

STUDY OF CORDIC BASED PROCESSING

ELEMENT FOR DIGITAL SIGNAL PROCESSING
ALGORITHMS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Electrical Engineering

By
S. SYAM BABU

Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STUDY OF CORDIC BASED PROCESSING
ELEMENT FOR DIGITAL SIGNAL PROCESSING

ALGORITHMS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Electrical Engineering

By

S. Syam Babu

Under the Guidance of

Prof. S. Mohanty

Department of Electrical Engineering

National Institute of Technology

Rourkela

2007

National Institute of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Study of CORDIC based processing element

for digital signal processing algorithms” submitted by Mr. S. Syam Babu in partial

fulfillment of the requirements for the award of Master of Technology Degree in

Electrical Engineering with specialization in “Electronic System and Communication”

at the National Institute of Technology, Rourkela (Deemed University) is an authentic

work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other university / institute for the award of any Degree or Diploma.

Date: Prof. S. Mohanty
 Electrical Engineering Department
 National Institute of Technology
 Rourkela - 769008

ACKNOWLEDGEMENT

I express my sincere gratitude and appreciation to many people who helped keep

me on track toward the completion of my thesis. Firstly, I owe the biggest thanks to my

supervisor, Prof. S. Mohanty, whose advice, patience, and care boosted my morale.

I am very much thankful to our HOD, Prof. P. K. Nanda, for providing us with

best facilities in the department and his timely suggestions. I also thank all the teaching

and non-teaching staff for their cooperation to the students.

My special thanks to Mrs. N. Ramya Bhuvana, who helped me in completion of

my thesis. I also thank all my friends, without whose support my life might have been

miserable here.

I wish to express my gratitude to my parents, whose love and encouragement have

supported me throughout my education.

S. Syam Babu

CONTENTS

ABSTRACT i

LIST OF FIGURES ii

1. INTRODUCTION 1

2. CORDIC THEORY 4
 2.1. APPLICATIONS OF THE CORDIC ALGORITHM 9

 2.2. EXTENSION TO LINEAR FUNCTIONS 13

 2.3. EXTENSIONS TO HYPERBOLIC FUNCTIONS 14
3. SINGULAR VALUE DECOMPOSITION 17

 3.1. JACOBI ALGORITHM 19

 3.2 CORDIC ALGORITHM FOR SVD 21

 3.3. CORDIC PROCESSOR FOR SVD COMPUTATION 23

 3.4 MATRIX APPROXIMATION USING SVD 27
4. DISCRETE COSINE TRANSFORM 29

 4.1 CORDIC-BASED DCT ALGORITHM 33

5. RESULTS AND DISCUSSIONS 36

6. CONCLUSION 41

REFERENCES 43

ABSTRACT

There is a high demand for the efficient implementation of complex arithmetic

operations in many Digital Signal Processing (DSP) algorithms. The COordinate

Rotation DIgital Computer (CORDIC) algorithm is suitable to be implemented in DSP

algorithms since its calculation for complex arithmetic is simple and elegant. Besides,

since it avoids using multiplications, adopting the CORDIC algorithm can reduce the

complexity.

Here, in this project CORDIC based processing element for the construction of

digital signal processing algorithms is implemented. This is a flexible device that can be

used in the implementation of functions such as Singular Value Decomposition (SVD),

Discrete Cosine Transform (DCT) as well as many other important functions. It uses a

CORDIC module to perform arithmetic operations and the result is a flexible

computational processing element (PE) for digital signal processing algorithms. To

implement the CORDIC based architectures for functions like SVD and DCT, it is

required to decompose their computations in terms of CORDIC operations.

SVD is widely used in digital signal processing applications such as direction

estimation, recursive least squares (RLS) filtering and system identification. Two

different Jacobi-type methods for SVD parallel computation are usually considered,

namely the Kogbetliantz (two-sided rotation) and the Hestenes (one-sided rotation)

method. Kogbetliantz’s method has been considered, because it is suitable for mapping

onto CORDIC array architecture and highly suitable for parallel computation. Here in its

implementation, CORDIC algorithm provides the arithmetic units required in the

processing elements as these enable the efficient implementation of plane rotation and

phase computation. Many fundamental aspects of linear algebra rely on determining the

rank of a matrix, making the SVD an important and widely used technique.

 i

DCT is one of the most widely used transform techniques in digital signal

processing and it computation involves many multiplications and additions. The DCT

based on CORDIC algorithm does not need multipliers. Moreover, it has regularity and

simple architecture and it is used to compress a wide variety of images by transferring

data into frequency domain. These digital signal-processing algorithms are used in many

applications.

The purpose of this thesis is to describe a solution in which a conventional

CORDIC system is used to implement an SVD and DCT processing elements. The

approach presented combines the low circuit complexity with high performance.

 ii

LIST OF FIGURES

2.1. Vector Rotation 5

2.2 Trajectory of Circular rotations 14

2.3 Trajectory of Linear rotations 15

2.4 Trajectory of Hyperbolic rotations 15

3.1 Affect of Jacobi Rotations on the matrix 20

3.2 Sweep of Jacobi transformations for a matrix 22

3.3 Array architecture for Kogbetliantz method 23

3.4 Floating point CORDIC 25

3.5 Architecture of the CORDIC module 26

3.6 Approximation of images using SVD 28

4.1 One dimensional Cosine basis function 31

4.2 Computation of 2-D DCT using seperability property 32

4.3 DCT flow 34

4.4 Original and decompressed images 35

5.1 CORDIC Rotation mode operations 37
5.2 CORDIC Vectoring mode operations 38

 iii

INTRODUCTION

 1

INTRODUCTION

The digital signal processing landscape has long been dominated by

microprocessors with enhancements such as multiply-accumulate instructions and special

addressing modes. The advent of reconfigurable logic computers permits the higher

speeds of dedicated hardware solutions at costs that are competitive with the traditional

software approach. Unfortunately, algorithms optimized for these microprocessor-based

systems do not usually map well into hardware. While hardware-efficient solutions often

exist, the dominance of the software systems has kept those solutions out of the spotlight.

Among these hardware-efficient algorithms, there is a class of iterative solutions for

trigonometric and other transcendental functions that use only shifts and adds to perform.

The trigonometric functions are based on vector rotations and trigonometric algorithm is

called CORDIC, an acronym for COordinate Rotation Digital Computer. The

trigonometric CORDIC algorithms were originally developed as a digital solution for real

time navigation problems.

The CORDIC algorithm can operate in either vectoring or rotation mode.

