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Abstract 

Connected and Autonomous Vehicles (CAVs) promise to improve road safety greatly. 

Despite the numerous CAV trials around the globe, their benefit has yet to be proven 

using real-world data. The lack of real-world CAV data has shifted the focus of the 

research community from traditional safety impact assessment methods to traffic 

microsimulation in order to evaluate their impacts. However, a plethora of operational, 

tactical and strategic challenges arising from the implementation of CAV technology 

remain unaddressed. This thesis presents an innovative and integrated CAV traffic 

microsimulation framework that aims to cover the aforementioned shortcomings. 

A new CAV control algorithm is developed in C++ programming language containing 

a longitudinal and lateral control algorithm that for the first time takes into 

consideration sensor error and vehicle platoon formulation of various sizes. A route-

based decision-making algorithm for CAVs is also developed. The algorithm is applied 

to a simulated network of the M1 motorway in the United Kingdom which is calibrated 

and validated using instrumented vehicle data and inductive loop detector data. 

Multiple CAV market penetration rate, platoon size and sensor error rate scenarios are 

formulated and evaluated. Safety evaluation is conducted using traffic conflicts as a 

safety surrogate measure which is a function of time-to-collision and post 

encroachment time. The results reveal significant safety benefit (i.e. 10-94% reduction 

of traffic conflicts) as CAV market penetration increases from 0% to 100%; however, 

it is underlined that special focus should be given in the motorway merging and 

diverging areas where CAVs seem to face the most challenges. Additionally, it is 

proven that if the correct CAV platoon size is implemented at the appropriate point in 

time, greater safety benefits may be achieved. Otherwise, safety might deteriorate. 

However, sensor error does not affect traffic conflicts for the studied network.  

These results could provide valuable insights to policy makers regarding the 

reconfiguration of existing infrastructure to accommodate CAVs, the trustworthiness 

of existing CAV equipment and the optimal platoon size that should be enforced 

according to the market penetration rate. 

Finally, in order to forecast the conflict reduction for any given market penetration rate 

and understand the underlying factors behind traffic conflicts in a traffic 

microsimulation environment in-depth, a hierarchical spatial Bayesian negative 
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binomial regression model is developed, based on the simulated CAV data. The results 

exhibit that besides CAV market penetration rate, speed variance across lanes 

significantly affects the production of simulated conflicts. As speed variance increases, 

the safety benefit decreases.  These results emphasize the importance of speed 

homogeneity between lanes in a motorway as well as the increased risk in the 

motorway merging/diverging areas.              
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1 Introduction 

 

1.1 Background 

In 1864, an Austrian-Hungarian inventor, Siegfried Marcus, created the first gasoline 

powered combustion engine and used it to propel a vehicle (American Society of 

Engineers, 2014). Since then, vehicles have brought a revolution in transport and have 

radically changed the structure of society. Vehicles are undoubtedly the most 

widespread means of transport, and reports show that the past four years have seen an 

increase of 16% in the number of registered motorised vehicles globally (World Health 

Organisation, 2015). More specifically, in Great Britain there has been a steady 

increase in the number of licensed vehicles since the end of the second World War 

(Department for Transport, 2015) .  

 

Figure 1.1  Number of licensed vehicles in Great Britain (source: DfT, 2015) 

 

Inevitably, the expansion of the vehicle fleet has led to severe consequences on road 

traffic, environmental pollution and road safety. The number of road traffic deaths is 

“unacceptably high” (i.e. 1.35 million every year worldwide) and road accidents are 
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expected to become the fifth leading cause of deaths worldwide by 2030 according to 

World Health Organisation, (2018).  

Several infrastructure-based and vehicle-based technologies, also known as Intelligent 

Transport Systems (ITS), have been developed over the last decades in order to 

mitigate the negative effects of vehicle growth on traffic flow and efficiency, safety 

and the environment (Eskandarian, 2012).  

The Connected and Autonomous Vehicle (CAV) is the latest progress of ITS and it is 

a technology that has advanced significantly over the past few years and an increasing 

number of real-world tests are taking place worldwide.  

Even though a significant amount of effort has been put into CAV research and 

industrial development, the concept of CAV has existed for a few decades already. 

Humanity had envisaged self-driving cars in science fiction films and cartoons. For 

example, in 1958, Disney air a show where autonomous vehicles could navigate 

coloured highways lanes and that were operated with addresses coded on punch cards. 

A couple of decades later, in the mid 1980’s, the underlying technology and 

computational methods in order to achieve this vision of CAVs started becoming 

available (Anderson et al., 2014). Since then, in the last 25 years, the evolution of 

CAVs can be taxonomised into three groups that correspond to significant waves of 

developmental gains.  

 The first wave of development included the so-called foundational research attempts 

(Anderson et al., 2014) and lasted from 1980 to 2003. In this wave, CAVs were tested 

on highways, and mainly or partly relied on existing infrastructure for guidance. One 

major demonstration of this wave took place in 1997 in California’s I-15 highway near 

San Diego, where eight CAVs were guided by magnets embedded in the highway and 

coordinated with vehicle to vehicle (V2V) communication (Ioannou, 1998). It is worth 

noting connectivity among CAVs was considered an important factor and was 

investigated from the early stages of CAV development. A more advanced example of 

this wave, was the vision, based vehicle developed by Bundeswehr University Munich 

which navigated at speeds of 100 kilometres per hour without traffic (Lantos and 

Maarton, 2011). 

The second wave of CAV development can be placed between 2003 and 2007 where 

three “Grand Challenges” relating to CAVs were launched globally. The aim of first 
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two challenges was to develop a fully autonomous vehicle that could navigate in a 

150-mile off-road racetrack. Unfortunately, no vehicle was able to complete the full 

stretch of the first challenge and the best attempt completed less than eight miles of 

the course (BBC News, 2004). Five vehicles completed successfully the second 

challenge in 2005, a fact which indicated that important lessons were learnt by the first 

challenge. Most importantly, in 2007, DARPA held its third and final CAV challenge 

where the vehicles were asked to navigate through a 60-mile urban course while 

obeying traffic laws and navigating along other autonomous and human-driven 

vehicles. Six participating vehicles were able to finish the race while some of them 

received penalties for violating traffic rules. After this challenge it became obvious 

that sensor systems and computing algorithms involved in CAVs needed to mature 

further in order to detect and react to the behaviour of other vehicles, to navigate 

marked roads and to obey traffic rules and signals.    

The second wave of advancements and especially the “Grand Challenges” sparked the 

creation of partnerships between automotive manufacturers and the research/academic 

sector and motivated the automotive sector to advance CAVs. Since 2010, there is a 

plethora of CAV projects worldwide. Namely, Google’s Driverless Car initiative has 

brought CAVs from laboratories and confined spaces into commercial research 

(Waymo, 2016). Major automotive manufacturers and operators such as Uber, Audi, 

Toyota, Ford and Peugeot are involved in CAV development and testing projects and 

are starting to test their vehicles in the real-world (iMove Australia, 2020).  

As the deployment of CAVs in the road network is expected to bring about a radical 

overhaul in existing transport systems, this disruptive technology has attracted a great 

deal of interest from original equipment manufacturers (OEMs), governmental and 

local authorities and the academia. CAV technology has potential to revolutionise our 

economy and society by reducing traffic congestion, road traffic crashes and vehicle 

emissions (Fagnant and Kockelman, 2015).  

In order to prove these benefits, the vast majority of automotive manufacturers work 

towards collecting operational data and are testing CAVs in the real world in both 

motorways and urban environments (e.g. Waymo project (Waymo, 2016), NUtonomy 

trials in Singapore, Google car in California, UK Smart Mobility Lab at Greenwich, 

Lutz Pathfinder in Milton Keynes). These trials have proven that CAVs will introduce 
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a range of unprecedented challenges and will bring a multifaceted transformation to 

the existing road network. For example, whether existing motorway and urban 

infrastructure can accommodate CAVs is yet to be fully elucidated. Additionally, the 

communication standards and a unified protocol between existing infrastructure 

technology and CAVs have not been clarified yet. Furthermore, the inherent 

challenges arising from the interaction between human driven and connected and 

autonomous vehicles during the transition period are largely unknown (Reich, 2013). 

Even the compatibility between software of different CAV manufacturers is still 

uncertain and this might affect their operations and co-operative decision making at a 

corridor or a network level (Anderson et al., 2014)..  

1.2 Research Problem  

 

The numbers associated with road safety are staggering. Even though the number of 

road traffic deaths relative to the size of world population has stabilized over the past 

3 years, the raw number of road traffic deaths continues to climb each year. Road 

traffic accidents now represent the eighth leading cause of death globally claiming 

1.35 million lives and 50 million injuries and possibly almost every one of those deaths 

and injuries is preventable (World Health Organisation, 2018) as 94% of the crashes 

include a form of human error as a contributing factor (Singh, 2015). 

One could argue that by taking the human out of the driving equation, the 

corresponding percentage of accidents would be eliminated as CAVs are a technology 

which aims to perform the driving task without the help of the human driver. Indeed, 

several studies have performed meta analyses on traffic accident data in order to 

estimate the percentage of accidents that would be reduced if CAVs were to be 

introduced in existing traffic streams. They usually conclude that CAVs are expected 

to decrease road traffic crashes by approximately 90%  at high market penetration rates 

(e.g. Fagnant and Kockelman, 2015). However, such an estimate might be false or 

misleading as this kind of approach does not consider important technological and 

operational CAV challenges such as sensor errors and failures that will arise when 

CAVs are employed.  

Indeed, the real-world testing so far of autonomous driving have proven that these 

aforementioned challenges might lead to devastating results. CAVs have been 
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involved in a number of accidents already (The New York Times, 2016; Green, 2018) 

which have costed the lives of pedestrians and the passengers of the vehicle itself. 

Inevitably, these events have not helped to persuade the public regarding their 

reliability. It is obvious that these challenges need to be addressed and evaluated prior 

to the implementation of CAVs in the real world. 

Perhaps the only way to do that is by applying an ex-ante evaluation method. One of 

the most widespread evaluation methods that have been applied in the past in order to 

evaluate the safety impact of a traffic-related technology, is traffic simulation. This 

method is flexible and has a lot of potential. However, the major drawback associated 

with CAV simulation is the fact that it is unknown how exactly CAVs will function in 

the real world. More specifically, the exact driving behaviour is widely unknown due 

to data unavailability and macroscopic characteristics of CAV traffic flow are not 

possible to predict, as they depend on various factors connected with software and 

hardware specifications.  

Existing studies have tried to address this surrounding uncertainty by attempting to 

develop a number of representative scenarios which arise according to logical 

assumptions, the vision of the corresponding authors or speculations about how CAVs 

will operate in the future. The question of whether these scenarios cover the realistic 

range of challenges of CAVs cannot be possibly answered.  

The fact that simulating CAVs is a complex task, adds to already existing research 

problems mentioned above. Each CAV is a complex entity consisting of multiple 

subsystems (i.e. sensing, perception, planning and control subsystem) that need to be 

simulated in order to address the challenges arising from the different types of road 

network layout. Due to this inherent complexity, a number of studies has attempted to 

simplify things by simulating only one or two of the aforementioned subsystems such 

as the control subsystem which includes fundamental elements of CAV control such 

as the  longitudinal control algorithm  (ATKINS, 2016a; Jeong, Oh and Lee, 2017; 

Rahman and Abdel-Aty, 2018). However, such simplifications involve only individual 

vehicle kinematic characteristics in the analysis and do not consider inherent 

uncertainties at strategic, tactical and operational levels arising from the rest of the 

CAV subsystems. On the other hand, by attempting to simulate all CAV subsystems 

accurately with a combination of simulators, other studies developed highly detailed 
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CAV simulation frameworks which were too computationally heavy to be tested at a 

large scale and consequently unable to provide useful recommendations regarding the 

possible future CAV implementation strategy (Figueiredo et al., 2009; Noort, Arem 

and Park, 2010; O’Hara et al., 2012). Finding the fine balance between these two 

approaches described above would be the key to provide useful results and at the same 

time address challenges arising from the nature of CAVs.   

This thesis attempts to address the aforementioned methodological issues by 

developing an integrated CAV simulation framework which covers a number of 

challenges arising from the subsystems of CAVs. The developed framework is applied 

in a large scale simulated motorway environment and the results are discussed from a 

simulation and statistical point of view in order to obtain an in-depth understanding of 

the challenges and factors affecting the safety in a motorway during the transition from 

the fully manual vehicle era to the fully autonomous era. The results provide useful 

policy recommendations that could potentially facilitate the adoption of CAVs in 

existing road networks and traffic streams.  

 

1.3 Research Significance  

 

As mentioned above, the number of casualties due to road accidents is high and CAVs 

promise to reduce these numbers by approximately 90% by taking over the driving 

task at high automation levels. However, this estimation has yet to be confirmed using 

real-world data.  

It is impossible to confirm this estimation in the real world according to a recent study 

(Kalra and Paddock, 2016). Using real-world data to verify the safety benefits of CAVs 

is impractical as of today, because hundreds of millions of miles, or in some cases 

hundreds of billions of miles of real-world CAV operational data are needed to obtain 

statistical evidence of potential safety benefits. This amount of data would take several 

decades to be collected (Kalra and Paddock, 2016). As a result, similarly to the ex-ante 

evaluation era of other transport interventions (e.g. variable speed limits, high 

occupancy vehicle/toll lanes and adaptive cruise control) research has focused on 

identifying alternative methods to assess the impacts of CAVs.  
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Simulation is perhaps the only alternative appropriate method for studying complex 

systems that are inaccessible through direct observation and real-world measurement 

(Lamotte et al., 2010). However, in order to sufficiently cover the challenges arising 

from CAVs and to understand the factors associated with their safety impact, CAVs 

need to be simulated in a wide range of scenarios. In this regard, this research attempts 

to cover a number of representative scenarios arising from major challenges associated 

with their technological and operational challenges and understand in depth the 

underlying factors affecting CAV safety so as to provide useful insights to policy 

makers to develop the optimal CAV implementation strategy.  

 

1.4 Aim and Objectives 

 

The aim of this PhD project is to quantify the safety impact of CAVs on motorways 

using a traffic microsimulation framework.  

In order to achieve this aim, the following research objectives are formulated: 

• To identify likely impacts and issues affecting safety of CAVs in mixed traffic 

streams; 

• To explore and review techniques used to evaluate the impact of Intelligent 

Transport Technologies and CAVs; 

• To formulate a traffic microsimulation framework capable of simulating CAVs 

along with human-driven vehicles; 

• To analyse the data from the microsimulation for the purpose of evaluating the 

impact on safety of CAVs; 

• To assess underlying factors affecting the occurrence of traffic conflicts in a 

traffic simulation environment using a statistical approach 

• To recommend a number of specific scenarios where the safety benefit of 

CAVs would be maximized, specifically during the transition period.  
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1.5 Thesis Outline 

 

This thesis consists of seven chapters. An outline of the chapters is provided below: 

▪ Chapter 2 conducts an extensive literature review in order to clearly define 

CAVs and identify potential impacts and issues arising from their 

implementation in the real world; 

▪ Chapter 3 conducts a methodological review of studies investigating the 

impact of intelligent transport systems related to CAVs in order to identify 

potential candidate methods for CAV evaluation. Additionally, current CAV 

simulation approaches are discussed along with methods to evaluate safety in 

a traffic microsimulation environment. Finally, the potential use of statistics in 

CAV safety evaluation is investigated;   

▪ Chapter 4 presents the methodology of this thesis. The chapter starts with a 

description of the traffic microsimulation framework. Following, the conflict 

identification algorithm is described. The final section of this chapter describes 

the statistical method employed; 

▪ Chapter 5 describes the different sources of data used for the purpose of this 

thesis and presents the results of the calibration and validation process of the 

simulation platform; 

▪ Chapter 6 shows and critically discusses the results derived from the 

simulation and statistical models developed. This chapter also discusses 

practical implications and policy recommendations arising from the analysis; 

▪ Chapter 7 summarises this research project and outlines its contributions to 

knowledge and limitations/assumptions. Finally, recommendations for future 

research are discussed.  
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2 Literature Review of the Impacts of CAVs  

 

2.1 Motivation 

 

CAVs is undoubtedly a technology that is under the microscope of the media. This 

sudden popularity has led to the transmission of various positive and negative 

messages to the public regarding their direct and indirect impacts. For instance, stories 

about accidents with CAVs have reached the headlines of newspapers and websites 

quickly, ultimately affecting the opinion of the society (The Guardian, 2016). 

However, these stories usually fail to provide a comprehensive analysis of the 

accidents or incidents with regards to equipment failure, environmental conditions or 

the exact reason of the accident due to lack of background CAV knowledge.  

Hence, in order to get a wholistic understanding and develop an appropriate 

methodology for this research, it is of utmost importance to initially define them, 

describe their main elements; sensors, functionalities and control mechanism 

(subsystems), and subsequently summarise their potential issues and impacts. 

Therefore, the first part of this literature review chapter defines CAVs and describes 

their most important features. The second part summarises potential issues arising 

from the introduction of CAVs and impacts of CAVs found in existing literature in 

order to obtain a wider perspective for the evaluation framework designed in this 

thesis.     

2.2 Connected and Autonomous Vehicles 

 

This part of the literature review aims to describe the most important features of a CAV 

in the following sections:  

• Definition and Automation Levels. The various automation levels according 

to National Highway Traffic Safety Administration (NHTSA) are defined. 

• Existing Automation Functionalities. The second section includes the 

description of the existing automation functionalities such as Adaptive Cruise 

Control, Lane Changing Assistance and Parking Assistance. 



10 

 

• Equipment in CAVs. The equipment used in CAVs is presented in the third 

section. 

• V2X Communication. CAV’s ability to communicate with vehicles and 

infrastructure are analysed and the equipment used to achieve that are 

described. 

• Control Mechanism. Finally, the most common control mechanisms of the 

CAV are presented in the final section. 

 

2.2.1 Definition and Automation levels 

 

Connected and Autonomous vehicle, also known as driverless, self-driving or 

robotic vehicle is a vehicle equipped with an autopilot system which allows it to safely 

move from one place to another without help from a human driver (Liden, 2013). It 

must be noted that the term autonomous is sometimes used interchangeably in the 

literature with the term automated. However, looking into the etymology of these two 

words, the following can be concluded: 

a) Automated-automatic: The origin of this word comes from the ancient Greek 

word αὐτόματος (aftomatos) which means something that is being done 

without external intervention or something that is being done or occurring 

spontaneously, without conscious thought or attention. This is not the case for 

CAVs as the decisions are taken using artificial intelligence and attention to 

detail; 

b) Autonomous: The origin of this word comes from the ancient Greek words 

εαυτός (eaftos) – self and νόμος (nomos) – law. It means something that has 

the freedom to govern itself or control its own affairs – having the freedom to 

act independently. In the case of a CAV, the subsystems contain  the laws that 

rule its operation.  

According to the above definitions the term autonomous is used in this thesis. 

However, when relevant literature mentions the term automated, the term automated 

is used for consistency purposes.  
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 In 2013, the National Highway Traffic Safety Administration of the U.S. Department 

of Transportation released a policy which defines the various levels of vehicle 

automation, ranging from vehicles which are not equipped with automated control 

systems at all (automation level 0), to fully automated vehicles (automation level 5) 

(National Highway Traffic Safety Administration, 2013a).  

More specifically:  

• Level 0 – No-Automation. The driver is in full control of the driving task. 

Vehicles that are equipped with driver support/convenience systems, also 

known as Advanced Driver Assistance Systems (e.g. Collision warning 

systems), are also considered as “level 0”; 

• Level 1 – Driver Assistance. In this level of automation, the vehicle can 

automatically assume limited authority over one primary control (such as 

adaptive cruise control). The driver still has overall control and is solely 

responsible for safe operation but can choose to hand limited authority over 

a primary control to the vehicle; 

• Level 2 – Partial Automation. In this automation level, one primary control 

function (steering and acceleration) is designed to work autonomously, in 

order to relieve the driver of their control. The driver is responsible to 

monitor the roadway and safety operation and is expected to be available to 

take over the driving task and any given time on short notice;  

• Level 3 – Conditional automation. Vehicles at this level of automation 

have full control of monitoring of the driving environment. Vehicles can 

monitor these conditions and can require transition back to driver control. 

The driver is expected to be available to occasionally take over the driving 

task; 

• Level 4 – High automation. Vehicles at this level of automation are capable 

of performing all safety-critical driving functions and monitoring roadway 

conditions for an entire trip. They can perform dynamic driving manoeuvres 

such as changing lanes. They require the driver to input the destination of 

the trip but not to be available to take control at any time during the trip. The 

limitation of this automation level compared to automation level 5 is that it 

can operate in certain driving environments (e.g. motorways); 



12 

 

• Level 5 – Full automation. Vehicles of this automation level are equipped 

with a full-time automated driving system which controls all aspects of 

dynamic driving under all environmental/roadway conditions.  

 

2.2.2 Existing vehicle-based Automation functionalities 

 

The driver assistance systems mentioned in NHTSA’s vehicle automation 

classification discussed above, are more widely known as Advanced Driver Assistance 

Systems (ADAS). They can exist in different combinations in vehicles. According to 

Pijpers (2007), some of the most widespread ADAS are:  

• Lane Change Assistant: The lane change assistant is an ADAS which detects 

the lane as well as all other vehicles surrounding the ego vehicle and warn the 

driver during a lane change process; 

• Lane Keeping Assistant: This system detects the lane and gives feedback to 

the driver if he is leaving a predefined trajectory within the lane. A video 

image processing system is used to detect the lane;  

• Automatic Parking: The automatic parking is a function which helps the 

driver during the parking procedure. It can take full control of the steering 

wheel and engine during a parallel parking manoeuvre;  

• Pre-Crash Collision and Mitigation System: These pre-crash systems, 

which were implemented first by Toyota and Honda, aim to reduce the 

potential damage of an accident by pre-tensioning the safety belts when an 

imminent collision is detected which cannot be avoided;  

• Obstacle and Collision Warning and Avoidance: This system aims to first 

warn the driver if a potential collision with another vehicle or obstacle is 

detected and take control of the vehicle in emergency situations in order to 

avoid an accident. The system takes over longitudinal and lateral control 

during the critical time when the dangerous event takes place;   

• Platooning: A platoon consists of a group of several vehicles (usually three 

or more) which are connected electronically and follow one another closely. 

An example of platooning is trucks connected in order to save space, fuel and 

increase road network performance;   
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• Adaptive Cruise Control/ Stop and Go: This system is responsible of 

keeping a safe distance from the preceding vehicles especially in congested 

conditions. For their operation, they depend heavily on a range of active 

sensors such as laser/radars/lidars.  

 

2.2.3 Equipment in CAVs 

 

Undoubtedly, reliability is a fundamental requirement of the existing automation 

functionalities as they control important functions of a vehicle. In order for existing 

automation functionalities to make a safety related decision, data must be collected 

and evaluated. CAVs are equipped with a range of sensors which sense, “think” and 

act on behalf of the driver (Pijpers 2007).  

The most widespread CAV sensors are the following:  

1. Radar: Radio Detection and Ranging, is a machine which transmits strong 

radio waves to detect, range and map objects. In existing automation 

functionalities, the most frequently used Radars are of the Pulse-Doppler 

variant;  

2. Lidar: Light Detection and Ranging, or Laser Imaging Detection and Ranging 

is a technological instrument which uses laser pulses to determine distance to 

an object or surface. The most significant difference between radar and a lidar 

is that the latter cannot detect dynamic information about the detected objects 

such as velocity. Lidar also uses a much shorter wavelength of the 

electromagnetic spectrum, has a larger detection range and a wider field of 

view than the radar; 

3. Infrared Camera: An infrared camera is a camera which is sensitive to heat 

radiation of objects. In that way, it can detect heat-emitting objects such as 

vehicles or human beings; 

4. Vision: A vision system is a device which collects light on a light sensitive 

backplate to detect objects within its vision range. Lately, the use of digital 

cameras has dominated the vision component of the sensors.  

Table 2.1, presents which aforementioned equipment is used in section’s 2.2.2 

“Existing Vehicle-based Automation Functionalities”.  
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Table 2.1 Equipment Used in Existing Automation Functionalities  

 

Lane 

Change 

Assistant 

Lane 

Keeping 

Assistant 

Automatic 

parking 

Pre-Crash 

Collision and 

Mitigation 

System 

Obstacle 

Collision 

Warning and 

Avoidance 

Platooning ACC 

Radar • • • • •   • 

Lidar • • • • •   • 

Infrared 

Camera 
          •   

Vision • •   •   • • 

 

 

2.2.4 V2X Communication 

 

CAVs are equipped with communication devices in order to communicate with 

Infrastructure, known as Vehicle to Infrastructure communication (V2I) and with other 

vehicles, known as Vehicle to Vehicle communication (V2V). CAVs need to 

communicate with both infrastructure and other vehicles in order to receive and 

transmit useful traffic information such as incidents, queue formation, speeds and 

speed limits. Communication consists of technological instruments and network 

architecture.  

The technology used, can be divided into the following categories (Belarbi et al, 2003):  

• Systems that reuse existing infrastructure GSM/UMTS (Global system for 

Mobile communications/Universal Mobile Telecommunication Service); 

• Dedicated Short-Range Communication (DSRC); 

• Global Positioning Systems (GPS/Galileo); 

• Satellite Digital Service Broadcasting (S-DSB);  

The architecture of the communication system can be split into three categories 

(Belarbi et al, 2003): 
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• Infrastructure dependent communication system: This system architecture 

provides stable and uniform service to the properly equipped vehicles along 

the road segment that it can cover;  

• Ad-hoc network (WiFi): Also known as VANET (Vehicular Ad-Hoc 

Network) Wireless (WiFi) networks are created dynamically, depending on the 

vehicles circulating the road network. The vehicles in a road network are used 

as wireless routers/nodes to create a wide network. VANET can provide the 

participating vehicles with traffic data and it can support cooperative driving 

functions such as lane insertion;  

• Mixed (structured and ad-hoc networks): Mixed networks keep the 

advantages of infrastructure and ad-hoc communication systems architecture. 

Both vehicle to vehicle communication is used and transmitters which are 

installed directly in the infrastructure, communicate with vehicles as well as 

Traffic Operation Centres.  

 

2.2.5 Control mechanism 

 

With the technological equipment being described in the previous section, the question 

remaining to be answered is: how does all this technology cooperate to drive the car 

without the need of a human driver?  

Campbell et al. (2010) summarising their experience of the 2007 DARPA (Defence 

Advanced Research Projects Agency) Urban Challenge (DUC), state that most of the 

participants developed their driverless vehicle by dividing the control mechanism into 

four different subsystems, each of them controlling an important function of the 

vehicle: sensing, perception, planning and control.   

• The sensing subsystem’s purpose is raw data gathering. Vehicle data such as 

lateral and longitudinal position are gathered by GPS and lane and road 

geometrical measurements are gathered by radars, lidars and cameras;  

• The perception subsystem is responsible to translate the raw data received by 

the sensing subsystem, to useful information about the vehicle, such as vehicle 

location within a lane, other vehicles’ locations or longitudinal position of own 

vehicle in the road network; 
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• The planning subsystem, for most of the challenge participants, includes 

common components such as path planners, behavioural planners and route 

(map) planners, although there were variations across the teams. The planning 

subsystem played an important role in reasoning about the probabilistic 

information coming from the perception subsystem; 

• The control subsystem included the actuators and commands to drive the car. 

Information about the control law would come by combining information of 

the higher-level planning (planning subsystem) and direct sensing to increase 

speed of response. 

 

 

Figure 2.1 Flowchart of the control Mechanism of an Autonomous Vehicle 

 

Perhaps the most important subsystem of a CAV which is also the key to autonomy is 

the planning sub-system. This subsystem involves planning algorithms incorporated 

in the middleware of CAVs’ navigation, situation understanding and decision-making 

modules. The main purpose of planning is to calculate a collision-free path towards 
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the destination of the vehicle while taking into account the vehicle’s kinematic 

characteristics, its manoeuvre capabilities in a mixed traffic environment, the traffic 

rules and road boundaries (Zhang et al., 2013). Planning is a computationally heavy 

process which takes place in parallel with other functions of the CAV. The input of 

the planning is usually data coming from the sensors of the CAV which are 

supplemented with data coming from digital road maps in order to optimise the 

planning process. In more detail, in order for the planning sub-system to plan the 

journey for the CAV, the surrounding environment needs to be translated from data 

coming from its sensors to a configuration also known as a state space. The state space 

consists of vehicle dynamics measurements such as position, orientation, velocities 

etc. As the vehicle advances in a road network, the information from the sensors and 

the digital maps are converted into a digital representation of the road network which 

is a mandatory requirement of the planning subsystem. This virtual representation is 

also known as the search space.    

The planning algorithms which exist in CAVs come from the field of robotics and have 

been subsequently applied in different on and off-road vehicles. Planning algorithms 

in CAVs can be divided into four categories according to Varaiya, (1993):  

a) Route planning which is the process of finding the optimal global route from 

point A to point B by potentially taking into account additional real-time 

traffic information 

b) Path planning which is an important primitive for CAVs that calculates the 

shortest or optimal path between two points within a given road 

c) Manoeuvre choice is a high-level decision-making system of the CAV which 

performs an action that would alter the position and speed of the vehicle on 

the road. The manoeuvre usually is performed for safety reasons while also 

taking into account the path that is specified from path planning  

d) Trajectory planning (used interchangeably with the term control planning) is 

the real-time planning of the actual vehicle’s transition from one feasible state 

to the next, satisfying the vehicle’s kinematic limits based on the vehicle 

dynamics and constrained by the navigation comfort, lane boundaries, traffic 

rules and obstacles in the road network (Katrakazas et al, 2018). Most existing 

trajectory planning algorithms initially follow trajectories generated in a low 

resolution/lower dimensional search space and subsequently, the resulting 
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optimal trajectory smoothed out on a higher resolution/ higher dimensional 

search space.  

Once the search space is constructed in a virtual environment in the CAV planning 

sub-system the planning algorithms are employed in order to select the best path, 

behaviour and trajectory.  

According to Katrakazas et al., (2015) the planning process can be divided into three 

levels of planning: 

1. Identification of the best geometric path for the vehicle to follow 

2. Identification of the best manoeuvre to perform 

3. Identification of the best trajectory to follow by optimising geometric curves 

according to kinematic constraints 

One practical example of the above process is the route between two points. The route 

planner identifies and constructs the geometric path of a vehicle which consists of 

several waypoints. The way from one waypoint to another must be free of obstacles 

and the vehicle must be able to interact with other vehicles while navigating between 

them. According to the potential obstacles and the interaction with other vehicles, the 

CAV can decide to perform certain manoeuvres such as overtaking, turning or braking 

in order to reach the next waypoint. If the waypoints and the proper manoeuvre are 

calculated by the CAV then the trajectory planning describes the procedure by 

searching the best way to connect the determined way points (Katrakazas et al., 2015). 

In order to put this section in the framework of this thesis, one should consider the 

capabilities of the primary method used. The previous paragraphs, emphasised that in 

order for the CAV to apply its planning algorithms it should be provided with a clear 

search space (a virtual representation -usually in 3D) which is a product of the data 

coming from its sensors such as a lidar and a camera. Unfortunately, such visual data 

are not available within traffic microsimulation which is the primary method used in 

this thesis. In more detail, in microscopic simulation, vehicle routes are pre-defined 

and manoeuvres and ultimately the trajectories of vehicles are calculated based on a 

set of pre-defined rules contained in the car following and lane-changing algorithms 

overarching the control of the vehicle. However, the exclusion of the realistic 

trajectory and path planning algorithms does not hinder the validity of the results, as 

CAVs are approached from a more macroscopic point of view. Hence, this thesis will 
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focus mostly on the car-following and lane-changing behaviour which will be 

considered as a sufficient approximation of the planning and control sub-system of a 

CAV.  

2.3 Potential Impacts and Issues of Connected and Autonomous Driving 

 

2.3.1 Introduction  

 

One of the most unanimous statements regarding CAV implementation is that CAVs 

are going to bring great benefit to all aspects of the society (Fagnant and Kockelman, 

2014; Milanes and Shladover, 2014). However, how are CAVs going to affect the 

different impact areas? In order to answer this question, one should first identify the 

new issues and challenges arising from the implementation of CAVs in the road 

network. Additionally, the question of which impact areas -precisely- are CAVs going 

to affect is yet to be answered. For this reason, a number of studies has focused on 

taxonomizing the impacts of CAVs (Fagnant and Kockelman, 2015; Milakis et al., 

2015; Hörl et al, 2016). Most of these studies categorize the impact areas in direct (1st 

order) or indirect impacts (2nd or 3rd order) based on how they occur. For example, 

Milakis et al., (2015) imply that with the introduction of this new vehicle in the 

network, the direct impacts would be traffic implications such as road capacity and 

congestion, travel cost implications, and travel choice implications. Consequently, 

through a ripple effect, each of these first order impacts would lead to several other 

second order impacts such as infrastructure implications, land use and vehicle 

implications. Ultimately, areas such as safety, economy, air pollution, energy 

consumption, public health and social equity are going to be affected. 

From the above, it is obvious that there is a plethora of interrelations and “rebound 

effects” (one impact area affecting -even negatively- another impact area) between 

impact areas and this is a big challenge when trying to taxonomize the impact of CAVs 

and furthermore when trying to evaluate the actual impact. For this reason and also 

due to method and data availability, the majority of existing literature has focused on 

three main impact areas (traffic, safety and environment) following the approach of 

“ceteris paribus” (all else equal) meaning that for instance, the safety impact is 

evaluated while the rest of the parameters or impact areas (e.g. traffic demand) remain 
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unchanged. Evaluating multiple impact areas at a time would increase the complexity 

of the projects significantly as the interrelation between impact areas and how they 

will occur are largely unknown. 

The available literature and the methodologies that are analysed in Chapter 3 of this 

thesis made clear that this literature review chapters should focus on three main impact 

areas: Safety, Traffic and Environment. Due to the aim of this thesis, special focus is 

given on safety. Additionally, in order to obtain a deeper understanding of the 

motivation of existing literature current issues arising from the implementation of 

CAVs are discussed in each section. Finally, societal implications of CAVs regarding 

public acceptance, legislation and liability are also summarised briefly. It must be 

noted that the scientific papers and reports cited in this chapter are not criticised from 

a methodological point of view. This is done in chapter three of this thesis.  

2.3.2 Safety 

 

According to recent studies, CAVs have the potential to dramatically improve road 

safety. The safety benefits include mitigating crash severity and decreasing the 

possibility of crashes,  (Gurney, 2014; Poczter and Jankovic, 2014; Rodoulis, 2014) 

by eliminating the human factor which is the primary cause of crashes in 94% of the 

cases according to NHTSA (Singh, 2015). Table 2.2 summarises potential causes of 

5.5 million crashes in the U.S. It is also noticeable that some combinations of factors 

(i.e. alcohol, driver distraction, drugs and fatigue which are shown in bold characters 

in the table) are responsible for causing a 40% of the fatal crashes (Fagnant & 

Kockelman 2015). In their paper, the authors speculated that autonomous vehicles 

would reduce fatal crashes by at least 40% as they would not be susceptible to human 

failings. This reduction however does not reflect the crashes caused by speeding, 

aggressive driving, inexperience, slow reaction time, inattention and other human 

driver faults. 

Table 2.2 U.S. crash motor vehicle scope and selected human and environmental factor 

involvement source: (Fagnant & Kockelman 2015) (edited) 

Total crashes per year in U.S. (National Highway Traffic Safety 

Administration, 2013b) 

5.5 million 
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Total fatal and injurious crashes per year in U.S. (National 

Highway Traffic Safety Administration, 2013b) 

2.22 million 

Fatal crashes per year in U.S. (National Highway Traffic Safety 

Administration, 2012) 

32,367 

% human cause as primary factor (National Highway Traffic 

Safety Administration, 2008) 

93% 

% of fatal crashes involving alcohol (National Highway Traffic 

Safety Administration, 2012) 

31% 

% involving speeding (National Highway Traffic Safety 

Administration, 2012) 

30% 

% involving distracted driver (National Highway Traffic Safety 

Administration, 2012) 

21% 

% involving failure to keep in proper lane (National Highway 

Traffic Safety Administration, 2012) 

14% 

% involving failure to yield right-of-way (National Highway 

Traffic Safety Administration, 2012) 

11% 

% involving wet road surface (National Highway Traffic Safety 

Administration, 2012) 

11% 

% involving erratic vehicle operation (National Highway 

Traffic Safety Administration, 2012) 

9% 

% involving inexperience or overcorrecting (National Highway 

Traffic Safety Administration, 2012) 

8% 

% involving drugs (National Highway Traffic Safety 

Administration, 2012) 

7% 

% involving ice, snow, debris, or other slippery surface 

(National Highway Traffic Safety Administration, 2012) 

3.70% 

% involving fatigued or sleeping driver (National Highway 

Traffic Safety Administration, 2012) 

2.50% 



22 

 

% involving other prohibited driver errors (e.g. improper 

following, driving on shoulder, wrong side of road, improper 

turn, improper passing etc) (National Highway Traffic Safety 

Administration, 2012) 

21% 

 

In the same study, it is estimated that the safety benefit of autonomous vehicles would 

depend on the market penetration rate, predicting a 50% reduction in crash rate and a 

50% reduction in injury rate at the 10% CAV market penetration rate. The authors 

additionally predict 90% reduced crash and injury rates at the 90% market penetration 

rate. By using Insurance Institute for Highway Safety’s  accident data, a similar 

estimation is achieved by Anderson et al. (2014) who predict a 39% reduction in crash 

fatalities during the fully automated era. Unfortunately, the results of the above studies 

cannot be compared directly as different performance indicators are used (crash/injury 

rate vs number of crash fatalities).        

Without providing exact predictions on the safety impact of autonomous vehicles, Ni 

& Leung (2014) speculate an analogy of automated aviation technologies with CAVs. 

They imply that since automated aviation technologies reduced aviation accidents, 

autonomous vehicles will possibly improve road safety. Finally, Kim et al. (2015) state 

that, ideally, when the penetration rate of autonomous vehicles reaches 100% accidents 

could be reduced to zero.  

More recently, studies have focused on traffic simulation in order to estimate the safety 

impact of CAVs. Motorways are arguably the simplest road network layout, (no 

interaction with other road users such as pedestrians etc) and this is the reason why 

most studies focus their efforts on this type of network (Kockelman and Hanna, 2016; 

Jeong, Oh and Lee, 2017). Both studies used rear end and lane changing traffic 

conflicts as an indicator of safety. Traffic conflict is defined as an event involving two 

or more moving vehicles approaching each other in a traffic flow situation in such a 

way that a traffic collision would ensue unless at least one of the parties performs and 

evasive manoeuvre (Parker and Zegeer, 1988). The results of these studies are not 

necessarily comparable due to differences in the underlying CAV control algorithms, 

network parameters (number of lanes, number of merging and diverging areas) but for 

good measure they are summarised in Figure 2.2. The results for Chen et al’s study 
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seemed to be similar to the observations of Jeong et al. for medium to high traffic flow 

volumes. However, a big change is observed in low traffic flow value’s in Chen’s 

study.  

 

Figure 2.2 Traffic conflicts change % on motorways per market penetration rate (0%, 

25%, 50%, 75%, 100%) 

 

Furthermore, motorway related studies have used several other surrogate safety 

measures to evaluate safety such as Time to Collision (TTC) and its derivatives, Time 

Exposed Time-to-Collision and Time Integrated Time-to-collision (Jeong, Oh and 

Lee, 2017; Li et al., 2017a; Rahman and Abdel-Aty, 2018). The results of these studies 

once again are based on the assumptions and the configurations of their experiments 

and are not comparable. Hence, listing the actual results would be in vain without a 

reference value. However, in summary, all the above studies proved that CAVs will 

bring a great safety benefit to a motorway network.  

Despite the encouraging results, new, unprecedented concerns arise from the 

implementation of CAVs. Numerous studies express fears about hardware and 

software reliability and the protection against potential malicious attacks from hackers. 

The ability of a CAV to recognise quickly and reliably objects in the roadway is often 

challenged in the literature (Dalal and Triggs, 2005; Farhadi et al., 2009; The 
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Economist, 2012). The difficulty does not rely on the task of recognising an object 

solely, but on the extremely small margin for error (Fridman, Jenik and Reimer, 2016). 

An object in a roadway may be small or large, with various heights, a human on the 

road can be walking, sitting or lying down resulting in a partially obscured view. Vasic 

& Billard (2013) identify faulty electronic parts and loose connections across parts as 

a reason leading to accidents during human-robot interaction. Furthermore, weather 

conditions of snow, fog and reflective road surfaces from rain and ice or even a bright 

sky can create challenges for sensors and driving operations. 

 An unfortunate example of a sensor failure is the crash occurred with a Tesla’s 

automated vehicle in July, 2016 (The Guardian, 2016). In this particular crash, the 

car’s sensors failed to detect a large white 18-wheel truck and trailer crossing the 

highway, against a bright sky, which resulted in the death of the driver of the automated 

vehicle. Figure 2.3 strongly supports these concerns of CAV safety as a percentage of 

disengagements from autonomous driving mode according to the Waymo’s annual 

disengagement report happened due to strangely looking objects or aggressively 

moving vehicles.  

Thankfully, despite the aforementioned concerns, results so far seem encouraging as 

Fridman et al. (2016) state that CAVs would be able to predict their failures as 

technologies reach higher readiness levels. For instance, as far as disengagements are 

concerned, there is a noticeable decline according to the Waymo’s annual 

disengagement report (Waymo, 2016). Specifically, the disengagements per thousand 

miles in 2016 were reduced to 0.2 compared to 0.8 in 2015.  

Furthermore, a plethora of papers raise awareness about what would happen if bugs 

would occur in CAV software (Pinto, 2012; Vasic and Billard, 2013; Ni and Leung, 

2014; Schellekens, 2015; Kelly et al., 2016). For instance, Schellekens (2015) brings 

up the example of a fatal accident due to a software bug in a non-Automated Toyota 

vehicle. Vasic & Billard (2013) seem to agree as they identify programming bugs and 

faulty algorithms as causal factors behind accidents in Human-Robot interactions. 

Furthermore, Pinto (2012),  Ni & Leung (2014) and Kelly et al. (2016) state bugs as a 

potential barrier to CAV implementation. In fact, this concern is proven by the annual 

disengagement report of Waymo (Waymo, 2016). As Figure 2.3 shows, a significant 
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percentage of the disengagements from autonomous driving happened due to a 

software discrepancy.  

 Cause of disengagement  2015 2016 2017 2018 

1 Weather conditions 0 189 189 55 

2 Road surface conditions 0 0 0 21 

3 Software discrepancy 0 51 51 734 

4 Hardware discrepancy 0 0 0 171 

5 Reckless user 20 10 10 78 

6 Control discrepancy 0 170 170 35407 

7 Perception discrepancy 95 132 132 402 

8 Manual takeover 0 0 0 54888 

9 Testing 687 1443 1443 185 

10 Localisation discrepancy 0 4 4 555 

11 System fault 8 2 2 23 

12 Geometric configuration 0 0 0 4 

13 Motion trajectory planning 0 96 96 1047 

14 Communication 0 0 0 2380 

15 Indeterminable 0 0 0 58 

16 Construction zone 17 2 2 1 

17 Debris in roadway 0 2 2 0 

18 Lane detection 111 0 0 5 

Figure 2.3 Cause of disengagements from Autonomous driving mode.  

 

Furthermore, knowing where the autonomous mode failures happen would be valuable 

to vehicle manufacturers and researchers. The majority of the disengagements happen 

in complex urban environments “streets” as mentioned in Figure 2.4.  
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Figure 2.4 Location of disengagements from Autonomous driving mode 

Finally, studies express concerns about cyber security (Ni & Leung 2014.; Petit & 

Shladover 2014; Litman 2015). More specifically, Fagnant & Kockelman (2015) 

mention that transport policy makers, automotive manufacturers and future CAV 

drivers often worry about electronic security. Computer hackers, disgruntled 

employees and terrorist organizations could be potential threat to the implementation 

of CAVs, as they could use CAVs to create traffic disruptions and cause collisions. In 

the worst case scenario according to Fagnant & Kockelman (2015), someone could 

develop a two-stage virus in which they could control an entire fleet of vehicles for 

two weeks and then use them in order to cause a massive nation-wide catastrophe. In 

their conclusions, the authors are however being optimistic, stating that U.S. have 

managed to maintain a secure, large, critical, national infrastructure system including 

power grids and air traffic control systems which could possibly extend to CAVs. In 

addition, Pinto (2012) acknowledges the hacking problem in CAVs and describes the 

solution as keeping the CAV as isolated as possible from outside inputs.  

