
 
STUDY OF CORDIC BASED PROCESSING 

ELEMENT FOR DIGITAL SIGNAL PROCESSING 
ALGORITHMS 

 
A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

 

Master of Technology 

In 

Electrical Engineering 
 

 

By 
S. SYAM BABU 

 
 

 

 

 

 

 
Department of Electrical Engineering 

National Institute of Technology 

Rourkela 

2007 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

STUDY OF CORDIC BASED PROCESSING 
ELEMENT FOR DIGITAL SIGNAL PROCESSING 

ALGORITHMS 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

 
Master of Technology 

In 

Electrical Engineering 
 

By 

 
S. Syam Babu 

 
Under the Guidance of  

Prof. S. Mohanty 

 

 
 

 

 

 

Department of Electrical Engineering 

National Institute of Technology 

Rourkela 

2007 



 
 

 

 
 

National Institute of Technology 
Rourkela 

 
 

CERTIFICATE 
 
 

This is to certify that the thesis entitled, “Study of CORDIC based processing element 

for digital signal processing algorithms” submitted by Mr. S. Syam Babu in partial 

fulfillment of the requirements for the award of Master of Technology Degree in 

Electrical Engineering with specialization in “Electronic System and Communication” 

at the National Institute of Technology, Rourkela (Deemed University) is an authentic 

work carried out by him under my supervision and guidance. 

 

To the best of my knowledge, the matter embodied in the thesis has not been submitted to 

any other university / institute for the award of any Degree or Diploma.  

 
 
 
Date:                           Prof. S. Mohanty 
                                                                                        Electrical Engineering Department 
                                                                                           National Institute of Technology                               
                                                                                                                 Rourkela - 769008 

 



ACKNOWLEDGEMENT 

 

I express my sincere gratitude and appreciation to many people who helped keep 

me on track toward the completion of my thesis. Firstly, I owe the biggest thanks to my 

supervisor, Prof. S. Mohanty, whose advice, patience, and care boosted my morale. 

I am very much thankful to our HOD, Prof. P. K. Nanda, for providing us with 

best facilities in the department and his timely suggestions. I also thank all the teaching 

and non-teaching staff for their cooperation to the students. 

My special thanks to Mrs. N. Ramya Bhuvana, who helped me in completion of 

my thesis. I also thank all my friends, without whose support my life might have been 

miserable here. 

I wish to express my gratitude to my parents, whose love and encouragement have 

supported me throughout my education. 

 

 

 

S. Syam Babu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



CONTENTS 
 
 
ABSTRACT                                                                                            i  
       
LIST OF FIGURES                    ii   
 
1. INTRODUCTION                                                                       1  

2.        CORDIC THEORY                                                               4 
          2.1. APPLICATIONS OF THE CORDIC ALGORITHM                    9 

            2.2. EXTENSION TO LINEAR FUNCTIONS                                    13       

            2.3. EXTENSIONS TO HYPERBOLIC FUNCTIONS                        14    
3.        SINGULAR VALUE DECOMPOSITION                               17   

          3.1. JACOBI ALGORITHM                                                                  19 

            3.2 CORDIC ALGORITHM FOR SVD                                                21 

            3.3. CORDIC PROCESSOR FOR SVD COMPUTATION                  23 

            3.4 MATRIX APPROXIMATION USING SVD                                  27 
4.         DISCRETE COSINE TRANSFORM                                                29 

          4.1 CORDIC-BASED DCT ALGORITHM                                           33 

5.        RESULTS AND DISCUSSIONS                                                36 

6.        CONCLUSION                                                                            41 

 

REFERENCES                                                                                       43 

 
 
 
 
 
 
 
 



ABSTRACT 
 

There is a high demand for the efficient implementation of complex arithmetic 

operations in many Digital Signal Processing (DSP) algorithms. The COordinate 

Rotation DIgital Computer (CORDIC) algorithm is suitable to be implemented in DSP 

algorithms since its calculation for complex arithmetic is simple and elegant. Besides, 

since it avoids using multiplications, adopting the CORDIC algorithm can reduce the 

complexity.  

 
Here, in this project CORDIC based processing element for the construction of 

digital signal processing algorithms is implemented. This is a flexible device that can be 

used in the implementation of functions such as Singular Value Decomposition (SVD), 

Discrete Cosine Transform (DCT) as well as many other important functions. It uses a 

CORDIC module to perform arithmetic operations and the result is a flexible 

computational processing element (PE) for digital signal processing algorithms. To 

implement the CORDIC based architectures for functions like SVD and DCT, it is 

required to decompose their computations in terms of CORDIC operations. 

 
SVD is widely used in digital signal processing applications such as direction 

estimation, recursive least squares (RLS) filtering and system identification. Two 

different Jacobi-type methods for SVD parallel computation are usually considered, 

namely the Kogbetliantz (two-sided rotation) and the Hestenes (one-sided rotation) 

method. Kogbetliantz’s method has been considered, because it is suitable for mapping 

onto CORDIC array architecture and highly suitable for parallel computation. Here in its 

implementation, CORDIC algorithm provides the arithmetic units required in the 

processing elements as these enable the efficient implementation of plane rotation and 

phase computation. Many fundamental aspects of linear algebra rely on determining the 

rank of a matrix, making the SVD an important and widely used technique.  
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DCT is one of the most widely used transform techniques in digital signal 

processing and it computation involves many multiplications and additions. The DCT 

based on CORDIC algorithm does not need multipliers. Moreover, it has regularity and 

simple architecture and it is used to compress a wide variety of images by transferring 

data into frequency domain. These digital signal-processing algorithms are used in many 

applications.  

 
The purpose of this thesis is to describe a solution in which a conventional 

CORDIC system is used to implement an SVD and DCT processing elements. The 

approach presented combines the low circuit complexity with high performance.  
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INTRODUCTION 
 

The digital signal processing landscape has long been dominated by 

microprocessors with enhancements such as multiply-accumulate instructions and special 

addressing modes. The advent of reconfigurable logic computers permits the higher 

speeds of dedicated hardware solutions at costs that are competitive with the traditional 

software approach. Unfortunately, algorithms optimized for these microprocessor-based 

systems do not usually map well into hardware. While hardware-efficient solutions often 

exist, the dominance of the software systems has kept those solutions out of the spotlight. 