Vectoring mode performs Cartesian to polar conversion. An input vector is rotated until it

is on x-axis. The final x value is equal to the magnitude of the input vector. While

rotating the vector, the total angle traversed is also recorded, which provides the phase of

the input vector. Rotation mode performs polar to Cartesian conversion. The input vector

is rotated by the specified angle. The final x and y values in rotation and vectoring modes

are scaled by the CORDIC processing gain. This processing gain varies with the number

of iterations performed. It approaches to 1.6476 as the number of iterations goes to

infinity.

The CORDIC algorithm has found its way into diverse applications including the

8087 math coprocessor and radar signal processors. CORDIC rotation has also been

proposed for computing Discrete Fourier, Discrete Cosine, Discrete Hartley and Z-

transforms, filtering, Singular Value Decomposition, and solving linear systems.

 2

Singular value decomposition (SVD) is widely used in digital signal processing

applications such as direction estimation, spectrum analysis and systems identification.

Two different Jacobi-type methods for SVD parallel computation are usually considered,

namely the Kogbetliantz (two-sided rotation) and the Hestenes (one-sided rotation)

method. The Kogbetliantz’s method has been adopted because it is suitable for mapping

onto CORDIC array architecture [1] and highly suitable for parallel computation.

In Kogbetliantz’s method, the norm of the off-diagonal elements of the matrix is

successively reduced by a sequence of two-sided Givens transformations, which requires

the computation of a rotation angle and subsequent operations. CORDIC algorithm [2]

provides an attractive means for implementing the arithmetic units required in typical

SVD processing elements as these enable the efficient implementation of plane rotation

and phase computation.

The Discrete Cosine Transform has become one of the most widely used

transform techniques in digital signal processing and it is one of the computationally

intensive transforms, which require many multiplications and additions. The DCT based

on CORDIC [3] algorithm does not need multipliers. Moreover, it has regularity and

simple hardware architecture. DCT is an image compression method used in many

applications for its effectiveness to compress a wide variety of images by transferring

data into frequency domain.

 3

CORDIC THEORY

 4

2. CORDIC THEORY: AN ALGORITHM FOR VECTOR

ROTATION:

All of the trigonometric functions can be computed or derived from functions

using vector rotations, as will be discussed in this section. Vector rotation can also be

used for polar to rectangular and rectangular to polar conversions, for vector magnitude,

and as a building block in certain transforms such as the DFT and DCT. The CORDIC

algorithm provides an iterative method of performing vector rotations by arbitrary angles

using only shifts and adds. The algorithm credited to Volder [2], is derived from the

general (Givens) rotation transform:

φφ
φφ

sincos'
sincos'

xyy
yxx

+=
−=

This rotates a vector in a Cartesian plane by the angle φ as shown in the figure 2.1

 φ

Figure 2.1. Vector rotation
x

y′

y

These can be rearranged so that:

]tan.[cos' φφ yxx −= (2.1)

]tan.[cos' φφ xyy +=

 5

So far, nothing is simplified. However if the rotation angles are restricted such that

, the multiplication by the tangent term is reduced to simple shift operation.

Arbitrary angles of rotation are obtainable by performing a series of successively smaller

elementary rotations. If the decision at each iteration, i, is which direction to rotate rather

than whether or not to rotate, then the

i−±= 2)tan(φ

)cos(iδ term becomes a constant (because

)cos(iδ =)cos(iδ−). The iterative rotation can now be expressed as:

]2..[1
i

iiiii dyxkx −
+ −= (2.2)

]2..[1
i

iiiii dxyky −
+ +=

Where:

ii
ik 21 21/1)2cos(tan −−− +==

 =id 1±

Removing the scale constant from the iterative equations yields a shift-add algorithm for

vector rotation. The product of the ’s can be applied elsewhere in the system treated as

part of a system processing gain. That product approaches 0.6073 as the number of

iterations goes to infinity. Therefore, the rotation algorithm has a gain , of

approximately 1.647. The exact gain depends on the number of iterations, and obeys the

relation

ik

nA

 ∏ −+=
n

i
nA 221

The angle of a composite rotation is uniquely defined by the sequence of the

directions of the elementary rotations. That sequence can be represented by a decision

vector. The set of all possible decision vectors is an angular measurement system based

on binary arctangents. Conversions between this angular system and any other can be

accomplished using a look-up. A better conversion method uses an additional adder-

subtractor that accumulates the elementary rotation angles at each iteration. The

elementary angles can be expressed in any convenient angular unit. Those angular values

are supplied by a small lookup table (one entry per iteration) or are hardwired, depending

on the implementation.

 6

The angle accumulator adds a third difference equation to the CORDIC

algorithm:

 (2.3))2(tan. 1
1

i
iii dzz −−

+ −=

Obviously, in cases where the angle is useful in the arctangent base, this extra element is

not needed.

The CORDIC rotator is normally operated in one of two modes. The first, called

rotation by Volder [2] rotates the input vector by a specified angle (given as an

argument). The second mode, called vectoring, rotates the input vector to the x-axis while

recording the angle required to make that rotation.

In rotation mode, the angle accumulator is initialized with the desired rotation

angle. The rotation decision at each iteration is made to diminish the magnitude of the

residual angle in the angle accumulator. The decision at each iteration is therefore based

on the sign of the residual angle after each step. Naturally, if the input angle is already

expressed in the binary arctangent base, the angle accumulator may be eliminated. For

rotation mode, the cordic equations are:

 (2.4)

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

dxyy

dyxx

−−
+

−
+

−
+

−=

+=

−=

Where =-1 if <0, +1 otherwise id iz

Which provides the following result

∏ −+=

=
+=
−=

n

i
n

n

nn

nn

A

z
zxzyAy
zyzxAx

2

0000

0000

21

0
]sincos[
]sincos[

 (2.5)

In the vectoring mode, the CORDIC rotator rotates the input vector through

whatever angle is necessary to align the result vector with the x axis. The result of the

vectoring operation is a rotation angle and the scaled magnitude of the original vector

(the x component of the result). The vectoring function works by seeking to minimize the

 7

y component of the residual vector at each rotation. The sign of the residual y component

is used to determine which direction to rotate next. If the angle accumulator is initialized

with zero, it will contain the traversed angle at the end of the iterations. In vectoring

mode, the CORDIC equations are:

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

dxyy

dyxx

−−
+

−
+

−
+

−=

+=

−=

Where =+1 if <0, -1 otherwise. id iy

 Then:

∏ −

−

+=

+=

=

+=

n

i
n

n

n

nn

A

xyzz

y
yxAx

2

00
1

0

2
0

2
0

21

)/(tan

0
 (2.6)

The CORDIC rotation and vectoring algorithms as stated are limited to rotation

angles between - 2/π and 2/π . This limitation is due to the use of for the tangent in

the first iteration. For composite rotation angles larger than

02

2/π , an additional rotation is

required. Volder describes an initial rotation 2/π± . This gives the correction iteration:

 x’=-d.y
 y’=d.x
 z’=z + d. 2/π

Where d=+1 if x<0, -1 otherwise.

