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Summary
Multiple-Valued Logic (MVL) takes two major forms. Multiple-valued circuits 

can implement the logic directly by using multiple-valued signals, or the logic can be 
implemented indirectly with binary circuits, by using more than one binary signal to 
represent a single multiple-valued signal. Techniques such as carry-save addition can 
be viewed as indirectly implemented MVL. Both direct and indirect techniques have 
been shown in the past to provide advantages over conventional arithmetic and logic 
techniques in algorithms required widely in computing for applications such as image 
and signal processing.

It is possible to implement basic MVL building blocks at the transistor level. 
However, these circuits are difficult to design due to their non binary nature. In the 
design stage they are more like analogue circuits than binary circuits. Current 
integrated circuit technologies are biased towards binary circuitry. However, in spite 
of this, there is potential for power and area savings from MVL circuits, especially in 
technologies such as BiCMOS. This thesis shows that the use of voltage mode MVL 
will, in general not provide bandwidth increases on circuit buses because the buses 
become slower as the number of signal levels increases. Current mode MVL circuits 
however do have potential to reduce power and area requirements of arithmetic 
circuitry. The design of transistor level circuits is investigated in terms of a modern 
production technology. A novel methodology for the design of current mode MVL 
circuits is developed. The methodology is based upon the novel concept of the use of 
non-linear current encoding of signals, providing the opportunity for the efficient 
design of many previously unimplemented circuits in current mode MVL. This 
methodology is used to design a useful set of basic MVL building blocks, and 
fabrication results are reported. The creation of libraries of MVL circuits is also 
discussed.

The CORDIC algorithm for two dimensional vector rotation is examined in 
detail as an example for indirect MVL implementation. The algorithm is extended to a 
set of three dimensional vector rotators using conventional arithmetic, redundant radix 
four arithmetic, and Taylor's series expansions. These algorithms can be used for two 
dimensional vector rotations in which no scale factor corrections are needed. The new 
algorithms are compared in terms of basic VLSI criteria against previously reported 
algorithms. A pipelined version of the redundant arithmetic algorithm is floorplanned 
and partially laid out to give indications of wiring overheads, and layout densities. An 
indirectly implemented MVL algorithm such as the CORDIC algorithm described in 
this thesis would clearly benefit from direct implementation in MVL.
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Introduction

Multiple-Valued Logic (MVL) was used in early mechanical computers such as 

Babbages analytical engines that operated in decimal [Babbage 1837]. However, since 

the advent of the electronic computer, MVL has become less used. This is due to the 

fact that the early electronic computers operated in binary. Subsequent generations of 

computers also used binary as it is simple to implement. There has been some interest 

in MVL in electronic circuits, and the Institute of Electrical and Electronic Engineers 

(IEEE) holds a symposium on the subject each year.

Computer applications such as image processing require very high arithmetic 

processing rates, and it is therefore necessary to explore potential areas of circuit 

design that could increase the processing rate of an Integrated Circuit (IC). MVL 

circuits have been shown to offer advantages of lower power and area for functions 

such as multiplication |Kawahito87], and the CORDIC algorithm for vector rotation 

has also proved itself useful [Yuen88]. Both of these functions are highly important in 

modern processors, and so the potential of the use of MVL style circuits with the 

CORDIC algorithm seems large. This thesis extends both MVL and the CORDIC 

algorithm. The combination of the two in the limited example of a binary 

implementation of a radix four CORDIC algorithm is shown. As and when current 

mode MVL circuitry matures sufficiently, there are yet more potential advantages to be 

gained by implementing the CORDIC algorithm using these circuits.

I I
I

v



1.1: Thesis aims

This thesis explores MVL both at the circuit and algorithmic level, and 

describes its applications in VLSI circuits. The introduction describes the aims and the 

layout of the thesis. The context in which the thesis is written is also explained.

1.1. The thesis

1.1.1. Thesis aims

This thesis investigates the applications of MVL and its implementation both 

directly using multiple-valued signals, and indirectly using groups of binary signals to 

represent the single multiple-valued signals. The relative advantages and disadvantages 

of MVL relative to the conventional techniques of using binary logic are also analysed. 

An important part of this thesis is the assessment of MVL relative to binary logic so as 

to give an indication of its suitability for various particular applications.

The direct implementation of MVL requires the construction of a set of basic 

logical operations to allow a full range of functions to be implemented. These basic 

logical operations are derived for 'current mode' MVL. The operations are then 

implemented in a common VLSI technology (CMOS) and they are assessed in terms 

of ease of design, and ease of manufacture. The effects of the present trends in 

computing technology on these designs is also investigated.

Indirect implementation of MVL has many applications. The evaluation of 

elementary functions such as sine and cosine are examples of this. The CORDIC 

algorithm which is capable of evaluating these functions by vector rotation is examined 

as an application for MVL implementation. The algorithm is extended to produce 

functions such as sinA xcosfi by vector rotation in three dimensions. MVL 

techniques are applied to the extended algorithm, and the resulting circuit designs 

assessed.

I
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1.1: The thesis

The rest of this chapter is devoted to providing a context for the thesis. Current 

processing requirements are examined in order to find a motivation for the work. The 

concept of MVL is described, and the problems it inherits from being not as well used 

as binary logic are considered. Various number representations, and systems are 

discussed, as there are many practical options in an MVL environment. Finally the 

technology available for the production of MVL circuits, and the trends in the 

technology are described.

Chapter 2 evaluates the state of the art in MVL. The many circuits designed in 

MVL are described in categories according to the method used for indicating the value 

of a signal. Within each category, designs are shown to be built up of similar basic 

circuits at a level below that of the basic logic gate. In addition, the potential of MVL 

relative to binary logic is assessed for both present and future production technologies.

In chapter 3, methods available for the evaluation of trigonometric functions 

are described, including MVL methods. The CORDIC algorithm is examined in detail, 

and MVL modifications described. The state of the art in trigonometric function 

evaluation is shown to include MVL concepts.

Chapter 4 describes a new methodology for the design of MVL circuits using 

the novel concept of non-linear encoding of current mode signals. This new encoding 

strategy allows the designer to make much greater use of the 'free' summing node 

function than was previously possible. A worked example shows the methodology in 

use, and then basic logical operations are chosen and designed using the methodology. 

The methodology gives a good indication of how efficient the implementation will be 

at an early stage, and shows that obvious operations such as a sum are not necessarily 

the most efficient. The design of a cell library is considered, and a new set of 

guidelines for library construction given for the type of MVL circuit produced by the 

methodology given earlier. The results of test fabrications of MVL circuits are 

assessed to give an indication of the effect of the production technology on MVL 

circuits.

1.1.2. T hesis lay o u t

3
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In chapter 5. The CORDIC algorithm is extended to the three dimensional 

case, and the error bounds of the new algorithm evaluated. The use of redundant 

numbers and other MVL techniques are shown to be applicable with these more 

complex function evaluations. This is followed by a detailed assessment of the 

different variations of the new three dimensional algorithm relative to each other as 

well as relative to the two dimensional CORDIC algorithm, and other methods 

described in chapter 3.

Finally, in chapter 6, conclusions are drawn from the earlier chapters. MVL is 

shown to be useful when the correct implementations are used for the correct 

applications.

1.2. Current processor technology and uses

1.2.1. Current trends in com puter use

The motivation for the design of new more powerful computers is clear. More 

and more aspects of daily life involve computers. Increasingly, they are hidden from 

view controlling everything from the brown-ness of a piece of toast emerging from a 

toaster, to the routing of a telephone call to, say, Australia. As faster computers are 

designed, so more and more CPU intensive applications are found. For example, the 

United States Government has designated a set of computing problems as Grand 

Challenges including problems such as accurate long range weather forecasting, 

computer vision, and natural language processing. These problems will need 

computational power of the order of 1 Terra flop/s to give useful results [Wah93].

As computers become embedded more and more in to commercial products, 

more and more have to react in a non-binary manner to non-binary stimuli. The field 

of fuzzy logic has started address this problem, and whilst reading this thesis, the 

reader should be aware, that fuzzy logic is a non-binary logic; it is multiple-valued, 

although it is generally implemented using binary logic. The technology in which 

computers are constructed may change, in just the same way as for example the

l i

1.1: The thesis
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material used for the construction of a wheel has changed, but there will be computers 

and they will be formed from logic in the same way that there will be wheels, and they 

will be round.

The design of early computers was based around a single unit, the CPU which 

performed one task at a time. In modern computers the CPU can spend a significant 

proportion of its time managing input from, and output to, other units within the 

machine that perform some tasks faster than the CPU itself could do them. Floating 

Point Units (FPUs), graphics processors, and sound generators are all examples. 

These units are designed to perform a small number of tasks quickly. They can do this 

because all the tasks the particular unit performs are similar, and so a large amount of 

effort can be put into making efficient designs for the operations used by all the tasks. 

Operations like trigonometric functions are now starting to be performed by dedicated 

hardware, rather than in software. For example, the INTEL 80387 includes specific 

circuits for some trigonometric functions [Yuen88]. The design of functions like these 

will become increasingly important in the future.

1.8: Circuit production processes

1.2.2. M ultiple-valued logic

Multiple Valued Logic or MVL is digital logic using three or more states. Two 

valued logic is referred to as binary logic, and is considered to be different simply 

because it is used vastly more than all other types of logic in computer design. There 

are two major implementation types within MVL:

1. Direct electronic implementation.

2. Binary implementation of MVL algorithms.

In direct implementation of MVL, the basic transistor level circuits are designed to 

communicate with each other using multi-level signals on a single physical 

interconnection. This type of implementation substantially reduces the number of 

connections required for a given logical function. However, there are many problems

I
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to be overcome since most integrated circuit processes are aimed at binary digital 

circuits, and hence other types of circuit are disadvantaged. Binary implementation of 

MVL algorithms is the use of standard well known and understood binary logic to 

implement algorithms formulated in systems with larger numbers of levels in each 

signal. In this case, a number of physical connections carry a single signal. It would 

be true to say that since the algorithm is implemented in binary, it must be possible to 

represent it as a binary algorithm. However, one of the major considerations in circuit 

design at present integration levels is the ease of design. So while it is possible to 

conceive of these multiple valued algorithms in their binary implementation form, it 

would often be counter productive to do so since time would be wasted in trying to 

understand concepts in binary that are simple in MVL.

Examining binary logic, which is well known, it can be seen that a circuit with 

for example two inputs, and no internal memory, can have only four states as shown 

on the left hand side of table 1.1. The circuit can output a true or false result for each 

state, so that for a two input, one output circuit, with no memory, there are sixteen 

possible functions that can be created. These functions are shown on the right hand 

side of table 1.1.

1.8: Circuit production processes

A B Output Functions

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

L L 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 J U

Table 1.1. Binary functions of two inputs.

This is r ' functions for a single digit output, where r  is the number of values each 

digit can take (the radix in simple number systems), and n is the number of inputs. It 

is possible look at the various available functions, and there are few enough for it to be 

reasonable to examine all the possibilities. The AND, OR and NOT functions are fairly 

intuitive to us since they are used in everyday language. These composite to form 

NOR and NAND which individually can form any function by combination with 

themselves. In Multiple-Valued Logic the choices are not so easy to see. For four
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1.8: Circuit production processes

valued logic, there are 4294967296 or 2” functions to chose from for a two input one 

output function.

1.2.3. Digital circuits

Binary circuits are an everyday part of life. They are well understood, and so it 

is tempting when talking about them, to refer to binary circuits, as 'digital' circuits. 

While it is correct to say that a binary circuit is also a digital circuit, the converse is not 

necessarily true, as MVL circuits are also digital. In this thesis, a circuit that is two 

valued, will be referred to as a binary circuit, but when the word digital is used, the 

circuit referred to uses signals that have a defined set of discrete values. There may be 

two values, but there may be more.

1.2.4. Trigonom etric functions

Basic trigonometric functions are usually non-linear functions of a single 

variable. More complex functions are sometimes calculable as easily. For example the 

CORDIC algorithm can perform a vector rotation as its basic operation. This can be 

used as a vector rotation, or as a sine and cosine generator. However, often in a 

computer programme, a sine or cosine would be calculated to perform a vector 

rotation, and so it may be better to give the programmer the choice of how to use the 

hardware. There are many other ways of calculating the sine and cosine, but for a 

particular application one solution may be better than the others. The important factor 

in the design of hardware for trigonometric function evaluation is the application, as 

this will determine the requirements for the evaluator. The different methods available 

for trigonometric function evaluation are explained in detail in a later chapter.

1.2.5. Num ber system s

In the past, many different number systems have been suggested (for example 

[Swartzlander75]). Most have been aimed at a particular application and hence show 

advantages for the operations that proliferate in that application. The most common

l
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1.8: Circuit production processes

number system in use is the binary two's complement form. In this system, for a 

value A, the individual digits a, e {0,1} for 0 £ i  < n are each scaled by 2', except the 

digit a„_, which is scaled by the factor — 2"~l. The value of A is therefore given by:

A — 2 - V .  +  2 - V I + 2 - V 1 ....... 2  ° a 0

This gives an integer in the range -2 "  ' S A S 2" ' -  I . This range can be altered, and 

commonly, the scaling or significance of each digit is altered giving fractional accuracy 

at the cost of range. Basic arithmetic in this system is very simple, and important 

events such as overflow easily detectable. The main restriction of this system is that 

the carry is propagated successively from the least significant digit to the highest. 

Hence the complexity of a simple addition is O (n), and the complexity of a 

multiplication by a simple shift and add technique isO(n: ). Much effort has been put

into reducing these complexities, for example [MacSorley61, Wallace64]. However, it 

will be seen that other arithmetic systems can offer substantial benefits over the two's 

complement scheme, indeed they often do so even when the assessment includes 

starting with a two's complement number, and finishing after the conversion back to 

two's complement has been effected.

Two possible unconventional number systems that might be considered useful 

are residue number systems, and redundant number systems. Residue number 

systems operate by having a number of data paths working in parallel, each of which 

has much smaller value ranges than in a conventional data path. Each data path 

operates modulo a different number. The data paths themselves are generally 

constructed from binary circuits, but will operate much faster since they have shorter 

carry chains. The modulus used for each data path is critical, if the moduli are 

relatively prime, then the range of representable numbers A will be 

0 c  A < J”J(moduli). For example, consider two moduli 3 and 5, table 1.2 shows the

representation of the values zero to fourteen. The useful fact about the system is that 

linear functions such as additions and multiplications are performed simply by 

performing that operation within each data path. No communication is needed between 

the data paths. There is however, one problem with the residue number system. It is

I
8

s



difficult to determine the whether one value is greater than another without converting 

them into another number system, although methods are now available [Dimauro93],

1.8: Circuit production processes

A K H ,
0 0 o

~ r ~ 1 1
5 ~ T ~ ~ T ~
; 0 3
4 i 4
5 2 0
6 0 1

~ T ~ 1 5
8 2 5
9 0 4
10 ~ ~ r~ 0
11 ~ T ~ 1
12 0 5
13 i ~~T~
14 5 4

Table 1.2. A residue number system.

A redundant number system is a number system in which any value can be 

represented in more than one way. A commonly used redundant number system is the 

Signed Binary Number Representation (SBNR) in which a variable A is made up of 

digits a, each scaled by 2', but instead of each digit being a single bit, a, e {-1,0,1} .

This allows a number of representations of each number in the range -2" < A < 2", 

for example, if -1 is represented as I the number 1 can be represented as 11, or i l l ,  

etc. The advantage of the redundant number system, is that adders can be constructed 

that cause the carry to be propagated not more than two digits up the word. This 

significantly increases circuit operation as addition becomes an 0(1) problem in terms 

of time. As with residue number systems, this increases the time taken for a 

comparison from an 0(1) problem for binary to an O(n) problem for SBNR. It will 

be shown later that this can be reduced to 0(log2 n). This increase in time delay for 

this kind of operation can be overcome, to give fast implementations of many circuits. 

Conversion back to binary from SBNR can be done using a conventional twos 

complement adder to subtract the negative digits from the positive digits. The 

advantages of an unconventional number system will be lost if they use the same clock

9



cycle as full word length twos complement operations, since their advantages arc 

obtained by operating correctly with faster clocks. Care in design is needed to ensure 

that the advantages are not lost because of problems such as this. Redundant number 

systems use non-binary signals, and so they can be viewed as MVL circuits, even 

though they are often implemented by using two bits for each digit. It is possible to 

create redundant number systems that are not radix two. These number systems can be 

used to great effect when implemented in binary or multiple-valued circuits 

[Kawahito88|.

1.2.6. C ircuit production processes

The design of computing circuitry (whether electronic or otherwise) cannot be 

done in complete isolation from information about the production processes used to 

construct the circuit. The designer of a micro-processor does not necessarily need to 

understand the doping profiles in the semi-conductors being use to construct the 

logical gates, but an understanding of the kind of operation that can be performed 

efficiently is important for the overall design to be efficient itself. For the design of 

MVL and analogue circuits, more needs to be known about the transistors and other 

circuit devices used as the linear, as well as switching characteristics of the devices are 

used. This section give brief details of the various major production technologies. 

Detailed figures are not given, as these vary from one fabrication line to another. 

Instead, an insight into the similarities and differences of the technologies is given.

The Complementary Metal Oxide Semi-conductor (CMOS) technology is 

derived from the older Negative and Positive Metal Oxide Semi-conductor (NMOS 

and PMOS) technologies [Gise88]. This technology is, at present the most widely 

used technology because of its low cost, and high circuit densities. The circuits are 

constructed from N and P type Field Effect Transistors (FETs). These transistors act 

as voltage controlled current sources, with a very high input impedance, and moderate 

output impedance. In a switching mode, the transistor switches on when about I volt 

is applied to the gate (the input) relative to the source (the common connection). The

1.8: Circuit production processes
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switch on or threshold voltage is affected by many parameters, and varies 

considerably between transistors that are fabricated next to each other on a circuit. The 

main use of CMOS circuits is in digital circuitry, as it is difficult to design high 

precision analogue circuitry in this technology. This is due to the variability of the 

transistor parameters. CMOS circuits operate at moderate to high speeds.