Among these hardware-efficient algorithms, there is a class of iterative solutions for 

trigonometric and other transcendental functions that use only shifts and adds to perform. 

The trigonometric functions are based on vector rotations and trigonometric algorithm is 

called CORDIC, an acronym for COordinate Rotation Digital Computer. The 

trigonometric CORDIC algorithms were originally developed as a digital solution for real 

time navigation problems.  

 

The CORDIC algorithm can operate in either vectoring or rotation mode. 

Vectoring mode performs Cartesian to polar conversion. An input vector is rotated until it 

is on x-axis. The final x value is equal to the magnitude of the input vector. While 

rotating the vector, the total angle traversed is also recorded, which provides the phase of 

the input vector. Rotation mode performs polar to Cartesian conversion. The input vector 

is rotated by the specified angle. The final x and y values in rotation and vectoring modes 

are scaled by the CORDIC processing gain. This processing gain varies with the number 

of iterations performed. It approaches to 1.6476 as the number of iterations goes to 

infinity. 

 

The CORDIC algorithm has found its way into diverse applications including the 

8087 math coprocessor and radar signal processors. CORDIC rotation has also been 

proposed for computing Discrete Fourier, Discrete Cosine, Discrete Hartley and Z- 

transforms, filtering, Singular Value Decomposition, and solving linear systems. 
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Singular value decomposition (SVD) is widely used in digital signal processing 

applications such as direction estimation, spectrum analysis and systems identification. 

Two different Jacobi-type methods for SVD parallel computation are usually considered, 

namely the Kogbetliantz (two-sided rotation) and the Hestenes (one-sided rotation) 

method. The Kogbetliantz’s method has been adopted because it is suitable for mapping 

onto CORDIC array architecture [1] and highly suitable for parallel computation. 

 

In Kogbetliantz’s method, the norm of the off-diagonal elements of the matrix is 

successively reduced by a sequence of two-sided Givens transformations, which requires 

the computation of a rotation angle and subsequent operations. CORDIC algorithm [2] 

provides an attractive means for implementing the arithmetic units required in typical 

SVD processing elements as these enable the efficient implementation of plane rotation 

and phase computation.  

 

The Discrete Cosine Transform has become one of the most widely used 

transform techniques in digital signal processing and it is one of the computationally 

intensive transforms, which require many multiplications and additions. The DCT based 

on CORDIC [3] algorithm does not need multipliers. Moreover, it has regularity and 

simple hardware architecture. DCT is an image compression method used in many 

applications for its effectiveness to compress a wide variety of images by transferring 

data into frequency domain.  
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2. CORDIC THEORY: AN ALGORITHM FOR VECTOR 

ROTATION: 
 

All of the trigonometric functions can be computed or derived from functions 

using vector rotations, as will be discussed in this section. Vector rotation can also be 

used for polar to rectangular and rectangular to polar conversions, for vector magnitude, 

and as a building block in certain transforms such as the DFT and DCT. The CORDIC 

algorithm provides an iterative method of performing vector rotations by arbitrary angles 

using only shifts and adds. The algorithm credited to Volder [2], is derived from the 

general (Givens) rotation transform: 

 

 
φφ
φφ

sincos'
sincos'

xyy
yxx

+=
−=

This rotates a vector in a Cartesian plane by the angle φ  as shown in the figure 2.1 
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Figure 2.1. Vector rotation 
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These can be rearranged so that: 

]tan.[cos' φφ yxx −=                            (2.1) 

                                     ]tan.[cos' φφ xyy +=  
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So far, nothing is simplified. However if the rotation angles are restricted such that 

,  the multiplication by the tangent term is reduced to simple shift operation. 

Arbitrary angles of rotation are obtainable by performing a series of successively smaller 

elementary rotations. If the decision at each iteration, i, is which direction to rotate rather 

than whether or not to rotate, then the 

i−±= 2)tan(φ

)cos( iδ  term becomes a constant (because 

)cos( iδ = )cos( iδ− ). The iterative rotation can now be expressed as: 

]2..[1
i

iiiii dyxkx −
+ −=                              (2.2) 

                         ]2..[1
i

iiiii dxyky −
+ +=

Where: 

ii
ik 21 21/1)2cos(tan −−− +==  

                        =id 1±  

Removing the scale constant from the iterative equations yields a shift-add algorithm for 

vector rotation. The product of the ’s can be applied elsewhere in the system treated as 

part of a system processing gain. That product approaches 0.6073 as the number of 

iterations goes to infinity. Therefore, the rotation algorithm has a gain , of 

approximately 1.647. The exact gain depends on the number of iterations, and obeys the 

relation 

ik

nA

                   ∏ −+=
n

i
nA 221  

The angle of a composite rotation is uniquely defined by the sequence of the 

directions of the elementary rotations. That sequence can be represented by a decision 

vector. The set of all possible decision vectors is an angular measurement system based 

on binary arctangents. Conversions between this angular system and any other can be 

accomplished using a look-up. A better conversion method uses an additional adder-

subtractor that accumulates the elementary rotation angles at each iteration. The 

elementary angles can be expressed in any convenient angular unit. Those angular values 

are supplied by a small lookup table (one entry per iteration) or are hardwired, depending 

on the implementation.  
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The angle accumulator adds a third difference equation to the CORDIC 

algorithm: 

                                                                      (2.3) )2(tan. 1
1

i
iii dzz −−

+ −=

Obviously, in cases where the angle is useful in the arctangent base, this extra element is 

not needed. 

  
The CORDIC rotator is normally operated in one of two modes. The first, called 

rotation by Volder [2] rotates the input vector by a specified angle (given as an 

argument). The second mode, called vectoring, rotates the input vector to the x-axis while 

recording the angle required to make that rotation. 

