-factor uncertainties in forecasted values for a resilient and optimal operation
of the energy system. Further innovations in this direction can support efforts from the
literature focusing on model development using large, open data sets from energy disclosure
programs [158], [159] or from geospatial sources [160] for instance.

3.5.4 Demand side management

Identified thermal dynamics may also be leveraged to evaluate the energy flexibility potential
of buildings. Indeed, the derivation of a system’s time constants, which characterize the
dynamic response of the considered system, can be determined based on estimated parameters
[136]. These time constants can notably provide information about the building’s reaction
to affecting variable changes, namely weather conditions and heat inputs. The work of [151]
exemplifies this process on a data set of 39 Danish residential buildings. From identified
thermal dynamics it formally links estimated time constants to each building’s energy
flexibility potential. Proposing scalable methods to evaluate the dynamic response of the
building stock is a crucial step that our work opens the door to for developing more effective
demand-side management strategies.

3.5.5 Data augmentation

Additionally, calibrated RC models may be exploited to generate large, augmented data sets
that could serve multiple end-use applications, e.g., supporting surrogate black-box model
training either for predictive- or reinforcement-learning-based applications.

3.6 Summary

This work puts forward an automated stochastic model identification approach for building
heat dynamics, suited for scalable deployment. It proposes a forward model selection
procedure adapted from [132] and extended with a novel residual auto-correlation indicator,
i.e. the normalized Cumulated Periodogram Boundary Excess Sum (nCPBES). This indicator
allows automated classification of identified models into groups of fit quality.

Out of the 247 buildings the approach was tested on, two sets of results were gathered and
analyzed.

fms1 - 93 model fits were identified as good, 95 were classified as close while 59 were designed
as poor. Good model fits presented overall larger shares of model complexities and parameter
significance along with smaller reported building surfaces and family sizes compared to
poor and close model fits. Estimated RC parameters presented no notable tendencies when
compared to model fit qualities or their significance.

fms2 - close to two-thirds (144) of all identified models were evaluated to be of good quality,
providing stable, accurate, and valuable thermal descriptions of residential buildings.
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We examined the thermal properties of the building stock by visualizing their total thermal
capacities and respective HTC. A main cluster of buildings with similar properties is clearly
observed suggesting a large share of buildings possessing similar thermal characteristics.

Finally, we open source the results of fms2 as an open data set entitled Grey-brick

buildings [123] and discussed how the proposed approach and open set is valuable to the
building sector. In particular, how automation and scalable solutions for building stock
model identification can support in an unprecedented way applications such as building
performance benchmarks, city-scale scenario modeling, energy disaggregation to building
end-loads, large-scale demand-side management, and data augmentation.





Chapter 4
Hierarchical building load forecasting

Chapter overview

• Extension of uni-dimensional hierarchical structures to multi-dimensional ones
• Developing a machine learning method for forecasting coherent hierarchies
• Performance examination of tailored machine learning architectures
• Application to building electrical load forecasting
• Case studies: 2NECO and BDG2
• GitHub repositories: /hierarchicallearning and /structuralhierarchicallearning
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Figure 4.1: Overview of the hierarchical learning method

The content of this chapter builds upon materials published in [161], [162].

"The whole is greater than the sum of its parts."
Aristotle

4.1 Preface

A better anticipation of the future supports better decision-making. This is true across
all sectors. Yet, more accurate forecasts alone often do not suffice. When dealing with
different abstraction levels across a system or organization, it is commonly more important
to obtain coherent predictions across all considered layers and horizons, not to result in
unaligned decisions or possibly even conflicting ones [163]. This obstacle arises in multiple
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domains, including tourism [164], [165], retail [166], stock management [167] and smart grid
management [168], which showcases this matter quite adequately.

Traditionally, smart grid operators focused on forecasting the system’s total demand. However,
with the increasing adoption of smart meters at grid edges and substations, the focus is
shifting. Grid management now benefits from high-frequency measurements available at
multiple levels of aggregation allowing accurate forecast estimations across both spatial
and temporal scales, i.e., from sub-meters to regional-level, with per seconds to monthly
aggregated information [168]–[170]. Yet, the pluralities and independence of models and
their consequent forecasts inevitably produce inconsistencies across aggregation levels, i.e.,
lower-level predictions might not sum up to higher-level ones and vice-versa [171]. The
consequent challenge decision-makers are now faced with is to obtain coherent predictions
across the different horizons and scales of the system. Hierarchical structures (or trees) are
said to be coherent when their values at the disaggregate and aggregate scales are equal when
brought to the same level [164]. Should forecasts not be coherent, decision-making units
would be planning using diverging views of the future. Optimal decision-making consequently
requires forecasts to be coherent across all considered dimensional hierarchies.

4.1.1 State-of-the-art: hierarchical forecasting

Enforcing coherency in hierarchical structures is a concept that dates back to 1942 [172]
and was first defined in 1988 as reconciliation [173]. It leverages linear balancing equations
from covariance compositions inherent to hierarchical structures to optimally re-adjust
coherency mismatches. Hyndman et al. [174] later reformulated the approach with a unifying
statistical method, independent of prediction models, along with notations more appropriate
to hierarchical forecasting.

Hierarchical forecasting can thus be defined as the process in which coherent predictions need
to be made within a fixed hierarchical structure. Commonly, forecasts are first estimated
separately considering each series of the hierarchy in a disjointed manner. These forecasts
are designated as independent base forecasts [165]. Generating base forecasts for each series
implies that specialized models can be developed for each part of the hierarchy, incorpo-
rating node-specific available information [164]. Base forecasts are then linearly combined
(reconciled) leveraging available information across the hierarchy to ensure coherency; a
process employed by all hierarchical forecasting approaches as of to date [163], [165], [167],
[168], [173]–[183].

Reconciliation approaches

Predominant reconciliation techniques comprise traditional bottom-up and top-down ap-
proaches, trace minimization, optimal combinations, and recently developed machine-learning
methods.
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Bottom-up hierarchical forecasting consists in generating base forecasts at the very bottom
level of the hierarchy and enforce coherency through their direct aggregation across the tree
[184]. The greatest advantage of this approach is that it can draw information from the most
disaggregated levels of the tree, consequently avoiding any information loss from aggregation
[165]. However, series located at tree leaves tend to possess low signal-to-noise ratios making
them more difficult to predict. This is particularly true when dealing with smart-meter
electrical demands which are notoriously volatile. Consumption peaks are indeed driven
by often highly stochastic occupant behaviors that are close to intractable, consequently
making bottom-up aggregation unlikely to provide accurate forecasts across the upper levels
of the tree [174].

Top-down hierarchical forecasting on the other hand only generates forecasts for the top
level of the hierarchy (tree-root) and proceeds to disaggregate and distribute it down the
hierarchy from either historical [185] or forecasted [165] proportions of the data. The approach
commonly favors higher aggregation levels of the tree with more accurate predictions and
is notably valuable for low-count data. However, aggregation is not without a large loss
of information as temporal dynamics and other individual series characteristics cannot be
exploited [165]. Additionally, as the success of this approach depends solely on one top-level
model, it possesses a higher degree of risk from model misspecifications or inaccuracies [186].
Given both bottom-up and top-down approaches inadequate to profit from the richness of
information across a given hierarchy, optimal combination techniques emerged. Linearly
reconciling base forecasts towards coherency, these approaches allowed interactions between
different levels of the hierarchy, leveraging in particular correlations and covariances present
in such structures [174].

However, estimating the covariance structure of a hierarchy from base forecasts is challenging.
Indeed, Wickramasuriya et al. [181] declared that the covariance matrix of the coherency
errors is "impossible to estimate in practice due to identifiability conditions" such that
even with high-frequency data available, assumptions on its form must be made [187]. The
ordinary least-square (OLS) estimator was particularly developed by Hyndman et al. [174]
and Athanasopoulos et al. [165] to avoid this problem. Their approach demonstrated
improved results compared to other commonly adopted techniques. A weighted least squares
(WLS) approach, considering variances from the variance-covariance matrix diagonal but
ignoring the off-diagonal covariance elements, was put forward by Hyndman et al. [188].
Wickramasuriya et al. [181] later provided the theoretical justification for estimating variances
from base forecast error variances. They proposed a generalized least-squares (GLS) estimator
and found the incorporation of correlation information into the reconciliation process to
benefit forecasting accuracy, with resulting reconciled forecasts guaranteed to be, in mean or
in sample, at least, as good as their base forecasts, given a particular covariance structure.

Finally, in recent years, machine learning approaches have made their way into hierarchical
forecasting. Relying on powerful statistical regressors and the availability of larger and richer
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data sets, machine learning emerges as an appealing and suitable tool for estimating the
persistently challenging covariance matrix. Spiliotis et al. [167] put forward such an approach
employing a bottom-up method to reconcile predictions from Random Forest and XGBoost
regressors. Taking as input the base forecasts of all the series of the hierarchy, the reconciled
tree is then obtained from bottom-up aggregation. It allows non-linear combinations of
the base forecasts, extending conventional linear approaches thanks to its machine-learning
nature. Sagheer et al. [189] proceeded to obtain coherent hierarchies from deep long-short
term memory (DLSTM) recurrent neural networks by applying transfer learning across
their hierarchies in a bottom-up fashion. They evaluated their approach on national-scale
Brazilian electrical power production as well as Australian domestic tourism data. In another
work, Mancuso et al. [190] proposed a method to unify the two prevailing processes that
are forecasting and reconciliation. By including hierarchical information in the forecasting
process through a customized loss function, they allow the network to train towards reconciled
forecasts using a top-down disaggregation process.

None of these approaches, however, include the general formulation of hierarchical forecasting
within their learning framework. This limits their reconciliation approaches to encompass
solely traditional approaches, i.e., bottom-up or top-down, which, as has been mentioned,
only exploit a fraction of the available information of hierarchical structures.

Dimensional considerations

While numerous works have first approached the reconciliation of hierarchical structures
from a spatial (cross-sectional) dimensional frame perspective [165], [167], [168], [173]–[175],
[181]–[183], temporal hierarchies have also been the center of recent attention within the
field [163], [176]–[180].

Athanasopoulos et al. [176] first introduced the notion of temporal hierarchies with forecasting
reconciliation performed in the temporal dimension. Quite similarly to spatial reconciliation,
base forecasts are independently produced across a defined set of temporal aggregation
levels, e.g., weekly, daily, quarter-daily, hourly to per-minute or seconds granularities. This
allows models to capture temporal-specific characteristics of the times series across the
hierarchical-structure, e.g., trends or seasonality possessing particular time-frames. Base
temporal-forecasts are then reconciled across all forecasting horizons and temporal tree-
structure, allowing aligned decisions across multiple planning horizons [164]. Nystrup et
al. [163] notably proposed temporal estimators accounting for autocorrelation structures
to reconcile electric grid load forecasts. It was found that auto- and cross-covariances
significantly improved forecast accuracy uniformly across all temporal aggregation levels.

It thus becomes clear that both spatial and temporal hierarchical forecasts produce sub-
stantial empirical accuracy improvements. By dealing with parameter estimation errors and
model misspecifications, forecast combinations have demonstrated significant error variance
reduction across numerous works [186], [191], [192]. Exploiting both available hierarchical di-
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mensions to further improve prediction accuracies consequently emerges as not only appealing
but quite evident. Kourentzes and Athanasopoulos [164] notably advanced a framework to
produce spatial- and temporal-coherent forecasts (designated as cross-temporal), supporting
all hierarchical levels with short- to long-term forecasts. Their work demonstrated empirical
evidence that leveraging both dimensions in reconciliation offered improved accuracies com-
pared to uni-dimensional reconciliation, i.e., spatial or temporal. A finding certainly due to
the complete information exposure the approach provides. Spiliotis et al. [171] later proposed
a cross-aggregation process to iteratively generate coherency across spatial hierarchies from
multiple temporal aggregations applied to electricity consumption forecasting. Punia et al.
[193] introduced a similar framework leveraging deep learning algorithms applied to supply
chain base forecasts. Their approach, however, produced coherency solely from bottom-up
approaches.

While the advantage of multi-dimensional hierarchical forecast has become evident, there
exists, as of today, no generic formulation of these approaches. Indeed, while Spiliotis
et al. [171] stated that it is possible, in principle, to design a summing matrix S that
accounts for both considered dimensions of reconciliation, a theoretical formulation of S
and its subsequent reconciliation approaches was not put forward. Indeed, the design of a
reconciliation estimator that fully captures scaling issues and cross-sectional interdependencies
is not straightforward. Yet, this deprives multi-dimensional reconciliations of exploiting
custom dimensional considerations. The principal counterargument to undertaking such
formulations is grounded on the fact that multi-dimensional hierarchies generate increasingly
large tree structures that could soon become intractable to estimate. Recently, however, the
work of Nystrup et al. [179] proposed a dimensionality reduction technique to counter this
problem. Using eigendecomposition when reconciling forecasts, maximum information can be
extracted from the error structure using available data. They find that uniformly improved
predictions can be obtained across all aggregation levels, with the estimator achieving
state-of-the-art accuracy all the while being applicable to hierarchies of all sizes.

4.1.2 Motivation

This comprehensive state-of-the-art overview underlines the following shortcomings;

(i) Base forecasts are typically produced separately, considering each series of the hierarchy
in a disjointed manner. While this procedure allows the independence and hierarchically-
tailored design of these models, it is inherently deprived from the benefits of data
information (learning) transfer across models.

(ii) Machine-learning reconciliation approaches have exhibited clear forecast improvements
potential. Yet, developed approaches have, so far, not proceeded to put forward
a unified method for machine-learning based hierarchical-forecasting. This limits
considered reconciliations approaches to the more information-limited bottom-up and
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top-down approaches [167], [193]. Embedding advanced reconciliation techniques, e.g.,
optimal combinations, in the learning process of machine learning regressors is, as of
today, still missing.

(iii) Although advantages of leveraging multi-dimensional hierarchies in forecasting has
become evident, a generic formulation of such hierarchical-combinations is still needed.
Existing tools have demonstrated effective dimensionality reductions of large hierarchies
[179], presenting promising solutions to the problem of dimension intractability.

This study proposes a response to this appeal and puts forward a generic multi-dimensional
formulation for hierarchical forecasting with machine-learning. We put together a unified
and adaptable forecasting and reconciliation method founded on native multi-task machine-
learning regressors while framing multi-dimensional hierarchical-forecasting approaches in a
generic way. Contributions of this work can be summarized as five-fold;

1. To best exploit available information embedded within multi-dimensional data, we
formulate a generic multi-dimensional extension of conventional hierarchical forecasting
methods. In particular, we address the problem of diverging reconciliation considera-
tions in a multi-dimensional setting with uni-dimensional couplings of the covariance
estimator. This allows the unification of multi-hierarchical structures under a common
frame, fueling both traditional and machine-learning approaches with ever-richer and
transferable (learning) information.

2. We develop a unified machine-learning-based hierarchical forecasting approach. This
grants (i) a unique forecasting model the benefit of a complete information overview
across its hierarchy, while (ii) including coherency constraints within its learning
process as well as (iii) being adaptable to either independent or combined forecasting
and reconciliation processes. It establishes a unified method generating accurate and
coherent forecasts at all levels of the hierarchy thanks to a custom hierarchical loss
function leveraging coherency information from established field-taxonomy.

3. In the interest of addressing the dimensional tractability of our approach, we put
forward dimensionality reduction prospects and illustrate them both theoretically and
in practice with an applied demonstration.

4. Further, we expand the approach by cutting down the complexities of models originating
from large hierarchical structures with tailored network designs. These exploit topolog-
ical hierarchical information from trees targeted to support a resourceful, data-efficient,
and information-rich learning process.

5. We formally evaluate the relative performance brought by the addition of the coherency
requirement across all examined model designs, thus clearly establishing the realized
value of coherent hierarchical learning.

6. Our study considers two substantial smart-meter data sets including an established
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open source, i.e., the Building Data Genome project 2 (BDG2) [20]. This allows the
grounding of our approach thanks to a first-of-its-kind performance benchmark in the
field of electric-meter hierarchical predictions, which we render fully replicable.

The greatest advantage of this approach is granting access to the regressor a complete
information overview of the considered (multi-dimensional) hierarchy. This permits both a
cross-dimensional, data-rich learning process as well as a hierarchically-informed training for
hierarchical forecasting. Additionally, by putting forward tailored, ingenious architectures of
neural networks we effectively reduce hierarchical model complexities while serving improved
and coherency-aware hierarchical forecasts. The outcome is a unified and coherent forecast
across all examined dimensions, granting decision-makers a common view of the future
serving aligned and better decisions.

In a smart grid operation setting, for example, by inherently leveraging varying hierarchical
time-series characteristics, one could imagine the approach to perform above traditional
independent forecasts, all the while providing a cohesive view of the energy network to
operators. This actively supports the optimal energy management of energy networks; by
providing more reliable and coherent predictions, bidding and scheduling algorithms can
enhance their performances, thus reducing associated energy costs as well as carbon emissions
and accelerating the energy transition. These desirable qualities can similarly benefit sectors
such as retail, stock management, and tourism.

4.2 Hierarchical forecasting

In this section, we present the foundations of hierarchical forecasting as defined by Athana-
sopoulos et al. [165] and Wickramasuriya et al. [181] and extend them to multi-dimensional
frames with a generic formulation. We discuss dimensionality tractability limitations and
offer dimensionality reduction considerations to address them.

4.2.1 Hierarchical structures

Let us refer to the simple hierarchy of Fig. 4.2 to demonstrate the methodology. Every
element (node) of the hierarchy (tree) can be labeled as ykj , where the subscripts k and j
stand for the aggregation-level and node observations respectively. We define k1 as the most
aggregate level of the hierarchy (tree root), i.e., node y11, and kK as the most disaggregate
level (tree leaves), i.e., nodes yKj where j ∈ [1 : m] and K = 3. In such a setting, two
important components must be considered; the number of nodes in the bottom level of the
hierarchical tree, which is denoted as m, and the total number of nodes on the tree n. Here
n = 9 and m = 6.

Stacking all tree elements in a n-dimensional vector y = (y11, y21, y22, y31, y32, y33, y34, y35, y36)T ,
and bottom-level observations in an m-dimensional vector b = (y31, y32, y33, y34, y35, y36)T ,



Chapter 4. Hierarchical building load forecasting 74

21

31 33

22

34 35

11

36

k1 = m

k-levels

k2 = 3

kK = 1

m = 6

32

Figure 4.2: A two-level hierarchical tree diagram.

we can write

y = Sb, (4.1)

where S is the summation matrix, here expressed as

S =


1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1

Im

 , (4.2)

which is of dimension n × m, and Im is an identity matrix of size m. S maps the hierarchical
structure of the tree, where from the tree leaves b the complete hierarchy y can be reproduced.
Notice how S captures the coherency requirements within the hierarchy, integrated here as
the linear summations of the bottom-level observations.

Uni-dimensional

Hierarchical structures encompassed within hierarchical forecasting have, as of today, treated
either one of the two following dimensional frames, namely, temporal T or spatial S (sec-
tional).

We define spatial dimensional perspectives as a unique inter-element dimension, which places
itself in opposition to the previously-defined cross-sectional dimensions [164], [171], [176],
[194], which aggregated elements from very different entities together, e.g., stock management,
resulting in considerable heterogeneity within "one" (but in fact, multi-) dimension. It is our
proposal to re-frame these cross-sectional considerations into separate dimensions to allow
clear delineations of multi-dimensional frames, as we later detail in Sect. 4.2.3.

Although structures of any shape or form can be designed in both dimensions, it is common for
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temporal hierarchies to adopt symmetrical structures, with k-level values being homogeneous
across the trees’ aggregation levels. Taking the exemplified symmetrical hierarchy of Fig.
4.2, one could consider removing nodes y32 and y33; resulting in a hierarchy where m = 4,
n = 7 and node y21 being consequently removed as a redundant element of y31. This would
result in a non-symmetrical tree which, in the temporal domain, implies non-equally spaced
measurement points (or sampling rate) across the considered aggregation level and the ones
above it.

Typically, for symmetrical trees, there are k ∈ {k1, ..., kK} aggregation levels, where k is a
factor of m, with k1 = m, kK = 1, and m/k is the number of observations at aggregation
level k. The summation matrix of temporal hierarchies can therefore be expressed as [163]

ST =


Im/k1 ⊗ 1k1

...
Im/kK

⊗ 1kK

 , (4.3)

where ⊗ is the Kronecker product and 1k is a k-vector of ones.

To generically define the formulation of the summation matrix of any uni-dimensional
hierarchy H, however, one needs to consider the eventuality of non-homogeneous k-level
values across aggregation levels as well as uneven tree-depths. To this end, we define

sij =
{

1, if yi is ancestor of yKj ,
0, if yi is not ancestor of yKj , (4.4)

where sij is a matrix element of the summation matrix SH given a fixed hierarchical structure
H and yi here refers to the i-th element of y. The subscripts i and j go from 1 to n − m

and m respectively. They refer to the considered tree node element i and tree leaf element j.
This sets the matrix element of a given node i to either 1 or 0 if it is an ancestor of the leaf
element j, or, in other words, whether it is a result of the aggregation of the corresponding
tree-leaf element yKj or not respectively. The summation matrix can then be expressed as

SH =



s11 . . . s1j . . . s1m

...
...

...
si1 . . . sij . . . sim

...
...