There is no growth for this initial rotation. Alternatively, an initial rotation of either π or

0 can be made, avoiding the reassignment of the x and y components to the rotator

elements. Again, there is no growth due to the initial rotation:

 x’=d.x
 y’=d.y
 z’=z if d=1, or z=-π if d=-1
 d=-1 if x<0, +1 otherwise.

 8

The CORDIC rotator described is usable to compute several trigonometric

functions directly and others indirectly. Judicious choice of initial values and modes

permits direct computation of sine, cosine, arctangent, vector magnitude and

transformations between polar and Cartesian coordinates.

2.1 APPLICATIONS OF THE CORDIC ALGORITHM

2.1.1 Sine and Cosine

The rotational mode CORDIC operation can simultaneously compute the sine and

cosine of the input angle. Setting the y component of the input vector to zero reduces the

rotation mode result to:

00

00

sin..
cos..

zxAy
zxAx

nn

nn

=
=

 (2.7)

By setting equal to , the rotation produces the unscaled sine and cosine of

the angle argument, . Very often, the sine and cosine values modulate a magnitude

value. Using other techniques (e.g., a look up table) requires a pair of multipliers to

obtain the modulation. The CORDIC technique performs the multiply as part of the

rotation operation, and therefore eliminates the need for a pair of explicit multipliers. The

output of the CORDIC rotator is scaled by the rotator gain. If the gain is not acceptable, a

single multiply by the reciprocal of the gain constant placed before the CORDIC rotator

will yield unscaled results. It is worth noting that the hardware complexity of the

CORDIC rotator is approximately equivalent to that of a single multiplier with the same

word size.

0x nA/1

0z

2.1.2 Polar to Rectangular Transformation

A logical extension to the sine and cosine computer is a polar to Cartesian

coordinate transformer. The transformation from polar to Cartesian space is defined by:

θ
θ

sin
cos

ry
rx

=
=

 (2.8)

 9

As pointed out above, the multiplication by the magnitude comes for free using

the CORDIC rotator. The transformation is accomplished by selecting the rotation mode

with =polar magnitude, =polar phase, and =0. The vector result represents the

polar input transformed to Cartesian space. The transform has a gain equal to the rotator

gain, which needs to be accounted for somewhere in the system. If the gain is

unacceptable, the polar magnitude may be multiplied by the reciprocal of the rotator gain

before it is presented to the CORDIC rotator.

0x 0z 0y

2.1.3 General vector rotation

The rotation mode CORDIC rotator is also useful for performing general vector

rotations, as are often encountered in motion correction and control systems. For general

rotation the 2-dimensionsal input vector is presented to the rotator inputs. The rotator

rotates the vector through the desired angle. The output is scaled by the CORDIC rotator

gain, which must be accounted for elsewhere in the system. If the scaling is unacceptable,

a pair of constant multipliers is required to compensate for the gain. CORDIC rotators

may be cascaded in a tree architecture for general rotation in n-dimensions.

2.1.4 Arctangent

The arctangent,)/tan(xyA=θ , is directly computed using the vectoring mode

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be

provided as a ratio expressed as a vector (x, y). Presenting the argument as a ratio has the

advantage of being able to represent infinity (by setting x=0). Since the arctangent result

is taken from the angle accumulator, the CORDIC rotator growth does not affect the

result.

)/(tan 00
1

0 xyZZn
−+=

 10

2.1.5 Vector magnitude

The vectoring mode CORDIC rotator produces the magnitude of the input vector

as a byproduct of computing the arctangent. After the vectoring mode rotation, the vector

is aligned with the x-axis. The magnitude of the vector is therefore the same as the x

component of the rotated vector. This result is apparent in the result equations for the

vector mode rotator:

 2
0

2
0 yxAx nn +=

The magnitude result is scaled by the processor gain, which needs to be accounted for

elsewhere in the system.

2.1.6 Inverse CORDIC functions

If a CORDIC style computer can generate a function, its inverse can also be

computed. Unless the inverse is calculable by changing the mode of the rotator, its

computation normally involves comparing the output to a target value.

2.1.7 Arcsine and Arccosine

The arcsine can be computed by starting with a unit vector on the positive x-axis,

then rotating it so that its y component is equal to the input argument. The arcsine is then

the angle subtended to cause the y component of the rotated vector to match the

argument. The decision function in this case is the result of a comparison between the

input value and the y component of the rotated vector at each iteration:

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

dxyy

dyxx

−−
+

−
+

−
+

−=

+=

−=

Where =+1 if < c , -1 otherwise. id iy

 is input argument. c

 11

Rotation produces the following result:

∏ −+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

−=

n

i
n

n
n

n

nn

A

xA
czz

cy
cxAx

2

0
0

22
0

21

.
arcsin

).(

The arcsine functions as stated above returns correct angles for inputs

 although the accuracy suffers as the input approaches 1 (the error

increases rapidly for inputs larger than about 0.98). This loss of accuracy is due to the

gain of the rotator. For angles near the y-axis, the rotator gain causes the rotated vector to

be shorter than the reference (input), so the decisions are made improperly.

,1/1 0 <<− xAc n ±

The arccosine computation is similar, except the difference between the x

component and the input is used as decision function. Without modification, the

arccosine algorithm works only for inputs less than . The arccosine could also be

computed by using the arcsine function and subtracting

nA/1

2/π from the result, followed by

an angular reduction if the result is in the fourth quadrant.

2.1.8 Cartesian to Polar transformation

The Cartesian to Polar transformation consists of finding the magnitude

and phase angle ())((22 yxsqrtr +=]/tan[xya=φ) of the input vector, (x, y). These

both functions are provided simultaneously by the vectoring mode CORDIC rotator. The

magnitude of the result will be scaled by the CORDIC rotator gain, and should be

accounted for elsewhere in the system. If the gain is unacceptable, it can be corrected by

multiplying the resulting magnitude by the reciprocal of the gain constant.

 12

2.2 EXTENSION TO LINEAR FUNCTIONS:

A simple modification to the CORDIC equation permits the computation of linear

functions:

 (2.8)

)2.(

2..

2...0

1

1

1

i
iii

i
iiii

i
i

iiii

dzz

dxyy

xdyxx

−
+

−
+

−
+

−=

+=

=−=

For rotation mode (= -1 if < 0, +1 otherwise) the linear rotation produces: id iz

0

. 000

0

=
+=

=

n

n

n

z
zxyy

xx
 (2.9)

This operation is similar to the shift-add implementation of a multiplier, and as

multipliers go is not an optimal solution. The multiplication is handy in applications

where a CORDIC structure is already available. The vectoring mode (= +1 if < 0,

-1 otherwise) is more interesting, as it provides a method for evaluating ratios:

id iy

000

0

/
0

xyzz
y

xx

n

n

n

+=
=
=

 (2.10)

The rotations in the linear coordinate system have a unity gain, so no scaling corrections

are required.

