1,000 research outputs found

    A Deep learning based food recognition system for lifelog images

    Get PDF
    In this paper, we propose a deep learning based system for food recognition from personal life archive im- ages. The system first identifies the eating moments based on multi-modal information, then tries to focus and enhance the food images available in these moments, and finally, exploits GoogleNet as the core of the learning process to recognise the food category of the images. Preliminary results, experimenting on the food recognition module of the proposed system, show that the proposed system achieves 95.97% classification accuracy on the food images taken from the personal life archive from several lifeloggers, which potentially can be extended and applied in broader scenarios and for different types of food categories

    Fine-Grained Product Class Recognition for Assisted Shopping

    Full text link
    Assistive solutions for a better shopping experience can improve the quality of life of people, in particular also of visually impaired shoppers. We present a system that visually recognizes the fine-grained product classes of items on a shopping list, in shelves images taken with a smartphone in a grocery store. Our system consists of three components: (a) We automatically recognize useful text on product packaging, e.g., product name and brand, and build a mapping of words to product classes based on the large-scale GroceryProducts dataset. When the user populates the shopping list, we automatically infer the product class of each entered word. (b) We perform fine-grained product class recognition when the user is facing a shelf. We discover discriminative patches on product packaging to differentiate between visually similar product classes and to increase the robustness against continuous changes in product design. (c) We continuously improve the recognition accuracy through active learning. Our experiments show the robustness of the proposed method against cross-domain challenges, and the scalability to an increasing number of products with minimal re-training.Comment: Accepted at ICCV Workshop on Assistive Computer Vision and Robotics (ICCV-ACVR) 201

    Food-101 – mining discriminative components with random forests

    Get PDF
    Bossard L., Guillaumin M., Van Gool L., ''Food-101 – mining discriminative components with random forests'', Lecture notes in computer science, vol. 8694, pp. 446-461, 2014 (13th European conference on computer vision - ECCV 2014, September 6-12, 2014, Zurich, Switzerland).status: publishe

    PhosopNet: An improved grain localization and classification by image augmentation

    Get PDF
    Rice is a staple food for around 3.5 billion people in eastern, southern and south-east Asia. Prior to being rice, the rice-grain (grain) is previously husked and/or milled by the milling machine. Relevantly, the grain quality depends on its pureness of particular grain specie (without the mixing between different grain species). For the demand of grain purity inspection by an image, many researchers have proposed the grain classification (sometimes with localization) methods based on convolutional neural network (CNN). However, those papers are necessary to have a large number of labeling that was too expensive to be manually collected. In this paper, the image augmentation (rotation, brightness adjustment and horizontal flipping) is appiled to generate more number of grain images from the less data. From the results, image augmentation improves the performance in CNN and bag-of-words model. For the future moving forward, the grain recognition can be easily done by less number of images

    Recognition and Classification of Fast Food Images

    Get PDF
    Image processing is widely used for food recognition. A lot of different algorithms regarding food identification and classification have been proposed in recent research works. In this paper, we have use an easy and one of the most powerful machine learning technique from the field of deep learning to recognize and classify different categories of fast food images. We have used a pre trained Convolutional Neural Network (CNN) as a feature extractor to train an image category classifier. CNN2019;s can learn rich feature representations which often perform much better than other handcrafted features such as histogram of oriented gradients (HOG), Local binary patterns (LBP), or speeded up robust features (SURF). A multiclass linear Support Vector Machine (SVM) classifier trained with extracted CNN features is used to classify fast food images to ten different classes. After working on two different benchmark databases, we got the success rate of 99.5% which is higher than the accuracy achieved using bag of features (BoF) and SURF

    Enhancing Automatic Annotation for Optimal Image Retrieval

    Get PDF
    Image search and retrieval based on content is very cumbersome task particularly when the image database is large. The accuracy of the retrieval as well as the processing speed are two important measures used for assessing and comparing the effectiveness of various systems. Text retrieval is more mature and advanced than image content retrieval. In this dissertation, the focus is on converting image content into text tags that can be easily searched using standard search engines where the size and speed issues of the database have been already dealt with. Therefore, image tagging becomes an essential tool for image retrieval from large image databases. Automation of image tagging has received considerable attention by many researchers in recent years. The optimal goal of image description is to automatically annotate images with tags that semantically represent the image content. The speed and accuracy of Image retrieval from large databases are few of the important domains that can benefit from automatic tagging. In this work, several state of the art image classification and image tagging techniques are reviewed. We propose a new self-learning multilayered tagging framework that can address the limitations of current approaches and provide mutual accuracy improvement between the recognition layer and the annotation layer. Our results indicate that the proposed framework can improve the overall accuracy of information retrieval in a variety of image databases

    A Survey on Automated Food Monitoring and Dietary Management Systems

    Get PDF
    Healthy diet with balanced nutrition is key to the prevention of life-threatening diseases such as obesity, cardiovascular disease, and cancer. Recent advances in smartphone and wearable sensor technologies have led to a proliferation of food monitoring applications based on automated food image processing and eating episode detection, with the goal to conquer drawbacks of the traditional manual food journaling that is time consuming, inaccurate, underreporting, and low adherent. In order to provide users feedback with nutritional information accompanied by insightful dietary advice, various techniques in light of the key computational learning principles have been explored. This survey presents a variety of methodologies and resources on this topic, along with unsolved problems, and closes with a perspective and boarder implications of this field
    • 

    corecore