...
s(n−m)1 . . . s(n−m)j . . . s(n−m)m

Im


. (4.5)

This enables the formulation of any hierarchical structure to a summation matrix, e.g.,
from event-based or equally spaced time-series measurements for temporal hierarchies T , to
non-symmetrical or homogeneous aggregation structures for spatial hierarchies S.
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Multi-dimensional

Multi-dimensional hierarchies are the product of two uni-dimensional structures and can be
obtained from function composition of separate hierarchical structures over another one. Fig.
4.3 illustrates the derivation of a spatio-temporal ST hierarchy from two disjointed spatial
S and temporal T structure compositions, i.e., SoT and T oS. The resulting tree structures
demonstrate fundamental equivalences, with all tree nodes possessing identical bonds linking
one element to the other, and consequently producing a unique hierarchical structure ST .
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Figure 4.3: Schematic of spatio-temporal ST hierarchical structure conception from
either SoT or T oS structure composition, both producing an equivalent ST tree structures.
Highlighted nodes (in grey) reveal opportunities for dimensionality reduction by dropping
nodes of little dimensional interest, i.e., high temporal granularity in high spatial aggregation
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The formulation of the multi-dimensional summation matrix in a generic way, can thus be
expressed as a Kronecker product, where

SST ≡
{

SSoT = SS ⊗ ST ,
ST oS = ST ⊗ SS , (4.6)

from which the resulting spatio-temporal summation matrix SST is of dimension nSnT ×
mSmT , which, in the example of Fig. 4.3, yields 3 · 7 × 2 · 4 = 21 × 8. The equivalence of
SoT and T oS is attained via varying orderings of the nSnT -dimensional vector yST . These
are derived from alternative transpose definitions of the observation matrix YSoT such that

YSoT = Y T
T oS =


y11 . . . y1nT

... . . . ...
ynS1 . . . ynSnT

 , (4.7)

where uni-dimensional vectors yS and yT are stacked together to form an observation matrix
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composition.

YSoT of dimension (nS , nT ). The yST equivalent vectors can then obtained with

yST ≡
{

ySoT = vec(Y T
SoT ),

yT oS = vec(Y T
T oS). (4.8)

In the exemplified structures of Fig. 4.3, we obtain ySoT = (yA1, yB1, yC1, ..., yA7, yB7, yC7)T

and yT oS = (yA1, ..., yA7, yB1, ..., yB7, yC1, ..., yC7)T .

With structural combinations of two disjointed dimensional hierarchies producing a unique
bi-dimensional structure, it consequently follows that multi-dimensional combinations can
be exploited in a similar manner. By chaining function compositions of considered singular
dimensions over summation matrices and y vectors, any combination of dimensional frames
can be considered.

Dimensionality reduction

Multi-dimensional trees, however, introduce a key limitation: the dimensional explosion of
hierarchical structures from function composition. With the multiplication of dimensions
from summation matrices, what was then considered a tractability shortcoming has now
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become an inevitable obstacle needing overcoming.

However, multi-dimensional hierarchies bring with them a consequential consideration:
multi-dimensional aggregation levels. Indeed, such trees encompass more than former
uni-dimensional high- or low-aggregation levels, they consist of deep structures where multi-
dimensional aggregation combinations demand investigation. Spatio-temporal hierarchies,
for example, display dissimilar insights from high-temporal-low-spatial aggregation levels,
low-temporal-low-spatial or high-temporal-high-spatial ones.

It thus comes to light that, given a defined insight-driven application, subsets of certain
multi-dimensional aggregation regions can be of limited use. High-frequency forecasts at
very aggregate geographical levels might be of great value to grid operators contemplating
frequency control in power systems, but not so much when forecasting tourism flows for
instance [164]. Considering the end-goal application of optimal smart-grid control from
electric load forecasting of grid edges (smart-building meter), low temporal frequencies and
low spatial aggregations would be of little interest. Indeed, frequency control focuses on
rather high-frequency samplings at medium-high spatial aggregation levels. However, should
the end-goal application be optimal cooperative control of smart-building neighborhoods,
then low temporal frequencies and high spatial aggregations would become the dimensional
frame of lesser concern. Fig. 4.3 highlights these bi-dimensional nodes over the hierarchical
structure conception, i.e., in grey, revealing the potential of dimensionality reduction within
multi-dimensional hierarchies.

Therefore, while using spatio-temporal coherent forecasts offer benefits to decision-making,
not all outputs from these hierarchies are effectively useful, opening the door to dimensionality
reduction.

4.2.2 Reconciliation methods

Traditionally, forecast reconciliation starts by generating an initial forecast of the tree
independently for each node, referred to as base forecasts ŷ. This set of hierarchical forecasts
is stacked in the same manner as the y vector. Because of the independence of the base
forecasts, in most cases, they do not exhibit coherency properties throughout their hierarchical
structures. By introducing a matrix

G =
[
0m × (n−m) |Im

]
, (4.9)

of order m × n that extracts the m bottom-level forecasts, the reconciliation constraint is
formulated as

ỹ = SGỹ. (4.10)
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Reconciliation is necessary when base forecasts ŷ do not satisfy this constraint [163]. In
such situations, Eq. (4.10) becomes ỹ = SGŷ, where G maps the base forecasts into the
reconciled tree-leaves and S sums these up to a set of coherent forecasts ỹ. SG can thus
be thought of as a reconciliation matrix taking the incoherent base forecasts as input and
reconciling them to ỹ. A major drawback of traditional approaches is that G, as defined in
Eq. (4.9), only considers information from a single level.

Optimal reconciliation

To include the exploitation of all aggregation levels in an optimal manner, Hyndman et al.
[174] and later, Van Erven and Cugliari [182] and Athanasopoulos et al. [176] formulated
the reconciliation problem, as linear regression models. Exploiting either spatial or temporal
hierarchical structures, reconciled forecasts are found employing the generalized least-squares
estimate:

minimize
(
ỹ − ŷ

)T Σ−1(ỹ − ŷ
)
,

subject to ỹ = SGỹ,
(4.11)

where ỹ ∈ Rn is the decision variable of the optimization problem and S ∈ Rn×m and
G ∈ Rm×n are constant matrices defined by the structure of the hierarchy. The parameter
Σ ∈ Rn×n is the positive definite covariance matrix of the coherency errors ε = ỹ − ŷ, which
are assumed to be multivariate Gaussian and unbiased, i.e., with zero mean.

If Σ were known, the solution to (4.11) would be given by the generalized least-squares
(GLS) estimator

ỹ = S
(
ST Σ−1S

)−1
ST Σ−1ŷ, (4.12)

which has been employed in close to all notable hierarchical forecasting works over the last
years [163]–[165], [168], [171], [174], [176], [181]. The precision matrix Σ−1 is used to scale
discrepancies from the base forecasts, hence, is often referred to as a weight matrix.

The recurrent challenge in estimating Σ−1 stems from its dimension n × n which can
potentially become very large.

4.2.3 Multi-dimensional reconciliation

Traditional uni-dimensional estimators can be coupled together topologically to form multi-
dimensional ones in a similar manner to the summation matrix, with

Σ†
ST ≡

Σ†
SoT = Σ†

S ⊗ Σ†
T ,

Σ†
T oS = Σ†

T ⊗ Σ†
S ,

(4.13)

where Σ† refers to the topological covariance matrix of a given covariance matrix Σ. This
allows uni-dimensional estimators ΣS and ΣT to incorporate dimension-specific topological
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considerations and produce a suitable multi-dimensional estimator ΣST .
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Figure 4.5: Example illustration of the covariance matrices considered in this work along
with their associated topological covariance matrices.

The topological covariance matrix is characterized by elements of either 0 or 1 that indicate
the mapping form assumption of the considered covariance matrix. Once the topological
covariance matrix is identified, we simply populate it with the scaling parameters dictated by
the reconciliation approach considered to obtain the covariance matrix. Figure 4.4 exemplifies
the identification of multidimensional topological covariance matrices from both SoT and
T oS dimensional-derivations.

To address dimensional considerations in traditional estimators of the covariance matrix ap-
plied in reconciliation, we present four state-of-the-art estimators, namely, identity, structural,
variance, and covariance scaling with shrinkage, while detailing dimensional deliberations
individually.
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Identity

A simplifying assumption proposed by Hyndman et al. [174] puts the following identity
approximation forward

Σid = In. (4.14)

This simplistic approach has been shown to work well in practice [165] and allows to bypass
the estimation of the covariance matrix. It ignores scale differences (captured by the variances)
and interrelations (captured by the covariances) information of the observations within the
hierarchical structure, which makes it independent of dimensional frame considerations.

Deep neural networks can be expected to build upon such simple relationships and approx-
imate the more complex dependencies of the hierarchy thanks to its automated feature
selection, as we later detail in Section 4.3. We refer to this approach with the subscript id.

Structural scaling

Structural scaling was proposed by Athanasopoulos et al. [176] as a solution to cases where
forecast errors are not available for some aggregation levels. It assumes the variance of each
bottom-level base forecast error σ2

K is equal and that these are uncorrelated between nodes.
Therefore, higher-level error variances are the sum of the error variances of tree leaves series
connected to them. By introducing a diagonal matrix Λstr with each element containing the
number of forecast errors contributing to that aggregation level, they define

Σstr = σ2
KΛstr, (4.15)

Λstr = diag(S1m), (4.16)

where 1 ∈ Rm is a column vector. The hierarchy illustrated in Fig. 4.2, for instance,
gives Λstr = diag(6, 3, 3, 1, 1, 1, 1, 1, 1). The estimator is independent from the considered
forecasting method, since no estimation of the variance of the forecast errors is needed,
making it computationally efficient [163].

If considering a temporal dimensional frame, the estimator depends only on the seasonal
period m of the tree leaves. While with spatial perspectives, the estimator can suffer from
heterogeneity within aggregation levels, e.g., residential and commercial buildings typically
have heterogeneous electricity demand patterns and scale. Hence, assuming a common
forecasting error variance across all leaves-series is not suitable [164]. We refer to this
approach as str.

Variance scaling

Another estimator proposed by Athanasopoulos et al. [176], referred to as variance scaling,
scales the base forecasts using the variance of the residuals. It includes separate variance
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estimates for each aggregation level and assumes either homogeneous or non-homogeneous
error variance within, but not across, a level. Given the hierarchy presented in Fig. 4.2, this
gives

Σsvar = Λsvar = diag(σ2
k1 , σ2

k2 , σ2
k2 , σ2

k3 , . . . , σ2
k3), (4.17)

Σhvar = Λhvar = diag(σ2
11, σ2

21, σ2
22, σ2

31, . . . , σ2
37), (4.18)

for homogeneous and heterogeneous variances respectively. By definition, this scaling ignores
correlations across and within aggregation levels and can be considered as an alternative
weighted least-squares estimator.

Similarly to structural scaling, spatial and temporal dimensional scaling can differ due to
their intrinsic heterogeneous and homogeneous error variances respectively; we refer to these
estimators as hvar and svar. It follows, that Σsvar and Σhvar are appropriate to temporal T
and spatial S dimensional scalings respectively.

Covariance scaling

To exploit important information about a time series at different frequencies (temporal
dimension) or inter-scale differences (spatial dimension), Nystrup et al. [163] argue that
potential information in the autocorrelation structure should be included. They consequently
proposed a covariance scaling for temporal hierarchies estimating the full covariance matrix
within each aggregation level, while ignoring correlations between them.

Following these footsteps, we explore both full and k-level, or so-called block, covariance
estimates such that, for the hierarchy illustrated in Fig. 4.2, the estimator is either

Σcov = Λ1/2
hvarRΛ1/2

hvar, or (4.19)

Σkcov = Λ1/2
hvarRkΛ1/2

hvar, (4.20)

where R and Rk refer to the full and k-level empirical cross-correlation matrix respectively,

R =


1 . . . ρ11,36
... . . . ...

ρ11,36 . . . 1

 , (4.21)
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Rk =



1 0 0 0 . . . 0
0 1 ρ21,22 0 . . . 0
0 ρ22,21 1 0 . . . 0
0 0 0 1 . . . ρ31,36
...

...
...

... . . . ...
0 0 0 ρ31,36 . . . 1


. (4.22)

With increasing difficulties in estimating the full covariance matrix from high-dimensional
hierarchies, even with high-frequency data available, special forms are commonly assumed.
To alleviate this burden, Ledoit and Wolf [195] proposed a Stein-type shrinkage estimator of
the sample covariance matrix. Following these footsteps, Nystrup et al. [163] considered
a shrinkage estimator of the cross-correlation rather than the cross-covariance matrix to
avoid problems with heteroscedasticity. Their estimator is based on decomposing the cross-
covariance matrix into two diagonal (heterogeneous) variance matrices Λ1/2

hvar and a shrunk
cross-correlation matrix Rsrk.

The estimator is defined as

Σsrk = Λ1/2
hvarRsrkΛ1/2

hvar, (4.23)

Rsrk = (1 − λ)R + λIn, (4.24)

where 0 ≤ λ ≤ 1 is a regularization parameter to control the degree of shrinkage towards the
identity matrix.

When λ = 1, shrinkage scaling is equivalent to scaling by the diagonal variance matrix Λhvar.
When λ = 0, it is equivalent to scaling by the sample covariance matrix. A closed-form
solution for the optimal value of λ was derived by Ledoit and Wolf [195] by minimizing the
mean squared error. This shrinkage estimator is ideal for a small number of data points with
a large number of parameters. With an assumed constant variance, the optimal shrinkage
parameter is expressed by,

λ = Σi ̸=jVar(σij)
Σi ̸=jσ2

ij

, (4.25)

where σij is the ijth element of the covariance matrix from the base forecast errors. The
variance of the estimated covariance, Var(σij), is computed as depicted in Appendix A of
Schäfer and Strimmer [196].

Therefore, in contrast to the preceding variance and structural scaling estimators, this allows
strong interrelations between time series in the hierarchy to be captured, while shrinkage
alleviates the complexities of the estimation of Σsrk due to its size.

We refer to the shrunken estimators of Eqs. (4.19) and (4.20) as cov and kcov respectively.
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It should be noted that a variety of other well-performing estimators remain, including,
but not limited to, Markov [163] or spectral scaling [179] supported by alternative inverse
covariance shrinkage GLASSO method [163]. In the intent of limiting the scope of this work
to the evaluation of a novel hierarchical regressor, however, the afore-presented prevailing
covariance approximation methods are favored. Figure 4.5 provides a visual illustration of
the encompassed techniques along with their associated topological covariance matrices.

4.2.4 Evaluation method

The accuracy evaluation of hierarchical forecasting performances requires the consideration of
an important principle that common forecasting methods are exempt from, i.e., the structural
scale differences inherent to hierarchical structures. Indeed, by its nature, hierarchical
forecasting creates outputs of increasing orders of magnitudes, typically characterized by
the aggregation levels of the tree, i.e., k-levels. It consequently becomes crucial to take
these hierarchically-impended scale differences into account when undertaking the accuracy
performance evaluation of hierarchical forecasts, else these would consistently produce poorer
performances for the top levels of the aggregation, where predicted values possess larger
magnitudes.

This is commonly done by treating each aggregation level of the tree separately first, then
evaluating the relative per-level performance of the reconciliation phase over the base forecast,
allowing the removal of scale differences between aggregation levels. However, a relative
performance evaluation does not allow the comparison of approaches across case studies nor
the distinctive performances of forecasting and reconciliation phases, which is why we propose
to complement relative performance evaluations with measures based on structurally-scaled
errors to provide an evaluation method more suited to the evaluation of hierarchical learning
regressors.

Relative measures

The prevailing approach employed to evaluate hierarchical forecasting accuracy consists in
scaling the accuracy performance of the reconciliation phase over a reference base forecast.
This can be done by exploiting either Relative Mean Squared Error (RelMSE) [164] or Relative
Root Mean Squared Error (RRMSE) [163], [176], [178]. Both depict the improvement of a
given reconciliation approach compared to base forecast. We favor RelMSE over RRMSE to
align with the commonly employed Mean Squared Error (MSE) loss function of machine
learning models. The RelMSE can be expressed as

RelMSEk = MSEk

MSEbase
k

− 1, (4.26)

where the RelMSEk is computed for each aggregation level k and k ∈ {1, 2, ..., K}. A negative
entry describes a percentage improvement of the reconciled forecast over the base forecast.
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The MSEk is computed as the average error of all prediction steps of a given aggregation
level k from

MSEkj = 1
h

h∑
t=1

e2
kj,t, (4.27)

MSEk = 1
Nk

Nk∑
j=1

MSEkj , (4.28)

where ekj,t = ykj,t − ŷkj,t is the forecast error at a starting reference time t ∈ Rh of an node
kj with k being the aggregation level of the hierarchy possessing Nk elements and j the node
observation. The starting reference time t points to the very first time step considered in the
hierarchy and is employed to anchor the nomenclature of temporal as well as spatio-temporal
hierarchies, which usually encase time frames of [t, t+m], in similar notations as spatial ones.

Measures based on scaled errors

An alternative way of removing the inherent structural-scale differences present in hierarchical
structures is producing structurally-scaled errors. This can be achieved by dividing the error
vector et = yt − ŷt by the structural vector κstr, where each element contains the number
of nodes contributing to the forecasted error of that aggregation level, such that

κstr = S1m, (4.29)

estr
t = et ⊘ κstr, (4.30)

where ⊘ is a Hadamard division and estr
t is the structurally scaled error vector at a time step

t. The hierarchy illustrated in Fig. 4.2, for instance, gives κstr = (6, 3, 3, 1, 1, 1, 1, 1, 1).

Structurally-scaled errors can then be employed in any given evaluation metric. We conse-
quently define the Mean Structurally-Scaled Square Error (MS3E) as

MS3Ekj = 1
h

h∑
t=1

estr
kj,t

2, (4.31)

which can be averaged either per aggregation level or over the entire hierarchy.

4.3 Hierarchical learning

While traditional hierarchical forecasting approaches have treated forecasting and reconcilia-
tion phases separately, we propose to unify these steps under a singular machine-learning
method. To introduce our approach in a step-wise manner, let us first provide a comprehen-
sive overview of the diverse ways machine learning may be employed within the frame of
hierarchical forecasting, supported by the illustrative schemes provided in Fig. 4.6.
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Figure 4.7: Hierarchical forecasting methods employing machine learning (here illustrated
with the acronym BB, standing for Black Box) are illustrated (1a-c) along with two recon-
ciliation approaches (2a-b). Forecasting methods encompass independent forecasting (1a),
multi-task forecasting (1b), and our proposed hierarchical learning method (1c), working as
a combined forecasting and reconciliation learner. Reconciliation approaches presented cover
our machine learning method employed as a soft-constrained coherency enforcement over the
base forecast (2a) and the traditional hard-constrained coherency enforcing method (2b).

We start by detailing the forecasting phase composing hierarchical forecasting with machine
learning and continue with the description of the reconciliation step and its subsequent
approaches.
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4.3.1 Introducing hierarchical forecasting with machine learning

Machine learning regressors employed for hierarchical forecasting can here be employed in
one of three ways.

Independent forecasting

First, with independent models each forecasting a unique node of the hierarchy, see (1a) of
Fig. 4.7. The models leverage data information uniquely related to the considered node and
do not exchange information with one another. They produce typical independent (base)
forecasts of the hierarchy. Notable variations of this process involve either; (i) exploiting
transfer learning across the models to allow exchange of information throughout the hierarchy.
The work of Sagheer et al. [189] precisely employed such a scheme using a top-down approach
to determine coefficients of the lower-level models as proportions of the learnt top-level one.
This process secures the coherency of the forecasted tree all the while providing privacy
protection of data from one site to another, as transferred model coefficients retrieve data
sharing dependence. Or (ii) by employing a unique single-output model for the forecasting of
each node of the tree, namely a multivariate learner. This allows one model to gather more
information as it learns from a much larger database than independent models. However,
the disadvantage of this approach originates from the generalization intention of the learnt
model applied to what could be, very different forecasted processes, e.g., heterogeneous
buildings. This is why this approach works best when considering processes exhibiting
similar characteristics, e.g., time series range, and typical patterns, which are generally
obtained through a prior clustering phase [118]. In addition, because the approach relies
on the formulation of a unique model, any miss-specification could drastically impact the
performance of the forecast, consequently making its design a key consideration for scientists.

The loss function of independent forecasting regressors are typically designed around a given
error metric, e.g. mean squared error, describing the differences between forecasted and true
values. Typically

Lb(Y, Ŷ|Θ
)

= 1
h

h∑
t=1

(
yt − ŷt

)2, (4.32)

where Lb denotes the mean square loss function between the predicted independent base
forecast set Ŷ subject to a set of parameters Θ and a set of observed values Y.

Multi-task forecasting

Second, by taking the concept of multivariate regressors even further, a multi-task regressor
can be contemplated, see (1b) of Fig. 4.7. The regressor now produces a hierarchical,
dependent, forecast of the tree as a single vector output. The model notably accepts features
from the bottom layer of the tree for spatial hierarchies, as aggregate levels would provide
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redundant information already present in the tree leaves. However, temporal hierarchies
typically benefit from the inclusion of aggregate-level features, allowing them to exploit
important information about the time series at different frequencies. Requirements for
coherency are, however, not included with such a scheme.

