6,631 research outputs found

    (R1480) Heat Transfer in Peristaltic Motion of Rabinowitsch Fluid in a Channel with Permeable Wall

    Get PDF
    This paper is intended to investigate the effect of heat transfer on the peristaltic flow of Rabinowitsch fluid in a channel lined with a porous material. The Navier -Stokes equation governs the channel\u27s flow, and Darcy\u27s law describes the permeable boundary. The Rabinowitsch fluid model\u27s governing equations are solved by utilizing approximations of the long-wavelength and small number of Reynolds. The expressions for axial velocity, temperature distribution, pressure gradient, friction force, stream function are obtained. The influence on velocity, pressure gradient, friction force, and temperature on pumping action of different physical parameters is explored via graphs

    Radiative Darcy-Forchheimer Micropler Bödewadt flow of CNTs with viscous dissipation effect

    Get PDF
    [EN] This article aims at the examination of the three-dimensional micropolar nanofluids of single and multi-walled carbon nanotubes (CNTs) dissolved in water and gasoline liquids for the first time reported to the case of so-called classical Bodewadt flow, which occurs when a fluid rotates at an adequate great distance out of a static disk. The static disk is then stretched linearly in the radial direction. The Darcy-Forchheimer porous media are also taken into account. Energy equation is investigated in existence of convection and radiation. The effect of viscous dissipation is also taken into account. The flow field equations are converted from PDEs to ODEs using appropriate transformation. The implementation of the bvp4c technique (Shooting scheme) is used to construct solutions to these ODEs. In addition to Nusselt number, skin friction, axial velocity, radial velocity, tangential velocity, micro-rotational velocities and fluid temperature are all investigated using physical factors. The finding indicates that the volume fraction enhanced, the micro-rotational velocities enhances. The tabulation outcomes indicates that the skin friction declined for escalating values of porosity parameter and volume fraction, while Nusselt number show opposite behavior. It has been also discovered that the effect of multiple-walled CNTs is quite effective than that of single-walled CNTs. When compared to water-based fluids, gasoline oil also displays an overarching trend.Project financed by Lucian Blag a University of Sibiu through research grant LBUS-IRG-2022-08.Shah, Z.; Rooman, M.; Asif Jan, M.; Vrinceanu, N.; Deebani, W.; Shutaywi, M.; Ferrándiz Bou, S. (2022). Radiative Darcy-Forchheimer Micropler Bödewadt flow of CNTs with viscous dissipation effect. Journal of Petroleum Science and Engineering. 217:1-11. https://doi.org/10.1016/j.petrol.2022.11085711121

    Microneedle Devices And Methods Of Manufacture And Use Thereof

    Get PDF
    Microneedle devices are provided for transport of molecules across tissue barriers and for use as microflameholders. In a preferred embodiment for transport across tissue, the microneedles are formed of a biodegradable polymer. Methods of making these devices, which can include hollow and/or porous microneedles, are also provided. A preferred method for making a microneedle includes forming a micromold having sidewalls which define the outer surface of the microneedle, electroplating the sidewalls to form the hollow microneedle, and then removing the micromold from the microneedle. In a preferred method of use, the microneedle device is used to deliver material into or across a biological barrier from chambers in connection with at least one of the microneedles. The device preferably further includes a means for controlling the flow of material through the microneedles. Representative examples of these means include the use of permeable membranes, fracturable impermeable membranes, valves, and pumps.Georgia Tech Research Corporatio

    Microbiological influences on fracture surfaces of intact mudstone and the implications for geological disposal of radioactive waste

    Get PDF
    The significance of the potential impacts of microbial activity on the transport properties of host rocks for geological repositories is an area of active research. Most recent work has focused on granitic environments. This paper describes pilot studies investigating changes in transport properties that are produced by microbial activity in sedimentary rock environments in northern Japan. For the first time, these short experiments (39 days maximum) have shown that the denitrifying bacteria, Pseudomonas denitrificans, can survive and thrive when injected into flow-through column experiments containing fractured diatomaceous mudstone and synthetic groundwater under pressurized conditions. Although there were few significant changes in the fluid chemistry, changes in the permeability of the biotic column, which can be explained by the observed biofilm formation, were quantitatively monitored. These same methodologies could also be adapted to obtain information from cores originating from a variety of geological environments including oil reservoirs, aquifers and toxic waste disposal sites to provide an understanding of the impact of microbial activity on the transport of a range of solutes, such as groundwater contaminants and gases (e.g. injected carbon dioxide)

    Numerical Simulation of Convective-Radiative Heat Transfer

    Get PDF
    This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students

    Peristaltic transport of bi-viscosity fluids through a curved tube : a mathematical model for intestinal flow

    Get PDF
    The human intestinal tract is a long curved tube constituting the final section of the digestive system in which nutrients and water are mostly absorbed. Motivated by the dynamics of chyme in the intestine, a mathematical model is developed to simulate the associated transport phenomena via peristaltic transport. Rheology of chyme is modelled using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract is considered as a curved tube geometric model. Low Reynolds number (creeping hydrodynamics) and long wavelength approximations are taken into consideration.Analytical solutions of the moving boundary value problem are derived for velocity field,pressure gradient and pressure rise. Streamline flow visualization is achieved with Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the bolus are also examined. The influence of curvature parameter, apparent viscosity coefficient (rheological parameter) and volumetric flow rate on flow characteristics is described. Validation of analytical solutions is achieved with a MAPLE17 numerical quadrature algorithm. The work is relevant to improving understanding of gastric hydrodynamics and provides a benchmark for further computational fluid dynamics (CFD) simulations

    Transducer applications, a compilation

    Get PDF
    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods

    GEN-IV LFR development: Status & perspectives

    Get PDF
    Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of Generation IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to Heavy Liquid Metal (HLM) nuclear reactors. In this frame, ENEA developed one of the larger European experimental fleet of experimental facilities aiming at investigating HLM thermal-hydraulics, coolant chemistry control, corrosion behavior for structural materials, and at developing components, instrumentations and innovative systems, supported by experiments and numerical tools. The present work aims at highlighting the capabilities and competencies developed by ENEA so far in the frame of the liquid metal technologies for GEN-IV LFR. In particular, an overview on the ongoing R&D experimental program will be depicted considering the actual fleet of facilities: CIRCE, NACIE-UP, LIFUS5, LECOR and HELENA. CIRCE (CIRColazione Eutettico) is the largest HLM pool facility presently in operation worldwide. Full scale component tests, thermal stratification studies, operational and accidental transients and integral tests for the nuclear safety and SGTR (Steam Generator Tube Rupture) events in a large pool system can be studied. NACIE-UP (NAtural CIrculation Experiment-UPgraded) is a loop with a HLM primary and pressurized water secondary side and a 250 kW power Fuel Pin Simulator working in natural and mixed convection. LIFUS5 (lithium for fusion) is a separated effect facility devoted to the HLM/Water interaction. HELENA (HEavy Liquid metal Experimental loop for advanced Nuclear applications) is a pure lead loop with a mechanical pump for high flow rates experiments. LECOR (LEad CORrosion) is a corrosion loop facility with oxygen control system installed. All the experiment actually ongoing on these facilities are described in the paper, depicting their role in the context of GEN-IV LFR development
    corecore