Interstate
13%

Freeway
1%

Highway
34%

Urban Street
52%

Parking 
Facilities

0%



27 

 

 

Figure 2.5 Mean response on a scale from 1 to 5 regarding respondents worries about 

Fully Automated Driving (Kyriakidis, Happee and Winter, 2015) 

 

A study conducted by Kyriakidis et al. (2015)  investigating user acceptance, concerns 

and willingness to buy CAVs, seems to agree with the previous paragraph, highlighting 

cyber security and misuse of CAVs as the first public concern.  As it can be seen in 

Figure 2.5, most of the respondents agreed that misuse and safety are in the top 3 

concerns regarding CAVs,  a finding that is also in line with Schoettle & Sivak (2014). 

As perfect as autonomous vehicles can be, accidents may never be eliminated 

completely, even during the fully automated era because simply “systems fail” as it is 

argued by Smith (2012). Additionally, safety problems, not known yet to CAV 

developers, may emerge in the following years.  

 

2.3.3 Traffic 

 

CAVs have the potential to improve traffic in different ways. Shared Autonomous 

Vehicles (SAVs) could provide inexpensive mobility on-demand services and could 

play a vital role in sustainable transport systems (Krueger, Rashidi and Rose, 2016). 

CAVs could mitigate congestion by reducing vehicle ownership levels substantially 

(Burns 2013; Fagnant et al. 2015;)  

Additionally, literature suggests that connected automation has proven to be effective 

in preventing shockwave formation and propagation under certain assumptions 
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(Talebpour and Hani S Mahmassani, 2016). Berg & Verhoef (2016) argue that 

autonomous vehicles can safely drive closer together than cars driven by humans, 

thereby possibly increasing road capacity, reducing travel time and delays. 

Furthermore, autonomous vehicles will be able to seamlessly merge into moving 

traffic and then exit the highway with ease (Forrest, Konca and Ovp, 2007). However, 

literature raises a concern about a potential increase in roadway capacity may lead to 

side effects such as users switching to autonomous vehicles may alter their behaviour 

with respect to departure time (Berg and Verhoef, 2016). Finally, parking is also a 

traffic related problem that the implementation of autonomous vehicles could help 

addressing. By being able to park themselves to a more distant location and come back 

when they are needed, autonomous vehicles could eliminate the time spent in 

‘searching for parking’  and relieve roadway congestion in city centres (Forrest et al, 

2007; Zhang et al., 2015).  

A number of attempts to quantify the impact on traffic via predictions have been made. 

The chronologically first studies on the specific subject predicted a reduction in 

congestion delay from 1-15%, 21-39% and 60-100% at the market penetration rates of 

10%, 50% and 90% accordingly (Atiyeh 2012; Shladover et al. 2012; Fagnant & 

Kockelman 2015). However, the aforementioned studies assume that the traffic 

impacts of CAVs are identical with the impact of CACC (Cooperative Adaptive Cruise 

Control) on traffic. Additionally, Tientrakool et al. (2011) estimated a 43% highway 

capacity increase if all vehicles use sensors alone and a 273% capacity increase if all 

vehicles use vehicle-to-vehicle communication and sensors. 

More recent studies also predict improvement in traffic congestion using several key 

performance indicators such as level of service, capacity, traffic throughput and 

stability. In addition, once again, significant differences are observed in the underlying 

assumptions of the studies as well as their network configurations. Therefore, the 

results cannot be compared directly (Roncoli, Papageorgiou and Papamichail, 2015; 

ATKINS, 2016c; Shi and Prevedouros, 2016; Talebpour and Hani S. Mahmassani, 

2016). However, in order to obtain a sense of the magnitude of the impact of CAVs on 

traffic, the results of the two most comprehensive studies in terms of road network and 

key performance indicators are summarised below. 
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Talebpour & Hani S. Mahmassani (2016) predicted an increase in traffic throughput. 

As the market penetration rate of connected and autonomous vehicles increased, the 

traffic throughput (vehicles/hour/lane)) increased up to 3,250 vehicles per hour per 

lane. This represents a significant increase from the average capacity of a motorway 

lane of 2,100 vehicles/hour/lane.  

Finally, ATKINS (2016) used traffic microsimulation to conclude regarding traffic 

impacts of CAVs. They tested various market penetration rates as well as different 

driving environments (urban – Strategic Road Network motorway). Their results 

showed a significant reduction in average delays, journey times and journey time 

variability. Their results are summarised in Figure 2.6 and Figure 2.7. Special attention 

should be given to Figure 2.6. In the lowest CAV market penetration rate, an increase 

in average delay is observed. This might be due to the interaction between CAVs and 

human-driven vehicles causing slight turbulences in the traffic flow. However, in 

general, the results seem encouraging.  

 

 

Figure 2.6 Estimated traffic improvement due to CAVs at different penetration rates – 

motorway environment source: (ATKINS, 2016) 
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Figure 2.7 Estimated traffic improvement due to CAVs at different penetration rates – 

urban environment source: (ATKINS, 2016) 

 

2.3.4 Environment 

 

Global carbon emission from fossil fuels have significantly increased since 1900 and 

more recently carbon dioxide emissions from fossil fuels have increased by about 90% 

since 1970.    

 

Figure 2.8 Global Caron Emissions from Fossil Fuels, 1900-2011 (source: International 

Energy Agency) 

 

According to the International Energy Agency, transport is the second largest sector 

in terms of emissions contributor releasing 22% of global CO2 emissions in 2011 and 
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global transport fuel demand is expected to grow by nearly 40% by 2035 (International 

Energy Agency, 2015).  Autonomous vehicles have the potential to reduce emissions 

and save fuel (J M Anderson et al., 2014; Rodoulis, 2014) by fundamentally changing 

car use. CAVs are speculated to be better than humans at throttle control with smaller 

acceleration/deceleration values, which can reduce fuel consumption and emissions 

significantly. However, there are very few quantitative analysis studies to confirm this 

hypothesis (Liu et al., 2019);  

A study performed by Mersky & Samaras (2016) using the Virginia Tech 

Comprehensive Fuel Consumption model and simulation, concluded that autonomous 

vehicles could save up to 10% fuel compared to conventional cars. In a similar manner, 

autonomous vehicles could reduce emissions and the reduction increases as the market 

penetration rate of autonomous vehicles gets higher according to Talebpour & 

Mahmassani (2016). Fagnant & Kockelman (2014), use an agent-based investigation 

of an urban shared autonomous vehicle paradigm which simulates the movement of 

travellers and their shared vehicles around a city throughout the day. Their framework 

allows the evaluation of the environmental impact of a shared autonomous vehicle 

fleet and they conclude that overall emissions savings are expected to be sizable. 

However, a final number is not given. Finally, Wadud et al. (2016) interpret CAVs’ 

environmental impact by breaking it down to the impact of its different 

mechanisms/components. The results of the study are presented in Figure 2.9. 

According to the authors, vehicle right-sizing (increasing the average occupancy of 

vehicles) and vehicle platooning could decrease energy consumption by 20-50% and 

3-25% respectively.  
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Figure 2.9 Summary of estimated ranges of energy impacts of vehicle automation 

through different mechanisms (source: Wadud et al. 2016). 

 

2.3.5 Public acceptance, legislation and liability 

 

With the anticipated benefits and concerns about CAVs discussed above, policy 

makers face a number of questions regarding the implementation of autonomous 

vehicles that still remain unresolved. Are consumers aware of the benefits or 

limitations of autonomous vehicles so that they might want to buy one? Who will be 

liable if/when a driverless vehicle crashes? What is the state of the current legislation 

about autonomous vehicles?  

Acceptance 

A-priori acceptability of fully autonomous vehicles and public opinion have been the 

topic of surveys conducted during the last couple of years (Payre, Cestac and 

Delhomme, 2014; Schoettle and Sivak, 2014; Kyriakidis, Happee and Winter, 2015). 

Payre et al. (2014) in their survey, state that 68.1% of their sample size (i.e. 421 French 

drivers) accept fully autonomous vehicles. Predictors of intention to use a fully 

autonomous car in their linear regression model, were mainly attitudes, contextual 

acceptability and interest in impaired driving, followed by driving related sensation 

seeking and gender. Also, highly important, according to the same study is the fact that 
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most users would prefer to use a fully autonomous vehicle in Highways mainly, in 

traffic congestion or while parking. Kyriakidis' et al. (2015) survey analysed the 

responses of 5000 respondents from 109 countries. The results showed that most 

respondents find manual driving the most enjoyable mode of driving, yet they found 

the idea of fully automated driving exciting. Also, they were found to be concerned 

about legal issues. Finally, a survey conducted by Schoettle & Sivak (2014) compares 

public opinion about self-driving vehicles in different countries: China, India, Japan, 

U.S. the U.K. and Australia. The main findings of the study tend to agree with 

Kyriakidis et al. (2015), stating that the majority of the respondents had positive initial 

opinion about the technology and had high expectations of it. However, they expressed 

high levels of concern regarding safety issues, driving performance and self-driving 

commercial vehicles. Both studies also investigated the willingness to pay for the 

technology, concluding that the majority is not willing to pay extra for it. 

What is not mentioned in the studies that are presented is the degree of the respondents’ 

awareness of the benefits of autonomous vehicles and how well they are informed 

about the state of the art. In contrast to autonomous vehicles’ accidents that are 

reaching the headlines of press with ease (Davies, 2016), publicly available 

information about CAVs’ latest technological improvements is relatively limited. To 

prepare the society for such a change their advantages and disadvantages should be 

known and discussed. 

Legislation 

In order for manufacturers to be able to test autonomous vehicles, appropriate 

legislation should be in place. Fortunately, in most cities where the testing takes place, 

the legislation has been formed. More specifically, legislation concerning autonomous 

vehicle exists in some states of the United States (Legislative Council, 2011; Weiner 

and Smith, 2016) , the United Kingdom (BBC, 2013), France, Switzerland (Zurich) 

and Singapore. Nevertheless, according to their needs, every country has developed its 

own rules and laws about autonomous vehicles. The differences according to Lloyd 

(2014) include basic elements such as the definition of autonomous vehicles or more 

specific matters such as insurance, incident and  disengagements from autonomous 

mode reporting, geographical and environmental limitations (type of road where can 
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the autonomous vehicles be tested), completion of controlled testing, test-driver 

training requirements, and special license plates. 

It is highly important that for such a sensitive matter as CAVs which affects road 

safety, an integrated, widely accepted legal framework should be formulated.  

Liability 

In a conventional crash, there are three primary possible causes (or a combination of 

them): the driver, a vehicle malfunction or unavoidable natural conditions. Any 

liability is usually allocated to the responsible part: the driver or the vehicle 

manufacturer. Inevitably, autonomous vehicles will change the dynamics of who may 

be held liable for an accident. (Marchant and Lindor, 2012). The underpinning theory 

behind autonomous vehicles consists of taking the human driver out of the driving 

equation. How can humans still be held liable for an accident though? In the current 

state of the art for example, humans are advised not to take their hands off the steering 

wheel even if the Automation Level 2-3 car is running on autonomous mode (The 

Guardian, 2016). If humans fail to follow the law and the instruction manual of the 

autonomous vehicle, they can still be held liable for an accident. That is not the 

majority of the cases though. According to Marchant & Lindor (2012), when an 

accident occurs with an autonomous vehicle , the vehicle manufacturer, or some other 

party involved in the design, manufacture, or operation of the autonomous vehicle is 

likely to be held liable for a high percentage of the accidents. The list of potential 

parties includes the vehicle manufacturer, the software engineer and the company 

responsible for the possibly faulty hardware parts. Gurney (2014) states that the current 

state of liability law will not be able to assign the blame for the accident to the party 

that caused it and he proposes a liability scheme that assesses fault based on the cause 

of autonomous vehicle accidents. Since autonomous vehicles will start circulating on 

the roads within a decade and the cars will inevitably cause accidents legal authorities 

should develop a liability scheme that will be able to assign the responsibility of the 

accident to the party who initially caused it.    
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3 Review of Methodological Approaches in Evaluation of Emerging 

Transport Technologies 

 

3.1 Motivation 

 

The motivation of this chapter is to identify the most appropriate methodology in order 

to achieve the aim of this thesis – to quantify the safety impact of CAVs on the 

motorway. CAVs are believed to be the next-generation technology for future 

societies. CAV evaluation research has evolved significantly over the last decade, 

however, there are plenty of areas in which CAV research can expand and mature. 

With this being said, there are still lessons to be learnt from existing methodological 

approaches that evaluate Intelligent Transport Technologies which are preceding to 

CAVs. Therefore, the first section of this chapter will try to identify methods applied 

for relevant to CAVs Intelligent Transport Systems evaluation in order to obtain a 

wider picture of the historically available and widely accepted methods. The second 

part of the chapter will review methodological approaches in CAV simulation.  

 

3.2 Methods Applied for Intelligent Transport Systems Evaluation 

 

In order to improve traffic flow, road capacity, road safety and to reduce vehicle 

emissions, several infrastructure and vehicle based technologies have been developed 

over the years. They are known as Intelligent Transport Technologies (ITT). In order 

to develop ex-ante and ex-post evaluations of these technologies, several techniques 

have been used depending on the nature of the examined technology. An ex-post 

evaluation consists of a systematic and objective assessment of a completed project, 

programme or policy regarding their planning, implementation and obtained results 

(OECD 2010). On the other hand, ex-ante evaluation studies aim to calculate the 

impact of a measure or technology before its implementation in the real world and 

possibly make recommendations for a better implementation strategy.  

This section will identify the most widespread ex-ante and ex-post techniques that 

were used in the past to evaluate the impact of infrastructure and vehicle based ITS in 
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order to relate the methodologies to a possible use in the evaluation of the safety impact 

of CAVs. Even though the aim of this PhD is to evaluate the safety impact of CAVs, 

this literature review chapter will also include studies which evaluate the impact of 

certain technologies on traffic characteristics which can be translated into safety results 

at a later stage. The technologies examined are:  

• Variable Speed Limits (VSL), is an Intelligent Transport System capable of 

improving the operations of freeway facilities under congested conditions by 

displaying variable speed limits on roadside variable message signs (Nissan & 

Koutsopoulos 2011). VSL aim to improve the safety of a freeway by reducing 

variances in speed (speed harmonization) and preventing shockwave formation (Ha et 

al. 2003). Autonomous vehicles also aim to improve safety in a similar manner, by 

reducing variances in speed by adopting a less aggressive driving behaviour and by 

being able to travel at as steady speeds as possible, forming vehicle platoons. This is 

the reason why VSL are examined in this chapter of the literature review.  

• High Occupancy Vehicle/Toll lane (HOV/HOT). HOV lane is usually the 

innermost lane of a motorway and vehicles are allowed to use this lane if they are 

manned with more than two (2+) or more than three (3+) passengers in some cases. 

The initial evaluation of HOV lanes showed the need to increase the lane throughput, 

without decreasing the benefit that they provide to car poolers. As a result, HOT lanes 

were introduced, which allowed single-occupant vehicles to use HOV lanes for a toll 

(Noland et al. 2016). A generalised concept of the HOV/HOT lanes are the Managed 

Lanes. Given that any new technology such as autonomous vehicles enters the market 

incrementally, the need for improved infrastructure will emerge. Reich (2013), 

proposes the use of designated lanes for use by vehicles with a specified level of 

technology (e.g. Autonomy level 3+). He states that as CAVs enter the traffic stream, 

the time will come when the designation of special lanes for these vehicles will be 

beneficial by limiting the danger in the interaction between autonomous and non-

autonomous vehicles. However, he expresses his concern about the timing of the 

implementation. A too-early implementation of CAV only lane could bring quite the 

opposite of the expected effect. According to his predictions, a penetration rate of 50% 

which will be achieved by 2040, will be sufficient to implement dedicated CAV Lanes.  
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• Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control 

(CACC) are two widespread Advanced Driver Assistance Systems which aim to 

comfort drivers, by getting driving tasks out of their hands. ACC and CACC have been 

in development for more than ten years and aim to positively impact traffic efficiency 

and safety (Li et al. 2017). ACC was initially developed, which allowed vehicles to 

automatically adjust their speed to maintain a safe distance from preceding vehicles. 

CACC is an improved version of ACC which includes wireless vehicle-to-vehicle 

communication, (V2V) in order to further increase the traffic efficiency, safety and 

fuel consumption benefit. V2V communication also allows properly equipped vehicles 

to form platoons, vehicle groups travelling with travelling at the same speed very close 

to each other.  

The methodologies identified through the literature review are summarised as follows:  

1. “Before and after” studies  

2. Statistical Modelling - forecasting 

3. Traffic Simulation  

 

3.2.1 Before and after studies 

 

Extensive effort has been put into evaluating VSL by conducting before and after 

studies which are also known as intervention analyses. One of the prerequisites for this 

method to be applied is the data availability before and after the implementation of the 

intervention. 

Initially, Highways Agency UK (2004) in their report on the M25 Controlled 

motorway which included a VSL measure, state that by analysing the data collected 

before and after the intervention, there was an 1.5% increase in traffic throughput over 

5-hour peak periods, travel times became more reliable, there were 10% less injury 

accidents during the period of operation, 2-8% decreased emissions and improved fuel 

consumption.  

On the other hand, a VSL application on a part of the A2 motorway in the Netherlands 

observed no capacity increase due to the VSL application, although, a smaller variance 
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in headways was observed and a smoother traffic flow (van den Hoogen and Smulders, 

1994). More recently, Papageorgiou et al. (2008) used the so-called fundamental  

speed- traffic flow diagram to examine the impact of mandatory VSL. They applied 

their method using flow-occupancy data from a European motorway before and after 

the implementation of VSL. They concluded that VSL reduce the slope of the flow-

occupancy graph at under critical occupancies and shift the critical occupancy to 

higher values in the flow-occupancy diagram. Their results were inconclusive 

regarding flow capacity. In a similar manner, Nissan & Koutsopoulos (2011) prove 

that their proposed advisory VSL measure did not have any significant impact on 

traffic conditions, both immediately after its implementation and several months later. 

For their study, they analysed data from the E4 motorway in Stockholm before and 

after the implementation of VSL, using a two-regime flow-density model. However, 

this study did not examine the driver compliance to the displayed speed limit. 

Quinn et al. (2000) summarises the preliminary evaluation surveys of Britain’s first 

HOV 2+ lane, the A647 in Leeds. The results of the study showed that HOV journey 

times were reduced from 8 to 6 minutes for a 5km trip, a relative journey time saving 

of 25%. Although, journey times for non HOVs increased but they are still lower than 

for trips using parallel routes and a diversion (8%) into parallel routes was observed. 

Kwon & Varaiya (2008) evaluate the effectiveness of California’s HOV 3+ system 

using peak hour traffic data from loop detectors over many months before and after 

the implementation of the system. By calculating the traffic flow, average speed and 

travel times they concluded that the implemented HOV lanes: were under-utilized with 

81% of HOV detectors measuring flows below 1400 veh/hour/lane, were suffering 

from degraded operations as 18% of HOV miles during morning peak hour and 32% 

during evening peak hour had speeds below 45 mph for more than 10% of weekdays, 

suffered a 20% capacity penalty with maximum flow of 1600 compared to general 

purpose lanes of 2000 veh/hour/lane and offered small travel time saving compared to 

general purpose lanes (1.7 min compared to 0.7 min in a 10 mile route). Finally, the 

authors mention that the system with 1 HOV lane and 3 General purpose (GP) lanes 

carries the same number of people per hour as a system with four GP lanes and that 

HOV lanes reduce overall congestion slightly only when the GP lanes are allowed to 

become congested. They propose that a better managed HOV system might play an 

important role in California.  
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Furthermore, Princeton & Cohen (2011) evaluate the impact of a dedicated lane (4.5 

km) on the capacity and the level of service of an urban motorway by using aggregated 

mean speed, flow and occupancy data, gathered from loop detector stations installed 

throughout the motorway network of the Paris region. For their analysis they used a 

generalized exponential model to describe the relationship between speed and traffic 

density: 𝑉 =  𝑎 𝑒𝑥𝑝 (−𝑏 𝑘𝑎 ) where V denoted the mean speed k the concentration 

and a,b were parameters to be decided using nonlinear regression using Gauss-Newton 

algorithm. By comparing the data before and after the dedicated lane implementation, 

they concluded that capacity is reduced by 35% and 25% in 3 lane and 4 lane sections 

respectively and that the level of service is degraded in a significant way upstream of 

the dedicated lane and very slightly improved downstream. The authors also discussed 

the effect of enforcement measures on driver compliance. However, the aggregation 

level of the data used was not discussed in this paper.  

Up to date, ACC and CACC have not been evaluated by before and after studies 

because real world data clearly stating the market penetration rate of the technology 

do not yet exist for the purpose of evaluating their effectiveness.  

 

3.2.2 Statistical modelling - forecasting 

 

Mathematical or statistical techniques have been applied in order to ex-ante evaluate 

the impact of the Intelligent Transport Technologies. The difference of this method 

compared to before and after study approach is that the proposed system is tested 

before its implementation using statistical modelling. One of the requirements of this 

approach is the availability of large amount of historical data in order to ensure the 

high quality of the statistical model developed.   

Due to the initial disheartening results of the before and after studies concerning HOV 

lanes, studies focused on detecting optimal implementation strategies and making 

recommendations (Dahlgren, 2002; Daganzo and Cassidy, 2008; Schultz, Mineer and 

Hamblin, 2016). Dahlgren (2002) developed statistical models estimating delay with 

probabilistic logit models which could estimate the impact of the shift of a GP lane to 

a HOV or HOT lane. He concluded that except during congestion periods, 

implementing a general purpose lane is more effective in reducing delay than adding 
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an HOV or HOT lane. An HOV lane would be more effective than HOT or GP lanes 

only if the proportion of HOVs is high. Furthermore, Menendez and Daganzo, 2007; 

Daganzo and Cassidy, (2008) used statistical modelling in order to study how HOV 

lanes affect the performance of adjacent GP lanes and nearby traffic bottlenecks. Their 

study showed that non-separated HOV facilities do not affect the capacity of GP lanes 

and that if HOV lanes are implemented properly they do not worsen bottleneck outputs 

and can increase them under certain conditions. Finally, they suggest three rules which 

can significantly optimize the impact of HOV lanes.  

One of the few studies attempting to evaluate the safety impact of HOV lanes is done 

by Golob et al. (1990). An extensive methodological analysis of this paper will not be 

conducted due to the high aggregation level of its data which made the statistical 

analysis meaningless, something that is recognised by the author.  

3.2.3 Traffic Simulation  

 

The majority of studies that aim to evaluate Intelligent Transport Technologies employ 

traffic simulation due to lack of real-world data. Traffic simulation is the mathematical 

modelling of transportation systems through the application of computer software to 

better help plan, design and operate them. This method is going to be analysed further 

in section 3.3 of this thesis. 

Initially, studies evaluate and optimise VSL using traffic simulation (Park and 

Yadlapati, 2003; Abdel-Aty, Dilmore and Dhindsa, 2006; Lee, Hellinga and 

Saccomanno, 2006; Allaby, Hellinga and Bullock, 2007; Hellinga and Mandelzys, 

2011; Grumert and Tapani, 2012; Li et al., 2014; Yu and Abdel-Aty, 2014; Grumert, 

Ma and Tapani, 2015; Khondaker and Kattan, 2015). Abdel-Aty et al. (2006) uses data 

from a section of Interstate 4 in Orlando to evaluate the safety impact of their proposed 

VSL system by calculating real-time crash likelihood using a statistical model by 

Abdel-Aty & Pande (2005).  

Significant variables in their models included average occupancy, standard deviation 

of volume downstream of the station of interest, average volume downstream of the 

station of interest, average volume upstream of the station of interest, standard 

deviation of speed divided by the average speed at the station of interest, average 

occupancy upstream of the station of interest, average occupancy downstream of the 
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station of interest and standard deviation of volume downstream of the station of 

interest. The same study simulated different strategies/scenarios of VSL application 

based on changing distance for speed limit change, changing speed limits over time 

and changing the gap. For their simulation they used the simulation software 

PARAMICS. The results of the simulation showed the optimal VSL implementation 

scenario which minimized the crash likelihood according to the statistical models 

developed and included “gradually introducing speed changes in time (5mph every 10 

min), abruptly introducing speed changes in space (no gap distance), use upstream 

reductions in speed and downstream increases in speed and large values changes in 

speed limit (15 mph)”. However, this study did not take into account driver compliance 

which is critical for intelligent transport systems.  

Indeed, Hellinga & Mandelzys (2011) specifically studied the impact of driver 

compliance on the safety impacts of variable speed limit systems using PARAMICS 

as well. They tested four different scenarios of low, moderate, high and very high 

compliance in their simulation. They applied a rule-activated tree-logic which was 

implemented by Allaby et al. (2007) and is controlled in the simulation environment 

by using an application programming interface (API).  

For their crash risk assessment, the authors of this paper used a crash prediction model 

originally developed by Lee et al. (2003). The following probabilistic model was 

decided by compiling loop detector data preceding 299 crashes:  

ln(𝐹) = 𝜃 + 𝛴(𝜆𝑐𝑟𝑎𝑠ℎ𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑠) + 𝛴(𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑓𝑎𝑐𝑡𝑜𝑟𝑠) + 𝛽ln (𝐸𝑋𝑃)                             

 

(3.1) 

 

Where F is crash frequency, θ is the constant, 𝜆𝑐𝑟𝑎𝑠ℎ𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑠 values related to 

turbulence in traffic stream (coefficient of variation of speed, average density upstream 

of the tested road section and average difference in speed between upstream and 

downstream of a specific location), 𝜆𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑓𝑎𝑐𝑡𝑜𝑟𝑠 factors to control the effects of road 

geometry and peak/off peak conditions and EXP exposure in vehicle-kilometres.  

The results of the study proved that the VSL impacts are sensitive to the level of speed 

compliance, as expected. The optimal VSL strategy and set of parameter values are 

influenced by the level of compliance and as a result, the selection of VSL operating 

strategy cannot be done without taking the speed limit enforcement into account. Lee 

et al. (2006) and Allaby et al. (2007) also used the previously mentioned statistical 
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model in combination with PARAMICS. Lee et al.(2006) examined VSL in order to 

maximize safety benefit and at the same time try to reduce travel times. They 

concluded that such a scenario exists and that real-time VSL can reduce the overall 

crash potential by 5-17%. Although, the authors mention that the widespread crash 

risk model should be expanded to consider a much broader range of traffic flow 

conditions, road geometry and variable speed limits control strategies.  

More recent studies  use VISSIM and SUMO simulation software respectively in order 

to assess the impact of VSL systems combined with Connected Vehicles (Grumert, 

Ma and Tapani, 2015; Khondaker and Kattan, 2015). The benefit of the examined 

system compared to the studies in the previous paragraphs is that vehicles were 

informed for the changed speed limit before they reach the point at which it would be 

normally displayed by communicating with each other which results in greater safety 

benefits. Khondaker & Kattan (2015) concluded that safety was improved by 6-11% 

in their proposed framework. This study also took driver compliance into account and 

tested two different connected vehicle penetration rates, 50% and 100% with reduced 

safety benefit in the lower penetration rate scenario. However, the criteria used to 

determine these rates are not discussed in the paper and there should be more scenarios 

examined, according to Fagnant & Kockelman (2015). Grumert et al. (2015) indeed, 

examine more scenarios including 0%, 30%, 70% and 100% penetration rate and 

obtain results concerning safety, emissions and traffic characteristics which prove that 

VSL are more beneficial as penetration rate increases.  

Traffic simulation has been used in order to assess HOV/HOT lanes also. Gomes et al. 

(2004) use the microsimulation software VISSIM in order to model an HOV lane in a 

15 mile stretch of I-210 in California. Although, the HOV lane is not evaluated as an 

independent intervention, but instead, the whole network is evaluated. Similarly, 

according to Owen et al. (2000) the traffic simulation software CORSIM has the 

capability to simulate all features of an HOV lane. Finally, Stamos et al. (2012), use 

SATURN simulation software to evaluate the impact of a hypothetical HOV lane 

implementation in the central business district of Thessaloniki, Greece. Their 

simulation model was calibrated and validated using average traffic flow data during 

morning peak hours and their results showed a 129% average speed increase and a 

62% decline in the average delay within the area of interest.  
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Regarding ACC, Bose & Ioannou (2003) used macroscopic traffic simulation in order 

to evaluate the traffic impact of ACC. For their analysis, they used a linear car 

following model to model manually driven vehicles and for vehicles equipped with 

ACC they used a model by Ioannou & Xu (1994) which used a constant time headway 

policy described by the following equation:  

𝑆 = ℎ𝑎𝑣 + 𝐿                                                                                                            ( 3.2) 

 

where L is the length of the vehicle, ha represents the time headway, u the speed and s 

the inter-vehicle spacing. By comparing density-traffic flow diagrams for 100% and 

0% market penetration rates they concluded that in mixed traffic conditions (both 

manual and ACC equipped vehicles circulate the road network), ACC equipped 

vehicles lower the average delay experienced in the network, increase traffic flow and 

density, and increase the speed of propagation of shockwaves without affecting the 

total travel time. However, this paper does not quantify the results for specific market 

penetration rates. On the other hand, Kesting et al. (2008) use the Intelligent Driver 

Model (IDM)  by Treiber et al. (2000) in order to simulate the behaviour of an ACC 

equipped vehicle inside a micro simulation software. The model is shown in the 

following equation:  

𝑢̇(𝑠, 𝑢, 𝛥𝑢) = 𝑎 [1 − (
𝑢

𝑢𝑜
)
4

− (
𝑠 ∗ (𝑢, 𝛥𝑢

𝑠
)
2

] 
( 3.3) 

 

                                                           

The model is ruled by adjusting the acceleration of the ACC equipped vehicle in order 

to keep the required distance from the preceding vehicle. At this point, it must be noted 

that the same driving model is used for CAV simulation in existing literature. The 

results of the simulation showed that ACC vehicles improved the traffic stability and 

road capacity with increased results for higher market penetration rate. As far as the 

safety impact of ACC is concerned, Kikuchi et al. (2003), introduce Potential Danger 

Time (PDT) safety measure, which is “the sum of the time periods during which 

spacing is so short that when a vehicle applies emergency braking it cannot stop 

without colliding with the vehicle in front”, in order to assess the safety impact of ACC 

equipped vehicles. They test different scenarios by changing the driver perception-
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reaction time T and conclude that ACC vehicles contribute to the reduction of Potential 

Danger Time cases and hence the possibility of a rear-end collision.  

Furthermore, Li et al. (2016) integrate ACC with a VSL system in order to evaluate 

the safety impact of ACC equipped vehicles. For their experiment, they use the 

aforementioned intelligent driver model and the simulation platform of MATLAB. 

Time to Collision (TTT), Time exposed Time to Collision (TET) and Time Integrated 

time to collision (TIT) are used as surrogate safety measures to evaluate the risk of 

rear-end collisions. Four simulation scenarios were tested: No measures applied, VSL 

only, ACC only finally the combination of both (I2V system). Their results are 

summarised in the following table.  

Table 3.1 Safety effects of 4 scenarios (Li et al., 2016) 

Change No Control 

(%) 

VSL only (%) ACC only 

(%) 

I2V system 

(%) 

TET 0.0 -53.0 -59.0 -71.5 

TIT 0.0 -58.6 -65.3 -77.3 

TTT 0.0 10.0 -0.4 4.8 

  

Table 3.1 shows the safety impact that the four different tested scenarios had. Greatest 

safety benefits were achieved when the I2V system was in place.  

Over time, studies included inter-vehicle communication in combination with ACC 

which resulted in CACC evaluation. Similar to ACC, studies focused both on the 

traffic and safety impact of CACC equipped vehicles. Studies evaluating the safety 

impact of CACC have used different car following models. Schakel et al. (2010) used 

an altered/updated Intelligent Driver Model in order to include the connectivity 

between vehicles. Yu & Shi (2015) and Monteil et al. (2014) on the other hand, 

developed their own car following models which included terms to represent n plus m 

vehicles running in a vehicle platoon.  

All papers mentioned in the paragraph above concluded in encouraging -yet not 

comparable due to differences in the driver models used- results regarding traffic. 

Schakel et al. (2010) and Monteil et al. (2014) observed that CACC can quickly damp 

shockwaves at lower penetration rates (50%) while Yu & Shi (2015) concluded that 
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their model could improve the stability of traffic flow and reduce the accidental 

probability.  

  

Figure 3.1 A platoon of n+m cars running on a signal lane. 

As far as safety of CACC is concerned, Li et al. (2017) use Intelligent Driver Model 

combined with an ACC model proposed by Kesting et al. (2008) and Time to Collision 

with the two variations mentioned earlier in this chapter TIT and TET as a surrogate 

safety measure in order to assess the impact of CACC equipped vehicles on safety. Li 

et al. (2017) tested a wide range of scenarios including different length of vehicle 

platoons and different market penetration rates. The simulation results indicated that 

CACC equipped vehicles dramatically reduced the possibility of a rear-end collision. 

The sensitivity analysis with platoon length showed that there is no significant change 

with different platoon lengths, however their analysis included simplifications such as 

the exclusion of lane changing manoeuvres. In addition, Farah & Koutsopoulos (2014) 

performed an experiment using test drivers driving an instrumented vehicle with and 

without the CACC system in order to estimate their car following model. Their 

simulation results showed that CACC harmonized the driving behaviour of drivers and 

reduced the range of acceleration and deceleration differences between them.  

Additionally, Arem et al. (2005) and Zhao & Sun (2013) used traffic simulation 

software MIXIC and VISSIM respectively in order to assess CACC.  Similar to the 

results mentioned on other studies in the paragraphs above, Arem et al. (2005) and 

Zhao & Sun (2013) conclude that the traffic capacity benefit increases as market 

penetration of CACC vehicles increases. On the other hand, the length of the platoon 

did not affect the benefit. However, these two studies included major assumptions such 

as that vehicles equipped with CACC would not perform lateral movements in a 2-

lane network while simulating.  

Last but not least, Shladover et al. (2012) uses the traffic microsimulation software 

Aimsun in order to identify the impacts of CACC on Freeway Traffic Flow. In his 

simulation, the author modelled four different types of vehicles: ACC equipped, 

CACC equipped, those equipped with communication device making them able to 
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transmit the data of the ego-vehicle such as speed position and acceleration and 

vehicles not equipped with any Intelligent Transport Technology. The author chose 

different desired time gaps for Manually Driven, ACC and CACC equipped vehicles 

of 1,48-1,8 sec, 2.2-1.1 sec, 1.1-0,6 sec accordingly. Initially, ACC vehicles entered 

the simulation traffic stream which did not result in remarkable difference in capacity 

due to the fact that the time gap between ACC vehicles and regular vehicles was not 

significantly different. However, when CACC vehicles were tested in the simulation, 

road capacity increased incrementally with the market penetration rate as presented in 

Figure 3.2. Purple colour in the figure represents the market penetration rate of   

 

Figure 3.2 Highway Lane Capacity as a function of changes in market penetration 

(source: Shladover et al. (2012)) 

   

vehicles equipped with communication devices only. It should be noted that vehicles 

equipped with CACC following a non-CACC equipped vehicle transformed into ACC 

equipped vehicle. Finally, different combinations of CACC and ACC equipped 

vehicles were tested with the results presented in Table 3.2. It is observed that as 

CACC vehicles market penetration rate increases, lane capacity increases 

significantly.   
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Table 3.2 Lane Capacity effects of ACC and CACC Driven Vehicles. source:(Shladover, 

Su and Lu, 2012) 

 

3.2.4 Summary 

 

This methodological review chapter aimed to identify the main methods used for the 

evaluation of Intelligent Transport Technologies to derive an initial indication for the 

appropriate method to evaluate CAVs.  

The methods included in this chapter have obvious advantages and drawbacks. Before 

and after empirical studies can provide reliable results as they are being based on real 

world data before and after the implementation of the technology itself. However, the 

nature of this method is its main drawback for the case of CAVs. Despite the numerous 

CAV trials around the globe, there are still no available real world CAV data in order 

for this method to be applicable. A similar conclusion can be drawn for the statistical 

modelling/forecasting method. In order for this method to be applied, there is a need 

for a big amount of historical data. Since historical real-world CAV data are not 

available, this method might not be applicable for the evaluation of CAVs. However, 

forecasting techniques might be useful to be applied in the future in order to forecast 

the impact of CAVs using simulated data. 

The fact that real-world data are not available for CAVs indicate that the most 

appropriate method that can be used for CAV evaluation is traffic simulation. 

However, this chapter made obvious that studies (CACC studies mainly) employing 

traffic simulation include assumptions which are very detailed and justified, yet their 

realism is completely unknown. These assumptions were related to fundamental 

elements of the research:  
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a) The type of traffic simulation used (macro vs micro) 

b) Network layouts of the simulation frameworks,  

c) ACC and CACC parameters such as time headway  

d) Underlying assumptions; fundamental driver models employed both for the 

human drivers (different simulation software) and the ACC and CACC models 

(IDM vs custom made models).  

Their results are based almost solely on the assumptions of the traffic simulation and 

the comparison of the results of these studies is almost impossible. However, with the 

lack of real-world CAV data and the amount of uncertainty around them assumptions 

are inevitable. For the choice of assumptions of CAV modelling one should look into 

relevant existing CAV literature. Hence, the next section will focus on attempts to 

simulate CAVs so far in the literature to derive the most reasonable assumptions.  

 

3.3 Review of Methodological Approaches in Connected and 

Autonomous Vehicle Simulation 

 

3.3.1 Review of simulation frameworks for CAV simulation 

 

Are CAVs safe enough now? Will CAVs be safe enough when they start occupying 

the road network? The answer to these questions is critical. One way to answer these 

questions would be to test drive CAVs in real traffic, evaluate their performance and 

statistically compare “before CAVs and after CAVs” periods. However, this would be 

incredibly challenging according to Kalra & Paddock (2016), as, CAVs need to be 

driven hundreds of millions of miles or in some cases hundreds of billions of miles to 

demonstrate their reliable behaviour in critical, life-threatening situations. Even 

though Original Equipment Manufacturers (OEMs) such as Waymo, Tesla, Ford, 

Volkswagen and BWM (to name a few) have been focusing in real world CAV trials, 

this amount of such exposure data is not available yet to them. Consequently, the 

research community also does not have access to CAV data. That is why the biggest 

part of the literature reviewed in this section has either speculated on the impacts of 

CAVs using historical data or used innovative approaches such as simulation to 



49 

 

evaluate CAVs. Therefore, this part of the literature review is divided into two 

subsections: 

a) Studies employing historical data 

b) Studies using simulation 

It is worthwhile to point out that only a few studies have evaluated the safety impact 

of CAVs. Nonetheless, studies focusing on traffic or the environment are included in 

this section and are methodologically reviewed. Also, where appropriate, the possible 

use of the methods employed in those studies for safety evaluation purposes, is 

discussed. It must be emphasized that studies mentioning or implying both vehicle 

automation and connectivity are considered in this section, because a number of 

previous studies exist that have evaluated the safety impact of automated vehicle 

technologies highly related to CAVs such as ACC (Kikuchi, Uno and Tanaka, 2003; 

Li et al., 2016) and CACC. (Farah and Koutsopoulos, 2014; Shladover, Station and 

Lu, 2015; Li et al., 2017c). Although these studies provided a stepping stone for future 

CAV research by using sophisticated CACC algorithms and Intelligent Driver Model, 

their major limitation is that they did not consider vehicle automation in the sense of 

simulating the behaviour of sensors and did not include a vehicle lateral control 

algorithm.  

a) Studies employing historical data 

Some papers attempt  to predict the potential safety impact of CAVs (Hayes 2011; 

Silberg et al. 2012; Fagnant & Kockelman 2015) using historical accident data and 

performing a meta-analysis. 

By processing this historical crash data and categorising them by contributing factors, 

these papers claim that since the human factor will not exist in the autonomous era, 

the corresponding percentage of accidents will be eliminated. In this manner, it is 

suggested that an up to 90% reduction in crash rates (subject to CAV market 

penetration rate) can be achieved with the introduction of CAVs (Fagnant & 

Kockelman 2015)  

Another approach in this category of studies aims to compare CAV implementation to 

the implementation of automated technologies in aviation or rail. It is suggested that, 

during the fully autonomous era, road crash rates could be as rare as those of aviation 

and rail, ultimately reaching 1% of the current figures (Hayes, 2011). Even though the 
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use of such a parallelism can be useful and admittedly the introduction and the process 

of implementation of technologies such as Airborne Collision Avoidance System has 

certain similarities with the introduction of CAVs, it contains assumptions that can 

affect the reliability of the research.  

In summary, although these methods have provided a sense of the magnitude of the 

safety benefits, they are based on a series of crude assumptions. For example, this 

approach does not consider CAV interaction with other road users such as human 

drivers, pedestrians and signalling which is going to be critical during the transition 

period. These assumptions may affect the capability of this approach to produce 

reliable outcomes.  

  

b) Studies applying CAV traffic simulation  

The lack of CAVs real-world data has diverted a part of the research community from 

traditional safety evaluation methods to simulation-based approaches to evaluate their 

impacts. Traffic simulation is the mathematical modelling of transportation systems 

through the application of computer software to better help plan, design and operate 

transportation systems. It is a flexible tool that has proven to be valuable due to its 

ability to ex-ante evaluate transportation technologies. It is perhaps the only method 

that can accurately address some of the unprecedented challenges arising by the 

introduction of CAVs in the existing transport system, namely, the interaction of 

human-driven and CAVs, the different levels of automation or the transformation of 

the existing road network to incorporate them.  

However, simulation has received reasonable criticism over time about its ability to 

produce trustworthy results especially in the area of road safety (Tarko, 2005). A well 

calibrated and validated simulation model and an excellent awareness of the 

capabilities and functionalities of the technology under review are key prerequisites of 

every simulation study. Given the uncertainty regarding the future developments of 

CAVs (for example, the interactions between human-driven vehicles and Connected 

and Automated Vehicles during the transition era is highly unknown) and the lack of 

data regarding Connected and Automated Vehicle Driving behaviour, the 

aforementioned prerequisites are usually not satisfied. Consequently, the body of the 
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literature employing simulation relies on justified and valid assumptions which in most 

cases are the key for the reliability of the results.  

A paradox when trying to simulate CAVs is that vehicles inside a simulation 

environment are not programmed to collide with each other since they are already 

aware of their surroundings. Therefore, arguably, vehicles in a traffic micro-simulation 

have already the knowledge that autonomous vehicles have since they have all the 

available information they need. However, what makes an autonomous vehicle 

different from a non-automated, is its ability to translate the input from its sensors into 

real world actions. This ability of the CAV should be the factor to be simulated and 

tested in a simulation study. 

Simulating CAVs is a multifaceted task. Each CAV is a complex entity consisting of 

multiple subsystems that need to be simulated in order to address the challenges arising 

from the different types of road network layout. The way that these subsystems are 

simulated (i.e. the tools and software used and the underlying assumptions) and the 

achieved level of detail are the criteria that lead to the categorisation of existing studies 

into two major groups:  

• Studies using an architecture including traffic sub-microsimulation 

• Studies using traffic microsimulation and an external component 

 

3.3.1.1 Studies using an architecture including traffic sub-microsimulation 

frameworks 

The first approach included studies that used custom-built simulation frameworks 

(Queck et al., 2008; Figueiredo et al., 2009; Noort, Arem and Park, 2010; O’Hara et 

al., 2012; Pereira and Rossetti, 2012)   These studies aimed to achieve detailed CAV 

simulation by creating an integrated multi-level simulation platform which in most 

cases included traffic, sensor (sub-micro) and network simulators. 

This type of frameworks included usually a sub-micro simulation software which 

could simulate all the components of the vehicle accurately. This means for instance, 

that the sensors of the vehicle are simulated individually and their specifications such 

as the scanning frequency, or the number of scanning beams can be directly set. 