The loss function of multi-task learners is similar to single-task ones other than considering
vector rather than point errors, i.e.,

Lh(Y, Ŷ|Θ
)

= 1
h

h∑
t=1

(
yt − ŷt

)2
. (4.33)

Hierarchical forecasting

This takes us to our third and last approach, crystallizing the intention and concepts behind
the contributions of our work, namely, hierarchical forecasting, see (1c) of Fig. 4.7. This
technique builds on the aforementioned multi-task forecasting model while extending it with
the inclusion of a coherency-informed learning process thanks to a custom loss function
employing established coherency taxonomy from the literature. The coherency loss function
is formulated as the difference between the predicted values ŷ and its reconciled counterpart
ỹ, following the reconciliation constraint of Eq. (4.12). The coherency loss function Lc can
consequently be expressed as

Lc(Y, Ŷ|Θ
)

= 1
h

h∑
t=1

(
ŷt − S

(
ST Σ−1S

)−1
ST Σ−1ŷt

)2
. (4.34)

To combine both accuracy and coherency in the learning process of the regressor, the
coherency loss is added to the hierarchical loss function defined in Eq. (4.33) forming the
hierarchical-coherent loss function Lhc,

Lhc(Y, Ŷ|Θ
)

= αLh
t + (1 − α)Lc

t , (4.35)

where α ∈ [0, 1] weights the hierarchical loss against the coherency loss. This avoids the
over-adjustment of weights during the training of the regressor due to the addition of the
coherency loss to the loss function. We typically set α to 0.75 for hierarchical forecasting to
favor accuracy learning of produced predictions over coherency, yet this parameter should
commonly be tuned by hyper-parameter optimization in the validation process of the model
development, see Sect. 4.4.2 for implementation details.

The method regroups numerous key advantages of machine learning-based forecasts. With
large and rich multi-dimensional data to learn from the regressor effectively makes use
of all the information provided by the most detailed layer of the hierarchy, i.e., the tree
leaves, all the while incorporating hierarchical structure information as a soft-constrained
learning mechanism. Loss function augmentation via regularization and penalty methods
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has grown to become the most popular way of introducing constraints in deep learning
[197]–[199]. Although the approach comes at the price of sacrificing hard constraints, it
has been shown that soft-constrained penalty methods perform well in practice and often
exceed hard constraint methods [200], [201]. In addition, machine learning approaches are
powerful at capturing non-linear relationships in the targeted predicted values. In particular,
deep-learning methods are known for effective and automatic feature extraction from the
data, thus reducing the need for guesswork and heuristics, which could provide a much-needed
solution to the problem of non-identifiability of the covariance matrix.

Its disadvantages are similar to those of hierarchical forecasting approaches. By relying on a
unique model, architecture considerations become paramount for the accurate performance
of the regressor and consequently require careful, tailored tuning, e.g. with hyper-parameter
grid-search.

4.3.2 Reconciliation with machine learning

While our proposed hierarchical learning approach (1c) blurs the limit between the tradi-
tionally delineated forecasting and reconciliation steps, it can also be employed as a classic
reconciliation step, see (2a) of Fig. 4.7. Proposed as a soft-constrained coherency regressor,
the machine learning model now takes the entire base forecast ŷ as input and outputs a
coherency-informed forecast ŷh. The weighting coefficient α presented in Eq. (4.34) can here
be set to 0.25 to favor coherent outputs for example. The evaluation of such a scheme, lays,
however, outside the scope of this work, as our contribution targets hierarchical forecasting
performance evaluation on varying dimensions. This setup rather showcases the flexibility of
our approach as applicable to both the forecasting and reconciliation phases of traditional
hierarchical forecasting methods.

For hard-constrained reconciliation, optimal reconciliation is considered, see (2b) of Fig. 4.7.
It imposes coherency to its input forecast and can be employed a posteriori to the hierar-
chical learning step (1c) for eventual non-coherent outputs. In addition, as an established
reconciliation method, it provides a good benchmark to evaluate the performance of our
proposed method to both forecasting (1c) and reconciliation (2a).

4.3.3 Structural hierarchical learning

To propose a regressor that is robust to scale differences and avoids normalization requirements
we leverage the Mean Structurally-Scaled Square Error (MS3E) defined in Ref. [161] for the
definition of the learning loss function. Structurally scaled errors must, indeed, be considered
in hierarchical forecasting as produced predictions will possess major scale differences inherent
to hierarchical structures. Designing hierarchical loss functions notably differentiates itself
in this way from the scaled multi-output regressors presented earlier. To avoid a biased
learning process favoring the top levels of the aggregation, where predicted values possess
larger magnitudes, such structural scale differences must be adjusted. To consider this, we
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employ structural scaling leveraging the aggregation-level vector

κstr = S1m. (4.36)

For example, for the hierarchy illustrated in Fig. 4.2, κstr = (6, 3, 3, 1, 1, 1, 1, 1, 1). The
structural-hierarchical loss function Lh can then be expressed as

Lsh(Y, Ŷ|Θ
)

= 1
T

T∑
t=1

(
(yt − ŷt) ⊘ κstr

)2
. (4.37)

where T is the number of time-steps, Lsh denotes the mean structurally-scaled square loss
function between the predicted independent base forecast set Ŷ subject to a set of parameters
Θ and a set of observed values Y. The operator ⊘ is a Hadamard division. It should be
noted that while the proposed hierarchical forecasting loss function employs the MS3E
metric, any other accuracy metric can be exploited provided they use structurally scaled
error estr

t = (yt − ŷt) ⊘ κstr as error reference.

The structural-coherency loss function is formulated as the structurally scaled differences
between predicted values ŷ and their reconciled counterpart ỹ, following the reconciliation
product of Eq. (4.12). The coherency error ecoh

t and subsequent scaled loss function Lsc can
consequently be expressed as

ecoh
t = ŷt − S

(
ST Σ−1S

)−1
ST Σ−1ŷt, (4.38)

Lsc(Y, Ŷ|Θ
)

= 1
T

T∑
t=1

(
ecoh

t ⊘ κstr

)2
. (4.39)

Both structural accuracy and coherency losses are then combined together similarly to Eq.
(4.35), forming the structural-hierarchical-coherent loss function

Lshc(Y, Ŷ|Θ
)

= αLsh
t + (1 − α)Lsc

t . (4.40)

Hierarchical learning regressors are here tailored to exploit topological structures of hierar-
chies, allowing the design of bespoke structural hierarchical models. This is accomplished by
manipulating two distinct characteristics of machine learning models, namely, neuron parti-
tions and network weights connecting partitions together. Both features are here ingeniously
shaped echoing common hierarchical attributes.

Partitioning hierarchical models

We begin by defining a single-task fully connected deep neural network of 3 hidden layers
and 2 inputs, as illustrated by the (a) base model of Fig. 4.8. To best conceptually illustrate
network partitions, we propose to compare two stacked variations of said single-task regressor
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Figure 4.8: Example illustrations of (a) base single-task fully-connected deep neural
network, composed of 3 hidden layers and 2 inputs, followed by four multi-task stacked
variations of the former model where y1 and y2 relate to parent and child nodes of a larger
hierarchical ensemble respectively. The multi-task models encompass (b) disconnected, (c)
fully-connected, (d) bottom-up, and (e) top-down partition links, creating a deep neural
network, composed of 3 similar hidden layers, 4 inputs, and 2 outputs.

(a), thus forming the multi-task regressors (b) and (c). While both models possess similar
number of layers, neurons, inputs, and outputs, the weights connecting these elements into a
common model are here notably different. In model (c) all neurons composing the hidden
layers are connected to their preceding and succeeding elements, i.e., input, hidden layer,
or output, while in model (b) two distinct partitions can be recognized formed by their
parent regressor (a). Naturally, in a common prediction task, it would not be considered
valuable to assemble two disconnected models together to form model (b). There would be no
performance or computational gains to expect from such a setup compared to employing two
independent models (a) instead for instance. In a hierarchical forecasting setting, however, it
becomes on the contrary rather beneficial to gather produced outputs under the hood of one
model. Indeed, in this way coherency requirements of produced predictions can be exploited
by leveraging the coherency loss function. Additionally, it becomes clear that producing
specific partitions over a defined neural network considerably reduces the number of weights
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to update. Taking, again, the illustrated example of Fig. 4.8, model (c) possesses a total of
36 weights to update, while model (b) has only 20. This significant reduction in the number
of weights to learn can serve two desirable outcomes. First, fewer weights to learn implies
fewer iterations required to calibrate the model and subsequently fewer data instances, an
entity that is typically expensive to gather in large and qualitative quantities. And, second,
it can effectively support targeted single-task learning by helping isolate eventual conflicting
multi-output predictions from one another in the model design.

We propose three partition variations, serving as alternatives to the fully-connected hierar-
chical model of Ref. [161], echoing established tree topologies, namely, fully-disconnected,
leaf-connected, and k-level partitions, which we visually introduce in Fig. 4.9 as vertical lat-
tices. Fully disconnected partitioning intends on mirroring independent, or base, forecasting
by considering each tree node as a disjointed partition of the neural network. Similarly to the
(b) model of Fig. 4.8, tree-node partitions are stacked together to form a larger, hierarchical
model. We refer to this partitioning as tree. Leaf-connected partitioning, referred to as
cutree, suggests linking leaf elements with identical parents together while considering the
rest of the tree nodes as independent partitions. This setup is particularly interesting for
hierarchies built from time-series clustering, where leaf elements typically display similar
dynamics. Finally, k-level partitioning proposes to group hierarchical elements possessing
alike aggregation levels into common partitions. The advantage of this approach is granting
time series with similar levels of aggregation, and subsequent signal-to-noise ratios, a shared
partition to capture these, possibly similar, dynamics. We refer to this partitioning as klvl.

Creating topological bridges

While leveraging distinct node-specific models in hierarchical forecasting is profitable, it
becomes relevant to create bridges between separated layers, allowing targeted and effective
learning across defined hierarchical modeling partitions. Two topological bridges have already
been presented, namely disconnected partitioning, or disc, and fully connected ones.

To complement these we propose two well-established hierarchical connections, namely, (d)
bottom-up and (e) top-down illustrated in Fig. 4.8, to bridge the disconnected partitions of
y1 and y2 together. We here assume y1 and y2 to be parent and child nodes within a larger
hierarchical ensemble respectively. The bottom-up setup connects the lower levels of the
hierarchy with their closest higher-level elements. This implies creating neuron links, or
weights, between each element of lower-level partitions, y2, and their next respective parent
partition, y1. We refer to this partitioning as bu. Top-down topological bridging works in
the opposite way. It creates connections between higher-level elements of the hierarchy and
their associated children, i.e., here connecting y1 partition elements to its child y2. This
partitioning is thereafter mentioned as td. Lastly, a subsequent topological bridge combining
the above methods is put forward, i.e., bottom-up and top-down, or butd.

Figure 4.9 visually summarizes all of the introduced partitions and topological bridges,
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exemplified on a two-level hierarchy.
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Figure 4.9: Schematic illustration of introduced model partitions (vertical) and topological
bridges (horizontal) on a two-level hierarchy

4.4 Implementation

This section details the implementation-related details of our study, namely, considered case
studies, hierarchical structures, and predictive-learning setup.

Our study considers two large datasets of building smart-meter measurements to demonstrate
the usability and performance of our method to real-life scenarios. Case Study 1 considers
the 2NECO data set. Measurements are gathered at resolutions of 10 seconds over a period
of 3 years starting from January 1st 2019 to the 2nd of August 2021. Case Study 2 employs
the BDG2 [20] open data set.
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4.4.1 Hierarchies

Spatial hierarchies are defined by hierarchically clustering the prediction target time series,
i.e., electricity demand. This step is carried out employing the Ward variance minimization
algorithm [202]. The obtained hierarchy is reduced in size by cutting the tree using a defined
distance threshold over visual inspection of the derived dendrogram. In this way, hierarchical
structures located below the defined distance threshold will be clustered together, effectively
reducing the number of connection nodes of the tree. Figure 4.10 illustrates the attained
reduced tree of the Fox site of case study 2.
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0.190242 Figure 4.10: Hierarchical spatial tree structure of the Fox site from Case Study 2

Temporal hierarchies are considered with a horizon of one day (tree root sampling frequency)
while reaching down to granularities of hourly sampling intervals (tree leaves). Aggregation
levels encompass sampling frequencies every 6 and 3 hours, resulting in a tree with sampling
frequencies of 1 day, 6 hours, 3 hours and 1 hour per k-level, as illustrated in Fig. 4.11.
Spatio-temporal trees are then obtained as a result of the dimensional combination of spatial
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Table 4.1: Characteristics of assembled hierarchy per case study

Characteristics Spatial Temporal Spatiotemporal

Case study 1 n [#] 383 37 14,171
2NECO m [#] 192 24 4,608

horizon [hours] 1 24 24

Case study 2 n [#] 140 37 1,998
BDG2 m [#] 133 24 1,200

horizon [hours] 1 24 24

and temporal hierarchies, as detailed under Sect. 4.2.1. To limit the exponential explosion
in tree size from dimensional combination, spatial trees are limited to 50 leaves in case study
2. Table 4.1 details the different characteristics of the considered hierarchies per case study.
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Figure 4.11: Hierarchical temporal tree structure for day-ahead forecasts

4.4.2 Model learning setup

In both case studies, we proceed to resample the time-series to hourly intervals. Time-series
with no cumulative missing values larger than 2 hours are considered and smaller gaps are
interpolated via a moving average using a window size of 8 hours.

Feature engineering

Data sets are then treated per dimensional batches, namely, per site, sub-site sample, or
building for spatial, spatio-temporal, and temporal dimensional hierarchies respectively.
Features are selected based on their Maximum Information Coefficient (MIC) [203] computed
in relation to the learning target. MIC is a powerful indicator that captured a wide range of
associations both functional and not while providing a score that roughly equals the coefficient
of determination (R2) of the data relative to the regression function. It ranges between values
of 0 and 1, where 0 implies statistical independence and 1 a completely noiseless relationship.
The advantage of using MIC for feature engineering over the more commonly employed
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person correlation indicator [204] is that it captures non-linear relationships present in the
data, which deep-learning models are popularly capable of detecting. We retain features
exhibiting MIC values higher than 0.25, as electric loads can typically become quite volatile
and impede MIC values with noise.

Additionally, to feed the learner with the most relevant historical information of the predicted
target, we select the 3 top auto-correlation values per temporal aggregation level above 0.25
as model input features. If no target auto-correlation value is above 0.25, we consider the
most recent historical information, i.e., tk − 1 where tk is the first k-level time-step value of
the predicted horizon.

Both MIC and autocorrelation selection thresholds are settings that should typically be
included in the hyper-parameter optimization of the model validation phase. While evaluating
the performance of hierarchical regressors over three varying dimensional considerations and
two different case studies, this work considers the tuning of these thresholds to lay outside
of its scope, as such computations rapidly become excessively burdensome.

Data partitioning and transformation

Training and testing sets are then defined employing TimeSeriesSplit, a times-series cross-
validator of the sklearn package [205], with equal test-size in a rolling window setup.

Scaled considerations - For the hierarchical learning regressor defined in Sect. 4.3.1, we
proceed to standard normalize the data per batch using batch-specific available historical
information such that each batch-scaler is first fitted to the current, and past, training set.
The fitted-scaler is then employed to transform batch-specific test sets, as depicted by Fig.
4.12. This process avoids data leakage situations, which refers to the inadvertent use of data
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Figure 4.12: Data partitioning, transformation and covariance matrix estimation setup

from test sets, or more generally data not available during inference while training a model.
This typically occurs when the data is normalized prior to partitioning for cross-validation,
i.e., by performing smoothing or normalization over the whole series before partitioning
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for training and testing [206]. While it benefits the performance of (deep) neural networks
to normalize input features and predicted target, i.e., from unscaled yx to scaled yz, this
shatters the hierarchical relationship of the regressors’ outputs; thus, affecting the soundness
of the coherency loss-function. To integrate the coherency loss function in such a setting,
hierarchical relationships of predicted values ŷz are restored by reverse transformation prior
to coherency loss calculation. The obtained reversed-scaled prediction ŷx is reconciled to ỹx

following Eq. (4.12) and is finally re-scaled to ỹz to calculate the coherency loss function
against its original predicted self ŷz.

Unscaled considerations - For the structural hierarchical learning regressor defined
in Sect. 4.3.3, a priori normalization of training and testing sets is not required. We
employ the heterogeneous variance approximation of the covariance matrix, which displayed
good prediction performances in Ref. [161]. The heterogeneous variance includes separate
variance estimates for each node. With the example hierarchy of Fig. 4.2 this gives
Σhvar = diag(σ2

11, σ2
21, σ2

22, σ2
31, . . . , σ2

36). The covariance matrix is recursively estimated in
the test sets. For the first batch training, we employ the identity covariance estimate id as no
forecasts are yet available. Each batch training i then comes with a new covariance matrix
estimate Σi that is employed in the coherency loss function of the next training set i + 1.
This setup echoes the adaptive covariance matrix estimation proposed by [178] employed
for temporal hierarchies, anchored here quite organically in the learning process of neural
networks.

Coherency settings

The estimation of the covariance matrix is performed over test sets. For the first batch
training, we employ the identity covariance estimate id as no forecasts are yet available. Each
batch training i then comes with a new covariance matrix estimate Σi that is employed in
the coherency loss function of the next training set i + 1, see Fig. 4.12. This setup echoes the
adaptive covariance matrix estimation proposed by [178] employed for temporal hierarchies,
anchored here quite organically in the learning process of neural networks.

Designing hierarchical regressors

We select deep neural network regressors to best serve the benchmarking of hierarchical-
coherent forecasts. Such machine-learning regressors possess well-developed packages sup-
porting custom implementations that serve our approach well. The regressor is structured
as a series of sequential layers designed according to three predominant features: partition
widths, sequential layer depth, and topological bridges (weights). Each partition is designed
as a series of sequential layers decreasing proportionally in size, from the defined input layer
width w1p to the desired output dimension wD, such that

wip = (w1p − wDp) · i

D
, (4.41)
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defines a partition’s width in function of its design depth D. The subscripts i and p stand
for the sequential layer depth and sequential layer index respectively where i ∈ [1, ..., D] and
p ∈ [1, ..., P ]. Aggregating the partitions together in the regression model then produces
n forecasts, ensuring that

∑
p wDp = n. We select the aggregated number of features per

partition as the input layer width w1p.

Structural regressor specifics - Between each sequential partition, we further introduce
batch normalization and dropouts, both serving different purposes. Batch normalization is a
technique to standardize activations in intermediate layers of deep neural networks across
mini-batches. It has demonstrated improved accuracies and faster convergences due to its
stabilization of the learning process [207]. Additionally, introducing batch normalization
allows the in and outputs of the regression model to remain unscaled, thus retaining the
hierarchical structure of the coherency-loss function. This is an essential design improvement
from Ref. [161], which allows the tackling of observed faulty-coherency learning engendered
from scaled trees. Dropout is a technique introduced by N. Srivastava et al. [208] designed
to prevent overfitting by combining exponential numbers of combinations of neural network
architectures efficiently. The term “dropout” refers to dropping out units of a neural
network. Dropped-out units are removed from the network, along with all their incoming
and outgoing connections, thus producing a thinned network. In essence, dropout simulates
model assembling without creating multiple networks [209] while increasing convergence
time. Topological bridges are then established between neurons of initially disconnected
partitions following the presented connections of Sect. 4.3.3, namely disconnected (disc),
bottom-up (bu), top-down (td), and bottom-up top-down (butd).

The optimal number of layers of the model is selected heuristically based on prediction
performances while increasing step-wise the network’s depths starting from shallow 1-layer
perceptrons. This allows the selected architecture to serve an "as simple as possible yet
as complex as necessary" design. Model hyper-parameters are later tuned over a concise
grid encompassing loss function parameter α, activation functions, and dropout fraction,
further improving the performance of the model. These tests resulted in the design of a
deep neural network of 3 layers, leveraging sigmoid activation functions and dropout ratios
of 0.2 on all but the last layer favoring a linear activation and no dropouts, and a retained
α coefficient value of 0.75 The presented models of Sect. 4.3 were implemented in Python
using the TensorFlow package [210].

4.5 Results and discussion

4.5.1 Hierarchical learning

We describe the outcome of the implementation of the hierarchical learning regressor here over
spatial, temporal and spatio-temporal hierarchical structures per case study. In particular,
we evaluate the accuracy and coherency of the forecasted building loads outlined in an
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annotated heatmap and bar plot respectively, where the presented coherency loss relates
solely to the output of the forecasting method, i.e., reconciliation referred to None, as
reconciled forecasts all possess null coherency losses. Evaluated forecasting methods cover
the independent (base), multi-task, and hierarchical forecasting methods presented under
Sect. 4.3.1. Hierarchical forecasting and reconciliation methods each consider the covariance
approximations presented under Fig. 4.5, i.e., ordinary least square (id), structural (str),
heterogeneous variance (hvar), homogeneous variance (svar), shrunken covariance (cov)
and shrunken k-level covariance (kcov). Necessary computational resources inherent to the
forecasting methods are also discussed.