Bipolar technology is based around the npn, and pnp bipolar transistor 

[Gise86]. Circuit densities are low, but transistor parameters vary much less than FET 

parameters. Bipolar transistors act as current controlled current sources, with a 

minimum switch on voltage of about 0.7 volts. This value is very stable. The linearity 

of the transistor transfer characteristics is far higher than that of FETs, and 

consequently, analogue circuits are often designed in the technology. The switching 

speed of bipolar circuits is also high relative to FETs, because the output impedance of 

a bipolar transistor is low. Input impedance is considerably lower than that of FETs, 

and so circuit fan-out can be a problem. High speed digital circuits are constructed 

using bipolar transistors in a logic family called Emitter Coupled Logic (ECL). These 

circuits are large, and dissipate large amounts of power [Haznedar91],

Bi-CMOS technology is a combination of bipolar, and CMOS technology. 

Basic bipolar transistors are made available to the designer. They are large, but can be 

used to drive bus lines, and other highly capacitive nodes. The correct use of relatively 

small numbers of the bipolar transistors can greatly increase the overall speed of 

operation of the circuit. The bipolar transistors can also be used as stable voltage 

references, or for analogue circuits. This is clearly shown by the early production of 

data converters in this technology [Haznedar9IJ. This technology is becoming more 

and more widely used, and has potential for MVL circuit design in the future.

Charge Coupled Device (CCD) technology is often used to produce camera 

input circuits, but can also be made to perform logical operations [Nash82]. The 

technology is based on charge storage under the gates of multiple gate FETs. This 

technology is described in more detail in a later chapter.

1.8: Circuit production processes
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Optical logic is emerging as a potential new technology for computers. Light is 

used to indicate signal values, and gates are formed from composites of photo­

detectors, and Light Emitting Diodes (LEDs) |Osawa92]. One major advantage of this 

technology, is that it is possible to construct devices whose inputs and outputs are on 

different sides of a semi-conductor wafer. This allows very parallel data paths to be 

constructed by stacking wafers. Integration techniques are already available for routing 

light signals around the surface of an integrated circuit if necessary [Seymour88],

1.3. Summary

In this chapter, the thesis and the context in which it is written have been 

described. The thesis deals with MVL primarily in a VLSI environment, but also 

considers potential future technologies such as optical logic. A short introduction to 

the concept of MVL has been given, describing both direct and indirect 

implementations. The major differences between MVL and binary logic have been 

explained. Number systems have been briefly described as many MVL number 

systems are available. The current major fabrication technologies have been described 

in terms of their characteristics that are relevant to MVL design.

1.8: Circuit production processes



Multiple-
Valued
Logic.

2.1. Introduction

Modern commercial computers are constructed from integrated circuits that 

operate on binary signals. This is due to the way in which computers have evolved 

over the past forty years. Multiple Valued Logic (MVL) is simply logic that can deal 

with signals that have more states than the 'true' and 'false' or '1' and 'O' available 

with binary logic signals. Binary logic is, in effect a very simplified case of MVL.

The idea of using non binary signals in computers is not a new one. Indeed 

some early computers were not even digital. Early digital computers such as the 

analytical engines designed by Babbage [Babbage 1837], and most of the subsequent 

mechanical computers did their computations in decimal. This seems an obvious 

choice since humans also work in decimal, and so problems would be formulated, and 

answers required in decimal. Early electronic computers suffered from large amounts 

of electrical noise, and because of this, they were constructed using binary circuits as 

this offers the largest possible noise immunity. As electronic computers evolved, 

compatibility with old designs, ease of production, and the ability to use Boolean logic 

for all parts of the design made the use of binary the accepted norm. For this reason, 

digital design became further and further removed from analogue design.

Recently, as it has become possible to place whole systems on a single VLSI 

chip, designers have started to put analogue circuitry onto their devices along with
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2.1 : Introduction

binary integrated circuits. This clearly shows that the original reasons for using binary 

logic do not necessarily still hold. In addition, the wiring inefficiencies of binary are 

starting to impact designs. Integrated circuit packages are having to provide more and 

more pins to connect the 1C to the outside world. This can lead to circuits whose area 

is defined not by the actual circuit, but by the ring of pads for connection to the pins of 

the package which must be placed around the edge of the circuit. This is shown in a 

diagrammatic form in figure 2.1. The power consumption of integrated circuits is also 

becoming increasingly important as packing densities go up creating the risk of 

overheating. A major factor in this power consumption is the large percentage of the 

device taken up with buses, as these can have large parasitic capacitances to ground.

g w  « w  W W  W IM . W W  iW W  ftM O  M W  W W W  M W »  « A W

Waste area

.*.• .*;• .• 
• % • % • % • •, • *. • \ • \ • ■ ,. •.. •.. •.. •.. •. ,* • : •.

.WAvV/VAWW&sMXXXX

Figure 2.1. An Integrated Circuit whose area is bound by the pad ring.

The use of higher radices in digital circuits reduces the number of pins required for the 

circuit. In addition, it reduces the number of interconnections between the different 

parts of the individual integrated circuits, and hence the area of the circuit.

In this chapter, the use of higher radix digital logic (commonly referred to as 

Multiple-Valued Logic or MVL) is discussed. Initially, the potential of MVL is 

examined in its three major forms: current mode logic, voltage mode logic and charge 

mode logic. This is followed by an overview of the state of the art in the major areas

i
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2.1: Introduction

of MVL design. Finally, the impact on MVL of the trends in production technology is 

examined, and MVL is compared with binary logic.

The logic theory that provides a framework for the design of larger circuits, 

and of whole systems is not examined. There are good books [Muzio86, Epstien93], 

that can be used to gain an understanding of the subject. The theory of logic is a very 

large subject, and a treatment of it would simply serve to obscure the multiple valued 

circuit theory. Instead, it is sufficient to simply observe that there are sets of logical 

functions that are capable of the generation of all other logical functions. Once free 

from the limitations of binary circuits, there is a new and fundamental question to be 

asked: "What is the best number of levels to use?". There is no absolute answer to this 

question, but it has been shown [Hurst84] that higher radices have more potential for 

efficient circuitry, although this is dependant on the nature of the growth of the 

complexity of a circuit relative to the radix. The majority of modern practical circuits 

today are radix 4 (quaternary). The reason for this is that it is the usually highest 

attainable radix of the form 2,nl, and hence it is easy to encode from, and decode to 

binary. Higher radices of the same form often suffer from too little noise immunity.

2.2. Current mode MVL

Current mode logic uses the flow of current to represent a signal value. This 

contrasts with conventional voltage mode, in which the voltage level represents the 

signal value. Current mode logic has been used previously in binary circuits, for 

example in Current Injection Logic (known as l 2L )  [Texas], and current loop terminal 

lines. Some of the advantages of I 2L over MOS logic types include:

Large temperature operating range.

Low power consumption.

Radiation hardness.

Low internal stress voltage.

High reliability.

I
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2.2: Current Mode MVL

The reason for a number of these advantages is that I 'L  is a bipolar process. The use 

of / 2L gives CMOS levels of circuit density with some of the advantages of bipolar 

technology. A similar circuit approach can be adopted in a CMOS technology, and 

some benefits are still seen, especially for MVL circuits. CMOS technology is now so 

widely used that for MVL circuits to be used they would have to be capable of being 

fabricated in CMOS. In the following discussion, only CMOS circuits will be 

described, but bipolar counterparts exist, and are equally well used.

The major advantage for CMOS current mode MVL, is not related to the above 

advantages, but stems from Kirchoffs current law which states that the sum of 

currents at a node in a circuit is zero. This allows a number of circuit outputs to be 

connected together, and used as the input to another circuit as shown in figure 2.2. In 

effect this is a circuit with a high fan-in. It would, in theory, be possible to connect 

together as many inputs as required. If all that is required is a signal if any one of the 

inputs is active, then this is possible. However, due to inaccuracies in transistor 

parameters, it is not possible to construct a circuit that can accurately calculate how 

many inputs are active, beyond a certain fairly small number.

Figure 2.2. Kirchoffs current law produces an MVL current mode signal.

Kirchoffs current law also gives rise to the other major difference between voltage 

and current mode circuits which is fan-out. The effect of fan-in has been shown to be 

that the input currents are summed, but if an output of a circuit is fed to more than one 

circuit input, the current will be shared between the inputs, but not necessarily evenly. 

The result will be undefined. This is due to the fact that the two inputs will have
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2.2: Current Mode MVL

different impedances (which in turn is caused by transistor mismatches, and differing 

wire lengths to the inputs), which causes the split of the flow of current to be uneven. 

This is shown in figure 2.3, where it can be seen that /, splits into I2 and / , ,  however 

the ratio /2: /, is unknown .

So far only currents flowing from an output to an input have been considered, 

but is possible to have circuit outputs that have current flowing into them. This means 

that circuit outputs can source or sink currents or both. Circuits in which outputs either 

source or sink currents but not both are referred to as uni-directional circuits as the 

current only flows one way. Circuits whose outputs both source and sink currents are 

referred to as bi-directional circuits. It should be noted, that since the sources of error 

in a current mode circuit are largely unaffected by the direction of the current, the 

number of levels obtainable with a bi-directional circuit is nearly twice that of a 

unidirectional circuit. However there is a penalty in terms of circuit complexity, and 

bi-directional currents need to be split into their positive and negative components 

before they can be subjected to some kind of threshold operation.

Figure 2.3. The effect of connecting a single current mode output to a number of
inputs.

All current mode circuits are built up from the following basic circuit elements 

although they are not always represented or implemented in the same way. The basic 

five elements are:

1. Summing nodes.

2. Current mirrors

3. Switched current sources
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4. Comparators

5. Binary logic

These elements are described in more detail in the following sections. After this, the 

partitioning of MVL circuits is examined. Important applications of MVL are then 

described, with particular attention to adder circuits, and the layout of interconnect 

intensive circuits such as the Wallace tree |Wallace64|.

2.2 .1 . Sum m ing nodes

The summing node is often referred to as a ‘free function’ since no logic is 

required to implement it. All that needs to be done to sum two current outputs is 

connect those outputs together, and the result is the sum. This sum can be larger than 

the radix of the circuit, and this must be compensated for. From an arithmetic 

perspective, this is simply an indication that a carry to the next digit is required.

2.2 .2 . Current m irrors.

The two transistor current mirror is a very simple device, as shown in figure

2.4. Its operation in basic terms is as follows. The input current /. flows through

transistor AT,. If the resistance of AT, is too high, then the remaining current that

cannot pass through AT, charges up its gate (and that of AT,) reducing the resistance of

AT,. Thus the gate voltage of AT, is set such that if the difference between the gate and

drain voltage is small, a current of the same magnitude as /, will flow into the drain of

M2. The above description assumes that the width to length ratios of the two

transistors is the same. This need not be the case however, and this fact can be used to
W Wgreat effect. If transistor A/, has a — ratio of aS, where S. is the — ratio of AT,,
L L

wthen the output current /„ will be a times the magnitude of I , . Alterations in the —

ratio are usually made by altering the gate width because altering the gate length of AT, 

relative to that of AT, will affect the symmetrical nature of the current mirror.

2.2: Current Mode MVL
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2.2: Current Mode MVL

Figure 2.4. A simple current mirror.

The drain-gate voltage of M 2 is not, of course, always going to be small. The effect 

of changes in the drain gate voltage for a typical current mirror are shown in graph 2.1 

along with the ideal characteristics (Input current given on right hand side of graph). 

These effects can be overcome by the use of more complex current mirror circuitry, 

but more complex circuitry requires more area. There is a clear trade off between 

accuracy and area.
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Graph 2.1. The output characteristics of a) an ideal, and b) a typical 2 transistor
current mirror.

The current mirror allows an addition to be turned into a subtraction, and vice 

versa for uni-directional systems. It can also be used to produce multiple copies, of an 

input, each multiplied by a constant factor. The simple current mirror is however, not 

a perfect device as has already been explained. It has many potential problems, and so 

more complicated mirrors such as the cascode mirror are sometimes used [Freitas83]. 

For bi-directional systems, a slightly more complicated mirror is required, but it 

allows the inversion, and replication of an input current. In addition, it can be used to
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19

v



2.2: Current Mode MVL

split the bi-directional current into its positive and negative parts, i.e. a pair of uni­

directional currents. A small modification to the current mirror provides a dynamic 

memory facility for current mode logic (Current89, Xu89, Current9l |. Placing a pass 

transistor in between the gate of M t and the gate of M2 allows charge to be stored on 

the gate. It is then possible to determine the amount of charge on the gate by using the 

transistor as a current sink (or source for a PMOS mirror). Clearly, this is a dynamic 

type of storage that would need to be regularly refreshed.

2.2 .3 . Switched current sources.

A current source is essentially the output stage of a current mirror. This source 

can be used on its own to supply constant current, or more usually with a transistor in 

series as shown in figure 2.5, to form a switched source.

Figure 2.5. A switched current source.

As with the current mirror, it is possible to use a single reference voltage to produce a 

number of sources each with a different current output value. This can be done by 

altering the width of the source transistor relative to the transistor used to produce the 

reference voltage. The width of the switch transistor will be determined by the 

maximum allowable voltage drop for the maximum current output. The input Vlwllcll is

a voltage mode binary signal, and as such it can be driven from conventional CMOS 

binary circuits. It is possible to use a number of switch transistors in series and in 

parallel, to produce a logical function of the input voltage mode signals.

s
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2.2: Current Mode MVL

2.2 .4 . C om parators.

A comparator gives an indication of whether a signal is above or below a pre­

determined level. This is simply done by current subtraction as shown in figure 2.6. 

The positive input current l i is mirrored (making it negative /„), and summed with a 

reference current /, produced by a positive un-switched current source. The difference 

in the currents /„ and /, either charges or discharges the nodes' parasitic capacitance 

C(, according to whether /„ or l r is greater. Hence an output voltage Vo is produced 

that is high if is lower than the threshold, and low if it is higher than the threshold. 

Bi-directional comparators can be constructed using a current mirror to split the 

positive and negative currents, and then uni-directional comparators are used on these 

signals.

Comparators are required so that a current mode signal level can be restored. 

The comparator is often combined with switched current sources, but it should be 

noted that the communication between these two sections is a voltage mode binary 

signal. Comparators require references to compare against. These can be generated 

locally as with Kawahitos circuits [Kawahito87], or broadcast as a gate voltage for a 

current source local to the current mode circuit to use. In practical implementations a 

stable on-chip reference would be required for example [Sansen88], or accurately 

defined transistor parameters as used by Kawahito et al.
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2.2: Current Mode MVL

2.2 .5 . Binary logic.

Signals between comparators and switched current sources are binary voltage 

mode signals. Hence this is an ideal place to use standard binary logic. This is used to 

great effect by Current et al. [Current87] in the construction of a quaternary full adder 

as shown in figure 2.7. The full adder inputs are two quaternary signals, and a carry 

signal which is a binary current mode signal. All three of these inputs are joined 

together to form a single octal current mode signal. Seven comparators are then used 

to distinguish between the different possible input levels. The values shown on the 

comparators are the switching levels, and are given in units of the standard unit 

current. The output of these comparators is fed into binary logic, and from there to 

switched current sources that provide a quaternary current mode sum output, and a 

binary current mode output.

Comparator source

Figure 2.7. A quaternary current mode full adder schematic.

2.2.6. Partitioning current mode circuits

The basic building blocks for current mode MVL have been described. 

However, there are many other ways of partitioning these circuits into logical blocks. 

For example, a comparator is often followed by a switched current source, and so 

designers sometimes combine the two functions together. Figure 2.8 shows two

2 2



2.2: Current Mode MVL

different methods of decomposing a comparator followed by a switched source. The 

decomposition in figure 2.8a is that used by Kawahito ct al. |Kawahito87, 

Kameyama88]. Kawahitos' circuits are slightly different to those shown in figure 

2.8a, as their circuit makes use of a high accuracy depletion mode PMOS transistors in 

a diode connection instead of enhancement mode PMOS transistors, and a reference 

voltage. However, the operation of the circuit is still the same.

Threshold Detector
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✓  1 “I  I I I I k

Current Mirror
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ref

Comparator
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Switched
Current
Source
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Figure 2.8. Decomposition of a current mode circuit.

Decomposition of circuits is useful at a higher level. Consider a circuit the size 

of a full adder like that in figure 2.7. This circuit can be decomposed into three major 

sections: Decoder, Logic and Encoder as is shown in figure 2.9. This will be referred 

to from now on as a DLE decomposition.
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2.2: Current Mode MVL

The inputs from the previous circuits are summed together, and decoded. These 

decoded signals are then passed through conventional binary logic if required, and 

then encoded back into current mode MVL signals.

2.2.7. Current mode adders

With the importance of the summing node in current mode MVL, it is natural 

that a full adder would be an important circuit building block. The adder described by 

Current et al. [Current87] which is shown in block form in figure 2.10a has already 

been examined. It has uni-directional inputs and outputs, and a simple decomposition 

into the DLE form. Kawahito et al. [Kawahito87] use a different approach as shown 

in figure 2.10b. The adder is used inside a multiplier which uses redundant numbers 

as an inherent part of its design. The numbers are represented by bi-directional 

currents and the adder is constructed in two distinct parts. The first part splits the sum 

of the two bi-directional quaternary inputs into a carry, and the intermediate sum. In 

the second stage, the carry from the preceding digit is added to the intermediate sum, 

and the result is quantised. This circuit has been implemented in CMOS with a 

depletion mode PMOS transistor, with very low threshold voltage variation. The first 

stage of this design does not quantise the intermediate sum.

I
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Output

O 
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Figure 2.10. The two current mode adder types. Carry lines are omitted for clarity.

Current's adder, and the individual stages of Kawahito's adder can be seen to 

be made up of the same three elements: a decoder which is a set of comparators, 

optional binary logic, and an encoder consisting of switched current sources. These 

two examples show the two methods available to us for dealing with a summed input. 

One decoder can be used, followed by logic to determine the outputs, or a second 

summed node can be used (the quantiser) which sets the input into the range of the 

second stage.