 
In rotation mode, the angle accumulator is initialized with the desired rotation 

angle. The rotation decision at each iteration is made to diminish the magnitude of the 

residual angle in the angle accumulator. The decision at each iteration is therefore based 

on the sign of the residual angle after each step. Naturally, if the input angle is already 

expressed in the binary arctangent base, the angle accumulator may be eliminated. For 

rotation mode, the cordic equations are: 

                                                                             (2.4) 

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz
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dyxx

−−
+

−
+

−
+

−=

+=

−=

Where =-1 if <0, +1 otherwise id iz

Which provides the following result 
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                                 (2.5) 

In the vectoring mode, the CORDIC rotator rotates the input vector through 

whatever angle is necessary to align the result vector with the x axis. The result of the 

vectoring operation is a rotation angle and the scaled magnitude of the original vector 

(the x component of the result). The vectoring function works by seeking to minimize the 
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y component of the residual vector at each rotation. The sign of the residual y component 

is used to determine which direction to rotate next. If the angle accumulator is initialized 

with zero, it will contain the traversed angle at the end of the iterations. In vectoring 

mode, the CORDIC equations are: 

 

                     

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz
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+

−
+

−
+

−=

+=

−=

 
Where      =+1 if  <0, -1 otherwise. id iy
 
 Then: 
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00
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0

2
0

2
0

21

)/(tan

0
                                  (2.6) 

 
The CORDIC rotation and vectoring algorithms as stated are limited to rotation 

angles between - 2/π  and 2/π . This limitation is due to the use of  for the tangent in 

the first iteration. For composite rotation angles larger than 

02

2/π , an additional rotation is 

required. Volder describes an initial rotation 2/π± . This gives the correction iteration: 

 
                            x’=-d.y 
                            y’=d.x 
                            z’=z + d. 2/π  
 
Where d=+1 if x<0, -1 otherwise. 
 
There is no growth for this initial rotation. Alternatively, an initial rotation of either π  or 

0 can be made, avoiding the reassignment of the x and y components to the rotator 

elements. Again, there is no growth due to the initial rotation: 

 
                            x’=d.x 
                            y’=d.y 
                            z’=z if d=1, or z=-π  if d=-1 
                            d=-1 if x<0, +1 otherwise. 
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The CORDIC rotator described is usable to compute several trigonometric 

functions directly and others indirectly. Judicious choice of initial values and modes 

permits direct computation of sine, cosine, arctangent, vector magnitude and 

transformations between polar and Cartesian coordinates. 

 
2.1 APPLICATIONS OF THE CORDIC ALGORITHM 
 
2.1.1 Sine and Cosine 
 

The rotational mode CORDIC operation can simultaneously compute the sine and 

cosine of the input angle. Setting the y component of the input vector to zero reduces the 

rotation mode result to: 

                       
00

00

sin..
cos..

zxAy
zxAx

nn

nn

=
=

                                             (2.7) 

 
By setting  equal to , the rotation produces the unscaled sine and cosine of 

the angle argument, . Very often, the sine and cosine values modulate a magnitude 

value. Using other techniques (e.g., a look up table) requires a pair of multipliers to 

obtain the modulation. The CORDIC technique performs the multiply as part of the 

rotation operation, and therefore eliminates the need for a pair of explicit multipliers. The 

output of the CORDIC rotator is scaled by the rotator gain. If the gain is not acceptable, a 

single multiply by the reciprocal of the gain constant placed before the CORDIC rotator 

will yield unscaled results. It is worth noting that the hardware complexity of the 

CORDIC rotator is approximately equivalent to that of a single multiplier with the same 

word size. 

0x nA/1

0z

 
2.1.2 Polar to Rectangular Transformation 
 

A logical extension to the sine and cosine computer is a polar to Cartesian 

coordinate transformer. The transformation from polar to Cartesian space is defined by: 

                      
θ
θ

sin
cos

ry
rx

=
=

                                        (2.8) 
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As pointed out above, the multiplication by the magnitude comes for free using 

the CORDIC rotator. The transformation is accomplished by selecting the rotation mode 

with =polar magnitude, =polar phase, and =0. The vector result represents the 

polar input transformed to Cartesian space. The transform has a gain equal to the rotator 

gain, which needs to be accounted for somewhere in the system. If the gain is 

unacceptable, the polar magnitude may be multiplied by the reciprocal of the rotator gain 

before it is presented to the CORDIC rotator. 

0x 0z 0y

 
2.1.3 General vector rotation 
 

The rotation mode CORDIC rotator is also useful for performing general vector 

rotations, as are often encountered in motion correction and control systems. For general 

rotation the 2-dimensionsal input vector is presented to the rotator inputs. The rotator 

rotates the vector through the desired angle. The output is scaled by the CORDIC rotator 

gain, which must be accounted for elsewhere in the system. If the scaling is unacceptable, 

a pair of constant multipliers is required to compensate for the gain. CORDIC rotators 

may be cascaded in a tree architecture for general rotation in n-dimensions.  

  
2.1.4 Arctangent 
 

The arctangent, )/tan( xyA=θ , is directly computed using the vectoring mode 

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be 

provided as a ratio expressed as a vector (x, y). Presenting the argument as a ratio has the 

advantage of being able to represent infinity (by setting x=0). Since the arctangent result 

is taken from the angle accumulator, the CORDIC rotator growth does not affect the 

result. 

 

                                                )/(tan 00
1

0 xyZZn
−+=
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2.1.5 Vector magnitude 
 

The vectoring mode CORDIC rotator produces the magnitude of the input vector 

as a byproduct of computing the arctangent. After the vectoring mode rotation, the vector 

is aligned with the x-axis. The magnitude of the vector is therefore the same as the x 

component of the rotated vector. This result is apparent in the result equations for the 

vector mode rotator: 

                                              2
0

2
0 yxAx nn +=  

The magnitude result is scaled by the processor gain, which needs to be accounted for 

elsewhere in the system. 