Case study 1 - 2NECO

Spatial - Performances of spatial hierarchical forecasts are presented under Fig. 4.13, where
illustrated hierarchical losses showcase svar as the best hierarchical forecast performer, with
and without reconciliation. The lowest hierarchical MS3E originates from base forecast
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Figure 4.13: Spatial hierarchy forecasting performance of case study 1. The best accuracy
performer is highlighted by a red rectangle.

reconciled with id covariance matrix approximation, while hvar and kcov also notably perform
quite poorly for this forecasting method. Overall, the performance of the forecasts seems to
rely more on the selected forecasting method rather than their reconciliation approaches.
Coherency losses seem in line with expected results; base forecast is showcased as the most
incoherent outcome, holding coherency errors ranging up to 1.783e5 kWh, while multi-task
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and hierarchical regressors score MS3Es of 36 kWh and 16 kWh (on average) respectively.

Temporal - Temporal hierarchical forecasting performances, on the other hand, portray
a much different behavior. As illustrated by Fig. 4.14, it is here the base and multi-
task regressors that possess the lowest hierarchical losses, with 1.232e6 and 1.116e6 kWh
respectively. The poorer performer without reconciliation in this setup is svar, with an
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Figure 4.14: Temporal hierarchy forecasting performance of 40 buildings from case study
1. The best accuracy performer is highlighted by a red rectangle.

MS3E of up to 3.23e6 kWh. Extreme poor performances are noticeable for the cov and
kcov reconciliations of id and svar forecasting methods. Overall, the performance of the
forecasting methods here seems also more driven by the considered forecasting method than
reconciliation. In terms of coherency, the str forecast exhibits the most coherent outputs
next to the simpler base method with MS3Es of 4.43e4 and 6.13e4 kWh respectively. Other
forecasting methods then follow featuring inconsistency errors ranging between 2.72e5 kWh
and 1.59e6 kWh.

Spatio-temporal - Finally, spatio-temporal forecasting performances exposed in Fig. 4.15
reveal contrasting outcomes compared to previous hierarchies. First, all cov and kcov recon-
ciliations here perform extremely poorly, irrespective of the forecasting method employed,
with hierarchical losses ranging between 1.57e6 and 2.62e6 kWh. Similarly to the temporal
hierarchy, base and multi-task forecasts perform overall better than hierarchical ones. The
multi-task regressor without reconciliation is showcased as the best performer in this setup
with an MS3E of 3.187e5 kWh. It can notably be observed here that all hierarchical and
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Figure 4.15: Spatio-temporal hierarchy forecasting performance of 41 buildings from case
study 1. The best accuracy performer is highlighted by a red rectangle.

multi-task forecast reconciliations do not improve the accuracy of their original forecast. Ad-
ditionally, exposed performances here display a much stronger dependency on the considered
reconciliation approach than forecasting.

Concerning coherency losses, spatio-temporal hierarchies produce two distinct performances;
where base and multi-task forecasts exhibit inconsistencies of 1 order of magnitude lower
than all hierarchical ones, i.e., 3.255e4 kWh against 1.878e5 kWh on average.

Case study 2 - BDG2

Spatial - Concerning case study 2, the spatial hierarchical forecasting performance presented
under Fig. 4.16, depicts noticeable variations from case study 1. Here, the base case
exhibits the most accurate forecast, although at the cost of higher inconsistencies across
the tree. Multi-task forecasts followed by structural, str, hierarchical ones both produce
the most coherent outcomes. Surprisingly, while the multi-task forecast is trained without
coherency information, its forecast displays the best coherency performance in this scenario.
Overall, the best forecast accuracy is obtained from base forecasting reconciled with the cov
approximation, while the worst performer for this scenario is the cov hierarchical forecasting
with either kcov or hvar covariance approximations. It displays hierarchical MS3Es ranging
from 611.5 to 1.727e3 kWh and coherency MS3Es varying between 0.156 and 245 kWh.
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Figure 4.16: Spatial hierarchy forecasting performance of the Fox site of case study 2. The
best accuracy performer is highlighted by a red rectangle.

Temporal - The averaged temporal hierarchical forecast performance of 66 buildings from
the Fox site is exposed under Fig. 4.17. Forecasting performances are overall significantly
worse than those of spatial-hierarchies, with hierarchical MS3Es now ranging between
1.164e3 and 6.327e4 kWh, while coherency losses fluctuate from 180 to 6.213e4 kWh; an
order of magnitude about 3 times higher than temporal trees. Here, the best-performing
forecast belongs to the multi-task forecast with no reconciliation, which also displays the
highest inconsistency score. The lowest performing forecast interestingly resides with the id
reconciliation of that same forecast. The most coherent forecast produced for temporal-trees
peculiarly originate from base forecasts, which neither share information across the hierarchy,
nor possess coherency-knowledge. Other hierarchical forecasts produce coherency losses
ranging between 2.120e3 and 2.416e4 kWh.

Spatio-temporal - Lastly, the forecast performance of spatio-temporal structures considering
50 buildings from the Fox site is presented under Fig. 4.18. Similarly to the temporal-tree,
hierarchical losses display much poorer performances compared to their spatial antecedent,
with MS3Es ranging between 1.485e3 and extreme 9.57e9 kWh values, while coherency
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Figure 4.17: Temporal hierarchy forecasting performance of 66 buildings from the Fox site
of case study 2. The best accuracy performer is highlighted by a red rectangle.
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Figure 4.18: Spatio-temporal hierarchy forecasting performance of 50 buildings from the
Fox site of case study 2. The best accuracy performer is highlighted by a red rectangle.
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Table 4.2: Averaged computing times (in seconds) of evaluated forecasting methods

tree size forecasting method
n base multi-task hierarchical

Case study 1 14,171 3.6 392 397.3
383 34.9 90 96.6
37 12.2 12 13

Case study 2 1,998 2.5 70 77
140 22.5 70 80.6
37 2.2 20 19.3

losses vary from 391 to 7.603e4 kWh. Mirroring the results from temporal-hierarchies, the
forecasting technique withholding the lowest hierarchical loss is the multi-task learner without
reconciliation which is also characterized by the highest coherency loss. A series of extreme
poor performers are identified as a result of the cov reconciliation over all hierarchical-
learners. Contrary to temporal-tree, reconciled forecasts performances here seem driven
by the reconciliation method rather than the considered forecasting technique. Coherency
scores display overall poor performances across all hierarchical and multi-task learners with
losses ranging 2 orders of magnitude higher than the best case base regressor.

Computational prospects

Computational performances of forecasting approaches are here considered, providing a
complete overview of evaluated methods. Table 4.2 presents the computation time of each
forecasting method averaged over all training batches. Two anticipated findings can be noted
from it.

First, the computing time is positively correlated to the size of the hierarchy. One exception
seems to deviate from that rule in case study 2, between tree sizes of 1,998 and 140, which
display relatively close computing times. Second, smaller regressors, i.e, base, train faster than
larger ones, namely, multi-task and hierarchical. Both these observations can be explained
by the increasing number of weights to update in the larger regressor. The more weights to
update, the longer the training will take.

Although independent regressors seem attractive due to their noticeably faster computing
times, it should be noted that the displayed performances depict only the average computing
time of a unique independent regressor. Should such regressors not be trained and tested in
a distributed computational setup, then these numbers would need to be multiplied by the
hierarchy size to obtain an appropriate estimation of the required computing period.
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Analysis

Although presented case studies bear varying results, these also display a number of com-
monalities supporting interpretation and analysis, which are here discussed.

Hierarchical-coherency value
Unifying the forecast of hierarchical structures under one regressor possesses attractive data-
efficient prospects, i.e., cross-tree information exchange combined with embedded-structural
learning provided from coherency loss. However, produced outcomes from hierarchical-
coherent learners were only found to bring added value in one setting, namely, the spatial
hierarchy of case study 1. This can be explained by the similarities in building loads of case
study 1, which encompassed time series of similar patterns and dynamics, all originating from
residential constructions, while case study 2 included a broader collection of construction
types covering offices, college classrooms, lodging, warehouses, and parkings. Such profile
diversities are challenging to learn from limited measurements, particularly for a large model
involving considerable numbers of regression weights.

It can consequently be found that while the results of the spatial hierarchy of case study 1
are promising, these unveil, in fact, important challenges hierarchical forecasting must face.
While some promising performances were observed, hierarchical forecasting was seen to face
three important challenges put to light by our results;

(i) A unified but arduous learning process
Although the outcome of hierarchical learning demonstrated promising performances,
identified in the spatial hierarchy of case study 1, the resulting number of weights to
update and possibly conflicting forecasted outputs can become burdensome, i.e., as
unveiled by the performance of the spatial hierarchy of case study 2. Indeed, with
hierarchical regressors growing in size, their number of neuron connections increases by
an exponential factor of 2. This renders the learning process of these models laborious
as more data should support the learning of larger number of weights. Additionally,
multi-output regressors are faced with the challenging task of predicting numerous
outcomes which might exhibit highly different, possibly antipodal, dynamics. This also
affects the learning process, which might struggle to identify these discrepancies from
limited training data.

(ii) Induced coherency over accuracy
Overall, temporal hierarchies of the considered case studies were seen to perform
significantly worse than spatial ones. This significant change can be attributed to the
combination of two factors. First, the longer forecasting horizon of temporal trees
compared to spatial ones, i.e., 24 hours against 1, implies that forecasts must rely
on fewer data and less recent information while dealing with higher uncertainties,
thus negatively affecting their performances. Secondly, building electrical loads are
endowed with a periodicity that falls precisely on the forecasted horizon of 24 hours.
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This consequently leads to little variations in the forecasted element of its hierarchy.
And, while this characteristic is desirable for ordinary forecasting, the addition of the
coherency-loss function, although weighted by the α coefficient - see Eq. (4.35), may
push the regressor to produce constant predictions, tailored more to coherency than
accuracy, thus resulting in unrealistic and inaccurate predictions.

(iii) Faulty coherent-learning from normalized trees
In some settings, hierarchical-coherent learning displayed particularly poor perfor-
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Figure 4.19: Illustration of faulty coherent-learning from normalized trees. The predicted
(black) versus true (dashed grey) electric loads of the Fox_assembly_Lakeisha temporal
hierarchical tree showcase the mirrored top-level forecast predicted in the negative domain.

mances from extreme hierarchical and coherency errors, i.e., temporal and spatio-
temporal hierarchies. Following further inspection, it was noticed that these poor
performers all withheld abnormal top-level forecasts which mirrored their expected
true values in the negative domain, as illustrated in Fig. 4.19. These undesirable,
yet peculiarly common, results can be traced back to the normalization of the target
hierarchical time series. Indeed, while neural networks benefit from normalized targets,
serving fair and balanced learning across the network’s weights, this also shatters the
coherency structure of the tree. The existing setup, detailed in Sect. 4.4.2, proceeds
to tackle this issue by reverse-transforming these target values prior to the coherency
constraint computation and re-scaling them for coherency loss calculation. This ensures
both loss functions, namely hierarchical and coherency, see Eqs. (4.33) and (4.34)
respectively, to operate on akin normalized time series. However, coherency learning
can eventually produce adjustments larger than the original normalization ranges,
e.g., lowering the top-level forecast ŷz fully into the negative domain such that the
reverse standard transformation ŷx = ŷz · u + s, where u and s refer to the mean and
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standard deviation of the fitted time series respectively, also produces a fully negative
reverse-scaled ŷx. This evidently improper outcome consequently negatively impacts
both the learning and the forecasting performance of the regressor and should be dealt
with in future work.

4.5.2 Structural learning

We describe and discuss the outcome of the structural hierarchical learning regressor im-
plementation here. In particular, we evaluate the accuracy and coherency of case study 2
(BDG2) building load forecasting outlined in varying heatmaps allowing insights into the
performances of the forecast across the tree and forecasting methods. The improvement ratio
brought by the coherency loss function is also highlighted both for accuracy and coherency
forecast performances.

Forecast accuracy

Figure 4.20 presents the forecasted accuracy of all evaluated methods over the tree nodes,
sorted by their performances across the overall hierarchy. Both extreme values of the heatmap
present the tree partitioning with bottom-up (bu) connections and structural hierarchical-
coherent loss function (shc) as the better performer across the forecasting methods, while
the k-level partitions with top-down (td) topological bridges and shc loss function performs
the worst, by an impressive 8 order of magnitude RMS3E difference. The notable better
performers possess RMS3Es ranging from 42 to 100 kWh and all bear tree partitions that
are either bridged in a disconnected (disc) or bu fashion. These two leading contenders each
perform best with the inclusion of the coherency requirement in the loss function, i.e., shc
versus sh. On the other end of the heatmap, we can regroup flawed performers ranging
from 3.4e5 to 2.1e8 kWh RMS3E. The structural characteristics of these networks display
k-level, cut-tree, and full partitions coupled to varying topological bridges, mostly td and
bottom-up-top-down (butd).

The tendencies that can be extracted from Figure 4.20 expose that (i) structural models with
fewer connections perform overall better than models with larger numbers of connections,
and (ii) that within good performers, the inclusion of coherency information in the loss
function improves the performance of the overall accuracy of the forecast.

Indeed, considering the number of connections per topological-design places the tree partition
as the one with the least amount of connections, followed by cut-tree, k-level, and full
partitions. Inter-partition connections follow the logical increasing ordering of disconnected,
bu/td, and butd. It is consequently observed that tree partitions perform best as they result
in narrower layers compared to cut-tree and k-level ones. However, the least connected model
design, tree-disc, stands as the second best performer, thus demonstrating that some amount
of information exchange between hierarchical layers, here bu, is valuable for the performance
of the forecast. The flawed performers exhibit similar inclinations, where k-level partitions
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perform overall worse than cut-tree ones, which disregard the connections between leaves
of dissimilar parents, thus cutting down their numbers. Then, the inclusion of coherency
information in the learning mechanism of the regressor produces improved forecasts for the
better half of the models, with the exception of a few cases, namely td and butd trees. This
will be further discussed under Sect. 4.5.2.

It can be noticed that the td connections systematically perform much worse, by at least a
RMS3E order of magnitude, than their bu counterparts, i.e., within similar layer partitionings
and loss functions. The only exception that ignores this observation is the cut-tree partitioning
with sh loss. This poorer performance of the td connection also seems to negatively impact
the performance of its derivative butd. In turn, the butd linkage exclusively performs worse
than its bu setup, in similar neural network designs. This topological bridge design, indeed,
suffers from the influence of meager td performances coupled with greater numbers of weights
to learn, in a data-limited setting.

Lastly, a few peculiar cases seem to produce results that deviate from observable trends.
The fully connected model, although possessing a larger amount of weights by design is
surprisingly not amongst the worst performers. It also displays a much more uniform
forecasting performance across its hierarchy than its neighboring k-level or cut-tree models.
Both observations can be explained by the fact that it possesses a number of connections
in a similar order to k-level and cut-tree partitions while profiting from a more uniform
design. This allows the dropout layer to reduce the network in an unconstrained manner,
thus functioning under optimal conditions. Another peculiar behavior can be examined
under the tree td with shc loss which displays few, but impacting, poor performances across
its hierarchy, thus negatively affecting its mean accuracy performance.

Forecast coherency

While information exchange across a hierarchy in a forecasting setting has demonstrated
accuracy gain potentials, the coherency improvements of the produced hierarchical time
series must be evaluated. Figure 4.21 subsequently presents the coherency RMS3E, as defined
by Eq. (4.39), sorted across evaluated hierarchical model designs. The coherency errors can
be compared to their associated accuracy biases, thus providing a complete overview of a
method’s performance.

The models producing the most coherent forecast range between 5.2e2 and 9.7e2 kWh
RMS3E and all benefit from tree partitions, either connected in a bu, butd, or disc fashion,
by decreasing order of performance respectively. These top coherency performers also relate
to top accuracy ones, with the exception of the tree-butd model. While both tree-bu and tree-
butd produce slightly more coherent forecasts without the inclusion of coherency information
in their loss functions, i.e., sh, compared to their coherent counterpart, shc, the coherency
MS3Es are fairly similar, and theses differences can here be neglected.
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Figure 4.21: Heatmap of the accuracy and coherency Root Mean Structurally-Scaled Square
Error (RMS3E) across the forecasting methods. Structural hierarchical forecasting methods
described against the y-axis are designated by their respective partition, topological bridge,
and considered loss function, and are here sorted according to their forecasted coherency.

The most incoherent forecasts are here produced by models with k-level partitions and td,
butd, or bu linkages, ranging between 1e19 and 1.3e7 kWh RMS3Es respectively. Models
including coherency information in their learning process here also display poorer coherency
performances but are, however, associated with extremely poor accuracy performances.

A surprising observation showcases the fully connected model, full, and cut-tree-butd with
coherency losses as some of the better coherency performers, in spite of their poor accuracies
and large number of weights to learn. Generally, however, coherency performances display
similar tendencies as their associated accuracy ones.
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Coherency information value

Finally, to formally investigate the value brought by coherency information in the learning
process of structural-hierarchical models, we evaluate the relative performance ratio between
sh and shc loss functions of similar models. The improvement ratios for accuracy, acc, and
coherency, coh, are defined as

racc = Lsh − Lsh
coh

Lsh
, (4.42)

rcoh = Lsc − Lsc
coh

Lsc
, (4.43)

where r is the improvement ratio defined by the difference between structural-hierarchical
losses Lsh or structural coherent ones Lsc and their respective counterparts with the inclusion
of coherency in the learning mechanism of the model, i.e., Eq. (4.40). This difference is
then normalized by the reference loss, which does not consider coherency information in its
loss function, i.e., Eq. (4.37). As such, positive improvement ratios relate to a performance
improvement brought by coherency knowledge, whereas negative ratios point to performance
regressions. This echoes the relative root mean square error (RRMSE) [176] evaluation
metric typically employed to estimate the value brought by a reconciliation approach to a
base forecast. The main difference in this setting is that instead of a common base forecast,
we consider the structural-hierarchical forecast performance from each individual model
architecture. This allows a relative performance evaluation per model architecture of the
inclusion of coherency information in the learning process of the regressors.

Figure 4.22 presents the improvement ratios categorized by their network design characteris-
tics, i.e., per partition and topological bridge arrangement. Both accuracy and coherence
improvements brought by the coherency loss only display four cases of performance regression,
three of which are similar: k-level-bu, k-level-td, and tree-butd.

Models k-level bu and td are extreme poor performers both in accuracy and coherency and
can thus be disregarded in the remainder of the examination, together with k-level butd.

The tree-butd and tree-bu designs are the two best coherency performers, with equivalent
5.2e2 to 5.7e2 kWh RMS3Es. The accuracy of the tree-butd model, however, is more
modest, with 1.4e4 and 1.9e4 kWh RMS3E for sh and shc corresponding losses. Due to the
equivalent, top-performing coherencies of these models, their obtained negative coherency
improvement ratios can thus be considered null and consequently disregarded. The remaining
network characteristics all exhibit improved coherency forecasts thanks to the inclusion of
the coherency loss in their learning procedure. This significant finding places structural
hierarchical coherent learning as a valuable method, bringing forecasts one step closer to
coherency, prior to reconciliation.

Regarding the accuracy improvements brought by the coherency loss, the tree-td design
demonstrates an interesting behavior where coherency is improved but accuracy deteriorates.
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Figure 4.22: Value ratio brought by the coherency loss function for (a) the accuracy, and
(b) coherency performances of the forecast.

By looking further into the accuracy performance of this method in Fig. 4.20, it was noted
that the model produced overall good accuracies across its nodes with the exception of a
few extreme cases, which significantly impact the overall performance of the forecast. As
such, the shc loss function consequently pushes the forecast to a more coherent outcome
than its sh equivalent, at the cost of a poorer accuracy across the hierarchy. A similar, but
less pronounced, outcome can be observed for the tree-butd network, which maintains a
similar coherency score but tapers its accuracy by adjusting fewer excessive forecasts. The
coherency value investigation consequently allows us to claim that coherency knowledge
improves the accuracy of produced hierarchical forecasts provided individual forecasts are
generated within reasonable accuracy limits.

4.6 Summary

Ensuring coherent previsions of the future is crucial to support better informed and aligned
decision-making processes across hierarchical structures. And while previous works have
attempted to exploit spatio-temporal hierarchical reconciliation using disparate steps [164],
[171], [193], [194], no common formulation of multi-dimensional hierarchical structures had,
to this date, been proposed. Furthermore, traditional hierarchical forecasts use disjointed
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forecasting and reconciliation processes that inherently deprive forecasting algorithms of (i)
the benefits of information transfer across (hierarchical) models, as well as (ii) capitalizing
on the coherency requirements of the produced forecast. This work proposes a solution to
these shortcomings.

First, by formally defining multi-dimensional hierarchical structures, it extends conventional
hierarchical forecasting methods, allowing the exploitation of spatio-temporal structures
unified under a common frame, i.e., a unique summation and covariance matrix resulting
from spatio-temporal function composition.

Second, rather than considering reconciliation a posteriori to forecasting, this work brings
together independent forecasting models into a unique machine-learning regressor embedded
with coherency information. This provides the regressor with (i) a global overview of
information across its hierarchy, permitting a cross-dimensional and data-rich learning
process, while (ii) learning coherency-requirements as a soft constraint thanks to a custom
hierarchical-coherent loss function. The approach can notably be tuned thanks to an
adjustable α coefficient to either consider multi-task, hierarchical or only reconciliation in its
learning process. Coherency of the produced hierarchical forecasts can then be enforced as
a hard constraint using established reconciliation technics. The outcome is a unified and
coherent forecast across all examined dimensions, granting a common view of the future
serving aligned and better decision-making. The approach provides a data-driven solution
to assemble diverging parts of an organization and blend information from varying sources,
hierarchy levels, or scales [164].

