775 research outputs found

    A biophysically accurate floating point somatic neuroprocessor

    Get PDF

    FPGA Implementation of Spectral Subtraction for In-Car Speech Enhancement and Recognition

    Get PDF
    The use of speech recognition in noisy environments requires the use of speech enhancement algorithms in order to improve recognition performance. Deploying these enhancement techniques requires significant engineering to ensure algorithms are realisable in electronic hardware. This paper describes the design decisions and process to port the popular spectral subtraction algorithm to a Virtex-4 field-programmable gate array (FPGA) device. Resource analysis shows the final design uses only 13% of the total available FPGA resources. Waveforms and spectrograms presented support the validity of the proposed FPGA design

    A low-power geometric mapping co-processor for high-speed graphics application

    No full text
    In this article we present a novel design of a low-power geometric mapping co-processor that can be used for high-performance graphics system. The processor can carry out any single or a combination of transformations belonging to affine transformation family ranging from 1-D to 3-D. It allows interactive operations which can be defined either by a user (allowing it to be a stand-alone geometric transformation processor) or by a host processor (allowing it to be a co-processor to accelerate certain graphics operations). It occupies a silicon area of 6 mm2 and consumes 40 mW power when synthesized with 0.25?m technology

    Implementation of a Combined OFDM-Demodulation and WCDMA-Equalization Module

    Get PDF
    For a dual-mode baseband receiver for the OFDMWireless LAN andWCDMA standards, integration of the demodulation and equalization tasks on a dedicated hardware module has been investigated. For OFDM demodulation, an FFT algorithm based on cascaded twiddle factor decomposition has been selected. This type of algorithm combines high spatial and temporal regularity in the FFT data-flow graphs with a minimal number of computations. A frequency-domain algorithm based on a circulant channel approximation has been selected for WCDMA equalization. It has good performance, low hardware complexity and a low number of computations. Its main advantage is the reuse of the FFT kernel, which contributes to the integration of both tasks. The demodulation and equalization module has been described at the register transfer level with the in-house developed Arx language. The core of the module is a pipelined radix-23 butterfly combined with a complex multiplier and complex divider. The module has an area of 0.447 mm2 in 0.18 ¿m technology and a power consumption of 10.6 mW. The proposed module compares favorably with solutions reported in literature

    Implementing log-add algorithm in hardware

    Get PDF
    A hardware implementation of the log-add algorithm, being a simple method of computing ln(A + B) given ln(A) and ln(B), as used in speech recognition, is presented. It is shown that it can be efficiently implemented in hardware using a small look-up table plus some additional arithmetic logic, with no significant loss of accuracy over direct calculation
    corecore