 13

2.3 EXTENSION TO HYPERBOLIC FUNCTIONS

The close relationship between the trigonometric and hyperbolic functions

suggests the same architecture can be used to compute the hyperbolic functions. The

CORDIC equations for hyperbolic rotations are derived using the same manipulations as

those used to derive the rotation in the circular coordinate system. For rotation mode

these are:

 (2.11)

)2(tanh.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

dxyy

dyxx

−−
+

−
+

−
+

−=

+=

+=

Where = -1 if < 0, +1 otherwise. id iz
 Then :

80.021

0
)sinhcosh[
)sinhcosh[

2

0000

0000

≈−=

=
+=
+=

∏ −

n

i
n

nn

nn

A

zn
zxzyAy
zyzxAx

 (2.12)

In vectoring mode (= +1 if < 0, -1 otherwise) the rotation produces: id iy

∏ −

−

−=

+=

=

−=

n

i
n

n

n

nn

A

xyzz

y
yxAx

2

00
1

0

2
0

2
0

21

)/(tanh

0
 (2.13)

 Figure 2.2a. Trajectory of Ci

 14
V(0)
rc
V(1)
ular rot
V(2)
ations

 Figure 2.3 Trajectory of Linea

 Figure 2.4 Trajectory of Hyperbo

 15
V(0)
r rotations

lic
V(0)
V(1)
V(1)
V(2)
 ro
V(2)
V(3)
tations

The elemental rotations in the hyperbolic coordinate system do not converge.

However, it can be shown that convergence is achieved if certain iterations (I=4, 13, 40...

k, 3k+1,..) are repeated. The hyperbolic equivalents of all the functions discussed for the

circular coordinate system can be computed in a similar fashion. Additionally, the

following functions can be derived from the CORDIC functions:

 ααα cos/sintan =

 ααα cosh/sinhtanh =

 ααα coshsinhexp +=

]/[tanh2ln 1 xy−=α where x=α +1 and y=α-1

2/1222/1)()(yx −=α Where x=α+1/4 and y=α-1/4

It is worth noting the similarities between the CORDIC equations for circular,

linear, and hyperbolic systems. The selection of coordinate system can be made by

introducing a mode variable that takes on values 1, 0, or -1 for circular, linear and

hyperbolic systems respectively. The unified CORDIC iteration equations are then:

 (2.14)

iiii

i
iiii

i
iiii

edzz
dxyy

dymxx

.
2..

2...

1

1

1

−=
+=

−=

+

−
+

−
+

Where is the elementary angle of rotation for iteration i in the selected coordinate

system. Specifically, = for m=1, = for m=0, and = for

m=-1.This unification, due to Walther, permits the design of a general purpose CORDIC

processor.

ie

ie)2(tan 11 −−
ie i−2 ie)2(tanh 1 i−−

 16

SINGULAR VALUE DECOMPOSITION

 17

3. SINGULAR VALUE DECOMPOSITION

The SVD is one of the most important matrix factorizations in linear algebra and

the SVD of a matrix nmRA ×∈ is a factorization of the form:

 (3.1) TUDVA =

Where and are orthogonal (and) and mmRU ×∈ nnRV ×∈ IUU T = IVV T = nmRD ×∈ is

diagonal with nonnegative diagonal elements iσ . The numbers iσ are the ‘singular

values’ of A. { }muuU ,.....,1= are the left singular vectors and { mvvV ,.....,1 }= are the

right singular vectors.

There are many numerically stable algorithms for computing the SVD such as the

Jacobi algorithm, the QR method and the one sided Hestenes method. For parallel

implementations the Jacobi method is far superior in terms of simplicity, regularity, and

local communications. In linear algebra the singular value decomposition (SVD) is an

important factorization of a rectangular real or complex matrix, with several applications

in signal processing.

Singular values, singular vectors, and their relation to the SVD

A non negative real number σ is a singular value for A if and only if there exist

unit-length vectors u in and v in such that mk nk

uAv σ= And . vuA σ=*

The vectors u and are called left singular and right singular vectors for v σ

respectively.

A singular value for which we can find two left (or right) singular vectors that are

not linearly dependent is called degenerate. Non-degenerate singular values always have

unique left and right singular vectors. Consequently, if all singular values of A are non-

degenerate and non zero, then its singular value decomposition is unique. Degenerate

singular values, by definition, have non-unique singular vectors. Further more if and

 are the two left-singular vectors which both corresponds to the singular value

1u

2u σ , then

any linear combination of the two vectors is also a left singular vector corresponding to

 18

singular value σ . The similar statement is true for right singular vectors. Consequently,

if A has degenerate singular values, then its singular value decomposition is not unique.

3.1 THE JACOBI SVD ALGORITHM:

Here equation (3.1) can be rewritten in the following form:

 (3.2) DAVUUDVA TT =⇔=

The Jacobi method exploits to generate the matrices U and V by performing a

sequence of orthogonal two sided plan rotations (2D rotations) to the input matrix:

 1+= iii

T

i
AA JJ φθ (3.3)

With the property that each new matrix is 'more diagonal' than its predecessor. After n

iterations, the input matrix A is transformed into the diagonal matrix :

iA

nA

 JJJJJJJJ nn

TTT

n

T

nn AA φφφφθθθθ

110011
............

−−
= (3.4)

 Which leads to:

 ;nAD =

 ∏= J iU θ (3.5)

 ∏= J iV φ

The matrices J i

θ and J i

φ are 'Jacobi rotation' matrices),,(θqpJ of the form:

 (3.6)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

=

−=

=

=

elsewhere
J

J

J

J

J

ij

qq

pq

qp

pp

ij

δ

θ

θ

θ

θ

)cos(

)sin(

)sin(

)cos(

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅−⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅

1000
00

00
0001

cs
sc

 19

(Where p < q,)cos(θ=c and)sin(θ=s)

The angles θ and φ are chosen in order to solve a 2x 2 SVD problem:

 (3.7) ⎥
⎦

⎤
′⎢

⎣

⎡ ′
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− qq

pp

qq

pq

qp

pp

a
a

a

a

a

a 0

0cos
sin

sin
cos

..
cos
sin

sin
cos

φ
φ

φ
φ

θ
θ

θ
θ

By repeating this for all possible pairs (p, q), A can be effectively digonalized:

Algorithm:

For s=1 ... , S

 For p=1, ...,N

For q=p + l .. N

 Begin

 Determine θ and φ

 A=),,(.),,(φθ qpJAqpJ T

 End

The Jacobi algorithm performs 22× SVD for all possible pairs (p, q) which is

called a sweep, and then repeats that for as many sweeps as necessary for the

convergence. The multiplication by J i

θ affects only the two columns p and q, and the

multiplication by J i

φ affects only the two rows p and q as shown in figure.

 q p
q p

qq

p p

 AqpJ T),(),(),(qpAJqpJ T),(qpAJ

 Figure 3.1. Premultiplication effects rows p and q, and post
multiplication effects columns p and q.