Third, we evaluated our hierarchical learning approach on two different case studies, across
all hierarchical dimensions, considering established state-of-the-art reconciliation approaches.
Results revealed spatial hierarchies to perform best while temporal and spatiotemporal
structures suffered from coinciding forecasted horizon with the periodicity of electric loads
from buildings. Although the value potential of hierarchical-coherent learning was observed
in case study 1, the performances of the approach were quite disparate in other settings.
In this regard, a comprehensive analysis was reported revealing important challenges the
approach faces. In particular, dealing with predicted outputs of conflicting trends while
fitting an exponentially large number of weights to the model is a recurring fragility of the
approach. Additionally, correcting faulty coherency training from normalized tree structures
is another frailty future work may tackle.

Finally, to undertake the above shortcomings, we investigate custom neural network designs
echoing the structural topologies of hierarchies. The approach notably exploits layer partitions
producing distinct model components tailored to node-specific elements, while sharing specific
information across the model from varying topological bridges resulting in 13 different model
architectures. Batch normalization is notably included between layers of the model, providing
structural-scale robustness to the learning process, while exempting input hierarchical time
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series from prior normalization and its identified subsequent biased coherency learning. We
investigate all designs under two novel structurally-scaled learning functions, i.e., structural-
hierarchical loss and structural hierarchical-coherent loss, leveraging the mean structurally-
scaled square error (MS3E) [161], and subsequently entitle our approach structural hierarchical
learning. The varying neural network designs are evaluated over the accuracy and coherency
performances of their produced forecasts from the BDG2 [20]. Models with tree partitionings
notably performed best, particularly coupled to bottom-up and disconnected topological
bridges, for both structural-hierarchical and structural hierarchical-coherent losses. Links
between the performance of a model and its network topology specifically revealed that (i)
structural models with fewer connections performed overall better than models with larger
numbers of connections, and (ii) that the inclusion of coherency information in the loss
function improved both the accuracy and coherency performances of forecasts, provided
individual forecasts were generated within reasonable accuracy limits.

4.6.1 Outlooks and future research

This study proposes a novel hierarchical learning method yielding important implications
for forecasting theory. Indeed, by directly forecasting hierarchies this work opens the door
to leveraging multi-scale and multi-frequency measurement information driving improved
forecast accuracies. It notably expands and unites traditionally disjointed methods together
providing a path toward a novel generation of forecasting regressors. Our work confirms
the value potential brought by coherency information in structural hierarchical regressors
and places structural hierarchical learning as a successful hierarchical-forecasting method,
bringing forecasts one step closer to coherency, prior to reconciliation. By putting forward
tailored, ingenious architectures of neural networks we effectively reduced hierarchical
model complexities while serving advanced and coherency-aware hierarchical forecasts. The
approach could notably support domains such as retail, stock management, and distribution
networks, thanks to improved and more consistent predictions across all levels of considered
hierarchies.

Meanwhile, numerous directions for future work can already be distinguished, as the approach
opens the door to a variety of interesting investigations. For instance, one could imagine
evaluating the effect of existing patterns on the performance of the forecast across the
hierarchy. To this end, the relationship between cluster validity scores of energy patterns
per node could be compared to their associated forecasting performances across varying
hierarchical structures and sizes. Also, exploring the robustness of hierarchical learners to
varying levels of disturbance could provide compelling insights to energy network operators
seeking stable estimators. Presumably, the regressor could give more importance to the less
volatile predictions of the hierarchy and compensate input disturbances by leveraging its
coherency constraint. Further, formally examining how the approach scales against larger
numbers of model weights, hierarchy nodes, or leaves, would provide a complete overview
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of the computing performance of the method in a real-world deployment setting. Such
investigations, while laying outside the scope of this work, comprise interesting pathways for
future studies. Finally, comparing hierarchical learning performances against established
models, i.e., grey- or white-box, that benefit from the inclusion of domain expertise to tackle
targeted behaviors, such as seasonality, advances another interesting endeavor for future
work.

4.6.2 Linking coherent forecasts with decision-making applications

This chapter has repeatedly stated that providing coherent forecasts at multiple levels of
aggregation supports better decision-making processes. Let us showcase how, in a smart-grid
setting, this is put into practice. Hierarchical and distributed optimization approaches
are particularly adapted to leverage information at varying levels of the network (spatial
hierarchy) and/or varying horizons (temporal hierarchy) to profit from decomposed, smaller,
problems coordinated towards a consistent strategy across its considered structure.

For instance, Saad et al. [211] employed hierarchical distributed model predictive control to
enable the optimization over both long (upper-layer) and short (lower-layer) time-horizons
of smart grids. The upper layer worked to produce operational strategies for the grid
operator and gave guidelines to the lower layer. Instead, the lower layer focused on high-
power variability periods and had the responsibility to coordinate centralized optimization
objectives and physical power system constraints. In another study, Jiang et al. [212]
adopted a hierarchical optimization method to separate the coordination of both demand
response and distributed energy resource management in a smart-building-to-grid setting.
Load demands were first requested and scheduled by users, then distributed generation and
storage utilities met the required demand with power.

In both settings, coherent forecasts can support the decision-making process by either
or both (i) providing more accurate level-specific forecasts and (ii) producing coherent
information dispatched across the energy system considered. These particularly serve
multi-layer hierarchical optimization systems which efficiently deal with multi-vision control
objectives while incorporating multi-level information. The next chapter presents such a
prescriptive analytical application where centralized optimization problems are distributed
across disconnected spatial scales of the urban energy system.
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5.1 Preface

Shifting our energy systems to resilient, and sustainable processes has never been more
important than today. To tackle the global climate crisis and meet net-zero targets set by
the European Green Deal [3], in line with the Paris agreement [4], countries around the world
urgently need to decarbonize their economies by 2050. This requires them to simultaneously
reduce their current energy demand while significantly increasing the penetration of renewable
energy sources in decentralized energy systems [5]. Recent statistics reveal the building
sector as the largest global energy-related CO2 emission contributor [214], consequently
placing it as the primary policy target of multiple regions of the globe [215]–[218]. A reliable
integration of decentralized energy generation systems into the grid, such as photovoltaics,
wind energy converters, geothermal heat pumps, or biomass-driven combined heat and
power [5], is, however, challenging due to the variability of weather-dependent sources
[219]. Couplings to energy storage utilities with robust and flexible control strategies are
subsequently required to ensure energy demand and supply meet. To increase the reliability
of renewable and sustainable energy systems, smart grid technologies and demand-side
management approaches have been exploited over the last decades to profit from available
energies more efficiently. Thereby, peaks in electricity demand can be shifted to periods
where energy from intermittent renewable sources is available [220].

The concept of energy hubs and communities emerged from these ideas, to create autonomous
areas optimally supplied with multiple energy sources. Energy communities are defined by the
European Commission as a “legal entity which is effectively controlled by local shareholders
or members, generally value rather than profit-driven, involved in distributed generation and
in performing activities of a distribution system operator, supplier or aggregator at a local
level” [221]. They form a combination of distribution, conversion, and storage technologies
controlled to supply communal consumers of energy. Such consumers represent individual
households or apartments but also large building complexes or district facilities. Typical
energy communities extend over the urban energy system as districts. They integrate
renewables such as photovoltaics, wind turbines, solar thermal collectors, or hybrid collectors
with buildings and are connected to local and regional scale distribution technologies such
as smart (micro-)grids and district heating & cooling networks [222]–[224]. The design of
such communities is not a trivial task and necessitates computational methods gathering
multiple energy sources and technologies while optimizing urban to user-level energy flows
[225]. If done correctly, however, the pooling of communal resources into energy planning has
demonstrated significant energetic and economical gains [226]. For instance, Orehouning et al.
[225] showed that combining energy supply and local energy storage systems together lowered
energy demand peaks on the electrical grid and reduced the overall consumption of the
neighborhood. Maroufmashat et al. [227] demonstrated that developing synergies between
up to three energy hubs resulted in significant economic and carbon emission reduction gains,
i.e. 11% to 29%, as well as a 13% reduction in natural gas consumption.
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The inherent challenge in planning and controlling such systems stems from the stochastic
processes driving its three founding pillars, i.e., (i) investment strategies, (ii) renewable
productions, and (iii) energy demands. The sources of these uncertainties can be attributed
to either of these distinct phenomenons, i.e., (i) economic circumstances, (ii) climate
conditions, and (iii) building occupant behaviors. Economic and climate-related uncertainties
are important factors commonly considered in the design of urban energy systems [228].
These provide a uniform setting for the planning of energy districts and have been amply
investigated in recent years [229]–[231]. Occupant behavior, on the other hand, is a notoriously
heterogeneous constituent of building energy systems. Driven by multiple contextual,
sociological, or psychological factors, they are exceedingly tedious to characterize [49] and
have consequently become the leading source of uncertainty in predicting building energy
use [50], [51] contributing to the so-called building performance gap [52]. These behaviors
commonly include interactions with thermostats, plug-in appliances, operable lights, windows,
or blinds. The control of window blinds by occupants may be motivated by factors such as
the desire to either secure privacy or maintain view or a sense of connection to the outdoors
for instance [51].

Under these circumstances, urban energy planners typically leverage energy demand mea-
surements induced from occupant behavior to exploit samples of identified behaviors in the
design phase [232]. It becomes, however, increasingly precarious to develop systems resilient
to behavioral variations that are likely to come from either demographic or behavioral
transformations [233]. Subsequently, there exists, to this date, no study examining the
impact of varying behavioral groups on strategic urban energy planning.

This shortcoming is typically due to the scale and difference in modeled details between
building to room-level energy management problems and urban energy planning ones [54].
Energy planning problems at the neighborhood, city, or country scale typically need to
reduce the encompassed dimensionality through spatial and temporal aggregations to render
resulting optimization problems computationally tractable. For example, the planning of a
residential neighborhood would consider both a typical, representative, year of operation,
to reduce the temporal dimension (horizon) of the problem, as well as aggregated energy
demands from clusters of buildings or apartments to simultaneously downscale its spatial
granularity [234], [235]. Yet, these necessary simplifications deprive planners from exploiting
the full extent of available synergies between prosumers of energy communities. Activating
untapped energy flexibility potentials such as demand-side management in the planning
phase could significantly improve system efficiency and reduce planning costs. The question
of relevant scale identification in urban energy planning is in fact, not a new one. Cajot et
al. [55] stated that it should be regarded rather as an open question, for future research
to provide planners and decision-makers with rigorous and systematic tools necessary to
quantify the gains and losses of different boundaries.
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5.1.1 Motivation

In this context, it becomes clear that unifying occupant and building-level information to
the urban energy infrastructure can uncover additional reductions in energy demands and
carbon emissions while allowing the design of energy communities resilient to the intrinsic
uncertainty induced by occupants.

First, to bring these, so far, disconnected scales together, we incorporate detailed spatial
information from buildings and their associated occupants into the scope of an urban energy
planning problem. In particular, calibrated building models coupled to electricity base
loads and set point temperature time series are exploited to include granular occupant-level
information in the energy system. Second, a stochastic programming formulation is employed
to account for the uncertainty present in the system and identify, in consequence, a resilient
energy strategy leading to less costly and energy-demanding planning solutions. For this,
climate, economic, and occupant-related uncertainties are incorporated as varying stochastic
scenarios into the problem. Then, energy community design variations brought by encom-
passed uncertainties are subsequently examined to evaluate their respective impact and
associated relevance in the context of urban planning problems. This particularly elucidates
the entitled interrogation "Can occupant behaviors affect urban energy planning?". The
proposed sensitivity analysis allows a relative, and holistic, appreciation of the respective
impact of the varying uncertainties affecting the system, consequently placing the particular
study of occupant behavior in the context of other uncertainties. Finally, to ensure the
problem remains computationally tractable, we present an uncomplicated distributed opti-
mization scheme allowing our approach to scale across the urban landscape. The distributed
sub-problem architecture echoes that of typical decentralized energy management systems,
thus anchoring the problem design in a real-world operational control setting, suited for field
deployment.

In short, the contributions of this work can be summarized as four-fold:

1. We propose to bridge occupant behavior and strategic urban energy planning. By
means of an optimal energy community design leveraging identified clusters of occu-
pant behaviors along with sub-hourly calibrated building heat dynamics models, we
effectively connect granular, detailed spatiotemporal scales of building energy systems
to the coarser resolutions commonly employed for urban infrastructure planning.

2. We identify the optimal design and operation of an energy community under varying
system uncertainties, i.e., occupant, climate, and economic, built upon stochastic
programming.

3. We evaluate the impact of occupant behavior on the identified optimal design of the
system against other uncertain factors, thus answering the questions: can occupant
behavior affect urban energy planning? And, is this effect significant in the context of
other system uncertainties?
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4. Lastly, we propose an instinctive distributed optimization formulation, both securing
the computational tractability of the problem and setting the stage for the decentralized
control of the community in a real-world setting.

5.2 Energy community model

The operating limits of the energy community considered in this study are represented
by the energy systems composing the urban energy infrastructure. It comprises groups of
individual residential buildings and residents sharing communal resources for the optimal
operation and design of the overall community. To model the investigated district, we
consider three principal, and connected, modeling blocks; namely, building, grid topology,
and community-level system.

The building block encapsulates residential building utilities providing the electric and heat
loads induced by occupant behavior. The models are coupled to detailed thermal charac-
terizations of the building heat dynamics from calibrated stochastic differential equations
founded on heat transfer physical laws. This allows the optimization to leverage the thermal
inertia of buildings in the operation planning, thus activating their energy flexibility potential.
The grid topology gathers information about the low-voltage electric distribution system
connecting the residential buildings together as a community along with power-line and
transformer-level power constraints. Finally, the community system encompasses shared
utilities operating on a medium-voltage level while ensuring the overall system connection to
the high-voltage distribution grid. Figure 5.2 illustrates the energy community modeling
blocks schematic.

The behavior of devices and system constraints are modeled using mixed-integer linear
programming (MILP), more specifically two-stage stochastic programming. The technique
has been widely employed in research to formulate optimization problems as well as perform
building services energy optimizations [236]–[238]. An advantage of employing MILP stems
from the general-purpose solver packages that can be exploited.

5.2.1 Formulating conventions

The following naming convention is used in the rest of the chapter:

• An italic letter stands for a scalar variable, while a bold roman letter represents a vector,
commonly indexed over time steps. As an example, the symbols E and E symbolize
the electric energy in scalar and vector format, respectively. These annotations are
mainly employed to differentiate design variables of devices, i.e., a single value over
the entire optimization period, with optimal control equipment variables, i.e., a vector
with one value per sample time ts over the optimization horizon H.

• We differentiate power from energy variables using the time derivative notation Ė,
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Figure 5.2: Energy community system schematic divided into building, community, and
grid topology blocks.

here expressing the electric power vector. The relationship between power and energy
can be derived using E = Ė · ts, where ts is the sampling time.

• A superscript d is employed to symbolize independent decision variables. As a result,
Qd indicates a controlled thermal energy manipulated by the optimization.

• Parameters of the model which depend on uncontrolled variables or external inputs are
pre-calculated before the optimization starts. As an example, the COP (coefficient of
performance) of the air-source heat pump is a function of ambient temperature, hence
it is pre-calculated leveraging weather measurements over a typical meteorological year.

• The nature of utility investment compels us to employ binary decision variables repre-
senting the consideration or disregard of a particular device in the energy community
design. For example, the binary decision variable χd

U takes a value of ‘1’ if the unit U
is included in the community design and ‘0’ otherwise.

• All decision variables are declared as non-negative real numbers R≥0 such that R≥0 =
{x ∈ R | x ≥ 0}.

The following sections will describe the structure of the three main model blocks, namely
the building, the grid topology, and the community block.

5.2.2 Building system

The building block considers a series of residential storage and conversion technologies
commonly employed in Dutch residential homes. Utilities considered englobe solar thermal
collectors, photovoltaic panels, storage technologies with a battery and hot water tank, as
well as thermal energy converters, i.e., a heat pump, and gas boiler. The building thermal
dynamics are implemented built upon calibrated lumped resistance capacity models, allowing
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Table 5.1: Nomenclature employed in Chapter 5: symbols

Symbol Description Unit
α constant parameter -
Ė electric power W
Q̇ thermal heat power W
Ė electric energy vector kWh
p price or cost vector e/kWh
Q thermal heat energy vector kWh
s slack variable vector -
T temperature vector K
χ existence (boolean variable) -
η efficiency -
γ power coefficient 1/h
λ random variable -
B building set -
C community system set -
Ω set of scenarios -
ω scenario index -
π scenario realization probability -
σ self discharge rate -
τ lifetime years
C capacity or thermal capacity J or W/K
E electric energy kWh
O objective term e

p price or cost e/kWh
Q thermal heat energy kWh
R thermal resistance K/W
r interest rate -
s slack variable -
T temperature K
ts time step hour
U thermal transmittance W/K or W/m2K
V volume L
H time horizon hour
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Table 5.2: Nomenclature employed in Chapter 5: subscripts and superscripts

Subscript Description U unit
b building w window

BAT battery
BOL boiler Superscript Description

ch charge clim climate conditions
COM community d decision variable
dch discharge eco economic circumstances
EL electrolyzer inv investment
FC fuel cell occ occupant behavior
gas gas opr operation
HP heat pump slk slack
HV high-voltage T vector transpose

HYD hydrogen storage tot total
LV low-voltage amb ambient
lvl levelized costs base baseline

MV medium-voltage dist distribution
nom nominal e envelope
PV photovoltaic panel h heater
SP space heating i inside

STC solar thermal collector m medium
T temperature s sensor

TES thermal energy storage sol solar

the controller to leverage the full thermal energy flexibility potential of the communal
building stock. Modeled utilities ensure occupant-driven electric loads and building thermal
conditions are met, all the while serving smart community energy management thanks to
their connection to the low-voltage distribution network. Figure 5.3 illustrates the building
model block.

Heat dynamics model

Formulating models that support the inclusion of occupant comfort needs while leveraging
energy flexibility potential requires an a priori characterization of a building’s thermal
dynamics. This allows the thermal mass of the dwelling to be exploited as a dynamic storage
asset. Conventional building control strategies do not typically consider the thermal mass
of the building in their control scheme. Typically, the thermostat is set back to a lower
temperature when the building is not occupied such that heating equipments are generally
off during these periods. However, exploiting the building mass as a thermal storage asset
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Figure 5.3: Building model block with highlighted energy carriers and connections to the
community grid.

has been shown to significantly reduce operational costs in a context of varying energy
prices thanks to load-shifting. These smart control strategies exploit the use of low-cost
off-peak electrical energy with improved mechanical heating efficiencies at times where more
favorable part-load and ambient conditions occur [239]. Additionally, the aggregation of
load shifting and load curtailment demand-side management coordinated on a neighborhood
scale delivers significant cost reductions [240], [241]. Recent study results showed that the
implementation of the demand response program significantly reduced the demand for power
during peak hours, thereby reducing the installed capacity of the combined heat and power
unit [242]. This highlights the added value brought by considering energy-flexible buildings
in the planning phase of building energy systems.

The building thermal models considered in this work are based on established lumped
resistance capacity (RC) models [243] ranging from 1st to 5th order. Model parameters
were calibrated employing the automated selection and evaluation procedure proposed and
open-sourced in Chap. 3 providing 225 calibrated models of Dutch residential building heat
dynamics.

The building inside temperature state variable T d
b , with associated building index b and time

step t, is determined with

T d
b(t) =T d

b(t − 1) + ∆T d
b(Q̇d

SP , T amb, Q̇
sol) , (5.1)
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where ∆T d
b is the incremental heat exchange between the building and ambient conditions

defined by the RC model. It is a function of the input space heating decision variable Q̇
d
SP

and weather conditions, with ambient temperature T amb and solar irradiance Q̇
sol. The

complete 5th order model is formulated as sets of stochastic differential equations describing
the building heat flows [122], here described in discrete time by

∆T d
b ≡ ∆T i , (5.2)

Interior: ∆T i = 1
RisCi

(T s − T i)ts + 1
RimCi

(T m − T i)ts

+ 1
RihCi

(T h − T i)ts + 1
RieCi

(T e − T i)ts

+ 1
RiaCi

(T amb − T i)ts + 1
Ci

AwQ̇
sol

ts , (5.3)

Sensor: ∆T s = 1
RisCs

(T i − T s)ts , (5.4)

Medium: ∆T m = 1
RimCm

(T i − T m)ts , (5.5)

Heater: ∆T h = 1
RihCh

(T i − T h)ts + 1
Ch

Q̇
d
SP ts , (5.6)

Envelope: ∆T e = 1
RieCe

(T i − T e)ts

+ 1
ReaCe

(T amb − T e)ts + 1
Ce

AeQ̇
sol

ts , (5.7)

where the subscripts i, s, m, h, and e point to inside, sensor, medium, heater, and envelope
state components respectively. For a detailed description of the models, the reader is
suggested to refer to the work of Bacher and Madsen [243]. The temperature is initiated
at the set point (Eq.(5.8)) and is kept within acceptable boundaries to maintain occupant
comfort using Eq. (5.9),

T d
b(0) = T set

b (0) , (5.8)

T set
b − b ≤ T d

b , (5.9)

where b is a buffer parameter commonly set to 0.5 ◦C.
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Battery storage

Storage devices are modeled employing straightforward state variable update relationships,
commonly used in control-oriented frameworks [236]. Although more complex and accurate
models exist, their consequent additional computational cost should be avoided for large
two-stage optimization problems such as urban energy planning. For instance, the battery
BAT model employed here ignores degradation from charge and discharge cycles as well as
synchronous charging and discharging behaviors.