Moreover, they provide physical models for the car itself, such as the tyres, suspension 
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and engine. The control algorithms for the “actors” of the simulation scenario (i.e. cars, 

traffic signals etc) are usually programmed in an external software such as 

Matlab/Simulink which communicates with the sub-micro simulation tool every 

simulation step via a Transmissions Communication Protocol (TCP/IP), exchanging 

data. Some studies in this category have attempted to create a more integrated 

simulation framework by combining these sub-micro simulators with communications 

simulators and traffic microsimulation tools which can provide a more sophisticated 

surrounding traffic environment.  

 

Figure 3.3 Submicroscopic simulation framework 

 

The aforementioned simulators could cooperate on-line using an external platform, in 

order to form an integrated simulation architecture (see Figure 3.3). A variety of 

different software have been used in the literature. Pereira (2011), for instance, after 

critically evaluating all available traffic simulation software, used SUMO (Simulation 

of Urban Mobility) an open source traffic simulation software, in order to simulate the 

road network and traffic stream, while O’Hara et al. (2012) used PTV’s traffic 

simulation software VISSIM and finally Figueiredo et al. (2009) used MAS-T2er Lab’s 

microscopic traffic simulator. An in-depth comparison of the available traffic 

simulation software and their capabilities in simulating autonomous vehicles are 

discussed in section 3.3.2. As far as sub-microscopic simulators and network 

simulators are concerned, Pereira (2011) used USARSim (Unified System for 
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Automation and Robot Simulation) robotics simulator and a built-in feature of SUMO 

in order to simulate the communication element of the simulation framework, while 

O’Hara et al. (2012) use Microsoft Robotics Developer Studio (MRDS) and OPNET 

for robotics and communication simulation respectively. On the contrary, Figueiredo 

et al. (2009) did not employ any  robotics or  communication simulator.  

All of these studies have provided high detailed CAV simulation. However, the 

developed frameworks had high computational needs that led to several downsides. 

Firstly, they were very complex. This consequently affected the size of the networks 

designed for the studies (compared to the size of the networks of the alternative 

approach) and this fact did not permit the collection of a sufficient amount of data that 

could be statistically analysed in order to calculate CAV impacts. Finally, due to the 

significant differences in the underlying algorithms their results cannot be directly 

compared. 

From the above, it is concluded, that such a framework is highly capable of evaluating 

the safety impact of CAVs at small scale. For example, an experiment that would 

include a small number of vehicles could be easily simulated in such frameworks and 

by implementing several highly detailed CAV sensing, planning and control 

algorithms, the small-scale safety impact of these vehicles could be evaluated. 

However, this is beyond the scope of this PhD thesis. The aim of this thesis is to 

evaluate the safety impact of CAVs on motorways -a large scale network. This type of 

framework cannot easily evaluate the network-level safety impact of CAVs because 

of the size limitations of its experiment, hence it will not be considered for this thesis. 

 

3.3.1.2 Studies using traffic microsimulation and their external component 

 

The second group of studies aims to address the aforementioned shortcomings 

regarding experiment size and computational needs by using a simpler simulation 

framework architecture. (e.g. Li et al., 2013; Jeong, Oh and Lee, 2017; Rahman and 

Abdel-Aty, 2018; Stanek et al., 2018). In most cases, a commercially available traffic 

microsimulation tool (such as AIMSUN, VISSIM, Paramics or SUMO) is used along 

with its external component such as a Component Object Model (COM) or an 
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Application Programming Interface (API). The microsimulation tool is responsible to 

represent the infrastructure and create the traffic in the predefined road layout while 

the external component aims to simulate the CATS functionalities. These 

functionalities are programmed in a programming language such as Matlab, Python or 

C++. The microsimulation tool communicates with the external component every 

simulation step exchanging data such as vehicle positions and kinematic 

characteristics of the traffic in the simulation experiment (see Figure 3.4). Based on 

this data, the external component calculates the actions of the CATS at each simulation 

step. Examples of such external components is the External Driver Model used in this 

thesis and the Aimsun Next API provided by the software Aimsun.    

The architecture described above is simpler than the one stated in the first group, 

however, inevitably, it leads to the following disadvantages: (i) the level of detail 

achieved is low, and (ii) most importantly, the number of subsystems and 

functionalities of a CAV that can be simulated are limited and can only be indirectly 

simulated. For instance, for the sensing subsystem, only some characteristics such as 

the sensor range can be effectively programmed, ultimately leading to more and 

serious assumptions (e.g. Rahman et al., 2019b). Additionally, simplifications are 

made in order to simulate Connected and Automated Driving. For instance, in most 

simulation studies, it is typically speculated that Connected and Automated Vehicles 

will be able to keep a smaller time headway than human driven vehicles, however, the 

exact mathematical formulation of the longitudinal movement is still unknown.  

 Justifying the assumptions and simplifications might be crucial to prove the 

trustworthiness of the platform. On the other hand, the computational needs of this 

method are reasonable, and the size of the experiment is not a limitation. As a result, 

the simulation outputs could be more easily interpreted, transferred and generalised.  
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Figure 3.4 Traffic microsimulation CAV framework Approach 

 

Table 3.3 Presents a summary of existing microsimulation based studies for CAVs 

following this approach (adapted from Rahman et al., 2019a). It must be emphasized 

that all studies mentioned in this table include differences in their definitions of CAVs’ 

hence a different term for the investigated technology is mentioned in them (C 

onnected Vehicle (CV) – Autonomous/Automated Vehicle (AV) Connected and 

Autonomous Vehicle (CAV)). However, in principle, the underlying research is 

similar between the studies and therefore, all of them are included in the table. The 

most methodologically relevant studies from Table 3.3 are going to be further analysed 

below. 

Table 3.3 Existing simulation-based studies for CAVs  

Paper Car 

following 

model 

Software Technology Study area Impact 

area 

(Talebpour and Hani S 

Mahmassani, 2016) 

IDM Custom CAV Freeway Traffic 

(Rahman et al., 2019a) IDM VISSIM Connected 

Vehicle (CV) 

Freeway Safety 

(Guériau et al., 2016) IDM MOVSIM CV Freeway Traffic 

and 

Safety 

(Wan, Vahidi and 

Luckow, 2016) 

Paramics  

Default 

PARAMICS CV Arterial Traffic 

and fuel 
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(Genders and Razavi, 

2015) 

Modified 

Driving 

Behaviour 

PARAMICS CV Arterial Safety 

(Wu, Li and Zhang, 

2015) 

VISSIM  

default 

VISSIM CV Arterial Traffic 

(Ilgin Guler, Menendez 

and Meier, 2014) 

N/A Matlab CV Arterial Traffic 

(Jin et al., 2014) Optimal 

driving 

behaviour 

SUMO CV Arterial Traffic 

and fuel 

(Jin et al., 2013) SUMO 

default 

SUMO CV Arterial Traffic 

and fuel 

(Lee and Park, 2012) VISSIM 

default 

VISSIM CV Arterial Traffic 

operations 

(Fernandes and Nunes, 

2010) 

Gipps model-

IDM 

SUMO Automated 

Vehicle (AV) 

Freeway Traffic 

(Qian et al., 2014) SUMO 

default 

SUMO CAV Arterial Traffic 

(Stanek et al., 2018) VISSIM 

default 

VISSIM CAV Freeway Traffic 

ATKINS, 2016b VISSIM 

default 

VISSIM CAV Freeway 

and Urban 

Traffic 

Li et al., 2013 VISSIM 

default 

VISSIM CAV Intersection Traffic 

and 

Safety 

 

There is a series of studies that used VISSIM to simulate CAVs (Park et al., 2012; Li 

et al., 2013; ATKINS, 2016a; Jeong, Oh and Lee, 2017; Stanek et al., 2018; Rahman 

et al., 2019b) . Li et al. (2013) used the External Driver Model API of VISSIM to 

model autonomous intersection control. They used a reservation-based intersection 

control system which operated autonomously. The performance of the proposed 

External Driver Model Algorithm was evaluated for traffic and safety purposes. The 

safety performance of the autonomous intersection control proved to be highly 

effective producing only one traffic conflict in 1,800 seconds of simulation. However, 

the method applied in this paper is designed specifically for intersections and is not 

transferrable to the network or corridor level. 
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ATKINS (2016) and Stanek et al., (2018) used VISSIM to evaluate the impact of 

CAVs in urban and motorway networks with respect to the efficiency of traffic flow. 

Several times of the day (peak-off peak) were tested in different road network 

scenarios (urban – SRM motorway). Their report focused on the alteration of the 

default driver model parameters of VISSIM to simulate CAVS. Despite using a wide 

range of CAV market penetration rates, time headways between vehicles to represent 

different automation levels and CAV- orientated parameters, CAV decisions were 

ultimately made through the default driver model of VISSIM which is calibrated for 

human driving behaviour. This alteration cannot be directly connected to or imply full 

vehicle automation and connectivity. Therefore, the number and importance of 

assumptions of this study could affect its ability to produce reliable outcomes. A 

possible use of this method for safety evaluation could show inaccurately increased 

simulated traffic conflicts due to the stricter headway safety parameters of VISSIM.   

Finally, more relevant studies to this PhD were conducted by Jeong et al. (2017) and 

Rahman et al., (2019a). Rahman et al., (2019a) used VISSIM along with its extension 

Application Programming Interface. In order to simulated CAVs they used the 

Intelligent Driver Model developed by (Kesting, Treiber and Helbing, 2010) which 

has been used widely in the literature to simulate CAV driving behaviour. However, 

there is no evidence in the literature proving that this is an appropriate model for CAV 

modelling.  The high-level result of their model was that CAVs were able to drive with 

shorter headways leading to the formulation of vehicle platoons. Besides the CAV 

driver model,  one additional drawback of this study and most of the studies included 

in Table 3.3 is the fact that fundamental inherent challenges arising by the sensing 

subsystem (such as sensor accuracy) and planning subsystem such as real-time routing 

and platoon formulation logic (Mouhagir et al., 2017). 

There are a few attempts to cover these drawbacks from existing literature. However, 

most of the attempts do not manage to assess their method in an integrated experiment. 

For example Zhou et al., (2017) attempted to include sensor errors in a custom Matlab 

simulation environment. Using a rolling horizon stochastic optimal control strategy, 

they investigated the impact of inaccuracies in sensor measurements and system 

dynamics on driving comfort and control efficiency. Their results showed that their 

proposed strategy could generate smoother vehicle control. However, the experiment 
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in which the strategy was tested could not reflect the impact of inaccuracies in sensor 

measurements on the safety of a validated motorway network.  

Additionally, previous studies have expressed concerns about platoons compromising 

road safety and traffic stability if the platoon size is too long, especially if it is running 

in the outermost lane of a motorway. Jiang, Li and Shamo, (2006), attempted to 

identify the optimal platoon size and intervehicle spacing, in order to develop a 

platoon-based traffic signal timing algorithm that would reduce traffic delays. 

Similarly, Varaiya, (1993) underlines that  platoon size is correlated with intra-platoon 

spacing and identifies 60 meters to be a sufficient gap between two consecutive vehicle 

platoons to allow vehicle manoeuvres between platoons. Nevertheless, they do not 

recommend an optimal platoon size that maximizes safety benefits. Finally, Zhao and 

Sun, (2013) investigate the impact of platoon size and CAV market penetration rate 

on traffic capacity. They conclude that platoon size alone has minimal impact on 

capacity. Yet, they state that when a large platoon (8 to 10 vehicles) performs a lateral 

manoeuvre, a disruption in traffic flow is inevitable. This implies that a well-planned 

CAV size must be defined so as to minimize potential disruption in traffic flow and as 

a consequence the occurrence of safety-related events.  

Based on the above, the following conclusion can be drawn. Existing literature has 

taken valuable steps to evaluate CAVs. However, most of the studies have a narrow 

scope and focus on specific elements of CAV driving. Hence a first research gap is 

identified. There is a need to develop an integrated CAV simulation evaluation 

framework that -with justified assumptions- will incorporate and address as many 

inherent CAV challenges arising from the nature of the subsystems of CAVs as 

possible in an integrated framework that will be able to evaluate the safety impact of 

CAVs.  

 

3.3.2 Review of existing simulation tools 

 

Literature review so far showed that traffic simulation has been used extensively to 

assess impacts of Intelligent Transport Technologies and CAVs. According to the 

desired level of detail traffic simulation can be divided into four categories: 

Macroscopic, Mesoscopic, Microscopic and Sub-microscopic. 
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Macroscopic simulation or macrosimulation is based on mathematical equations 

simulating the flow of vehicles in a road network, an approach which originates from 

fluid dynamics. This type of traffic simulation aims to model vehicle dynamics 

collectively in terms of spatial vehicle density and average velocity as a function of 

road location and time (Helbing et al., 2002). In practice, it has the capability to 

simulate the traffic dynamics in all lanes using single lane models considering a certain 

probability of overtaking, ultimately reducing computational needs. However, as of 

today, it is still unknown if traffic macrosimulation can incorporate CAVs in terms of 

driving models or intelligent transport technologies.   In macroscopic simulation, the 

traffic flow is distributed in the road network based on the Origin-Destination matrix 

and an equilibrium state is reached through multiple steps of calibration, similar to 

Nash’s equilibrium game theory in which no simulated car can achieve a better travel 

time by altering its trajectory.  

Mesoscopic traffic simulation is the middle ground between microscopic and 

macroscopic traffic simulation. Mesoscopic simulation usually can simulate transport 

elements (such as an extensive part of a large road network) within which, elements 

(passenger vehicles – public transport – roads etc.) are assumed homogeneous. One of 

its advantages is the simulation speed and the fact that it provides more detail than 

macroscopic simulation. However, compared to microscopic models, mesoscopic 

models have a lower level of detail.  For example, mesoscopic models usually use 

simplified car-following models and can only gather aggregated simulated vehicle data 

compared to individual vehicle data. 

Microscopic traffic simulation or traffic microsimulation aims to simulate the 

behaviour of individual vehicles within a predefined road network and is used to 

predict the likely impact of changes in traffic patterns resulting from changes to traffic 

flow or from changes to the physical environment. Microsimulation consists of sets of 

mathematical models such as car following models, lane-changing models, and 

signalling models simulating individual vehicles behaviour. Recently, 

microsimulation has been used extensively due to its ability to include external tools 

such as a Component Object Model (COM) or an Application Programming Interface 

(API) in order to simulate externally custom technologies.  
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The final category of traffic simulation is sub-microscopic simulation. It has the aim 

to simulate all the components of a vehicle accurately. For example, sensors and 

internal components (engine, steering wheel etc) of the vehicle are simulated 

individually and their specifications can be directly set. The control algorithms for the 

“actors” of the submicroscopic simulation scenarios are usually programmed by the 

user usually in an external software such as Matlab/Simulink which communicates 

with the sub-micro simulation tool every simulation step via a Transmissions 

Communication Protocol (TCP/IP), exchanging data. 

Finally, hybrid traffic simulation is a flexible type of simulation and is the combination 

of mesoscopic and microscopic simulations allowing the user to model large areas 

while zooming in on specified areas that require a microsimulation level of detail. It 

must be noted that it has not been used widely in the literature.  

In order to select the appropriate tool for the development of the simulation framework 

of this PhD thesis, a comparative description of the most available widespread traffic 

micro-simulation software is performed below: AIMSUN, MITSIM, PARAMICS, 

VISSIM, SUMO, MAS-T2er Lab and PreScan and CARLA (Boxill and Yu, 2000; 

Kokkinogenis et al., 2011; Pereira, 2011).  

1. AIMSUN. was developed by J. Barcelo and J.L.Ferrer of the Polytechnic 

university of Catalunya in Barcelona, and is capable of performing macro- and 

micro-simulation. Its micro-simulation includes several driver behaviour 

models (car following, lane changing, gap acceptable). It provides detailed 

statistical outputs with flow, speed, travel time and delay data. It can simulate 

in detail all different elements of a road network such as vehicles, detectors 

and traffic lights. It also can simulate incidents and conflicting manoeuvers. 

Reed (2015) has recently developed a new AIMSUN package which allows 

the simulation of inter-vehicle communication in the simulation environment. 

The car following model of AIMSUN is a car following model developed by 

Gipps (Gipps, 1981) in which the maximum speed to which a vehicle (n) can 

accelerate during a time period (t, t+T) according to its surroundings is given 

by the equation: 
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( 3.4) 

 

Where Va(n,t) is the speed of vehicle n at time t, V*(n) is the desired speed of 

the vehicle (n) for current section, a(n) is the maximum acceleration for vehicle 

n, and T is the reaction time which corresponds with the simulation time step. 

Additionally, the maximum speed of the same vehicle is rules by its own 

characteristics and the limitations imposed by the presence of the lead vehicle 

(vehicle n-1). Hence the speed of the ego vehicle is ruled by the following 

equation as well: 

 

𝑉𝑏(𝑛, 𝑡 + 𝑇)

= 𝑑(𝑛)𝑇 + √𝑑(𝑛)2𝑇2 − 𝑑(𝑛) [2{𝑥(𝑛 − 1, 𝑡) − 𝑠(𝑛 − 1) − 𝑥(𝑛, 𝑡)} − 𝑉(𝑛, 𝑡)𝑇 −
𝑉(𝑛 − 1, 𝑡)2

𝑑′(𝑛 − 1)
] 

( 3.5) 

 

 

Where d(n) ( < 0) is the maximum deceleration desired by vehicle n; 

• x(n,t) is position of vehicle n at time t; 

• x(n-1,t) is position of preceding vehicle (n-1) at time t; 

• s(n-1) is the effective length of vehicle (n-1), computed as length of vehicle 

(n-1) plus the minimum clearance of vehicle (n). This minimum clearance is 

the distance, in metres, that a vehicle keeps between itself and the preceding 

vehicle when stopped; 

• d'(n-1) is an estimation of vehicle (n-1) desired deceleration. 

 

2. MITSIM was developed at the Massachusetts Institute of Technology for 

modelling traffic flows purposes. Similar to AIMSUN, MITSIM represents 

individual vehicles in the simulation environment by using car following, lane 

changing and traffic signal response models. MITSIM can provide real-time 

sensor data that imitate the surveillance capacities of the traffic management 

systems in an ITS environment. There has been however no attempt so far 

making it able to simulate vehicle connectivity or autonomy.  

3. PARAMICS is a software developed at the Edinburgh Paralled Computing 

Center in Scotland. It includes a sophisticated car-following and lane changing 
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model for roads up to 32 lanes in width. Paramics gives every driver/car 

couple specific characteristics which make it capable of assessing 

environmental impacts as well as traffic impacts of interventions. This gives 

the user the ability to make measurements of the simulation as it progresses. 

Finally, Paramics can model the interaction between drivers and ITS. Again, 

no work has been found in making it suitable for modelling connected and 

autonomous vehicles.   

4. VISSIM is a microscopic traffic simulation software developed by PTV 

GROUP which is time step and behaviour based. It can model urban traffic 

and public transport. Through VISSIM, the user can program different traffic 

flow compositions, traffic signals, variable message signs etc, making it a 

useful tool to test different scenarios. Its results include detailed travel, delay, 

queue length, signal timing information and speed data. VISSIM has also the 

capability to simulate vehicle connectivity and ADAS by using its feature - 

External Driver model. The main car following model in VISSIM is the 

Wiedemann driver model which is going to be analysed in chapter 4. 

5. SUMO is a highly portable microscopic simulation software developed by the 

Institute of Transportation Systems at the German Aerospace Center and is 

able to simulate large road networks. It is widely used by academia and 

research community mostly due to the fact that it is open-source and highly 

editable. SUMO can be connected with external applications through a 

Transmition Control Protocol (TCP)-based client-server architecture which 

makes it a suitable tool to simulate autonomous vehicles with the integration 

of robotics and communication simulators such as NS3 or OPNET. 

6. Mas-T2er Lab is a simulation tool developed by MAS-T2er Lab Group and 

is an integrated multi-agent system that allows the assessment of ITS through 

external agents. 

7. PreScan is an off-line simulation tool which allows the testing of many 

different traffic scenarios in a virtual environment. PreScan is the only 

commercially available software capable of simulating sensor processing and 

control algorithms within its simulation environment without including any 

external agent. Although it has high computational needs and cannot simulate 

large traffic flows and road networks. 
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8. CARLA is a software that has been developed from the ground up to support 

development, training and validation of autonomous driving systems. In 

addition to open source code, CARLA provides open digital assets like urban 

road networks, buildings and vehicles that can be used freely by the user. This 

software supports sensor configurations, environmental conditions, full 

control of all static and dynamic actors of the simulation and finally map 

generation.  

In this section, the commercially available traffic micro-simulation software will be 

compared using the following criteria which were originally employed by Pereira 

(2011) : 

• Extensibility: The capability of the software to cooperate with other 

simulation tools and the possibility to reach core of the simulation. 

• Type of License: Simulation software can be either open-source or closed 

source. Open source simulation software are usually inferior in features but 

they are more adaptable than closed source simulators due to community 

support.  

• External Agent Support: The ability of the software to include an external 

agent able to control driver behaviour. 

• V2X communication: The ability of the software to simulate communication 

between vehicles and between vehicles and infrastructure 

• Acceptance: Whether the software is widely accepted and used by the 

scientific community. 

• Parallelism/Core distribution: The ability of the software to distribute the 

simulation computing to different CPU cores or more than one computers. 

Table 3.4 shows which of the aforementioned traffic simulation software meet the 

criteria.   
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Table 3.4 Feature Comparison of microscopic traffic simulators for agent-based 

autonomous vehicle simulation source: (Pereira, 2011) 

Simulator Extensi-

bility 

Type of 

License 

External 

Agent 

Support 

V2X  Acceptance Parallelism 

VISSIM Yes Commercial No No High Yes 

PARAMICS Yes Commercial No No High Yes 

AIMSUN Yes Commercial Yes No High Yes 

MITSIM Yes Both No No Low Yes 

SUMO Yes Open-Source Yes No High Yes 

MAS-T2er 

Lab 

Yes Free Yes No Low Yes 

PreScan Yes Commercial Yes Yes Low Yes 

CARLA Yes Open-Source Yes Yes Low Yes 

 

During this PhD project, the simulation software AIMSUN, VISSIM, PreScan, SUMO 

and CARLA were evaluated for the purpose of the project. The commercially free for 

researchers traffic microsimulation software VISSIM 9.0 along with its extension 

External Driver Model was decided to be used because it is widely accepted from the 

research community (Wu, Sun and Yang, 2005; Huang et al., 2013; Yu and Abdel-

Aty, 2014; Shahdah, Saccomanno and Persaud, 2015; Katrakazas, Quddus and Chen, 

2018; Rahman et al., 2019c), fulfilled the criteria analysed in this section and due to 

the fact that it had all the necessary functionalities to simulate CAVs.  

 

3.4 Safety Analysis Using Traffic Microsimulation 

 

As mentioned in section 3.3, traffic microsimulation is ruled by a set of mathematical 

equations which define the driving behaviour of individual vehicles inside the 

software. However, in most cases these equations contain safety parameters which do 

not allow vehicles to create accidents which are according to safety related literature 
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the main safety performance indicator. This statement is a paradox and can affect the 

reliability of the use of simulation for safety evaluation purposes. Indeed, for this 

reason, traffic microsimulation has received criticism for its incapability to evaluate 

road safety (Tarko, 2005; Saunier, Sayed and Lim, 2007).  

On the other hand, there are a plethora of microsimulation studies that support the use 

of the method for safety evaluation, if and only if the simulation model is well 

calibrated and validated using safety indicators (Fan et al., 2013; Huang et al., 2013; 

Essa and Sayed, 2015; Shahdah, Saccomanno and Persaud, 2015; Rahman et al., 

2019b). 

In the absence of accidents, most of the aforementioned simulation based literature has 

relied on alternative safety indicators that instead of accidents can detect safety 

incidents. Heinrich, (1941), developed the renowned Heinrich’s pyramid in which he 

implied that there is a clear functional relationship between the number of safety 

incidents and accidents. This concept has been adapted in 1987 by Hydén, (1987). 

Hyden introduced the pyramid of  Figure 3.5 which describes the  evolution of 

Figure 3.5 Hyden’s safety pyramid  

 

vehicle interactions from undisturbed passages to accidents. The middle ground 

between accidents and undisturbed-safe passages is defined as conflicts. Despite the 

decades of conceptual development and widespread application, according to a recent 

study, there are still some disputes on what a traffic conflict is (Zheng, Ismail and 

Meng, 2014). There is a consensus that the nature of a traffic conflict is twofold. 

Initially, it is defined by a surrogate safety measure which indicates a spatiotemporal 
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danger (two vehicles are too close either in space or in time) and secondly, an  evasive 

manoeuvre is taking place in order to avoid a potential accident (Hydén, 1987; Zheng, 

Ismail and Meng, 2014). Hence, a definition that can be given to traffic conflict is an 

event involving two or more moving vehicles approaching each other in a traffic flow 

stream in a manner that a traffic accident would occur unless at least one of the 

involved parties performs an evasive manoeuvre.  

Based on this definition a large part of the simulation-based literature has used traffic 

conflicts as a safety indicator (Federal Highway Administration, 2003; Li et al., 2013; 

Zhao and Sun, 2013; Katrakazas, Quddus and Chen, 2018; Rahman and Abdel-Aty, 

2018). A functional relationship between traffic conflicts and accidents can be found 

in Gettman et al., (2008) and is presented below.  

Nevertheless, as mentioned in the previous paragraph, the two conditions -

spatiotemporal proximity and evasive manoeuvre - need to be quantitatively defined 

in order to clearly define a conflict within a traffic simulation software. Hence, the 

concept of surrogate safety measures is introduced. Surrogate safety measures are the 

measurements that are used to describe the relationship between two road users in a 

traffic event for the purpose of quantifying the accident probability and/or the potential 

accident severity in a meaningful way (De Ceunynck, 2017). There is a plethora of 

surrogate safety measures employed in traffic simulation studies in order to evaluate a 

safety impact. The most widespread surrogate safety measures (SSM) arising from 

traffic microsimulation and their definitions are presented below.  

Table 3.5 Traffic Simulation Surrogate Safety Measures (adapted from (Federal 

Highway Administration, 2003)) 

𝐶𝑟𝑎𝑠ℎ𝑒𝑠

𝑌𝑒𝑎𝑟
= 0.119 ∗ (

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠

𝐻𝑜𝑢𝑟
)1.419 

( 3.6) 

 

Surrogate Safety Measure Description 

Gap Time (GT) Time lapse between completion of encroachment by 

turning vehicle and the arrival time of crossing vehicle if 

they continue with same speed and path. 

Encroachment Time (ET) Time duration during which the turning vehicle infringes 

upon the right-of-way of through vehicle. 
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Undoubtedly the two most widespread surrogate safety measures in the table above 

are Time to Collision and Post Encroachment Time.  

Time to Collision (TTC) is definitely the most frequently used surrogate safety 

measure. Hayward, (1972) initially used TTC as a surrogate safety measure and 

Deceleration Rate (DR) Rate at which crossing vehicle must decelerate to avoid 

collision. 

Proportion of Stopping 

Distance (PSD) 

Ratio of distance available to manoeuvre to the distance 

remaining to the projected location of collision. 

Post-Encroachment Time 

(PET) 

Time lapse between end of encroachment of turning 

vehicle and the time that the through vehicle actually 

arrives at the potential point of collision. 

Initially Attempted Post-

Encroachment Time (IAPT) 

Time lapse between commencement of encroachment by 

turning vehicle plus the expected time for the through 

vehicle to reach the point of collision and the completion 

time of encroachment by turning vehicle. 

Time to Collision (TTC) Expected time for two vehicles to collide if they remain at 

their present speed and on the same path. 

DR distributions Deceleration rate distributions 

Required braking power 

distributions 

Required braking power distribution needed in order to 

avoid an accident 

Distribution of merge points How merging areas are distributed across a motorway 

Merge area encroachments Merge area layouts 

Gap-acceptance 

distributions 

Distribution of the gap acceptance of vehicles 

Number of vehicles caught 

in dilemma zones 

Number of vehicles waiting in conflict areas in a 

simulation environment 

Speed differential between 

crossing movements 

Speed differences during crossing movements in 

intersections 

Speed variance Speed variance across and among lanes 

Red- and yellow-light 

violations by phase 

Red and yellow light violations by phase in urban road 

networks 

Time-integrated and time-

exposed TTC measures 

(TET and TIT— duration of time that the TTC is less than 

a threshold and the integrated total TTC summation during 

that time, respectively) 
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defined it as the time required by two vehicles to collide if they remain on the same 

collision course and keeping the same speed. The mathematical formulation of TTC is 

presented below:  

 

In equation ( 3.7), 𝑥𝑙 − 𝑥𝑓 depict the headway of two vehicles, 𝐿𝑙  the length of the 

leading vehicle and 𝑣𝑙 − 𝑣𝑓 the relevant velocity between the two vehicles in question. 

Obviously, TTC is non-negative value and hence cannot be defined when the speed of 

the leading or preceding vehicle is greater than the speed of the following vehicle as 

the two vehicles would be moving away from each other and therefore they wouldn’t 

be on a collision course.  

Post Encroachment Time (PET) is defined as the temporal difference between the 

moment a vehicle enters a conflict point until the time another vehicle arrives to this 

point (Cooper, 1984). It is more easily extracted than TTC because it does not require 

the indication of a collision course between vehicles neither it requires any speed or 

distance data. However special attention should be paid on the PET in the case of a 

motorway. The original definition of PET indicates a conflict point which can be seen 

with an X in Figure 3.6. For an equivalent motorway scenario the conflict point might 

be converted into a conflict line if the two vehicles participating in the conflict have 

approximately the same heading. 

𝑇𝑇𝐶 =  

{
 
 

 
 
𝑥𝑙 − 𝑥𝑓 − 𝐿𝑙

𝑣𝑙 − 𝑣𝑓
         , 𝑖𝑓 𝑣𝐹 > 𝑣𝐿
 
 

∞                             𝑖𝑓 𝑣𝑓 ≤ 𝑣𝐿

 
( 3.7) 
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Figure 3.6 Definition of post encroachment time (Van Der Horst et al., 2014)  

 

With the most widespread SSMs being mentioned, it must be emphasized that them 

alone have been used as safety performance indicators in part of the existing literature 

(e.g. (Rahman and Abdel-Aty, 2018)). However, a better approach would include the 

inclusion of SSMs along with an evasive manoeuvre identification algorithm. 

Therefore, Gettman et al., (2008) investigated the potential use of surrogate safety 

measure thresholds along with vehicle trajectory data produced by traffic 

microsimulation in order to identify traffic conflicts. Their work resulted in the 

development of a widespread post-simulation processing tool called Surrogate Safety 

Assessment Model (SSAM) which is able to identify traffic conflicts using the SSMs 

TTC and PET along with vehicle trajectory data from microsimulation. SSAM is 

proven to be perhaps the only validated tool for identifying traffic conflicts from 

microsimulation and has been used widely in existing literature (Fan et al., 2013; 

Habtemichael and Picado-Santos, 2013; Huang et al., 2013; Morando, Truong and Vu, 

2017; Katrakazas, Quddus and Chen, 2018; Rahman et al., 2019b). The underlying 

traffic conflict identification algorithm of SSAM is analysed in section 4.3.2.  
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3.5 The Use of Statistics to Identify Underlying Factors of Simulated 

Safety 

 

Despite all the efforts in conflict identification within traffic microsimulation, there is 

a lack of studies investigating the underling factors that affect the occurrence of 

conflicts in a simulation environment. So firstly, the need to investigate them is 

identified and secondly due to the lack of literature, in order to develop the appropriate 

methodology to identify the underlying factors of traffic conflict occurrence one 

should look into existing attempts explain accident occurrence which are proven to be 

related with traffic conflicts (see equation ( 3.6)).  

 

3.5.1 Widespread safety related explanatory variables  

 

Indeed, due to the immense losses to the society resulting from road accidents, 

literature has dedicated to efforts in investigating the underlying factors of accidents -

instead of traffic conflicts- in order to provide guidelines for policymakers that would 

ameliorate the safety risks. These factors are referred to as crash precursors in existing 

literature (Kwak and Kho, 2016; Imprialou et al., 2016).   

Speed is the first factor that is linked with a large proportion of road accidents both in 

terms of accident severity ( Imprialou et al., 2016) as well as the risk of being involved 

in an accident (Elvik, Christensen and Amundsen, 2004). However, there are several 

conflicting conclusions in existing literature about whether speed itself or a by-product 

of speed – speed variance is actually affecting accident frequency.  

Speed variance (also known as speed dispersion) is defined as speed differences within 

the same lane or across different lanes between individual vehicles or in a road section 

(Aarts and Van Schagen, 2006). High speed variance can result in more accident 

related interactions (Navon, 2003).  One of the challenges regarding the inclusion of 

speed variance when trying to model its effect on safety, is the lack of individual 

vehicle-level speed data (e.g. vehicle trajectories) to calculate it effectively. Hence, the 

majority of studies defines speed variance as the standard deviation of speed (e.g. 

Taylor, 2000; Quddus, 2013). However, there is no consensus about whether speed 
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variance significantly affects the occurrence of accidents and concerns are expressed 

about the use of speed variance as a precursor unless individual vehicle-level highly 

disaggregated data are used. Potentially, traffic microsimulation can excel in this 

regard as it can provide this kind of data. Although, in order for the speed variance 

measurements to accurately represent real-world conditions a speed-related calibration 

and validation of the microsimulation model should be performed.   

Traffic flow is considered to be an additional widespread accident underlying factor. 

Rationally, there is a clear analogy between traffic flow and the number of vehicle 

interactions which could consequently lead to safety incidents and accidents (Navon, 

2003). However, there are some studies which seem to disagree with this statement. 

For example, Garber and Ehrhart (2007) conclude that a relatively high traffic flow 

value per lane seems to affect accident risk negatively and Martin (2002) concludes 

that during off-peak times (low traffic flow values) more serious accidents tend to 

occur. The later can be justified by assuming that lower traffic flow values are 

associated with higher speeds and therefore higher speed variance.  As of today, there 

seems to be a consensus regarding the overall effect of traffic flow on accidents by 

using the term “turbulence” of traffic flow which describes a situation where the 

normal traffic flow of a road network is disturbed by unusual events. Turbulences in 

the traffic flow are considered to be highly related with the occurrence of accidents 

(Abdel-Aty and Pande, 2005).  

Other than metrics associated with vehicles’ counts and kinematic characteristics, 

several factors associated with the infrastructure and more specifically road geometry 

have been identified to be related with accident frequency and accident severity in 

existing studies. More specifically, research has focused on the curvature, gradient, 

and the number of lanes of a road segment.  

As far as curvature is concerned, sharp curves are linked with higher accident rates 

according to recent literature (Gitelman et al., 2014). In practice, a sharp curve directly 

affects the sight distance of the driver, resulting in more driving errors and an increase 

in lateral acceleration which may lead to a failure in vehicle control. However, Chang 

(2005) argues that sharp curves with small radiuses causes drivers to drive more 

carefully if they are alerted of the potentially difficult driving environment in time. 

However, small curve radius values are not common in motorway environments.    
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High vertical grades are also a widespread factor related with accident frequency. 

Extended upgrades can lead to speed decreases, especially from heavy good vehicles 

leading to more passenger vehicles overtaking, increasing speed variance (Milton and 

Mannering, 1998a). This consequently can lead to more dangerous situations. On the 

other hand, extensive downgrade segments can lead to higher speeds and therefore 

more dangerous traffic conditions.  

Finally, the number of lanes of a specific road segment can significantly affect road 

safety. More specifically, the number of lanes is associated with the number of lane 

changes and therefore with the number of vehicle interactions which can potentially 

prove to be dangerous. To be precise, (Kononov et al, 2008) modelled the relationship 

between possible vehicle conflicts as a function of the number of lanes in the following 

equation where 𝐶𝑛 represents the number of possible conflicts and n the number of 

lanes.  

 

𝐶𝑛 = {

𝑛 ∗ (𝑛 − 1)                              𝑖𝑓 𝑛 = 2

𝑛 ∗ (𝑛 − 1) +
𝑛!

3! (𝑛 − 3)!
   𝑖𝑓 𝑛 > 3

 

( 3.8) 

 

 

This equation seems to reflect the results of studies which concluded that the number 

of road lanes is related monotonically with accident frequency (e.g. Milton and 

Mannering, 1998). However, once again, results seem to be mixed and this is probably 

based on the context of each study. For example Ma and Kockelman, (2006) state that 

an increase in the number of lanes leads to a decrease in non-fatal accidents and that it 

has no effect on fatal accidents.  

 

3.5.2 Statistical approaches in accident modelling 

 

Due to the lack of studies investigating traffic conflict frequency, one should 

investigate the techniques applied in the past for the statistical modelling of accidents 

in order to identify appropriate method to model traffic conflicts. Retrospectively, 

through this thesis, similarities were observed between traffic conflict per hour and 
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recorded accidents per year and hence investigating accident modelling techniques was 

deemed appropriate.  

When analysing accident counts, important inherent data and methodological issues 

have been acknowledged by the literature. These issues may lead to errors when 

calculating a statistical model and may lead to inaccurate accident frequency 

predictions (Lord and Mannering, 2010): One of the most widespread issues in 

accident and hourly conflict data is the low sample mean. Accident or conflict 

observations are non-negative integers. More specifically, in most cases a large 

number of zeros are included in the data set which can cause significant problems in 

traditional linear regression models.  

Additionally, in order to avoid information loss in spatiotemporally varying 

explanatory variables, data are often considered in small time intervals or in small 

space intervals. For example, a dataset describing the accidents occurring in a 

motorway that is divided in equal smaller segments may generate multiple 

observations of consequent segments which are highly correlated due to unobserved 

factors. This problem sets up correlation of disturbances among observations and 

results in parameter estimation problems (Washington, Karlaftis and Mannering, 

2010).   

Other examples of these issues are data over- (variance is greater than the mean) or 

under-dispersion, small sample size, under-reporting, endogenous variables and so on. 

In order to tackle the aforementioned issues, several statistical modelling approaches 

have been applied in the literature in order to overcome them. Lord and Mannering, 

(2010) in their paper summarise the most widespread existing models for analysing 

accident-frequency data.  

Table 3.6 Summary of existing models for analysing crash-frequency data (Lord and 

Mannering, 2010) 

Model type Advantages Disadvantages 

Poisson Most basic model; easy to 

estimate 

Cannot handle over- and under-

dispersion; negatively influenced by the 

low sample-mean and small sample size 

bias 
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Model type Advantages Disadvantages 

Negative 

binomial/Poisson-gamma 

Easy to estimate can account for 

over-dispersion 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias 

Poisson-lognormal More flexible than the Poisson-

gamma to handle over-dispersion 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias (less 

than the Poisson-gamma), cannot 

estimate a varying dispersion parameter 

Zero-inflated Poisson and 

negative binomial 

Handles datasets that have a large 

number of zero-crash 

observations 

Can create theoretical inconsistencies; 

zero-inflated negative binomial can be 

adversely influenced by the low sample-

mean and small sample size bias 

Conway–Maxwell–

Poisson 

Can handle under- and over-

dispersion or combination of both 

using a variable dispersion 

(scaling) parameter 

Could be negatively influenced by the 

low sample-mean and small sample size 

bias; no multivariate extensions 

available to date 

Gamma Can handle under-dispersed data Dual-state model with one state having a 

long-term mean equal to zero 

Generalized estimating 

equation 

Can handle temporal correlation May need to determine or evaluate the 

type of temporal correlation a priori; 

results sensitive to missing values 

Generalized additive More flexible than the traditional 

generalized estimating equation 

models; allows non-linear 

variable interactions 

Relatively complex to implement; may 

not be easily transferable to other 

datasets 

Random-effects Handles temporal and spatial 

correlation 

May not be easily transferable to other 

datasets 

Negative multinomial Can account for over-dispersion 

and serial correlation; panel count 

data 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias 

Random-parameters More flexible than the traditional 

fixed parameter models in 

Complex estimation process; may not be 

easily transferable to other datasets 
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Model type Advantages Disadvantages 

accounting for unobserved 

heterogeneity 

Bivariate/multivariate Can model different crash types 

simultaneously; more flexible 

functional form than the 

generalized estimating equation 

models (can use non-linear 

functions) 

Complex estimation process; requires 

formulation of correlation matrix 

Finite mixture/Markov 

switching 

Can be used for analyzing 

sources of dispersion in the data 

Complex estimation process; may not be 

easily transferable to other datasets 

Duration By considering the time between 

crashes (as opposed to crash 

frequency directly), allows for a 

very in-depth analysis of data and 

duration effects 

Requires more detailed data than 

traditional crash-frequency models; 

time-varying explanatory variables are 

difficult to handle 

Hierarchical /multilevel Can handle temporal, spatial and 

other correlations among groups 

of observations 

May not be easily transferable to other 

datasets; correlation results can be 

difficult to interpret 

Neural network, Bayesian 

neural network, and 

support vector machine 

Non-parametric approach does 

not require an assumption about 

distribution of data; flexible 

functional form; usually provides 

better statistical fit than 

traditional parametric models 

Complex estimation process; may not be 

transferable to other datasets; work as 

black-boxes; may not have interpretable 

parameters 

 

To conclude, in order to identify the appropriate statistical modelling approach to 

model traffic conflict data, the nature of the data must be investigated and described 

in depth so as to identify any underlying aforementioned issues. This will be done in 

section 4.3.2 of this thesis.  

3.6 Knowledge Gap 

 

Chapter 2 of this thesis revealed that CAVs are a rapidly evolving technology which 

is about to revolutionise existing transport systems as we know them. They promise to 

bring about compelling benefits on traffic, safety and the environment. They are 

complex entities comprising of several subsystems which control the main 

functionalities of the vehicle: sensing, perception, planning and control.  
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Following, chapter 3 identified that due to the lack of real-world CAV operational 

data, a large part of the research community has diverged from formerly established 

safety related evaluation methods to traffic simulation in order to evaluate their 

impacts. However, the same problem that has affected the shift from traditional 

methods to simulation is also the major overarching problem of CAV simulation 

studies. This lack of fundamental knowledge about how exactly CAVs will operate in 

the real world, that originates from the lack of CAV data, has led to severe uncertainty 

about the way that they should be simulated. Consequently, this uncertainty has led to 

assumptions, which in most cases are justified, in the current literature;  

As mentioned previously, CAVs are complex and several subsystems rule their 

operations. Most of the existing studies focus on one subsystem - in most cases the 

control subsystem - or an element of the control subsystem such as the longitudinal 

control (car following) of the vehicle. Even though these studies provide a useful 

starting point, the narrow scope affects the reliability of the results. Most importantly, 

in this way, fundamental operational, technological and strategic challenges arising 

from CAV implementation are not covered. There is a need to address as many of 

those challenges as possible in a justified manner, in an integrated simulation 

environment in order to strengthen the reliability of simulation results.  

Last but not least, even though it has been criticised for its effectiveness, traffic 

simulation has been proven useful in the past for safety evaluation purposes. Advanced 

traffic conflict identification algorithms and tools have been developed in order to 

facilitate and validate the evaluation process. Although research has put a large amount 

of effort in accident modelling, there is a lack of studies identifying the underlying 

factors – explanatory variables – that affect the occurrence of traffic conflicts within a 

microsimulation environment.   
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4  Research Methodology 

 

4.1 Introduction 

As section 3.6 underlined, existing approaches in CAV simulation are usually narrow 

in scope by focusing on specific functionalities of the control subsystem of a CAV and 

do not address fundamental technological operational and strategic challenges arising 

from their implementation. This work addresses this gap by developing an integrated 

CAV behaviour model which will address the following challenges: 

a) Sensor error rates 

b) Vehicle platoon size 

c) High-level route-based decision making for CAVs   

The developed algorithms are tested in a calibrated and validated motorway network 

using real world data which is the key to strengthen the reliability of the results 

(Katrakazas et al, 2018). More importantly, since the developed simulation framework 

is intended  for safety evaluation purposes, a two stage calibration and validation 

process is followed using Time to Collision  a safety measure of performance (Huang 

et al., 2013). This thesis will present a novel safety calibration and validation method. 