Ap(
pAJ

qJ T),
),(q

 20

Therefore if M is the matrix size and if M is even then M/2 sub-problems (2 x 2 SVD)

can be processed in parallel. To illustrate this suppose M=4 and group the six possible

sub problems into three sets:

 Set l:)}4,3(),2,1{(

 Set 2:)}4,2(),3,1{(

 Set 3.)}3,2(),4,1{(

All (p, q) pairs within each set are non-conflicting. Sub problem (1,2) and (3,4) can be

calculated out in parallel, likewise sub-problem (1,3) and (2,4) can be executed in parallel

as can sub-problem (1,4) and (2,3). This way of ordering sub-problems is called “parallel

ordering” it allows the execution of N/2 sub-problems in parallel. The number of sets is

N-1 and a sweep consists of N-1 steps of N/2 rotations executed in parallel.

3.2 CORDIC ALGORITHM FOR SVD

For SVD, a MM × matrix is divided into ⎣ ⎦ ⎣ ⎦2/2/ MM × blocks. Each block is

a matrix, which can be mapped to a CORDIC processor. The basic operation for

Kogbetliantz’s method is to apply the two-sided rotation to each

22×

22× matrix to nullify the

two off-diagonal elements i.e.:

 = (3.8) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− φ

φ
φ

φ
θ
θ

θ
θ

cos
sin

sin
cos

cos
sin

sin
cos

d
b

c
aT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

10
0 σ
σ

The values θ and φ are obtained using the following equations:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

=−

−
+

=+

−

−

ad
bc
ad
bc

1

1

tan

tan

θφ

θφ

 (3.9)

 21

The systolic array architecture suitable for implementing Kogbetliantz’s approach

is shown in Figure 3.3. In this each value, θ and φ , is calculated in the diagonal PEs

according to equation (3.9), and these are then passed through each off-diagonal PE. Here

θ propagates along the rows and φ propagates along the columns. The required two-

sided rotations are then computed in all PEs in accordance with equation (3.8). After

every block has completed this two-side rotation, each pair of values in the both the (2i)

th and (2i +1) th column is interchanged. The same applies to the rows. A sweep is

defined as and occurs when each off-diagonal element is eliminated once. This

interchange means that all off-diagonal elements are eliminated before the beginning of

the next sweep. Usually, an SVD computation is finished after a pre-defined number of

sweeps. In the case of MM × matrix (M even), this corresponds to two

sided rotations and it is shown in figure 3.2 for a 4 x 4 matrix.

2/)1(−MM

Figure 3.2: Sweep of Jacobi transformations for a matrix of order 4x4

It should be noted that in the case of left-rotation two columns can be calculated in

parallel, whilst in the case of right-rotation two rows can be calculated in parallel.

 22

A11 A12 A13 A14 A15 A16

 Figure 3.3. Array architecture for kogbetliantz’s method

3.3. CORDIC PROCESSOR FOR SVD COMPUTATION

The basic idea behind the CORDIC algorithm is that a rotation is decomposed

into a sequence of micro-rotations over the angles iα , where usually iα is chosen

according to . The corresponding micro-rotation iterative equations are as

follows:

i
i

−= 2tanα

 (3.10)
⎪
⎩

⎪
⎨

⎧

−=

+=

−=

−−
+

−
+

−
+

)2(tan.

2..

2..

1
1

1

1

i
iii

i
iiii

i
iiii

dzz

xdyy

ydxx

Where = 1. id ±

The inverse tangent function is a primitive operation in CORDIC algorithms.

Therefore, θ and φ in (3.9) can be solved explicitly in (3.10) by setting .

Moreover, within the CORDIC rotation mode equation (3.10) can be used to calculate the

matrix vector multiplication shown in equation (3.11) apart from the constant factor

scaling i.e.

id)(ii yxsign=

A25 A26

A23 A24

A21 A22

A31 A32

A41 A42

A33 A34

A43 A44

A35 A36

A45 A46

A51 A52

A61 A62

A53 A54

A63 A64

A55 A56

A65 A66

θ and φ
Propagate
path

Data
exchange

 23

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

y
x

α
α

α
α

cos
sin

sin
cos

~
~

 (3.11)

If and and are the final outputs from equation (3.10), then the desired

outputs and

id)(izsign= nx ny

x~ y~ in (3.11) are given by:

 ⎩
⎨
⎧

=
=

nn

nn

xky
xkx

.~

.~

Where ∏ ∏
−

=

−

=
−+

==
1

0

1

0
221

1cos
N

i

N

i
iink α (3.12)

 and N is the word length.

In the case of the hybrid architecture x and are floating-point values and is

a fixed-point number. Let and , where , , are the

mantissas and exponents of and respectively, with both the mantissa and exponents

represented as 2’s complement number’s. We also assume the inputs and are

normalized. Equations (3.10) can then be expressed as equation (3.13).

y z

xe
xi mx 2.= ye

yi my 2.=
xm ym , xe ye

ix iy

ix iy

{
⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−≥−

=−=′=
−−−−

−+−

−′
+

othersmdm

eifemdm

mdmmx
ie

yi
iexey

x

yx
eeie

yix
ie

yi
e

x
e

xi

y

xyx

yxx

2).2.(

12)2..(

2.2..2.2.
)(

)(

1

 (3.13)

{
⎪
⎪
⎩

⎪⎪
⎨

⎧

+

−≥+

=+=′=
−−−−

−+−

−′
+

othersmdm

iexifeymdm

mdmmy
ie

xi
iee

x

eeie
xiy

ie
xi

e
y

e
yi

xyx

yxy

xyy

2).2.(

2)2..(

2.2..2.2.
)(

)(

1

 24

Two options are then available:

• Global floating-point normalization. Here the CORDIC algorithm remains fixed

point. In this case it is only at the inputs and outputs of the algorithm that

floating-to-fixed and fixed-to-floating point conversions need take place. In this

case, the mantissa range must be calculated in advance so that overflow can be

avoided. This is shown in Figure 3.4 (a).