χd
BAT · CBAT ≤ Cd

BAT ≤ χd
BAT · CBAT (5.10)

CBAT ≤ EBAT ≤ Cd
BAT (5.11)

EBAT(t) = EBAT(t − 1) · σBAT + Ė
d
BAT,ch(t) · ηBAT,ch

−Ė
d
BAT,dch(t) · 1

ηBAT,dch
(5.12)

0 ≤ Ė
d
BAT,ch ≤ γBAT,ch · Cd

BAT (5.13)

0 ≤ Ė
d
BAT,dch ≤ γBAT,dch · Cd

BAT (5.14)

EBAT(0) ≤ EBAT(H) (5.15)

The main design variable is the battery capacity Cd
BAT which sets the limit for the amount

of energy stored at any given time in Eq. (5.11), which is also lower bounded by a minimum
energy state-of-charge parameter CBAT. The existence (binary) variable χd

BAT forces the
design variable either to zero or within the allowed limits through Eq. (5.10). The battery
state-of-charge or stored energy is calculated using Eq. (5.12), where σBAT is the self-
discharge rate and ηBAT,ch and ηBAT,dch stand for the battery unit charging and discharging
efficiencies respectively. Equations (5.13) and (5.14) restrict the maximum charging and
discharging powers using the coefficients γBAT,ch and γBAT,dch respectively, while Eq. (5.15)
proposes a relaxed cyclic constraint for the storage system over the problem horizon H.

Thermal energy storage

The thermal energy storage (TES), i.e., a hot water tank, is modeled analogously to the
battery unit. The design variable here is the energy storage capacity Cd

TES.
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χd
TES · CTES ≤ Cd

TES ≤ χd
TES · CTES (5.16)

0 ≤ QTES ≤ Cd
TES (5.17)

QTES(t) = QTES(t − 1) · σTES + Q̇
d
T ES,ch(t) · ηT ES,ch

−Q̇
d
T ES,dch(t) · 1

ηT ES,dch
(5.18)

0 ≤ Q̇
d
T ES,ch ≤ γT ES,ch · Cd

TES (5.19)

0 ≤ Q̇
d
T ES,dch ≤ γT ES,dch · Cd

TES (5.20)

QTES(0) ≤ QTES(H) (5.21)

Boiler

Gas boilers (BOL) are typically employed in Dutch residential heat systems and provide
the necessary heat for space heating and hot water demand. Its main design variable is the
outlet heating power capacity Cd

BOL.

χd
BOL · CBOL ≤ Cd

BOL ≤ χd
BOL · CBOL (5.22)

0 ≤ Q̇
d
BOL ≤ Cd

BOL (5.23)

Q̇
d
BOL = V̇

d
gas · ηBOL (5.24)

The output heating power of the boiler Q̇
d
BOL is obtained by converting input gas V̇

d
gas to

heat given a fixed unit efficiency ηBOL.

Air source heat pump

Heat pump technologies have become a popular heating solution for buildings given their high
efficiencies and environmental performances [244]. They serve as a sustainable alternative to
the gas boiler thanks to reduced operational carbon emissions. The air source heat pump
(HP) is implemented such that
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χd
HP · CHP ≤ Cd

HP ≤ χd
HP · CHP , (5.25)

0 ≤ Q̇
d
HP ≤ Cd

HP , (5.26)

Q̇
d
HP = Ė

d
HP · COPHP , (5.27)

where Cd
HP is the design variable and Q̇

d
HP the output heat power. The parameter COPHP

is pre-calculated using an exponential function of the ambient temperature T amb and the,
fixed, distribution temperature T dist, as defined in Ref. [236]:

COPHP = αHP,1 · exp(αHP,2 · (T dist − T amb))

+αHP,3 · exp(αHP,4 · (T dist − T amb)) ,

The parameters αHP,∗ depend on the type of heat pump considered and are provided by the
manufacturer.

Photovoltaic

Buildings are emerging as growing electricity prosumers who not only produce energy from
distributed energy resources but also consume generated energy locally [245]. With the
European Union mandating PV on all commercial, public, and new buildings by 2027 [246],
photovoltaic systems will soon become an irreplaceable element of our built environment.
We model PV via:

χd
PV · Ab ≤ Ad

PV ≤ χd
PV · Ab , (5.28)

ĖPV = Ad
PV · Isol · ηPV , (5.29)

where Ad
PV is the upper bounded design variable by available building roof surface Ab. A

theoretical limitation for Ab would be the area of the roof. However, roof obstacles typically
result in a few locations becoming unusable for installing PV. Additionally, PV modules are
commonly mounted with an inclination, hence its calculations hinge on the geometries of
the roof. The energy conversion equation is straightforwardly implemented in Eq. (5.29)
employing the nominal efficiency ηPV.
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Solar thermal collector

The solar thermal collector (STC) absorbs sunlight and converts it to heat. The amount of
absorbed solar power depends on the collector’s surface area Ad

ST C , the total solar incident
on the STC surface Isol, and the ambient temperature T amb, as defined in Ref. [236].

χd
STC · Ab ≤ Ad

STC ≤ χd
STC · Ab (5.30)

Q̇STC = Ad
STC · ηSTC · (Isol − USTC · (TSTC − T amb)) (5.31)

Thermal losses of the collector are modeled in Eq. (5.31) by the term USTC · (TSTC −
T amb), with USTC being the thermal transmittance to the surroundings and TSTC denoting
temperature of the water entering the STC.

Lastly, to consider limited roof area for both PV and STC modules, an upper bound linking
both design variables is imposed such that

Ad
P V + Ad

STC ≤ Ab . (5.32)

Energy balance

To connect considered devices of the building model block with occupant-driven energy needs
a heat (Eq. (5.33)) and electricity (Eq. (5.34)) energy balance are modeled as

Q̇
d
SP + Q̇

d
T ES,ch = Q̇

d
HP + Q̇

d
BOL + Q̇

d
T ES,dch , (5.33)

Ė
base
b + Ė

d
BAT,ch + Ė

d
HP + Ė

d
b,out = Ė

d
BAT,dch + ĖP V

+Ė
d
b,in , (5.34)

where Ė
d
b,in/out stands for the input and output power flows connecting the building model

block to the low-voltage grid. The left-hand side elements of both equations denote the
energy demands of the building and its utilities while the right-hand side elements provide
the required energy to meet the demands. It can here be noted that while the building’s
space heat load Q̇

d
SP is optimally controlled by the optimization, as a result of ensuring

suitable thermal condition (Eq. (5.9)), the baseline electricity load Ė
base
b associated with

occupant-behavior is a fixed, non-shiftable, load measurements.



Chapter 5. From building occupants to urban energy planning 131

PhotovoltaicsBattery

Electrolyzer Fuel cell

Hydrogen tank

Seasonal storage system

Community System

E
le

ct
ri

ci
ty

 

Figure 5.4: Community model block connected to the low-voltage distribution network
towards buildings (left-hand side) and to the high-voltage distribution grid (right-hand side).

5.2.3 Community system

The community system exemplifies the concept of the energy hub, operating at a medium
voltage network scale, linking the building community to a shared set of utilities with
the high-voltage energy grid (Fig. 5.4). In this setting, the community system considers
utilities that might benefit from increased performances due to their larger capacities, namely
photovoltaics coupled with short and/or seasonal storage systems. The seasonal storage
system is composed of three devices set up in series, i.e., an electrolyzer converting electricity
to hydrogen, a hydrogen tank for long-term energy storage, and a fuel tank converting
hydrogen back to electricity [247].

Models of the photovoltaic and battery community system devices are analogous to the ones
presented in the building block. The main differentiation between them stems from their
techno-economic parameters. We detail the particularities of the seasonal storage device to
explicitly illustrate the sizing of three separate entities under a unified storage utility.

Seasonal storage system

The important value brought by the consideration of seasonal storage devices originates from
offsetting seasonal mismatches between renewable energy generation and energy demands.
With hydrogen storage tanks featuring negligible energy losses, they are popularly considered
a promising solution for long, inter-seasonal, storage systems [248]. The hydrogen tank (HYD)
is coupled to the electrolyzer (EL) and fuel cell (FC) to produce, store, and use hydrogen
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respectively. A compressor device is connected to the storage tank to store hydrogen at a
high pressure of 200 bars, and while hydrogen storage possesses limited energy losses, the
round-trip efficiency of the seasonal storage system is much lower than that of the battery,
i.e., about 35% against 95% respectively. For these reasons, hydrogen storage has been
investigated as an efficient alternative to store energy for long periods of time [248], [249].
It is finally worth mentioning that due to the differences in usage between batteries and
seasonal storage systems, this typically translates into larger installed capacities for seasonal
storage devices.

The seasonal storage system is modeled analogously to other storage devices with the
addition of three distinct design variables Cd

HYD, Cd
EL, and Cd

FC standing for the hydrogen
tank, electrolyzer and fuel cell respectively, all linked by a unique existence variable χd

HYD in
Eqs. (5.35), (5.36), and (5.37).

χd
HYD · CHYD ≤ Cd

HYD ≤ χd
HYD · CHYD (5.35)

χd
HYD · CEL ≤ Cd

EL ≤ χd
HYD · CEL (5.36)

χd
HYD · CFC ≤ Cd

FC ≤ χd
HYD · CFC (5.37)

CHYD ≤ EHYD ≤ Cd
HYD (5.38)

EHYD(t) = EHYD(t − 1) · σHYD + Ė
d
EL,ch(t) · ηEL,ch

−Ė
d
F C,dch(t) · 1

ηF C,dch
(5.39)

0 ≤ Ė
d
EL,ch ≤ γEL,ch · Cd

EL (5.40)

0 ≤ Ė
d
F C,dch ≤ γF C,dch · Cd

FC (5.41)

EHYD(0) ≤ EHYD(H) (5.42)

The electrolizer and fuel cell fix the charging ηEL,ch and discharging ηF C,dch efficiencies of
the storage tank, and limit its inlet Ė

d
EL,ch and outlet Ė

d
F C,dch powers through Eqs. (5.40)

and (5.41) respectively.
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Power balance

The power balance equation linking the community system devices together with the low-
and high-voltage distribution energy grids is modeled as

Ė
d
MV →LV + Ė

d
BAT,ch + Ė

d
EL,ch = Ė

d
LV →MV + ĖP V,in + Ė

d
BAT,dch

+Ė
d
F C,dch + Ė

d
HV,in , (5.43)

where HV represents the input high-voltage power flow and MV → LV and LV → MV

stand for the medium-to-low and low-to-medium voltage network connections respectively.
BAT, PV, EL, and FC refer to battery storage, photovoltaics, electrolyzer, and fuel cell
utilities on a community level, respectively.

5.2.4 Grid topology

The topology of the low-voltage distribution network, connecting the buildings forming the
energy community together is here presented.

Ė
d
MV →LV/LV →MV ≤ ĖMV + sd

MV (5.44)

Ė
d
b,in/out ≤ ĖLV + sd

LV,b ∀b ∈ B (5.45)

Ė
d
MV →LV +

∑
b∈B

Ė
d
b,out =

∑
b∈B

Ė
d
b,in + Ė

d
LV →MV (5.46)

In a typical distribution network, power flows are limited by one of two factors: the
maximum capacity of the power lines (Eq. (5.44)) or the maximum capacity of the micro-
grid transformer (Eq. (5.45)), here represented by ĖMV and ĖLV respectively. Penalized
slack variables sd are additionally included to relax both LV and HV line maximum capacities
in order to secure problem feasibility. Each individual building of the energy community
belongs to the set B such that Eq. (5.45) holds for all b ∈ B and the power balance of Eq.
(5.46) sums the in and output power of all the buildings belonging to the community.

5.3 Methodology

The principal objective of the energy community optimization problem is to identify the
optimal selection, sizing, and operation of available building and community-level components
while accounting for the uncertainty affecting the system in order to minimize the total
communal costs. Optimal system designs are, however, inherently co-dependent on their
associated operational strategy. As such, simultaneous optimization of control and design
approaches [250] perform well for one realization of the uncertainty affecting the system, but
may not for others. These approaches imply that if the suggested design is used, no other
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control strategy yields better results, i.e., a lower cost function, and vice versa. Designing an
energy system that is resilient to these uncertainties is an important goal of this work.

This section consequently presents the objective function of the optimization problem and
details how the uncertainty affecting the energy community is captured into representative
scenarios. Then, uncertainty is incorporated into the optimization problem as a two-stage
stochastic programming model, and a sensitivity analysis is proposed to evaluate the specific
contribution of varying uncertainty factors on the optimal energy community system design,
in particular the occupant behavior. Lastly, a distributed formulation of the problem is
put forth dealing with computational tractability issues endowed from large and granular
optimization problems.

5.3.1 Objective function

Considering the optimal energy planning goal of the considered community, the optimization
is performed for a full year encompassing all seasonal variations, while the objective is
extended to varying equipment lifetimes ranging from 10 to 25 years. The total objective
function Otot to be minimized consists of three terms associated with levelized investment,
operation, carbon emission reduction objectives, and slack penalties:

min Otot = Oinv
lvl + Oopr + Oco2 + Oslk . (5.47)

The levelized investment objective Oinv
lvl is calculated in Eq. (5.48) as the sum of all levelized

price variables pU , which indicates the overall cost of purchase, installation, maintenance and
replacement of an arbitrary unit U belonging to the building and community system sets B
and C respectively. The prices are levelized over the technology lifetime τU at a discount
rate r such that their operation horizons serve as weights for their investment costs in the
optimization.

Oinv
lvl =

∑
U∈B∪C

pU · r

1 − (1 + r)−τU
(5.48)

pU = aU · Dd
U + bU · χd

U (5.49)

The device price pU is affected by the existence variable χd
U and the main design variable

Dd
U of the device, which refers either to the capacity Cd

U or area Ad
U of the unit. Equation

(5.49) shows the calculation of the price for including a device U in the energy community.
The parameter bU defines the price for the existence of the device, while the parameter aU

represents the relative sizing price of the unit.

The operational cost Oopr accounts for the total amount of electricity and gas consumed by
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the energy community.

Oopr = Ė
d
HV · pT

el +
∑
b∈B

V̇
d
gas,b · pT

gas (5.50)

The carbon emission reduction objective Oco2 is modeled as a carbon emission penalty
associated with the natural gas consumption of buildings. The term pco2 indicates the carbon
pricing set by the European Union.

Oco2 =
∑
b∈B

V̇
d
gas,b · pT

co2 (5.51)

Lastly, the slack penalty costs Oslk associate a predefined slack penalty pslk to all declared
slack variables, such that

Oslk = pslk · sd
MV + pslk ·

∑
b∈B

sd
LV,b . (5.52)

The penalty value is set high such that the optimization would only consider relaxing the
constraints in cases of problem infeasibility.

It should be noted that the energy community optimization problem shares a unique,
global objective function Otot. Defining a global objective function ensures a cooperative
behavior between all elements of the community, i.e., building and energy community blocks,
working toward the reduction of the aggregated costs of the system, rather than sub-optimal
individualistic objectives. Leveraging such cooperative behaviors between individual agents of
an energy system is recognized to substantially improve economic and energetic performances
[251].

5.3.2 Representative scenario identification

To perform urban energy planning in a computationally tractable manner, it becomes nec-
essary to trim encompassed spatiotemporal dimensions to a reduced, but representative,
number of spatiotemporal frames. Indeed, urban distributed energy resources design proce-
dures commonly cluster encompassed input data to a typical reference year, assumed constant
over the lifetime of the energy system, e.g., 25 years [252]. Downscaling the spatial resolution
of the energy community by clustering buildings to fewer representative ones would, however,
deprive the optimization of the diversity of information-rich occupant behaviors and varying
building thermal dynamics. The purpose of the present work is to consider the complete
building community stock in the energy planning process, allowing building energy flexibility
activations to be exploited on an aggregated urban scale while bridging the pluralities of
occupants to urban infrastructure planning. The determination of characteristic years of
measurements across buildings, weather, and economic conditions provides scenarios serving
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both two-stage stochastic programming (Sect. 5.3.3) and the latter sensitivity analysis (Sect.
5.3.4). In order for these scenarios to approximate the underlying uncertainty as closely
as possible, many scenarios are initially bootstrapped (Sect. 5.3.2), then reduced to few
representative ones by clustering (Sect. 5.3.2).

Scenario generation using seasonal bootstrapping

In this study, three categories of parameters are selected as uncertain, namely building
electrical load demands and set-point temperatures for occupant behavior, energy prices for
economic conditions, and ambient temperature and solar irradiance for weather conditions.

To artificially increase the number of years of collected data while retaining the auto-
correlations of energy consumption profiles and day-ahead pricing, we apply a seasonal block
bootstrapping technique to generate 1000 synthetic years of data. Block bootstrapping
for seasonal time series has been found suitable for periodic time series with fixed-length
periodicities of arbitrary block and sample size [253]. Given the diurnal patterns of building
energy consumption and day-head electric forecasts, we consider block samples of 24 hours
that are sampled across the entire data set to secure the correlations between building
energy needs and weather and economic conditions. The blocks are bootstrapped over a
seasonal-dependent sub-space to retain the periodic behaviors present in the original data.
Thereby, weekday and weekend variations are preserved while the sampling space is restricted
to a region of 8 weeks surrounding the sampling block [254].

Scenario reduction using clustering

Gathered scenarios are then reduced to a more manageable number employing k-medoids
clustering [255] to obtain identifiable cluster centers (medoids) and associated probabilities
[256]. The advantage of uncovering medoids, which are superimposed on existing input data,
is that it preserves the volatility of the original input data as opposed to k-means clustering
which produces centroids that are averages of their cluster members, thus resulting in the
curtailment of their individual stochastic properties.

Identifying a suitable number of clusters is commonly performed from cluster intra-class
homogeneity and inter-class separation indexes that assess the validity of obtained clusters.
Such metrics focus on the grouping validity of input scenarios but cannot deliver information
on the grouping validity of the resulting optimal policy of their associated optimization
problems. Presumably, one might obtain 25 clear representative scenarios characterized
by high intra-class homogeneity and inter-class separation, yet produced policies might be
very dissimilar within scenarios of a cluster just as inter-cluster ones might produce very
similar policies. With this in mind, we consider 10 scenarios to provide a sufficient number
of samples and a representative description of the diversity of existing system uncertainty,
with no need for cluster validity assessment. We consequently reduce the 1000 bootstrapped
scenarios to NΩ = 10 distinct clusters, where NΩ is the number of scenarios considered and
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Ω is the set of scenarios. Their associated probabilities π(w) is subsequently obtained from

π(ω) = P (ω|λ = λ(ω)), where
∑
ω∈Ω

π(ω) = 1 , (5.53)

and λ(ω) is a random variable associated with a scenario index ω, while the scenario
realization probabilities are represented by π(ω). The probabilities π(ω) correspond to the
relative cluster sizes obtained via k-medoids clustering.

5.3.3 Stochastic programming formulation

Introducing uncertainty in the design of energy communities involves a decision-making
problem structure well suited to a two-stage stochastic programming model [257]. Indeed, the
design problem features the concurrent determination of both design and operation variables,
which are commonly decided in different stages. This means that decisions on the design
variables must be adequate to adapt to varying realizations of energy demand and supply
profiles over the year. Consequently, design variables Dd and their associated existence
variables χd are categorized as first-stage variables, to be decided prior to the resolution
of uncertainty, and all other operational (decision) variables are considered second-stage
variables, which can later be adapted in function of the uncertainty scenario unfolding. A
two-stage stochastic programming approach thus undertakes the simultaneous determination
of the optimal configuration of a distributed energy system given varying (optimal) operating
conditions [258].

By incorporating the uncertainty into the mixed-integer optimization problem, a two-stage
stochastic programming problem is formulated as follows [259]:

min

1st-stage costs︷ ︸︸ ︷
Oinv

lvl +

expected 2nd-stage costs︷ ︸︸ ︷∑
ω∈Ω

π(ω) · (Oopr(ω) + Oco2(ω) + Oslk(ω)) ,

s.t. Axd = b ,

T (ω)xd + W (ω)yd(ω) = h(ω) ∀ω ∈ Ω ,

(5.54)

where xd gathers the 1st-stage decision variables and yd(ω) the 2nd-stage decisions. The
matrices and vectors A, T (ω), W (ω), b, c, q(ω), and h(ω) are known parameters of the
system, that can be gathered from Eqs. (5.1)-(5.46) and (5.48)-(5.51).