2.2.8. Using current m ode logic in networks

The use of current mode logic in a beneficial way relies upon the ability to 

utilise the wiring advantages of the current mode logic. In this section, the use of 

current mode logic circuits in Wallace trees [Wallace 64] is discussed. The advantages 

gained with these implementations can also be apparent with other algorithm 

implementations, but are particularly noticeable with this example, which was first 

pointed out to the author by Dr Steve Summerfield of Warwick University.

a)
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2.2: Current Mode MVL

b)

Figure 2.11. a) An MVL, and b) a binary Wallace tree structure.

Wallace tree structures are notorious for being difficult to lay out efficiently. 

They are not naturally placed in rectangular blocks, and routing large trees is a major 

problem. With current mode circuits the routing problem is greatly reduced, as it is 

with MVL. The reduction in current mode circuits is due to the fact that the inputs to 

each full adder share the same physical input connection, reducing the number of 

buses. There is also an MVL advantage due to the reduced number of wires in each 

bus. This leads to great savings when laying out structures such as these in current 

mode MVL. This is illustrated in figure 2.11a. Figure 2.1 lb is a corresponding binary 

voltage mode block representation. The thick lines are interconnection buses, and the 

'i's show the inputs, and the 'o's show the outputs from and to the buses. The MVL 

buses are half as wide, as it is assumed that quaternary signals are used, and hence 

half the number of connections that would be required for binary. In addition, the 

sharing of inputs in the current mode circuit greatly reduces the interconnection 

difficulties. The bus area for the current mode quaternary circuit could be as little as 

25% of that of the binary circuit.

I |
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2.2: Current Mode MVL

There have been a number of major applications reported for current mode 

MVL. Major applications have been centred around the adder as it provides an obvious 

use for the current summing node. There are many more applications yet to be 

investigated. In a later chapter, other uses for the current summing node will be 

shown, giving a much wider scope for possible applications. This section gives a brief 

description of some of the more notable applications reported.

Kameyama has suggested the use of bipolar bi-directional current mode logic 

in digital filtering, and decimal arithmetic circuits [Kameyama80, Kameyama81]. 

These circuits give large potential time savings over conventional binary circuits in 

terms of gate delays (in the region of 80%). However, the gates for the two types of 

circuit are very different, and so this is not a true indication of the speed advantage. 

Kawahito et al. [Kawahito87] constructed a 32 by 32 bit two's complement multiplier 

by using bi-directional quaternary signals. Redundancy was used within the number 

representation to remove the ripple carry used within conventional addition schemes. 

The circuit used a 2pm CMOS process enhanced with depletion mode PMOS 

transistors, and operated at the same speed as other multipliers available at the time. It 

consumed approximately 50% of the power and was about half the size of its binary 

equivalent. The circuit used a 30pA unit current. Similar techniques have also been 

proposed for a division circuit with a speed proportional to the word length n, and a 

multiplier with speed proportional to log« [Kawahito91 J. These circuits were 

designed in a 5pm CMOS process, and had a 40 to 70pA unit current. K.W. Current 

[Current88] proposed the use of adders described earlier, and a ROM designed by 

Stark [Stark8l] to produce a chip capable of performing Discrete Cosine Transforms 

(or DCTs), and Inverse DCTs (or IDCTs). This circuit offers potential savings of 

around 20% of the equivalent binary circuit area whilst still operating at the 10MHz 

pipeline clock rate required for video signals. The design was completed using a single 

metal 2pm CMOS process, and a 50pA unit current. A prototype current mode radix 4 

PLA structure has been reported [Pelayo91] using a 3pm single metal CMOS process,

2.2.9. M ajor applications of c u rre n t mode MVL

I
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2.2: Current Mode MVL

and a unit current of IOpA. Instead of the binary PLA structure of an AND plane 

followed by an OR plane, this circuit used a NOR plane followed by a Truncated 

SUM (or TSUM) plane, which gives superior results to the MIN plane, MAX plane 

structure used in other MVL PLAs.

2.3. Voltage mode MVL

Voltage mode logic is the most commonly used form of logic used for binary 

circuits. The relative voltage of a node indicates the value of the signal on that node. 

Voltage mode logic is very easily observed. With discrete circuits, a voltmeter or 

oscilloscope is connected to the node in question. MVL voltage mode circuits operate 

in the same manner, but with more voltage levels on a single node. The big advantage 

of voltage mode logic over other forms is its high fan-out (almost infinite for CMOS). 

This makes it an ideal candidate for applications where buses are used to broadcast to a 

number of circuits at once. Voltage mode circuits are usually ternary or quaternary. 

There are many more examples of ternary design with voltage mode logic than there 

are with current mode. To a certain extent, this can be attributed to problems with 

resolution.

In this section, the potential of voltage mode MVL is examined by assessing 

the power and time effects of using higher radices. Following this, the basic circuits 

used in voltage mode MVL are described. Finally, the major applications of these logic 

circuits are described.

2.3.1. Power and time in voltage mode MVL

It is possible to analyse the power dissipation of the bus structures of a voltage 

mode circuit, in order to compare binary and MVL circuits. It is assumed that the 

circuits all operate at the same frequency, and so the energy dissipated in a cycle can 

be evaluated as a measure of power. With a large enough circuit, the charging and 

discharging of nodes will average out. This allows a fairly simple model to be used 

that assumes that at any particular time, an equal number of nodes is at each of the

I
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2.3: Voltage Mode MVL

possible voltage levels. Further assuming that each node has the same capacitance 

makes the model simple, without reducing its effectiveness for large circuits. It is 

important to realise that this model does not include data for the circuits themselves, it 

simply models the power used in bus driving within the circuits. The model is a circuit 

containing n nodes, each with a capacitance of C farads, and the circuit is supplied 

with a voltage V. In the binary case, at the beginning of each clock cycle, each node 

can be at either logic level (i.e. either 0 or V volts), and at the end of each clock cycle,

there is a 50% chance that it will have changed. The energy required to change a node
1 2 ,  lis — CV , and so the total energy for all the nodes will be —nCV~. For the MVL case,
2 4

consider a ternary (radix 3) system. There will now be only n log, 2 — 0.63n nodes, 

as each carries more data. The voltage between adjacent levels Vr} is no longer the 

maximum voltage change on a node. Table 2.1 shows each of the voltage changes for 

the different starting and finishing logic levels.

—
Finish level

0 1 2

Start 0 0 1 2

level 1 1 0 1

2 2 1 0

Table 2.1. The change in level during a cycle for a ternary node.

There is the same possibility of each of the nine possible changes taking place, so the 

energy used by each of the changes can be individually calculated, and then summed:

total _energy -  0 .6 3 n ( |(0 ) + | ( | c V r2,)  + | ( I c ( 2 V r,)2)) 

total_energy -  0.42nCV'rJ,

The relative values of V, and V,, must now be considered. There are two realistic 

possibilities:

l
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2.3: Voltage Mode MVL

I . The voltage difference between adjacent logic levels is the same as a binary circuit,

1. e. V -  Vr i . This possibility assumes that the binary system has its power supply

voltage as low as possible, for logic detection. This is applicable to situations where 

ternary is used to reduce the device pin counts. In this case, the ternary system 

consumes 68% more power than its binary equivalent. This causes a direct trade off 

between power consumption, and the chip pin count. Also, an additional power 

supply would be needed for the ternary circuits.

2. The power supply voltage is the same, i.e. V = 2Vr i . This possibility assumes a 

single power supply for both binary and ternary circuits, and would be used for 

example when a small part of a binary circuit were to use ternary in order to gain some 

advantage. In this case, the energy used by the ternary system would be:

total _energy = 0.11 nCV2

For this situation, the ternary circuit will use approximately 58% less power.

The above analysis has been extended to higher radices, and the results are 

shown in graphs 2.2 and 2.3 for the first and second possibilities respectively. The 

graphs show the average energy used per cycle for radices 2 (binary) to 8 (octal).

7 
6

Energy ^
(Relative 
to binary) ^

1
0

2 3 4 5 6 7 8
Radix

Graph 2.2. The energy used per cycle for bus structures of differing radices, but with 
the same voltage step between levels.

Note that the energy shown in graph 2.2 is lower than might be expected for the 

higher radices. It would not be unreasonable to expect the energy used to be 

proportional to the square of the radix, since the radix is proportional to the maximum 

voltage swing, and the energy is proportional to the square of the voltage swing. The
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2.3: Voltage Mode MVL

reason that this effect is not seen is that a node rarely goes from one extreme value to 

another, and the rarity of this event increases in proportion to the square of the radix.

This negates a very significant proportion of the increase. If the option of using the 

same voltage step with a higher radix is used, then the power dissipation will increase 

roughly in proportion to the radix, for small (slO) radices.

1
0.8

Energy 0.6 
(Relative 
to binary)

0.2
0

2 3 4 5 6 7 8
Radix

Graph 2.3. The energy used per cycle for bus structures of differing radices, but with
the same power supply.

With the constant power supply situation depicted in graph 2.3, the effect of reduced 

voltage swings is markedly seen. In this case, the power supply voltage is the same, 

but because the majority of level changes are not the maximum, less energy is used. It 

can be seen from this graph, that if non-binary circuits are to be used, power 

reductions may be available, even if bus drivers are less efficient at that radix. It can 

also be seen that the advantages quickly become very small, and so radices of 3 or 4 

offer the most promise. Clearly, the noise immunity of a higher radix circuit will be 

smaller than that of a binary circuit in this situation. This noise immunity is likely to 

become important when dealing with new binary circuits designed to operate at 3 volts 

or even lower.

The time taken by a bus line to reach its required value is also an important 

factor, when deciding whether MVL is practical in a particular application, or not. The 

time taken may be dependant on the voltage supply, but in the simplest case it is not. 

Assuming that the impedance of a transistor is constant, it is possible to calculate the 

time taken relative to x, the time constant of the bus and driver, for the worst case level 

transition, which will be a transition between the highest and lowest levels. For a T
l j
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2.3: Voltage Mode MVL

to 'O' transition, in the binary case, the time delay is the time taken for the bus to reach 

50% of its minimum value. For ternary and higher radices, this value is lower as 

shown in figure 2.12. The figure shows binary, ternary and quaternary levels, and the 

switching points (i.e. the voltage at which for example a 'O' turns into a T )  are at the 

dotted lines. The arrow on each diagram shows the maximum voltage that can be 

considered a 'O'.

Figure 2.12. The switching points for a) binary b) ternary and c) quaternary voltage
mode signals.

One effect of the lower switching voltage for a 'O' with ternary and quaternary signals 

is that the time taken to discharge a capacitive bus line to that voltage will be longer. 

Graph 2.4 shows the time delay on a bus line as a function of the radix. These results 

are similar to those given by Baltus et. al. [Baltus90]. From this, it can be seen that the 

speed of a bus is nearly halved (relative to binary) when ternary is used. This is 

because of the smaller voltage differences between adjacent voltage levels. For this 

reason, binary is likely to remain the choice for conventional buses in the critical path.

4

3

Time 2 

1 

0
2 3 4 5 6 7 8

radix

Graph 2.4. bus time delay as a function of radix assuming equal CR constants.
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2.3: Voltage M(x!e MVL

Voltage mode circuits are used in many ways and of course, some circuits bear 

little or no relation to the standard basic circuits. It is still useful to examine the basic 

building blocks of the majority of voltage mode MVL circuits. This section does not 

ignore bipolar circuits, but a larger emphasis is placed on CMOS circuits. This reflects 

the proportion of published work on voltage mode MVL in the two technologies. 

There are five basic blocks from which almost all voltage mode MVL circuits are 

constructed from, whether they are ternary or quaternary. The blocks are:

1. The diode connected transistor.

2. The inverter.

3. The transmission switch.

4. Encoders.

5. Binary logic.

These basic building blocks are now described in more detail.

2.3 .2 .1 . The diode connected transistor.

The diode connected transistor is a resistive element formed by connecting the 

gate of an FET to its drain as shown in figure 2.13. This element is used extensively 

to produce a voltage drop between two nodes. It can also be used to tie a node to a 

default level, in much the same way as depletion mode devices are used in NMOS and 

PMOS binary circuits. In the figure, the direction of the diode effect is indicated by the 

dashed diode.

2.3.2. Basic c ircu its  in voltage m ode M VL

■f •I
^  ' --------------

a) b)

Figure 2.13. Diode connected a) NMOS, and b) PMOS transistors.

I
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2.3: Voltage Mode MVL

The diode conneeted transistor is used in other building blocks as will be seen later, 

and can be used on its own to produce intermediate voltage levels between the power 

supply voltage and ground [Mangin86].

2.3.2.2. The inverter.

The binary CMOS inverter shown in figure 2.14a is the most simple active binary 

circuit. The transfer characteristics of the circuit are typically similar to those shown in 

figure 2.14b. The figure shows a number of important values on the transfer 

characteristic. The switching voltage, VJW, is the input voltage at which the output 

changes its value from one state to the other. The low output voltage, Vol, is the 

voltage indicating a 'low' or 'O' state. The high output voltage Voh is the voltage 

indicating a 'high' or T  state.

There are other important facets of figure 2.14b that should be noted. The 

output transition is not a perfect one, i.e. the output voltage drops away from Voh 

before the input voltage gets to Vsw, and this can be an important factor in accurately 

restoring signals to their correct levels.

a) b)

Figure 2.14. An inverter a), and b) its transfer characteristics.
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2.3: Voltage Mode MVL

The inverter is used in voltage mode MVL, but the usage is far more complex 

than that of the binary case. The inverter is used to distinguish between adjacent logic 

levels on a node, by constructing the inverter such that the switching voltage is at the 

switching point as shown in figure 2.12. The switching voltage can be adjusted by 

changing the width to length ratios of the N and P transistors relative to each other 

|Huertas81]. However, the ratio difference required increases exponentially as the 

switching voltage approaches 0, or the supply voltage. More reasonable transistor 

ratios can be used if a diode connected transistor is used with the inverter [Prieto88] as 

shown in figure 2.15a. Typical characteristics for this type of circuit are shown in 

figure 2.15b. The main problem with this kind of circuit is the shift in the Vol ( or Voh 

if the diode connected transistor is placed between the inverter and the power supply 

rather than between the inverter and ground). This means that the logic levels are not 

exact (sometimes referred to as a logic level being 'soft'). In extreme cases this could 

cause an MVL circuit to detect an incorrect level. However this can be resolved by 

cascading inverters, if necessary.

Figure 2.15. A modified inverter a), and b) its transfer characteristics.

Other modifications to the standard inverter are also possible. The supply lines 

normally connected to Vdd and ground, can be connected to intermediate supplies

Vdd Vdd

V.in ----V
out Output

Voltage \
0

0 Vdd

a)

Input Voltage 

b)
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2.3: Voltage Mode MVL

corresponding to other signal values, or a signal itself can be used to power an inverter 

| Watanabe87], This gives inverters that do not have binary outputs; they output either 

the upper or lower supply voltages according to the value of the input. A further 

modification that reverses the normal power supplies, and uses one supply as a 

secondary input, results in a logical sum or product circuit (a logical sum circuit is 

shown in figure 2.16a) |Watanabe88], An even bigger alteration is shown in figure 

2.16b. This circuit is a non-inverting buffer, that outputs the input value incremented 

by one (unless it is a maximum input value). This circuit has a pre-charged clock 

input. The circuit given in figure 2.16b, is clearly no longer an inverter, but has the 

same form of circuit.

a) b) b)

Figure 2.16. a) A logical sum, b) a level shifter and c) a permutator derived from an
inverter.

Another interesting modification to the basic inverter, for a ternary NMOS style circuit 

is to add a P type FET in parallel with the input N type FET, and connect their inputs 

together as shown in figure 2.16c [Aytac87]. This yields a modulo 3 incrementer or 

'permutator', the truth table for which is shown in table 2.2.

Input Output
Ô
1

1
2

2 0

Table 2.2. Truth table for the permutator circuit.

s
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2.3: Voltage Mode MVL

The inverter is generally used to drive a node to a particular voltage, as has 

already been discussed. However, this is not always the case. For example Schultz et 

al. [Schultz89] use a set of three equal strength inverters with binary inputs to drive a 

single node to one of four possible values corresponding to 0, 1,2 or 3 inverter inputs 

being high. There is also an additional inverter connected to the node by both its input 

and output. This inverter reduces the voltage swing on the node, in order to make 

decoding easier. The circuit used by Schultz is shown in figure 2.17.

Binary
Inputs

Figure 2.17. Inverter outputs ganged together to form a quaternary signal.

2 .3 .2 .3 . T ransm ission  sw itch .

The transmission switch is a very commonly used device in voltage mode 

MVL circuits. Transmission switches can be N-type, P-type or 'perfect'. The so called 

perfect transmission switch is an N-type and a P-type switch in parallel with each 

other, and their gates driven as the inverse of each other. This removes the voltage 

drop that sometimes occurs in N-type and P-type switches, because the voltage drop 

occurs under different conditions in the two switches. A 'perfect' transmission switch 

is shown in figure 2.18a, and its symbol is given in figure 2.18b. When E is high, 

and E* is low, the resistance of the switch is low, and when E is low, and E* is high 

the resistance of the switch is high.
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2.3: Voltage Mode MVL

E* E*

E

a) b)

Figure 2.18. a) A 'perfect' transmission switch, and b) its logical symbol.

This switch can very easily be used to set the value of a node to a logical value when 

required by connecting a source of that logical value to one side of the switch, and the 

node to the other side |Mangin86]. The switch can then be activated, setting the node 

as appropriate. In the same way, the transmission switch can be used to set one node 

to the value of another by connecting them together [Chew87], However, care must be 

taken, because the switch is not an active device, and so there is a degradation of any 

signal transmitted through it, and values stored on a node as charge, can be drained 

away in an effect known as 'charge sharing'. Wu and Prosser |Wu88, Wu89] have 

suggested the use of N, and P-type transmission switches that have differing threshold 

voltages. Multiple implants give three threshold voltage variations for each type of 

switch, and this allows logical functions to be formed, as the thresholds are set to 

differentiate between each pair of adjacent levels in a quaternary system.

2 .3 .2 .4 . E ncoders.