 
2.1.6 Inverse CORDIC functions 
 

If a CORDIC style computer can generate a function, its inverse can also be 

computed. Unless the inverse is calculable by changing the mode of the rotator, its 

computation normally involves comparing the output to a target value. 

 
2.1.7 Arcsine and Arccosine 
 

The arcsine can be computed by starting with a unit vector on the positive x-axis, 

then rotating it so that its y component is equal to the input argument. The arcsine is then 

the angle subtended to cause the y component of the rotated vector to match the 

argument. The decision function in this case is the result of a comparison between the 

input value and the y component of the rotated vector at each iteration: 

                                              
)2(tan.

2..

2..
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i
iii

i
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i
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dzz
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Where           =+1 if  < c , -1 otherwise. id iy

           is input argument. c

 

 

 

 11



Rotation produces the following result: 

 

                                   

∏ −+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

−=

n

i
n

n
n

n

nn

A

xA
czz

cy
cxAx

2

0
0

22
0

21

.
arcsin

).(

 

 
The arcsine functions as stated above returns correct angles for inputs 

 although the accuracy suffers as the input approaches 1 (the error 

increases rapidly for inputs larger than about 0.98). This loss of accuracy is due to the 

gain of the rotator. For angles near the y-axis, the rotator gain causes the rotated vector to 

be shorter than the reference (input), so the decisions are made improperly.  

,1/1 0 <<− xAc n ±

 
The arccosine computation is similar, except the difference between the x 

component and the input is used as decision function. Without modification, the 

arccosine algorithm works only for inputs less than . The arccosine could also be 

computed by using the arcsine function and subtracting 

nA/1

2/π  from the result, followed by 

an angular reduction if the result is in the fourth quadrant. 

 
2.1.8 Cartesian to Polar transformation 
 

The Cartesian to Polar transformation consists of finding the magnitude 

and phase angle ())(( 22 yxsqrtr += ]/tan[ xya=φ ) of the input vector, (x, y). These 

both functions are provided simultaneously by the vectoring mode CORDIC rotator. The 

magnitude of the result will be scaled by the CORDIC rotator gain, and should be 

accounted for elsewhere in the system. If the gain is unacceptable, it can be corrected by 

multiplying the resulting magnitude by the reciprocal of the gain constant. 
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2.2 EXTENSION TO LINEAR FUNCTIONS: 
 

A simple modification to the CORDIC equation permits the computation of linear 

functions: 

 

                                             (2.8) 
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For rotation mode ( = -1 if  < 0, +1 otherwise) the linear rotation produces: id iz
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This operation is similar to the shift-add implementation of a multiplier, and as 

multipliers go is not an optimal solution. The multiplication is handy in applications 

where a CORDIC structure is already available. The vectoring mode ( = +1 if  < 0,   

-1 otherwise) is more interesting, as it provides a method for evaluating ratios: 

id iy
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The rotations in the linear coordinate system have a unity gain, so no scaling corrections 

are required. 
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2.3 EXTENSION TO HYPERBOLIC FUNCTIONS 
 

The close relationship between the trigonometric and hyperbolic functions 

suggests the same architecture can be used to compute the hyperbolic functions. The 

CORDIC equations for hyperbolic rotations are derived using the same manipulations as 

those used to derive the rotation in the circular coordinate system. For rotation mode 

these are: 

                                                         (2.11) 
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Where   = -1 if  < 0, +1 otherwise. id iz
 Then : 
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In vectoring mode ( = +1 if  < 0, -1 otherwise) the rotation produces: id iy
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                            Figure 2.3 Trajectory of Linea
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The elemental rotations in the hyperbolic coordinate system do not converge. 

However, it can be shown that convergence is achieved if certain iterations (I=4, 13, 40... 

k, 3k+1,..) are repeated. The hyperbolic equivalents of all the functions discussed for the 

circular coordinate system can be computed in a similar fashion. Additionally, the 

following functions can be derived from the CORDIC functions: 

 
 

 ααα cos/sintan =  

 ααα cosh/sinhtanh =  

 ααα coshsinhexp +=  

]/[tanh2ln 1 xy−=α    where x=α +1 and y=α-1 
 

2/1222/1 )()( yx −=α   Where x=α+1/4 and y=α-1/4 
 

It is worth noting the similarities between the CORDIC equations for circular, 

linear, and hyperbolic systems. The selection of coordinate system can be made by 

introducing a mode variable that takes on values 1, 0, or -1 for circular, linear and 

hyperbolic systems respectively. The unified CORDIC iteration equations are then:  

 

                                                            (2.14) 
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Where  is the elementary angle of rotation for iteration i in the selected coordinate 

system. Specifically,  =  for m=1,  =  for m=0, and  = for 

m=-1.This unification, due to Walther, permits the design of a general purpose CORDIC 

processor. 

ie

ie )2(tan 11 −−
ie i−2 ie )2(tanh 1 i−−
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3. SINGULAR VALUE DECOMPOSITION 
 

The SVD is one of the most important matrix factorizations in linear algebra and 

the SVD of a matrix nmRA ×∈  is a factorization of the form: 

                                                                        (3.1) TUDVA =

Where  and  are orthogonal (  and ) and mmRU ×∈ nnRV ×∈ IUU T = IVV T = nmRD ×∈  is 

diagonal with nonnegative diagonal elements iσ . The numbers iσ  are the ‘singular 

values’ of A. { }muuU ,.....,1=  are the left singular vectors and { mvvV ,.....,1 }=  are the 

right singular vectors. 

 
There are many numerically stable algorithms for computing the SVD such as the 

Jacobi algorithm, the QR method and the one sided Hestenes method. For parallel 

implementations the Jacobi method is far superior in terms of simplicity, regularity, and 

local communications. In linear algebra the singular value decomposition (SVD) is an 

important factorization of a rectangular real or complex matrix, with several applications 

in signal processing. 