It must be emphasized that only the human driving behaviour was calibrated due to 

lack of CAV data.  

Finally, in order to advance the understanding of the occurrence of traffic conflicts 

within a traffic microsimulation environment, a robust statistical model is developed. 

More specifically, due to the nature of the simulated conflict data, a hierarchical 

Bayesian negative binomial regression model that takes into account spatial 

correlation is developed.   

4.2 Research Design 

 

The aim of this thesis is divided into six objectives which will be achieved through the 

methods outlined in Table 4.1. The first two objectives have been discussed in the 

literature review chapters 2 and 3.  
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Table 4.1 Research objectives and method per chapter  

Objective Method Chapter 

To identify issues and impacts of 

CAVs in mixed traffic streams 
Literature Review Chapter 2 

To explore and review techniques 

used to evaluate the impact of 

Intelligent Transport Technologies 

and CAVs 

Literature Review Chapter 3 

To develop a calibrated traffic 

microsimulation framework 

capable of simulating CAVs along 

with non-automated vehicles 

Development of an integrated CAV 

simulation algorithm and 

implementing it in a calibrated traffic 

microsimulation environment 

Chapter 4 

and 

Chapter 5 

To analyse the data from the 

microsimulation for the purpose of 

evaluating the impact on safety of 

CAVs 

Development of a post simulation 

processing technique to calculate the 

safety impact of CAVs based on 

surrogate safety measures 

Chapter 6 

To assess underlying factors 

affecting the occurrence of traffic 

conflicts in a traffic simulation 

environment 

Development of statistical models 

capable of handling the inherent 

limitations arising from the simulated 

traffic conflict data   

Chapter 6 

To recommend a number of 

specific scenarios where the safety 

benefit of CAVs would be 

maximized, specifically during the 

transition period 

Estimation of the safety benefit per 

simulation scenario in order to 

provide recommendations for the real 

world implementation of CAVs   

Chapter 6 

 

4.3 Methods 

 

4.3.1 Traffic Microsimulation 

 

As mentioned previously, one of the objectives of this thesis is to develop an integrated 

simulation platform capable of simulating CAVs and their functionalities alongside 

conventional human traffic in a calibrated and validated motorway traffic 

microsimulation environment. Hence, it is understood that the main components of the 
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simulation platform would be the motorway infrastructure, the human driven vehicles 

and CAVs. Consequently, this section of the thesis is divided into three sub sections:  

a) Human driving behaviour 

b) CAV driving behaviour and its functionalities 

c) Motorway environment 

The first two elements are described in this section of the thesis while the motorway 

study area along with the corresponding data used for its calibration and validation are 

described in detail in chapter 5 of this thesis.  

The result of the review of existing traffic microsimulation software in section 3.3.2 

indicated that the most appropriate software to be used in this thesis is the free-for-

research purposes traffic microsimulation software PTV VISSIM. VISSIM is 

renowned for its ability to accommodate research projects and has been used 

extensively in existing literature (Fellendorf and Vortisch, 2001; Gomes, May and 

Horowitz, 2004; Gettman et al., 2008; ATKINS, 2016b; Rahman et al., 2019c). 

The strength of microsimulation lies on its ability to simulate the behaviour of 

individual vehicles within a predefined road network. The behaviour and consequently 

the movement of each vehicle is ruled by a set of mathematical models which control 

the corresponding movement type. The two most important models are the car 

following model and the lane changing model. However, the previous statement 

applies mainly to human driven vehicles as the control algorithm of CAVs is arguably 

more complex. Hence the behaviour of a CAV will be described according to the 

simulation of its fundamental subsystems.  

 

4.3.1.1.Human driving behaviour 

 

The quality of the driver model is essential for the quality of the simulation tool (PTV 

AG, 2015). The human car following model in VISSIM is stochastic, time step based 

and microscopic, meaning that it treats driver-vehicle units as individuals.  It is based 

on a psycho-physical car following model for longitudinal vehicle movement and a 

rule-based algorithm for lateral vehicle movement. These two components are the 

result of the work of Rainer Wiedemann who produced two versions of this model. 
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The first version was introduced in 1974 and was a simpler version – in terms of 

number of involved car behaviour parameters, while the later version in 1991 was more 

complex (Wiedemann, 1974).  In this thesis the Wiedemann 99 (latter version) is used 

since it is more suitable for motorways and it is going to be described in detail below 

(Aghabayk et al., 2013; PTV AG, 2016). Firstly, the longitudinal movement model is 

described in this section and the lane changing follows.   

Wiedemann’s model is based on the assumption that a vehicle inside a simulation 

environment can be in one of the following driving states: 

• Free flow driving: The vehicle is not influenced by preceding vehicles. In this 

state, the driver seeks to reach and maintain his desired speed. In reality, the 

speed in this mode will oscillate around the desired speed due to imperfections 

in throttle control  

• Approaching: This process describes the situation of the driver adapting his 

speed to according to the lower speed of the preceding vehicle.  

• Following: The driver follows the preceding car without consciously 

accelerating or decelerating. He attempts to keep a constant safety distance. 

However, again due to imperfections, the speed difference oscillates around 

zero. 

• Braking: Driver applies moderate to high deceleration rates if distance to the 

preceding vehicle falls below the desired safety distance. This situation can 

occur if the preceding vehicle abruptly brakes or changes its speed or a third 

vehicle changes lanes to squeeze in between two vehicles.  

For each of the aforementioned driving states the acceleration is calculated as a result 

of the current speed, speed difference, distance to the preceding vehicle and individual 

driver and vehicle characteristics. The procedure of changing states follows a pattern 

according to predetermined thresholds which are shown in Figure 4.1 (Aghabayk et 

al., 2013):  



81 

 

 

Figure 4.1 Wiedemann’s car following behaviour of a vehicle  (Aghabayk et al., 2013) 

• AX: the desired distance between two stationary vehicles 

• BX: the minimum following distance which is considered as a safe distance by 

drivers 

• CLDV: the points at short distances where drivers perceive that their speeds 

are higher than their lead vehicle speeds 

• SDV: the points at long distances where drivers perceive speed differences 

when they are approaching slower vehicles 

• OPDV: the points at short distances where drivers perceive that they are 

travelling at a lower speed than their leader 

• SDX: the maximum following distance indicating the upper limit of car-

following process 

These thresholds are not directly programmable in VISSIM. However, the user is able 

to calibrate them via a set of parameters. These parameters allow the user to calibrate 

the driving behaviour so as to represent the real-world traffic according to the available 

real world data. The list of these parameters is presented below:  
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Table 4.2 Parameters of the Wiedemann 99 car following model 

Parameter Unit Description 

CC0 m 
Standstill distance: the average desired standstill distance between 

two vehicles. It has no variation. 

CC1 s 
Time headway: is the time (in seconds) that a driver wants to 

keep. 

CC2 m 

‘Following’ variation: restricts the longitudinal oscillation or how 

much more distance than the desired safety distance a driver 

allows before he intentionally moves closer to the car in front. 

CC3 s 

Threshold for entering car following mode in VISSIM: controls 

the start of the deceleration process, i.e. when a driver recognizes 

a preceding slower vehicle.  

CC4 m/s Following’ thresholds: control the speed differences during the 

‘Following’ state. Smaller values result in a more sensitive 

reaction of drivers to accelerations or decelerations of the 

preceding car 
CC5 m/s 

CC6 1/(m*s) 
Speed dependency of oscillation: influence of distance on speed 

oscillation while in following process. 

CC7 m/s2 Oscillation acceleration: actual acceleration during the oscillation 

process. 

CC8 m/s2 Standstill acceleration: desired acceleration when starting from 

standstill  

CC9 m/s2 Acceleration at 80 km/h: desired acceleration at 80 km/h  

 

The thresholds of the Wiedemann car following model and the aforementioned 

parameters are linked based on a set of equations. 

where L is the length of the preceding vehicle 

where v is equal to ego-vehicle speed if it is slower than the preceding vehicle; 

otherwise it is equal to preceding vehicle speed with some random errors. The error is 

determined randomly by multiplying the speed difference between the two vehicles by 

a random number between -0.5 and 0.5. 

𝑆𝐷𝑋 = 𝐵𝑋 + 𝐶𝐶2 ( 4.3) 

 

𝐴𝑋 = 𝐿 + 𝐶𝐶0  ( 4.1) 

 

𝐵𝑋 = 𝐴𝑋 + 𝐶𝐶1 ∗ 𝑣 ( 4.2) 
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𝑆𝐷𝑉𝑖 = −
𝛥𝑥 − 𝑆𝐷𝑋𝑖

𝐶𝐶3
− 𝐶𝐶4 

( 4.4) 

where Δx is the space headway in meters between the ego-vehicle and the preceding 

vehicle.   

𝐶𝐿𝐷𝑉 =
𝐶𝐶6

17000
∗ (𝛥𝑥 − 𝐿)2 − 𝐶𝐶4 

( 4.5) 

 

 

𝑂𝑃𝐷𝑉 = −
𝐶𝐶6

17000
∗ (𝛥𝑥 − 𝐿)2 − 𝛿. 𝐶𝐶5 

( 4.6) 

 

 

where δ is a dummy variable which is equal to 1 when the ego-vehicle speed is greater 

than CC5 and 0 otherwise.  

The exact formulation of the equation that controls the speed and acceleration of a 

vehicle in the Wiedemann car-following model has been the subject of debate between 

researchers in the past few years. And this is mainly because the developer company 

of the software has declared that the equations are included in the closed source code 

of the software and they differ according to the aforementioned longitudinal behaviour 

states. However, researchers have attempted to derive the equations using 

Wiedemann’s PhD thesis (Gao and Rakha, 2008; Zhu et al., 2018) however, there is 

no robust evidence that these are indeed the underlying equations. The equation is 

presented below: 

𝑢𝑛(𝑡 + 𝛥𝑡) = 𝑚𝑖𝑛

{
 
 

 
 𝑢𝑛(𝑡) + 3.6 ∗ (𝐶𝐶8 +

𝐶𝐶8 − 𝐶𝐶9

80
∗ 𝑢𝑛(𝑡)) 𝛥𝑡

3.6 ∗
𝑠𝑛(𝑡) − 𝐶𝐶0 − 𝐿𝑛−1

𝑢𝑛(𝑡)

, 𝑢𝑓 

( 4.7) 

 

where 𝑢𝑛(𝑡 + 𝛥𝑡) is the speed of the ego-vehicle in the next timestep t+Δt, 𝑠𝑛(𝑡) is 

the space headway between the ego vehicle and the preceding vehicle at time t, 𝑢𝑛(𝑡) 

the speed of the ego-vehicle in the current simulation time step,  𝑢𝑓 the space-mean 

traffic stream free-flow speed in km/hour and 𝐿𝑛−1 the length of the preceding vehicle. 

CC8, CC9 and CC0 follow the definitions presented in Table 4.2.  

Equation ( 4.7) is twofold, meaning that the vehicle speed in VISSIM is computed as 

the minimum of two speeds. The upper part of the bracket represents the vehicle 
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acceleration restrictions based on the kinematic characteristics of the vehicle itself. 

CC8 for example represents a vehicle kinematics model with a linear speed-

acceleration relationship where CC8 is the maximum vehicle acceleration at a speed 

of 0 km/h and CC9 is the maximum vehicle acceleration at a speed of 80 km/h in m/s2. 

The lower part of the bracket of equation ( 4.7) is a steady-state car-following model.     

VISSIM is a time-step based simulation software. This means that the state of the 

simulation vehicles is updated on predefined time intervals. The higher the simulation 

frequency (smaller timestep) the more detailed and accurate it is. The most common 

simulation frequency value in the literature is 10 Hz and the same value is selected for 

this thesis. Given the above thresholds and equations, the software calculates the speed 

and consequently the acceleration of each vehicle inside the simulated network and 

updates the state and location of each simulation vehicle at every time step.  

Vehicle lateral behaviour and consequently lane changing in a motorway environment 

in VISSIM is divided into two main categories; necessary (mandatory) lane changes 

and free lane changes (PTV AG, 2015). Necessary lane changes take place in order to 

reach the next link (segment) of a predefined route. The driving behaviour parameters 

for this type of lane change contain the maximum acceptable deceleration of the lane 

changing vehicle and the vehicle that will be its follower in the target lane. Target lane 

is defined as the lane that the ego-vehicle wants to move into. The second category of 

lane change, the free lane change is a lane change that a vehicle performs in order to 

obtain speed advantages or more space. The prerequisite for this type of lane change 

to take place is the desired safety distance in the target lane. The desired safety distance 

is determined by the speed of the lane changing vehicle and the preceding vehicle in 

the target lane. The user cannot influence the degree of aggressiveness for free lane 

changes meaning, how often will a driver select to perform it. However, the user can 

influence free lane changes by adapting the safety distance.  

For both of the types of lane change in VISSIM the vehicle needs to find a suitable 

gap in the direction of travel. The gap size depends on two speeds: the speed of the 

lane changing vehicle and the speed of the vehicle approaching from behind in the 

target lane. The software contains a number of parameters which can be adjusted by 

the user for the lane changing behaviour. The most relevant to these study parameters 

are presented in Table 4.3. 
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Table 4.3 Lane changing parameters in PTV VISSIM 

Element Description 

 

Diffusion 

time 

 

 

The maximum amount of time a vehicle can wait at the emergency stop 

distance for a necessary change of lanes. An emergency stop is 

performed when the vehicle does not detect a suitable gap to perform a 

necessary lane change. When this time is reached the vehicle is removed 

the network, at the same time a warning is written to the *.err file and 

displayed in the Messages window. 

Min. 

headway 
 

The minimum distance between two vehicles that must be available 

after a lane change, so that the change can take place (default value 0.5 

m). A lane change during normal traffic flow might require a greater 

minimum distance between vehicles in order to maintain the speed-

dependent safety distance.  
 

To slower 

lane if col-

lision time is 

above 
 

Free driving time : only for Slow lane rule or Fast lane rule: defines 

the minimum distance to a vehicle in front, in seconds, which must be 

present on the slower lane, so that an overtaking vehicle switches to the 

slower lane.  
 

Safety 

distance 

reduction 

factor: 
 

Safety distance reduction factor (lane change), (SafeDistRedFact): 

is taken into account for each lane change. It concerns the following 

parameters: 

The safety distance of the trailing vehicle on the new lane for 

determining whether a lane change will be carried out 

The safety distance of the lane changer itself 

The distance to the preceding, slower lane changer 

During the lane change Vissim reduces the safety distance to the value 

that results from the following multiplication: 

Original safety distance • safety distance reduction factor 

The default value of 0.6 reduces the safety distance by 40%. Once a 

lane change is completed, the original safety distance is taken into 

account again.  
 

Cooperative 

lane change 
 

Cooperative lane change (CoopLnChg): If vehicle A observes that a 

leading vehicle B on the adjacent lane wants to change to his lane A, 

then vehicle A will try to change lanes itself to the next lane in order to 

facilitate lane changing for vehicle B. For example, vehicle A would 

switch from the right to the left lane when vehicle B would like to 

switch to the left from a merging lane to the right lane.  
 

Maximum 

deceleration 

for cooper-

ative brak-

ing 
 

Maximum cooperative deceleration (CoopDecel): Specifies to what 

extent the trailing vehicle A is braking cooperatively, so as to allow a 

preceding vehicle B to change lanes into its own lane.  

 

 

Overtake 

reduced 
 

If this option is selected, vehicles immediately upstream of a reduced 

speed area may perform a free lane change  

If it is not selected, vehicles never start a free lane change directly 

upstream of a reduced speed area.  

Advanced 

merging 
 

If this option is selected, vehicle can perform lane changes earlier. Thus, 

the capacity increases and the probability that the vehicles come to a 

stop to wait for a gap decreases 

 

The lateral and lane changing behaviour of a vehicle and the parameters associated 

with it within a traffic microsimulation software, have always been a challenge to 
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calibrate. And this is mainly because even though some of them are based on high 

level observation of the behaviour of drivers in a network (such as cooperative lane 

change) not all the drivers of the network are operating according to the rule. 

Additionally, some other parameters, such as safety distance reduction factor which is 

the most used in existing literature for calibrating lane changing behaviour, are very 

hard to obtain sufficient real-world data to calibrate on. These data would have to be 

naturalistic driving data combined with radar data for a large representative sample of 

drivers in a representative sample of lane change situations. Hence, the biggest part of 

the literature focuses on car following parameters (Habtemichael and Picado-Santos, 

2013).  

 

4.3.1.2. Calibration and validation of the human driving behaviour 

 

Calibration is defined as the adjustment of the simulation model parameters to enhance 

a model’s capacity to replicate real world driving behaviour and traffic characteristics. 

As section 4.3.1.1 revealed, there is a plethora of simulation parameters which can 

potentially be adapted in order to achieve the required real-world representation. 

Figure 4.2 presents a general framework of the calibration process. The calibration 

process is an iterative process which can be considered as an optimisation problem 

which seeks to minimize the deviation between observed and corresponding simulated 

measurements.  

The process starts by a default set of parameters which are usually set by the 

microsimulation software. Subsequently, the real-world data for the simulated 

environment are input into the simulation software in various form. This will be 

analysed further in chapter 5 of this thesis. Afterwards, an initial number of simulation 

runs are performed in order to obtain a dataset which is used for comparison with the 

real-world observed measurements. The simulated measurements are compared with 

the calibration measurements and if the error is acceptable, the process is terminated, 

and the selected parameters are validated by comparing the simulated dataset with a 

validation dataset originating from the initial real-world data. If the error is not 

acceptable the calibration process is repeated with a selection of different calibration 

parameters.  
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Figure 4.2 General framework of microsimulation calibration process 

The calibration process described above is followed in the majority of the studies 

which perform an evaluation of an intervention within the simulation software from a 

traffic point of view. However, recent safety evaluation studies have emphasized that 

in order for traffic simulation to produce a reliable safety result, a two stage calibration 

process must be followed in order to calibrate both for traffic and safety parameters 

(Fan et al., 2013; Huang et al., 2013). In this way, the process described above is 

performed two times. 
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According to the above, a two-stage calibration and validation approach is followed 

for this thesis. The models developed, are calibrated for the times of data availability; 

between 11:00 and 12:00 a.m.  The number of simulation iterations (runs) needed in 

order to achieve a 95% confidence interval level for the simulation output is calculated 

using Equation ( 4.8) (Shahdah, Saccomanno and Persaud, 2015). In this equation, N 

equals the required number of simulation runs, σ equals the sample standard deviation 

of the simulation output, t is the student’s t-statistic for two-sided error of a α/2 with 

N-1 degrees of freedom and E equals the allowed error range. The result showed that 

15 simulation runs were sufficient and were conducted for each calibration and 

validation stage.  

𝑁 = (
𝑡
(1−

𝑎
2
),𝑁−1

∗ 𝜎

𝛦
 )

2

        

( 4.8) 

 

 

The first stage of the calibration of the microsimulation model in this thesis is 

conducted in order to ensure that traffic performance measures such as traffic volume, 

speed or travel time are reproduced reasonably in the simulation. The data for this 

stage of calibration come from inductive loop detectors in the study area. Following 

guidelines provided by FHWA (Dowling, Skabardonis and Alexiadis, 2004), the 

chosen measures of performance are travel time and traffic flow. According to these 

guidelines for travel time calibration, simulated values should be within a range of ± 

15% of the observed values for more than 85% of the observation pairs. On the other 

hand, in order to calibrate traffic volume values, the GEH statistic is used. The GEH 

statistic is presented in equation ( 4.9)  where E stands for the simulated traffic volume 

and V is the observed values. In order for the calibration process to be successful, the 

GEH statistic should be less than 5 for 85% of the observation pairs (simulated versus 

real world). The results of the first stage calibration are presented in section 5.2 of this 

thesis.  

𝐺𝐸𝐻 = √
(𝐸 − 𝑉)2

𝐸 + 𝑉
2

 

( 4.9) 
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Subsequently, the second stage of the calibration ensured that safety parameters were 

accurately simulated in the network. The majority of studies following two-stage 

calibration approach chose their safety measure of performance according to the 

available data. Namely,  Fan et al., (2013) and Huang et al., (2013) use the number of 

simulated conflicts as a measure of performance. However, this approach has 

limitations, as the number of real-world conflicts was calculated using manual human 

observation which can consist the characterisation of the conflicts objective. Rahman 

et al., (2018) use the standard deviation of speeds as a measure of safety performance 

to calibrate the models developed in terms of safety, however, there is no clear 

indication that standard deviation of speeds affects safety in their study.A novel 

calibration process is followed in this thesis.   

The measure of safety chosen for this thesis is the Time To Collision (TTC) (see 

equation ( 3.7))  distribution. A TTC distribution calculated from data gathered through 

Loughborough University’s instrumented vehicle is compared with TTC distributions 

calculated from vehicles in VISSIM. The two statistical distributions are compared 

using the non-parametric Mann-Whitney U test. This statistical test is deemed 

appropriate for this comparison as it does not require the assumption that the two 

distributions follow the normal distribution. The null hypothesis of this test is as 

follows: 

h0: The distributions of both populations are equal 

ha: The distributions are not equal 

The test involves the calculation of the U statistic whose distribution under the null 

hypothesis is known. According to the value of the U statistic, different conclusions 

can be drawn and reject or fail to reject the null hypothesis.  

𝑈 = 𝑛1 ∗ 𝑛2 +
𝑛2 ∗ (𝑛2 + 1)

2
− ∑ 𝑅𝑖

𝑛2

𝑖=𝑛1

 

(4.10) 

 

 

In equation (4.10) U is the Mann-Whitney U statistic, n1 the sample size of the first 

sample, n2 the size of the second sample and Ri the rank of the sample size. Same as 

above, the data collection procedure and the result of the second stage of the calibration 
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are presented in section 5.3. Finally, the overall calibration approach is presented in  

Figure 4.3. 

 

Figure 4.3 Calibration and validation approach followed in this thesis 

 

4.3.1.3. CAV driving behaviour 

 

Human driving behaviour within VISSIM was analysed in section 4.3.1.1 and was 

organised according to the type of movement of the ego-vehicle; longitudinal or lateral 

movement. However, as underlined in section 2.2.5 CAVs are complex entities which 

consist of multiple subsystems which rule their movement. Hence, the human driver 

model is not representative of CAV driving and it is deemed necessary that the 

programming of the CAV behaviour follows closely the operation of these subsystems. 

The tool used for this thesis should be able to approach and simulate the functionalities 

of CAVs and their subsystems and allow a high degree of flexibility. As presented in 

section 3.3.2 the majority of available and widespread traffic microsimulation tools 

were evaluated. It was considered that the External Driver Model API of PTV VISSIM 

provided the required interface in order to approximate the functionality of all CAV 

subsystem. Hence, this section will describe how each of these subsystems, sensing, 

perception, planning and control are simulated in the simulation software.  

In general, the CAV driving behaviour and consequently the CAV control algorithm 

is developed in the Application Programming Interface (API) of PTV VISSIM. This 

tool is also known as External Driver Model Dynamic Link Library (DLL) interface 

and provides the option to the user to replace the internal behaviour of the vehicle with 

a fully user-defined behaviour for certain types or all of the simulated vehicles. The 

API is written in C/C++ and a corresponding compiler (usually Microsoft Visual 
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Studio). The API contains specific functions which are going to be described below 

(PTV AG, 2010). 

During the simulation run, VISSIM communicates with the API code during every 

simulation step for every vehicle that the API code has been assigned. VISSIM sends 

the current state of the vehicle and its surroundings to the API and the API calculates 

the acceleration/deceleration of the vehicle as well as the lateral behaviour (lane 

changes) and sends these calculations back to VISSIM to be used in the current time 

step. The developed API can be assigned to a specific type of vehicle in the simulation 

software by selecting the corresponding option in the graphical user interface of 

VISSIM. Hence, the developed algorithm was assigned to a specific CAV-type vehicle 

which in terms of geometry was similar to a typical vehicle.  

The API contains 3 main functions which have specific roles in the API:  

Initially, the DriverModelSetValue function is described. This function is responsible 

to read the current value of the data items from VISSIM indicated by type and indexed 

by the operators index1 and index2. The value is passed to the API for calculations as 

a long (integer) value, double (decimals) value and string (text). The code makes sure 

to save the value somewhere if it is required for later calculations.  

The function must return 1 if the value is used by the API, otherwise it should return 

0. Using this function, a number of variables can be extracted from VISSIM for the 

vehicle that is controlled by the API.  

• Vehicle path 

• Simulation frequency 

• Current simulation time 

• Vehicle ID 

• Current lane  

• Odometer reading 

• Lane angle 

• Lateral position 

• Velocity 

• Acceleration 

• Vehicle geometric characteristics 

• Maximum allowed acceleration 

• Desired velocity 

• Vehicle colour 
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• Nearby vehicles ID 

• Nearby vehicles geometric characteristics 

• Active lane change 

• Nearby vehicles distance 

• Nearby vehicles velocity 

• Number of lanes in the current link 

• Desired acceleration 

The next function DriverModelGetValue, helps VISSIM retrieve values of the data 

items indicated by type and indexed by index1 and index2. The function must return 

1 if this value is to be sent to VISSIM.  

The main variables that are sent back to VISSIM from the API are the desired 

acceleration which ultimately controls the longitudinal movement of the vehicle and 

the active lane integer variable which controlled the lane changing movement of the 

vehicle.  

Last but not least the DriverModelExecuteCommand function is responsible for all the 

calculations that are being conducted by the API. This function contains three main 

commands; INIT, CREATE_DRIVER, KILL_DRIVER and MOVE_DRIVER. The 

INIT command is executed at the start of a VISSIM simulation run to initialize the 

driver model API and DriverModelSetValue and DriverModelGetValue functions are 

called simultaneously to obtain the first readings from the simulation software. 

Subsequently, the command CREATE_DRIVER is executed whenever a new vehicle 

is set into the network in VISSIM. Same as above the other two functions are called to 

get measurements for the new vehicle. The command KILL_DRIVER is called from 

VISSIM when a vehicle reaches its destination and thus leaves the network.  

Perhaps the most important function above is the MOVE_DRIVER function which 

performs all the calculations for the vehicle controlled by the API. This command is 

executed by the API during every simulation step in order to calculate the kinematic 

characteristics of the ego -vehicle namely acceleration and active lane change. Using 

this command, the algorithm outlining the functionality of the CAV subsystem is 

developed and is presented below: 

Sensing and perception subsystem 

As the literature review of the thesis identified, the sensing subsystem of a CAV uses 

a variety of vehicle sensors such as radar, lidar and camera and communication 
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equipment for raw data gathering (i.e. spatio-temporal positions, trajectory, 

kinematics, surrounding traffic characteristics, and destinations), while the perception 

subsystem translates the raw data into useful information about the vehicle and its 

surroundings. This behaviour is programmed in this thesis as follows: 

According to the latest version of PTV VISSIM, the API-controlled vehicle can scan 

surrounding traffic up to an infinite range. Each vehicle in the simulation network is 

given a specific set of coordinates (index1, index2) which are relative to the API-

controlled vehicle. Index1 indicates the lane that the nearby vehicle runs on; a value 

of zero means that the nearby vehicle was in the same lane as the API-controlled 

vehicle, a value of +1 and -1 means the nearby vehicle runs on the first lane on the left 

or right accordingly. Index 2 represents the relative longitudinal position compared to 

the API-controlled vehicle; a value of +1 and -1 means the nearby vehicle is the next 

vehicle downstream and upstream accordingly whereas +2 or -2 means the nearby 

vehicle is the second next downstream or upstream accordingly. As the sensors of 

CAVs do not have an infinite scanning range, the detection range of the API-controlled 

vehicle in this study is programmed to represent the scanning range of a typical radar 

sensor (200 m)(Continental, 2012). For a visual representation of this scanning process 

see  Figure 4.4. 
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Figure 4.4 Vehicle scanning process in PTV VISSIM EDM API 

 

The raw data gathered initially by the API include 100% accurate surrounding 

vehicles’ relative speed, distance, lane and destination data. This may not be realistic 

as real-world sensors are characterised by their operating limits where anomalies are 
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inevitable. Hasch et al., (2012) indicate that a typical distance and inaccuracy value of 

a generic long radar sensor is 0.1m and 0.1 m/s while the manual of a typical 

automotive long range radar specifies that inaccuracy values might reach 0.25m and 

0.14 m/s accordingly (Continental, 2012). There is lack of information on how this 

error in the radar measurements is distributed and there are significant differences in 

distance accuracy measurements. According to Zhou et al., (2017), a reasonable 

assumption is that the error follows a normal distribution.  

Considering the above, a first group of scenarios to be tested is defined, that can 

address a first technological challenge arising by the use of sensors in traffic 

microsimulation. Since  95% of the observations (sensor measurements in this case) 

of a normal distribution  fall within the range of two standard deviations from the mean 

(i.e.μ±2σ), the standard deviation of the sensor errors with respect to distance and 

speed measurements pairings  (i.e. distance s.d, speed s.d.) are selected; (0.05m, 0.05 

m/s), (0.1m, 0.06m/s), (0.15m, 0.07m/s) and (0.2m, 0.08m/s). These sensor error 

values are examined. Subsequently, the developed API converted the raw 

measurements into useful data that are used from the planning and control subsystem. 

The code that allowed for this to happen in the API can be found in the appendix of 

this thesis 

 

The value “error1” was then added to the measurements derived from VISSIM before 

they were used for calculations. Specifically, they were added to the net distance, the 

time gap and the desired distance to the preceding vehicle are calculated to be used by 

the planning and control subsystems. 

Planning and control subsystems 

The planning subsystem in a real-world CAV usually includes trajectory planners and 

behaviour planners, whereas the control subsystem includes the actuators and 

commands to drive the car.  

Starting with the planning subsystem, in this thesis, CAVs are programmed to follow 

a high-level route-based decision-making algorithm. The flowchart of this route-based 

decision-making algorithm is presented in Figure 4.8 and the code is presented below.  

According to this algorithm, CAVs dynamically select the travelling lanes according 
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to their path planning. For example, if according to the data gathered from VISSIM, 

the destination of the API-controlled vehicle is one of the two next off-ramps of the 

motorway, the CAVs chose to drive in the outermost lane of the motorway. Otherwise, 

the CAV can select between the rest of the lanes of the motorway. In this case, if the 

API-controlled vehicle is, for example, driving in the middle lane of a 3-lane motorway 

and the preceding vehicle is not a CAV and a leading CAV is identified in the 

outermost lane, a lane change is initiated in order to form a vehicle platoon in the 

outermost lane (see Figure 4.5).  Adjacent CAVs could be identified from the API-

controlled vehicle due to a user-defined attribute programmed in the C++ code.  

This high-level route-choice plan results in even traffic flow distribution across lanes 

and formulation of CAV platoons with similar destinations. Consequently, platoon 

dissolving happens less frequently and ultimately less disruptions on the traffic flow 

of the motorway are caused by last minute lane changes.  
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Figure 4.5 Step-by-step platoon formulation through the proposed CAV control 

algorithm  

 

In addition to the lane changes initiated due to the route-based decision-making 

algorithm, CAVs can perform a lane change in order to merge in and diverge from the 



96 

 

motorway. A lane changing manoeuvre is initiated through the control algorithm of 

the designed API, if the predefined time gap in the target lane was found. For all the 

lane changes described above, the required time gap that is set is 0.6 seconds from the 

vehicle upstream and downstream in the target lane. This value was set based on the 

car following distance of CAVs discussed below and relevant literature (Chen et al., 

2017). However, it must be emphasized that there is no clear recommendation in the 

literature with regards to the optimal gap acceptance for CAV lane changing. 

Surrounding traffic (both CAVs and human-driven vehicles) were programmed to 

facilitate the lane change process by decelerating if a CAV with intention to change 

lane is identified in an adjacent lane. The lane changing parameters such as lane angle 

and number of target lane, are controlled by VISSIM. 

Once the CAV is driving in the lane defined by the route planner, a longitudinal 

constant time gap control algorithm controls the acceleration and as a result, the speed 

of the vehicle. The high-level result of the proposed constant time gap algorithm is that 

CAVs are able to drive closer to their preceding vehicles compared to human drivers 

with less oscillation in the distance kept, ultimately forming vehicle platoons with 

other CAVs. The accepted car-following time-gap chosen for this study was 0.6 

seconds, which is in-line with relevant literature (e.g. ((ATKINS, 2016b; Rahman and 

Abdel-Aty, 2018; Stanek et al., 2018)). This time-gap is achieved by calculating the 

acceleration or deceleration of each of the dll controlled vehicles, for each simulation 

time step, as follows. The acceleration or deceleration of a vehicle in VISSIM during 

each time step is defined by equation ( 4.11). 

𝑎 =
𝛥𝜐

𝛥𝑡  
 

( 4.11) 

 

                           

where Δυ is the difference between current speed and target speed and Δt is the time 

step of the simulation, in this case 0.1 sec. Assuming that the dll controlled vehicle is 

not following the preceding vehicle with the desired time gap (d) - a situation which 

is graphically described in Figure 4.6 -  the distance travelled by both cars (x1,x2) and 

the time gap during time step t and time step t + 0.1 can be defined by equations ( 

4.12), ( 4.13) and ( 4.14). 
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𝑥1 = 𝑢1 ∗ 𝑡 +
1

2
∗ 𝑎1 ∗ 𝑡

2 
( 4.12) 

 

𝑥2 = 𝑢2 ∗ 𝑡 +
1

2
∗ 𝑎2 ∗ 𝑡

2             
( 4.13) 

 

𝑑 = 𝑥2 + 𝐷 − 𝑥1                                       ( 4.14) 

 

By subtracting equation ( 4.12) from equation ( 4.13) and taking into account that the 

target final speed  𝑢1
′  of the dll-controlled vehicle is the speed of the preceding vehicle 

(in order to reach the predefined time gap having the same speed as the preceding 

vehicle and thus form the platoon), equation ( 4.15) and subsequently ( 4.16) are 

calculated, assuming that the initial speed of the leading vehicle u2, and the speed of 

the vehicle at the back, u1 are not equal. In equation ( 4.16) , 𝑎1
′ represents the 

acceleration of the CAV in order to achieve the desired time gap. 

𝑡 =
2 ∗ (𝑥2 − 𝑥1)

𝑢2 − 𝑢1
 

( 4.15) 

 

𝑎1
′
=

(𝑢2 − 𝑢1)
2

2 ∗ (𝑥2 − 𝑥1)
 

( 4.16) 

 

 

Figure 4.6 Desired and actual distance diagram for ego vehicle acceleration/deceleration 

calculation 

All vehicles controlled by the API continuously adjust their acceleration according to 

equation ( 4.16). It must be noted that the aforementioned acceleration/deceleration 

calculation only starts when the preceding vehicle in the same lane as the dll-controlled 

vehicle is a CAV vehicle. Otherwise, the CAV applied the same rule but aiming to 

keep a time gap according to the real-world human data. In this study, the type of 

preceding vehicle and the exact measurements of vehicle velocity, acceleration, 

deceleration and distance are directly communicated between the ego-vehicle and the 
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preceding vehicle through the simulation software. In the real world, this would 

happen through a communication channel between the two vehicles. Hence, it can be 

assumed that these two vehicles are connected to each other and ultimately form a 

vehicle platoon. Finally, the upper limit of the acceleration and deceleration is set 

through the graphical user interface of PTV VISSIM to 1.5 m/sec2 and 2.5 m/sec2 

accordingly, following recommendations from Talepbour et al. (2016).  The platoons 

which were formed in VISSIM a result of the process described above can be observed 

in Figure 4.7. 

 

 

Figure 4.7 A vehicle platoon as it appeared in VISSIM 

 

As mentioned above, following equation ( 4.16) vehicles were able to form vehicle 

platoons. This thesis evaluates the impact of platoon size on motorway safety as it was 

defined as an operational and strategical challenge arising from CATS in the literature 

review chapter.  The inter-platoon time gap was set to 3 seconds according to Varaiya, 

(1993), in order to allow conventional traffic to navigate between platoons. The 

platoon sizes tested are 3, 5, 7, and 9 vehicles for the different market penetration rates 

and the safety results are compared to the baseline scenario (no platoon size limit).  
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Figure 4.8 Flowchart of the CAV route-based decision making algorithms 

 

Finally, with the CAV driving behaviour being described, it was deemed necessary to 

evaluate the safety impact of CAVs on various traffic conditions. Hence a number of 

scenarios were formulated based on the traffic flow measurements extracted for each 

different weekday due to real-world data limitations explained in Chapter 5. It must be 

noted that all the aforementioned investigated scenarios are ran, ceteris paribus, across 

different market penetration rates. That means that when the safety impact of sensor 

error is investigated, the platoon size is not considered in the experiment and so on. 

The tested scenarios are summarised in Table 4.4. It must be emphasized that the 

number of simulation runs performed for each scenario was 15 according to equation 

( 4.8) (see section 4.3.1.2).  
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Table 4.4 CAV Simulation Scenarios in this thesis 

Scenario 

number 

CAV 

Market 

Penetration 

Rates tested 

Sensor error 
Platoon 

size 

(vehicles) 

Average 

Traffic 

flow 

(veh/h) 

Route-

Based 

Decision-

making 

algorithm 

Distance  

error 

s.d. (m) 

Speed 

error 

s.d. (m/s) 

1 to 5 
0, 25, 50, 75 

and 100% 
N/A N/A N/A 

1673 

(Monday) 
No 

6 to 10 
0, 25, 50, 75 

and 100% 
N/A N/A N/A 

1495 

(Tuesday) 
No 

11 to 15 
0, 25, 50, 75 

and 100% 
N/A N/A N/A 

1545 

(Wednesda

y) 

No 

16 to 20 
0, 25, 50, 75 

and 100% 
N/A N/A N/A 

1568 

(Thursday) 
No 

21 to 25 
0, 25, 50, 75 

and 100% 
N/A N/A N/A 

2049 

(Friday) 
No 

26 to 29 
25, 50, 75 

and 100% 
N/A N/A N/A 

1545 

(Wednesda

y) 

Yes 

30 to 33 
25, 50, 75 

and 100% 
0.05 0.05 N/A 

1545 

(Wednesda

y) 

No 

34 to 37 
25, 50, 75 

and 100% 
0.10 0.06 N/A 

1545 

(Wednesda

y) 

No 

38 to 41 
25, 50, 75 

and 100% 
0.15 0.07 N/A 

1545 

(Wednesda

y) 

No 

42 to 45 
25, 50, 75 

and 100% 
0.20 0.08 N/A 

1545 

(Wednesda

y) 

No 

46 to 49 
25, 50, 75 

and 100% 
N/A N/A 3 

1545 

(Wednesda

y) 

No 

50 to 53 
25, 50, 75 

and 100% 
N/A N/A 5 

1545 

(Wednesda

y) 

No 

54 to 57 
25, 50, 75 

and 100% 
N/A N/A 7 

1545 

(Wednesda

y) 

No 

58 to 61 
25, 50, 75 

and 100% 
N/A N/A 9 

1545 

(Wednesda

y) 

No 
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4.3.2  Conflict identification process 

 

Since the participating simulation vehicles, algorithms and scenarios are defined 

above, the conflict identification process in order to evaluate the safety impact of the 

developed CAV algorithms remain to be discussed.  

Section 3.4 concluded that a widespread approach for safety evaluation has been the 

identification of conflicts from traffic microsimulation through a post processing 

software developed by Federal Highway Administration of the United States, the 

Surrogate Safety Assessment Model (SSAM) (Gettman et al., 2008; Huang et al., 

2013; Morando, Truong and Vu, 2017; Katrakazas, Quddus and Chen, 2018; Rahman 

et al., 2019a).  

VISSIM is able to produce binary trajectory files which contain the information about 

the trajectory followed by every vehicle during a single simulation run. The user needs 

to select the corresponding SSAM option within the graphical user interface of SSAM. 

The data contained in the trajectory file are raw (unprocessed) and contain information 

about the geographical location of all vehicles at every simulation step along with 

vehicle kinematics data such as velocity, acceleration and heading (direction of 

movement). This trajectory file cannot be interpreted by a normal text editor as it is in 

binary form.  

SSAM can read the trajectory files produced by VISSIM and calculates surrogate 

safety measures corresponding to each vehicle to vehicle interaction that it detects and 

determines whether the interaction satisfies the criteria to be categorised as an official 

conflict.  The software uses two main threshold values for surrogate measures of safety 

to delineate which vehicle interactions are classified as conflicts; Time to Collision 

(TTC) and Post-encroachment time (PET). These two surrogate safety measures have 

been described in detail in section 3.4. The default threshold values of SSAM are 1.5 

seconds for TTC which is suggested by existing literature for severe conflict situations 

(Lu, Pirinccioglu and Pernia, 2005; Li et al., 2017a) and 5 seconds for PET which is 

originally suggested by (Hydén, 1987). The same threshold values were used in this 

thesis.  

SSAM scans one simulation step at a time in order to identify vehicle interactions were 

these thresholds are violated. In addition to the thresholds, several algorithms are 
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applied in order to confirm the occurrence of a conflict. Initially, SSAM divides the 

network area which is given by the first line of the trajectory file into a grid to cover 

the entire analysis area. Each square zone of the grid is 15.25 by 15.25 meters. By 

doing this, the software reduces considerably the number of vehicle to vehicle 

comparisons that are necessary to identify potential conflicts.  

The next step is to analyse a single time step of the trajectory file. During this step, for 

each vehicle in the analysis area, SSAM projects the vehicle’s expected location, at 

simulation time step intervals, as a function of its current velocity if it continues 

traveling along its future path for up to the duration of the calculated TTC value (see 

Figure 4.9). The vehicles path is discovered by SSAM by looking ahead over the next 

10 seconds of trajectory data for this vehicle.   

 

Figure 4.9 Illustration of projected vehicle path (Gettman et al., 2008) 

 

The exact process of the vehicle trajectory projection is taking place under the 

assumptions that; 

a) each vehicle is defined as a rectangle 

b) the distance that a vehicle will travel is calculated by using the maximum TTC 

value that was identified for the conflict under investigation according to 

equation ( 4.17), where 𝑉1 is the speed of the vehicle under consideration 

 

c) The location of the vehicle in the next time step (x2,y2) is calculated based on 

the distance from current location to that location according to equation ( 4.18) 

(see Figure 4.10)  

𝐷𝐼𝑆1 = 𝑉1 ∗ 𝑚𝑎𝑥𝑇𝑇𝐶 ( 4.17) 
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𝐷𝐼𝑆2 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 ( 4.18) 

 

 

Figure 4.10 DIS1 and DIS2 according to SSAM (Gettman et al., 2008) 

 

d) If DIS2 is less than DIS1 then DIS2 is subtracted from DIS1 and the previous 

two calculations are repeated with DIS1=DIS1-DIS2 

Last but not least, SSAM calculates the rectangular perimeter describing the location 

and heading of the vehicle at its projected future position. Then this rectangular area 

is placed on the grid that is described above in order to identify which zones of the 

grid at least some portion of the vehicle will occupy. Subsequently the vehicle is added 

to the “occupants” list of those areas. Any time a vehicle is added to an “occupant” list 

that currently contains one or more vehicles the software checks for potential vehicle 

overlap in order to identify a future collision. It is possible that due to the dimensions 

of the grid zones two vehicles may partially occupy the same zone without 

overlapping. However, two overlapping vehicles indicate clearly that a future collision 

is detected for this pair of vehicles and therefore a potential conflict is identified.  

Using the process above, SSAM gathers all conflicts detected in a table and computes 

and records several variables for each conflict. These variables contain measures such 

as the TTC and PET for the conflict, the time that the minimum TTC and PET 

occurred, speeds and acceleration or deceleration rates of the participating vehicles at 

the minimum TTC time, identification number and heading of the conflicting vehicles, 

number of link (road) and lane  where the conflict occured, exact geographical location 
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of the conflict and finally the conflict angle as presented in Figure 4.11 as well as the 

conflict type.  