The design of encoders for ternary and quaternary voltage mode MVL is well 

explored. There are two major types of encoder; multiple power supply, and single 

power supply. The multiple power supply types simply connect the node to the 

appropriate power line, whilst the single power supply types use varying resistive 

connections to the power and ground lines to charge the node to a particular 

intermediate voltage. The inverter structure used by Schultz et. al. [Schultz89] has 

already been described. The three inputs each contribute equally to the quaternary

i
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2.3: Voltage Mode MVI.

output. However, it is possible to combine a pair of the input inverters, and discard 

the fourth inverter used by Schultz, to produce an encoder of the form given in figure 

2.19a [Shanbhag90]. This circuit relies on the resistive properties of the FETs, but the 

threshold voltage can also be put to use as shown in figure 2.19b [Singh87b], In this 

circuit, the bus is precharged to 2.5 volts, and then either charged or discharged 

through one of the four transistors in the encoder to the appropriate level. Discharging 

through an N-type, or charging through a P-type FET results in the bus being fully 

discharged or charged respectively, whilst charging through an N-type, or discharging 

through a P-type FET results in an incomplete charging or discharging. Similar results 

have also been reported for NMOS circuits [Singh87b].

a) b)

Figure 2.19. Encoders using a) resistive, and b) threshold voltage drop techniques.

The circuit used by Bhattacharya [Bhattacharya90] has many similarities to the CMOS 

circuits described by Singh. Singh's circuit requires the MSB and LSB to be decoded 

into four activation signals, one for each of the drive transistors. Bhattacharya's circuit 

is the equivalent of a transmission switch: either the MSB, or a weakened version is 

connected to the bus line according to the level of the LSB. The weakened version of 

the MSB is created by passing it through an inverter with swapped power supply 

connections. This is, in effect, the same as the N-type connected to Vdd, and the P- 

type connected to ground in Singh's CMOS circuit. The circuit is shown in figure
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2.20. As with Singh's CMOS circuit, the bus line must he pre-charged to 2.5 volts 

(assuming a 5V supply) prior to operation.

2.3: Voltage Mode MVL

Vdd

Another notable use of threshold voltage drops is shown in figure 2.21 [Etiemble90]. 

The a, b and c binary signals are formed from the MSB and LSB of the input, and 

control which one, if any, of the pull down paths is used. The pull down paths 

activated individually by a, b and c produce approximately 0, V , and 2Vlp volts 

respectively, where Vlp is the threshold voltage of a P-type FET. The pull up 

transistor is significantly more resistive than the N-type pull down FET. The fourth 

level in this quaternary encoder is obtained by not activating any of the pull down 

paths.
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2.3: Voltage Mode MVL

Vdd

Figure 2.21. An encoder based on threshold voltage drops

Multiple power supply encoders are inherently simpler than single power 

supply encoders since all that is required is to switch the appropriate voltage onto the 

node. This can be done by the use of transmission switches [Mangin86], or binary 

logic followed by a very simple driver [McCluskey82, Wu90], The use of 

transmission switches for Mangin's quaternary encoder is shown in schematic form in 

figure 2.22a. The power supplies V0_ 3 (which are the logic levels for the four logical

levels) could either be external to the IC, or generated on chip as Mangin suggested. 

The simple encoder described by McCluskey, and Wu is shown in figure 2.22b. The a 

and b signals are derived from the two binary inputs required to represent a ternary 

signal.
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2.3: Voltage Mode MVL

a) b)

Figure 2.22. Multiple power supply encoders, a) Transmission switch based, b) A
simple driver.

2.3 .2 .5 . B inary L ogic.

As with current mode logic, standard binary voltage mode logic is used within 

voltage mode MVL circuits. In some cases, though it is really the MVL that is being 

used inside the binary circuit, for example the binary full adder designed by Schultz 

[Schultz89] contains a single quaternary node. Part of the decoding of this signal is 

binary logic. In McCluskey's modulo 3 adder [McCluskey80], a Decode Logic 

Encode form similar to the current mode form described earlier can be seen.

Apart from the five major components already discussed, there have been other 

building blocks reported, but they have been constructed from the basic circuits that 

have been described. One noteworthy larger size building block in voltage mode logic 

is the T-gate [Chew87], This circuit is basically the ternary version of a multiplexer: 

one of three inputs is fed to the output depending on the value of the ternary selection 

input. A transmission switch version of the circuit is shown in figure 2.23. The 

numbers by the inverters are the logical switching levels of the inverters. Only positive 

switch inputs are shown to the transmission switches, but clearly inverted switch 

inputs would also be applied (to the P-type FET). A binary multiplexer can be used to 

implement logical functions directly from their truth table [Horowitz80], The T-gate 

can be used for direct implementation of ternary functions in just the same way.
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2.3: Voltage Mode MVL

2.3.3. Applications of voltage mode MVL

Voltage mode MVL has a number of applications. This section examines some 

of these applications. It was shown earlier, that high speed buses are not practical in 

simple voltage mode MVL circuits, but this does not preclude its use. For example, 

Etiemble et. al. [Etiemble90] use a four valued bus structure for inter-processor 

communication in a massively parallel architecture. The limiting factor in this 

architecture is not bandwidth, but pin count, and so either MVL or time domain 

multiplexing is needed. The use of a BiCMOS process gave satisfactory speed 

performance, and a reduced encoder area. Other bus structures have been reported 

[Baltus90, Kaliman88] using differential signalling. Differential voltage mode MVL 

does not give advantages over conventional single ended binary, but it is better in 

bandwidth terms than binary differential signalling. Kaliman et. al. designed a ternary 

ring LAN based on a twisted pair wiring system. The three signals used are a positive, 

negative, and no difference between the pair of wires, which are detected using a pair 

of opto-electronic switches connected to the twisted pair in an opposite polarity to each 

other. Baltus et. al. established a method for the implementation of MVL differential 

signalling, by showing that a twisted set of n wires can be used instead of just a 

twisted pair. In this case, there would optimally be n possible levels that each wire 

could take. This gives simple differential interfaces (Kaliman's is not a simple 

differential system since no difference must also be detected) that have superior
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2.3: Voltage Mode MVL

bandwidth performance to that of a binary differential interface using the same number 

of wires.

Logical functions can either be directly implemented on ICs using custom logic 

gates designs, gate array designs, or logic arrays. In MVL, logic arrays can be created 

[Shanbhag90], These logic arrays operate in quaternary, and can be used in a 

quaternary environment, or be used as part if a larger binary circuit, when encoders 

and decoders are added to the circuit. A 2pm CMOS process was used to design this 

circuit. Gate arrays have been reported for the specific application area of pattern 

matching [Hanyu87]. Pattern matching circuits are used in Artificial Intelligence (AI) 

processors, as a building block. These circuits use a standard NMOS process with the 

addition of the choice of 4 threshold values for the transistors. This work was 

extended to the design of an AI processor [Hanyu88], The multiple threshold values 

of the transistors were replaced by a new MOS device similar to an EPROM transistor. 

This device, called a FLOTOX device is a FET with an extra gate above the first gate. 

The lower gate is allowed to float (i.e. it is unconnected), and the amount of charge 

stored on the floating gate can be controlled by the upper gate. In addition, Silicon On 

Sapphire techniques are used to allow the back bias of the FETs to be individually 

controlled, and hence the threshold voltage can be electrically altered. The use of MVL 

in conjunction with these devices allowed a very compact design to be constructed.

Some voltage mode MVL applications are small extensions to binary circuits 

that improve the performance of the binary circuit. For example, Schultz et. al. 

presented a binary full adder, with a single MVL node [Schultz89J. The encoder part 

of the circuit is shown in figure 2.17, and this is decoded using 3 inverters with 

modified switching voltages. The sum output is then created using a small amount of 

logic. The whole adder circuit is shown in figure 2.24, with the numbers by the 

inverters indicating the logical switching level of the inverter. The advantage is seen in 

the carry propagation, since there are just two inverters between the carry input and 

carry output of the circuit. Hence, a pair of words are added more quickly than with a 

standard binary circuit.
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2.3: Voltage Mode MVL

Quaternary
Node

Katter et. al. [Katter90] showed how to design binary circuits such that if all inputs 

were set to 2.5 volts (i.e. half the supply voltage), the outputs should all be at 2.5 

volts. This allows a device to be quickly tested, and the majority of failures would 

show up using this kind of circuit. The circuit uses depletion mode NMOS and PMOS 

devices which requires a number of extra processing steps during fabrication, and 

hence is expensive. In addition to this, extra transistors are used which in turn means 

lower gate densities, and higher power consumption. The disadvantages of these 

circuits make them impractical at present, but this is an area which shows some 

promise.

2.4. Charge mode MVL

Charge mode logic can be split into two basic types: Charge Coupled Device 

(CCD) logic and Switched Capacitor (SC) circuits. CCD circuits store charge in 

potential wells beneath the gate of an FET. Whereas SC circuits use capacitors, often 

created using a pair of polysilicon layers, and FETs as switches. In the next section 

CCD circuits are described. Following this, MVL SC circuits are examined.

2.4.1. CCD MVL circuits

CCDs are derived from analogue circuits known as bucket brigade delay lines. 

These were first integrated in the late 60's in switched capacitor form, but Boyle and
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Smith |Boyle70| suggested a technique that allowed charge to be stored under 

transistor gates. The basis of the technique is that a single FET can have a number of 

gates, and a potential well can be produced beneath a gate, allowing charge storage for 

a significant period of time. This charge can then be moved from one well to another 

as shown in figure 2.25. In figure 2.25a the charge is shown in the well created by the 

voltage on gate A. In figure 2.25b, the voltage of gate B is made equal to that of A, so 

that the charge is shared between the two adjacent wells that effectively form a single 

large well. In figure 2.25c the voltage on A has been reduced to the minimum level 

removing its potential well. The minimum voltage is marked on the diagram as zero, 

but it would be slightly above 0 volts. Using this technique, the charge drops into the 

well beneath B. The charge is shown in the diagram at the bottom of the depletion 

region to ease understanding. However, the charge will in fact accumulate at the top of 

the depletion region near the gate. A three phase system has been shown here, but two 

phase systems can be created by varying the oxide thickness beneath the gates of the 

CCD |Millman87], The effect of this is to maintain isolation of one data bit from the 

data on either side of it in the CCD.

MVL CCD circuits can be produced by allowing for a variable amount of 

charge in each potential well [Butler88], Four logic levels is practical, and a good 

choice, since conversion to and from binary is simplified. Eight levels (the next 

practical choice) is difficult to obtain due to difficulty maintaining accurately sized 

charge packets. Noise is not much of a problem since it causes errors of only about 3 

percent of a charge unit using quaternary logic. Transfer of charge from one well to 

another can be done to a high accuracy, so long as the clock is slow enough. There is 

a direct trade-off between clock speed and charge transfer accuracy since the well acts 

like a capacitor being charged through a resistor. However, this has limits, because of 

the 'dark current effect'.

2.4: Charge Mode MVL
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Figure 2.25. The movement of charge in CCD circuits.

Logic in CCD MVL is based upon four basic circuits. These circuits allow the 

construction of any logical function. They are:

1. Constant. A constant source is produced by supplying charge to a well of known 

size. The well fills to its maximum capacity, and this known amount of charge can 

then be passed to another circuit.

2. Adder. Two wells can be made to supply their contents to another single well. The 

contents of this well is then the sum of the initial two values.

3. Threshold. If more charge than a well has capacity for is supplied to a well, it will 

overflow, and this can overflow can be used to detect that a signal has a value greater 

than the threshold. Composites of this cell can easily be constructed which detect a 

series of thresholds, and is well suited to MVL applications.

4. Inhib it. Instead of determining the gate potential for a well by a clock signal, as 

would be normal, the gate can be tied to a well in which the result of a logical
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2.4: Charge Mode MVL

operation is being stored. This allows the path of one signal to be affected by the 

results of another signal path.

The basic logical circuits described above have been used to produce a number 

of different larger circuits. Abd-El-Barr ct al. |Barr88] described how to produce 

efficient unary functions from these circuits, and provided more efficient results than 

had previously been obtained for more than three quarters of all unary functions. This 

work has been extended |Barr89, Barr90] to the production of dynamically 

reprogrammable PLA structures. In addition, a method for the decomposition of a 

function in order to allow direct implementation on a single row of the PLA structure 

was given. A radix independent method for the synthesis of functions has been shown 

|Zaky90J. This method directly yields circuit implementations that are heavily based 

on the efficient overflow circuit. CCDs can also be used within fairly small binary 

circuits to reduce circuit complexity. For example, Manzoul et. al. [Manzoul87] 

suggested its use in binary adders. The use of a radix 4 CCD carry look-ahead array 

reduces the number of arrays needed from three to one for an 8 bit adder. The savings 

available vary with word size, and there are regions where there is no gain from this 

type of circuit [Manzoul88].

2.4.2. Switched capacitor MVL circuits

Switched capacitor circuits have been designed for use in MVL applications. A 

switched capacitor circuit is in fact a hybrid of charge and voltage mode circuits. This 

is because the charge is held on capacitors which have well defined capacitances, and 

so the voltage across the capacitor is also well defined. Whilst the signal value is 

determined by the amount of charge on the node, the output of a circuit can be a 

specific voltage, which is converted to a charge by the input stage of the next circuit. 

This is shown in figure 2.26. where the output voltage V is fed via switch A to a 

capacitor. The charge Q on the input node of the device is:

l
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2.4: Charge Mode MVL

This happens during the <p, clock period, and during the </>2 clock period, the value of 

that charge is connected to the rest of the circuit (although its sign is changed).

There are four main building blocks in switched capacitor circuits [Ho89J. 

These circuits are all extremely similar, but each has a different clocking procedure. 

The circuits contain an operational amplifier, so that charge levels are easily 

maintained. This fact would make this type of circuit ideal for ASIC designs. The 

building blocks are:

1. Gain stage. This circuit outputs a fixed multiple of its input. This is done using 

ratioed transistors.

2. Adder. The charge stored on two capacitors is transferred to a single capacitor. This 

gives the sum of the inputs.

3. Integrator. A single input adder, that is not cleared at the beginning of each cycle. 

This clearly has limits, as the circuit has a limited range. Overflow (or underflow) 

causes the integrator simply to remain at its maximum (or minimum) output value.

4. Comparator. The circuit outputs an indication of which input is greater in value.

Ho and Smith [Ho89] suggested the use of these building blocks in the production of 

a fixed point multiplier that is topologically base independent. This is attractive, since 

if high radices become practical, they will enhance this design with little need for 

modification. It has also been shown that these types of circuit would be useful in the 

production of binary to MVL, and MVL to binary converters that could cope with a 

number of different radices [Ueno89], This is a particularly attractive proposition if 

non 2' radices are available since then, a single converter could be used for the 

different digits in a system residue number arithmetic.
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2.4: Charge Mode MVI.

To a large extent so far, memory circuits have been ignored. The design of 

large scale binary memory circuits has become very different from conventional binary 

logic design, and this is also true of MVL memory circuitry which has followed the 

advances made in binary memory circuits. The design of multiple valued memories 

has been examined by others [Rich86, Etiemble92]. This section gives a brief 

overview of MVL memory technology. Memory is examined in two parts: register 

memory, and large scale memory.

2.5.1. Register memory

Register memory consists of latches, flip-flops and similar circuits that are 

generally used in sets of a few digits. The two main types of latch are shown in figure

2.27. Both are current mode circuits. Figure 2.27a is the block diagram of a basic 

latch, in which a quantising circuit produces two outputs, one of which can be 

switched to be its input. With the switch in position A, the output is a quantised 

version of the circuit input, but in position B, the last input is retained indefinitely. 

This switch can be created in a number of ways. K.W. Current et al. [Current89, 

Current91] switches the voltage on a diode connected transistor since this will remain 

stable during the transition of the circuit from its sample state to its hold state. This 

system is used for both unidirectional and bi-directional circuits. Xu's quantiser 

[Xu89] feeds back a positive, and negative version of the signal that cancel each other 

out. When the input is disconnected, so is the negative quantised signal, and the 

positive signal is latched Figure 2.27b shows a different system. The input is fed to 

the gate of a diode connected transistor during one clock phase, and then during 

another clock phase, the transistor gate, and the capacitance connected to it, is 

disconnected from the drain. The drain is now connected to the output so that the 

transistor acts like the output stage of a current mirror. Lee et. al. [Lee92] showed this 

circuit used in conjunction with a quantising circuit to provide a latch. More recently, it

2.5. MVL memory
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2.5: MVL memory

has been suggested |Karasawa93], that MOSFETs with a staircase like transfer 

function could be used to form an MVL latch.

Feedback lnPut-----^ “ l----^ ------° utPut
Input JB  

A N_
“ I

Quan-
tiser

~^ Output hJ i
Gnd - T -

I

a) b)

Figure 2.27. Two current mode latch circuits.

Flip-flops are not well defined in MVL. For example, considering the binary 

JK flip-flop, it is not obvious what the ternary extension should be, indeed even the 

number of inputs is unclear. Wu and Prosser have suggested a ternary three input 

'JKL Flip-Flop' [Wu88], but this gives the circuit an unnecessarily high 27 possible 

functions in comparison to the four possible with the binary JK type. Even the two 

input ternary JK type of Webb et. al. |Webb91] does not use all of its nine possible 

functions uniquely. The construction of these types of flip flop is usually done from 

the basic voltage and current mode building blocks described earlier [Etiemble80|.

2.5.2. Large scale MVL memories

The use of MVL in ROM circuits is an area in which the commercial potential 

of MVL has already been shown. INTEL used a four-valued ROM in the 8087 maths 

co-processor, and in other devices [StarkS I . Silio83]. The benefit of this circuit over a 

binary equivalent was a reduction in area. This was due to the reduction in the number 

of cells required in the ROM. Although the four valued cells were larger than their 

binary counterparts, they were not twice as large, and more significantly, there needed 

to be half as many gaps between cells to prevent wires shorting. INTELs approach 

was to use a number of different widths of transistors in the ROM cells, but it would 

also be possible to use multiple supply rails to tie the ROM transistors to (Cho88], or 

multiple implants to alter the transistor characteristics (Rich86).
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Large scale memories that can be written to have had some successes in MVL.