 
Singular values, singular vectors, and their relation to the SVD 
 

A non negative real number σ  is a singular value for A if and only if there exist 

unit-length vectors u in  and v in  such that  mk nk

uAv σ=       And  . vuA σ=*

The vectors u  and  are called left singular and right singular vectors for v σ  

respectively. 

A singular value for which we can find two left (or right) singular vectors that are 

not linearly dependent is called degenerate. Non-degenerate singular values always have 

unique left and right singular vectors. Consequently, if all singular values of A  are non-

degenerate and non zero, then its singular value decomposition is unique. Degenerate 

singular values, by definition, have non-unique singular vectors. Further more if  and 

 are the two left-singular vectors which both corresponds to the singular value 

1u

2u σ , then 

any linear combination of the two vectors is also a left singular vector corresponding to 
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singular value σ . The similar statement is true for right singular vectors. Consequently, 

if A has degenerate singular values, then its singular value decomposition is not unique. 

 
3.1 THE JACOBI SVD ALGORITHM: 

 
Here equation (3.1) can be rewritten in the following form: 

 
                                     (3.2) DAVUUDVA TT =⇔=

 
The Jacobi method exploits to generate the matrices U and V by performing a 

sequence of orthogonal two sided plan rotations (2D rotations) to the input matrix: 

 
                        1+= iii

T

i
AA JJ φθ                                (3.3) 

 
With the property that each new matrix  is 'more diagonal' than its predecessor. After n 

iterations, the input matrix A is transformed into the diagonal matrix : 

iA

nA

                          
                                            JJJJJJJJ nn

TTT

n

T

nn AA φφφφθθθθ

110011
............

−−
=        (3.4) 

                       
                     Which leads to: 
 
                                                     ;nAD =

                     ∏= J iU θ                                    (3.5) 

                       ∏= J iV φ      

 
The matrices J i

θ  and J i

φ  are 'Jacobi rotation' matrices ),,( θqpJ  of the form: 

 

                                                 (3.6) 
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(Where p < q, )cos(θ=c  and )sin(θ=s ) 

 

The angles θ  and φ  are chosen in order to solve a 2x 2 SVD problem: 

 

                                                 (3.7) ⎥
⎦

⎤
′⎢

⎣

⎡ ′
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− qq

pp

qq

pq

qp

pp

a
a

a

a

a

a 0

0cos
sin

sin
cos

..
cos
sin

sin
cos

φ
φ

φ
φ

θ
θ

θ
θ

 
By repeating this for all possible pairs (p, q), A can be effectively digonalized: 

 
Algorithm: 

For s=1 ... , S 

        For p=1,  ...,N 

For q=p + l   .. N 

      Begin 

       Determine θ  and φ   

        A=  ),,(.),,( φθ qpJAqpJ T

        End 

 
The Jacobi algorithm performs 22×  SVD for all possible pairs (p, q) which is 

called a sweep, and then repeats that for as many sweeps as necessary for the 

convergence. The multiplication by J i

θ  affects only the two columns p and q, and the 

multiplication by J i

φ  affects only the two rows p and q as shown in figure. 

 q p
q p

                             

qq

p p
 

 AqpJ T),( ),(),( qpAJqpJ T),( qpAJ

        Figure 3.1. Premultiplication                           effects rows p and q, and post 
multiplication                   effects columns p and q. 

Ap(
pAJ

qJ T),
),( q
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Therefore if M is the matrix size and if M is even then M/2 sub-problems ( 2 x 2 SVD) 

can be processed in parallel. To illustrate this suppose M=4 and group the six possible 

sub problems into three sets: 

                   Set l:  )}4,3(),2,1{(

                   Set 2:  )}4,2(),3,1{(

                   Set 3.  )}3,2(),4,1{(

 
All (p, q) pairs within each set are non-conflicting. Sub problem (1,2) and (3,4) can be 

calculated out in parallel, likewise sub-problem (1,3) and (2,4) can be executed in parallel 

as can sub-problem (1,4) and (2,3). This way of ordering sub-problems is called “parallel 

ordering” it allows the execution of N/2 sub-problems in parallel. The number of sets is 

N-1 and a sweep consists of N-1 steps of N/2 rotations executed in parallel. 

 

3.2 CORDIC ALGORITHM FOR SVD 
 

For SVD, a MM ×  matrix is divided into ⎣ ⎦ ⎣ ⎦2/2/ MM ×  blocks. Each block is 

a matrix, which can be mapped to a CORDIC processor. The basic operation for 

Kogbetliantz’s method is to apply the two-sided rotation to each 

22×

22× matrix to nullify the 

two off-diagonal elements i.e.: 

 

        =          (3.8) ⎟⎟
⎠

⎞
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⎝
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0 σ
σ

 

The values  θ  and  φ  are obtained using the following equations: 
 

                        

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

=−

−
+

=+

−

−

ad
bc
ad
bc

1

1

tan

tan

θφ

θφ

                         (3.9) 
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The systolic array architecture suitable for implementing Kogbetliantz’s approach 

is shown in Figure 3.3. In this each value, θ  and φ , is calculated in the diagonal PEs 

according to equation (3.9), and these are then passed through each off-diagonal PE. Here 

θ  propagates along the rows and φ  propagates along the columns. The required two-

sided rotations are then computed in all PEs in accordance with equation (3.8). After 

every block has completed this two-side rotation, each pair of values in the both the (2i) 

th and (2i +1) th column is interchanged. The same applies to the rows. A sweep is 

defined as and occurs when each off-diagonal element is eliminated once. This 

interchange means that all off-diagonal elements are eliminated before the beginning of 

the next sweep. Usually, an SVD computation is finished after a pre-defined number of 

sweeps. In the case of MM × matrix (M even), this corresponds to  two 

sided rotations and it is shown in figure 3.2 for a 4 x 4 matrix. 