 

Figure 4.11 Conflict angle as perceived by SSAM (Gettman et al., 2008) 

 

More specifically, the conflict type variable describes whether the conflict is a rear-

end, lane changing or crossing event. For this thesis, only lane changing and rear-end 

conflicts are considered since the evaluated road network is a motorway. The type of 

conflict is identified by SSAM using the angle of the conflict. A conflict is classified 

as rear-end if |𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝑛𝑔𝑙𝑒| < 30° , a crossing conflict if  |𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐴𝑛𝑔𝑙𝑒| > 85°, 

else it is classified as a lane changing conflict. The microsimulation software in most 

cases can provide lane and link information as well as lane changing information for 

both vehicles which can help identify the type of the conflict directly. For example, if 

a vehicle at the start of the conflict event is driving in a certain lane and at the end of 

the conflict even it is driving in a different lane the conflict is classified as a lane-

changing conflict.  

Finally, in order to facilitate the description of the conflict count statistical modelling, 

the formulation of the traffic conflict dataset is described below; Once SSAM 

calculates the number of conflicts per simulation run, the conflicts in this thesis are 

grouped according to their geographical location. The geographical location is 

delineated by the coordinates of where the minimum TTC is documented for the 
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conflict. Afterwards, the locations of the conflicts are assigned to specific segments of 

the simulated motorway environment. The segments are defined by two consecutive 

data collection points in PTV VISSIM (see Figure 4.12) which operate identically to 

inductive loop detectors, collecting vehicle-level traffic data measurements such as 

speed, acceleration, occupancy and flow. The data from these simulation data 

collection points were combined with the corresponding number of conflicts hence a 

dataset was created where one observation contained information about the 

identification number of the segment, the corresponding number of conflicts which 

occurred in the 15 runs of the simulation, the CAV market penetration rate, the traffic 

flow of the segment, the standard deviation of speeds between lanes and within the 

same lane, the curvature of the segment counted as spinal points in the simulation etc.  

The flowchart of the formulation process of the traffic conflict dataset is presented in 

Figure 4.13.   The dataset is described in section 5.4 in detail.  

Segment 1 - 400 m

Data collection points

Segment 2 - 400 m

 

Figure 4.12 Data collection points and segments to facilitate traffic conflict analysis 
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Figure 4.13 Flowchart of the conflict dataset formulation process 

 

4.3.3 Statistical modelling 

 

Modelling conflicts is a task that one can relate to modelling accidents which has been 

widely applied in existing literature (Lord and Mannering, 2010; Imprialou et al., 

2016). Traffic conflicts are discrete events that happen in a motorway and similarly to 

accidents, they are non-negative integer values. This type of data is widely known as 

count data and they are characterised by low mean values and heteroscedasticity. Their 

distributions usually are positively skewed and are kurtotic. Hence, the most common 

statistical approaches such as Ordinary Linear Regression models are often not 

appropriate for their modelling as the nature of the data may violate the underlying 

assumptions of the model regarding biased residuals. This consequently can lead to 

misleading results and more specifically, can paradoxically lead to the calculation of 
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negative predicted values. The following sections describe the statistical models that 

were employed for the statistical analysis part of the thesis.  

4.3.1.4.Negative binomial regression models 

In order to tackle the aforementioned shortcomings such as the low mean values, 

negative binomial regression is used in this thesis. Negative binomial regression is 

similar to ordinary linear regression except that the dependent variable (Y) (in this case 

the number of conflicts) is an observed count that follows the negative binomial 

distribution 𝑌~𝑁𝐵(𝑟, 𝑝) (Hilbe, 2012). The negative binomial distribution is also 

known as a generalisation of the Poisson distribution by including a Gamma (Γ(n) = 

(n-1)!) noise variable which has a mean of 1 and a scale parameter of v. This mixture 

is the only way in which the negative binomial probability distribution function can be 

defined. The probability distribution function of the negative binomial distribution is 

given by equation ( 4.19) however it can be found in several forms: 

𝑓(𝑦|𝜇, 𝛼) =
(𝑦𝑖 +

1
𝑎)!

𝑦𝑖! (
1

𝑎 − 1) !
∗ (

1

1 + 𝑎𝜇𝑖
)
1
𝑎 ∗ (

𝑎𝜇𝑖
1 + 𝛼𝜇𝜄

)𝑦𝑖 

( 4.19) 

 

  

Where y is the dependent variable, α=1/r the negative binomial heterogeneity or 

overdispersion parameter, 𝜇𝑖 = 𝑡𝑖 ∗ 𝜇 where μ is the mean incident rate of y per unit 

of exposure 𝑡𝑖. Exposure may be time, space, distance, area, volume or population size. 

In this thesis, traffic flow of each segment will be considered as the exposure variable. 

In the negative binomial regression, the mean of y is determined by the exposure rate 

and a set of explanatory variables. The expression relating the quantities is: 

𝜇𝜄 = exp (ln(𝑡𝑖) + 𝛽1 ∗ 𝜒1𝜄 + 𝛽2 ∗ 𝜒2𝜄 +⋯+ 𝛽𝑛 ∗ 𝜒𝑛𝜄) ( 4.20) 

 

Often,  𝜒1 ≡ 1 in which case 𝛽1 is called the intercept. The regression coefficients 

𝛽1, 𝛽2, … , 𝛽𝑛 are unknown and are estimated from the data set. They can be estimated 

either with a frequentist approach using the maximum likelihood estimation (MLE) 

method or with a Bayesian approach using the Markov Chains Monte Carlo (MCMC) 

algorithm.  
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Negative binomial regression has been used in the literature to model accidents widely 

(Kim and Washington, 2006; Daniels et al., 2010; Shankar, Mannering and Barfield, 

2013). However, it has been proven to be problematic when the data used for its 

calculation has an excess number of zeros.  

4.3.1.5. Hierarchical models 

Many kinds of data have a hierarchical, nested or clustered structure. The most 

common example given in the literature for hierarchically structured data is a dataset 

containing the grades of students within a geographic region that belong to different 

schools. It is observed that there are similarities in the grade of students coming from 

the same school. To generalise, this means that similarities can be observed in data 

belonging to the same group which is formally called a level. In the example given 

above, the student observations can be called level 1 and the schools can be called  

level 2. Hierarchical data can contain more than 2 levels, however, the most common 

structure is a 2 level structure (Goldstein, 2011). A 2-level model is used for this thesis, 

hence the following paragraphs describe the formulation of the 2-level model.    

Data that have a hierarchical structure can be modelled using hierarchical models (also 

known as multilevel models, mixed models or random-effect models). Hierarchical 

models are statistical models whose parameters vary at more than one level. The level 

1 equation of a two level linear hierarchical model is presented below (Goldstein, 

2011): 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝜒𝑖𝑗 + 𝑒𝑖𝑗             𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) ( 4.21) 

 

• where i indicates the individual case, j the group, 

•  𝑌𝑖𝑗 refers to the score on the dependent variable for an individual observation 

at level1 

• 𝛽0𝑗 the intercept of the dependent variable in group j 

• 𝛽1𝑗 the slope coefficient for the relationship in group j between the level 1 

predictor and the dependent variable 

• 𝑒𝑖𝑗 the random errors of prediction for the level 1 equation  

The level two equations of the statistical model of are derived by letting 𝛽0𝑗 and 𝛽1𝑗 

become random variables. Therefore: 



109 

 

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 ( 4.22) 

𝛽1𝑗 = 𝛽1 + 𝑢1𝑗 ( 4.23) 

 

Where 𝑢0𝑗 and 𝑢1𝑗 are now random variables with parameters: 

𝐸(𝑢0𝑗) = 𝐸(𝑢1𝑗) = 0  and 𝑣𝑎𝑟(𝑢0𝑗) =  𝜎𝑢0
2 , 𝑣𝑎𝑟(𝑢1𝑗) =  𝜎𝑢1

2 , 𝑐𝑜𝑣(𝑢0𝑗 , 𝑢1𝑗  ) =

 𝜎𝑢01, 

By using equations ( 4.22) and ( 4.23) equation ( 4.21) can be re-written as:  

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑗𝜒𝑖𝑗 + (𝑢0𝑗 + 𝑢1𝑗𝑥𝑖𝑗 + 𝑒0𝑖𝑗) ( 4.24) 

 

Equation (32) expresses the dependent variable 𝑌𝑖𝑗 as the sum of a fixed part and 

random part (within the brackets).  

Before performing a multilevel model analysis, several decisions must be made. 

Initially one must decide on which explanatory independent variables are going to be 

included in the analysis and secondly, whether the parameters of the independent 

variables are going to be fixed or random (Goldstein, 2011). Fixed parameters are 

considered to be constant across all groups of the dependent variable whereas random 

parameters have a different value for each of the groups.  

There are three types of hierarchical models, namely random intercepts, random slopes 

and random intercepts and slopes model. In random intercept model is a model where 

only the intercepts (𝑢0𝑗 in equation (32)) are allowed to vary across groups and 

therefore the calculation of the dependent variable happens by the intercept that 

correspond to each group. In this type of model, the slopes are fixed. Random slopes 

model is a model in which slopes are allowed to vary, and therefore the slopes are 

different across groups. The intercepts are not allowed to vary in this type of model. 

Finally, random slopes and intercept model is a model where both intercepts and slopes 

are allowed to vary across groups. Likely, this type of model is the most realistic model 

(Goldstein, 2011).  

In order for the best model to be identified one should first attempt to identify the 

presence of similarities among observations of the same groups. One method to do that 

is by applying the Intraclass Correlation Coefficient (ICC) which measures the 
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correlation between observations within a given cluster. The equation of the ICC is 

given below.  

 

𝐼𝐶𝐶 =
𝜎𝑢
2

𝜎𝑢2 + 𝜎𝑒2
 

( 4.25) 

 

where 𝜎𝑢  is the variance of the observations between different groups and 𝜎𝑒  the 

variance of the observations between the same group. Finally, in order to identify 

whether the random effect is significant or not the chi-squared likelihood ratio test 

which assesses the difference between models can be applied. The likelihood ratio test 

can be used for model building when examining models in which effects are allowed 

to vary. The statistics of the likelihood ratio test is described in equation ( 4.26) where 

LL are the loglikelihood values of the models that are being compared. 

𝐿𝑅 = 2 × (𝐿𝐿1 − LL2) ( 4.26) 

 

where LL1 and LL1 are the loglikelihood values of the two compared models.The null 

hypothesis of the test is that there are no significant differences in the two models that 

are being compared and hence the alternative hypothesis is the opposite. The value 

calculated by equation ( 4.26) is compared with a value obtained from the chi-squared 

distribution table with degrees of freedom equal to the number of extra parameters 

included in the more complex model.  

The data in this thesis are organised in 2 levels as the ICC calculation (0.88) indicated 

that there are similarities in conflicts arising from the same segment. Namely, the first 

level includes the CAV market penetration rate and the second level includes the 

segment identification number. This hierarchy was decided by observing the ICC 

coefficient described above and using common sense. In this manner, it is assumed 

that there are similarities in the conflicts number arising from the same segment. 

Finally, because of the reasons described in section 4.3.1.4, a negative binomial 

regression model is used in combination with the multilevel model. The final equation 

of random slope and intercept negative binomial model is presented in equation ( 4.27) 

by combining equations ( 4.20) and ( 4.24).  

ln (𝜇𝑖𝑗) = ln(𝑡𝑖) + ( 𝛽0 + 𝛽1𝑗𝜒𝑖𝑗 + (𝑢0𝑗 + 𝑢1𝑗𝑥𝑖𝑗 + 𝑒0𝑖𝑗)) ( 4.27) 
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4.3.1.6. Spatial correlation 

 

In all the models presented in the two previous sections it is assumed that the 

observations of the dependent variable are spatially independent. To put some context, 

a similar assumption to this study would be that the traffic conflict count of a particular 

segment of the motorway is independent of the traffic conflict count of neighbouring 

segments. However, this statement might be incorrect hence, further investigation is 

needed.  

This issue is widely known as spatial autocorrelation and a number of studies have 

emphasized the importance of including a spatial autoregressive model into the 

analysis when analysing spatial data (Quddus, 2008; Lord and Mannering, 2010; 

Washington, Karlaftis and Mannering, 2010;  Imprialou et al., 2016). The formulation 

of the equation of a traditional econometric spatial autoregressive model is given 

below: 

𝑍𝑖 = 𝜌𝑊𝑍𝑖 + 𝛽𝑋𝑖 + 𝜀𝑖 ( 4.28) 

 

where Z is a N x 1 vector of cross-sectional dependent variable, WZ is a spatially 

lagged dependent variable for spatial weights matrix W, ρ the scalar for spatial lag 

coefficient, β is the vector of parameters to be estimated, Χ is the matrix of explanatory 

variables and ε is a N x 1 vector of a normally distributed error terms with  zero mean 

and variance 𝜎2. The spatial lag WZ can be considered as a spatially weighted average 

of the dependent variable at neighbouring spatial units.  

The aforementioned model does not excel at modelling non-negative count data. 

Hence, in order to combine the spatial autoregressive model with the two 

aforementioned models (negative binomial and hierarchical) a Bayesian approach 

using the Markov Chain Monte Carlo (MCMC) method (Gelman et al., 2013) is used. 

Bayesian analysis differs from traditional frequentist statistical approach mainly due 

to the estimation method used to calculate the coefficients. In Bayesian analysis, the 

coefficients are assumed to follow a distribution which is based on prior knowledge. 

This prior knowledge is the basis for the start of the calculation of the coefficients of 
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the model until the model converges to the “real” values of the coefficients using the 

MCMC method. Spatial autocorrelation is often accompanied by uncorrelated random 

effects which are caused due to unobserved heterogeneity in the dataset. The 

formulation of a Bayesian hierarchical negative binomial model is presented below 

(Besag, 1974; Quddus, 2008): 

where r,p are the parameters of the negative binomial distribution,  𝑆𝐶𝑖 the random 

spatial effects, 𝑈𝐻𝑖 the unobserved heterogeneity (uncorrelated random effects). In 

equation ( 4.29) the prior distributions for  𝑏0 and b’s and UH can be set according to 

guidelines found Quddus, (2013). All b’s follow a highly non-informative normal 

distribution with zero mean and UH is assumed to follow a normal distribution 

N(0,𝜏𝑈𝐻
2 ) where τ is the precision (i.e. 1/variance) with a prior gamma distribution 

Ga(0.5, 0.0005).   The effect of spatial correlation is included as a conditional auto-

regressive prior (CAR) with N(𝑆𝑖̅, 𝜏𝑖
2) with 𝑆𝑖̅, 𝜏𝑖

2 being defined by the following 

equations:  

𝑆𝑖̅ = 
∑ 𝑆𝐶𝑗 𝑗

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗
 

( 4.32) 

 

𝜏𝑖
2 =

𝑡𝑠𝑐
2

∑ 𝑤𝑖𝑗ℎ
 

( 4.33) 

  

With w being defined above and 𝑡𝑠𝑐
2  assumed to follow a gamma prior distribution 

with Ga (0.5, 0.0005).  

It must be emphasized that even though spatial autocorrelation is a realistic usual 

potential issue when dealing with accident or conflict data, its appropriateness though 

for this thesis needs to be examined thoroughly. In order to do this, the Moran’s I 

statistical test is employed, which tests the presence of spatial correlation in the dataset. 

The formulation of the equation of the Moran’s I statistic which will decide the 

presence of spatial autocorrelation in the dataset is described in the corresponding 

statistical results section. In order to evaluate the fit of the models developed, the 

ln(𝜇𝑖) = ln(𝑡𝑖) + (𝑏0 + 𝑏𝑋𝑖) + 𝑆𝐶𝑖 + 𝑈𝐻𝑖 ( 4.29) 

𝑌𝑖~𝑁𝐵(𝑟, 𝑝) ( 4.30) 

𝜇 =
𝑟(1 − 𝑝)

𝑝
 

( 4.31) 
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goodness of fit statistic Deviance Information Criterion is employed which is used to 

compare the fit of models estimated on a full Bayesian inference approach. The best 

fitting model is the most parsimonious – a model that accomplishes a good level of 

explanation of the data using the least explanatory variables possible. This model will 

have the smallest DIC value among all the possible models (Spiegelhalter, Best and 

Carlin, 2002). The mathematical formulation describing the DIC is presented below: 

 

𝐷𝐼𝐶 = 𝐷(𝜃̅) + 2𝑝𝐷 = 𝐷̅ + 𝑝𝐷 ( 4.34) 

 

Where  𝐷(𝜃̅) is the deviance of the θ posterior means of the model parameters, 𝑝𝐷 the 

effective number of parameters in the model and 𝐷̅ the posterior mean of the deviance, 

𝐷(𝜃̅).   

4.4 Summary 

 

This chapter initially presented the objectives of this thesis and the corresponding 

chapters of the thesis which address them. Subsequently, the algorithmic, statistical 

and simulation methods employed in the thesis in order to address the aforementioned 

objectives were presented. 

The traffic microsimulation section of this chapter presented the major elements that 

were the main actors of the simulation framework that is developed. More specifically, 

the human driving behaviour according to VISSIM was described in depth in order to 

obtain a wider understanding and facilitate the interpretation of the CAV-human 

driven vehicle interactions. Following, the developed CAV control algorithm was 

described for the first time in this section. More specifically, the functionality of the 

API which was developed was presented with relation to the subsystems which rule 

the operation of a real-world CAV. Following, this section also presented the scenarios 

that were tested in this thesis which were various traffic flow scenarios, vehicle platoon 

size scenarios, sensor error rate scenarios, and scenarios investigating the effectiveness 

of the route-based decision-making CAV algorithm.  

Afterwards, the functionality of the post-processing conflict identification software 

SSAM was described alongside with the algorithms that control the process. In order 
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to obtain a wider understanding of the challenges arising from the traffic conflict 

dataset which was analysed in the next section, the flowchart of the formulation of the 

traffic conflict dataset was described.  

Last but not least, the statistical models that were employed in order to model the 

traffic conflict dataset were presented. In summary, most accident and consequently 

conflict datasets are modelled using negative binomial regression due to low sample 

means. In order to take into account similarities arising from the occurrence of traffic 

conflicts within the same section of the motorway, multi-level statistical modelling 

was described. Finally, the use of a spatial autocorrelation term to account for 

similarities in the occurrence of traffic conflicts between neighbouring motorway 

sections was presented. The overall methodological flowchart described in this chapter 

is presented below:  
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Figure 4.14 Overall methodological flowchart followed in the present thesis 
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5 Data description and Pre-processing 

 

In order for traffic microsimulation to provide a reliable result, a calibration and 

validation process is required. Section 4.3.1.2 underlined that the calibration and 

validation of a traffic microsimulation model relies on real-world data which are 

compared with corresponding simulated data. This comparison results on the alteration 

of the parameters of the simulation model in order for the simulated data to be as close 

as possible to the real-world data. The real-world motorway and naturalistic driving 

radar data used for this thesis are presented in this chapter. Following, the motorway 

study area is presented.  

Finally, this chapter provides a detailed description of the traffic conflict data set which 

is created for statistical modelling purposes. The flowchart of the formulation of this 

dataset was presented in section 4.3.2. 

 

5.1 Study Area 

 

This PhD focuses on assessing the safety impact of CAVs on motorways and the 

developed CAV driving model as well as the human driver model are developed and 

selected accordingly based on this focus. A section of the M1 motorway is chosen as 

a testbed to apply the aforementioned models. The M1 motorway is part of the 

Strategic Road Network (SRN) which is operated by the government-owned company 

Highways England. The entire M1 motorway connects London to Leeds in the United 

Kingdom. The total length of the M1 motorway is 193.5 miles. For the purpose of this 

thesis, a part of the M1 motorway between junctions 21 and 19 were selected as a study 

area. Junction 21 of the M1 motorway is located southwest of Leicester and Junction 

19 is located southeast of Rugby in the United Kingdom. The GPS coordinates for 

junctions 21 and 19 are (52°36'01.2"N 1°11'41.9"W) and (52°24'16.3"N 1°10'36.1"W) 

accordingly. The study area is shown in Figure 5.1.  
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Figure 5.1 Motorway network study area 

 

Several reasons led to the choice of this specific segment: 

• Constant number of lanes: In order to avoid possible bugs and problems in the 

simulation software related to changes in the number of simulated lanes, the 

number of lanes of the segment chosen was decided to be constant. The selected 

segment of M1 between junctions 19 and 21 contained 3 lanes throughout its 

whole length;  
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• Location: The selected section was close to Loughborough University were this 

PhD thesis was written. Since the required traffic and safety surrogate measure 

data have to be gathered frequently, this specific segment of M1 was a convenient 

location due to the proximity to the University;  

• Availability of historical data: Historical, minute-level traffic data including 

average speed, headway, traffic flow and occupancy were available for this 

specific segment and no faulty inductive loop detectors were identified; 

• Favourable traffic conditions: The segment of the M1 chosen, had a stable 

Annual Average Daily Traffic flow during the simulation times (11:00-12:00 

a.m.);  

• Stable pavement condition: No roadworks was conducted in the selected road 

segments during the data collection periods (May 2017 – source: Highways 

England); 

• Stable safety performance: After exploring and mining STATS19 accident data  

from the UK Department for Transport,  it was proven that the number of 

accidents happening in the selected road segments remained relatively constant 

during the period 2012 to 2014 (see Table 5.1). 

Table 5.1 Number of accidents per year in the selected M1 segment (source: Department 

for Transport Stats 19 data) 

Year Number of 

accidents 

Accident 

Severity 1 

Accident 

Severity 2 

Accident 

Severity 3 

2012 32 0 3 29 

2013 31 1 1 29 

2014 27 2 3 22 

 

Initially, by using an aerial photograph provided by VISSIM, both directions 

Northbound and Southbound of the road network were drawn. Lane width was set to 

represent the real-world measurement (3.5 meters) and the length of links, merging 

and diverging areas were drawn according to the aerial photograph (see Figure 5.2). 

More specifically, the merging and diverging areas were designed following 

guidelines from literature specialising in motorway merge areas (e.g. (Fan et al., 2013; 

Whaley, 2016)). Figure 5.3 presents a more detailed picture of the merging/diverging 

area  at junction 19 versus how it appears in the real world.   The total length of the 

mainline corridor designed was 44.27 km, contained eight on and off-ramps in total 
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and six vehicle input points. The model designed, did not contain the roundabout at 

Junction 20. 

 

Figure 5.2 The motorway study area as it appeared in the simulation software VISSIM  

 

 

Figure 5.3 A detail of a merging/diverging area of the simulated network 

The company responsible for the operation of the M1 motorway has installed several 

inductive loop detectors (IDL) along the segment of the motorway. These inductive 
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loop detectors are installed at regular space intervals of approximately 400 to 500m 

and they record traffic data. The outline of the network along with its main elements 

as it appeared in VISSIM is presented below:  

 

 

Figure 5.4 Outline of the simulated motorway segment 

 

5.1.1  Limitations of the study area 

 

Even though the simulated network is drawn in the traffic microsimulation software 

with the assistance of an aerial photo and following guidelines for literature which 

specialises in simulation network design, it will always be a simulated network which 

cannot replace or represent the real network one hundred percent.  

Additionally, the study area included a section of the M1 motorway which had a 

constant number of lanes throughout the whole length. Even though this was selected 

for simplification and programming purposes, the effect of the sudden change in the 

number of lanes in the motorway could be an interesting research topic.  

Finally, even though the study area contained 3 junctions it must be emphasized that 

no motorway weaving sections (a section of the motorway with length of 100 to 3000 

meters connecting a pair of closely spaced junctions) neither the corresponding 

roundabout of Junction 20 which connects the merging and diverging areas were 

modelled in this thesis.  
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5.2 Data from Inductive Loop Detectors 

 

Secondary inductive loop detector data are used for this study. An inductive loop 

detector is an electromagnetic detection system which uses a magnet to induce an 

electric current in a nearby wire. These detectors are installed in the pavement on the 

motorway and using the aforementioned process, they identify vehicle passages. Every 

time a vehicle is detected a measurement is recorded. Subsequently, the raw gathered 

data are aggregated to a minute-level detail. The traffic data are obtained through the 

HATRIS (Highways Agency Traffic Information System) which is the main database 

of traffic data in the UK. The original purpose of this data is to detect disturbances in 

the motorway traffic flow to enhance signalling, hence, they can be found with the 

name MIDAS (motorway incident detection and signalling). A list of the variables that 

the raw dataset contains is presented in Table 5.2. 

Table 5.2 Meta data for the inductive loop detector data  

 

In this PhD thesis the purpose of this data is to perform the first stage of the calibration 

and validation process of the baseline traffic microsimulation models that are 

developed. The term baseline will be used from this point on to describe the 0% CAV 

market penetration scenario, meaning the situation when the motorway is occupied by 

only human driven vehicles. Due to limitations in data availability for the second stage 

calibration process, the baseline traffic microsimulation model (scenarios 1, 6, 11, 16, 

Variable name Description 

geographicaddress Name of the inductive loop detector 

date Date of the observation 

time Time of the observation (minute level) 

numberoflanes number of lanes at the position of the loop detector 

flowcategorylane# traffic flow in each lane per vehicle category (veh) 

speedlane# average speed of the vehicles that passed by the inductive loop 

detector during the time period (km/hour) 

flowlane# traffic flow per lane (veh) 

occupancylane# average occupancy of the inductive loop detector per lane (%)  

headwaylane# average headway of the vehicles within the time period (m) 
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21 which were the baseline scenarios for the weekdays between Monday to Friday)  

are calibrated and validated for the time period between 11:00 and 12 a.m. Hence, the 

raw data are filtered by time, keeping observations between 11:00 and 12:00 a.m and 

subsequently by location, keeping only the inductive loop detector data for the 

simulated motorway network. 

Initially, as the data are downloaded into separate files containing one day’s worth of 

data, all the data files are merged together. The data files contain traffic data from 

January 2016 and February 2017. This initial dataset is split into a calibration dataset 

containing data from January 2016 to December 2016 and a validation dataset January 

2017 to June 2017. Following, the raw IDL data are appropriately processed in order 

to achieve the following two objectives:  

a) Form a simulation input dataset for the traffic microsimulation model that 

includes simulation speed distribution, simulation time headway distribution, 

traffic flow per minute, route choice percentages and fleet composition 

characteristics   

b) Form a calibration and validation dataset containing traffic flow values 

In order to achieve the first objective, data are collapsed by using the collapse 

command in the statistical software STATA which creates an average value by using 

a grouping variable. Hence the data are averaged by minute of observation in order to 

create a dataset which contains one observation per minute. The per-minute traffic 

flow values are presented in Figure 5.5.  It must be underlined that the traffic flow 

values are calculated for the IDLs corresponding to the simulation vehicle input points 

(see Figure 5.4). The traffic flow values used in the baseline models are presented 

below where the standard deviation from the average traffic flow value is presented in 

brackets in order to represent the traffic flow differences per minute:  

 

Table 5.3 Vehicle input point traffic flow in the baseline models 

Vehicle input 

point 

Baseline Scenario (traffic flow value (standard deviation)) 

Monday Tuesday Wednesday Thursday Friday 

21 Southbound 

(main line) 

1673 

(35) 

1495 

(41) 

1545 

(32) 

1568 

(30) 

1697 

(36) 



123 

 

21 Southbound 

(on-ramp) 

364 

(24) 

365 

(26) 

364 

(20) 

375 

(25) 

396 

(25) 

20 Northbound 

(on-ramp) 

377 

(20) 

389 

(22) 

402 

(24) 

410 

(28) 

461 

(24) 

20 Southbound 

(on-ramp) 

263 

(21) 

263 

(22) 

263 

(19) 

274 

(20) 

296 

(21) 

19 Northbound 

(main line) 

1785 

(119) 

1706 

(160) 

1894 

(129) 

2011 

(112) 

2496 

(177) 

19 Northbound 

(on-ramp) 

443 

 (49) 

422 

(56) 

447 

(39) 

460 

(47) 

509 

(52) 
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Figure 5.5 Temporal distribution of traffic flow in the simulation vehicle input points 
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Additionally, from these traffic flow values, the percentage of vehicles exiting the 

motorway was derived by identifying the corresponding IDL of the motorway and 

comparing with the flow upstream and downstream from it. This percentage was 

essential in order to program the route decision of vehicles in VISSIM. The 

corresponding percentages were assigned to the corresponding vehicle routes and the 

turning decisions of the vehicles in the simulation software. The results are presented 

in Table 5.4.  

Table 5.4 Vehicle turning percentage in the exit ramps of the motorway study area  

Exit ramp 
Baseline Scenario 

Monday Tuesday Wednesday Thursday Friday 

21 Northbound 19.88% 19.72% 19.12% 18.63% 16.93% 

20 Southbound 13.59% 14.99% 14.57% 14.89% 14.58% 

20 Northbound 17.01% 18.17% 17.53% 16.93% 15.60% 

19 Southbound 12.58% 13.06% 12.93% 13.01% 12.89% 

 

Additionally, the dataset contained vehicle fleet composition information.  As the 

percentage of heavy goods vehicles (HGVs) could not vary over the duration of the 

simulation the average value for the simulation time was calculated from the IDL data 

for each of the baseline traffic microsimulation models (see Table 5.5).  

 

Table 5.5 Percentage of HGVs in the baseline traffic microsimulation models  

Day of the Week Percentage of heavy good vehicles 

Monday 15.66% 

Tuesday 14.63% 

Wednesday 16.01% 

Thursday 15.33% 

Friday 14.55% 

 

The minute level traffic flow data described above are used as input in each of the 

vehicle input points in order to accurately represent the traffic flow fluctuations of the 

corresponding weekday. The fleet composition and routing decision data are 
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subsequently used as input for the simulation and the fleet composition and the routes 

with the corresponding percentages are defined in VISSIM.  

The same aggregation procedure described above is followed for average speed and 

average time headway values. However, instead of per minute values, a statistical 

distribution is calculated. The distributions could not differ spatially in VISSIM within 

the same segment, so the headway and speed values per minute were averaged from 

all sensors and the derived distributions are presented in Figure 5.6 and Figure 5.7 

accordingly. The average and standard deviation values of the aforementioned 

distributions are presented in Table 5.6.  The speed measurements were input in 

VISSIM in the exact form of the cumulative speed distributions and the time headway 

distribution was input exactly in the form presented in Figure 5.6. An example can be 

seen in Figure 5.8.  

Table 5.6 Descriptive statistics (mean and standard deviation) for IDL speed and time 

headway data 

  
Monday Tuesday Wednesday Thursday Friday 

Speed Mean 110.27 109.37 108.88 108.09 105.56 

s.d. 12.62 13.14 13.09 12.91 11.72 

Time 

Headway 

Mean 1.64 1.74 1.70 1.62 1.37 

s.d. 0.07 0.08 0.10 0.10 0.16 
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Figure 5.6 Time headway frequency distributions for the baseline weekday 

microsimulation models 
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Figure 5.7 Cumulative speed distribution for the baseline weekday microsimulation 

models 
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Figure 5.8 Cumulative speed distribution as seen in VISSIM 

As mentioned above, the purpose of the aforementioned data was to perform the first 

stage calibration of the microsimulation models. The process followed for the first 

stage of the calibration process is described in section 4.3.1.2; Following guidelines 

provided by FHWA (Dowling, Skabardonis and Alexiadis, 2004), the measures of 

performance chosen for this stage of calibration are travel time and traffic flow values.  

According to these guidelines for travel time calibration, simulated values should be 

within a range of ± 15% of the observed values for more than 85% of the observation 

pairs.  

The travel time for the real world is calculated as the product of the average speed 

derived from the real-world distribution and the distance travelled (mainline). The 

travel times of the simulated vehicles were gathered directly from VISSIM.  The 

results of the calibration of the travel time values are presented in Figure 5.9. It is 

observed that the results of the travel time calibration did not require the adjustment 

of any driving behaviour parameters.  
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Figure 5.9 Travel time calibration results 

On the other hand, in order to calibrate traffic volume values, the GEH statistic is used. 

The GEH statistic is presented in equation ( 4.9) . In order for the calibration process 

to be successful, the GEH statistic should be less than 5 for 85% of the observation 

pairs (simulated versus real world). The results of the calibration of the traffic flow 

values are presented in Figure 5.10 where the calculated GEH statistic value is 

compared with the threshold value of 5. As it is observed, all values were lower than 

5, hence no adjustments are made to the default driving behaviour parameters of 

VISSIM.  
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Figure 5.10 Traffic flow calibration results 

Finally, the results of the calibration process were validated using the validation 

dataset using the same process.  

5.2.1 Limitations of the inductive loop detector data  

 

The highly disaggregated inductive loop detector dataset used in this thesis is one of 

the most detailed datasets found in existing literature. It is used as direct input to the 

baseline traffic microsimulation models and provides a solid foundation on which the 

first stage calibration and validation of the traffic microsimulation models is based. 

This dataset however was used to calibrate and validate only the human driving 

behaviour.  

Additionally, as explained above, the values used as input are annual mean values of 

the traffic flow, speed, and time headway per minute of the simulation time (11:00 to 

12 am). Hence, they cannot represent potential special conditions which may arise in 

a motorway due to an incident such as a lane closure. 

Finally, the traffic flow values, and the speed distributions used in this thesis remained 

constant as the market penetration rate of CAVs increased. To elaborate, this means 

that the CAVs would eventually select their initial desired speed from the human 

desired speed, even though they would then adapt their speed according to the 

preceding vehicle and form platoons. This assumption is based on the fact that the 

speed of a vehicle in a motorway depends highly on the mechanical characteristics of 

the vehicle and these are assumed to stay the same for the purpose of this study for 

CAVs. Similarly, as far as traffic flow is concerned, even though literature have 

indicated that due to CAVs there might be induced traffic demand as a result of 

increased mobility needs during the CAV era, for the purpose of this study the traffic 

demand remained constant over the market penetration rate scenarios.     

 

5.3 Data from Instrumented Vehicle 

 

The second source of data used for this thesis is data collected using the instrumented 

vehicle of Loughborough University. The purpose of this data is to perform the second 
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stage calibration and validation of the baseline microsimulation models. The exterior 

of the vehicle is shown in Figure 5.11 . This vehicle is equipped with a Continental 

ARS 308-21 long range radar , a PointGrey Grasshopper 3 (GS3-U3-41C6C-C) 

camera, a Ublox NEO-M8L GPFS (GNSS), a Mobileye device and data are 

communicated through different devices using a CANbus. Furthermore, a code written 

in C was developed on an Arduino chip in order to get the readings of the vehicle speed 

from the speedometer.  

 

 

Figure 5.11 Loughborough University’s Instrumented Vehicle 

 

In order to collect real world data, fifteen real-world trips between Junctions 19 and 

21 (northbound and southbound) of the M1 motorway were conducted between April 

2018 and December 2018 11:00 to 12:00 am with the assistance of two different 

drivers who were instructed to drive normally in order to represent an average 

motorway driver. For the purpose of this thesis, three trips were conducted per 

weekday (fifteen trips in total) in order to obtain data to calibrate and validate each 

baseline traffic microsimulation model. The data gathered from the trips were cleansed 

and fused together using Matlab (Formosa, Quddus and Ison, 2019) and were divided 

equally into a calibration and validation dataset. The architecture of the data flow 

between the sensors within the vehicle is presented in Figure 5.12.  

GNSS 

Camera 

Mobileye Radar 

4 
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Figure 5.12 Flowchart of the instrumented vehicle data collection process (source: 

(Formosa, Quddus and Ison, 2019)) 

It must be emphasized that only radar geographical positioning data are used in this 

thesis. The sampling frequency of the radar sensor is 15 Hz and the scanning range is 

200 meters. The metadata of the raw data that is collected is presented in Table 5.7 and 

a graphical representation of the collected data is presented in Figure 5.13. The 

“longitude” and “latitude” variables are collected using the GNSS sensor with a 

frequency of 1 Hz.  

Table 5.7 Metadata of the raw primary radar and GNSS data 

Variable name Description 

ID Number of observation of the dataset 

Freq The frequency counter of the radar 

Hour Current time (hour) 

Min Current time (Minute) 

Sec Current time (Second) 

Milli Current time (millisecond) 

ID# Every time an object was identified by the radar it is given a number and the 

object is being tracked at every step of the radar frequency. The ID number 

is stored for the specific object 

Obj_LongDispl The longitudinal displacement between the radar and the object 

Obj_LatDispl The lateral displacement between the radar and the object 

Obj_VrelLong The relative velocity between the ego-vehicle and the detected object 

Obj_AccelLong The longitudinal acceleration of the detected object 

Obj_LatSpeed The lateral velocity of the detected object 

Obj_Width The width of the detected object 

Obj_Length The length of the detected object 

Longitude The longitude of the current geographical position 
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Latitude The latitude of the current geographical position 

 

 

Figure 5.13 Illustration of the data measures by the radar sensor (Schnieder, 2017) 

 

As mentioned in section 4.3.1.2 the raw data collected are processed in order to 

calculate the Time to Collision (TTC) to the preceding vehicle in the same lane, which 

is used in the second stage calibration and validation process of the baseline 

microsimulation models. In order to calculate the TTC value to the preceding vehicle 

the following process was followed: 

• Initially, the raw data were filtered according to the lateral displacement in 

order to derive vehicles who were in the same lane as the ego-vehicle. The 

threshold value used for that purpose was 1.75 meters (half the width of the 

lane).  

• Afterwards, the closest object to the ego-vehicle was identified using the 

longitudinal displacement radar value and the TTC value was calculated for 

the specific vehicle using the corresponding relative velocity value. 

The above process was performed in the statistical software STATA using the 

following pseudocode which operated for every observation of the dataset.  
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The final product was a series of TTC values to the preceding vehicle. It must be 

emphasized that values of TTC greater than 100 seconds were filtered from the dataset 

as uninformative. The distributions calculated for each weekday are presented in 

Figure 5.14. 

The distributions presented in Figure 5.14 are compared with TTC distributions 

calculated from the corresponding baseline traffic microsimulation model. That means 

that the Monday real-world TTC distribution is compared with a TTC distributions 

calculated through vehicles in the microsimulation software in the Monday model. 

VISSIM does not provide the users with a TTC distribution by default. Hence, a code 

is written in this thesis using the External Driver Model API of VISSIM where the 

vehicle could use the default driver model of VISSIM but it would record the TTC 

values to the preceding vehicle in a text file. This was done using the following code: 

The simulated TTC distributions derived as a result of the code above are compared 

with the corresponding real-world TTC distribution of Figure 5.14. This comparison 

was done by employing the non-Parametric Mann-Whitney test which was described 

in section 4.3.1.2.  
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Figure 5.14 Real-world TTC distributions from instrumented vehicle data 
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The initial indications of the Mann-Whitney tests indicated that there were significant 

differences between the two compared distributions hence, a calibration of the safety 

parameters is recommended. The calibration process followed in this thesis was an 

optimisation problem in order to maximise the U-statistic of the Mann-Whitney test, a 

fact that could provide stronger evidence for the similarity of the compared 

distributions.  

For this purpose, a sensitivity analysis is conducted to identify the effect of the 

Wiedemann 99 car following and lane changing model (see section 4.3.1.1) parameters 

to the TTC distribution produced by the simulation vehicles. The initial list of 

parameters (see Table 4.2 and Table 4.3) were filtered according to previous studies 

investigating the effect of VISSIM car-following parameters on simulated safety 

(Habtemichael and Picado-Santos, 2013). In this thesis the following parameters were 

found to have a significant effect on the TTC distribution produced by simulated 

vehicles: 

• CC1 – standstill distance (car following) 

• CC2 – Following variation (car following)  

• CC3 – Threshold for entering following – controls the start of the deceleration 

process (car following) 

• CC5 – Controls the speed variation between lead and following vehicle  

• Safety distance reduction factor – reduces the safety distance during lane 

changing 

After manually testing a number of different combinations in order to maximise the 

Mann-Whitney test value across all weekdays, the parameter CC3 is set to -5 seconds 

from the default value of -8 seconds. With this change of parameters, the TTC 

distributions produced by the simulated vehicles are not significantly different from 

the instrumented vehicle TTC distributions. The Mann-Whitney values of the tests for 

Monday, Tuesday, Wednesday, Thursday and Friday models were 0.875, 0.716, 0.611, 

0.127 and 0.917 accordingly. These values indicate that there was strong evidence to 

not reject the null hypothesis of the test that the two compared samples originated from 

the same distribution. The results were validated once again using the validation 

dataset. The average TTC distribution calculated through VISSIM after the change of 

CC3 is presented in  Figure 5.15. 
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Figure 5.15 Simulated TTC distribution  

 

5.3.1 Limitations of the instrumented vehicle data  

 

This dataset provided by the Loughborough University instrumented vehicle and its 

sensors provided a solid base for the second stage calibration and validation process 

of the baseline microsimulation models. The calibration and validation process based 

on the TTC distribution is novel and never before found in existing literature. 

However, a limitation lies on its sample size. Ideally, data from more real-world trips 

and from a larger number of drivers should be used in order for the sample to be 

representative. Finally, the algorithm that detects the preceding vehicle from the radar 

data could be improved. The author is looking into improving this in the future.   
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5.4 Conflict Data 

 

The final dataset employed for this thesis is a dataset containing simulated traffic 

conflicts with corresponding traffic characteristics measurements. The purpose of this 

dataset is to be used as a dataset for the statistical modelling of the traffic conflicts. 

The raw data for this dataset is provided by the traffic microsimulation software. The 

user of VISSIM has the option to assign data collection points in the simulated network 

which mimic the functionality of inductive loop detectors (see Figure 5.16). In order 

to form this dataset, several such data collection points are placed in the southbound 

mainline corridor of the simulated network. In order to mimic the accuracy of inductive 

loop detector measurements, the data collection points are placed every 400 meters of 

the corridor resulting in the formulation of 54 segments (See sketch of Figure 5.17).   

 

 

Figure 5.16 A data collection point in VISSIM 
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Figure 5.17 Segment identification in VISSIM (not in scale)  

 

The data collection points can record a number of variables for every vehicle that 

stepped over them in the simulated environment. The list of variables is presented 

below.  

Table 5.8 Data collection point measurements in VISSIM  

Variable Description 

Measurement 
Unique identification number of the data 

collection point 

T(Entry) 
Time that the front bumper of the recorded 

vehicle was over the data collection point  

T(Exit) 
Time that the rear bumper of the recorded 

vehicle was over the data collection point 

VehNo 
Unique identification number of the 

recorded vehicle 

VehicleType Type of the recorded vehicle 

Velocity (km/h) Instantaneous speed of the recorded vehicle 

Acceleration/Deceleration(m/s2) 
Instantaneous acceleration of the recorded 

vehicle 

Occupancy 
Percentage of time that the vehicle 

occupied the data collection point 

Queue time 

Time in seconds that the recorded vehicle 

remained in a queue in the simulated 

environment over the data collection point 

Vehicle length Length of the recorded vehicle  

  

The raw data gathered from the data collection points are post processed in order to 

calculate several variables which are used as explanatory variables in the statistical 

modelling of traffic conflicts. Average measurements (for all 15 simulation runs) for 

traffic flow per lane and average speed per lane, standard deviation of speeds within 

lanes and between lanes are calculated directly through the raw measurements of the 
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data collection points and aggregated per market penetration rate level per segment. 

That practically means that there is one observation per segment per CAV market 

penetration scenario tested. In order to produce a more detailed dataset for statistical 

analysis, the market penetration scenarios ran to form this dataset are defined by a 

constant 10% market penetration rate interval (10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90% and 100%). 

Additionally, as mentioned previously, SSAM is able to provide the user with location 

of the traffic conflict.  Hence, the geographic location of the segments was manually 

matched with the corresponding number of traffic conflicts identified by SSAM and 

the two were fused together. Furthermore, the number of spinal points that were 

necessary in order to simulate the curvature of each segment was manually recorded 

in a dataset and was fused together with the conflict/data collection measurement 

dataset. Furthermore, the segments are categorised in merging or diverging areas and 

straight (non-merging) segments. The result of this data integration process resulted in 

a dataset which contained the following variables (see Table 5.9). Table 5.10 presents 

the descriptive statistics of the explanatory variables of Table 5.9.  