The objective thus becomes to determine the first-stage design and existence variables by
taking the sum of the deterministic first-stage costs, namely, the levelized investments costs,
defined in Eq. (5.48), and the expected second-stage operational costs corresponding to
the sum of the operation and carbon emission costs, see Eqs. (5.50) and (5.51) respectively,
weighted by their respective realization probabilities π(ω).
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5.3.4 Uncertainty impact on energy community design

While the consideration of the uncertainty in the form of a stochastic program allows the
identification of the optimal policy given the probability of varying scenarios unfolding,
it, however, does not inform energy planners on the relative impact of its considered
uncertainty factors. To evaluate the relative influence of the different categories of uncertain
parameters on the design of energy communities, in particular occupant behavior, it becomes
necessary to undertake a sensitivity analysis. There are two principal methods for sensitivity
analysis, local and global ones. Local sensitivity analysis methods typically analyze how the
uncertainty in each input parameter affects an output of interest [260]. Uncertain parameters
are commonly altered one at a time with other parameters fixed at their nominal values,
or through the definition of scenarios, i.e., combinations of uncertain parameter values
[228]. Global sensitivity analysis on the other hand considers all of the input parameters
simultaneously. The impact of each input parameter on the performance indicator of interest
are commonly evaluated by variance-based methods. These are, however, computationally
expensive for urban energy planning due to their large number of inputs [261], and require the
characterization of uncertainties a priori, else would result in false rankings when employing
generic uncertainty ranges [262].

To keep the scope of this work within manageable limits, we consider a local sensitivity
analysis method performed over all-encompassed uncertainty factors.This supports the
assessment of the impact of occupant behavior on urban energy planning while providing a
relative evaluation in the context of other uncertainties.

Local sensitivity analysis

To undertake the sensitivity analysis, uncertainty factor-dependent scenario sub-sets and
their nominal values must first be identified. The scenario ensemble is thus divided into
three distinct subsets

Ω = Ωocc ∪ Ωeco ∪ Ωclim , (5.55)

corresponding to occupant, economic, and climate conditions respectively. The nominal
scenario ωnom for each uncertainty factor is identified from k-medoid clustering with k = 1
subsets of Ω and extracting its medoid scenario. This is performed over the subsets Ωeco∪Ωclim,
Ωocc ∪ Ωclim, and Ωocc ∪ Ωeco for occupant, economic, and climate conditions uncertainty
factors respectively.

Then, the influence of varying uncertainty factor-dependent scenarios is assessed in a one-at-
a-time fashion via the optimal design variables retained by the energy community planning
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problem. The problem (5.54) is then iteratively solved for either of the following variations

Ωijl = Ωocc
i ∪ Ωeco

j ∪ Ωclim
l


∀i ∈ Ωocc, j = ωeco

nom, l = ωclim
nom ,

∀j ∈ Ωeco, i = ωocc
nom, l = ωclim

nom ,
∀l ∈ Ωclim, i = ωocc

nom, j = ωeco
nom .

(5.56)

Note that the evaluated set Ωijl becomes singular, thus the stochastic program (5.54) becomes
a deterministic problem as the 1st and 2nd stage costs are evaluated over a unique scenario.

It should be acknowledged, however, that such a setup disregards the existing inter-
correlations between the considered uncertain parameters. For instance, the energy flexibility
leveraged in demand-side management applications from occupant-established comfort buffer
regions is known to possess a strongly correlated relationship to the energy price levels [263].
Similarly, weather conditions typically affect occupant thermal preferences. This implies that
separating these uncertainties in factor-dependent scenarios is intrinsically flawed, making it
tedious to differentiate their independent contributions to the problem policy. We consider
this approximation, however, to be a necessary simplification for the evaluation of the distinct
impact of these uncertainties.

5.3.5 Distributed optimization

Stochastic optimization problems are notoriously known for their associated computational
burden [264]–[266]. As problems get larger, the state space is proportionally multiplied by
the number of considered scenarios, and computing intractability problems quickly arise. To
alleviate this charge, we propose to partition the problem into smaller sub-problems. This
allows scaling of the considered energy community system as sub-problems are easier to solve.
simultaneously, this increases the overall system resilience in a control setting should one
of its components (sub-problems) fail or become obsolete. The computational load of the
problem is subsequently eased by dividing the initially larger problem into multiple smaller
ones [267], resulting in a distributed optimization problem.

The subsequent partitioned problems, however, require careful coordination not to result in
conflicting local actions and threaten the global system stability. To this end, we consider
an uncomplicated sequential solving approach [267], allowing information exchange between
the different sub-systems while keeping the complexity inherent to each model undisclosed
[268]. During this phase, each problem partition is solved sequentially, first gathering the
previously predicted operating plans of other sub-systems, then computing the local strategy
[269]. The process is executed in an iterative manner until the stopping criteria is met, i.e.,
either by a predefined number of iterations or a cost variation threshold. This results in an
information-optimized communication system requiring the sole transfer of aggregated local
energy flows between sub-systems in the coupling constraint. This setup notably preserves
the privacy related to individual building energy demands, while preparing the stage for the
real-world deployment of the energy management system of the community.
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Figure 5.5: Sequential solving scheme of the distributed stochastic optimization problem.

The stochastic optimization problem is thus divided into sub-systems to form a distributed
stochastic optimization problem. We consider individual building systems coupled with
community-level utilities as sub-problems in order to provide the solver with available
information from all spatial scales of the system. The grid topology energy balance, Eq.
(5.46), here serves as an evident coupling constraint, and becomes

Ė
d
MV,out +

∑
b∈B\{BLG}

Ėb,out + Ė
d
BLG,out =

∑
b∈B\{BLG}

Ėb,in + Ė
d
MV,in + Ė

d
BLG,in , (5.57)

where BLG is the considered building sub-system being optimized, and b indicates all other
buildings belonging to the building set B. Notice how the aggregated energy demands of
other building systems

∑
b∈B\{BLG} Ėb is now a parameter of the optimization problem,

rather than a decision variable.

The distributed optimization setup is illustrated in Fig. 5.5. The problem is iteratively
solved until variations of the global objective function are below a predefined threshold ε

such that ∆Otot ≤ ε defines the stopping criterion of the distributed optimization.

Although the proposed distributed setup lacks a formal mathematical decomposition that
would secure the convergence of the problem to the global optimal, we instead undertake a
proof of concept, which compares a reduced problem of the proposed distributed stochastic
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Table 5.3: Distributed problem proof of concept

Problem type Parameters Objective value
buildings [#] scenarios [#] iterations [#] [EUR]

centralized 5 10 1 15’188.173
distributed 5 10 19 15’188.173

optimization with its centralized counterpart. In particular, 5 out of the 41 available
buildings are considered to reduce the problem size. The number of representative scenarios
is kept to 10, and the number of iterations a priori defined for the distributed optimization
to converge is set to 19. Table 5.3 summarizes the proof of concept result and system
parameters. The proof of concept demonstrates that the distributed setup converges to the
global optimal solution ensuing the first iteration as a result of the simple, individualistic
optimal strategy identified. Typically, energy exchanges between the varying sub-systems of
the distributed problem would iteratively converge to the global optimal within a 1% margin.
We consider such optimal-close solutions satisfactory, and in fact valuable to the scientific and
research community as these provide a simple and intuitive problem distribution arrangement
supporting scalable strategic urban energy planning, thus facilitating the accessibility of
our approach. Additionally, the structure of the distributed problem may be subsequently
employed for the decentralized control of the energy community, by simply disregarding the
investment-related variables.

5.4 Implementation

The energy community problem is implemented in Python using the PuLP package [270] as
an interface to the Gurobi solver [271].

For the energy community system considered, we employ the 2NECO data set, thus anchoring
our approach on data-driven techniques to induce realistic results. A total of 225 homes
are originally treated, over a period of 3 years starting from January 1st 2019 to the 2nd of
December 2022. Their associated building heat dynamics models are extracted from the
open data set Grey-Brick Buildings [123] established from the same case study. We filter
out models exhibiting nCPBES (normalized cumulated periodogram boundary excess sum)
higher than 0.01 to retain models of good fit quality exclusively, resulting in 41 remaining
buildings. These buildings are then assembled as a synthetic neighborhood, under a common
atmospheric condition. It should here be noted that detaching building measurements from
their original climate condition neglects the existing correlation between building lighting
and heating demands and their ambient environment. However, due to the homogeneity of
the Dutch geographical climate, we consider this approximation to be acceptable.

Weather data is assembled from publicly available Royal Netherlands Meteorological Institute
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(KNMI) weather station measurements [142], employing a typical inland location in the
center of the Netherlands. Economic data encompass forecasted day-ahead electricity prices
coupled with residential natural gas prices. The former are collected and published by
ENTSO-E (European Network of Transmission System Operators for Electricity) [272]
and the latter from Eurostat [273] at granularities of 1 hour and 6 months respectively.
Both prices are coupled with environmental taxes set by the Dutch government [274], and
electricity day-ahead prices additionally include fixed distribution and transmission tariffs
from corresponding time periods to approximate best the end-user total price. These are
reported by the Netherlands authority for consumers and markets, in Annex 2 [275].

Load curves of identified representative scenarios are illustrated for weather, economic, and
occupant behavior in Figures 5.6, 5.7, 5.8 respectively. These showcase sorted values of
each time series allowing the inspection of their separate range and distribution. In the
background of each figure is additionally plotted one unsorted scenario, showcasing eventual
seasonal behaviors.
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Figure 5.6: Load curves of weather uncertainty per representative scenarios

The techno-economic model parameters are gathered from the Danish Energy Agency (DEA)
technology data catalogue [276]. Their referencing is summarized in Tab. 5.4.

5.5 Results and Discussion

The identified optimal energy community design is here presented along with its in situ
building control operational strategy. Then we unveil which uncertainty factor impacts the
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Figure 5.7: Load curves of economic uncertainty per representative scenarios
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Figure 5.8: Load curves of occupant behavior uncertainty averaged over representative
scenarios
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Table 5.4: Techno-economical parameter DEA catalogue referencing. The reported year
provides either historical or projected values of the utility parameters
Utility Technology data catalogue Index Date

EL Energy Carrier Generation and Conversion June 2017 86 Hydrogen production via alkaline electrolysis (AEC) for 1MW plant 2030
FC power and heat production plants 12 Low temp PEM fuel cell - back pressure - hydrogen - small 2020
PV building power and heat production plants 22 rooftop PV residential 2020
PV community power and heat production plants 22 rooftop PV comm.&industrial 2020
BOL heating installations 202 Gas boiler, ex single 2020
HP heating installations 207 Heat pump, Air-to-water - apartment complex - existing building 2020
STC heating installations 215 Solar heating system - single-family house - existing building 2020
HWT Energy storage 142 Small-Scale Hot Water Tanks 2020
HYD Energy storage 151a Pressurized hydrogen gas storage system (Compressor & Type I tanks 200bar) 2020
BAT building Energy storage 181 Lithium-ion NMC battery (Utility-scale, Samsung SDI E3-R135) 2020
BAT community Energy storage 182 NaS battery 2020

community design most through a local sensitivity analysis.

5.5.1 Resilient energy community design

The distributed stochastic optimization problem was found to converge immediately following
its first iteration as no improvements to the master problem objective function were made in
the following iterations. This direct convergence is a result of the identified optimal design of
the energy community, which solely considers the necessary utilities to provide heating to the
buildings, see Figure 5.9. The optimal design variables selected display boilers as the most
energy and cost-efficient utility to supply space heating. Building #15 is the only system
considering a heat pump to supplement its heating needs, due to the maximum capacity
reached by the boiler. Another building, i.e., building #4, also reaches maximum boiler
capacity, however, does not consider the additional input of a heat pump to provide its space
heating needs.
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Figure 5.9: Optimal design of the energy community by taking stochasticity into account.

This optimal energy community design renders energy exchanges between the different
building systems of the community disadvantageous thus resulting in a situation where
cooperation between energy community members is not exploited. The efficiency and
investment costs of boilers coupled with the lower energy prices of gas, make heat pumps an
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unprofitable alternative for space heating and here thus only considered as a complementary
utility. Higher gas prices coupled with carbon reduction incentives are consequently still
needed for buildings to consider heat pumps as an interesting alternative to boilers and begin
the decarbonization of the sector.

As gas prices are commonly fixed within fixed tranches of months, demand-side management
control strategies in response to varying energy prices are seldom observed in the building in
situ control strategies. Figure 5.10 illustrates the inside temperature control of building #1
in function of occupant-driven set-point preferences, ambient and economic conditions. The
temperature set-point defined by the occupants can, however, be observed to be set at lower
plateaus in periods of higher gas prices, see days 01/23 and 01/28 where it is set at a higher
plateau of 17◦C instead of the more common 19◦C.
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Figure 5.10: Building #1 inside temperature control.

5.5.2 Uncertainty factor impact assessment

To quantify the impact of occupant behavior on energy community planning within the
context of other uncertainty factors we evaluate the optimal design of considered utilities
within varying uncertain parameters. Figure 5.11 presents the spread and mean values of
the considered design variable over the building stock, i.e., full circle and diamond points
respectively, grouped by uncertainty parameter. Full lines represent the standard deviation of
design values per uncertainty factor. The optimal design values accounting for all uncertain
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parameters, i.e., presented in Fig. 5.9, are here highlighted as optimal to showcase the optimal
design relative to the uncertainty affecting the energy system. The spread of values exposes
occupant behavior as the factor with the largest impact on selected design variables, followed
by climate and economic conditions. Although climate conditions often produce design
variable spreads with higher central tendencies, i.e., engendering larger design variables on
average, the dispersion of values is highest for occupant behavior. Buildings #4 and #10 are
two examples where heat pumps are considered only when sensitive to particular uncertainty
factors, namely, occupant behavior and climate conditions respectively. In both cases, the
central tendency of boiler capacities is highest for climate-related uncertainties but their
spread is highest for occupant-driven ones. The main difference being that identified boiler
capacities of building #4 range from 1 to 14 kWh and require the additional heat pump
investment in one setting while for building #10 occupant-driven uncertainties result in much
lower boiler capacities than climate-related ones subsequently resulting in climate-driven
heat pump investment in 4 scenarios. Building #15 on the other hand necessitates maximum
design capacities both for boiler and heat pumps for all uncertainty-related factors resulting
in its need for thermal storage investment in one occupant-driven setting. This is likely due
to large set-point temperature shifts set by the occupant requiring additional heat inputs in
specific time windows. This important finding demonstrates the significance of occupant
behavior in strategic urban energy design and the value of bridging these two disconnected
spatial scales.

Furthermore, optimal design variables identified by the stochastic problem formulation can
often be found with values higher than its highest uncertainty analysis factor, e.g., see
buildings #5, 7, 25, or 35. This is a result of the separation of correlated uncertainty factors
in the sensitivity analysis. Indeed, in the local sensitivity analysis, evaluated uncertainty
factors will be paired to nominal scenarios of other factors, e.g., occupant behavior scenarios
ωocc

i will be paired to ωeco
nom and ωclim

nom, whereas in the stochastic problem formulation, the
combinations are different and each scenario i regroups all uncertainty factors. As nominal
scenarios represent the most likely scenario per uncertainty factor, it is likely other scenarios
might impact the design with more unlikely, and possibly extreme conditions, thus resulting
in larger design variables. This highlights the importance of considering varying uncertainty
parameters in the design phase of energy systems and the value brought by stochastic
approaches, which provide robust solutions towards the more extreme conditions.

5.6 Summary

This chapter attempts to bridge two typically disconnected scales of the built environment for
improved energy and carbon emission performances: occupants and the urban energy system.
Strategic energy planning is undertaken by exploiting energy community concepts such as
peer-to-peer cooperative energy exchanges and shared neighborhood-level infrastructure.
Particularly, uncertainty factors affecting urban energy planning are embedded to the problem
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and investigated by employing a stochastic problem formulation supplemented by a local
sensitivity analysis. Computational tractability concerns are addressed, founded on an
organic spatial problem distribution, which we validate by a proof of concept. The setup
notably echoes that of decentralized energy management systems, thus implanting our
approach in a real-world operational control setting, suitable for field deployment.

From historical measurements and accurate techno-economical parameter settings, a typical
Dutch energy community composed of 41 residential buildings is designed. Results present a
fast-converging distributed stochastic problem, where boilers are showcased as the winning
utility provider for space heating. These expose current Dutch energy prices along with
carbon emission taxes as not profitable enough for generalized heat pump adoption in typical
residential buildings. It is postulated that increased electricity prices might also push energy
communities to further adopt distributed energy renewables such as photovoltaics and solar
thermal collectors. In such as setting, energy storage utilities will become compelling to
align mismatches between renewable production and occupant-driven energy loads, as well
as peer-to-peer energy exchanges.

Lastly, the impact of occupant behavior, encompassing set-point temperature and smart-meter
base loads, on strategic energy planning is specifically investigated relative to other uncertainty
factors, i.e., economic, electricity and gas prices, and weather, ambient temperature and
solar irradiance, conditions. The analysis reveals occupants to be the leading factor affecting
energy community design, thus confirming the relevance of our approach in connecting
occupants to urban energy planning.

5.6.1 Limitations and future research

While our findings portray occupant behavior, i.e., building set-point temperature and
electricity base loads, to be the leading uncertainty factor affecting the system design, it
should be noted that representative scenarios were only sampled from historical measurements
over the years 2019 to 2022. Employing older historical measurements or considerations with
regard to the long-term evolution of weather and economic data might produce differing
results. Thus, forecasts and uncertainty analysis related to these developments remain a
goal for future research.

Additionally, varying community sizes and heterogeneity, i.e., number of buildings and
representative occupant behaviors respectively, in the context of optimal stochastic urban
energy planning offers an interesting analysis for urban planning decision-makers. Answering
questions such as "How large must a community be for shared utilities, such as seasonal
storage, to become profitable?" or "How does occupant heterogeneity affect energy saving
potentials?" provide appealing research interrogations to guide subsequent studies.
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Overview

• Summary of the main results
• Recommendations and guidance for multi-scale(able) analytics for buildings
• Future perspectives

"Tell me and I forget, teach me and I may remember, involve me and I learn."
Benjamin Franklin

Data science and machine learning provide powerful solutions to support the decarbonization
of the building sector. However, the diversity of buildings and disparity in their collected
information hinders the broader adoption of data science practices in the building sector.
This dissertation was undertaken with objectives related to the leveraging of generalizable
insights gained from data science to boost energy-saving potentials for smart, connected
buildings in a smart-grid context. The central goal of the effort is to develop automated
approaches that may scale across the heterogeneous building stock and bridge disconnected
scales of the built energy system. This led to the formulation of the main research question of
this thesis in Chapter 1: How can data science facilitate the scaling of approaches and bridge
disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving
strategies? The answer is declined in four main contributions, covering methodological,
descriptive, predictive, and prescriptive analytical approaches, thus providing a complete
overview of multi-scale(able) data science practices for buildings. Overall, the thesis offers a
broad data-driven analytical approach combining disconnected layers of the built environment
together. This provides holistic insights and methods, which, together with open-sourced
implementations and case studies, can effectively support, and involve, decision-makers in
designing effective energy-saving strategies for buildings.

While methods, contributions, discussions, and results are detailed in their dedicated chapters,
these concluding remarks summarize the main findings, provide recommendations and
guidance for multi-scale(able) approaches for buildings, and envision future perspectives.

149
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Main results summary

The main findings of this work are here outlined per analytical research contribution followed
by their associated real-world innovation implications.

■ Analytics

Establishing necessary standards for multi-dimensional building data analytics incarnates
the focus of Chap. 2. In this setting, we design a generic multi-dimensional data mining
framework from data integration to end-use application. Leveraging data cube structures,
encompassed dimensionalities can be formally mapped and examined to uncover insights from
dimensional frames of interest. The method illustrates that data cube mapping effectively
breaks down high-dimensional analytical complexities. Our method anchors popular
analytical approaches in a three-dimensional data cube thus adequately linking building data
dimensions to insight-driven analytics, i.e., bottom-up diagnostics {attribute, time}, top-
down building stock benchmarking {site, time}, temporal drill-in analysis {site, attribute}.
The method is applied to an automated building pattern identification case study, i.e.,
descriptive analytics, and connects two-dimensional lattice insights together exemplified by
a three-dimensional data cube visualization serving practical cross-dimensional knowledge
transfer.

In essence, the proposed analytical framework will support building data analyst professionals
and researchers in the early design stages of their analysis. The (cube) mapping and reduction
of encompassed dimensionality proposed by the method assist analysts with a visual framing
of available dimensional state-space, and the generic data mining steps exposed secure a
systematic approach to descriptive, predictive, and prescriptive analytics.

■ Descriptive

To identify building thermal dynamics in an interpretable and scalable manner, we investigate
symbolic regression and lumped resistance capacity (RC) models in Chap. 3 and Annex
A respectively as two data-driven modeling approaches, i.e., black- and grey-box, that can
effectively scale across the heterogeneous building stock. An automated extension of RC
model identification methods is first formulated concurrently with a novel model evaluation
metric, namely the normalized cumulated periodogram boundary excess sum (nCPBES).
Both approaches are then evaluated on a set of 225 occupied Dutch residential buildings
in a non-intrusive way, which is seldom considered for building thermal identification due
to the unmeasured heat gain disturbances caused by occupants. The analysis reveals
that while symbolic regression allows the direct determination of analytical models in an
automated manner, the interpretability of its coefficients cannot be linked back to the thermal
characterization of buildings. On the other hand, the physical foundation of RC models grants
an immediate thermal envelope performance overview, serving building stock performance
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analysis and building-to-grid energy management applications. The method produced
144 good model fits (64%), 31 close (14%), and 50 poor quality model fits (22%). Our
approach consequently showcases that grey-box is a suitable and effective interpretable
approach for scalable building heat dynamics identification across the building
stock. To support the establishment of standards and benchmarks in building models,
obtained calibrated RC models were open-sourced as Grey-brick buildings. Guidelines
for further work in the utilization of the open set for practical applications were additionally
discussed.