2/)1( −MM

 

   

Figure 3.2: Sweep of Jacobi transformations for a matrix of order 4x4 
 
It should be noted that in the case of left-rotation two columns can be calculated in 

parallel, whilst in the case of right-rotation two rows can be calculated in parallel.  
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A11     A12 A13     A14 A15     A16

                           

                     Figure 3.3. Array architecture for kogbetliantz’s method  

 

3.3. CORDIC PROCESSOR FOR SVD COMPUTATION 

 
The basic idea behind the CORDIC algorithm is that a rotation is decomposed 

into a sequence of micro-rotations over the angles iα , where usually iα  is chosen 

according to . The corresponding micro-rotation iterative equations are as 

follows: 

i
i

−= 2tanα

 

                                            (3.10) 
⎪
⎩

⎪
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⎧

−=

+=
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−−
+

−
+

−
+

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

xdyy

ydxx

Where = 1. id ±

The inverse tangent function is a primitive operation in CORDIC algorithms. 

Therefore, θ  and φ  in (3.9) can be solved explicitly in (3.10) by setting . 

Moreover, within the CORDIC rotation mode equation (3.10) can be used to calculate the 

matrix vector multiplication shown in equation (3.11) apart from the constant factor 

scaling i.e. 

id )( ii yxsign=

 
A25     A26

 
A23     A24

 
A21     A22 

A31     A32 
 
A41     A42 

A33     A34
 
A43     A44

A35     A36
 
A45     A46

A51     A52 
 
A61     A62 

A53     A54
 
A63     A64

A55     A56
 
A65     A66

θ  and φ  
Propagate
path 

Data  
exchange
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                    (3.11) 

 
If and  and  are the final outputs from equation (3.10), then the desired 

outputs  and 

id )( izsign= nx ny

x~ y~  in (3.11) are given by: 
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i

N

i
iink α                     (3.12) 

                                       and N is the word length. 

 
In the case of the hybrid architecture x  and  are floating-point values and  is 

a fixed-point number. Let  and , where ,  ,  are the 

mantissas and exponents of and  respectively, with both the mantissa and exponents 

represented as 2’s complement number’s. We also assume the inputs  and  are 

normalized. Equations (3.10) can then be expressed as equation (3.13). 

y z
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Two options are then available: 

• Global floating-point normalization. Here the CORDIC algorithm remains fixed 

point. In this case it is only at the inputs and outputs of the algorithm that 

floating-to-fixed and fixed-to-floating point conversions need take place. In this 

case, the mantissa range must be calculated in advance so that overflow can be 

avoided. This is shown in Figure 3.4 (a). 

   Pre-processing 
  (alignment of  
     exponent) 

   Fixed-point 
   CORDIC 

 
Post-processing 
(re-normalization) 

 
Pre-processing 

 
     CORDIC 

 
Post-processing 
(re-normalization) 

input 
input 

mantissa
exponent

iteration
iteration

output 
output 

Fig 3.4.Floating-point CORDIC 
(a) Global normalization (left) (b) Local normalization 
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•  Local floating-point normalization. Here each rotation performs a floating-point 

shift-add/subtract operation and both 
xe

xm ′′ 2 and need to be re-

normalized for the next iteration. This is shown in Figure 3.4 (b). 

ye
ym ′′ 2

 
The advantage of the second approach is the regularity of data scheduling. 

However, at first sight, its performance appears limited because it requires equal weight 

for the exponents of both operands in each iteration. Because of this global floating-point 

normalization has tended to have been used to date. However for SVD computation, the 

parallel properties of the algorithm can be beneficially exploited to achieve high 

performance. Architecture of CORDIC module for x- component is shown in figure 3.5. 

 

 

 

 

 
Figure 3.5. Architecture of the 

Programmable processor functions 
 
General programm

zed as 

) Solve c ± b and d ± a. 

 

comparator
iee yx −≥  

)(iex

)(iey

i

Adder  

)(imx

)(imy

able processor for implem

Whose general operations are summari

1

2) Solve θφ ± using the CORDIC algorithm a

3) Solve the left- and right-multiplication usin

 

4) Exchange data with neighboring processor

5) If the pre-defined sweeps have been finis

else go to step 1. 
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x-circuit of CORDIC module 

follows: 

Re-

normalize 
)1( +imx

)1( +iex

ting the SVD PE function can be defined. en

nd then solve θ  and φ . 

g the CORDIC algorithm. 

s. 

hed, perform the scale factor correction or 



3.5 MATRIX APPROXIMATION USING SVD: 

 
If the image, when considered as a matrix, has low rank, or can be approximated 

D can be used to find this 

pproximation, and further this low rank approximation can be represented much more 

compac

reasing 

ogonal ma ces. 

hen a rank

sufficiently well by a matrix of low rank, then SV

a

tly than the original image. More specifically, suppose we are given an image A   

which is an NN ×  real matrix. Then we first factor it into its SVD representation 

 
                                             TUDVA =  , 

 
 Where D  is a diagonal matrix with entries along the diagonal ordered in the dec

order, and U  and V  are orth tri

 r  approximation to  is the matrix   A T
rrrr VDUA = T

Where D  is the top-left r rr ×  sub matrix of D , rU  consists of the first r  columns of U , 

and TV  the irst r  f r  r

Th  ca

ows of TV .  

 
e SVD decomposition is interesting be use rU , rD , T

rV  provide the best rank 

r  approximation to A  i then  sense of packing ximum energy from  the ma A . 

Furthermore, for com ression, the decomposition is interesting because unlike p A  which 

has ,  

tu  

2N  entries, the total number of entries in rU , D V ar nly rNr +2 . It often 

rns out that even with small 

r
T

r e o

r , the approximation rA  gets most of the energy of A , 

and is visually adequate. Hence the attractiveness of the method. 
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Now the use of the SVD for the approximation of the matrix by lower rank is shown in 

e figure 3.7 th

 

a.original image 512x512 b.5 singular values c.10 singular values

d.20 singular values e.30 singular values f.50 singular values

 
                     Figure 3.7. Approximation of images using SVD 

 

The first ten iterations actually give age, which is

he original image. First 30 

erations giving a good approximation, we can identify the person with a substantial 

degree 

Original image 512x512 5 singular values 10 singular values 

20 singular values 30 singular values 50 singular values 

 the shape of the im  a decent 

approximation. This takes up to 96% less storage space than t

it

of detail. It requires 90% less storage space than the original image. This is good. 