Table 5.9 Definition of variables of the traffic conflict dataset 

Variable Description 

segid Segment identification number (1-54) 

Avgspeedsegment 
Average speed observed among all lanes in 

the segment 

Speed1 
Average speed in the outermost lane of the 

segment 

Speed2 
Average speed in the middle lane of the 

segment 

Speed3 
Average speed in the innermost lane of the 

segment 

Globalavgspeed 
Average speed in the whole simulation 

network (constant) 

Stdspeed1 

Standard deviation of speeds within 

vehicles in the outermost lane of the 

segment 

Stdspeed2 
Standard deviation of speeds within 

vehicles in the middle lane of the segment 

Stdspeed3 

Standard deviation of speeds within 

vehicles in the innermost lane of the 

segment 

Flow1 
Traffic flow in vehicles/hour for the 

outermost lane of the segment 

Flow2 
Traffic flow in vehicles/hour for the middle 

lane of the segment 
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Flow3 
Traffic flow in vehicles/hour for the 

innermost lane of the segment 

Totflow 
Total traffic flow in vehicles/hour for all 

the lanes of the segment 

Occupancy 
Average occupancy of the data collection 

point 

Stdbetween Standard deviation of speeds between lanes 

Merge 

Dummy variable explaining whether a 

segment was a merging or divering area (1 

if merging/diverging, 0 otherwise) 

mpr Market penetration rate of CAVs 

Curvature Number of spinal points of the segment 

Conflicts 
Number of corresponding traffic conflicts 

calculated through SSAM 

 

Table 5.10 Descriptive statistics of the variables of the traffic conflict dataset 

Variable Mean Std.Dev Min Max 

segid   1 54 

Avgspeedsegment 99.05 4.40 92.92 108.94 

Speed1 100.56 5.01 93.25 110.091 

Speed2 98.42 4.33 92.46 108.87 

Speed3 97.56 4.16 92.78 108.52 

Globalavgspeed 98.85 4.35 94.06 107.10 

Stdspeed1 8.44 1.48 3.68 11.62 

Stdspeed2 7.66 2.27 3.62 11.49 

Stdspeed3 7.65 2.12 3.41 11.01 

Flow1 389.79 114.59 207.87 654 

Flow2 668.78 91.54 396.93 855.375 

Flow3 563.68 117.86 137.68 817.81 

Totflow 1622.26 192.71 1068.375 1868.467 

Occupancy 0.049 0.0001 0.049 0.050 

Stdbetween 1.6290 0.8352 0.2802 4.170014 

Merge 0.074 0.26 0 1 

Curvature 6.74 3.25 2 15 

Conflicts 2.40 3.32 0 33 

 

 

 



143 

 

5.4.1 Limitations of the conflict dataset  

 

The traffic flow characteristics included in the traffic conflict dataset are provided by 

VISSIM. It is a highly disaggregated dataset and the model has been calibrated and 

validated in order to produce realistic baseline outputs. The number of traffic conflicts 

in the dataset are provided by SSAM and matched with the corresponding motorway 

segment. The integrated dataset can provide a solid base for the statistical analysis in 

this thesis. However, it can never replace a real-world dataset containing real-world 

measurements and the corresponding traffic conflicts. On the other hand, such a dataset 

would be out of the scope of this simulation-focused thesis. Hence, the statistical 

results should be interpreted carefully as they model the occurrence of traffic conflicts 

based on the traffic microsimulation conditions.  

Finally, the number of the traffic conflicts itself is not calibrated as real-world traffic 

conflict data are not available for this study. However, it is assumed that with the 

second stage calibration and validation the main surrogate measure (TTC) used for the 

conflict identification is calibrated and hence, indirectly the number of conflicts is 

calibrated.  

 

5.5 Summary  

 

This chapter presented the datasets used for the purpose of this thesis as well as the 

simulation study area. The study area contains a section of the M1 motorway in the 

United Kingdom between Junctions 19 and 21. The study area as well as the reasons 

behind the choice of this area are explained in detail in the first subsection of this 

chapter.  

Subsequently, the next two sections of this chapter presented in detail the formulation 

and the meta data of the two datasets which were used for the calibration and the 

validation of the baseline traffic microsimulation models.  

The first dataset was used for the first stage of the calibration process which ensured 

the accurate representation of traffic characteristics within the simulation environment. 

It comprised of secondary inductive loop detector data which were processed in order 
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to be used as input for the microsimulation models and were divided into a calibration 

and validation dataset. The results of this first stage indicated that no further 

adjustments were needed in the default Wiedemann 99 driver model parameters of 

VISSIM.  

The instrumented vehicle dataset was used for the second stage calibration and 

validation of the microsimulation. It comprised of processed radar and GNSS data 

collected through fifteen real-world trips, which assisted with the calculation of several 

real-world Time-to-Collision (TTC) distributions. These distributions were compared 

with simulated TTC distributions and as a result, the parameter CC3 of the Wiedemann 

99 model was calibrated in order for the two distributions to not be significantly 

different.  

Finally, the formulation of the traffic conflict dataset was described in detail. The 

simulated conflicts calculated through SSAM were matched with the corresponding 

simulated traffic data collected using the data collection points of VISSIM. The 

resulting dataset contained the conflict count and a number of corresponding 

explanatory variables which will are used for the statistical analysis of this thesis.   
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6 Results and Discussion 

 

6.1 Introduction 

This chapter of the thesis will present the results derived by employing the methods 

described in Chapter 4, using the datasets presented in Chapter 5. Undoubtedly, the 

main methods described above are the traffic microsimulation and the statistical 

modelling, hence, firstly, the traffic microsimulation results are presented and 

discussed with regards to their methodological implications and fit within the existing 

literature and the statistical modelling results follow.  

In more detail, this chapter is organised as follows; 

❖ Simulation framework results 

▪ Weekday scenario results (Scenarios 1 to 25) 

▪ Route-based decision-making algorithm scenario results (Scenarios 26 

to 29) 

▪ Sensor error scenario results (Scenarios 30 to 45)  

▪ Platoon size scenario results (Scenarios 46 to 61) 

❖ Statistical modelling results 

The simulation framework results will present the number of conflicts calculated for 

each formulated scenario by SSAM along with corresponding explanatory graphs and 

a number of descriptive statistics for the surrogate safety measure Time to Collision 

identified for the conflicts of each scenario, when it is deemed necessary. For each 

scenario, 15 simulation runs were performed with different random seeds. Each 

simulation run lasted 3600 seconds with extra 900 as a warm-up period to allow the 

simulation network to be fully occupied which was excluded from the analysis.  It 

must be noted that as the CAV market penetration rate increased in the various 

scenarios the computation time increased significantly. For instance, the 0% market 

penetration rate scenario lasted in average 30 minutes while a simulation run with 

100% CAV market penetration rate lasted approximately 45 minutes. In order to 

facilitate the understanding of the results, in most of the scenarios and where this 

needed, the calculated conflicts will be presented in heatmaps describing the spatial 

distribution of traffic conflicts on the motorway network. The simulation results are 
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discussed on the basis of their fit with existing literature, the underlying assumptions 

and the practical implications.   

The statistical modelling results will present the coefficient estimates of the examined 

independent explanatory variables. Also, the correlation between the independent 

variables is discussed. Finally, the practical implications of the statistical modelling 

results are discussed.  

 

6.2 Simulation Framework Results 

 

6.2.1 Weekday scenario results (Scenarios 1 to 25)  

 

The absolute change in the number of traffic conflicts per market penetration rate and 

weekday is initially presented in Figure 6.1. In order to normalise these results for 

comparison purposes, the absolute number of conflicts is converted into percent 

change in the number of conflicts in Table 6.1. 

 

Figure 6.1 Number of traffic conflicts per market penetration scenario (Scenarios 1-25) 
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Table 6.1 Percent change in the number of conflicts (Scenarios 1-25) 

 Total Conflict Reduction % % 

conflicts 

involving 

CAVs 
 Monday Tuesday Wednesday Thursday Friday 

0% 0.00% 0.00% 0.00% 0.00% 0.00% N/A 

25% 42.71% 15.09% 12.19% 43.30% 46.81% 4.85% 

50% 72.06% 54.56% 50.96% 72.53% 80.34% 14% 

75% 91.56% 82.92% 82.19% 91.21% 91.04% 40% 

100% 94.29% 90.05% 91.78% 92.86% 94.32% 100% 

 

The reduction of conflicts at the 100% market penetration rate varies between 90-94%. 

At first glance, this reduction in simulated conflicts seems to be very close with the 

anticipated safety benefit of CAVs according to the literature (Daniel J. Fagnant and 

Kockelman, 2015). However, the results should not be considered identical. A 

reduction of 90-94% in traffic conflicts which was calculated in this thesis does not 

necessarily imply a 94% reduction in accidents which was predicted in the literature. 

A functional relationship between conflicts and crashes can be found in Gettman et 

al., (2008), although, the authors of this paper mention that the functional relationship 

developed is not transferable and hence cannot be used in this thesis to calculate the 

results on accidents.  

Figure 2.2 in the literature review chapter originally summed results found in similar 

studies namely Kockelman et al., (2016) and Jeong, Oh and Lee, (2017). Figure 6.2 

adds the results of this section in Figure 2.2. Initially, the results presented in this thesis 

seem to be very close with the results of Jeong Oh and Lee (2017), especially in the 

Tuesday and Wednesday scenarios. Additionally, even though the same weekday 

scenarios seem to provide similar results to the “high traffic flow” scenarios of 

Kockelman et al (2016), the traffic flow values used in these scenarios were 

significantly different as Tuesday and Wednesday scenarios traffic flow values (1500 

vehicles per hour approximately) were 50% less than the traffic flow values used in 

Kockelman et al. (3000 vehicles per hour). Most importantly, a comparison of the 

results of these studies might be invalid due to the fact that the underlying CAV models 

and assumptions varied significantly between the compared studies. For example, 
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Kockelman et al (2016) used Wiedemann 99 car following model without any variance 

in the behaviour parameters in order to simulate a CAV driving behaviour whereas a 

completely different CAV driver model is developed in this thesis.  

 

 

Figure 6.2 Comparison of results with literature findings 

 

Following, a major reduction of conflicts is clear from Table 6.1 even at small market 

penetration rates, which proves the effectiveness of the developed algorithm to reduce 

the number of conflicts significantly. However, even though one would expect the 

CAV behaviour algorithm to not have any flaws, still a small number of conflicts is 

observed at the 100% market penetration rate scenarios. These few conflicts could 

happen due to imperfections in the simulation software or as a consequence of a slow 

speed lane-changing manoeuvre in the motorway merging areas (if a required time-

gap for lane change was not identified, vehicles were forced to stop according to the 

rules of the software). 

It is noteworthy that the safety performance of the algorithm at the 25% market 

penetration rate is improving as traffic flow increases. For example, on Fridays, that 

the traffic flow is the highest, a greater reduction of conflicts is observed at the 25% 

market penetration rate than on lower traffic weekdays (e.g. Wednesday).  
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Furthermore, a possible explanation for the relatively small improvement from 75% to 

100% market penetration rates could be the fact that even from 75%, CAVs tended to 

form long platoons (8+ vehicles), isolating human driven vehicles in their own lanes 

and making the interactions between human driven vehicles minimal. Finally, it is 

observed that percentage of conflicts involving CAVs is significantly lower than the 

corresponding market penetration rate.  

 

 

Figure 6.3 Heatmap of the concentration of traffic conflicts across the motorway network 

among all weekdays 

Figure 6.3 presents the heatmaps showing the concentration of conflicts across the 

motorway segment per market penetration scenario. Unfortunately, the scale of the 

heatmaps cannot be provided as it varied across different heatmaps. However, it can 

be interpreted in relation to the number of conflicts. It is obvious that the CAV control 

algorithm eliminates conflicts in the non-merging/diverging areas in high market 

penetration rate scenarios effectively. Inevitably, a high number of conflicts is 

observed at the merging and diverging areas (Junctions 21, 20 and 19 of the motorway, 

marked with a red circle in the left-most graph of Figure 6.3) due to the high variance 

of speeds and number of lane changes that take place on those segments. This finding 
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seems to agree with relevant literature characterising the merging and diverging areas 

of the motorway as high risk segments (Ahammed, Hassan and Sayed, 2008).   

Table 6.2 can shed more light on this issue; it provides the percentage of each conflict 

type per market penetration rate. The percentage of lane changing conflicts is coming 

close to the percentage of rear end conflicts as market penetration rate increases 

(although the absolute number of conflicts is reduced significantly). All the conflicts 

in the high market penetration rate scenarios (i.e. 75% and 100%) are concentrated in 

or near the merging and diverging areas where lane changing behaviours are enforced. 

(see Figure 6.3) The lane changing conflicts happening in this area are a product of the 

actual lane changing manoeuvres and the rear-end conflicts are potentially a 

consequence of the situation arising after the lane change manoeuvre  takes place.  

Table 6.2 Percentage of type of conflicts per market penetration scenario 

 

The SSAM output indicated that in all market penetration rates, the minimum TTC 

value observed was 0 seconds, which implied a vehicle collision (see Table 6.3). Some 

of the previous papers filter out these zero values claiming that they are caused by 

simulation errors (Gettman et al., 2008). However, others keep these virtual crashes in 

the analysis (Shahdah, Saccomanno and Persaud, 2015). After close observation of the 

behaviour of the vehicles in VISSIM some of these conflicts might have been caused 

due to simulation error; in the mainline vehicle input points, vehicles started a lane 

change at the same moment when another vehicle just entered the motorway resulting 

in a virtual crash. This problem was resolved partially by not allowing a lane change 

in the first 50 meters of the simulation network input points. 

However, this problem persisted. To clarify, it is observed that there is an abrupt 

change in the mean of the TTC values from market penetration rates lower than 75% 

to the market penetration rate of 100%. This provides strong evidence for the argument 

Market 

Penetration 

Rate 

Rear end Lane change 

0% 9.18% 90.82% 

25% 22.55% 77.45% 

50% 23.26% 76.74% 

75% 32.56% 67.44% 

100% 43.68% 56.32% 
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of the previous paragraph; the human driver model of Vissim is the main source of 

conflicts with 0 TTC value.   

Table 6.3 Descriptive statistics of the TTC value provided by SSAM per scenario 

 TTC 

Scenario Min Max Mean Variance 

0% Monday 0.00 1.50 0.13 0.11 

25% Monday 0.00 1.50 0.14 0.11 

50% Monday 0.00 1.50 0.12 0.11 

75% Monday 0.00 1.50 0.13 0.14 

100% Monday 0.00 1.50 0.83 0.33 

0% Tuesday 0.00 1.40 0.12 0.10 

25% Tuesday 0.00 1.50 0.14 0.12 

50% Tuesday 0.00 1.50 0.11 0.09 

75% Tuesday 0.00 1.50 0.14 0.13 

100% Tuesday 0.00 1.50 0.56 0.40 

0% Wednesday 0.00 1.50 0.10 0.08 

25% Wednesday 0.00 1.50 0.12 0.10 

50% Wednesday 0.00 1.50 0.11 0.10 

75% Wednesday 0.00 1.50 0.11 0.10 

100% Wednesday 0.00 1.50 0.54 0.21 

0% Thursday 0.00 1.50 0.14 0.12 

25% Thursday 0.00 1.50 0.12 0.11 

50% Thursday 0.00 1.50 0.13 0.11 

75% Thursday 0.00 1.50 0.14 0.14 

100% Thursday 0.00 1.50 0.99 0.37 

0% Friday 0.00 1.50 0.15 0.12 

25% Friday 0.00 1.50 0.11 0.09 

50% Friday 0.00 1.50 0.17 0.15 

75% Friday 0.00 1.50 0.18 0.18 

100% Friday 0.00 1.50 0.64 0.43 

 

Finally, although the focus of this thesis is to evaluate the safety impact of CAVs, in 

order to obtain more complete understanding of the impacts of CAVs, the travel time 

impact of the proposed algorithm was calculated as well and is presented in Table 6.4. 
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CAVs seem to increase the average travel time during all weekdays due to the fact that 

long vehicle platoons with a slow leader (the speed of the leader was selected from the 

desired speed distribution and hence it is stochastic) decreased the average speed of 

the motorway. This result however is sensitive to the desired speed distribution of 

vehicles in VISSIM. Overall, it is observed that, at the 100% market penetration 

scenario, CAVs managed to make the travel time almost equal across all weekdays. 

This means that CAVs will be able to provide reliable travel times independent of 

traffic conditions, a result that seems to agree with previous studies (ATKINS, 2016b).     

 

Table 6.4 Average travel time results for simulated vehicles for each CAV market 

penetration scenario  

 

Monday Tuesday Wednesday Thursday Friday 

Travel Time 

(sec) 

Travel Time 

(sec) 

Travel Time 

(sec) 

Travel Time 

(sec) 

Travel Time 

(sec) 

0% 727.28 751.0 748.3 796.9 822.2 

25% 820.88 805.1 804.0 830.0 849.76 

50% 843.01 835.1 835.3 848.8 858.30 

75% 861.89 859.3 859.4 864.2 866.00 

100% 874.03 874.2 874.5 875.1 874.00 

 

6.2.2 Route-based decision algorithm results (Scenarios 26 to 29)  

 

This section presents the traffic conflict results for the scenarios were the route-based 

decision-making algorithm (RBDMA) for CAVs is tested. It must be emphasized that 

the models ran for the comparison with the baseline (no RBDA) scenario was the 

Wednesday model which represented a typical weekday. 

Initially, the reduction of the total number of conflicts per CAV market penetration 

rate is presented in Figure 6.4. 
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Figure 6.4 Total number of conflicts reductions due to the route-based decision-making 

algorithm 

 

It is observed that the RBDMA has a positive safety effect. It reduces the number of 

traffic conflicts by 18.56%, 18.99%, 19.23%, 25.00% in the 25%, 50%, 75% and 100% 

market penetration rates respectively. It has to be noted that the percent reduction of 

conflicts increases as the CAV market penetration rate increases. This is undoubtedly 

because as the market penetration rate of CAVs and the relative number of CAVs in 

the network becomes larger, they form more vehicle platoons which are driving in the 

correct lane according to their destination and consequently the number of unnecessary 

lane changes that could potentially be proven to be traffic conflicts decrease.  

 

Table 6.5 Time to Collision descriptive statistics for the route-based decision algorithm 

scenarios 

 TTC 

Scenario Min Max Mean Variance 

RBDMA 25% 0 1.5 0.15 0.14 

RBDMA 50% 0 1.5 0.22 0.21 

RBDMA 75% 0 1.5 0.5 0.31 

RBDMA 100% 0 1.5 0.75 0.35 

0% Baseline 0 1.5 0.1 0.08 

25% Baseline 0 1.5 0.12 0.1 

50% Baseline 0 1.5 0.11 0.1 

75% Baseline 0 1.5 0.11 0.1 

100% Baseline 0 1.5 0.54 0.21 

0% 25% 50% 75% 100%

Baseline 730 641 358 130 60

RBDMA 730 522 290 105 45

Percent change 0.00% -18.56% -18.99% -19.23% -25.00%
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Table 6.5 presents the descriptive statistics of the TTC values for the conflicts 

calculated for the RBDMA scenarios. A significant increase in the mean value of the 

TTC is observed which becomes larger as the market penetration rate of CAVs 

increases. This change can be attributed to the fact that due to the assignment of the 

platoons in lanes according to the corresponding destinations, significantly less CAV 

lane changes are taking place. This consequently means that even from the low market 

penetration rates, the interactions between CAVs and human-driven vehicles become 

less and cases where a low TTC value would be observed because of a “forced” lane 

change (in order to reach the next link of a vehicle’s destination) are reduced.    

  

 

Figure 6.5 Heatmap of traffic conflicts in the RBDMA scenarios  

 

Figure 6.5 presents the heatmap showing the concentration of conflicts across the 

simulated motorway network. If one compares Figure 6.5 with Figure 6.3, it can be 

observed that the RBDMA has improved safety in the motorway significantly. 

However, the same issue observed in scenarios 1-25 persists but in smaller magnitude; 
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The merging and diverging areas of Juctions 19, 20 and 21 remain problematic as they 

appear to concentrate a large number of conflicts which is in line with literature. 

However, compared to scenarios 1-25 RBDMA the number of conflicts in these areas 

seems to be reduced. For instance, the RBDMA at the 75% market penetration rate 

seems to eliminate the traffic conflicts in junction 21 (North junction) and at 100% in 

junction 20. The problem still persists though in Junction 19.  

Trying to compare the results presented in this section with similar results from 

literature is a challenging task. The objective to develop the RBDMA was among the 

research gaps identified in the literature; To the author’s knowledge there are no 

studies employing traffic micro-simulation and a route-based decision-making 

algorithm. There are however studies attempting to fit a dynamic origin to destination 

routing of CAVs in motorway networks but not in traffic microsimulation 

environments (Roncoli, Papamichail and Papageorgiou, 2015; Davis, 2017). The 

results of these studies were limited and only assessed the performance of the 

developed algorithm with regards to traffic performance of the network and not safety. 

The algorithms of the aforementioned studies were more complex than the RBDMA 

developed in this thesis, however its simple nature consisted the collection of results a 

feasible task. 

   

6.2.3 Sensor error scenario results (Scenarios 30 to 45) 

 

This section presents the traffic conflicts results calculated by the traffic 

microsimulation scenarios where the sensor error rates were included. The sensor error 

rates chosen for this thesis were defined as pairs of standard deviation in the 

measurements of speed and distance. As described in section 4.3.1.3 these pairs were 

derived based on the error rate values of existing equipment found in CAVs such as a 

typical radar. The pairs tested were (0.05, 0.05), (0.10, 0.06), (0.15, 0.07) and (0.20, 

0.08) for (distance measurement standard deviation (meters), speed measurement 

standard deviation (meters/second)).   

Initially, the total number of conflicts produced from all 15 simulation runs per sensor 

error scenario are presented in Figure 6.6. The safety benefit of CAVs is obvious as 

market penetration rate increases throughout all sensor error values. However, at first 
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glance, the differences in simulated conflicts under different of sensor error scenarios 

seemed to not differ significantly from the baseline model. To confirm this 

observation, four iterations of a statistical test were performed. The non-parametric 

multiple independent samples Kruskal-Wallis test was applied to test whether the 

difference in in the number conflicts differed significantly by sensor error rate 

scenario. The Kruskal-Wallis rank test also known as one-way ANOVA on ranks, is a 

non-parametric method for testing whether samples originate from the same 

distribution. It is used for comparing two or more independent samples of equal or 

different sample sizes and therefore it is deemed appropriate for the comparison of the 

number of conflicts per sensor error scenario. A significant Kruskal-Wallis test 

indicates that at least one sample stochastically differs from one other sample, but it 

cannot identify how or where this stochastic difference occurs. In order to perform this 

test, the H value (see equation ( 6.1)) is compared with the critical H value which is 

calculated from a table or a statistical software.  

𝐻 = (𝑁 − 1)
∑ 𝑛𝑖(𝑟𝑖̅ − 𝑟)̅

2𝑔
𝑖=1

∑ ∑ (𝑟𝑖𝑗 − 𝑟̅)2
𝑛𝑖
𝑗=1

𝑔
𝑖=1

 
( 6.1) 

 

 

Where: 

▪ 𝑛𝑖 is the number of observations in group i 

▪ 𝑟𝑖𝑗 the rank (among all observations) of observation j from group i 

▪ 𝑁 the total number of observations across all groups 

▪ 𝑟𝑖̅ the average rank of all observations in group i 

▪ 𝑟̅ the average of all the 𝑟𝑖̅ 

For the purpose of this thesis this test was performed in the SPSS statistical software. 

The p-value of the tests calculated were 0.649, 0.505, 0.420, 0.404 for the sensor error 

pairs of (0.05, 0.05), (0.10, 0.06), (0.15, 0.07) and (0.20, 0.08) accordingly and 

indicated that the null hypothesis that the samples originate from the same distribution 

could be retained at the 95% confidence level. The mean and standard deviation values 

of the samples used in the Kruskal Wallis tests are presented in Table 6.6. 
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Figure 6.6 Total number of conflicts per sensor error scenario 

 

Table 6.6 Descriptive statistics of samples used in the Kruskal Wallis sensor error rate 

tests 

Scenario 

Market penetration rate 

0%  

(mean, s.d.) 

25% 

(mean, s.d.) 

50% 

(mean, s.d.) 

75% 

(mean, s.d.) 

100% 

(mean, s.d.) 

Baseline (48.67, 2.26) (42.73, 2.44) (23.86, 2.14) (8.66, 2.16) (4.00, 2.02) 

(0.05, 0.05) (48.67, 2.26) (41.50, 2.04) (23.80, 3.58) (8.90, 2.71) (3.50. 3.15) 

(0.10, 0.06) (48.67, 2.26) (42.10, 3.50) (22.40, 2.44) (9.30, 2.96) (4.20, 3.63) 

(0.15, 0.07) (48.67, 2.26) (41.80, 3.15) (20.00, 2.03) (9.00, 2.35) (3.90, 2.22) 

(0.20, 0.08) (48.67, 2.26) (43.00, 3.00) (22.40, 2.94) (9.40, 3.42) (3.70, 2.99) 

 

From one point of view, the result above is logical. In these scenarios, the sensor error 

assumed to follow a Gaussian distribution N= (0,𝜎2) with zero mean in order not to 

cause observation bias and a small standard deviation compared to the average 

measured values. For example, in a formulated platoon that is driving with a speed of 

28 m/s (100 km/h) and a time gap of 0.6 seconds (17.8 meters at the speed of 100 

km/h) a sensor error of 0.1m for distance measurement and 0.1 m/s for the speed 

measurement of the leading vehicle is not be sufficient to cause additional traffic 

0% 25% 50% 75% 100%

Baseline 730 641 358 130 60

(0.05, 0.05) 730 623 357 134 53

(0.10, 0.06) 730 632 336 140 63

(0.15, 0.07) 730 627 300 135 59

(0.20, 0.08) 730 645 336 141 56
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conflicts. This distribution of the sensor error is an assumption of the thesis based on 

existing literature.  

Table 6.7 provides the descriptive statistics for the conflicts calculated in the sensor 

error rate scenarios. No clear downward or upward pattern can be observed using this 

table; hence it is assumed that the nature of conflicts remains the same throughout 

these scenarios. 

Table 6.7 Time to Collision descriptive statistics for sensor error rate scenarios 

Scenario 
TTC descriptive statistics 

Min Max Mean Variance 

(0.05, 0.05) 25% 0 1.5 
0.12 

0.11 

(0.05, 0.05) 50% 0 1.5 0.12 0.11 

(0.05, 0.05) 75% 0 1.5 0.11 0.10 

(0.05, 0.05) 100% 0 1.5 0.26 0.23 

(0.10, 0.06) 25% 0 1.5 0.11 0.10 

(0.10, 0.06) 50% 0 1.5 0.10 0.09 

(0.10, 0.06) 75% 0 1.5 0.12 0.10 

(0.10, 0.06) 100% 0 1.5 0.23 0.20 

(0.15, 0.07) 25% 0 1.5 0.13 0.10 

(0.15, 0.07) 50% 0 1.5 0.11 0.09 

(0.15, 0.07) 75% 0 1.5 0.10 0.08 

(0.15, 0.07) 100% 0 1.5 0.25 0.22 

(0.20, 0.08) 25% 0 1.5 0.12 0.10 

(0.20, 0.08) 50% 0 1.5 0.11 0.09 

(0.20, 0.08) 75% 0 1.5 0.10 0.09 

(0.20, 0.08) 100% 0 1.5 0.23 0.20 

Baseline 0% 0 1.5 0.10 0.08 

Baseline 25% 0 1.5 0.12 0.10 

Baseline 50% 0 1.5 0.11 0.10 

Baseline 75% 0 1.5 0.11 0.10 

Baseline 100% 0 1.5 0.24 0.21 

 

The main conclusion from the sensor error rate scenario results regards the readiness 

level of existing equipment found in CAVs. Under the assumptions of this thesis, the 
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number of traffic conflicts remained the same within the same market penetration rate 

as the standard deviation of the sensor error rate increased. This potentially proves that 

existing vehicle equipment (i.e. long range radars) used in the automotive industry are 

reliable enough so as to not cause any further traffic conflicts due to their inaccuracies.  

However, as mentioned above, the reliability of the results presented above must be 

considered together with the accompanying assumptions. The assumptions made for 

the sensor errors are logical and they were derived based on evidence found in the 

literature  (Zhou et al., 2017). The sensor error was assumed to be normally distributed 

with zero mean and a varying standard deviation. As a different sensor error value was 

selected at random for each time step from this normal distribution, the sensor error at 

a certain time t during the simulation run was independent from the sensor error of the 

next simulation time step t+0.1 seconds. This might not be the case for sensors (Waller, 

Simonin and Dance, 2003; Rigtorp, 2010) as their error values sometimes can be 

temporally auto-correlated. Additionally, whether the real-world sensor error values 

follow the normal distribution is unknown. Nevertheless, the methodology used for 

the modelling of the sensor error in this thesis is transferable; Any potential real-world 

sensor error distribution can be integrated within the framework presented and the 

results can be interpreted accordingly.  

 

6.2.4 Platoon size scenario results (Scenarios 45 to 61) 

 

As described in the literature review chapters, a number of studies have indicated that 

platoon size is a variable that affects the traffic flow dynamics of a motorway and 

could potentially affect traffic safety  (Varaiya, 1993; Jiang, Li and Shamo, 2006; Zhao 

and Sun, 2013). The last set of scenarios investigated in this thesis are scenarios in 

which the CAV platoon size varies.  

The platoon sizes used were the sizes of 3, 5, 7, 9 and the baseline scenario which had 

no platoon size limit. These values were selected as they were in line with Zhao and 

Sun, (2013) who investigated the impact of platoon size on traffic capacity. The change 

in the number of conflicts per platoon size and market penetration scenario are 

presented in Figure 6.7 and the percent change in the number of conflicts is presented 

in Table 6.8. 



160 

 

 

Table 6.8 Percent change in the number of conflicts per platoon size scenario 

CAV market 

penetration 

rate 

Platoon size 

3 5 7 9 No limit 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

25% -33.33% -24.42% -21.12% -19.75% -12.14% 

50% -41.56% -51.30% -50.48% -51.85% -50.91% 

75% -53.09% -63.37% -65.84% -70.37% -82.30% 

100% -55.97% -69.55% -72.84% -74.07% -91.77% 

 

 

 

Figure 6.7 Total number of conflicts per platoon size scenario 

 

Figure 6.7 can be interpreted in two ways; Firstly, by examining the results per market 

penetration rate and secondly by examining the results by platoon size. Starting to 

examine these results by market penetration rate, it is obvious that as market 

penetration rate increases, the number of conflicts is reduced significantly which is in 

line with the results from previous scenarios so far. However, the most interesting 
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insights are derived when the results are interpreted within the same market penetration 

rate. 

In more detail, at the 25% market penetration rate, an increase in the number of 

conflicts is observed as the platoon size increases. This result is surprising at first but 

it can be comprehended as follows: After observing the simulation environment, this 

increase in conflicts could be explained by the fact that the human-driven vehicles 

(75% of all traffic) could navigate more safely when the platoon size is 3 compared to 

when it is 5 or higher. In addition, a relatively long platoon may cause disruptions in 

traffic dynamics such as restraining human-driven vehicles to make lane change 

manoeuvres, especially near the diverging areas of the motorway.  A larger increase is 

noticeable when the platoon size increases from 3 to 5 than when the platoon size 

changes from 5 to 7 and 9 consecutively. This can be explained by the fact that in this 

market penetration rate (25%), the formation of   platoons with 5 or more vehicles is a 

rare occasion due to the small relative numbers, hence the safety results are similar. 

The results of the 25% market penetration rate are presented graphically in Figure 6.8. 

From this figure, it is obvious that the number of conflicts increases as the platoon size 

increases. Noticeably, once again, a high number of conflicts is concentrated in the 

merging and diverging areas of the motorway a problem which was identified in the 

results of sections 6.2.1 and 6.2.2 as well.  
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Figure 6.8 Heatmap of traffic conflicts in the 25% CAV market penetration scenario as 

the platoon size increases 

 

At the 50% market penetration rate, a safety benefit is observed when the platoon size 

increased from 3 vehicles to 5 vehicles which can be interpreted with the fact that as 

one out of two vehicles in the network is a CAV, a larger amount of space in the 

motorway is saved due to the formulation of vehicle platoons. Consequently, 

manoeuvring vehicles in the motorway would find more available space to perform 

their lane changing manoeuvres or diverge and merge in the motorway. However, as 

the platoon size increases from 5 to 7 and 9 and the no platoon size limit scenario, no 

statistically significant difference in the number simulated conflicts is observed. This 

observation is confirmed by using the Kruskal-Wallis test (see section 6.2.3). The 

descriptive statistics of the samples used for the Kruskal-Wallis test are presented in 

Table 6.9 where the average number of conflicts per scenario is presented along with 

the standard deviation of the number of conflicts among all simulation runs. The p-

value of the statistic of the Kruskal-Wallis test was 0.911 which indicated that the 

difference in the number of conflicts between these scenarios was not significant.  
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Table 6.9 Descriptive statistics of the samples used in the Kruskal Wallis platoon size 

CAV market 

penetration 

rate 

Platoon size 

5 7 9 No limit 

50% (mean, sd) (23.66, 3.08) (24.06, 3.16) (23.40, 2.81) (23.86, 2.96) 

 

When CAV market penetration rate reaches 75% and 100%, a steady safety 

improvement is observed as the platoon size increases which reaches 91.77% at the 

100% market penetration rate of the no platoon size limit scenario. That implies that, 

when CAV market penetration rate reaches 75% and higher, the impact of the platoon 

in the motorway in terms of safety is immense. As almost all vehicles are organised in 

vehicle platoons, the occupancy rate of the motorway is smaller, allowing for free 

space for manoeuvring, ultimately reducing the amount of vehicle interactions that 

could potentially be proven dangerous. It must be underlined that in the scenarios 

analysed in this section the lanes that the platoons were formulated was stochastic, and 

hence an equal distribution of vehicle platoons in the lanes is assumed.  

Table 6.10 presents the descriptive statistics of the TTC values observes in the conflicts 

of each CAV platoon size scenario. Similarly to the corresponding results presented in 

sections 6.2.1, 6.2.2 and 6.2.3, it is observed that as market penetration rate increases, 

the mean value of the TTC increases. This implies that once again, less conflicts with 

TTC values close to zero are observed as the market penetration rate increases, which 

means that the number conflicts created as a result of a simulation environment flaw 

(see section 6.2.1) decreases. As vehicle platoon size increases no clear pattern can be 

identified in the change mean value of the TTC surrogate safety measure.  

Table 6.10 Descriptive statistics for the Time to Collision observed in conflicts per 

platoon vehicle size scenario 

Scenario 

Platoon size (market 

penetration rate) 

TTC Descriptive statistic 

Min Max Mean Variance 

3 (25%) 0 1.5 0.18 0.19 

3 (50%) 0 1.5 0.29 0.26 

3 (75%) 0 1.5 0.33 0.28 

3 (100%) 0 1.5 0.69 0.4 

5 (25%) 0 1.5 0.16 0.14 

5 (50%) 0 1.5 0.25 0.23 
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5 (75%) 0 1.5 0.32 0.28 

5 (100%) 0 1.5 0.62 0.39 

7 (25%) 0 1.5 0.14 0.14 

7 (50%) 0 1.5 0.39 0.34 

7 (75%) 0 1.5 0.49 0.32 

7 (100%) 0 1.5 0.72 0.39 

9 (25%) 0 1.5 0.16 0.13 

9 (50%) 0 1.5 0.21 0.19 

9 (75%) 0 1.5 0.37 0.29 

9 (100%) 0 1.5 0.75 0.38 

 

The results presented in this section cannot be directly compared to the literature as 

the assessment of platoon size on motorway safety is a research gap that is identified 

in the literature section of this thesis. They should be interpreted along with the 

assumptions of the CAV platoon formulation algorithm. In this thesis, CAVs are 

allowed to join a platoon only from the rear – end of the platoon which is assumed to 

be the most common practice for a motorway scenario. Moreover, there is no empirical 

evidence to support the use of intra-platoon and inter-platoon spacing values of 0.6 

seconds and 3 seconds accordingly which are used for this thesis. However, these 

values are used and proposed in existing literature.    

The results presented in this section could provide useful insights regarding the real-

world CAV implementation strategy on motorways. According to Figure 6.7, there is 

no consensus on a single value of platoon size that would provide the greatest safety 

benefit across all market penetration rates. To elaborate, the optimal platoon size (the 

platoon size that would provide the greater safety benefit) depends on the CAV market 

penetration rate. For example, platoon size 3 provides the greater safety benefit than 

the other platoon sizes in low CAV market penetration rates (25%) whereas, a platoon 

size with 5 or more vehicles can provide better safety benefit as CAV market 

penetration rate increases. 

 

6.3 Statistical Modelling Results 

 

In all the simulation results discussed in section 6.2, the number of conflicts for each 

tested scenario is presented. However, it is important to understand the reasons, factors 
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or explanatory variables behind the occurrence of traffic conflicts in a microsimulation 

environment. It is impossible to identify these explanatory variables and the way that 

they affect the number of traffic conflicts through traffic microsimulation only. By 

employing the methods and the dataset discussed in section 4.3.3 and 5.4 respectively, 

a number of statistical models are developed. Through these models, it is possible to 

quantify the functional relationship between the dependent variable, the number of 

hourly traffic conflicts per motorway segment with a number of explanatory variables 

such as standard deviation of speeds, traffic flow, segment geometrical characteristics 

and market penetration rate. In order to facilitate the analysis, in this stage of the 

analysis, only data coming from scenarios 11 to 15 (Wednesday model – which is 

considered to be a typical weekday) with a higher disaggregation level in terms of 

market penetration rate (10% interval) are used.  

At this point it needs to be emphasized that the exact functional form of the relationship 

between the dependent variable - conflicts, and the explanatory variables are not a 

priori known (Qin, Ivan and Ravishanker, 2004). There is no clear evidence that this 

relationship is linear and an assumption like this can lead to non-realistic estimates and 

conclusions. Hence, for the analysis in the thesis a number of transformations was 

considered, and the different independent variable combinations arising from the 

different transformations were tested. The form of the independent variables tested 

were linear, squared and logarithmic where this was feasible (non-negative or zero 

values). Dummy variables such as the variable “merging” which described whether a 

segment of the motorway was a merging section were not transformed. Only the results 

using the transformations which produced the most parsimonious model are presented 

in this section. 

Before the start of the modelling of traffic conflicts, the correlation between the 

possible independent variables was examined. The inclusion of a pair of independent 

variables in which the collinearity problem exists may significantly affects the results 

and conclusions of the statistical model. Hence, the Pearson correlation coefficient 

results are presented in Table 6.11. The value of a negative Pearson correlation 

coefficient can vary between -1 and 1 and its equation is presented in equation ( 6.2) . 
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𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)
2∑ (𝑥𝑖 − 𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

 
( 6.2) 

 

where 𝑥𝑖 and 𝑦𝑖  are the individual observations and 𝑥̅, 𝑦̅ the corresponding means. A 

value of -1 demonstrates a perfect negative correlation whereas a value of 1 

demonstrates a perfect positive correlation. The threshold for the Pearson correlation 

coefficient so as to classify a pair of variables as correlated is decided to be 0.8.  Hence 

the problematic pairs in terms of correlation pairs are identified in Table 6.11 in bold 

fonts.  
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Table 6.11 Correlation matrix for independent variables used in the statistical models  
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As discussed in the method section, when examining data which are produced by 

neighbouring areas -in this thesis neighbouring motorway segments- often, a problem 

of spatial autocorrelation occurs which needs to be taken into consideration when 

attempting to model the dependent variable. In order to prove the existence of spatial 

autocorrelation one should calculate the Moran’s I test. Hence, the spatial 

autocorrelation of the number of conflicts between neighbouring motorway segments 

was tested using a global Moran’s I which measures similarities and dissimilarities in 

observations across space. The Moran’s I statistic is calculated based on the following 

equation: 

𝐼 =
𝑁

𝑊
 
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥)̅̅̅(𝑥𝑗 − 𝑥)̅̅̅𝑗𝑖

∑ (𝑥𝑖 − 𝑥)̅̅̅2𝑖

 
( 6.3) 

 

Where N is the number of spatial units indexed by i and j, x the variable of interest and 

𝑥̅ its mean; 𝑤𝑖𝑗 a spatial weights matrix as described in section 4.3.3 and W the sum 

of all 𝑤𝑖𝑗. The value of Moran’s I calculated for the dataset of this thesis is 0.40 with 

a standard error of 0.01793 which indicates the presence of spatial autocorrelation in 

the dataset.  

For the purpose of this thesis several models which take into account spatial 

autocorrelation are developed using the Gibb’s sampling method (known as the 

WinBugs statistical software) which allows the development of Bayesian models and 

calculates the coefficients of the model based on the Markov Chains Monte Carlo 

Simulation method.  

After removing all the insignificant independent variables and taking into 

consideration the correlated pairs of them, the following Bayesian hierarchical 

negative binomial model is calculated. The general equation of this model is described 

in section 4.3.3. equation ( 4.29) and is adapted for the purpose of the thesis to include 

a random intercept term which describes similarities at the motorway segment level;  

ln(𝜇𝑖) = ln(𝑡𝑖) + (𝑏0 + 𝑏𝑋𝑖) + 𝑆𝐶𝑖 + 𝑈𝐻𝑖 + 𝐿𝑗  ( 6.4) 

 

where 𝐿𝑗 is the random intercept at the motorway segment level and the rest described 

in section 4.3.3.   
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To derive the final posterior distributions of the coefficients of the model above, the 

model was run using 3 Markov chains. Initially 10,000 iterations as a warm-up for the 

model and consequently another 100,000 were conducted using the 3 chains in order 

to obtain a final set of posterior estimates. After this number of iterations the chains 

seemed to converge to the values of the coefficients.  The estimates of the significant 

variables are presented in Table 6.12. 

Table 6.12 Estimation results for traffic conflict Bayesian hierarchical model with spatial 

autocorrelation 

Conflicts mean sd MC error 
2.5% 

percentile 

97.5% 

percentile 

Market 

Penetration Rate 
-0.01896 0.001615 2.82 x 10-5 -0.0221 -0.0158 

Standard 

Deviation of 

Speeds between 

lanes 

0.2688 0.06721 0.00016 0.1336 0.398 

Spatial 

Correlation s.d. 
0.1306 0.1068 0.004254 0.02441 0.4457 

Segment i.d. 

random 

intercept s.d. 

0.7352 0.06183 0.001425 0.5972 0.8468 

Unobserved 

heterogeneity 

s.d. 

0.05894 0.03523 0.00237 0.02467 0.1504 

Constant 0.9335 0.1998 0.008859 0.5689 1.29 

DIC= 2066.93,  pD = 50.24, 𝑫̅= 2016.69 

 

Initially by observing the results of the table above, one can notice that the coefficient 

of the exposure variable is missing from the original equation of the model. This is 

because the effect of the exposure variable in the models developed was proven to be 

insignificant. This result is logical since approximately the same amount of traffic flow 
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runs through these sections hence, the variable flow didn’t vary in a statistically 

significant way across the motorway segments.  

As can be seen from Table 6.12 the posterior means for the standard deviation of 

spatial correlation (SC) is 0.73 and is statistically significant, suggesting that traffic 

conflicts are spatially correlated among neighbouring motorway segments. However, 

the value is low compared to other studies employing this method (Quddus, 2008). 

Similarly, the standard deviation of the random intercept at the segment level and the 

unobserved heterogeneity are also statistically significant.  

The effect of the CAV market penetration rate is negative meaning that as the market 

penetration rate increases the conflicts decreases which is in line with the results 

presented in section 6.2. In order to calculate the actual effect of the market penetration 

rate one should employ the measure of elasticity since the relationship between 

conflicts and market penetration rate is logarithmic-linear. Hence the formula of 

elasticity b*𝑥̅ is employed to calculate an elasticity value of -0.95 which means that if 

CAV market penetration rate increases by 1%, then the amount of average conflicts in 

the segment would decrease by 0.95%. This observation can be visually confirmed by 

observing Figure 6.9. A downward trend can be observed in traffic conflicts as market 

penetration rate increases and some significant spikes are observed in traffic conflicts 

in certain segments. 

Standard deviation between lanes seems to affect the number of conflicts per segment. 