The most notable of these is the 4Mbit dynamic RAM constructed from a I Mbit RAM 

with modified input and output buffers |Horiguchi88j. One of 16 levels is stored on 

each memory cell capacitor. This circuit is set up for file storage applications, and is 

ideal as a store in between main memory, and disk storage, that greatly reduces the 

effect of "thrashing" [Dube90|. Static RAMs have also been suggested [Ishizuka90], 

using a number of transistors with different threshold voltages. It has been shown that 

just two threshold voltages can give a radix 4 memory cell. Another writeable memory 

type is the Content Addressable Memory (CAM) which can be used in artificial 

intelligence applications, and caches. An efficient MVL CAM can be designed using 

floating gate MOS transistors [Hanyu90], and more recently efficient circuits have 

been reported using just conventional MOS transistors [Aragaki92], In this case, both 

time and area improvements resulted from the MVL design. As with binary circuits, 

novel technologies sometimes lend themselves particularly well to the design of 

memory circuits in MVL. The floating gate MOS transistor has already been shown, 

and another important example is the Resonant Tunnelling Diode (RTD). The RTD is a 

two pin device which has a sawtooth I-V characteristic as shown in figure 2.28a. 

When combined with a resistor in series, an I-V characteristic results that has multiple 

hysteresis loops in it such as that shown in figure 2.28b, and can thus be used as a 

multiple valued storage element |Wei91, Shieh93].

2.5: MVL memory

a) b)

Figure 2.28 I-V characteristics of a) and RTD b) an RTD in series with a resistor.
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2.6: Testing MVL circuits

In an earlier section it has been shown, that MVL can be used to test binary 

circuitry. However the testing of MVL circuits has not been addressed so far. Testing 

is a very large subject, and a full investigation of the subject would be excessively 

lengthy in this context. Instead, a brief insight into the testing of MVL circuits is 

given. The testing of MVL circuits can be split into two major areas: the provision of 

circuits to enable testing, and the generation of test vectors to apply to the circuits. 

Both of these areas are now described.

2.6.1. Circuits for MVL testability

MVL test circuits have closely followed their binary counterparts, and so 

concepts like scan testing are well known in the MVL community. It is possible to 

construct Built In Logic Block Observation (BILBO) circuits for MVL (Rozon88, 

Rozon90]. And the area overhead for scan testing can be greatly reduced by using 

ternary clock signals [Hu86, Wu93J. These overhead reductions can easily be applied 

to binary circuits as well, by introducing a ternary clock into the circuit. Another well 

known binary technique, is to use a Multiple Input Shift Register (MISR) to compress 

the test output data, in order that a small amount of data can be used to check the 

operability of a circuit. One drawback of MISRs is that there is a small possibility of a 

fault masking itself (known as aliasing), so that a faulty circuit gives a correct MISR 

output. MISRs can be applied to MVL circuits [Edirisooriya92], with an added 

advantage, that the aliasing probability is lower for the MVL MISR. Cellular arrays are 

a quick and easy way to design logic circuits, and can be designed for ease of 

testability (Kamiura92]. Indeed, this has been extended to provide a cellular array that 

is also diagnosable and repairable [Kamiura93]. Clearly, this level of fault tolerance 

could be a big advantage in certain applications.

2.6. Testing MVL circuits
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2.6: Testini; MVL circuits

The generation of test vectors is a big problem. Methods for stuck at x 

detection have been proposed [Whitney88] using a method known as 'partial 

differences'. In addition, test sets have been produced for a fairly standard set of 

voltage mode ternary building blocks |Rozon91). These can be used to construct test 

vectors for any circuit constructed from the building blocks. Test pattern generation 

has also been devised for PLA structures in MVL |Nagata93], and these patterns can 

also detect the position of some faults, giving the potential for fault correction. At a 

high level, ternary systems can be made fault tolerant by applying methods shown by 

Xu et. al. [Xu88],

2.7. MVL and VLSI production processes

The design of VLSI circuits cannot be totally devoid of consideration for the 

process in which it is to be manufactured. In this section, the interaction between MVL 

and the process it is manufactured in is examined.

It is possible in binary logic design to settle on a process type, for example 

CMOS, and then to design to a typical set of design rules. When the time comes for 

fabrication, the circuit can then be scaled such that all the rules used in the layout of the 

circuit obey the rules actually specified for the process. For a number of years, this 

was a perfectly satisfactory way of working, as the relative sizes of most of the 

components of a VLSI circuit remained roughly the same. However, as circuit 

dimensions have become smaller and smaller, the dimensions of components such as 

contacts between metal layers have not kept pace with other circuit components such 

as wire widths. This means that older circuits are less efficient than they might be in a 

new process. In addition to these problems, the smallness of modern integrated FETs 

has brought new effects to a level at which they must be considered. This is not much 

of a problem for binary circuits, but for MVL it can have a profound effect. This 

section investigates the effect of the trends in VLSI production processes on the use of 

MVL.

2.6.2. M V L  test vector generation
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2.7: MVL and VLSI production processes 

There have been many papers published that describe analogue circuits, and 

converters that have accuracies equivalent to eight to ten bits, that operate at very 

reasonable speeds. For example Nakamura et. al. |Nakamura9l ) produced a digital to 

analogue converter with 10 bit accuracy, operating at 70MSamples/s. Because of this, 

it would not be unreasonable to assume that MVL circuits should be capable of 

operating with as many as 1000 levels. The reason that MVL circuits don't operate at 

these levels is mainly due to the production process. There are many parameters in the 

production process, such as doping densities, and oxide thickness, which affect the 

parameters of the transistors produced. These parameters vary across the device like 

the example shown in figure 2.29. To minimise the effect of this variation, transistors 

whose parameters must be matched, need to have a common centroid [Shyu84, 

Bastiaansen91], In small circuits, this can be done by using circuits such as that 

shown in figure 2.30. This diagram shows two transistors in series, but they have 

been split into a pair of parallel transistors each to give a common centroid for the 

composite transistors [Nakamura91],

Figure 2.29. A slowly varying device parameter (Oxide thickness in Angstroms).

Other parameters such as threshold voltage, and edge effects are not slowly varying, 

and so other techniques such as unit transistor layout, and the use of active mirrors 

rather than simple passive mirrors need to be employed [Nairn88], It may also be 

possible to alter the power supply voltage to reduce the threshold voltage effects 

[Yamakawa86],
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2.7: MVL and VLSI production processes

□  Metal
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Figure 2.30. A VLSI layout of a pair of transistors in series, with common centroid.

The most used technique for reducing errors in analogue circuits is simply that of not 

using minimum size transistors. Transistor sizes in the region of 10pm by 10pm are 

not at all uncommon, and as a result, analogue circuits make much less of the 

advantages available with modern sub-micron semi-conductor processes. As the 

processes shrink, other effects can cause problems. For example, when the gate length 

becomes small, the proximity of the source and drain doped areas to each other means 

that the field under the gate is affected, altering the transistors parameters. This is the 

'short channel effect' [Viswanathan85], MVL circuits attempt to compete with binary 

circuits in terms of time and area, and so circuits that use 10pm long gates, and are 

therefore large and contain high parasitic capacitances are not particularly practical. 

Instead, large numbers of MVL designers seek to alter the process the circuits will be 

fabricated in, by introducing additional devices such as high precision depletion mode 

PMOS transistors [Kameyama88], or multiple threshold voltages [Hanyu87J. Despite 

these novel device types, commercial circuits would need to be able to operate over 

wide temperature ranges which can affect the threshold voltage. However it is 

interesting to note that this temperature dependence reduces as the gate length gets 

shorter [Tzou85], and so it is likely to be less important for MVL circuits than for 

analogue circuits, where it is a major problem [Sansen88]. There is already the 

knowledge available to MVL designers to allow many more levels in their circuits. 

Advances in analogue technology may in the future make larger numbers of levels a 

practical option, or may increase the yield of existing designs to a stage where they are 

commercially viable.
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2.8: MVL and optical technology

MVL does not necessarily have to be implemented in an electronic circuit. An 

example of another method of performing logical operations is Optical logic. Optical 

logic is a relatively new area of research, based upon communicating signals as beams 

of light rather than as electrical signals. There are many advantages to be gained from 

this approach:

1. Negligible crosstalk.

2. High bit rates due to the lack of an equivalent to electrical parasitic capacitances.

3. Electrical isolation between the ends of the signal connection, reducing the ground 

loop problem.

4. Low noise in an enclosed system.

5. A single connection can carry a number of independent signals at different 

frequencies.

6. A connection off the integrated circuit does not need to be at the edge of the circuit, 

and hence the pad ring problem is removed.

Many of these advantages were examined by Hurst, when he examined the possibility 

of using optical fibres for MVL communication [Hurst80j. Hurst recognised the 

opportunity to use optical signals in a similar manner to that described by Kirchoffs 

current law. A set of fibres carrying signals fused and then fed to a single output 

provides an output light intensity equal to the sum of the inputs. The logic associated 

with optical technology either uses a single input connection with inputs at different 

frequencies [An92], or a threshold function based upon the intensity of the input 

sources, and the required function from the gate [Osawa92], in much the same way a 

current mode logic operates as described earlier. From this, it can be seen that optical 

technology is potentially well suited to MVL use. In addition to this, current mode 

circuit concepts should also be appropriate for optical MVL circuits.

2.8. MVL and optical technology
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2.9: MVL versus Binary Logic

2.9 MVL versus Binary logic

There has already been some discussion in this chapter on the relative merits of 

MVL and binary logic. Voltage mode circuits have been examined, and it has been 

shown that bandwidth increases that would be expected from these MVL circuits will 

not actually appear in practice. Current mode logic has not been directly compared to 

binary logic simply because the comparison is so heavily affected by the choice of the 

current unit, and by the fabrication process. The higher the current unit, the higher the 

speed, and the higher the power dissipation. The power dissipation is static however, 

and so simply lowering the clock frequency of a circuit will not affect power 

dissipation. The fabrication process has a great effect on the performance of these 

circuits, as the variability of parameters such as the threshold voltage affects the choice 

of current unit, and hence power and speed. There are, however practical results from 

which conclusions can be drawn. For example, the multiplier designed by Kawahito et 

al. [Kawahito87] has shown that power and area advantages are available when 

current mode MVL is used. Consequently, current mode logic appears to be a good 

choice for further development.

2.10. Summary

In this chapter, the methods used in designing, fabricating, and testing MVL 

circuitry have been examined. As the circuits will always have to interact with binary 

circuitry to some extent, converters to and from conventional voltage mode binary 

logic is important. This causes radices that are integer powers of two to be favoured. 

The only radix that is in common use which does not fall into this category is radix 3. 

This radix has been used extensively as a 'first step' away from binary. MVL concepts 

have been applied to many different logic types, and fabrication technologies, with 

varying degrees of success. The use of a four valued ROM in the Intel 8087 maths co­

processor [Stark81 ] proves that MVL can be commercially viable. However, trends in 

CMOS fabrication processes mean that it is becoming increasingly difficult to design 

efficient MVL circuits. This is especially true of voltage mode MVL, since the
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2.10: Summary

proposed reduced voltage power supplies would give even smaller ranges for the 

circuits to operate within. Newer devices such as RTDs could well give rise to much 

more efficient MVL circuits, due to their non-binary nature. New technologies such as 

optical logic may also benefit from the use of MVL. In the near future, it seems 

unlikely that MVL circuits will gain wide acceptance, but this is probably more to do 

with the fact that the whole of digital circuit design and production is tuned to the 

needs of binary than anything else.
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Elementary 
Function 
Evaluation.

3.1. Introduction

This chapter will look at the evaluation of elementary functions such as sines 

cosines tangents, and natural logarithms. These functions are non-linear, and generally 

are functions of just one variable. Combinations of these functions are also examined, 

and it will be seen that these combinations can be as quick to calculate as the individual 

functions themselves. The motivation for implementing such functions is clear. There 

are many operations taken for granted in computing today that use functions of single 

variables very heavily. Frequency analysis (using the Fourier transform), Givens' 

rotations, basic geometry, and rotating an object on screen using a CAD package are 

obvious examples. As a consequence scientific calculators invariably have these 

functions, and any software language of a higher level than an assembler would be 

incomplete without them. The example of the Fourier transform shows why these 

functions are needed in hardware. To take the Fourier transform of a 512 pixel by 512 

pixel image for example, it would be necessary to calculate more than 4 million vector 

rotations (conventionally done using multiplication by stored sine and cosine values). 

A single vector rotator would have to complete one calculation every 10ns to achieve 

television rate throughput.
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The different methods of evaluating these functions fall into four categories: 

Non-iterative, Quadratic convergence. Linear convergence, and Hybrid. Non-iterative 

methods are table lookups in general and produce very high speed results, but the cost 

quickly becomes prohibitive as word length increases. Quadratic convergence is 

obtained from Taylor series expansions [FarmwaldSl], and similar methods. These 

methods rely heavily on multipliers and dividers, which are themselves complex 

functions in VLSI. Linear convergence is found in algorithms such as the CORDIC 

algorithm which provides roughly one bit of accuracy per iteration of the algorithm. 

Hybrid techniques take the best of a number of these individual techniques, and 

combine them to form more efficient solutions.

This chapter starts with a brief look at elementary functions. This gives us 

information on what an elementary function evaluation algorithm will be required to 

produce. Following this, non-iterative, quadratic, and linear convergence algorithms 

will be examined. The CORDIC algorithm which has linear convergence is examined 

in detail. Hybrid algorithms are mentioned in these sections where appropriate.

3.1: Introduction

3.2. Nature o f the problem

Functions such as sine, log and square root are inherently non-linear, and 

hence their range of convergence is important, as the output can be non-linear, 

discontinuous, complex, and can even go to infinity. An example of this is the tangent 

of an angle as shown in figure 3.1. We can see that this function is non-linear, 

discontinuous, and goes to infinity. This function also has the property that it is 

repetitive all the way to ±00. Some other functions, for example the square-root of a

number (also shown in figure 3.1), are non-repetitive, and also in some ranges (<0 for 

a square-root or a logarithm) the function is not a real number (i.e. it is complex).

Repetitive function algorithms need only to be able to calculate a large enough 

range of the function to be able to reproduce the rest of the function. In the case of the 

tangent, the range 0 to -y is sufficient. However, for the square-root, the range

required would be the entire range of positive numbers representable with the data type
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3.2: Nature of the problem

used in the algorithm. Some algorithms such as the CORDIC algorithm cannot cope 

with the full range in their basic form, and so work has to be done to increase the 

range in which the algorithm operates |Hu91],

3.3. N on-iterative algorithm s

One simple way to evaluate functions quickly is to pre-calculate the function 

for all possible input values, and store the results in a Read Only Memory (ROM). The 

input indicates the function to be evaluated, and the value that the function is to be 

evaluated for. The ROM acts as a look up table, and the output is the stored result for 

the input value and function. The problem with this, is that every possible input value 

and function have to have their output stored separately. For word lengths less than 8 

bits, this doesn't matter, but as the number of bits rises, the size of the ROM quickly 

becomes impractical. For each new bit on the input, there are twice as many input 

combinations, and one more output bit required. This more than doubles the area used 

for each additional b i t . In general

Number _ o f _ functions x 2 x Output _W ord _ Length
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3.3: Non-iterative algorithms

hits of storage are needed for fixed point numbers. This method is fastest, but is only 

usable for small word lengths. With floating point numbers, the problem is vastly 

increased as the input word length effectively becomes

Clearly, a repetitive function can reduce the memory requirement by a significant 

factor, but this quickly becomes less significant as word length increases.

3.4. Algorithm s with quadratic convergence

Another system that can be used for function evaluation calculates a series 

expansion of the function using the Taylor series [Farmwald81 J. The Taylor series for 

various functions are shown below. There is a heavy requirement for multiplication 

and division. A 64 bit result would require about 20 multiplications or divisions. 

These would have to be done in series, and consequently, this method is quite slow.

Implementations of the Taylor series, combined with a table look up for the 

first few bits have been shown [Farmwald81, Ohhashi85], as a very effective hybrid.

Inputs Mantissa_ Length +
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3.4: Algorithms with quadratic convergence

The result is a 32 bit floating point function generator that can calculate the square- 

root, the reciprocal, and the reciprocal of the square-root. The circuit requires 

approximately 30K bytes of ROM, two multipliers, and two adders, as shown in 

figure 3.2. There is an 8% error between the LSB value calculated by the circuit, and 

the same function calculated on a VAX.

Mantissa

Parity
Function

Exponent

Output

Figure 3.2. A hybrid ROM-Taylor Series Circuit [Ohhashi85],

3.5. Algorithm s with linear convergence

Another way to calculate functions of a variable, is to use digit by digit 

approximation algorithms such as those proposed by Specker [Specker65], or Voider 

[Volder59], or by using chebyshev polynomials |Hwang87j. These algorithms need 

more iterations to get a result to the same accuracy as the Taylor series, but the 

iterations can be considerably faster, due to the reduced complexity of the calculation. 

The following section will examine the most popular digit by digit algorithm; the 

CORDIC algorithm as proposed by Voider. This algorithm has been the subject of 

much discussion due to it's simplicity of design, and flexibility [Fulcher89,
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3.5: Algorithms with linear convergence

Dewilde92|. Following this radix 4 and 16 algorithms with similarities to the CORDIC 

algorithm will be examined |Rodrigues8l, Ercegovac73].

3.5.1. The CORDIC algorithm

3.5 .1 .1 . O rigins

The Coordinate Rotation Digital Computer or CORDIC was first suggested in 

1959 by Jack E. Voider |Volder59], His motivation was a need for accurate 

calculations on board an aircraft for navigation. The system was capable of quickly 

computing vector rotations, and performing Cartesian to circular coordinate system 

conversions. The same hardware was also able to multiply, divide, and convert 

between binary and mixed-radix number systems.

CORDIC is based on reducing a rotation into a set of smaller sub-rotations. 