Finally, the first fifty iterations give a near perfect image, and yet require 80% less 

storage space. This is very good.  
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4. DISCTERE COSINE TRANSFORM 
 

e one of the most widely used transform techniques in digital 

signal processing ansforms, which 

quire many multiplications and additions. Many DCT algorithms were proposed in 

order to

                         

 DCT has becom

. The DCT is one of the computationally intensive tr

re

 achieve high speed DCT. The DCT based on CORDIC [3] algorithm does not 

need multipliers. Moreover, it has regularity and simple hardware architecture, which 

makes it easy to be implemented in VLSI. Also, the CORDIC-based DCT algorithm can 

support the high Performance applications such as HDTV due to its high throughput. 

 
The One-Dimensional DCT 

 
The most common DCT definition of a 1-D sequence of length N is 

 

 ∑
− +

=
1

=

)12(cos)()()( uxxfuuC πα                                 (4.1) 

r  = 0,1,2,…, -1. Similarly, the inverse transformation is defined as 

                        

N

  
0 2x N

 
fo  u N

 

 ∑
− +

=
1

=

)12(cos)()()(
N uxuCuxF πα                                  (4.2) 

r

  
0 2u N

 
fo  x  =0,1,2,…, -1. In both equations 4.1 and 4.2N  )(uα  is defined as 

 

                                                        

 

 

  

 

 

It is clear from (4.1) that 

ansform coefficient is the average tr
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⎪

⎧

N
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1
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⎨= Nu )(α

 

 

=       For  0u  

                      (4.3)               
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 For        0     u ≠
u  = 0 ∑
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=0x
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e of the sample sequence. In literature, this value 

== )0(
N

uC
1

)(1 N

xf . Thus, the firs
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is referred to as the DC coefficient. All other transform coefficients are called the AC 

coefficients. 

To fix ideas, ignore the )(xf  and )(uα  component in (4.1). The plot of ∑
−

=

 varying of  is shown in Figure 4.1.  

left waveform lue, whereas, all

sively increasing frequencies. 

hese waveforms are called the cosine basis function. Note that these basis functions are 

orthogo

+1

0 2
)12(cos

N

x N
uxx  

for N =8 and values  u

 
The first the top- (u =0) renders a constant (DC) va  

other waveforms (u =1, 2,.. 7) give waveforms at progres

T

nal. Hence, multiplication of any waveform in Figure 4.1 with another waveform 

followed by a summation over all sample points yields a zero (scalar) value, whereas 

multiplication of any waveform in Figure 4.1 with itself followed by a summation yields 

a constant (scalar) value. Orthogonal waveforms are independent, that is, none of the 

basis functions can be represented as a combination of other basis functions. 

 
                     Figure 4.1. One dimensional cosine basis function (N=8). 
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If the input sequence has more than sample points then it can be divided into 

sub-sequences of length and DCT can be applied to these chunks independently. Here, 

a very important point to note is that in each such computation the values of the basis 

function points will not change. Only the values of will change in each sub-

sequence. This is a very important property, since it shows that the basis functions can be 

pre-computed offline and then multiplied with the sub-sequences. This reduces the 

number of mathematical operations (i.e., multiplications and additions) thereby rendering 

computation efficiency. 

 
The Two-Dimensional DCT 

 
This section necessitates the extension of ideas presented in the last section to a 

two-dimensional space. The 2-D DCT is a direct extension of the 1-D case and is given 

by 

                         

N

N

)(xf

⎥⎦
⎤

⎢⎣⎥⎦⎢⎣= = Nx y 220 0

⎡ +⎤⎡ +
= ∑∑

− −
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vyuxyxfvuvuC

N N )12(cos)12(cos),()()(),(
1 1 ππαα      (4.4) 

r 0,1,2,…, -1 ,  vu, = N )(uα  and  )(vα  are as defined in (4.3).  

p

fo

C(u, v) can be computed in two steps by successive 1-D operations on rows and 

columns. This idea is gra hically illustrated in Figure 4.2. The arguments presented can 

be identically applied for the inverse DCT computation 4.5. 

 

 

                  Figure 4.2. Computation of 2-D DCT using separability property. 

         

 

The inverse transform is defined as 
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4.1 CORDIC-BASED DCT ALGORITHM 

 

           

The two-dimensional DCT for 8×8 sub-matrix is defined as 
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ional DCT is a separable 
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 Therefore, in order to 

imilarly,  and 

. For  and

 we can use six CORDIC 

etic.

ssor S. )2(C

)1(C )7(C , )5(C  

s. 



 
1 DCT flow using the six CORDICFigure 4.3 shows the 8×  processors. 

 

 

 

Figure 4.3. 8×1 DCT flow. 

Where as rotating angles for CORDIC (1) is 

 
 

π /4, CORDIC (2) is 3π /8, CORDIC (3) 

and CORDIC (6) are 7π /16, CORDIC (4) and CORDIC (5) are 3π /16. 

 
Discrete Cosine Transform (DCT) is effectively used to compress a wide variety 

of images by transferring data into frequency domain. DCT helps separate the image into 

parts or sub-bands of differing importance with respect to the image’s visual quality. For 

most images, much of signal energy lies at low frequency. Compression is usually 

achieved by discarding high frequency information since their loss is not easily detected 

by human visual system. 
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Now the use of the DCT is shown in the figure 4.4   

original image decompressed image

 

Original image
Decompressed image 

Figure 4.4. Use of the DCT on the images 
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RESULTS AND DISCUSSIONS 
 

 

 

 

 

 

 

 

 



 RESULTS AND DISCUSSIONS 
 

CORDIC algorithm is the rotation algorithm, which provides the iterative metho

of performing vector rotations by arbitrary angles using shifting and adding operations.  