Even though this result cannot be directly compared to the existing literature, because 

the majority of the literature is processing accident data, the standard deviation of 

speeds has been proven to have a positive coefficient when used for the modelling of 

accidents (Taylor, 2000; Quddus, 2013). In this thesis, standard deviation of speeds 

between lanes has a positive coefficient as well, which can be interpreted as follows; 

as the standard deviation of speeds between lanes increases by 1 km/h, the logarithm 

of traffic conflicts increases by 0.27. This result seems logical, as speed differences 

across lanes lead to more overtakes in adjacent lanes a fact which increases the 

possibility for a potentially dangerous incident to occur.  

The absence of the dummy variable describing whether the segment is a merging or 

diverging area from the list of significant variables is surprising at first if one considers 

the conclusions of the simulation results above. The motorway merging areas  are 
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generally conflict hotspots where vehicles utilise an acceleration lane to merge 

according to the prevailing traffic conditions (e.g. speed and traffic flow) in the main 

carriageways.  Inevitably, there are larger speed differences between lanes in these 

areas as the accelerating vehicles start from slower speeds in order to reach the average 

value of speed of the motorway. Hence, it is considered that the effect of the presence 

of an merging area is captured by the standard deviation of speeds between lanes. This 

conclusion can be confirmed by observing Figure 6.9 and Table 6.13. In the graph 

depicting the relationship between standard deviation of speeds between lanes and 

segment id significant spikes can be observed at around segment id number 4, 40 and 

54. These segments were merging segments which represented junctions 21, 20 and 

19 merging areas accordingly.  

 
Table 6.13 Group statistics for standard deviation between lanes for merging and non 

merging areas 

Group Statistics for Standard deviation of speeds between lanes  

  N Mean Std. 

Deviation 

Std. Error 

Mean 

Merging 1 44 2.05 1.040 .157 

0 550 1.60 .808 .034 

 

For comparison purposes the simple hierarchical negative binomial model without the 

spatial autocorrelation effect is presented below. The simple model presented in Table 

6.14 seems to have quite similar results with respect to estimated model parameters 

when compared with the hierarchical Bayesian model.   The DIC value of the simple 

model is slightly higher than the one from the spatial model which means that it is not 

the best fitting model.  

 

Table 6.14 Estimation results for the hierarchical Bayesian model without spatial 

correlation 

Conflicts mean sd MC error 
2.5% 

percentile 

97.5% 

percentile 

Market 

Penetration 

Rate 

-0.01893 0.001635 3.64 x 10-5 -0.0224 -0.01583 
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Standard 

Deviation of 

Speeds between 

lanes 

0.263 0.06689 0.00201 0.1316 0.3976 

Segment i.d. 

random 

intercept s.d. 

0.7519 0.04867 0.001306 0.6618 0.8525 

Constant 0.9446 0.1975 0.006728 0.5618 1.336 

DIC= 2067.13,  pD = 50.27, 𝑫̅= 2016.85 

 

Finally, Figure 6.9 presents the scatterplots of the key variables in the statistical 

analysis; traffic conflicts, standard deviation between lanes, segment ID and CAV 

market penetration rate. Most of the scatterplots have been discussed above. However, 

the two bottom scatter plots remain to be discussed which describe the standard 

deviation of speeds between lanes as a function of the segment ID and market 

penetration rate. There is a clear decrease in the range of the standard deviation as 

vehicles proceed to the motorway. This might be due to CAVs identifying adjacent 

CAVs and forming vehicle platoons. Finally, the standard deviation between lanes 

shows an interesting curve as market penetration rate increases. As CAV market 

penetration rate reaches 30% there seems to be an average increase which might be a 

result of low speed vehicle platoons, but a significant downward trend is observed after 

the 30-40% market penetration range.  
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Figure 6.9 Graphs of traffic conflicts and standard deviation between lanes in 

comparison with CAV market penetration rate and segment ID  

 

6.4 Comparison of the Simulation Framework and Statistical Modelling 

Results 

This chapter of the thesis so far presented the results derived by the methods described 

in Chapter 4. This section will compare the results and findings of the two main 

sections of this chapter; the simulation framework results and the statistical modelling 

results on a common base (the RBDMA, sensor error and platoon size scenarios are 

not discussed in this section). The traffic simulation framework and the statistical 

modelling approach employed in this thesis are two methods which are significantly 

heterogeneous. Traffic simulation relies on a set of mathematical equations to describe 

the behaviour of individual vehicles inside a simulated road network, while statistical 

modelling attempts to model a given variable as a function of the variables contained 

in a specific dataset. 

The statistical models were estimated using simulated data produced from the 

simulation framework, so one could argue that the results and conclusions could not 

possibly be different. However, the aim and purpose of statistical modelling is to 
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identify hidden patterns within datasets which cannot be observed by just plotting the 

simulation output. 

To put this in context, the statistical models identified a significant spatial 

autocorrelation pattern within the traffic conflict dataset which was not obvious from 

just observing the total number of conflicts produced by SSAM or by observing the 

heatmaps  (e.g. Figure 6.3). Additionally, from the same heatmaps it was obvious that 

the merging areas of the motorway were conflict hotspots; areas where a high number 

of conflicts are concentrated. However, this result was not directly confirmed by the 

statistical results as the dummy variable which described whether a motorway segment 

was proven to be insignificant. On the other hand, this effect of the merging areas was 

captured by one of their defining characteristics; the standard deviation of speeds 

between lanes. Without the use of statistical analysis this result would not have been 

identified.  

On the other hand, the statistical results agreed on the effect of CAV market 

penetration rate on the number of traffic conflicts. Both methods indicated that as CAV 

market penetration rate increases the number of conflicts decreases. However, by using 

the parameter estimates produced by the statistical modelling one could calculate the 

predicted reduction of conflicts for any given market penetration rate. For instance, 

according to the coefficients calculated, at the 15% market penetration rate, in segment 

number 2 the predicted number of conflicts is 3.28.  

To conclude, the two methods used in this thesis proved to be complementary to each 

other in terms of results. Without the simulation framework to produce the traffic 

conflict dataset, the statistical modelling would not have been possible. Accordingly, 

without the statistical modelling certain patterns in the occurrence of traffic conflicts 

such as the importance of standard deviation of speeds between lanes within a traffic 

microsimulation scenario would not have been identified.  

 

6.5 Policy Recommendations and Practical Implications 

 

One of the objectives of this thesis identified in Chapter 4 (section 4.2) is to 

recommend a number of specific scenarios when the safety impact of CAVs would be 
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maximized. Using the results presented in this chapter, a number of recommendations 

can be made. Additionally, this section will discuss the applicability of the 

methodology applied in this thesis to evaluate other conflicting CAV scenarios.  

Throughout all the simulation results and the statistical results, it is observed that 

specific segments of the motorway are hotspots for traffic conflict occurrence. ; areas 

where a larger number of conflicts is observed. This observation was consistent 

throughout all the studied scenarios. A similar finding was indirectly confirmed by the 

statistical results which indicated that the standard deviation of speeds between lanes 

significantly affects the number of conflicts. The varying platoon size scenarios 

indicated that long platoons travelling in the outermost lane of the motorway could 

potentially block other vehicles from exiting the motorway, especially in the low 

market penetration rates. According to the above, a need to re-evaluate the design of 

the motorway merging and diverging areas so as to accommodate the challenges 

arising by the implementation of CAVs. By designing an environment where a 

smoother integration to the traffic stream of the motorway is ensured, the number of 

conflicts might be reduced. A possible way to do that would be to enlarge the length 

of the acceleration or deceleration lanes in order to ensure that the sufficient lateral 

gap can be identified through the prolonged merging process.  

On the other hand, encouraging results were derived for the readiness level of existing 

vehicle equipment. The sensor error scenarios indicated that current sensor error rates 

do not significantly affect the number of traffic conflicts. However, this result must be 

interpreted according to the underlying assumptions that sensor errors are uncorrelated 

and normally distributed. If a more appropriate error distribution is provided by 

original equipment manufacturers, using the method presented in this thesis, its impact 

on the occurrence of traffic conflicts can be evaluated.   

Several useful insights are derived by the platoon size scenario results. In order to 

maximise the safety impact of CAVs, the correct platoon size should be implemented 

at the correct time. To elaborate on this, it was indicated that when the market 

penetration rate of CAVs was around 25%, a platoon larger than 3 vehicles caused 

more traffic conflicts. This problem was observed mainly because large platoons 

consisted the manoeuvring of vehicles in the motorway difficult. On the other hand, 

when market penetration rate reached 50% and more, as the platoon size increased it 
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provided a reduction of conflicts. The exact market penetration rate percent which 

provided the first positive effect on the number of traffic conflicts was not identified 

in order to provide a break point. However, according to the above, should a platooning 

scheme be employed in UK motorways it is recommended that the optimal platoon 

size should not be a constant number, but it should vary according to the real-time 

market penetration rate of CAVs. Especially during the transition period, the market 

penetration rate of CAVs might vary significantly and a constant real-time monitoring 

of the motorway might be needed to ensure that safety is maximised in real time.  

Finally, the method presented in this thesis and namely; the traffic microsimulation 

software, the calibration and validation process and the CAV modelling technique is 

highly flexible. By appropriately adapting the code presented in Chapter 4 and with 

basic traffic modelling knowledge, a road operator such as Highways England who is 

the company operating the strategic road network, or a local / governmental authority, 

could attempt to evaluate the impact of CAVs on a number of conflicting scenarios 

arising from motorway operational challenges. It must be noted however, that the 

scenarios that can be tested are naturally limited by the capabilities of the simulation 

software and the accompanying C++ code. Possible interesting scenarios could be a 

lane closure due to an accident or a dedicated lane for CAVs. The impact calculated 

could be not only in terms of safety, but also traffic performance (traffic capacity, 

travel time etc.) and environment (vehicle emissions). 

 

6.6 Summary 

 

Section 6.2 presented the results of the traffic microsimulation framework in terms of 

the conflicts calculated through SSAM by using the vehicle trajectory files produced 

by VISSIM. CAVs were represented in the simulation framework according to the 

CAV behaviour algorithm described in chapter 4 of this thesis. Several scenarios were 

tested based on various traffic flow values of a motorway network and fundamental 

operational and technological challenges arising from the implementation of CAVs in 

motorway environments; 

a) Weekday scenarios representing different traffic flow values 

b) Route-based decision-making algorithm (RBDMA) scenarios 
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c) Sensor error scenarios  

d) CAV platoon size scenarios 

The main findings of the weekday scenarios are: 

• A great reduction of traffic conflicts is observed as the market penetration rate 

increases across all different traffic flow values tested;  

• The safety performance of CAVs improves at 25% market penetration rate as 

traffic flow values increases; 

• A relatively smaller improvement is observed from 75% to 100% market 

penetration rates 

• A large concentration of traffic conflicts is observed at motorway merging 

areas  

• The mean TTC value for conflicts increases as market penetration rate 

increases 

The main findings of the RBDMA scenarios are: 

• The RBDMA reduces the number of conflicts furthermore when compared to 

the no-RBDMA scenario 

• The reduction of conflicts when compared to the no-RBDMA scenario 

becomes larger as market penetration rate increases 

• The mean TTC value for conflicts increases compared to the no-RBDMA 

scenario as market penetration rate increases 

The main findings of the sensor error rate scenarios are: 

• Sensor error rates found in existing vehicle equipment does not affect the 

number of conflicts calculated through traffic microsimulation significantly 

The main findings of the platoon size scenarios are: 

• At the 25% market penetration rate, the number of traffic conflicts increases as 

the platoon size increases 

• At the 50% market penetration rate, the number of traffic conflicts is reduced 

when the platoon size increases from 3 to 5 vehicles and remains constant 

between platoon sizes of 5,7 and 9 vehicles 
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• At the 75% and 100% market penetration rates, the number of traffic conflicts 

is reduced significantly as the platoon size increases 

Following, section 6.3 presented the results of the traffic conflict statistical modelling. 

A hierarchical Bayesian negative binomial regression model was developed which 

could take into account spatial autocorrelation of conflicts and unobserved 

heterogeneity. The traffic conflicts were modelled as a function of the traffic 

characteristics of the corresponding motorway segment. 

The main findings of the statistical model developed are: 

• The spatial autocorrelation term is significant in the model which indicates 

similarities in traffic conflict observations between neigbouring motorway 

segments 

• CAV market penetration rate is linked with the number of conflicts with a 

negative significant coefficient; as market penetration rate increases, the 

number of conflicts decreases 

• Standard deviation of speeds between lanes is related with the number of 

conflicts with a positive significant coefficient; as the standard deviation of 

speeds in the motorway segment increases, the number of conflicts increases 

as well 

• The effect of the merging areas of the motorway is captured within the standard 

deviation of speed variable  

  



179 

 

7 Conclusion  

7.1 Summary 

 

CAVs are a rapidly advancing technology which is believed to radically change the 

society as we know it, promising to bring a great benefit in many impact areas such as 

traffic, road safety and the environment. CAVs are at the doorstep of real-world 

implementation and several real-world trials are being conducted worldwide. Despite 

these trials, the aforementioned benefits have not been quantitatively calculated, as 

real-world data are not widely available.  

This is the reason why current literature has concentrated its focus on simulation in 

order to evaluate their impacts, which seems to be the only available alternative as of 

today. CAVs are complex and simulating them is a difficult task. Most studies are 

either developing complex simulation frameworks which do not facilitate the 

collection of significant results or are focusing only on specific characteristics of 

CAVs without including several operational, tactical, strategical and technological 

issues arising from the real-world implementation of CAVs. Concerns about these 

issues exist in another part of the literature, such as the reliability of existing vehicle 

equipment found in CAVs (i.e. radars, lidars) or the real-world implications of vehicle 

platoons. However, these challenges have not yet been investigated within an 

integrated CAV simulation environment. 

This research attempted to evaluate the safety impact of CAVs by developing an 

integrated CAV control algorithm which can address the aforementioned challenges. 

For this purpose, initially, a part of the M1 motorway in the United Kingdom between 

Junctions 19 and 21 is designed within the traffic microsimulation software VISSIM 

according to the real-world geometry of the motorway. The human driver model is 

calibrated and validated in two stages. In the first stage, minute-level real-world 

inductive loop detector data are used in order to calibrate the baseline models in terms 

of traffic characteristics. The inductive loop detector data are processed in order to 

calculate the variables traffic flow, speed distribution and time headway which are 

used as input to the simulation models. The simulation output is compared with the 

real-world data in order to ensure that fundamental traffic flow metrics such as travel 

time and traffic flow are accurately represented in the model. The results of the first 
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stage calibration indicated that no adjustment was needed to the default Wiedemann 

99 car following model parameters.  

The second stage of the calibration process involved the use of primary data collected 

with the instrumented vehicle of Loughborough University. Fifteen real-world trips 

were performed in the study area in order to form the dataset needed for the safety-

oriented calibration. Through the collected data, several Time-to-Collision (TTC) to 

the leading vehicle distributions were calculated. These distributions were compared 

with simulated TTC distributions which calculated through an external application 

programming interface, as TTC distributions are not provided by default in VISSIM. 

The results of this stage of the calibration indicated that the real world TTC 

distributions were significantly different from the simulated TTC distributions. 

Consequently, a sensitivity analysis was performed to maximise the U value of the 

Mann-Whitney statistic test that was performed to examine the difference between the 

two distributions. Through this process, the value of the Wiedemann car following 

model parameter CC3 which is the threshold when a vehicle enters following mode in 

VISSIM was changed from 8 to 5 seconds.  

The CAV driving behaviour was programmed in C++ programming language using 

the aforementioned External Driver Model API. The behaviour aimed to represent all 

subsystems of CAVs. More specifically, the sensing and perception subsystem was 

programmed to include sensor measurement errors and the range of the sensors of the 

vehicles was programmed to be 200 meters according to values found in existing 

literature. The planning and control subsystem were represented with a route-based 

decision-making algorithm (RBDMA) which assigned CAVs in the corresponding 

lanes according to their destination and a longitudinal control and lateral decision-

making algorithm which ultimately led to the formulation of vehicle platoons. The 

formulation of the vehicle platoons was dictated by a set of rules which arise from 

motorway operations and existing literature. The longitudinal time gap in platoons was 

decided to be 0.6 seconds while for lane changing manoeuvres the required minimum 

time gap was decided to be 0.6 seconds from the preceding and the following vehicle.  

The CAV driving behaviour was assigned to a specific vehicle type in VISSIM and 

several market penetration scenarios were tested along with a number of weekday 
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(aiming to represent different traffic flow values) sensor error, platoon size and 

RBDMA scenarios.  

The safety benefit of CAVs was evaluated using traffic conflicts – situations where a 

collision would occur between two vehicles if an evasive manoeuvre is not performed 

by one of them - as a key performance indicator.  The conflicts were calculated through 

the Surrogate Safety Assessment Model, a tool which can process the vehicle 

trajectory files produced by VISSIM and identify traffic conflicts.  The conflicts were 

identified based on surrogate safety measure thresholds (TTC and PET) and by 

projecting the location of the vehicles in time in order to confirm that the two vehicles 

were indeed on a collision course. SSAM subsequently, recorded all conflicts along 

with their location and a number of descriptive statistics for the surrogate safety 

measures. SSAM was able to produce the results for each of the traffic microsimulation 

scenarios mentioned in the previous paragraph. 

The number of conflicts was matched according to their location with a corresponding 

motorway segment which was defined by two consecutive simulation data collection 

points. The result of this matching was a dataset containing the number of conflicts 

along with corresponding traffic measurements such as speed, standard deviation of 

speed, traffic flow as well as motorway geometry characteristics such as curvature 

measured as the number of spinal points observed in the simulation software. This 

dataset was used for the statistical modelling of traffic conflicts.  

Initially, the simulation framework results by weekday indicated that as CAVs 

infiltrate the market, a greater safety benefit is observed. This safety benefit is 

increased in the 25% market penetration rate as the traffic flow values increase, 

whereas smaller improvement is observed when examining the 75% to 100% market 

penetration rates. However, overall the results seemed promising, as CAVs reduced 

traffic conflicts by 94.32% in the best-case scenario. The results highlighted the 

motorway merging areas as problematic in terms of traffic conflict concentration. A 

high number of conflicts was observed in the merging areas and this was also 

highlighted in the corresponding heatmaps. The results for these scenarios was in line 

with a part of relevant literature, however, most of the results were not directly 

comparable due to the significant differences in the underlying assumptions.   
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The results of the RBDMA scenarios indicated that a route-based coordination of a 

CAV fleet would lead to further improvement in terms of traffic safety as compared to 

the baseline Wednesday scenario an improvement of 18.56% to 25% was observed 

based on the CAV market penetration rate. However, a high number of traffic conflicts 

was observed in motorway merging areas again.  

At first glance, sensor error was proven to not significantly affect the number of 

produced conflicts in the traffic microsimulation environment according to the results. 

This initial observation was confirmed by using a Kruskal-Wallis statistical test. This 

result seemed logical according to its assumptions, as the tested sensor error rates were 

small compared to the measured metrics.  

The last set of simulation scenarios were the platoon size scenarios which provided 

interesting insights. Starting at 25% market penetration rate, traffic conflicts seemed 

to increase while the platoon size increased as, long vehicle platoons created problems 

in the vehicles attempting to manoeuvre around the motorway or vehicles attempting 

to exit. However, this problem seemed to improve at the 50% market penetration rate 

and further, since the motorway occupancy rate decreased due to the increasing 

number of platoons. Consequently, vehicle manoeuvring was facilitated and a steady 

decrease in conflicts was observed as the platoon size increased.  

In order to validate the macroscopic observation of the simulation results and identify 

the underlying factors behind the occurrence of traffic conflicts in a traffic 

microsimulation environment, several statistical models were developed using the 

dataset discussed above. Since the traffic conflicts demonstrated a low mean, 

overdispersion and spatial autocorrelation, a hierarchical Bayesian negative binomial 

regression model was developed which took into account spatial autocorrelation and 

unobserved heterogeneity.  

The statistical results identified that the spatial autocorrelation, the random intercept 

at the segment level and the unobserved heterogeneity (uncorrelated random effects) 

terms were statistically significant, a fact which added a new dimension to the 

simulation results. In comparison with the simulation results, the statistical results did 

not indicate the “merging” dummy variable (a variable which was 1 if the motorway 

segment was a merging area or 0 otherwise) as significant to confirm the findings 

directly. Instead, the standard deviation of speeds was identified to have a significant 
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positive effect on the number of traffic conflicts, a result which was in line with 

relevant accident count modelling literature. After careful consideration it was 

discussed that the standard deviation of speeds captured the effect of the merging areas 

as these areas are characterised by high values of standard deviation of speeds. Finally, 

the market penetration rate was found to have a negative effect on the number of traffic 

conflicts which indicates that CAVs will indeed improve road safety as they penetrate 

the market.   

A number of policy recommendations were derived from both the statistical and 

simulation framework results. Initially, the concentration of traffic conflicts in the 

motorway merging areas indicated the need to redesign these specific areas so as to 

ensure a smoother integration of vehicles into the traffic stream of the motorway. A 

possible enlengthening of the acceleration lanes could ameliorate the safety dangers. 

Additionally, as far as platoon size is concerned this thesis concluded that in order to 

maximise the safety benefit, the appropriate platoon size must be implemented at the 

correct point in time, if time can be expressed in terms of CAV market penetration 

rate. When CAV market penetration rate is around 25% a smaller platoon size would 

provide greater safety benefits while longer platoon sizes would be better as the market 

penetration rate increases further.  

 

7.2 Contribution to Knowledge 

 

This research has produced new methodological and quantitative outcomes which 

could be considered for future analyses. The main contributions to knowledge of this 

thesis are: 

1. The utilisation of microscopic real-world driving radar data for the safety-

oriented calibration and validation of the traffic microsimulation model 

This thesis utilised microscopic real-world driving data collected through an 

instrumented vehicle to calculate a Time-to-Collision (TTC) distribution to the 

preceding vehicle. This distribution was compared with a TTC distribution calculated 

through data collected from individual vehicles within the simulation environment 

(VISSIM). Similar processes have been followed in the literature. Most of them 

however, calibrate the driver model in simplistic custom made simulation 
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environments (e.g. Zhu et al., 2018) which do not reflect fundamental challenges 

arising from motorway operations and usually focus on traffic key performance 

indicators. This thesis demonstrated that using the proposed method and the External 

Driver Model API tool of VISSIM the TTC distribution can be reconstructed, and the 

product can be directly compared to the corresponding real-world measurements. Most 

importantly, this method presented in this thesis is flexible, as it can be applied to 

calculate any safety metric which can be calculated with an equation utilising the data 

produced by VISSIM simulation vehicles. This method can be proven valuable when 

CAV data are available, as, using the same method the appropriate car following model 

can be calibrated with regards to safety.  

2. The modelling and effect of sensor error in a traffic microsimulation 

environment 

Addressing fundamental technological challenges arising by the implementation of 

CAVs in a traffic microsimulation environment was as a research gap identified in the 

literature review chapter and sensor error as well as sensor reliability was one of the 

most widespread technological concerns that have been expressed over the years. This 

thesis presented a method to program the sensor error as a normally distributed 

additive term to the measurements of the traffic microsimulation software which 

defined the longitudinal and lateral control of the vehicle. This behaviour aimed to 

simulate the behaviour of sensor error in the real world. The sensor error distribution 

contained justified assumptions based on literature, regarding the form of its statistical 

distribution and its temporally uncorrelated values. However, using the proposed 

methodology any distribution or pattern within the error can be simulated. 

To the author’s knowledge, the safety impact of sensor error has not been investigated 

before in an integrated traffic microsimulation environment. The testing of the 

aforementioned sensor errors added to the existing knowledge, by indicating that even 

though the public is concerned about sensor errors, they are not significantly large to 

affect the number of traffic conflicts in the simulated motorway environment.  

3. The safety impact of CAV platoon size in a motorway environment 

Even though the algorithms behind of platoon formulation in a motorway have been 

widely researched, the exact effect of platoon size on motorway safety had not been 

researched previously. The investigation of the safety impact of CAV platoon size 
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conducted in this thesis increased the understanding about the impact of platoon size 

on traffic safety and thanks to this, a number of practical implications and policy 

recommendations were made. More specifically, the results indicated that in low 

market penetration rates (around 25%) a lower platoon size value (3) would improve 

motorway safety when compared with larger platoon size values (5, 7 or 9) as long 

vehicle platoons can cause disturbances in the traffic flow of the motorway, especially 

in the merging and diverging areas. Hence, the platoon size of 3 vehicles is proposed 

for low market penetration rates (<25%) whereas, at higher market penetration rates 

(>50%), even a platoon size greater than three vehicles could potentially reduce the 

number of conflicts even more. This can be explained by the fact that the increasing 

number of platoons formulating as the market penetration rate increases, can reduce 

occupancy percentage of the motorway (and consequently the free space for 

manoeuvring) and consequently create more space for manoeuvring. Last but not least, 

the same results indicated the need for a re-evaluation of the design standards of the 

motorway merging and diverging areas. A large number of conflicts was observed in 

these areas and a redesign is deemed necessary so as to accommodate CAVs safely.  

4. The utilisation of simulated traffic and conflict data for use in statistical 

modelling of traffic conflicts   

A significant amount of work has been conducted in the past to model accident counts 

and identify their explanatory variables. In addition to that, studies have attempted to 

derive a functional relationship between accident counts and traffic conflict counts, 

but so far there is a lack of studies investigating the underlying factors behind the 

occurrence of traffic conflicts in a traffic microsimulation environment. In order to 

tackle that, this thesis formulated a dataset containing traffic conflicts (produced by 

SSAM) arising from specific motorway segments along with corresponding traffic 

characteristics per market penetration rate. Using this dataset, a hierarchical Bayesian 

negative binomial model was developed, the results of which advanced the 

understanding of the occurrence of traffic conflicts;  

Traffic conflicts were proven to be spatially correlated between neighbouring 

segments - a characteristic which is also present in accident data. Confirming the  

simulation results, the model indicated that conflicts appear to have a negative 

relationship with market penetration rate; as CAV market penetration rate increases 

the number of conflicts is reduced. Finally, the explanatory factor behind the 



186 

 

concentration of traffic conflicts in the motorway merging areas was clearly shown to 

be the standard deviation of speeds between the lanes.  

 

7.3 Study Limitations and Assumptions 

 

The research presented in this thesis includes limitations and assumptions arising from 

methodological issues and the uncertainty overarching CAVs and their modelling. The 

most important ones are outlined below: 

7.3.1 Traffic microsimulation limitations and assumptions 

 

• Choice of the simulation software: The results of this thesis were produced 

using the traffic microsimulation software VISSIM. Even though the 

simulation model was calibrated and validated using real-world data, the 

results always reflect the underlying assumptions of the software. For example, 

the human driver is assumed to drive according to the Wiedemann 99 car 

following model. 

• Transferability of the Method During the three years of this PhD project, 

similar tools to External Driver Model which was used to simulate CAVs were 

investigated (e.g. Aimsun next API). It was concluded that the equations 

presented for the car following CAV model presented in this thesis can be 

directly transferred to other software ultimately reaching similar results. 

Hence, it is concluded that the methodology presented can be transferable 

• Inductive loop detector data aggregation: The inductive loop detector data 

used in this study to calculate the traffic flow, speed and time headway 

distribution were organised in minute level observations. However, they were 

averaged in order to create annual values which may not reflect special 

conditions arising from day to day incidents in the motorway 

• Limited instrumented vehicle data: The instrumented vehicle data were used 

to calibrate the traffic microsimulation model in terms of safety, by calculating 

a TTC distribution. For this study, a limited number of trips were conducted 

with a limited number of drivers. A larger and more representative dataset 

could produce more reliable real world TTC distributions. 
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• Simulation time of the day: The baseline models developed in this thesis were 

programmed to represent the time of the day between 11-12:00 AM. The traffic 

flow values observed during this time of the day is relatively low compared to 

morning peak and afternoon peak traffic flow values. Hence, the corresponding 

results reflect the impact only during the examined times. The impact of CAVs 

during peak times could be significantly different and needs further 

investigation.  

• CAV longitudinal control: This study assumed that all CAVs will follow the 

longitudinal control algorithm developed which is derived based on simple 

physics equations. However, this is an assumption which cannot be justified 

unless real world CAV data are available.  

• CAV lateral control: This study assumed that should CAVs identify adjacent 

time gaps of 0.6 for lane changes, they could perform a lane change manoeuvre. 

The lane changing manoeuvre itself was controlled by VISSIM and no steering 

wheel control was implemented due to inherent complexity. 

• CAV sensor error: CAV sensor error was programmed to be normally 

distributed and temporally uncorrelated. Different assumptions might have led 

to significantly different outcomes. Additionally, complete sensor error failure 

was not considered in this study as well as sensor error arising from different 

sensors such as camera or lidar. 

• Route-based decision-making algorithm: This study proposed a route-based 

decision-making algorithm which aimed to coordinate CAVs in lanes 

according to their destination. Whether such an algorithm would be the optimal 

to be implemented in a real-world network is unknown. Hence, the 

corresponding results cannot be generalised or transferred.  

• Platoon size scenarios: In the platoon size scenarios, CAVs where assumed to 

comply 100% with the given platoon size and only one size was tested per 

scenario. Additionally, only rear end platoon joining was considered and it was 

assumed that all CAVs would be able to form platoons with all other CAVs, 

something which might not be true due to differences in the underlying 

hardware and software.  

• Conflict identification and validation: The number of conflicts produced by 

each scenario was produced by SSAM, hence the reliability of this number lies 
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on SSAM’s validity. Additionally, the number of traffic conflicts was not 

validated directly using on-site conflict numbers but only indirectly using TTC 

distributions from the instrumented vehicle. 

 

7.3.2 Statistical modelling limitations and assumptions 

 

• Temporal aggregation: The dataset developed for the statistical model 

contained variable values which were averages calculated from the 15 

simulation runs of the corresponding market penetration rate scenario. Such an 

aggregation level might conceal information related to exact traffic flow values 

and the occurrence of conflicts. 

• Omitted variables: The models that have been developed did not control for 

a number of important explanatory variables which may affect the number of 

traffic conflicts such as light, weather, varying traffic flow and pavement 

condition. Such exclusion might have led to erroneous estimations. 

• Spatial and temporal transferability: The statistical model was estimated 

based on simulated data and using the CAV algorithms mentioned above. 

Hence, its results are closely connected to the corresponding assumptions and 

they cannot be transferred or generalised. By calculating statistical models 

from more networks and CAV control algorithms the transferability of the 

proposed model could be justified. 

 

 

7.4 Extensions and Suggestions for Future Research 

 

The work that has been presented in this thesis is a promising and flexible approach 

that can easily be extended or adapted to accommodate the needs of a researcher.  

Hence, considering also the limitations discussed above, the following 

recommendations for improvement and extension can be made for future work.   

The most fundamental improvement of the method presented in this thesis would be 

the use of CAV data to validate the developed CAV algorithm. A validated CAV 
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control algorithm would add tremendous value to the research and would be able to 

calculate CAV impacts more reliably. However, it must be acknowledged that such 

data are extremely difficult to acquire. Once they are available however, several 

machine learning techniques such as deep reinforcement learning can be developed to 

train a simulation driver model or agent to mimic the CAV behaviour. The developed 

trained models can be directly input into the methodology presented in this thesis in 

order to simulate CAVs accurately without having to rely on assumptions.    

Following, using the methodology presented in this thesis, a number of widely 

discussed in existing literature scenarios can be developed. Such scenarios can be 

infrastructure-based such as the investigation of segregated operation of CAVs in the 

motorway with isolated or integrated dedicated CAV lanes, or vehicle-based scenarios 

such as connectivity-based scenarios (packet loss or packet lag) or high traffic flow 

value scenarios (peak scenarios). Special focus should be given to cooperative fleet-

based scenarios such as the RBDMA algorithm presented in this thesis. Similar 

scenarios could include the investigation of the impact of CAVs in motorway 

shockwave propagation or scenarios where CAVs would have to make a cooperative 

decision based on a motorway incident such as a lane closure or a stopped vehicle. 

Once again, rapidly advancing artificial intelligence techniques could be a valuable 

ally in the implementation of this kind of scenarios. For cooperative decision making 

for example, swarm intelligence might provide excellent foundation for development.   

Future research should also consider alternative or more reliable ways to identify and 

predict conflicts in a traffic microsimulation environment. Using the API of VISSIM 

specific vehicle trajectory data can be extracted and subsequently used to derive a 

number of surrogate safety measures and evasive manoeuvre thresholds in order to 

identify a conflict. With that being said, if such a conflict identification and 

subsequently prediction algorithm is developed, it could potentially be implemented 

in individual vehicles within VISSIM in order to predict simulation conflicts and 

perform evasive manoeuvres in real time. 

A more reliable definition of traffic conflicts could lead to a more reliable traffic 

conflict data. This consequently would affect the quality of the statistical output, which 

relies on the quality and detail of the conflict data. Hence, an improvement would be 

the temporal disaggregation of the conflict data, so as to investigate the effect of traffic 
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flow on conflicts. Future conflict analysis should also investigate the inclusion of 

multivariate conflict analysis by grouping the conflicts according to their severity. The 

inclusion of additional parameters in the statistical modelling could also be 

investigated such as real-world geometry data or simulation weather data.  

Finally, this thesis presented a methodology to identify the underlying factors affecting 

the safety impact of CAVs. Similar research should continue investigating them under 

different scenario specifications and assumptions so as to identify the set of challenges 

arising from their implementation in the real world.  

 

 

 

 

  



191 

 

References 

Aarts, L. and Van Schagen, I. (2006) ‘Driving speed and the risk of road crashes: A 

review’, Accident Analysis and Prevention, 38(2), pp. 215–224. doi: 

10.1016/j.aap.2005.07.004. 

Abdel-Aty, M., Dilmore, J. and Dhindsa, A. (2006) ‘Evaluation of variable speed 

limits for real-time freeway safety improvement’, Accident Analysis and Prevention, 

38(2), pp. 335–345. doi: 10.1016/j.aap.2005.10.010. 

Abdel-Aty, M. and Pande, A. (2005) ‘Identifying crash propensity using specific 

traffic speed conditions’, Journal of Safety Research, 36(1), pp. 97–108. doi: 

10.1016/j.jsr.2004.11.002. 

Aghabayk, K. et al. (2013) ‘A novel methodology for evolutionary calibration of 

vissim by multi-threading’, Australasian Transport Research Forum, ATRF 2013  - 

Proceedings, (October), pp. 1–15. 

Ahammed, M. A., Hassan, Y. and Sayed, T. A. (2008) ‘Modeling Driver Behavior and 

Safety on Freeway Merging Areas’, Journal of Transportation Engineering, 134(9), 

pp. 370–377. doi: 10.1061/(ASCE)0733-947X(2008)134:9(370). 

Allaby, P., Hellinga, B. and Bullock, M. (2007) ‘Variable speed limits: Safety and 

operational impacts of a candidate control strategy for freeway applications’, IEEE 

Transactions on Intelligent Transportation Systems, 8(4), pp. 671–680. doi: 

10.1109/TITS.2007.908562. 

American Society of Engineers (2014) ‘Siegfriend Marcus Car’. 

Anderson, James M et al. (2014) ‘Brief History and Current State of Autonomous 

Vehicles’, Autonomous Vehicle Technology, (May 2019), pp. 55–74. 

Anderson, J M et al. (2014) ‘The Promise and Perils of Autonomous Vehicle 

Technology’, in Autonomous Vehicle Technology: A Guide for Policymakers., pp. 12–

16. 

Arem, B. Van et al. (2005) ‘The impact of Co-operative Adaptive Cruise Control on 

traffic flow characteristics’. 

Atiyeh, C. (2012) ‘Predicting Traffic Patterns, One Honda at a Time’, MSN Auto. 



192 

 

ATKINS (2016a) Research on the impacts of connected and autonomous vehicles 

(CAVs) on traffic flow. 

ATKINS (2016b) Research on the impacts of connected and autonomous vehicles 

(CAVs) on traffic flow. 

ATKINS (2016c) Research on the impacts of connected and autonomous vehicles 

(CAVs) on traffic flow (results). 

BBC (2013) ‘Driverless cars to be tested on UK roads by end of 2013’. 

BBC News (2004) Desert race too tough for robots. 

Berg, V. A. C. Van Den and Verhoef, E. T. (2016) ‘Autonomous cars and dynamic 

bottleneck congestion : The effects on capacity , value of time and preference 

heterogeneity’, Transportation Research Part B. Elsevier Ltd, 94, pp. 43–60. doi: 

10.1016/j.trb.2016.08.018. 

Besag, J. (1974) ‘Spatial Interaction and the Statistical Analysis of Lattice Systems’, 

Journal of the Royal Statistical Society: Series B (Methodological), 36(2), pp. 192–

225. doi: 10.1111/j.2517-6161.1974.tb00999.x. 

Bose, A. and Ioannou, P. A. (2003) ‘Mixed manual / semi-automated traffic : a 

macroscopic analysis’, 11, pp. 439–462. doi: 10.1016/j.trc.2002.04.001. 

Boxill, S. A. and Yu, L. (2000) ‘An evaluation of traffic simulation models for 

supporting ITS development’, Report No. SWUTC/00/167602-1, (713), pp. 1–116. 

Burns, L. D. (2013) ‘A vision of our transport future’, Nature International weekly 

Journal of Science, 497(7448), pp. 181–182. 

Campbell, M. et al. (2010) ‘Autonomous driving in urban environments : approaches 

, lessons and challenges’, Philosophical Transcations of the Royal Society of London 

A: Mathematical, Physical and Engineering Sciences, 368.1928, pp. 4649–4672. doi: 

10.1098/rsta.2010.0110. 

De Ceunynck, T. (2017) Defining and applying surrogate safety measures and 

behavioural indicators through site-based observations. 

Chang, L. Y. (2005) ‘Analysis of freeway accident frequencies: Negative binomial 

regression versus artificial neural network’, Safety Science, 43(8), pp. 541–557. doi: 



193 

 

10.1016/j.ssci.2005.04.004. 

Chen, T. D., Kockelman, K. M. and Hanna, J. P. (2016) ‘Operations of a shared, 

autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure 

decisions’, Transportation Research Part A: Policy and Practice. Elsevier Ltd, 94, pp. 

243–254. doi: 10.1016/j.tra.2016.08.020. 

Chen, X. et al. (2017) ‘Driving decision-making analysis of lane-changing for 

autonomous vehicle under complex urban environment’, Proceedings of the 29th 

Chinese Control and Decision Conference, CCDC 2017. IEEE, pp. 6878–6883. doi: 

10.1109/CCDC.2017.7978420. 

Continental (2012) ARS 30X /-2 /-2C/-2T/-21 Long Range Radar Specifications. 

Available at: http://www.conti-

online.com/www/industrial_sensors_de_en/themes/ars_300_en.html. 

Cooper, P. J. (1984) ‘Experience with traffic conflicts in Canada with emphasis on 

post encroachment time techniques’, in International calibration study of traffic 

conflict techniques. Springer, pp. 75–96. 

Daganzo, C. F. and Cassidy, M. J. (2008) ‘Effects of high occupancy vehicle lanes on 

freeway congestion’, Transportation Research Part B: Methodological, 42(10), pp. 

861–872. doi: 10.1016/j.trb.2008.03.002. 

Dahlgren, J. (2002) ‘High-occupancy/toll lanes: Where should they be implemented?’, 

Transportation Research Part A: Policy and Practice, 36(3), pp. 239–255. doi: 

10.1016/S0965-8564(00)00047-1. 

Dalal, N. and Triggs, B. (2005) ‘Histograms of Oriented Gradients for Human 

Detection’, Computer Society Conference on Computer Vision and Pattern 

Recognition, IEEE. CVPR (1), pp. 886–893. 

Daniels, S. et al. (2010) ‘Explaining variation in safety performance of roundabouts’, 

Accident Analysis and Prevention, 42(2), pp. 393–402. doi: 

10.1016/j.aap.2009.08.019. 

Davies, A. (2016) Google’s Self-Driving Car caused its first Crash. 

Davis, L. C. (2017) ‘Dynamic origin-to-destination routing of wirelessly connected, 

autonomous vehicles on a congested network’, Physica A: Statistical Mechanics and 



194 

 

its Applications. Elsevier B.V., 478, pp. 93–102. doi: 10.1016/j.physa.2017.02.030. 

Department for Transport (2015) Vehicle Licensing Statistics : Quarter 4 ( Oct - Dec 

) 2014. 

Dowling, R., Skabardonis, A. and Alexiadis, V. (2004) ‘Traffic Analysis Toolbox 

Volume III : Guidelines for Applying Traffic Microsimulation Modeling Software’, 

Rep. No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, 

Washington, D.C, III(July), p. 146. 

Elvik, R., Christensen, P. and Amundsen, A. (2004) ‘Speed and road accidents: An 

evaluation of the Power Model’, TOI report, 740(December), p. 134. 

Eskandarian, A. (2012) Handbook of Intelligent Vehicles. 

Essa, M. and Sayed, T. (2015) ‘Transferability of calibrated microsimulation model 

parameters for safety assessment using simulated conflicts’, Accident Analysis and 

Prevention. Elsevier Ltd, 84, pp. 41–53. doi: 10.1016/j.aap.2015.08.005. 

Fagnant, Daniel J and Kockelman, K. (2015) ‘Preparing a nation for autonomous 

vehicles : opportunities , barriers and policy recommendations’, Transportation 

Research Part A. Elsevier Ltd, 77, pp. 167–181. 

Fagnant, Daniel J. and Kockelman, K. (2015) ‘Preparing a nation for autonomous 

vehicles: Opportunities, barriers and policy recommendations’, Transportation 

Research Part A: Policy and Practice. Elsevier Ltd, 77, pp. 167–181. 

Fagnant, D. J., Kockelman, K. and Prateek, B. (2015) ‘Operations of Shared 

Autonomous Vehicle Fleet for Austin, Texas Market’, Trasportation Research 

Record:Journal of the Transportation Research Board 256, pp. 98–106. 

Fagnant, D. and Kockelman, K. M. (2014) ‘The Travel and Environmental 

Implications of Shared Autonomous Vehicles, Using Agent-based Model Scenarios’, 

Transportation Research Part C, 40, pp. 1–13. doi: 10.1016/j.trc.2013.12.001. 

Fan, R. et al. (2013) ‘Using VISSIM simulation model and Surrogate Safety 

Assessment Model for estimating field measured traffic conflicts at freeway merge 

areas’, IET Intelligent Transport Systems, 7(1), pp. 68–77. doi: 10.1049/iet-

its.2011.0232. 



195 

 

Farah, H. and Koutsopoulos, H. N. (2014) ‘Do cooperative systems make drivers’ car-

following behavior safer?’, Transportation Research Part C: Emerging Technologies. 

Elsevier Ltd, 41, pp. 61–72. doi: 10.1016/j.trc.2014.01.015. 

Farhadi, A. et al. (2009) Describing Objects by their Attributes, Computer Society 

Conference on Computer Vision and Pattern Recognition. 

Federal Highway Administration (2003) Surrogate Safety Measures From Traffic 

Simulation Models Final Report. 

Fellendorf, M. and Vortisch, P. (2001) ‘Validation of the Microscopic Traffic Flow 

Model VISSIM in Different Real-World Situations’, Transportation Research Board 

80th Annual Meeting, (January 2001), pp. 1–9. Available at: 

http://trid.trb.org/view.aspx?id=689890. 

Fernandes, P. and Nunes, U. (2010) ‘Platooning of autonomous vehicles with 

intervehicle communications in SUMO traffic simulator’, IEEE Conference on 

Intelligent Transportation Systems, Proceedings, ITSC. IEEE, pp. 1313–1318. doi: 

10.1109/ITSC.2010.5625277. 

Figueiredo, M. C. et al. (2009) ‘An Approach to Simulation of Autonomous Vehicles 

in Urban Traffic Scenarios’, Proceedings of the 12th International IEEE Conference 

on Intelligent Transportation Systems, St. Louis, MO, USA, October 3-7, 2009, (June), 

pp. 322–327. doi: 10.1109/ITSC.2009.5309524. 

Formosa, N., Quddus, M. and Ison, S. (2019) ‘Predicting Real-Time Traffic Conflicts 

Using Deep Learning’, in Proceedings of the Transportation Research Board 98th 

Annual Meeting. 

Forrest, A., Konca, M. and Ovp, I. Q. P. (2007) ‘Autonomous Cars and Society’, 

01609(508). 