 Pre-processing
 (alignment of
 exponent)

 Fixed-point
 CORDIC

Post-processing
(re-normalization)

Pre-processing

 CORDIC

Post-processing
(re-normalization)

input
input

mantissa
exponent

iteration
iteration

output
output

Fig 3.4.Floating-point CORDIC
(a) Global normalization (left) (b) Local normalization

 25

• Local floating-point normalization. Here each rotation performs a floating-point

shift-add/subtract operation and both
xe

xm ′′ 2 and need to be re-

normalized for the next iteration. This is shown in Figure 3.4 (b).

ye
ym ′′ 2

The advantage of the second approach is the regularity of data scheduling.

However, at first sight, its performance appears limited because it requires equal weight

for the exponents of both operands in each iteration. Because of this global floating-point

normalization has tended to have been used to date. However for SVD computation, the

parallel properties of the algorithm can be beneficially exploited to achieve high

performance. Architecture of CORDIC module for x- component is shown in figure 3.5.

Figure 3.5. Architecture of the

Programmable processor functions

General programm

zed as

) Solve c ± b and d ± a.

comparator
iee yx −≥

)(iex

)(iey

i

Adder

)(imx

)(imy

able processor for implem

Whose general operations are summari

1

2) Solve θφ ± using the CORDIC algorithm a

3) Solve the left- and right-multiplication usin

4) Exchange data with neighboring processor

5) If the pre-defined sweeps have been finis

else go to step 1.

 26
shifter
x-circuit of CORDIC module

follows:

Re-

normalize
)1(+imx

)1(+iex

ting the SVD PE function can be defined. en

nd then solve θ and φ .

g the CORDIC algorithm.

s.

hed, perform the scale factor correction or

3.5 MATRIX APPROXIMATION USING SVD:

If the image, when considered as a matrix, has low rank, or can be approximated

D can be used to find this

pproximation, and further this low rank approximation can be represented much more

compac

reasing

ogonal ma ces.

hen a rank

sufficiently well by a matrix of low rank, then SV

a

tly than the original image. More specifically, suppose we are given an image A

which is an NN × real matrix. Then we first factor it into its SVD representation

 TUDVA = ,

 Where D is a diagonal matrix with entries along the diagonal ordered in the dec

order, and U and V are orth tri

 r approximation to is the matrix A T
rrrr VDUA = T

Where D is the top-left r rr × sub matrix of D , rU consists of the first r columns of U ,

and TV the irst r f r r

Th ca

ows of TV .

e SVD decomposition is interesting be use rU , rD , T

rV provide the best rank

r approximation to A i then sense of packing ximum energy from the ma A .

Furthermore, for com ression, the decomposition is interesting because unlike p A which

has ,

tu

2N entries, the total number of entries in rU , D V ar nly rNr +2 . It often

rns out that even with small

r
T

r e o

r , the approximation rA gets most of the energy of A ,

and is visually adequate. Hence the attractiveness of the method.

 27

Now the use of the SVD for the approximation of the matrix by lower rank is shown in

e figure 3.7 th

a.original image 512x512 b.5 singular values c.10 singular values

d.20 singular values e.30 singular values f.50 singular values

 Figure 3.7. Approximation of images using SVD

The first ten iterations actually give age, which is

he original image. First 30

erations giving a good approximation, we can identify the person with a substantial

degree

Original image 512x512 5 singular values 10 singular values

20 singular values 30 singular values 50 singular values

 the shape of the im a decent

approximation. This takes up to 96% less storage space than t

it

of detail. It requires 90% less storage space than the original image. This is good.

Finally, the first fifty iterations give a near perfect image, and yet require 80% less

storage space. This is very good.

 28

 DISCTERE COSINE TRANSFORM

 29

4. DISCTERE COSINE TRANSFORM

e one of the most widely used transform techniques in digital

signal processing ansforms, which

quire many multiplications and additions. Many DCT algorithms were proposed in

order to

 DCT has becom

. The DCT is one of the computationally intensive tr

re

 achieve high speed DCT. The DCT based on CORDIC [3] algorithm does not

need multipliers. Moreover, it has regularity and simple hardware architecture, which

makes it easy to be implemented in VLSI. Also, the CORDIC-based DCT algorithm can

support the high Performance applications such as HDTV due to its high throughput.

The One-Dimensional DCT

The most common DCT definition of a 1-D sequence of length N is

 ∑
− +

=
1

=

)12(cos)()()(uxxfuuC πα (4.1)

r = 0,1,2,…, -1. Similarly, the inverse transformation is defined as

N

0 2x N

fo u N

 ∑
− +

=
1

=

)12(cos)()()(
N uxuCuxF πα (4.2)

r

0 2u N

fo x =0,1,2,…, -1. In both equations 4.1 and 4.2N)(uα is defined as

It is clear from (4.1) that

ansform coefficient is the average tr

⎪⎩
⎪

⎧

N
2

1
⎪⎪
⎨= Nu)(α

= For 0u

 (4.3)

for

valu

 For 0 u ≠
u = 0 ∑
−

=0x
t

e of the sample sequence. In literature, this value

==)0(
N

uC
1

)(1 N

xf . Thus, the firs

30

is referred to as the DC coefficient. All other transform coefficients are called the AC

coefficients.

To fix ideas, ignore the)(xf and)(uα component in (4.1). The plot of ∑
−

=

 varying of is shown in Figure 4.1.

left waveform lue, whereas, all

sively increasing frequencies.

hese waveforms are called the cosine basis function. Note that these basis functions are

orthogo

+1

0 2
)12(cos

N

x N
uxx

for N =8 and values u

The first the top- (u =0) renders a constant (DC) va

other waveforms (u =1, 2,.. 7) give waveforms at progres

T

nal. Hence, multiplication of any waveform in Figure 4.1 with another waveform

followed by a summation over all sample points yields a zero (scalar) value, whereas

multiplication of any waveform in Figure 4.1 with itself followed by a summation yields

a constant (scalar) value. Orthogonal waveforms are independent, that is, none of the

basis functions can be represented as a combination of other basis functions.

 Figure 4.1. One dimensional cosine basis function (N=8).

 31

If the input sequence has more than sample points then it can be divided into

sub-sequences of length and DCT can be applied to these chunks independently. Here,

a very important point to note is that in each such computation the values of the basis

function points will not change. Only the values of will change in each sub-

sequence. This is a very important property, since it shows that the basis functions can be

pre-computed offline and then multiplied with the sub-sequences. This reduces the

number of mathematical operations (i.e., multiplications and additions) thereby rendering

computation efficiency.

The Two-Dimensional DCT

This section necessitates the extension of ideas presented in the last section to a

two-dimensional space. The 2-D DCT is a direct extension of the 1-D case and is given

by

N

N

)(xf

⎥⎦
⎤

⎢⎣⎥⎦⎢⎣= = Nx y 220 0

⎡ +⎤⎡ +
= ∑∑

− −

N
vyuxyxfvuvuC

N N)12(cos)12(cos),()()(),(
1 1 ππαα (4.4)

r 0,1,2,…, -1 , vu, = N)(uα and)(vα are as defined in (4.3).

p

fo

C(u, v) can be computed in two steps by successive 1-D operations on rows and

columns. This idea is gra hically illustrated in Figure 4.2. The arguments presented can

be identically applied for the inverse DCT computation 4.5.