The sum of these sub-rotations is the overall rotation required. If a vector R is 

considered, that is to be rotated through an angle A. If |A| is greater than 2n, then

rotating by the A modulo 2n will have the same effect. The sub-rotations used in an 

iteration is greater than ^  the sub-rotation used in the previous stage, so the maximum

rotation is at least ±2 x f irs t_ sub_rotation _an%le

3.5.1.2. Basic CORDIC algorithm

Rotating a vector is a fairly complex operation involving multiplications, which 

is best avoided if possible. One way to do this is to perform a pseudo-rotation which 

simply moves the end of the vector along a perpendicular to the original vector. The 

effect is to rotate the vector through an angle say a ,  and extend it a little. This 

extension is ignored for now, but it will be discussed again later. The vector (X„,K0) 

becomes (X,, K,) where

X, = X0 -  K0 tan a  

and

T, = Y0 + X0 tan a

this is shown in figure 3.3. We do a number of such rotations by fixed, and carefully 

chosen angles, which combine to form the correct angle of rotation. We can make

( 65



3.5: Algorithms with linear convergence

tan« equal to I for the first iteration of the algorithm, — for the second, — for the
2 4

third and so on. For the (i'-l)th iteration, tan«, will be 2"'. The pseudo rotation 

rotates the vector by exactly the angle «,, but note from the diagram that it also 

extends it. We will ignore this extension for the moment, so that the iteration is 

simply:

Clearly, it is important to keep track of how much the vector has been rotated. 

For this purpose, another register, conventionally the Z register, is used. A pre-stored 

value for a ( is either added to or subtracted from the Z register at each iteration:

and

where

dt -  2"'

The ± simply indicates the fact that the rotation can be in either direction.

Y

Y

¡+1

Figure 3.3. A CORDIC pseudo-rotation.
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3.5: Algorithms with linear convergence

Zl t , - Z l ± a l

To start the process, it is necessary first, to consider what is required of the CORD1C 

machine. The functions fall into two categories called ROTATION, and 

VECTORING. ROTATION starts with a vector, and rotates it through an angle. To 

do this, the X and Y coordinates of the vector are loaded into the X and Y registers, 

and the angle through which the vector is to be rotated is loaded into Z. For each 

iteration, Z is forced towards 0 by doing a positive rotation if Z is negative, and a 

negative rotation if Z is positive. In VECTORING mode, Z starts equal to 0, and X 

and Y are loaded with the coordinates of the vector as before. This time, at each 

iteration Y must tend to zero, so a positive rotation is performed if Y is negative, and a 

negative rotation if Y is positive. The result, is X as the vector magnitude, and Z as the 

vector argument (angle).

As has been seen, the rotations performed on the CORDIC iterations are not 

perfect rotations, but rotation extensions. For a rotation of tan '1 2~‘ , both the X and Y 

values are extended by a factor of V1 + 2 '2i. These extensions combine to form an 

overall extension or scale factor which is conventionally called K. The problem of the 

scaling factor is dealt with in more detail later in this chapter.

3.5 .1 .3 . Error and Convergence

As a set of CORDIC iterations is performed, two things must be ensured, first 

that the values in the registers do not become greater than the register can handle (i.e. it 

overflows), or that an accumulation of rounding errors causes the final result to be in 

error. For this reason, extra bits are required at the top and bottom of the word to 

guard against errors of this kind. In addition, it is necessary to ensure that enough 

iterations of the algorithm are performed in order for the output to be accurate to the 

desired number of bits.

Walther suggested that, for an n bit result, n + log2 n bits are needed in the 

registers to maintain accuracy [Walther71]. His argument was that each iteration could 

produce an error no larger than the least significant bit of the word. The sum of the 

errors could therefore not affect any more than the lowest log, n bits of the word.
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3.5: Algorithms with linear convergence

However, in 1992, Y.H. Hu developed error hounds for the CORDIC algorithm that 

show that more bits are required than were previously thought [Hu92], These bounds 

included Walther's extension [Walther71] which will be mentioned later in this 

chapter. The errors are made up from two areas, the approximation error, and the 

rounding error. For the purposes of this discussion, it will be assumed that a b bit 

result is required after n iterations. The b bits are made up of 1 sign bit, and b - 1 

fractional bits.

The approximation error is the difference between the required rotation, and 

the rotation actually performed by the algorithm. It is known that:

when i is in the range of interest (sO). So long as the required rotation angle z0 is 

within range, i.e.

In other words, the error approximation is smaller than the angle the vector was last 

rotated through. This effect is shown in figure 3.4. In this example the angle rotated 

through is zero (for the sake of simplicity in the example). The first rotation is in a 

positive direction, and all the following rotations are in the negative direction. The 

approximation error is the difference between the first iteration shown, and the sum of 

all subsequent iterations. This difference is smaller than (or equal to) the last rotation 

performed.

tan '1 2"’ a: a u , % —tan '1 2~‘

w - 2 « . .

the remaining rotation z,after any iteration i will be given by:

Hence the approximation error e z„) is given by:approx

e.approx
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3.5: Algorithms with linear convergence

Angle

Figure 3.4. The error in a rotation using a set of sub-rotations as in the CORDIC
algorithm.

The rounding error is the error caused by the finite length of the words used in 

the iteration. At each iteration, additive quantisation noise is introduced into x, and y,. 

In a b bit signed fractional number, this error and ei(y) is given by:

h « ) |* 2'* 1 and

We can consider a single variable e, to be the worst case of e . ,, and e , .. In this°  ' *(*) <(y)

case, the final error is the sum of the individual errors propagated to the output 

through subsequent iterations. The overall error in either xn or yn, e,olal will be:

k— l*k - l+

However, because x decreases as y  increases, and vice-versa, the combination of the 

two errors is not as large as this. If the distance between the end of the vector, and the 

point at which the end of the vector should be is referred to as E, then E  will be the 

magnitude of the combination of the error in the x direction, and the error in the y 

direction:
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3.5: Algorithms with linear convergence

If the vector is pre-scaled, then there is nothing more to do, and so the error is 

unchanged. However, if the vector is post-scaled, then the error is scaled with it. 

When both errors are evaluated together, it is possible to build tables for the internal 

accuracy, and number of iterations relative to the number of bits of output accuracy. 

The results show that there is a trade off between internal accuracy, and number of 

iterations. An acceptable balance seems to be, for an b, bit internal accuracy:

bi *>b + log2 b + 2, and 

n — b + 2

Considering overflow, if two fractional numbers are input, then if both x, and 

y inputs are maximum (i.e. just less than 1), then the vector length is maximum. This 

can be rotated to make a maximum x by rotating the vector onto the x axis. This will 

give a maximum value of less than V2 . This must be increased by the scale factor, so 

that the maximum result is approximately 2.3. Hence two guard bits are needed, and a 

sign bit at the top of the word.

3.5 .1 .4 . W alther's extension

In 1971, Walther proposed an extension to the CORDIC algorithm to allow the 

computation of hyperbolic sines, and cosines [Walther71J. He also showed how to 

form other functions using multiple passes of the basic CORDIC system. The basic 

idea behind the extension proposed by Walther was that changing the sign of the 

addition/subtraction in the equation for x, changes the coordinate system. Also, if 

there is no addition/subtraction to x, a linear system is produced. Walther introduced a 

new factor called m which can take the values (1,0,-1). The CORDIC equations now 

become:

* ,.1  =  X, ± md,Y,

Ym  -  r ,  T  6,X,

Z„, " Z, ± a,

I
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3.5: Algorithms with linear convergence

For the circular system, m= 1, and a t — tan~'5(. It can be seen that this makes the 

equations the same as for the simple CORD1C described earlier. For multiplication and 

division, m=0, and «, -  d, so that the iterations become a shift and add of X to Y: a 

serial multiply. The hyperbolic functions are formed by setting m to -1, and 

a, -  tanh’1 6,. This set of equations can be arrived at by analysing the hyperbolic case

in the same way as the circular case was derived earlier in this section. The scale factor 

for these extended equations is:

for an iteration with a shift of 6,. The iteration sequence is slightly different for each 

coordinate system. For the circular system i increments from zero, for the linear 

system i increments from 1, and for the hyperbolic system, i increments from 1, but 

some iterations are repeated. The repeated iterations are k, 3k-»-1 ,3(3k+l )+ l, and so 

on with k starting at 4. The reason for these repeats, is to maintain convergence for the 

algorithm. The algorithm does not converge for m=-l since:

So by repeating a small number of iterations, the hyperbolic rotation can be made to 

converge. This means that <3, is no longer simply 2"‘, instead:

These extra rotations add very little overhead to the computation, as only four extra 

iterations would be needed for a 128 bit result (4,13,40, and 121) .

Apart from the functions that can be obtained directly from the CORDIC 

system, it is possible to combine results to form other functions. The most useful of 

these functions are given below:

a, -  V  tXj < a , . ,  no longer holds.

However, the following equation does still hold:

-  ~  if this iteration doesn't need to be repeated 

dj4.| = d>, otherwise.
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3.5: Algorithms with linear convergence

tan 6 sin 0
cos 0

tanh 0 sinh 0 
cosh 0

e° -  sinh 0 + cosh 0

log, 0 2 „ „ h - '(2 ) where x 0 + I and y -  0 -  I

\/0 -  J x 2 -  y2 where x  = 0 + — and y = 0 -  — 
v 4 ^ 4

3.5.1.5. Hybrid Taylor series and COKDIC

In 1982 Ahmed suggested a combination of CORDIC, and the Taylor series 

for vector rotation [Ahmed82]. The first term of the Taylor series for sine Z is simply 

Z, and it is possible to perform the last of our CORDIC iterations using this 

approximation, rather than <?,. Hence after the last CORDIC iteration, a final iteration, 

as follows is performed:
X „~ Z „Y m

Ym+ Z mXm

It has been shown by Ahmed that only ^ * j (where n is the number of

bits of accuracy required in the output) iterations of the CORDIC algorithm are needed 

followed by the final iteration as given above. Timmermann et al. extended this work

to include vectoring mode [Timmermann89al. In this case — + 0.472 iterations of the
3

CORDIC algorithm are used followed by the iteration:

However, to calculate Xm. t , m CORDIC iterations must be performed, at which 

point:

I
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Xm.i  -  x m

The advantage of these techniques is that they speed up the calculation of the function, 

but multiplication and division are now required in the final iteration.

3.5.2. Range extension

It is easy to see that the range of convergence of the CORDIC algorithm is an 

important factor. In the linear case (m=0) the range of convergence, is:

s  1 for vectoring, and

|Zln| s  1 for rotation with the shift sequence 1,2,3...

We can increase the range of convergence by using a sequence -Af, -M + 1... 0, 1,2. 

In this case, the range of convergence is:

s  2m*‘ for vectoring, and 

|Z,J £ 2m*1 for rotation.

It is important to remember that this will increase the number of bits required at the top 

of the word to stop it from overflowing. M + 1 extra bits will be needed.

With cyclic functions such as sine or tan, all that is really needed is enough of 

the function to be able to calculate the rest of the function simply. 0 to y  is sufficient

for the given examples, but, as Hu pointed out [Hu91J if the angle representation 

given by Daggett |Daggett59] is used, then a range of ±n is useful since no conversion 

needs to be done at all on the angle data. The angle representation uses a scaled two's 

complement number as shown in figure 3.5, so that the range of a value a in this 

representation is given by:

-n  < a s Jt

I *
y,.
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Jt JT Jt
-71 - •

2 4 2»-i

MSB LSB

Figure 3.5. Daggett's number representation.

An obvious way to increase the range to this level in the circular case would be to start

the iteration sequence -2,-1,0,1,2... instead of 0,1,2,3..., and this would increase the 
4range to roughly ± — Jt which is fine. However, this necessitates right shifts, which

will increase errors greatly, and the range ±ji can also be obtained using the sequence 

0,0,0,1,2,3... as well, which does not have the undesirable right shifts.

The hyperbolic case is non-trivial for two reasons. Firstly, the hyperbolic 

functions are not cyclic so that a very large range is desirable for a general purpose 

function evaluator, and secondly the rotation angle is tanlT1 2"' for the hyperbolic

case, and for isO, tan h '1 2~‘ is a complex number. This can be solved by performing a 
slightly more complicated rotation of tanh~'|l -  2": J when isO. In this case no extra

iterations are required when /'s0 since:

■»■"’ l l
tanh-| ( l - 2 - 2 W )

The range of convergence for these rotations is:

0m., “ j ? ,anh' ' ( , - 2 ' r '" ) + tanh-'(2-w) + y  tanh '(2-')

M  determines the range, and is the maximum negative value of i. N determines the 

accuracy of the calculation, and in total there are M + N + l iterations. The range 

increases sharply, but care must be taken to prevent overflow since the range increase 

also implies an increase in the maximum values in the registers. However, as the 

scaling factor is less than 1 for the hyperbolic case, there is potential for large errors 

since the vector lengths are reduced by the scaling factor, and the errors will increase 

with the vectors when they are post-scaled. The scale factor is now:

I
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This scale factor can very quickly become very small ( k < 10"4 for M=4). Clearly, the 

smallest possible range should be used, as the higher the value of M, the larger the 

number of extra bits will be required at the low end of the word to protect against 

errors.

3.5.3. Scale Factor Compensation

Previously, it has been assumed that scale factor correction would be done 

only by the obvious pre- or post-scaling using a multiplier or divider. This is a 

reasonable option which has been used [Steer77, Dixon90] but a number of methods 

have been developed to compensate for the scale factor within the algorithm itself. 

Despain developed a technique called the 'Compensated CORDIC Method' 

[Despain74]. The basis of this method was a magnitude correction at each step. The 

basic iteration as described by Voider is now modified to:

X„t - X , + b :X,dl + a,YA

Y ^ - Y ' + b M - a M

Where b, e{0,l} indicates the sign of the rotation correction, b, is not allowed to be -1 

since this seriously affects convergence, a, indicates the direction of rotation. b( can

be pre-calculated. The only problem with this is that the angle rotated is no longer 

tan"1^ ,  and convergence is not assured. A small number of iterations must be

repeated. Despain wished to calculate 32 bit numbers, and reported that only shifts of 

8 and 21 bits needed to be repeated for this purpose. This was found by a heuristic 

search.

Haviland and Tuszynski [Haviland80] used a standard CORDIC iteration to 

produce the intermediate results X*t l , and . These become the final result of the

iteration normally, but if a scaling factor iteration is required the result is found by:

XM - X l \ \ ± d t)
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3.5: Algorithms with linear convergence

To ensure convergence in the hyperbolic case, double iterations of the CORDIC 

iteration given by Voider are sometimes required, as has already been discussed. To 

compensate for both the scale factor and hyperbolic non-convergence, 11 extra 

iterations arc needed for a 24 bit output.

As Ahmed pointed out, it is possible to perform a scaling and CORDIC 

operation in parallel. This leads to the iteration:

X ltl -  X, + malYiSi + blX ldj + b^mayrf 

YM - Y i - a lX idi +b,Yldl - b iatX t f

There is clearly a small time penalty from having more values to add together, and 

more circuit area would be required. However, convergence is assured with no extra 

iterations than the algorithm as extended by Walther. Despite the fact that there are 

more terms, these equations should take no longer than the equations given by 

Despain since a Wallace tree of adders requires two rows of adders for three or four 

terms.

3.5.4. Floating point CORDIC processors

Floating point numbers are widely used, especially in high level languages to 

aid programming. Floating point numbers simply take away from the programmer the 

need to constantly check that a value is within range, and shift it accordingly. The use 

of CORDIC in a floating point environment has been discussed many times for general 

application, and specific applications [Chown90a, Chown90b, Walther71, 

Harding91, Steer77]. The floating point CORDIC processors can be split into three 

constituent parts: floating point pre-processing, floating point post-processing, and the 

integer CORDIC module. This is shown in figure 3.6.
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Exponent
Information

Figure 3.6. A floating point CORDIC processor.

3.5.4.1. Floating point pre and post processing

The basic idea behind a floating point CORDIC processor is that the input 

floating point x and y values are normalised relative to each other, so the most 

significant bit of the mantissa in both x and y registers has the same significance. The 

pre-processor does this, and gives input exponent information to the output post­

processor, which combines this information with the mantissas it has re-normalised. 

This pre- and post-processing seems fine at first sight, but it introduces errors that the 

user must be aware of. Consider the vector (0.5 x 2lo,0.5 x 2 '15), or written in full in

binary (1000000000,0.000000000000001). This vector is easily represented by two 

floating point numbers with 24 bit mantissas, and 8 bit exponents, as is the angle 

between them (0.5 x 2~24rad ). However as the angle representation is still fixed point

in these floating point CORDIC processors, the 0.5 x 2“15 would be lost if a 24 bit 

fixed point representation was used for the pipeline. It is possible to make the rotation 

angle a floating point number as has been shown by Hekstra et. al. [Hekstra93J.
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3.5 .5 . Redundant CORDIC processors

Redundant number systems can be of great advantage to CORDIC processors, 

hut they introduce some interesting problems. A single shift and add iteration can be 

done in time 0(1) rather than in time O(n) for an n bit word which should speed up 

the algorithm greatly. However, the sign of Z (the angle register) for rotation, and the 

sign of Y (the Y component register) for vectoring must be evaluated at each iteration 

to decide on the direction of the next rotation. The evaluation of sign is an 0(log, n)

problem for redundant numbers, since the sign of the word is the sign of the first non 

zero bit, which could be anywhere in the word. Hence all bits of the word must be 

tested. It would clearly be possible to create a tree structure of cells to evaluate the 

sign, and this would have a delay of time 0(log2 n). The structure is shown in figures 

3.7 a), and b).

Bit no. 7 6 5 4 3 2 0

+
Output

Figure 3.7. a) A sign evaluation circuit for SBNR
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A I», It A A* A'1
1 --------<7

MUX MUX
0 0 0
0 I I
1 I 0

a.
Jt JT

Figure 3.7. b) Cell details for a sign evaluation circuit.

3.5.5.1. The Variable Scaling Factor Method

There are a number of ways to get round the problem of sign detection, to stop 

us from having to evaluate the sign of the word at each stage. The first was suggested 

by Ercegovac and Lang (Ercegovac90J, and gets around the problem by not doing a 

rotation if the sign of the register is not apparent from the first two bits that can contain 

non-zero data. Note that these two digits are the most significant two digits for the first 

iteration, and shift down by one digit at each iteration. The only problem with this 

system is that the scale factor K is no longer a constant. K is given by:

where a, is £{1,-1} in the conventional CORDIC algorithm, and represents the 

decision made at each stage of which direction to rotate the vector. In Ercegovacs' 

redundant implementation, ai is E { 1 ,0 ,-1 }, as no rotation takes place in certain 

iterations. The method used to calculate K  is first to calculate a value P where:

Following this, K  is calculated by taking the square root of P. Since Ercegovac's 

implementation is on-line, an on-line square root algorithm is used. The scale factor 

must be removed by division after completion of the standard CORDIC iterations.