Arbitrary angles of rotation are obtained by performing series of successively smaller 

elementary rotations. CORDIC rotator normally operated in one of the two modes. The

first is called the rotation mode and second is vectoring mode. In rotation mode CORDIC 

rotator rotates the input vector by a specified angle and the resultant plot is shown in the 

figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. CORDIC  Rotation mode operations 

 

ode CORDIC operation can simultaneously compute the sine and 

cosine of the input angle by setting the  component of the input vector equal to zero. 

Here in the plot we set the  component of the input vector zero so the component of 

the resu ant vector gives the  and 
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In the vectoring mode, the CORDIC rotator rotates the input vector through 

whatev

Here the input vector is along the  axis so the angle accumulator gives the phase 

angle 90 degrees and the 

er angle is necessary to align the resultant vector with the x-axis. The result of the 

vectoring operation is a rotation angle and the scaled magnitude of the original vector.  If 

the angle accumulator is initialized with zero, it will contain the traversed angle at the end 

of the iterations. 
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Figure 5.2. CORDIC Vectoring mode operations 
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y

x  component of the resultant vector giving the magnitude unity, 

of the input vector.  the wide range of 

nctions including trigonometric, linear, logarithmic and exponential function and can 

also be

pos  matrix factorizations in 

inear algebra. Jacobi method exploits to compute the SVD by performing a sequence of 

rthogonal two sided rotations to the input matrix, with the property that each new matrix 

 more diagonal than its predecessor. CORDIC-based processing element is 

plemented to perform these two-sided rotations. This processing element contains a 

CORDIC unit and this is used for both angle solving and for rotation. CORDIC unit used 

This CORDIC algorithm can be used to compute

fu

 used to implement the functions such as Singular Value Decomposition and 

Discrete Cosine Transform. 

 

Singular Value Decom ition is one of the important

L
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in vectoring mode for angle solving and used in rotation mode for performing rotation. A 

sweep is defined as and occurs when each off-diagonal element of the matrix is 

eliminated once. Usually an SVD computation is finished after a predefined number of 

sweeps. In the case of MM ×  matrix, one sweep corresponds to 2/)1( −MM  two sided 

rotations. So (M 2/)1−M  steps are required to perform 

pproa  one sweep in 

one sweep by considering this 

1−M  a ch. Whereas the architecture proposed in this thesis, performs

steps of  rotations executed in parallel. 

 
The proposed architecture adopts the parallel ordering method since, in the Jacobi 

ethod, one left sided rotation affects only the two columns and right-sided rotation 

ffects only the two rows of the matrix. Therefore if

 2/M

m

 M  is the matrix size and even then 

 sub-problems can be processed in parallel. It allows execution of the M/2 sub 

roblems in parallel and hence a sweep consists of M-1 steps of M/2 rotations executed 

 parallel.  

To adopt this parallel ordering method 
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MM ×  matrix is divided into 

⎦ b⎣ ⎦ ⎣ 2/2/ MM ×  locks. Each block is a 22× matrix and mapped to a CORDIC 

rocessor. The basic operation is to tation to each matrix to 

nullify t

he values 

 apply the two-sided ro 22×p
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In this each value, θ  and φ , is calculated in the diagonal PEs, and these are then 

passed through each off-diagonal PE. Here θ  propagates along the rows and φ  

propagates along the columns. The required two-sided rotations are then computed in all 

PEs. After every block has completed this two-side rotation, each pair of values in the 

both the (2i) th  th column is interchanged. The same applies to the rows.  

 

DCT has become the one of the most

 and (2i +1)

 widely used transform technique in digital 

signal processing. DCT computation requires many multiplications and additions. Where 

as the p

CORD

IC unit’s rotation angle is fixed and the rotating angles for CORDIC (1) is 

roposed architecture based on CORDIC algorithm does not require any multiplier 

and it has regularity and simple architecture. This architecture contains six processing 

elements to compute the DCT for 8x8 matrix. Each processing element consists of one 

IC unit to perform needed operations. Number of CORDIC units required varies 

according to size of the matrix. Here each CORDIC unit works only in rotation mode and 

each CORD

π /4, CORDIC (2) is 3π /8, CORDIC (3) and CORDIC (6) are 7π /16, CORDIC (4) and 

RDCO IC (5) are 3π /16. 2D-DCT can be computed in two steps by successive 1-D 

s and columns.  

 

Hence the CORDIC based process

operations on row

ing elements are implemented to compute SVD 

nd DCT. It uses a CORDIC module to perform arithmetic operations and the net result is 

a flexible computational processing element (PE) for digital signal processing algorithms.  
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CONCLUSION 
 
 

By doing this project we are familiar with Coordinate Rotational Digital 

Computer (CORDIC) algorithm. It is an efficient algorithm suitable to be implemented in 

DSP algorithms. The aim of the work presented here is to implement CORDIC based

processing element for the construction of digital signal processing algorithms. This is a

flexible device that can be used in the implementation of functions such as singular-value

decomposition (SVD) and Discrete Cosine Transform (DCT). It’s calculations for 

complex arithmetic is simple, elegant. It uses CORDIC module to perform needed 

arithmetic operations. Besides, since it avoids using multiplication, adopting the 

CORDIC algorithm can reduce the complexity and the net result is a flexible

computational processing element for digital signal processing algorithms.  

 
To implement the CORDIC based architectures for functions like SVD and DCT,

it is required to decompose their computations in terms of CORDIC operations. The

proposed multiplier free CORDIC architecture for SVD computations requires

 CORDIC units to process 

 

 

 

 

 

 

 

2/2/ MM × MM ×  matrix and the parallel ordering method

is adopted to perform  computations in parallel. It reduces the number steps 

required for the computation 

  

The DCT based on CORDIC algorithm does not need multipliers. This proposed

architecture for DCT computation requires six CORDIC units to process  matrix.

Moreover, it has regularity and simple architecture. Hence 

the computation of SVD and DCT are implemented using CORDIC algorithm. This 

algorithm can also be used for many other DSP algorithms and there is a scope for furthe

provements in these architectures to increase throughput and hardware sharing by 

adopting the pipelining method. 
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