41,258 research outputs found

    Hypothetical answers to continuous queries over data streams

    Full text link
    Continuous queries over data streams may suffer from blocking operations and/or unbound wait, which may delay answers until some relevant input arrives through the data stream. These delays may turn answers, when they arrive, obsolete to users who sometimes have to make decisions with no help whatsoever. Therefore, it can be useful to provide hypothetical answers - "given the current information, it is possible that X will become true at time t" - instead of no information at all. In this paper we present a semantics for queries and corresponding answers that covers such hypothetical answers, together with an online algorithm for updating the set of facts that are consistent with the currently available information

    Semantics and the Computational Paradigm in Cognitive Psychology

    Get PDF
    There is a prevalent notion among cognitive scientists and philosophers of mind that computers are merely formal symbol manipulators, performing the actions they do solely on the basis of the syntactic properties of the symbols they manipulate. This view of computers has allowed some philosophers to divorce semantics from computational explanations. Semantic content, then, becomes something one adds to computational explanations to get psychological explanations. Other philosophers, such as Stephen Stich, have taken a stronger view, advocating doing away with semantics entirely. This paper argues that a correct account of computation requires us to attribute content to computational processes in order to explain which functions are being computed. This entails that computational psychology must countenance mental representations. Since anti-semantic positions are incompatible with computational psychology thus construed, they ought to be rejected. Lastly, I argue that in an important sense, computers are not formal symbol manipulators

    Computing Nash equilibria and evolutionarily stable states of evolutionary games

    Get PDF
    Stability analysis is an important research direction in evolutionary game theory. Evolutionarily stable states have a close relationship with Nash equilibria of repeated games, which are characterized by the folk theorem. When applying the folk theorem, one needs to compute the minimax profile of the game in order to find Nash equilibria. Computing the minimax profile is an NP-hard problem. In this paper we investigate a new methodology to compute evolutionary stable states based on the level-k equilibrium, a new refinement of Nash equilibrium in repeated games. A level-k equilibrium is implemented by a group of players who adopt reactive strategies and who have no incentive to deviate from their strategies simultaneously. Computing the level-k equilibria is tractable because the minimax payoffs and strategies are not needed. As an application, this paper develops a tractable algorithm to compute the evolutionarily stable states and the Pareto front of n-player symmetric games. Three games, including the iterated prisoner’s dilemma, are analyzed by means of the proposed methodology

    Then and Now: Past Experience Echoed in University Computing Teachers’ Current Practice

    Get PDF
    Individual experiences, and the sense we make of them, shape who we are. For educators, experiential narratives affect both their day-to-day practice – the way they teach – and also the kind and quality of changes they make to their practice. In this work, we draw on data collected as part of a longitudinal study for the Sharing Practice project to explore how teachers’ experiences are “echoed” in their current practice. We describe the concept of ‘pedagogic stance’ and propose ways in which it may be identified. We suggest that an understanding of pedagogic stance may enable researchers to affect educators’ practice more effectively

    Online Convex Optimization for Sequential Decision Processes and Extensive-Form Games

    Full text link
    Regret minimization is a powerful tool for solving large-scale extensive-form games. State-of-the-art methods rely on minimizing regret locally at each decision point. In this work we derive a new framework for regret minimization on sequential decision problems and extensive-form games with general compact convex sets at each decision point and general convex losses, as opposed to prior work which has been for simplex decision points and linear losses. We call our framework laminar regret decomposition. It generalizes the CFR algorithm to this more general setting. Furthermore, our framework enables a new proof of CFR even in the known setting, which is derived from a perspective of decomposing polytope regret, thereby leading to an arguably simpler interpretation of the algorithm. Our generalization to convex compact sets and convex losses allows us to develop new algorithms for several problems: regularized sequential decision making, regularized Nash equilibria in extensive-form games, and computing approximate extensive-form perfect equilibria. Our generalization also leads to the first regret-minimization algorithm for computing reduced-normal-form quantal response equilibria based on minimizing local regrets. Experiments show that our framework leads to algorithms that scale at a rate comparable to the fastest variants of counterfactual regret minimization for computing Nash equilibrium, and therefore our approach leads to the first algorithm for computing quantal response equilibria in extremely large games. Finally we show that our framework enables a new kind of scalable opponent exploitation approach

    Bias In, Bias Out? Evaluating the Folk Wisdom

    Get PDF
    We evaluate the folk wisdom that algorithmic decision rules trained on data produced by biased human decision-makers necessarily reflect this bias. We consider a setting where training labels are only generated if a biased decision-maker takes a particular action, and so "biased" training data arise due to discriminatory selection into the training data. In our baseline model, the more biased the decision-maker is against a group, the more the algorithmic decision rule favors that group. We refer to this phenomenon as bias reversal. We then clarify the conditions that give rise to bias reversal. Whether a prediction algorithm reverses or inherits bias depends critically on how the decision-maker affects the training data as well as the label used in training. We illustrate our main theoretical results in a simulation study applied to the New York City Stop, Question and Frisk dataset

    Information Technology for Preserving the Bulgarian Folklore Heritage

    Get PDF
    Folk songs are an important and essential part of the Bulgarian cultural heritage. Following the traditions of the 20th century in publishing Bulgarian folk songs, we prepared the book “Folk Songs from Thrace” [3] with scores and lyrics recorded from original performances in the 60s and 80s of the last century. We created a digital library of over 1200 songs, which provides access to songs via full-text search engine. The data sources are stored using advanced information technology to encode texts, notes and sound. Traditional indexes and bookmarks for the book are also developed using our software
    corecore