Practically, the proposed open-source method allows industry professionals to identify the
thermal performances of buildings at scale, with minimal implementation effort. These
insights can support policy-makers with tangible building stock energy demand and carbon
emission scenarios. Additionally, calibrated thermal models of buildings are at the foundation
of most building service applications and can notably be exploited in prescriptive analytics
such as strategic urban planning, see Chap. 5.

■ Predictive

Predicting building loads deals with multiple spatiotemporal scales which have been unified
in Chap. 4 to produce coherent forecasts supporting aligned decision-making across energy
networks. First, a multi-dimensional extension of hierarchical structures is put forward.
Then, a hierarchical machine learning regressor is designed, combining coherency requirement
information of produced forecasts with tailored network architectures for targeted, data-
efficient learning. This is a novelty compared to the literature in the field, where forecasts are
typically produced disjointedly, or reconciliations undertaken a posteriori to the forecasting
process. Results of the application over the BDG2 open set reveal improved accuracy and
coherency performances for networks with fewer connections, in particular, tree partitionings
with simple bottom-up connections. Additionally, the inclusion of coherency information
in the machine learning loss function demonstrated improved accuracy and coherency
performances for forecasts produced within reasonable accuracy limits. These discoveries
demonstrate the value brought by unifying disconnected scales together for building
load prediction and unveil a novel generation of forecasting regressors applicable in other
fields.

Such hierarchical forecasts could rapidly change the way predictions are currently built and
processed in industry and academia. For technical experts, this implies exploiting multi-level
spatiotemporal characteristics of time series concurrently for improved forecast accuracies;
for example, smooth, aggregated-level patterns, against more volatile, and information-rich,
disaggregated elements. These multi-aggregation level data structures typically echo that of
the data cube defined in Chap. 1. Thus, in the future, instead of developing isolated forecast
models, one could imagine developing multi-level spatiotemporal ones as blocks, connected
together by coherency constraints to further enhance the performance of a level-specific

https://zenodo.org/record/7180432#.ZActlXbMKUk
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prediction.

■ Prescriptive

At last, the relationship between occupants and city energy infrastructures is investigated
through the prism of uncertainty in Chap. 5. While the diversity of occupant behavior
uncertainties might significantly affect strategic urban energy investment, these are seldom
considered in urban planning problems due to their produced problem complexities. To
examine how these commonly separate scales might correlate, an energy community planning
problem is designed, incorporating resiliency and scalability targets. The impact of occupant
behavior (temperature-set point and smart-meter loads) is particularly assessed in the
context of other uncertainties affecting the system, i.e., climate (ambient temperature
and solar irradiance) and economic (electricity and gas prices) conditions. A distributed
stochastic problem formulation is outlined, following which representative scenarios and
their associated probabilities are identified on a use case of 42 residential buildings. Results
disclose a fast-converging distributed optimization problem, where boilers are showcased
as the preferred heating utility, and distributed renewable energy and storage systems are
identified as unprofitable for the community. A local sensitivity analysis particularly revealed
high variabilities in selected design variables sensitive to occupant behavior. This discovery
reveals that occupants significantly impact strategic energy planning decisions.
This finding demonstrates the relevance and value of connecting occupants to cities for
improved and more resilient urban energy planning strategies.

In light of this, urban planners need to exploit more detailed spatial information when
designing optimization problems. Particularly, occupant-behavior uncertainty must be
considered to produce resilient, more cost-effective, urban planning strategies. Capitalizing
on distributed optimization technics, the subsequent computational burden endowed from
large, granular problems can be practically cut down. Fully exploiting interconnected sub-
systems of the energy network is presently rendered possible thanks to such decentralized
and coordinated approaches. These developments present signs of an energy revolution
that is already underway, shifting uni-scale energy system planning and control schemes to
multi-level and multi-vision ones, impacting energy network operators, consumers, markets,
and policymakers, alike.

Recommendations and guidance

Founded on the obtained results and the time dedicated to the research work behind
this thesis, some recommendations and guidance are provided to data analysts aiming at
leveraging multi-scale building analytics. These are summarized in the following points:

• Value against complexity - Multi-dimensional analytics have repeatedly demon-
strated value throughout this thesis, whether it produces expanded insights into system
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performance, improved forecasts, or more resilient energy planning strategies. These,
however, can come at the cost of greater complexities. While the mapping of encom-
passed dimensions leveraging data cube structures presented in Chap. 2 supports
this deconstruction, it is important to first evaluate the complexity/value trade-off
resulting from multi-dimensional approaches not to commit to potentially unnecessary
labor-intensive tasks. In light of this, it is recommended to

• Start simple. Tackling scalability approaches in a sector endowed with high diversity
can quickly result in complicated and hefty processes. Before undertaking multi-scale
methods, it is advised to start simple and iteratively build up toward larger dimensions.
As an example, the 2-dimensional lattice exploration of 3-dimensional data cubes in
Chap. 2 demonstrated varying analytical pathways for the undertaking of 3-dimensional
cuboid mining. Additionally, the insights gained from exploring these lattices first
can be built onto in an expanded dimensional setting. This shows that multi-scale
analytics calls for a priori uni-scale examination and knowledge.

• Distribution for scalability and simplicity - Building towards bridging discon-
nected scales often produces systems combining high levels of details with large
spatiotemporal scopes. This inevitably engenders computational and performance
complications due to the resulting problem size. The results in this thesis suggest that
distributing such problems into smaller sub-systems, connected together in a coordi-
nated fashion, offers a suitable solution tackling both simplification and scalability
concerns.

Future perspectives

Future improvements of the presented work are envisioned in the context of activating
buildings as energy management assets of smart-grid energy systems. Firstly, with the recent
democratization of heat pumps providing residential building space heating demands, there
is a growing need to anticipate, regulate, and optimize the ensuing additional load on the
energy grid. This requires the identification at scale of building thermal characteristics,
which uncovers two main challenges: (i) the need for scalable, non-intrusive, interpretable,
and robust methods for building heat dynamics identification and (ii) generalizing findings
to data-poor buildings, where little to no in-situ measurements, e.g., smart thermostats, are
available.

While this research engages in providing solutions to the former concern, other emerging
technologies should concurrently be explored. In particular, the emergence of physics-
informed machine learning models has unveiled low computational and data requirements
while providing physical interpretability of its parameter from eigenvalues [200]. One could
further imagine developing constrained symbolic regression approaches, where analytical
formulations are recursively built from an ensemble of predetermined domain-informed
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equations. For example, typical heat exchange model extensions could be assembled serving
automated, unsupervised, physics-informed, building heat dynamics identification from
symbolic regression as an extension to Annex A. These techniques, working at the frontiers
of black- and grey-box paradigms, typify the future of data-driven modeling approaches and
provide possible pathways toward more efficient and robust approaches for building thermal
characteristics identification.

Then, exploring data-driven technics to generalize findings across case studies is essential
to unlock the full energy-saving potential of the building stock. This can be undertaken
using popular machine learning technics such as classification or transfer learning, yet have
seldom been explored for building thermal characteristics identification applications due to
the lack of available benchmarks. Indeed, to generalize such findings to data-poor buildings
a sufficient pool of thermal characteristics first need to be assembled. The published Grey-
brick buildings open data set provides an initial step towards this goal. Yet, to establish a
complete benchmark, numerous additional buildings portraying varying types and climate
zone locations need to be investigated. Such a set would support the adoption of approaches
to generalize the thermal characterization of entire building stocks. Overall, the broader
adoption of data science best practices requires established benchmarks to back significant
findings. This process is still emerging in the building sector, yet has begun gaining
momentum over the last decade with open-source competitions such as the ASHRAE Great
Energy Predictor [277] or the CityLearn challenge [278]. Fostering open-source data science
practices supported by open sets has consequently been a major endeavor of this thesis.

Lastly, urban energy planning approaches have, to this date, relied on data-driven opti-
mization techniques, popularly employed in control settings, e.g., model predictive control
(MPC). The emergence of purely data-driven approaches applied to large multi-agent control
problems has also gained traction over the last decade from research and industry both.
Reinforcement learning stands as a particularly attractive technique for the intelligent control
of buildings; where varying uncertainties such as occupant behaviors and unreported physical
changes to the construction can be autonomously learned and handled by the agent. Its
capacity to capture the long-term impact of short-term decisions by approximating the
Bellman Value function possesses an appealing potential that could be applicable to the
long-term design of urban energy systems comparable to optimization approaches employing
mixed-integer linear programming (MILP) such as ours (Chap. 5). These investigations are
on the brink of becoming a reality as frameworks bridging branch and bound methods to
reinforcement learning are starting to appear in the literature [279]. This domain presents
an exciting area of research for urban energy planners boosted by the development of fully
data-driven, scalable, and autonomous planning agents.

https://zenodo.org/record/7180432#.ZActlXbMKUk
https://zenodo.org/record/7180432#.ZActlXbMKUk
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Concluding remarks

This Ph.D. dissertation has demonstrated through a set of developed methods, models, and
analytical frameworks, that connecting occupants, buildings and smart-energy networks
together uncovers significant added value; these contribute to building stock characterization
(descriptive), load forecasting (predictive), and resilient energy strategies (prescriptive analyt-
ics). The work particularly focuses on providing scalable and interpretable approaches founded
on data science principles that can be replicated or expanded to other case studies. To this
end, all developed implementations were open-sourced (https://github.com/JulienLeprince)
and relied as much as possible on the exploitation of open data sets to secure research
reproducibility and cultivate best data science practices in the building sector supported
by benchmarks. Such practices further encourage research dissemination serving industry,
education, and policymakers towards the decarbonization of the building sector.

https://github.com/JulienLeprince




Appendix A
Uncovering physical models from symbolic
regressions for scalable building heat dynamics
identification

Overview

This appendix is complementary to Chapter 3 and details:

• Symbolic regression as a black-box approach to produce interpretable, analytical
expressions for heat dynamics identification

• Case study: 241 residential buildings, 2NECO
• Produced linear analytical expressions are analyzed and compared to typical

grey-box RC models

This appendix has been published as Leprince et al. [144].

A.1 Preface

Modeling building thermal dynamics is an important challenge in characterizing performance
towards various objectives. With applications in building retrofitting [13], demand-side
management [16], energy forecasting [15], and model predictive control [17], it has been at
the center of many research publications within the past decades. Despite its momentum,
the approach is still faced with the fundamental challenge of scaling across the heterogeneous
building stock. Thermal dynamics modeling fits in one of three well-established categories:
physics-based methods (white-box), purely data-driven (black-box) and hybrid approaches
(grey-box) [125]. Physics and knowledge-based methods (white-box) are known to be time-
consuming and difficult to scale up. With many parameters to fix and human expertise
required, they are better fitted to detailed and isolated case-study building models. Grey-box
models, on the other hand, work as a hybrid approach bridging the gap between physical and
statistical modeling. By exploiting physical knowledge in their models, grey-box models profit
from interpretability, while exploiting the particularities of case-study data information for
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parameter fitting which makes them good at generalization [131]. Finally, data driven models
(black-box), encompass machine learning algorithms and statistical regressions, commonly
fitted from input and output time-series data of the system. They are notoriously powerful
at generalizing yet struggle to produce interpretable models. And while efforts in the domain
have allowed the opening of the box through feature importance metrics, e.g., SHAP (SHapley
Additive exPlanations) values [280], physical interpretation of captured models remains an
existing gap in the field.

Symbolic regression was recently put to light as a powerful black-box approach for extracting
analytical equations out of data. However, when dealing with high-dimensionalities, the
exponential explosion of combinations make it poor at scaling. Established data-driven
building heat dynamics model identification processes (grey-box) typically require as little
as 4-dimensional data measurements; inside temperature, heat signal input, and outside
conditions with ambient temperature and solar global irradiance [132]. Although these
approaches benefit from physical knowledge included within the developed models, it becomes
interesting to explore how symbolic regressions could uncover new forms of building heat
dynamics.

A.1.1 Opening the (black) box

This study consequently proposes to group, categorize and analyze the analytical expression
outputs of symbolic regression for building heat dynamics model identification. From a
case study of 241 monitored Dutch residential buildings and exploiting the paved path
provided by grey-box approaches, we propose to uncover the relationships driving inside
temperature states through interpretable black-box-produced models. Prediction accuracies
of the identified models are benchmarked against a commonly employed black-box regressor
within the building sector, i.e., XGBoost, as well as against a naive predictor to confirm its
relative performance.

A.2 Symbolic Regression

Symbolic regression is a machine learning algorithm based on genetic programming which
uses a simple tree-like representation structures to build an analytical expression from given
input data and mathematical operators [281]. By iteratively mutating, performing crossovers
or replications of the tree branches, multiple analytical expressions are explored to determine
the best fit to the given data. The procedure produces increasingly complex analytical
expressions from the given input features to predict the target output. The equation with
the largest fractional drop in error metric is selected as the best model [282].

Ultimately, symbolic regression derives explicit physical relations between components of a
system in an automated way. Additionally by building the symbolic expression from a tree
structure, increasing orders of complexities are explored as the model develops. Thus, the
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algorithm only incrementally incorporates features into the model, which allows inputs with
no significant impact on the target output not to be considered upfront.

A.3 Implementation

This study considers the 2NECO data set, leveraging inside temperature measurements, heat
signal control inputs, ambient temperature, and solar irradiance. Electric and gas-meter
data are also available at resolutions of 10 seconds and 1 hour respectively.

We consider minimum measurement periods of two months and limit the maximum times-
series length to 10’000 points, which corresponds to a period of approximately 3,5 months,
which is the recommended, amply sufficient, maximum input data length for the Symbolic
Regression. The measurement period ranges from February 1st to the end of May 2021,
which comprises the end of winter season as well as a notably cold start of spring season
at the beginning of April. Electric and gas-meter data are re-sampled by average to 15
minutes intervals to match the smart-thermostat information. Available data are then filtered
to obtain the most recent continuous measurement period for each building. Cumulative
missing values larger than two hours are imputed and smaller gaps are filled via moving
average using an eight hours window size.

We employ the open source python library PySR developed by Miles Cranmer et al. [282] for
the symbolic learning algorithm of this study. Mathematical operators considered encompass
multiplication, addition, division, cosine and sine functions. The number of iterations,
or generations the regression runs for, is set to 10 and no weights are assigned to input
data or operators not to influence the knowledge discovery process. Prediction accuracy
of the regressor is benchmarked against a naive predictor as well as a gradient boosting
regressor, i.e., XGBoost from the scikit-learn package [205], a commonly employed black-box
regressor within the building sector. The naive regressor simply predicts the step-ahead
inside temperature of the considered building to be the same as the last, providing a classic
reference value to compare a regressor’s performance to. The XGBoost regressor is trained
from a classic 20-fold TimeSeriesSplit function of the sklearn python package using the same
input data as fed to the symbolic regressor.

A.4 Results

The performance of the symbolic regression is evaluated using the distribution of the Mean
Squared Error (MSE) of the fitted models. Figure A.1 presents the boxplot distribution
of the symbolic regressor (SR) compared to a naive (naive) and gradient boosted (XGB)
regressor. The obtained symbolic expressions present lower MSE central tendencies and
spread compared to both benchmarks. Interestingly enough, it can also be noted that the
simple naive regressor seems to produce lower MSEs overall than the gradient boosted
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Figure A.1: Mean Squared Error (MSE) distribution of the symbolic regression (SR)
output analytical functions with their respective complexities compared to naive (naive) and
XGBoost (XGB) regressors.

method. This result might be due to the lack of parameter tuning for this method. A
number of MSE outliers for both naive and XGB regressors are not represented given the
upper limit of MSE axis that reaches as high as 0.85 Kelvins for XGB. The distribution of
obtained symbolic expression complexities from the SR exposes a predominant presence of
complexities of order five, which corresponds to a typical affine expression a · Ti + b, where
coefficients a and b, variable Ti and operators · and + each add an order 1 of complexity to
the overall expression.

The symbolic expressions derived from the black-box SR are post-processed to uncover 50
unique analytical expressions. These equations are then grouped into similar analytical
expression families which are presented along with their group size and intra-family available
attributes, i.e., building characteristics in Figure A.2 and symbolic coefficient values in Figure
A.3. While examining Figure A.2, it can be noticed that all but one family constitute linear
polynomial expressions of order one and two. The exception here being the Ti +Φh ·sin(f ·Ti)
expression comprising either a sine or cosine function, where f is a coefficient and variables
Ti and Φh represent inside temperature and space heating input signal respectively. The two
preeminent analytical families, i.e., Ti · a + Φh · b + c and the simpler Ti · a + c, where a, b and
c represent affine coefficients, evoke simple first order regressions of the inside temperature
considering, or not, the space heating input signal. The building characteristics distribution
per analytical group seem to suggest smaller homes to be more frequent in Ti · a + Vg · d + c,
where Vg represents gas-meter measurements, along with a larger proportion of family sizes
of 3. The two largest family groups appear to be mainly composed of family sizes of 2 and 4,
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Figure A.2: Identified symbolic expression groups and their building characteristics meta-
data distribution

Figure A.3: Identified symbolic expressions and their coefficients boxplot distribution

while home type distributions cover a crushing majority of town types. Given the number of
buildings grouped per analytical family along with their available meta-data, only the top 3
groups present results that can be considered significant.

Figure A.3 allows us to dive into the fitted coefficient distributions per family group.
Coefficients of value 0 or 1 have here been removed not to bias the appreciation of distributions.
Inside temperature-related coefficients a are commonly centered around 0.97, with a negatively
skewed distribution, while coefficients c are spread between values of -0.1 and 2 with positively
skewed distributions centered around 0.6. Overall, larger-sized groups tend to show larger
coefficient distributions.

A.5 Discussion

We here discuss how the discovered findings might bring value to the building sector by (i)
creating paradigm links between discovered black-box models and established grey-box ones
and (ii) uncovering physical knowledge from identified models.
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A.5.1 Link to grey-box paradigm

Thanks to the formulation of symbolic expressions describing dynamical systems from
measurements, it naturally follows that parallels can be drawn to well-established grey-box
models.

While grey-box necessitates the definition of multiple models for appropriate model selection,
symbolic regression inherently iteratively builds the model, thus making it far better at
generalization and automation. Commonly, multiple state point estimates are included in
grey-box models, corresponding to up to fifth-order models. The complexities captured by
these models echo quite naturally with the different thermal inertiae interacting in buildings.
While these models increase in complexity, their inherent interpretability related to building
physics allows a direct evaluation of estimated parameters. In opposition, analytical functions
discovered by SR, while being interpretable, necessitate physical analysis by domain experts
which can scale poorly given the variety of identified functions. It follows that natural links
between the thermal properties of a building and identified SR coefficients can be drawn,
building on the knowledge of grey-box models. Quite concretely, a typical grey-box building
model can be represented by lumped resistance-capacity models. The below differential
equation represents a 1st order model,

dTi = 1
RiaCi

(Ta − Ti)dt + 1
Ci

ηhΦhdt + 1
Ci

AwΦsdt + ϵ

where the state variables T and Φ represent temperature and heat flux, estimated parameters
R, C, η and A serve as heat resistance, heat capacity, appliance efficiency, and area respec-
tively and the subscripts i, a, h, s and w relate to inside, ambient, heat, solar and window
components respectively. ϵ encapsulates the measurement error, model approximations, and
non-recognized or modeled phenomenons [136].

Linking identified SR functions to this formulation uncovers physical components such as
building heat capacity Ci, space heating appliance efficiency ηh and thermal gains ϵ here
linked to coefficients a, b and c respectively. Coefficient g may also be associated with solar
window area gains Aw. The below equation explicitly links the above grey-box model to
identified polynomial relationships.

Ci · Ti(t + 1) = Ci · Ti(t) + ηh · Φh(t) + Aw · Φs(t) + ϵ(t)

Ci · Ti(t + 1) = a · Ti(t) + b · Φh(t) + g · Φs(t) + c

Confirming these physical links would however require knowledge of ground truth - an
interesting area of research for future studies that could help uncover direct links between
measurements and building characteristics.
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A.5.2 Model discovery

Leveraging knowledge discovery can be used as a powerful tool to build new models, enhancing
white- or grey-box model identification approaches. While all discovered polynomial models
possess a linear simplicity that makes their interpretation accessible, some of the more
complex or non-intuitive uncovered models might just be the starting point of a new
generation of models. The cosine and sine function of the inside temperature identified
in Ti + Eh · sin(f · Ti) may here correspond to particular cyclical control strategies of the
thermostat. Additionally, while no significant meta-data factor seems to separate variations
of the identified polynomial functions, inside temperature patterns emerging from thermostat
control and occupant behavior heat gains might unveil these model structures. This requires
deeper inspections outside the scope of this work.

A.6 Summary

With this work, we bring to light an automated model identification of building heat dynamics
approach from data. With 241 monitored buildings, fifty unique models were uncovered
and grouped into seven main families of symbolic expressions, six of which are polynomials.
These results support established differential models developed with grey-box approaches
while favoring simplified symbolic complexities. It brings important perspectives to model
identification in practice, e.g., for forecasting and control applications. Discovered models
and coefficients may be exploited in a variety of building service applications including
automated and scalable model identification and calibration for building Model Predictive
Control (MPC). Building performance analytics may also leverage such findings for building
characteristics benchmarking or thermostat control strategy characterization.
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