This can be done by a simple iteration of the form:

" P, *\ai\2-2‘Pi
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Techniques for removal of the scale factor during the CORDIC iterations are of no use 

here since K  is not known until some time after the last iteration.

3.5.S.2. The Double Rotation Method

In 1991 , Takagi, Asada and Yajima |Takagi91 ] proposed two methods for the 

use of redundant numbers in the CORDIC algorithm that give a constant scale factor. 

The methods are closely related to each other. They are the Correcting Rotation 

method, and the Double Rotation method. The Correcting Rotation method is a 

generalisation of the Double Rotation method.

In the Double Rotation method, each iteration is made a little more complicated 

by making the rotation from a pair of smaller sub-rotations. If the two sub-rotations 

are in the same direction, the overall result is a rotation in that direction, but if the sub- 

rotations are in different directions to each other, then no rotation of the vector occurs. 

However, in this case, the vector extension does occur, and so the scale factor is 

constant. The effect in the angle register is shown in figure 3.8.

Angle Angle

Iteration

Figure 3.8. The double rotation method.

The equations for the iteration are shown below:

9,2-|-| Ki -p ,2 - , ‘-4X, 

Y M - Y l + q l 2 - l - ' X t - p l 2 l t - * Y i
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Zu , -  Z, -<7,2 tan '2 ’' ' J

q, and /j, are composites of the two rotations, and are calculated directly from the 

angle register Z. Three digits of Z, are used at each iteration as shown below:

where z* is the Mh fractional bit of Zu.

This method increases the complexity of the iteration, but keeps the number of 

iterations to n for an n bit result. The selection of q, and p, is simple, requiring only a

small constant number of digits. The complexity of this algorithm is O(n).

3.5.S.3. The C orrecting Rotation M ethod

The Correcting Rotation method uses the fact that the extra rotation done at 

each iteration is not strictly necessary. Provided enough bits of the angle register are 

examined, a double iteration every few cycles is sufficient. An example of this is 

shown in figure 3.9 with a double rotation every three cycles.

Angle

0

i+l i+2 i+3
Iteration

Figure 3.9. The correcting rotation method.

The diagram is somewhat simplified by the assumption that:

8 1
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tan"'2 ' '- ' -  - t a n '12 -'
2

In other words, it is assumed that the angle rotated through at each iteration is half that 

of the previous rotation. This assumption is reasonable, and becomes more accurate as 

i increases. A correcting rotation is performed every m steps. The variable m is called 

the correcting period. The equations for a single iteration for this method are the same 

as for the conventional CORDIC algorithm, and every m iterations, the last iteration is 

repeated. At each iteration, however the number of bits that needs to be evaluated is 

different. This can be simplified to a constant of m+2 digits. The selection of a 

positive or negative rotation is then made depending upon the sign of those m+2 

digits.

This method gives us the ability to trade off time for a single iteration (when 

the selection process is in the critical path), and the number of iterations. In the case of 

m=2, the iteration pair can be combined to form the Double Rotation method.

3.5 .5 .4 . Branching CORDIC Rotation

The Branching CORDIC Rotation was suggested in 1991 by Duprat and Muller 

[Duprat91]. The basis of this technique, is that two CORDIC engines are operated in 

parallel, and while it is clear which direction to rotate in, the two engines perform the 

same operations. When the sign of the angle cannot be evaluated by evaluating three 

digits of the redundant number representation of the angle, branching occurs, and the 

two engines rotate in different directions. The branching effect is shown in figure

3.10. For the following iterations, the two engines operate independently, until one of 

the branches is shown to be incorrect, at which point the values of the registers from 

the correctly rotated engine are copied into the other engine. One branch must be 

incorrect if the other branch needs to branch, or rotates in the direction that it rotated 

when it first branched. When the branch occurs, the 'positive1 engine rotates in a 

positive direction, and the negative engine rotates in the negative direction. For 

subsequent iterations, if the positive engine does not rotate in a negative direction, the

s
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negative engine result must be incorrect since the sum of all subsequent rotations 

cannot converge to the same angle for the two engines. Similarly, if the negative 

engine does not rotate in a positive direction, the positive engine result must be 

incorrect.

Angle

Figure 3.10. The Branching CORDIC Rotation.

Figure 3.11 shows the algorithm operation, and is taken from Duprat and Muller's 

paper. The s variable is the three digit approximation of the angle register.

Figure 3.11. The branching CORDIC algorithm (from [Duprat90]).

I 83



3.5: Algorithms with linear convergence

This algorithm has a small number of digits to be evaluated for the angle 

register, and a simple iteration (the equations arc the same as the conventional 

CORDIC algorithm). However, time must be allocated to allow transfer of the data 

from one of the CORDIC engines to the other. This will either reduce the clock speed, 

or increase the number of cycles used. In the later case, it is no longer possible to 

determine how many cycles the algorithm will take, although an upper bound can be 

found.

3.5.6. M ulti-D im ensional system s

So far only 2 dimensional coordinate systems have been considered. Delosme 

and Hsiao [Delosme90, Delosme89] have expanded the CORDIC algorithm to include 

three and four dimensional cases. The approach they have taken, which, it will be 

shown later, is not the only practical approach, is to use the three Cartesian 

coordinates x, y, and z, and rotate the vector formed by them about the directions 

(1,1,1), and (1,-1,1). This leads to the following iteration:

The shift sequence is modified in a similar way to that for producing hyperbolic 

functions. The optimal sequence repeats iterations roughly as k , 2 k-\, etc.

3.5.7. CORDIC Applications

The CORDIC algorithm has many applications, and a full description of all the 

applications, and examples of use would take many pages to do the subject justice. A

Where:
s = y,x, + n .y , + y,z,
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3.5: Algorithms with linear convergence

description of this kind is outside the scope of this thesis. Instead of this a brief 

description of the more notable papers is given. The reader should be aware that the 

papers referenced here are simply examples, and by no means an exhaustive list. The 

Fourier transform is one obvious application for the CORDIC algorithm, and the 

algorithm has been used for this purpose for many years |Despain74). Other 

applications include phase detectors for digital FM de-modulation |Ginderdeuren85|, 

chirp z-transform processors in which the scaling factor is not an overhead [Hu90], 

Hough transform ations [Tim m erm ann89b], digital signal processing 

[Timmermann91], and singular value decomposition [Cavallaro87, Lin90, Lee91 ]. N- 

Dimensional CORDIC has applications in Householder transformations |Hsiao91J. 

The CORDIC algorithm has been used in a number of commercial devices, including 

the Plessey PDSP163XX series [Dixon90], Hewlett-Packard calculators [Walther71], 

and the Intel 80387 (used inside high power PCs) [Yuen88]. In addition, non­

commercial CORDIC systems have been designed for image processing [Vaudin87], 

and general processing [Haviland80J.

3.6. Higher Radix Algorithms

It is possible to evaluate certain functions at higher radices. If a redundant 

radix 4 system is to be used, as Rodrigues et al. suggested [RodriguesS 1 ], then the 

selection process will be similar to that in the CORDIC algorithm, but instead of a 

selection s, from the set {-1 ,0 ,1}, j, is selected from the combination of two of these

sets i.e. {-3,-2,-1,0,1,2,3}. It should be noted however that ±3 is difficult to generate

as a variable multiplier relative to all the others which are simple shifts and/or

negations. The set {-2,-1,0,1,2} is still redundant, and so this reduced set can be used

for our selection. Figure 3.12 shows the {-3...3}, and {-2...2} sets over two

iterations to show the redundancy in each.

With a CORDIC style iteration, it is preferable to do the same amount of

rotation at an iteration i, whatever the data, to keep the scale factor constant. However,

the scaling factor K  for the CORDIC algorithm is accurate to n bits after ------ cycles,
2
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3.6: Higher radix algorithms

and so iterations after this have no effect on the scaling factor. This means that a radix

4 approach can be used, using the selection set {-2,-1,0,1,2} without having to

calculate the scale factor, so long as a standard radix 2 approach is used for the first 
n + 1 .------ iterations.

2

i i+l i+2 i i+1 i+2

Figure 3.12. The selection sets a) {-3,-2,-1,0,1,2,3} and b) {-2,-1,0,1,2} over two

iterations.

The equations for the radix 4 iterations are:

*ei -* i  +

Iteration
a)

Iteration
b)

Z/o = z. + tan"15(4'

where the selection variable .s, is given by:
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3.6: Higher radix algorithms

s, -  . 0 otherwise

This gives a 25% reduction in the number of cycles required for a given accuracy of 

results. Rodrigues also described algorithms for division log, exponential, tan cot and 

tan '1. Each of these algorithms converge at a rate of two bits per iteration.

Ercegovac described an algorithm for the calculation of logarithms divisions 

and exponentials [Ercegovac73]. The system is based on radix 16 redundant numbers.

M+ 1 factors are used in the approximation. An iteration can be formed to calculate 

In jc of the form:

Where /, is an approximation of In jc , and In/?, is a stored constant. /„ is set to zero, 

and hence the final result lm is given by:

It is now necessary to consider how to find a set of numbers b, that will allow 

any number to be represented to the required accuracy. Ercegovac showed that this can

So if a simple set of factors />, ,can be found that makes a= /,and:

a

L i - 1 , -  In bt
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3.6: Higher radix algorithms

be done by making ¿> ,-1  + 5,16'' where 5, is a selection digit such that 

5, E { -8,...,8} . He called this process multiplicative normalisation, as the s, values are 

found by normalising x to 1 :

* T J ( I + i '16 ) " 1

The selection digits are found by the following algorithm given by Ercegovac. In the 

algorithm, r, is the scaled remainder (in binary two's compliment form) and is given

by:

r, - -  O
Theyth bit of r, is r , T h e  multiplicative normalisation algorithm:
1 . i — O

*0

, 1 51 i f  —* x „ <  — 
J 2 0 8

0 i f  — s  Jt0 < 1
8 0

r \ * - * o ( l  +  * o ) - l

2 . for 0 < /' s  M  

i  — i + 1

sign(s¡) — -sign(r,)

if i < then

r,tl — 16r, + s, +5(r,16 'i*1 

otherwise

r u\ 16r, + st

where:

a) u, is a step dependant rounding constant given by:

«

u ,jare bits found by the Boolean functions:
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3.6: Higher radix algorithms

and K,, K2, and K  indicate (i.e. are high during) the iterations /'= 1, /=2, and 

/>2 respectively.

The combination of the two algorithms shown above was reported by 

Ercegovac, and this produces a result at a rate of four bits per iteration. Division and 

exponential algorithms of a similar type were also shown. Returning to the logarithm 

evaluation, Ercegovac showed that the memory storage requirement can be greatly 

reduced by the approximation:

This is a Taylor series expansion making the algorithm a hybrid type.

3.7. Summary

In this chapter a number of different methods for calculating elementary 

functions have been shown. Different algorithms have different costs and benefits. 

The fastest of all is ROM table look ups, but they are not practical for more than about 

20 bits, even with the best of today's memory technology. When fast multipliers are

b) f( is the scaled truncated unsigned remainder:

c) (m + 3) 
2
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3.7: Summary

available, series expansion can be a good solution, but with dedicated hardware, 

algorithms such as the CORDIC algorithm provide the most promising results. The 

ability to use redundant number systems can increase the algorithms throughput 

greatly. The numerous applications of the CORDIC algorithm shows that the tightness 

of the range constraints is not always a problem. The algorithm can be pipelined, and 

this gives benefits as the shifts used by the algorithm can then be hard wired. The 

CORDIC algorithm has been extended to three and four dimensions, but it will be 

shown in a later chapter that there are other ways to do this, and a generalised multi­

dimensional case will be developed.

Redundant number systems, and higher radix methods are clearly of use in the 

context of elementary function evaluation, in the algorithms themselves, the number 

systems that the algorithms use, and in the hardware they are implemented on (for 

example multipliers for the Taylor series expansions). Table look ups require vast 

amounts of memory, and so any technology that can increase memory storage 

capacities will be of use in this area.
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A

A design 
methodology
for MVL 
circuits

4.1. Introduction

In a previous chapter the state of the art in MVL circuit design was described. 

The theory of building general combinational logic circuits from voltage mode circuits 

is well known, but the use of current mode circuits is not. Indeed current mode 

circuits tend to have been designed for a specific purpose [Current88], and have not 

been built up into sets of logical functions. One reason for this is that voltage mode 

circuits tend to be radix three (or ternary), whereas the current mode circuits are 

mainly radix four (or quaternary). This makes the choice of function easier in the 

voltage mode case. For two input functions, there are more than five orders of 

magnitude fewer ternary functions than there are quaternary functions. The aim of this 

chapter is to describe a method for the design of current mode circuits that will allow 

the best possible use to be made from current mode MVL design. Once it is possible to 

design current mode MVL circuits easily, a basic set of cells capable of generating any 

logical function is required. These are described for a quaternary system. The use of 

current mode MVL circuits in a cell library is also discussed. Finally, the design of 

three MVL circuits in VLSI is discussed, along with details of test results from the 

fabrication of these circuits.

Optical logic is very different to electronic logic, but as has already been 

pointed out, some optical circuits operate by having a thresholding function
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4.1: Introduction

[Osawa92]. This makes the design style very similar to current mode MVL as optical 

signals can be summed easily. Specific mention will not be made to optical circuits in 

this chapter, but it is worth noting that this potential new logic type would be highly 

compatible with a large amount of the design and methodology described in this 

chapter.

4 .2 .  An MVL design methodology

Circuits designed using current mode MVL will only be efficient in terms of 

time area and power if they take full advantage of the summing node. Because of this, 

any methodology for current mode MVL design must focus on this. Circuits can have 

many inputs, that enter the cell by the same physical connection, and these can be 

formed in a manner of the designer's choice so that the decoding logic is simple. As 

was noted in an earlier chapter, current mode circuits can generally be decomposed 

into the free summing function and three distinct sections: a decoder, binary logic 

(which is not always present), and an encoder circuit. This form is shown in figure 

4.1.

I

s

Figure 4.1. The DLE decomposition of a current mode circuit.

The inputs to the circuit are summed on the input node and fed to the decoder. The 

decoder produces a set of binary signals each of which indicates whether the input 

current total was above or below a particular current level. These signals can then be 

adapted by the binary circuits to form signals that can correctly operate the encoders 

which provide the current mode output signal. This structure has been shown in 

Current's Quaternary Full Adder (QFA) [Current87J. The currents are encoded in a 

linear form, i.e. the value "1" is encoded as 10pA, the value "2" is encoded as 2()pA, 

and so on. These individual inputs are summed together so that the decoder input is
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directly proportional to the sum of the input signal values. The decoder thresholds then 

distinguish each possible input level from each other, and the binary logic drives the 

outputs so that they are linearly encoded modulo 4 sum and carry outputs. This in 

itself is a useful circuit, but many different and useful logic circuits can be constructed 

in the same form. The important factor is that almost any part of the circuit can be 

modified, and this may result in a different function from the circuit. If a circuit has 

two input values x and y, and they have been encoded as currents using the functions 

A(), and B() respectively, then when they are summed together, the sum is equal to 

A(x)+B(y). The functions A() and B() may be linear, and may be (but are not 

necessarily) the same as each other. The summed current is then decoded and acted on 

by the logic, which can be represented by the function C(). Hence the final encoding is 

C(A(x)+B(y)). In the full adder example, the are two outputs, and each has its own 

function C(). The carry function is in effect a quantised division by four, and the sum 

output is a modulo four function.

The choice of the functions A(), B(), and C() is not easy to automate. An 

iterative method for finding the functions is described below. It is a very simple 

method, and it may fail to find a set of functions that will work. Even if it does find a 

set of functions, they may not be the best functions in terms of implementation. This 

method should however, with the help of a little intuition from its user provide a fairly 

quick method for finding A(), B(), and C() in most simple cases. The algorithm which 

is demonstrated later is as follows:

1. Choose arbitrary functions for A(), and B(). In the first instance, a linear 

encoding is probably best, unless the user has prior knowledge about the desired 

function of the circuit.

2. Form a table of A(x)+B(y) and the required circuit output for all x, and y .

3. Use this table to form a new table of which outputs should be produced for a 

given A(x)+B(y).

4. If more than one output value is required for one value of A(x)+B(y), then 

either A() or B() (or both) must be changed, and all previous steps repeated.

4.2: An MVL design methodology
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5. As long as the highest threshold needed is within the available resolution, 

select threshold levels, and form C() using threshold function outputs. 

Otherwise, either A() or B(), or both, must be changed, and all previous steps 

repeated.

4.2.1. A worked example: The maximum function

To make the operation of the algorithm more easy to understand, an example is 

given below. The function chosen is the maximum function of a pair of variables. This 

is not a simple function to implement and was deliberately chosen for this reason. It 

should give a better understanding of the algorithm than would be gained from a trivial 

case. The first stage is to choose A() and B(). As the function is unaffected by the 

order of its inputs (MAX(x, y)= MAX(y, x)) the same encoding is chosen for both 

inputs. To start with, a simple linear encoding is used as shown in table 4.1.

4.2: An MVL design methtxlology

input A(input) B(input)
0 0 0
1 1 1
2 2 2
3 3 3

Table 4.1. First encoding functions in current units.

The function outputs are shown in current units. A current unit is the difference in 

current between two adjacent logic levels, and is typically 10 to 50 pA. The linear 

function is used first as it is simple to calculate, and produces a small range of 

summed currents with no gaps that represent wasted logic levels.

The next stage (stage 2) is forming a table of A(x)+B(y), and the output 

required for all x and y. This table is shown as table 4.2. The first two columns give 

each possible x for each possible y in a similar manner to that of a binary truth table. 