Fridman, L., Jenik, B. and Reimer, B. (2016) ‘Arguing Machines: Perception-Control 

System Redundancy and Edge Case Discovery in Real-World Autonomous Driving’. 

Gao, Y. and Rakha, H. (2008) Calibration and Comparison of the VISSIM and 

INTEGRATION Microscopic Traffic Simulation Models. 

Garber, N. J. and Ehrhart, A. A. (2007) ‘Effect of Speed, Flow, and Geometric 

Characteristics on Crash Frequency for Two-Lane Highways’, Transportation 



196 

 

Research Record: Journal of the Transportation Research Board, 1717(1), pp. 76–83. 

doi: 10.3141/1717-10. 

Gelman, A. et al. (2013) Bayesian Data Analysis, Third Edition. 

Genders, W. and Razavi, S. N. (2015) ‘Impact of Connected Vehicle on Work Zone 

Network Safety through Dynamic Route Guidance’, Journal of Computing in Civil 

Engineering, 30(2), p. 04015020. doi: 10.1061/(asce)cp.1943-5487.0000490. 

Gettman, D. et al. (2008) ‘Surrogate Safety Assessment Model and Validation : Final 

Report’, (June), p. FHWA-HRT-08-051. 

Gipps, P. G. (1981) ‘A behavioural car-following model for computer simulation’, 

Transportation Research Part B, 15(2), pp. 105–111. doi: 10.1016/0191-

2615(81)90037-0. 

Gitelman, V. et al. (2014) ‘The Relationship Between Road Accidents and 

Infrastructure Characteristics of Low-Volume Roads in Israel’, Proceedings of Second 

International Conference on Traffic and Transport Engineering (ICTTE), (January 

2015), pp. 350–358. 

Goldstein, H. (2011) Multilevel statistical models. 

Golob, T. F., Recker, W. W. and Levine, D. W. (1990) ‘Safety of freeway median high 

occupancy vehicle lanes: A comparison of aggregate and disaggregate analyses’, 

Accident Analysis and Prevention, 22(1), pp. 19–34. doi: 10.1016/0001-

4575(90)90004-5. 

Gomes, G., May, A. and Horowitz, Ro. (2004) ‘Congested Freeway Microsimulation 

Using VISSIM’, Transportation Research Record: Journal of the Transportation 

Research Board, 1876, pp. 71–81. 

Green, J. (2018) ‘Tesla: Autopilot was on during deadly Mountain View crash’, The 

Mercury News. Palo Alto. ISSN 0747-2099. OCLC 145122249. 

Grumert, E., Ma, X. and Tapani, A. (2015) ‘Analysis of a cooperative variable speed 

limit system using microscopic traffic simulation’, Transportation Research Part C: 

Emerging Technologies. Elsevier Ltd, 52, pp. 173–186. doi: 

10.1016/j.trc.2014.11.004. 



197 

 

Grumert, E. and Tapani, A. (2012) ‘Impacts of a Cooperative Variable Speed Limit 

System’, Procedia - Social and Behavioral Sciences, 43, pp. 595–606. doi: 

10.1016/j.sbspro.2012.04.133. 

Guériau, M. et al. (2016) ‘How to assess the benefits of connected vehicles? A 

simulation framework for the design of cooperative traffic management strategies’, 

Transportation Research Part C: Emerging Technologies, 67, pp. 266–279. doi: 

10.1016/j.trc.2016.01.020. 

Gurney, J. K. (2014) Sue My Car Not Me: Products Liability and Accidents Involving 

Autonomous Vehicles. 

Habtemichael, F. and Picado-Santos, L. (2013) ‘Sensitivity analysis of VISSIM driver 

behavior parameters on safety of simulated vehicles and their interaction with 

operations of simulated traffic’, 92nd Annual Meeting of the Transportation …, 

(2013), pp. 1–17.  

Hasch, J. et al. (2012) ‘Millimeter-wave technology for automotive radar sensors in 

the 77 GHz frequency band’, IEEE Transactions on Microwave Theory and 

Techniques, 60(3 PART 2), pp. 845–860. doi: 10.1109/TMTT.2011.2178427. 

Hayes, B. (2011) ‘Leave the driving to it’, American Scientist, (99.5), pp. 362–366. 

Hayward, J. C. (1972) Near miss determination through use of a scale of danger. 

Report no. TTSC 7115. 

Heinrich, H. (1941) Industrial Accident Prevention. A Scientific Approach. 

Helbing, D. et al. (2002) ‘MATHEMATICAL AND COMPUTER MODELLING 

Micro-and Macro-Simulation of Freeway Traffic’, PERGAMON Mathematical and 

Computer Modelling, 35(13), pp. 517–547. doi: 10.1016/S0895-7177(02)80019-X. 

Hellinga, B. and Mandelzys, M. (2011) ‘Impact of Driver Compliance on the Safety 

and Operational Impacts of Freeway Variable Speed Limit Systems’, Journal of 

Transportation Engineering, 137(4), pp. 260–268. doi: 10.1061/(ASCE)TE.1943-

5436.0000214. 

Highways Agency UK (2004) ‘M25 Controlled Motorways Summary Report’, 

Highways Agency Publications Group, Bristol, UK., (1). 



198 

 

Hilbe, J. (2012) Negative Binomial Regression. 

van den Hoogen, E. and Smulders, S. (1994) ‘Control by variable speed signs: results 

of the Dutch experiment’, Seventh International Conference on `Road Traffic 

Monitoring and Control’, 1994(391), pp. 145–149. doi: 10.1049/cp:19940444. 

Hörl, S., Ciari, F. and Axhausen, K. W. (2016) ‘Recent perspectives on the impact of 

autonomous vehicles’, Working paper Institute for Transport Planning and Systems, 

10XX(June 2017), p. 38. doi: 10.13140/RG.2.2.26690.17609. 

Van Der Horst, A. R. A. et al. (2014) ‘Traffic conflicts on bicycle paths: A systematic 

observation of behaviour from video’, Accident Analysis and Prevention, 62(April), 

pp. 358–368. doi: 10.1016/j.aap.2013.04.005. 

Huang, F. et al. (2013) ‘Identifying if VISSIM simulation model and SSAM provide 

reasonable estimates for field measured traffic conflicts at signalized intersections’, 

Accident Analysis and Prevention. Elsevier Ltd, 50, pp. 1014–1024. doi: 

10.1016/j.aap.2012.08.018. 

Hydén, C. (1987) ‘The Development of a Method for Traffic Safety Evaluation: the 

Swedish Traffic Conflict Technique’, Bulletin Lund University of Technology, p. 229. 

doi: 10.1002/2016GC006399. 

Ilgin Guler, S., Menendez, M. and Meier, L. (2014) ‘Using connected vehicle 

technology to improve the efficiency of intersections’, Transportation Research Part 

C: Emerging Technologies. Elsevier Ltd, 46, pp. 121–131. doi: 

10.1016/j.trc.2014.05.008. 

iMove Australia (2020) Smart Mobility Projects and Trials Across the World. 

Imprialou, Maria Ioanna M et al. (2016) ‘Re-visiting crash-speed relationships: A new 

perspective in crash modelling’, Accident Analysis and Prevention. Elsevier Ltd, 86, 

pp. 173–185. doi: 10.1016/j.aap.2015.10.001. 

Imprialou, Maria Ioanna M. et al. (2016) ‘Re-visiting crash-speed relationships: A new 

perspective in crash modelling’, Accident Analysis and Prevention. Elsevier Ltd, 86, 

pp. 173–185. doi: 10.1016/j.aap.2015.10.001. 

International Energy Agency (2015) ‘CO2 Emissions from fuel Combustion 

Highlights’, Iea, S/V(IEA-STATISTICS), pp. 1–139. doi: 10.1787/co2-table-2011-1-



199 

 

en. 

Ioannou, P. and Xu, Z. (1994) Throttle and Brake Control Systems for Automatic 

Vehicle Following∗, I V H S Journal. doi: 10.1080/10248079408903805. 

Jeong, E., Oh, C. and Lee, S. (2017) ‘Is vehicle automation enough to prevent crashes? 

Role of traffic operations in automated driving environments for traffic safety’, 

Accident Analysis & Prevention. Elsevier, 104(February), pp. 115–124. doi: 

10.1016/j.aap.2017.05.002. 

Jiang, Y., Li, S. and Shamo, D. E. (2006) ‘A platoon-based traffic signal timing 

algorithm for major-minor intersection types’, Transportation Research Part B: 

Methodological, 40(7), pp. 543–562. doi: 10.1016/j.trb.2005.07.003. 

Jin, Q. et al. (2013) ‘Platoon-based multi-agent intersection management for 

connected vehicle’, IEEE Conference on Intelligent Transportation Systems, 

Proceedings, ITSC. IEEE, (Itsc), pp. 1462–1467. doi: 10.1109/ITSC.2013.6728436. 

Jin, Q. et al. (2014) ‘Improving traffic operations using real-time optimal lane 

selection with connected vehicle technology’, IEEE Intelligent Vehicles Symposium, 

Proceedings. IEEE, (Iv), pp. 70–75. doi: 10.1109/IVS.2014.6856515. 

Kalra, N. and Paddock, S. M. (2016) ‘Driving to safety : How many miles of driving 

would it take to demonstrate autonomous vehicle reliability ?’, Transportation 

Research Part A. Elsevier Ltd, 94, pp. 182–193. 

Katrakazas, C. et al. (2015) ‘Real-time motion planning methods for autonomous on-

road driving: State-of-the-art and future research directions’, Transportation Research 

Part C: Emerging Technologies. Elsevier Ltd, 60, pp. 416–442. doi: 

10.1016/j.trc.2015.09.011. 

Katrakazas, C., Quddus, M. and Chen, W. H. (2018) ‘A simulation study of predicting 

real-time conflict-prone traffic conditions’, IEEE Transactions on Intelligent 

Transportation Systems. IEEE, 19(10), pp. 3196–3207. doi: 

10.1109/TITS.2017.2769158. 

Kelly, A. et al. (2016) Toward Reliable Off Road Autonomous Vehicles Operating in 

Challenging Environments. doi: 10.1177/0278364906065543. 

Kesting, A. et al. (2008) ‘Adaptive cruise control design for active congestion 



200 

 

avoidance’, … Research Part C: Emerging …. 

Kesting, A., Treiber, M. and Helbing, D. (2010) ‘Enhanced intelligent driver model to 

access the impact of driving strategies on traffic capacity.’, Philosophical transactions. 

Series A, Mathematical, physical, and engineering sciences, 368(1928), pp. 4585–

4605. doi: 10.1098/rsta.2010.0084. 

Khondaker, B. and Kattan, L. (2015) ‘Variable speed limit: A microscopic analysis in 

a connected vehicle environment’, Transportation Research Part C: Emerging 

Technologies. Elsevier Ltd, 58, pp. 146–159. doi: 10.1016/j.trc.2015.07.014. 

Kikuchi, S., Uno, N. and Tanaka, M. (2003) ‘Impacts of Shorter Perception-Reaction 

Time of Adapted Cruise Controlled Vehicles on Traffic Flow and Safety’, Journal of 

Transportation Engineering, 129(2), pp. 146–154. doi: 10.1061/(ASCE)0733-

947X(2003)129:2(146). 

Kim, D. G. and Washington, S. (2006) ‘The significance of endogeneity problems in 

crash models: An examination of left-turn lanes in intersection crash models’, Accident 

Analysis and Prevention, 38(6), pp. 1094–1100. doi: 10.1016/j.aap.2006.04.017. 

Kim, K. et al. (2015) An analysis of expected effects of the Autonomous Vehicles on 

Transport and Land use in Korea Working Paper. 

Kockelman, K. et al. (2016) ‘Implications of Connected and Automated Vehicles on 

the Safety and Operations of Roadway Networks: A Final Report’, Fhwa/Tx-16/0-

6849-1, 7. Available at: 

http://orfe.princeton.edu/~alaink/SmartDrivingCars/PDFs/Kockelman_ImplicationsC

AVSafety&Operations .pdf. 

Kokkinogenis, Z. et al. (2011) ‘Towards the next-generation traffic simulation tools : 

a first evaluation Future Urban Transport’, Information Systems and Technologies. 

Kononov, J., Bailey, B. and Allery, B. K. (2008) ‘Relationships between Safety and 

Both Congestion and Number of Lanes on Urban Freeways’, Transportation Research 

Record: Journal of the Transportation Research Board, 2083(1), pp. 26–39. doi: 

10.3141/2083-04. 

Krueger, R., Rashidi, T. H. and Rose, J. M. (2016) ‘Preferences for shared autonomous 

vehicles’, Transportation Research Part C: Emerging Technologies. Elsevier Ltd, 69, 



201 

 

pp. 343–355. doi: 10.1016/j.trc.2016.06.015. 

Kwak, H. C. and Kho, S. (2016) ‘Predicting crash risk and identifying crash precursors 

on Korean expressways using loop detector data’, Accident Analysis and Prevention. 

Elsevier Ltd, 88, pp. 9–19. doi: 10.1016/j.aap.2015.12.004. 

Kwon, J. and Varaiya, P. (2008) ‘Effectiveness of California’s High Occupancy 

Vehicle (HOV) system’, Transportation Research Part C: Emerging Technologies, 

16(1), pp. 98–115. doi: 10.1016/j.trc.2007.06.008. 

Kyriakidis, M., Happee, R. and Winter, J. C. F. De (2015) ‘Public opinion on 

automated driving : Results of an international questionnaire among 5000 

respondents’, Transportation Research Part F: Psychology and Behaviour. Elsevier 

Ltd, 32, pp. 127–140. doi: 10.1016/j.trf.2015.04.014. 

Lamotte, O. et al. (2010) ‘Submicroscopic and physics simulation of autonomous and 

intelligent vehicles in virtual reality’, Proceedings - 2nd International Conference on 

Advances in System Simulation, SIMUL 2010, pp. 28–33. doi: 

10.1109/SIMUL.2010.19. 

Lantos, B. and Maarton, L. (2011) Nonlinear control of vehicles and Robots. Springer. 

Lee, C., Hellinga, B. and Saccomanno, F. (2003) ‘Proactive Freeway Crash Prevention 

Using Real-Time Traffic Control’, Canadian Journal of Civil Engineering, 6(519), pp. 

1–28. 

Lee, C., Hellinga, B. and Saccomanno, F. (2006) ‘Evaluation of variable speed limits 

to improve traffic safety’, Transportation Research Part C: Emerging Technologies, 

14(3), pp. 213–228. doi: 10.1016/j.trc.2006.06.002. 

Lee, J. and Park, B. (2012) ‘Development and evaluation of a cooperative vehicle 

intersection control algorithm under the connected vehicles environment’, IEEE 

Transactions on Intelligent Transportation Systems. IEEE, 13(1), pp. 81–90. doi: 

10.1109/TITS.2011.2178836. 

Legislative Council (2011) ‘Assembly Bill No. 511–Committee on Transportation’, 

(511), pp. 1–6. 

Li, Y. et al. (2016) ‘Reducing the risk of rear-end collisions with infrastructure-to-

vehicle (I2V) integration of variable speed limit control and adaptive cruise control 



202 

 

system’, Traffic Injury Prevention, 17(6), pp. 597–603. doi: 

10.1080/15389588.2015.1121384. 

Li, Y. et al. (2017a) ‘Evaluation of the impacts of cooperative adaptive cruise control 

on reducing rear-end collision risks on freeways’, Accident Analysis and Prevention, 

98, pp. 87–95. doi: 10.1016/j.aap.2016.09.015. 

Li, Y. et al. (2017b) ‘Evaluation of the impacts of cooperative adaptive cruise control 

on reducing rear-end collision risks on freeways’, Accident Analysis & Prevention, 98, 

pp. 87–95. doi: 10.1016/j.aap.2016.09.015. 

Li, Y. et al. (2017c) ‘Evaluation of the impacts of cooperative adaptive cruise control 

on reducing rear-end collision risks on freeways’, Accident Analysis and Prevention, 

98, pp. 87–95. doi: 10.1016/j.aap.2016.09.015. 

Li, Z. et al. (2013) ‘Modeling Reservation-Based Autonomous Intersection Control in 

VISSIM Modeling Reservation-Based Autonomous Intersection Control in VISSIM’, 

Transportation Research Record: Journal of the Transportation Research Board, 

2381, pp. 81–90. doi: 10.3141/2381-10. 

Li, Z. et al. (2014) ‘Development of a variable speed limit strategy to reduce secondary 

collision risks during inclement weathers’, Accident Analysis and Prevention, 72, pp. 

134–145. doi: 10.1016/j.aap.2014.06.018. 

Liden, D. (2013) What is a Driverless Car? 

Litman, T. (2015) ‘Autonomous Vehicle Implementation Predictions Implications for 

Transport Planning’, 42(January 2014), pp. 36–42. 

Liu, F. et al. (2019) ‘Can autonomous vehicle reduce greenhouse gas emissions? A 

country-level evaluation’, Energy Policy. Elsevier Ltd, 132(June), pp. 462–473. doi: 

10.1016/j.enpol.2019.06.013. 

Lloyd, R. (2014) ‘Autonomous Vehicle Law Report and Recommendations to the 

ULC I . Definitions of an “ Autonomous V ehicle ”’, pp. 1–22. 

Lord, D. and Mannering, F. (2010) ‘The statistical analysis of crash-frequency data: A 

review and assessment of methodological alternatives’, Transportation Research Part 

A: Policy and Practice. Elsevier Ltd, 44(5), pp. 291–305. doi: 

10.1016/j.tra.2010.02.001. 



203 

 

Lu, J. J., Pirinccioglu, F. and Pernia, J. C. (2005) ‘Safety Evaluation of Right-Turns 

Followed by U-Turns at Signalized Intersection (Six or More Lanes) as an Alternative 

to Direct Left Turns: Conflict Data Analysis’. Available at: 

http://www.fdot.gov/research/Completed_Proj/Summary_TE/FDOT_BC353_39_rpt

_1.pdf. 

M C Taylor, D. A. lynam and A. B. (2000) ‘The effects of drivers ’ speed on the 

frequency of road accidents Prepared for Road Safety Division , Department of the’, 

p. 56. 

Ma, J. and Kockelman, K. M. (2006) ‘for Models of Injury Count , by Severity’, 

(1950), pp. 24–34. 

Marchant, G. E. and Lindor, R. A. (2012) ‘The Coming Collision Between 

Autonomous Vehicles and the Liability System’, 52(4). 

Martin, J. (2002) ‘Relationship between crash rate and hourly traffic flow on.pdf’, 34, 

pp. 619–629. 

Menendez, M. and Daganzo, C. F. (2007) ‘Effects of HOV lanes on freeway 

bottlenecks’, Transportation Research Part B: Methodological, 41(8), pp. 809–822. 

doi: 10.1016/j.trb.2007.03.001. 

Mersky, A. C. and Samaras, C. (2016) ‘Fuel economy testing of autonomous vehicles’, 

Transportation Research Part C: Emerging Technologies. Elsevier Ltd, 65, pp. 31–

48. doi: 10.1016/j.trc.2016.01.001. 

Milakis, D. et al. (2015) ‘Development of automated vehicles in the Netherlands: 

scenarios for 2030 and 2050’, Transport Policy. 

Milan??s, V. and Shladover, S. E. (2014) ‘Modeling cooperative and autonomous 

adaptive cruise control dynamic responses using experimental data’, Transportation 

Research Part C: Emerging Technologies, 48, pp. 285–300. doi: 

10.1016/j.trc.2014.09.001. 

Milton, J. and Mannering, F. (1998a) ‘The relationship among highway geometrics, 

traffic-related elements and motor-vehicle accident frequencies’, Transportation, 

25(4), pp. 395–413. doi: 10.1023/A:1005095725001. 

Milton, J. and Mannering, F. (1998b) ‘The relationship among highway geometrics, 



204 

 

traffic-related elements and motor-vehicle accident frequencies’, Transportation, 

25(4), pp. 395–413. doi: 10.1023/A:1005095725001. 

Monteil, J. et al. (2014) ‘Linear and weakly nonlinear stability analyses of cooperative 

car-following models’, IEEE Transactions on Intelligent Transportation Systems, 

15(5), pp. 2001–2013. doi: 10.1109/TITS.2014.2308435. 

Morando, M. M., Truong, L. T. and Vu, H. L. (2017) ‘Investigating safety impacts of 

autonomous vehicles using traffic micro-simulation’, Australasian Transport 

Research Forum, (November), pp. 1–6. 

Mouhagir, H. et al. (2017) ‘Trajectory Planning for Autonomous Vehicle in Uncertain 

Environment Using Evidential Grid’, IFAC-PapersOnLine, 50(1), pp. 12545–12550. 

doi: 10.1016/j.ifacol.2017.08.2193. 

National Highway Traffic Safety Administration (2008) ‘National Motor Vehicle 

Crash Causation Survey Report to Congress’, (July). 

National Highway Traffic Safety Administration (2012) ‘Traffic Safety Facts 2012’. 

National Highway Traffic Safety Administration (2013a) ‘Preliminary Statement of 

Policy Concerning Automated Vehicles’, (Washington D.C.), pp. 1–14. 

National Highway Traffic Safety Administration (2013b) ‘Traffic Safety Facts 2013’. 

Navon, D. (2003) ‘The paradox of driving speed: Two adverse effects on highway 

accident rate’, Accident Analysis and Prevention, 35(3), pp. 361–367. doi: 

10.1016/S0001-4575(02)00011-8. 

Ni, R. and Leung, J. (2014) ‘Safety and Liability of Autonomous Vehicle 

Technologies’, Groups.Csail.Mit.Edu, pp. 1–49. 

Nissan, A. and Koutsopoulosb, H. N. (2011) ‘Evaluation of the impact of advisory 

variable speed limits on motorway capacity and level of service’, Procedia - Social 

and Behavioral Sciences, 16, pp. 100–109. doi: 10.1016/j.sbspro.2011.04.433. 

Noort, M. Van, Arem, B. Van and Park, B. B. (2010) ‘MOBYSIM: an integrated traffic 

simulation platform’, in Intelligent Transportation Systems (ITSC), 2010 13th 

International IEEE Conference, pp. 1301–1306. 

O’Hara, N. et al. (2012) ‘MDDSVsim: an integrated traffic simulation platform for 



205 

 

autonomous vehicle research’, in International workshop on Vehicular Traffic 

Management for Smart Cities (VTM), p. 6. 

Owen, L. E. et al. (2000) ‘Traffic Flow Simulation using Corsim’, pp. 1143–1147. 

Papageorgiou, M., Kosmatopoulos, E. and Papamichail, I. (2008) ‘Effects of Variable 

Speed Limits on Motorway Traffic Flow’, Transportation Research Board, 2047(1), 

pp. 37–48. doi: 10.3141/2047-05. 

Park, B. and Yadlapati, S. (2003) ‘Development and testing of variable speed limit 

logics at work zones using simulation’, Transportation Research Board, 82nd Annual 

Meeting, Washington, DC, (November 2002). 

Park, H. et al. (2012) ‘Investigating Benefits of IntelliDrive in Freeway Operations : 

Lane Changing Advisory Case Study’, 138(September), pp. 1113–1122. doi: 

10.1061/(ASCE)TE.1943-5436.0000407. 

Parker, M. and Zegeer, C. (1988) Traffic Conflict Techniques for Safety and 

Operations: Engineers Guide, Report FHWA-IP-026. 

Payre, W., Cestac, J. and Delhomme, P. (2014) ‘Intention to use a fully automated car : 

Attitudes and a priori acceptability’, Transportation Research Part F: Psychology and 

Behaviour. Elsevier Ltd, 27, pp. 252–263. doi: 10.1016/j.trf.2014.04.009. 

Pereira, J. L. F. (2011) An Integrated Architecture for Autonomous Vehicles 

Simulation. 

Pereira, J. L. F. and Rossetti, R. J. F. (2012) ‘An integrated architecture for 

autonomous vehicles simulation’, Proceedings of the 27th Annual ACM Symposium 

on Applied Computing - SAC ’12, pp. 286–292. 

Petit, J. and Shladover, S. E. (2014) ‘Potential Cyberattacks on Automated Vehicles’, 

pp. 1–11. 

Pijpers, M. (2007) ‘Sensors in ADAS’. 

Pinto, C. (2012) ‘How Autonomous Vehicle Policy in California and Nevada 

Addresses Technological and Non-Technological Liabilities’, 5(1), pp. 1–16. 

Poczter, S. L. and Jankovic, Lu. M. (2014) ‘The Google Car : Driving Toward A Better 

Future ?’, Journal of Business Case Studies - First Quarter 2014, 10(1), pp. 7–14. 



206 

 

Princeton, J. and Cohen, S. (2011) ‘Impact of a dedicated lane on the capacity and the 

level of service of an urban motorway’, Procedia - Social and Behavioral Sciences, 

16, pp. 196–206. doi: 10.1016/j.sbspro.2011.04.442. 

PTV AG (2010) Interface description DriverModel DLL, DriverModel DLL interface 

description. 

PTV AG (2015) ‘Ptv Vissim 8 User Manual’. 

PTV AG (2016) ‘Introduction’, in Transportation Systems Simulation - A Tutorial for 

Multi-Modal Simulation Using VISSIM. 

Qian, X. et al. (2014) ‘Priority-based coordination of autonomous and legacy vehicles 

at intersection’, 2014 17th IEEE International Conference on Intelligent 

Transportation Systems, ITSC 2014. IEEE, pp. 1166–1171. doi: 

10.1109/ITSC.2014.6957845. 

Qin, X., Ivan, J. N. and Ravishanker, N. (2004) ‘Selecting exposure measures in crash 

rate prediction for two-lane highway segments’, Accident Analysis and Prevention, 

36(2), pp. 183–191. doi: 10.1016/S0001-4575(02)00148-3. 

Quddus, M. (2008) ‘Modelling area-wide count outcomes with spatial correlation and 

heterogeneity: An analysis of London crash data’, Accident Analysis and Prevention, 

40(4), pp. 1486–1497. doi: 10.1016/j.aap.2008.03.009. 

Quddus, M. (2013) ‘Exploring the Relationship Between Average Speed, Speed 

Variation, and Accident Rates Using Spatial Statistical Models and GIS’, Journal of 

Transportation Safety and Security, 5(1), pp. 27–45. doi: 

10.1080/19439962.2012.705232. 

Queck, T. et al. (2008) ‘Runtime Infrastructure for Simulating Vehicle-2-X 

Communication Scenarios’, pp. 78–79. 

Quinn, D. J., Gilson, D. R. and Dixon, M. T. (2000) ‘Britain’s First High Occupancy 

Vehicle Lane-The A647 Leeds’, pp. 11–14. 

Rahman, M. S. et al. (2018) ‘Understanding the Highway Safety Benefits of Different 

Approaches of Connected Vehicles in Reduced Visibility Conditions’, Transportation 

Research Record. doi: 10.1177/0361198118776113. 



207 

 

Rahman, M. S. et al. (2019a) ‘Safety benefits of arterials’ crash risk under connected 

and automated vehicles’, Transportation Research Part C: Emerging Technologies. 

Elsevier, 100(January), pp. 354–371. doi: 10.1016/j.trc.2019.01.029. 

Rahman, M. S. et al. (2019b) ‘Safety benefits of arterials’ crash risk under connected 

and automated vehicles’, Transportation Research Part C: Emerging Technologies. 

Elsevier, 100(July 2018), pp. 354–371. doi: 10.1016/j.trc.2019.01.029. 

Rahman, M. S. et al. (2019c) ‘Safety benefits of arterials’ crash risk under connected 

and automated vehicles’, Transportation Research Part C: Emerging Technologies. 

Elsevier, 100(February), pp. 354–371. doi: 10.1016/j.trc.2019.01.029. 

Rahman, M. S. and Abdel-Aty, M. (2018) ‘Longitudinal safety evaluation of 

connected vehicles’ platooning on expressways’, Accident Analysis and Prevention. 

Elsevier, 117(December 2017), pp. 381–391. doi: 10.1016/j.aap.2017.12.012. 

Reed, N. (2015) ‘ITS ( UK ) Members ’ Connected and Autonomous Vehicles 

Capability 2015’, pp. 1–5. 

Reich, S. (2013) Report on Automated and Autonomous Vehicles and Managed Lanes, 

Center for Urban Transportation Research. 

Rigtorp, E. (2010) ‘Sensor Selection with Correlated Noise’, (August). Available at: 

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A570091&dswid=2510. 

Rodoulis, S. (2014) ‘The Impact of Autonomous Vehicles on Cities’, (November), pp. 

12–20. 

Roncoli, C., Papageorgiou, M. and Papamichail, I. (2015) ‘Motorway traffic flow 

optimisation in presence of Vehicle Automation and Communication Systems’, 

Computational Methods in Applied Sciences. Elsevier Ltd, 38, pp. 1–16. doi: 

10.1007/978-3-319-18320-6_1. 

Roncoli, C., Papamichail, I. and Papageorgiou, M. (2015) ‘Model predictive control 

for motorway tra ffi c with mixed manual and VACS-equipped vehicles’, 

Transportation Research Procedia. Elsevier B.V., 10(July), pp. 452–461. doi: 

10.1016/j.trpro.2015.09.095. 

Saunier, N., Sayed, T. and Lim, C. (2007) ‘Probabilistic Collision Prediction for 

Vision-Based Automated Road Safety Analysis pems aong whichtar in dtai by 



208 

 

computing cntinuoslymthe cllo’, in Proceedings of the 2007 IEEE Intelligent 

Transportation Systems Conference, pp. 872–878. 

Schakel, W. J., Arem, B. Van and Netten, B. D. (2010) ‘Effects of Cooperative 

Adaptive Cruise Control on Traffic Flow Stability’, Intelligent Transportation Systems 

(ITSC), 2010 13th International IEEE Conference on, (Idm), pp. 759–764. doi: 

10.1109/ITSC.2010.5625133. 

Schellekens, M. (2015) ‘ScienceDirect Self-driving cars and the chilling effect of 

liability law’, Computer Law & Security Review. Elsevier Ltd, 31(4), pp. 506–517. 

doi: 10.1016/j.clsr.2015.05.012. 

Schnieder, M. (2017) Development of an improved time-to-collision algorithm. 

Schoettle, B. and Sivak, M. (2014) ‘Public Opinion About Self-Driving Vehicles in 

China, India, Japan, The U.S., The U.K. and Australia’, (UMTRI-2014-30 (October)), 

pp. 1–85. doi: UMTRI-2014-30. 

Schultz, G., Mineer, S. and Hamblin, C. (2016) ‘An Analysis of Express Lanes in 

Utah’, Transportation Research Procedia. Elsevier B.V., 15, pp. 561–572. doi: 

10.1016/j.trpro.2016.06.047. 

Shahdah, U., Saccomanno, F. and Persaud, B. (2015) ‘Application of traffic 

microsimulation for evaluating safety performance of urban signalized intersections’, 

Transportation Research Part C: Emerging Technologies. Elsevier Ltd, 60, pp. 96–

104. doi: 10.1016/j.trc.2015.06.010. 

Shankar, V., Mannering, F. and Barfield, W. (2013) ‘Effect of Roadway geometrics 

and environmental factors on rural freeway accident frequencies’, Accident Analysis 

& Prevention, 8(1), pp. 115–123. 

Shi, L. and Prevedouros, P. (2016) ‘Autonomous and Connected Cars: HCM Estimates 

for Freeways with Various Market Penetration Rates’, Transportation Research 

Procedia. Elsevier B.V., 15, pp. 389–402. doi: 10.1016/j.trpro.2016.06.033. 

Shladover, S. E., Station, R. F. and Lu, X. (2015) ‘Cooperative Adaptive Cruise 

Control (Cacc) Definitions and Operating Concepts’, Trb, (November 2014), pp. 1–

16. doi: 10.3141/2489-17. 

Shladover, S. E., Su, D. and Lu, X.-Y. (2012) ‘Impacts of Cooperative Adaptive Cruise 



209 

 

Control on Freeway Traffic Flow’, Transportation Research Record: Journal of the 

Transportation Research Board, 2324(Idm), pp. 63–70. doi: 10.3141/2324-08. 

Silberg, G. et al. (2012) Self-driving cars: The next revolution." White paper, KPMG 

LLP & Center of Automotive Research. 

Singh, S. (2015) ‘Critical reasons for crashes investigated in the National Motor 

Vehicle Crash Causation Survey. (Traffic Safety Facts Crash•Stats). Washington, DC: 

National Highway Traffic Safety Administration.’, in 13th International IEEE 

Conference on Intelligent Transportation Systems, pp. 2–3. 

Smith, B. W. (2012) ‘Driving at Perfection’, p. cyberlaw.stanford.edu. 

Spiegelhalter, D. J., Best, N. G. and Carlin, B. P. (2002) ‘Bayesian Deviance with 

discussion JRSSB 2002’, pp. 1–57. Available at: 

papers2://publication/uuid/D36F390C-E803-4A64-A6B2-EF72A6EB7B5F. 

Stamos, I. et al. (2012) ‘Evaluation of a High Occupancy Vehicle Lane in Central 

Business District Thessaloniki’, Procedia - Social and Behavioral Sciences, 48, pp. 

1088–1096. doi: 10.1016/j.sbspro.2012.06.1085. 

Stanek, D. et al. (2018) ‘Measuring Autonomous Vehicle Impacts on Congested 

Networks Using Simulation’, in Transportation Research Procedia. 

Talebpour, A. and Mahmassani, Hani S (2016) ‘Influence of connected and 

autonomous vehicles on traffic flow stability and throughput’, Transportation 

Research Part C. Elsevier Ltd, 71, pp. 143–163. doi: 10.1016/j.trc.2016.07.007. 

Talebpour, A. and Mahmassani, Hani S. (2016) ‘Influence of connected and 

autonomous vehicles on traffic flow stability and throughput’, Transportation 

Research Part C: Emerging Technologies. Elsevier Ltd, 71, pp. 143–163. doi: 

10.1016/j.trc.2016.07.007. 

Tarko, A. P. (2005) ‘Estimating the frequency of crashes as extreme traffic events’, 

Annual Meeting of the Transportation Research Board, Washington, DC, (765), pp. 

1–29. 

The Economist (2012) Look, no hands. 

The Guardian (2016) Tesla driver dies in first fatal crash while using autopilot mode. 



210 

 

The New York Times (2016) ‘Autopilot Cited in death of Chinese Tesla driver’, p. 

The New York Times. Available at: 

http://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-

autopilot-government-tv-says.html?_r=0. 

Tientrakool, P., Ho, Y. C. and Maxemchuk, N. F. (2011) ‘Highway capacity benefits 

from using vehicle-to-vehicle communication and sensors for collision avoidance’, 

IEEE Vehicular Technology Conference, pp. 0–4. doi: 

10.1109/VETECF.2011.6093130. 

Treiber, M., Hennecke, A. and Helbing, D. (2000) ‘Congested Traffic States in 

Empirical Observations and Microscopic Simulations’, Physical Review, 62(2), pp. 

1805–1824. doi: 10.1103/PhysRevE.62.1805. 

Varaiya, P. (1993) ‘Smart Cars on Smart Roads : Problems of Control’, IEEE 

Transactions on Intelligent Transportation Systems, 38(2), pp. 195–207. 

Vasic, M. and Billard, A. (2013) ‘Safety Issues in Human-Robot Interactions’. 

Wadud, Z., MacKenzie, D. and Leiby, P. (2016) ‘Help or hindrance? The travel, 

energy and carbon impacts of highly automated vehicles’, Transportation Research 

Part A: Policy and Practice. Elsevier Ltd, 86, pp. 1–18. doi: 

10.1016/j.tra.2015.12.001. 

Waller, J., Simonin, A. and Dance, S. (2003) ‘Diagnosing observation error 

correlations for Doppler radar radial winds in the Met Office using observation-minus 

background and observation-minus-analysis statistics’, American Meteorological 

Society. 

Wan, N., Vahidi, A. and Luckow, A. (2016) ‘Optimal speed advisory for connected 

vehicles in arterial roads and the impact on mixed traffic’, Transportation Research 

Part C: Emerging Technologies. Elsevier Ltd, 69, pp. 548–563. doi: 

10.1016/j.trc.2016.01.011. 

Washington, S., Karlaftis, M. and Mannering, F. (2010) Statistical and econometric 

methods for transportation data analysis. 

Waymo (2016) Report on Autonomous Mode Disengagements for Waymo Self-driving 

Vehicles in California. 



211 

 

Weiner, G. and Smith, B. W. (2016) ‘Automated Driving:Legislative and Regulatory 

Action’. 

Whaley, M. (2016) Developing Freeway Merging Calibration Techniques For 

Analysis of Ramp Metering In Georgia Through VISSIM Simulation. 

Wiedemann, R. (1974) ‘Simulation des Straßenverkehrsflusses. Schriftenreihe des 

Insti-tuts für Verkehrswesen der Universität Karlsruhe’, Karlsruher Institut fur 

Technologie, 8. 

World Health Organisation (2015) ‘Safer Vehicles and Roads’, Global Status Report 

on Road Safety, p. 46. doi: 10.1016/B978-0-12-385185-7/00054-8. 

World Health Organisation (2018) Global Status Report on Road Safety. 

Wu, W., Li, P. K. and Zhang, Y. (2015) ‘Modelling and simulation of vehicle speed 

guidance in connected vehicle environment’, International Journal of Simulation 

Modelling, 14(1), pp. 145–157. doi: 10.2507/IJSIMM14(1)CO3. 

Wu, Z., Sun, J. and Yang, X. (2005) ‘Calibration of VISSIM for Shanghai Expressway 

using genetic algorithm’, Proceedings - Winter Simulation Conference. IEEE, 2005, 

pp. 2645–2648. doi: 10.1109/WSC.2005.1574564. 

Yu, R. and Abdel-Aty, M. (2014) ‘An optimal variable speed limits system to 

ameliorate traffic safety risk’, Transportation Research Part C: Emerging 

Technologies. Elsevier Ltd, 46, pp. 235–246. doi: 10.1016/j.trc.2014.05.016. 

Yu, S. and Shi, Z. (2015) ‘The effects of vehicular gap changes with memory on traffic 

flow in cooperative adaptive cruise control strategy’, Physica A: Statistical Mechanics 

and its Applications. Elsevier B.V., 428, pp. 206–223. doi: 

10.1016/j.physa.2015.01.064. 

Zhang, S. et al. (2013) ‘Dynamic trajectory planning for vehicle autonomous driving’, 

in 013 IEEE International Conferenceon Systems, Man, and Cybernetics, pp. 4161–

4166. 

Zhang, W. et al. (2015) ‘Exploring the impact of shared autonomous vehicles on urban 

parking demand: An agent-based simulation approach’, Sustainable Cities and 

Society. Elsevier B.V., 19, pp. 34–45. doi: 10.1016/j.scs.2015.07.006. 



212 

 

Zhao, L. and Sun, J. (2013) ‘Simulation Framework for Vehicle Platooning and Car-

following Behaviors Under Connected-vehicle Environment’, in 13th COTA 

International Conference of Transportation Professionals. Elsevier B.V., pp. 914–

924. doi: http://dx.doi.org/10.1016/j.sbspro.2013.08.105. 

Zheng, L., Ismail, K. and Meng, X. (2014) ‘Traffic conflict techniques for road safety 

analysis: open questions and some insights’, Canadian Journal of Civil Engineering, 

41(7), pp. 633–641. doi: 10.1139/cjce-2013-0558. 

Zhou, Y. et al. (2017) ‘Rolling horizon stochastic optimal control strategy for ACC 

and CACC under uncertainty’, Transportation Research Part C: Emerging 

Technologies, 83, pp. 61–76. doi: 10.1016/j.trc.2017.07.011. 

Zhu, M. et al. (2018) ‘Modeling car-following behavior on urban expressways in 

Shanghai: A naturalistic driving study’, Transportation Research Part C: Emerging 

Technologies. Elsevier, 93(June), pp. 425–445. doi: 10.1016/j.trc.2018.06.009. 

 

  



213 

 

Appendix 

 

Publications related to this thesis: 

The following publications have been made in a peer-reviewed journal or presented at 

a conference as a result of this thesis:  

 

Journal paper: 

Papadoulis, A., M. Quddus, and M. Imprialou.(2019) Evaluating the Safety Impact of 

Connected and Autonomous Vehicles on Motorways. Accident Analysis and 

Prevention, Vol. 124, January, 2019,  pp.  12–22.  

https://doi.org/10.1016/j.aap.2018.12.019. 

 

Conference paper: 

 

Papadoulis, A., Quddus, M., & Imprialou, M. (2018). Estimating the Corridor-Level 

Safety Impact of Connected and Autonomous Vehicles. In Transportation Research 

Board 97th Annual Meeting Proceedings. 

Papadoulis, A., Quddus M., and Imprialou M.(2020) Modelling the safety impact of 

Connected and Autonomous Vehicles in simulation and statistics: Platoon size, Sensor 

Error and Path choice  in Proceedings of the 99th Transportation Research Board 

Meeting, Washington DC, United States  

 

C++ codes used in this thesis:  

DRIVERMODEL_API int DriverModelSetValue 

(long type, long index1, long index2, long long_value, double double_value, 

char *string_value) 

Code 1 Initialisation of the DriverModelSetValue function of the External Driver Model 

API 
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case DRIVER_DATA_VEH_ACCELERATION: 

  ego_acc = double_value; 

  return 1; 

 

Code 2 Storage of the acceleration value in a user specified variable 

DRIVERMODEL_API int DriverModelGetValue (long   type, long index1, long 
index2, long *long_value,double *double_value,char **string_value) 

 

Code 3 Initialisation of the DriverModelGetValue function of the External Driver 

Model API 

std::random_device rd; 

std::normal_distribution<double> distribution(mean, sd); 

double sd =0.05; 
       double mean = 0.05; 

double error1 = distribution(rd);  

Code 4 Random sensor error generation in C++ through a normal distribution 

 

if (lanes_current_link == 3) 

{if (next_link == 6 || next_link == 14 || next_link == 15 || next_link == 7) 

{if (current_lane == 3) 

active_lane_change = 0; 

else if ((current_lane == 2 || current_lane == 1) && (di_11a > ego_speed*0.6 && 
di_1n1a < -sp_1n1a*0.6 && (id_11 > 0 || id_1n1 > 0) && ego_speed > 14.0)) 

active_lane_change = +1;} 

if (next_link == 21 || next_link == 28) 

{if (current_lane == 3 && (di_n11a > ego_speed*0.6 && di_n1n1a < -sp_n1n1a*0.6 && 
(id_n11 > 0 || id_n1n1 > 0) && ego_speed > 14.0)) 

active_lane_change = -1; 

else if (current_lane == 2) 

active_lane_change =/+1; 

if ((Type[ID(01)] != 2 && Type[ID(n11)] == 2&& di_n11a > ego_speed*0.6 && 
di_n1n1a < -sp_n1n1a*0.6 && (id_n11 > 0 || id_n1n1 > 0) && ego_speed > 14.0) && 
current_lane == 1) 

{active_lane_change = -1;} 

if ((Type[ID(01)] != 2&& Type[ID(n11)] != 2&& Type[ID(11)] == 2 && di_n11a > 
ego_speed*0.6 && di_n1n1a < -sp_n1n1a*0.6 && (id_n11 > 0 || id_n1n1 > 0) && 
ego_speed > 14.0) && current_lane == 2) 

{active_lane_change = 1;} 
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{if ((Type[ID(01)] != 2&& Type[ID(0n1)] == 2) || (current_link == 1 || 
current_link == 2)) 

{active_lane_change = 0;} 

} 

Code 5 RBDMA Logic developed in the framework of this thesis 

 

if (Type[ID(01] == 2 && di_01 < 200.0)        

 {desired_acceleration = relspeed_01a*relspeed_01a/((x2 – x1)*2.0);} 

Code 6 The CAV car following model developed in the framework of this thesis as 

appeared in the C++ code 

 

#include <iostream>  

ofstream TTC;  

double TTC = 0.0;  

TTC.open("C:\\Users\\...\\TTC.txt");  

TTC=di_01/relspeed_01  

TTC << relspeed_01 << "," << di_01 << "," << TTC_01 << "," <<   endl;  

Code 7 The TTC extraction algorithm developed in the C++ code for this thesis 

 

 

 

 

 

 

 