 Figure 4.2. Computation of 2-D DCT using separability property.

The inverse transform is defined as

 ⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

= ∑∑
−

=

−

= N
vy

N
uxvuCvuyxf

N

u

N

v 2
)12(cos

2
)12(cos),()()(),(

1

0

1

0

ππαα (4.5)

 32

4.1 CORDIC-BASED DCT ALGORITHM

The two-dimensional DCT for 8×8 sub-matrix is defined as

16
)12(cos

16
)12(cos),()()(

4
1),(

7

0

7

0

ππαα vyuxyxfvuvuC
x y

++
= ∑∑

= =

 (4.6)

0

Where is th

transform, it can be

ensional DCT is ex

⎪⎩

⎪
⎨
⎧

=
1

2
1

)(uα 0 ⎪
⎧ 1

),(yxf

dim

implement

computations in terms

To

(4.8) and (4.9), respect

)7()0({)4(

)7()0({)0(

ffC

ff

++=

++=

here

ot

can be obtained b

n

C

W (4.8) and (4.9) a

compute b h)0(C a

)4(C

d)3(C , we need foua

processors for the 2D-D

 If ≠u

 And
 0 ⎪⎩

⎨=
1

2)(vα
0

If =u

e input matrix. Since the two-dimens

executed by one-dimensional DCT in

pressed as follow.

16
)12(cos)()(

2
1)(

7

0

πα uxxfuuC
x

+
= ∑

=

the CORDIC based architectures, it is

 of CORDIC operations. and)0(C C

ively.

)2()6()1({
4

sin)}4()3(

2()6()1({
4

cos)}4()3(

π fffff

fffff

++−+

++++

tation mode of m

RDI

y using the rotation mode of CORDIC

Consequently,

π

re the

d)C w

 ro CORDIC arith

n 4(e need one CO C proce

r CORDIC processors.

CT by applying the 1D-DCT two time

33
 ≠vif

 if =v
ional DCT is a separable

 serial manner. The one-

 (4.7)

required to d the

can be expressed into

ecompose

)4(

4
cos)}5(

4
sin)}5()

π
 (4.8) &

π

f

f

+

+
 (4.9)

 Therefore, in order to

imilarly, and

. For and

 we can use six CORDIC

etic.

ssor S.)2(C

)1(C)7(C ,)5(C

s.

1 DCT flow using the six CORDICFigure 4.3 shows the 8× processors.

Figure 4.3. 8×1 DCT flow.

Where as rotating angles for CORDIC (1) is

π /4, CORDIC (2) is 3π /8, CORDIC (3)

and CORDIC (6) are 7π /16, CORDIC (4) and CORDIC (5) are 3π /16.

Discrete Cosine Transform (DCT) is effectively used to compress a wide variety

of images by transferring data into frequency domain. DCT helps separate the image into

parts or sub-bands of differing importance with respect to the image’s visual quality. For

most images, much of signal energy lies at low frequency. Compression is usually

achieved by discarding high frequency information since their loss is not easily detected

by human visual system.

 34

Now the use of the DCT is shown in the figure 4.4

original image decompressed image

Original image
Decompressed image

Figure 4.4. Use of the DCT on the images

 35

 36

RESULTS AND DISCUSSIONS

 RESULTS AND DISCUSSIONS

CORDIC algorithm is the rotation algorithm, which provides the iterative metho

of performing vector rotations by arbitrary angles using shifting and adding operations.

Arbitrary angles of rotation are obtained by performing series of successively smaller

elementary rotations. CORDIC rotator normally operated in one of the two modes. The

first is called the rotation mode and second is vectoring mode. In rotation mode CORDIC

rotator rotates the input vector by a specified angle and the resultant plot is shown in the

figure 5.1.

Figure 5.1. CORDIC Rotation mode operations

ode CORDIC operation can simultaneously compute the sine and

cosine of the input angle by setting the component of the input vector equal to zero.

Here in the plot we set the component of the input vector zero so the component of

the resu ant vector gives the and

d

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

x(0)=1;y(0)=0;z(0)=75

x(n)=0.2588;y(n)=0.9659

z(n)=0

The rotational m

y

y y

lt 0sin z x component gives the

0cos z .

 37

In the vectoring mode, the CORDIC rotator rotates the input vector through

whatev

Here the input vector is along the axis so the angle accumulator gives the phase

angle 90 degrees and the

er angle is necessary to align the resultant vector with the x-axis. The result of the

vectoring operation is a rotation angle and the scaled magnitude of the original vector. If

the angle accumulator is initialized with zero, it will contain the traversed angle at the end

of the iterations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Figure 5.2. CORDIC Vectoring mode operations

x

x(0)=0;y (0)=1;z(0)=0

x(n)=1;y (n)=0;z(n)=90

bef ore scaling x(n)=1.6468

y

x component of the resultant vector giving the magnitude unity,

of the input vector. the wide range of

nctions including trigonometric, linear, logarithmic and exponential function and can

also be

pos matrix factorizations in

inear algebra. Jacobi method exploits to compute the SVD by performing a sequence of

rthogonal two sided rotations to the input matrix, with the property that each new matrix

 more diagonal than its predecessor. CORDIC-based processing element is

plemented to perform these two-sided rotations. This processing element contains a

CORDIC unit and this is used for both angle solving and for rotation. CORDIC unit used

This CORDIC algorithm can be used to compute

fu

 used to implement the functions such as Singular Value Decomposition and

Discrete Cosine Transform.

Singular Value Decom ition is one of the important

L

o

is

im

 38

in vectoring mode for angle solving and used in rotation mode for performing rotation. A

sweep is defined as and occurs when each off-diagonal element of the matrix is

eliminated once. Usually an SVD computation is finished after a predefined number of

sweeps. In the case of MM × matrix, one sweep corresponds to 2/)1(−MM two sided

rotations. So (M 2/)1−M steps are required to perform

pproa one sweep in

one sweep by considering this

1−M a ch. Whereas the architecture proposed in this thesis, performs

steps of rotations executed in parallel.

The proposed architecture adopts the parallel ordering method since, in the Jacobi

ethod, one left sided rotation affects only the two columns and right-sided rotation

ffects only the two rows of the matrix. Therefore if

 2/M

m

 M is the matrix size and even then

 sub-problems can be processed in parallel. It allows execution of the M/2 sub

roblems in parallel and hence a sweep consists of M-1 steps of M/2 rotations executed

 parallel.

To adopt this parallel ordering method

2/

a

M

p

in

MM × matrix is divided into

⎦ b⎣ ⎦ ⎣ 2/2/ MM × locks. Each block is a 22× matrix and mapped to a CORDIC

rocessor. The basic operation is to tation to each matrix to

nullify t

he values

 apply the two-sided ro 22×p

he two off-diagonal elements i.e.:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− φ

φ
φ

φ
θ
θ

θ
θ

cos
sin

sin
cos

cos
sin

sin
cos

d
b

c
aT

 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

10
0 σ
σ

 θ and φ T are obtained using the following equations:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

=−

−
+

=+

−

−

ad
bc
ad
bc

1

1

tan

tan

θφ

θφ

 39

In this each value, θ and φ , is calculated in the diagonal PEs, and these are then

passed through each off-diagonal PE. Here θ propagates along the rows and φ

propagates along the columns. The required two-sided rotations are then computed in all

PEs. After every block has completed this two-side rotation, each pair of values in the

both the (2i) th th column is interchanged. The same applies to the rows.

DCT has become the one of the most

 and (2i +1)

 widely used transform technique in digital

signal processing. DCT computation requires many multiplications and additions. Where

as the p

CORD

IC unit’s rotation angle is fixed and the rotating angles for CORDIC (1) is

roposed architecture based on CORDIC algorithm does not require any multiplier

and it has regularity and simple architecture. This architecture contains six processing

elements to compute the DCT for 8x8 matrix. Each processing element consists of one

IC unit to perform needed operations. Number of CORDIC units required varies

according to size of the matrix. Here each CORDIC unit works only in rotation mode and

each CORD

π /4, CORDIC (2) is 3π /8, CORDIC (3) and CORDIC (6) are 7π /16, CORDIC (4) and

RDCO IC (5) are 3π /16. 2D-DCT can be computed in two steps by successive 1-D

s and columns.

Hence the CORDIC based process

operations on row

ing elements are implemented to compute SVD

nd DCT. It uses a CORDIC module to perform arithmetic operations and the net result is

a flexible computational processing element (PE) for digital signal processing algorithms.

a

 40

CONCLUSION

 41

CONCLUSION

By doing this project we are familiar with Coordinate Rotational Digital

Computer (CORDIC) algorithm. It is an efficient algorithm suitable to be implemented in

DSP algorithms. The aim of the work presented here is to implement CORDIC based

processing element for the construction of digital signal processing algorithms. This is a

flexible device that can be used in the implementation of functions such as singular-value

decomposition (SVD) and Discrete Cosine Transform (DCT). It’s calculations for

complex arithmetic is simple, elegant. It uses CORDIC module to perform needed

arithmetic operations. Besides, since it avoids using multiplication, adopting the

CORDIC algorithm can reduce the complexity and the net result is a flexible

computational processing element for digital signal processing algorithms.

To implement the CORDIC based architectures for functions like SVD and DCT,

it is required to decompose their computations in terms of CORDIC operations. The

proposed multiplier free CORDIC architecture for SVD computations requires

 CORDIC units to process

2/2/ MM × MM × matrix and the parallel ordering method

is adopted to perform computations in parallel. It reduces the number steps

required for the computation

The DCT based on CORDIC algorithm does not need multipliers. This proposed

architecture for DCT computation requires six CORDIC units to process matrix.

Moreover, it has regularity and simple architecture. Hence

the computation of SVD and DCT are implemented using CORDIC algorithm. This

algorithm can also be used for many other DSP algorithms and there is a scope for furthe

provements in these architectures to increase throughput and hardware sharing by

adopting the pipelining method.

 2/M

 88×

the processing elements for

r

im

 42

REFERENCES

[1]

Processor for SoC Im

4].

[5]. J. R. "CORD

stribu

[6]. Shen-Fu Hsiao and J. M. Delosme, "Parallel singular value decomposition of

comple

]. J. Gotze, S. Paul, and M. Sauer, "An efficient Jacobi-like algorithm for parallel

igenvalue computation," IEEE Trans. Comput., vol. 42, pp. 1058-1065, 1993.

Z.Liu, K.Dickson and J.V. McCanny, “Application-Specific Instruction Set

plementation of Modern Signal Processing Algorithms,” IEEE Tran

on Circuits and Systems-1; Regular papers, vol. 52, no 4, April 2005.

[2]. R.Andraka. “A Survey of CORDIC Algorithms for FPGA Based Computers” –

Proc of the 1998 CM/SIGDA Sixth International Symposium on FPGAs, February 22-28,

1998, Monterey, CA, pp.191-200.

[3]. H.Jeong, J.Kim, W.Cho, “Low-Power Multiplierless DCT Architecture Using

Image Data Correlation” IEEE Tran on Consumer Electronics, vol 50, no1, Feb 2004

[Y.H. HU, “CORDIC-Based VLSI Architectures for Digital Signal Processing”

IEEE Signal Processing magzine, July 1992.

 Cavallaro and F. T. Luk. IC Arithmetic for an SVD Processor,"

Journal of Parallel and Di ted Computing, vol. 5, no. 3, pp. 271-290, June 1988.

x matrices using multidimensional CORDIC algorithms," IEEE Trans. Signal

Processing, vol. 44, pp. 685-697, Mar 1996

[7]. J. R. Cavallaro and F. T. Luk, "Floating-point CORDIC for matrix computations,"

Proc. IEEE Int. Conf. Computer Design: VLSI in Computers and Processors - ICCD '88

1988, pp.40-42. Washington, DC, USA

[8

e

 43

[9]. M. D. Ercegovac and T. n-line CORDIC: application to

atrix triangularization and SVD," IEEE Trans. Comput., vol. 39, pp. 725-740, Jun,

C for

mations," IEEE Trans. Comput., vol. 43, pp. 941-954, Aug, 1994.

l processing, vol. ASSP-32. no.6, pp. 1243-

Lang, "Redundant and o

m

1990.

[10]. N. D. Hemkumar and J. R. Cavallaro, "Redundant and on-line CORDI

unitary transfor

[11]. B.G. Lee, “A new algorithm to compute the discrete cosine transform”, IEEE

Transactions on Acoustics, Speech and Signa

1245, Dec. 1984.

 44

	1.certificate.pdf
	In
	CONTENTS
	ABSTRACT
	LIST OF FIGURES ii
	REFERENCES

	2.ABSTRACT.pdf
	LIST OF FIGURES

	3.INTRODUCTION.pdf
	INTRODUCTION
	SINGULAR VALUE DECOMPOSITION
	The One-Dimensional DCT
	The Two-Dimensional DCT

	RESULTS AND DISCUSSIONS
	REFERENCES