The next two columns give A(x), and B(y) in current units as the encoding is linear 

these are the same as the first two columns. The final two columns show A(x)+B(y), 

and the maximum of x, and y. It is the relationship between the data in these two 

columns that is important, as will be seen at the next stage.
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X y A(x) B(y) A(x)+B(y) MAX(x,y)
0 6 0 Ò 0 6
0 i 0 1 1 1
0 2 0 2 2 2
0 3 0 3 3 3
1 0 1 0 1 1
1 1 1 1 2 1
1 2 1 2 3 2
1 3 1 3 4 3
2 0 2 0 2 2
2 1 2 1 3 2
2 2 2 2 4 2
2 3 2 3 5 3
3 0 3 0 3 3
3 1 3 1 4 3
3 2 3 2 5 3
3 3 3 3 6 3

Table 4.2. Sum of encoder outputs and Maximum function for linear encoding.

Stage three is to form a table of the sum of the encoded currents relative to the 

required output. This is done in the form shown in table 4.3. The table is formed as 

follows. Each possible output value forms a column of the table, and each possible 

value of the sum of the encoded currents A(x)+B(y) forms each row. Possible values 

are simply all the values that appear in the appropriate column of table 4.2. Then for 

each row in table 4.2, a mark is made in the cell of table 4.3 that corresponds to the 

sum of currents and output value shown. The cell in table 4.3 is either marked or 

unmarked. The number of times it is used is not relevant.

0
Max

1 2 3
0 ✓
1 ✓
2 ✓ ✓

Sum y y
4 y y
5 y

~ 6 ~

Table 4.3. Sum of currents vs. output function
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Having created this table, it is used in the fourth stage to decide whether it is 

worth continuing with the current encoder functions. For it to he worth continuing, it 

must be possible to find a function C() that satisfies:

C'(a (x ) + fl(y)) -  required_function(x,y)

If C() is to satisfy the above equation, its input (the sum of the encoded currents) must 

be different for each required output value. It can be seen in table 4.3, that if a current 

input of 2 units is received by the decoder, the output required could be a 1 or a 2 , and 

hence C() is not realisable in this case. An input to the decoder of 3 or 4 units of 

current is also ambiguous. In general, if more than one marked cell appears in any one 

column, then C() is unrealisable with the input encoders used. Having found that a 

linear encoding does not work, it is possible to use the information in tables 4.2 and 

4.3 to help choose a different encoder. Examining the lines in table 4.2 corresponding 

to a current sum of 2 units, it can be seen that this value is produced by x and y inputs 

of 1 and 1 (maximum 1) or 0 and 2 (maximum 2). To make this different, the 

encoding of input values of either 0, 1, or 2 must change. This analysis can be 

completed for the other two current sum rows on which the encoding fails. In all 

cases, the encoding for the input values of either 1 or 2 must change. One way to 

change the encoding is to increase both the encodings of input values of 2 and 3 by 

one current unit. However, if this encoding is used, then it is clear that there will still 

be no difference between the sums of the encodings of a 1 and a 2 input, and a 0 and a 

3 input since both sums will increase by one current unit. So the encoding for a 3 three 

input must be increased by 2 to 5 current units. This encoding is shown in table 4.4.

4.2: An MVL design methodology

input A(input) B(input)
0
1

0
1

------o —
1

2 3 3
3 5 5

Table 4.4. An alternative encoding.

Having chosen a new encoding, stages 2 and 3 in the algorithm are repeated. The 

results are shown in tables 4.5 and 4.6.
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X y A(x) B(y) A(x)+B(y) MAX(x,y)

c
 o 0

l
ft
0

ft
1

ft
1

0
1

0 2 0 3 3 2
0 3 0 5 5 3
l 0 1 0 1 1
i 1 1 1 2 1
l 2 1 3 4 2
l 3 1 5 6 3
2 0 3 0 3 2
2 1 3 1 4 2
2 2 3 3 6 2
2 3 3 5 8 3
3 0 5 0 5 3
3 1 5 1 6 3
3 2 5 3 8 3
3 3 5 5 10 3

Table 4.5. The alternative encoding sum, and required output.

0
Max

1 2 3
Ó
1 y

~~T~ y
~~T~ y

Sum 4 y
5 y
6 y y
8 y
10 y

Table 4.6. The alternative encoding sum vs. output required.

It can be seen from table 4.6 that there is still no realisable C() with the alternative 

encoding given in table 4.4. The encoding must be further modified before it can be 

used. To prevent the encoded sums of 3 and 1 giving the same result as 2 and 2, the 

encoding for 3 must be 7 current units. This final encoding is shown in table 4.7, and 

the current sum vs. output required is shown in table 4.8.

input A(input) B(input)
0
1

~ 1T ~
1

0
1

2 3 3
3 7 7

Table 4.7. An encoding to give a maximum function.
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/

0
Max

1 2 3
0 ✓

—T- /
~~T~ ✓

3 ✓
Sum 4 ✓

6 y
i y
8 y
10 y
14 y

Table 4.8. The sum vs. required output for the maximum function

The encoding given in table 4.7 is such that the sum of two lower encoded values 

cannot be the same as a higher encoded value. In other words:

A(n + l) > 2A(n)

Table 4.8 shows that there is no problem with implementing a function C() to give a 

maximum function. The threshold circuits produce an output as follows:

Threshold _ output =
1 i f  fnpu, < Threshold 
0 Otherwise

The final stage is to check that the solution is within the available resolution, and 

implement it if possible. The available resolution is the highest threshold value 

possible, and this will be determined by the relative error of the current sources. A 

number of single current sources are summed together in the encoder as will be seen 

later. When the combined error of these sources is greater than half a current unit, the 

decoder circuit cannot distinguish between two adjacent logic levels. In this case, the 

highest threshold level needed is 6.5 current units, corresponding to the change in 

output value from 2 to 3. This is likely to be within the resolution of the system, 

whereas the maximum current value of 14 is not. Since it is not necessary to 

differentiate between 14 and 13 current units, this does not matter. Assuming that the 

output of the circuit is to be encoded in a linear manner, no logic at all is required. All 

that is needed is three threshold circuits (thresholds at 0.5, 2.5, and 6.5 units), and
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three switched unit current sources. The decoder is shown in figure 4.2, with its 

output linearly encoded.

Figure 4.2. A maximum function decoder.

The encoder can also be designed easily. Figure 4.3. shows the encoder circuit with 

three binary inputs that are identical to those output by the maximum function decoder. 

The values by the current sources indicate the source output in current units.

Vdd

Output

Figure 4.3. The maximum function encoder.

A maximum function circuit has been shown, but this is not necessarily the best 

circuit. Many different encoder and decoder functions will exist that perform the same 

function.

4.2.2. General function im plem entation

It has already been mentioned that it is not necessary for the encodings A() and 

B() to be the same. There are some obvious encoding strategies that may, at first sight 

seem like a good idea. For example, if A() and B() are both linear encoders, but A()
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has 4 times the magnitude of B(), as shown in table 4.9, then every possible 

combination of inputs is distinguishable from every other combination.

input A( input) B(input)
5 0 0
1 4 1
2 8 2
3 12 3

Table 4.9. A linear encoding that makes the inputs totally distinguishable

It would therefore be simple to create any function by generating a switching signal 

indicating each individual input combination. This signal could then activate a current 

source when that input combination occurred. This encoding suffers however from 

two major problems, size and resolution. The circuit, because it is not aimed at a 

particular function, yields very inefficient implementations for all but a few functions. 

For example, if the maximum function were to be generated using this function, the 

decoder would have 8 threshold functions instead of 3, and about 14 binary logic 

gates would be required instead of none in the earlier design. The output encoder for 

this circuit would also be considerably larger (about 100%), than in the earlier design. 

The second problem is that of resolution. Taking the maximum function example 

again, the highest threshold function required would be 10.5 current units as opposed 

to 6.5. Clearly encoder functions such as this are not a practical solution.

4.2.3. Ease of implementation o f a function

There are clear advantages to be gained by understanding how easily a 

particular encoding can be decoded, in order that not just any implementation can be 

found for a function, but if possible, an efficient implementation of that function. The 

encoder circuitry is in general considerably simpler than the decoder and logic 

circuitry. The decoder size is basically determined by the number of thresholds 

required. Table 4.10 shows the sum of current vs. output for the modulo 4 sum output 

of Current's adder (the effect of the carry input is ignored). When this is compared to 

table 4.8, it can be seen that there is a distinct difference between these two tables. The 

encoding for the maximum function causes all of the sums of currents that correspond
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to a particular output value to be within one range of currents, and that no current 

within that range corresponds to any other output value. This is very different to the 

modulo 4 sum, in which no two adjacent current levels correspond to the same output 

value.

0
W

i
Sum

2 3
c 6 y
U ~ T ~ y
r 2 y
r ~ T ~ y
e 4 y
n 5 y
t 6 y

Table 4.10. The current vs. output value for a modulo 4 sum.

The difference in the arrangement of the output values relative to the sum of the 

encoded inputs has a profound effect on the size of the circuit. The modulo 4 sum 

needs 6 threshold circuits, and about 5 binary logic gates, as opposed to the 3 

threshold circuits, and no binary logic of the maximum circuit. Some functions such 

as the maximum function lend themselves to efficient implementation in current mode 

MVL even if the encodings used are not obvious at first. An examination of a balanced 

ternary product function in the context of this methodology helps to explain why some 

functions are easier to implement than others. Table 4.11 shows the required function 

as a truth table.

X y o u tp u t
- l - l 1
- l 0 0
- i l -1
0 - i 0
0 0 0
0 1 0
1 -1 -1
1 0 0
1 1 1

Table 4.11. The truth table for a balanced ternary product function.
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An efficient set of encoders causes the sums of currents corresponding to a particular 

output value to be grouped together. In order that the output values are grouped 

together, one of two situations must exist:

1. The sum of currents corresponding to a 1 output is larger than the sum of currents 

corresponding to a -1. In this case:

A (l)+B(l)>  A (-l)+ fl(l)

Thus, if the inputs are both 1 the output should be I, whereas if the inputs are I and 

-1, the output should be -1. This equation can be simplified by the removal of B(l) 

from both sides, to give:
A(1)>A(-1)

However, it is also clear that:

A (-l) + fi(- l)  > A(l) + fl(-l)

Which simplifies to:
A(-1)>A(1)

Clearly, the two constraints cannot hold at the same time.

2. The sum of currents corresponding to a -1 output is larger than the sum of currents 

corresponding to a 1. This is not realisable either for almost identical reasons for those 

given in the first case.

There is therefore, no way of encoding a balanced ternary product function 

such that the sums of currents are grouped to give a minimal number of threshold 

functions in the decoder. In general, the absolute minimum number of threshold 

functions possible will be just enough to separate each output value from the others, 

i.e. one less than the total number of possible output values. The maximum number of 

threshold functions that should ever be needed will be 1 less than the total number of 

different possible current sum values. This allows for a threshold function between 

each adjacent current sum level . The number of threshold circuits required is therefore 

bounded by:
^ ^ t u r r t n l _ turn_ values “  ^ ^  ^^ th resh o ld _ c itxu its  ^  ^ ^ o u tp u t  _vu!ues ^
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4 .2 .4 .  N e g a t iv e  C u r r e n t s

The encoders described so far have all sourced current to the summing node. 

However there is no reason why the encoder should not sink current from it, or a 

combination of the two. If one encoder sources current to the node, and the other 

sinks current from it, then the free function becomes a subtraction rather than an 

addition. In this case, the sum of currents becomes a difference in current magnitudes. 

The easiest way to consider these encoders is simply to view an encoder sinking a 

current from the node as a negative current. An example of this kind of encoder is 

given in figure 4.4, with its encoding function.

Vdd

Input
value j j

Output
current

0 0 0 1
1 0 1 -1
2 1 0 2
3 1 1 0

Figure 4.4. An encoder with a negative output.

In certain situations, an encoder can be designed so that a negative current does not 

have any specified current itself, but instead can sink so much current that the node is 

grounded when that encoding is specified. This can be demonstrated by returning once 

again to the example of the maximum circuit. A new encoding is shown in table 4.12, 

with the output for 3 being simply « 0 .  This means that if one of the encoders has a 3 

input to it, the output of the other encoder will flow into the first encoder rather than 

the decoder. The decoder input stage is a simple n-type current mirror, so it does not 

source current to the input node, and hence the current flow into the encoder is small. 

The decoder will detect no current since it all flows into the encoder. The other 

encodings could be increased by 1 current unit so that a 0 input can be distinguished 

from a 3. However, a better way to do this would be to leave the 0, 1, and 2
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4.2: An MVL design methodology

encodings as they were in table 4.7, and add a I unit current source to the node un 

switched.

input A(input) B(input)
0
1
2

0
1
3

0
1
3

3 « 0 « 0

Table 4.12. A maximum function encoding that uses a grounding output.

This form of encoding is very simple to produce, as shown in figure 4.5. The n-type 

transistor must be made large enough that it can sink the maximum output current from 

the other encoder, and the 1 unit current source, with a negligible voltage drop across 

it. The n-type transistor does not have to sink current from its own current sources 

since it is switched so that only the current source or sink is on at any one time, and 

not both.

0
Max

1 2 3
C 0 y
U 1 ✓
r ~ T ~ y
r 3 y
e 4 y
n 5 y
t 7 y

Table 4.13. The sum of currents vs. output value for the grounding output encoding 
(including 1 current unit un-switched source).
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The sum versus output is given in table 4.13. This shows that the maximum current 

for this encoding is considerably lower than the encoding given earlier. Indeed the 

maximum current is only 50% of the maximum current using the previous encoder.

The thresholds for this encoding are 0.5, 1.5, and 3.5 current units, which is much 

lower than with the previous encoding, which is another advantage of the grounding 

output. The decoder required for the grounding output encoding of the maximum 

function is shown in figure 4.6. The grounding output encoder can only be used with 

a specific type of function, because if one encoder grounds the node, there is no way 

of distinguishing between the different outputs of the other encoder. Hence the 

grounding output can only be used if one particular input value to one of the encoders 

always results in the same output regardless of the other encoders input value. In the 

case of the maximum function, if either encoder has a 3 input to it, then the output 

must be a 3, and so the input value 3 can be used to ground the summing node.

4.2: An MVL design methodology

Figure 4.6. The maximum function decoder and logic for use with the grounding
output encoders.

The grounding output is clearly very useful, but there is one distinct disadvantage to 

this kind of encoding. In an earlier chapter, it was mentioned that current mode 

mirrors can be made considerably faster if they are biased with a small amount of 

current so that they are always conducting. This is because the transistor gate voltage 

always stays above the FET's threshold voltage. Charging up to this voltage from 0 

volts takes a long time relative to the changing from one current level to another. This
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4.2: An MVL design methodology

biasing is not possible with grounding output encoders since the bias current would be 

lost into the encoder.

4 .2 .5 .  M u l t i s t a g e  fu n c t io n s

In a previous chapter, the adder used by Kawahito et al. [Kawahito87| was 

described. This adder was constructed in two stages as shown in figure 4.7. There is 

no reason why this form of construction should not be used for other functions. A 

modulo 4 sum constructed in this way would require almost 50% fewer threshold 

circuits, no binary logic (as opposed to about 5 gates for the single stage version), and 

only marginally more switched current sources. The disadvantage is that the resolution 

of the circuit needs to be higher, since the output from the first stage is subtracted from 

an un-quantised copy of the input current.

Second summing
O
u
t
P
u
t

4.3. Basic circuit functions for current mode MVL

Having described how functions can be designed, leaves a major question un­

answered, which functions should be implemented? It was noted in an earlier chapter 

that there are more than 4 billion possible functions of two input variables. Even the 

number of one input functions (256) makes implementation of all of them impractical. 

In this section, useful functions are designed, and their application to circuit design 

described. Functions useful for both arithmetic and logic are described, as both are 

areas in which efficient basic circuits are important. A quaternary system is assumed, 

but most of the comments are applicable to a system of any radix. Examination of the 

quaternary circuits should enable a designer to quickly create a similar circuit in a 

different radix.
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4.3: Basic circuit functions for current mode MVL

4 .3 .1 .  T h e  c h o ic e  o f  fu n c t io n s

In choosing a set of functions for quaternary current mode MVL, it is useful to 

refer to the binary operators in common use, and try to enlarge these functions to 

higher radices. The three basic operations in Boolean logic are AND, OR, and NOT. 

There are others such as EXclusive-OR (or EXOR) and composites such as NAND, 

but just the basic 3 will be considered. A Boolean function is written in the form:

F  - A - B + B ( C - D + E )

Where a • indicates an AND operation, and a + indicates an OR operation. An 

overhead bar indicates a NOT operation. The Boolean expression above can be 

expanded out to give the following:

F - A B + B C D + B E

This is known as the "sum of products" form, which gives an indication of a possible 

choice of functions, the SUM and PRODUCT functions. In fact, it is known that the 

modulo 4 SUM and PRODUCT functions can generate any function in quaternary 

logic, by using generalised Reed-Muller expansions. It should be noted however that 

the OR Boolean operation is not in fact modulo 2. That is the EXOR operation. Tables 

of the modulo 4 SUM and PRODUCT functions are given in table 4.14 a, and b 

respectively.

n r 1 Ï 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 Ô 1 2

n n ~ T T "
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 i

a) b)

Table 4.14. Modulo 4 a) SUM and b) PRODUCT functions.

One major advantage of these circuits is that with the addition of a little extra circuitry 

to give them carry outputs, they can also be used as arithmetic operators with obvious 

uses in multipliers and adders. In terms of logic, these two functions can be used 

together to create any logical function [Hurst84],
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4.3: Basic circuit functions for current mode MVL

The SUM and PRODUCT extensions of the Boolean AND and OR operations 

are not the only extensions available. One other common form which allows direct 

implementation from a "sum of products" type form is the MAX (maximum) and MIN 

(minimum) functions. The MAX and MIN functions are given in table 4.15.

X 1 - r t
0 0 1 2 3
l 1 1 2 2
2 2 2 2 2
3 3 2 2 3

a)

n r 1 2
0 0 0 0 0
1 0 1 1 1
2 Ô 1 2 2
3 0 1 2 3

b)

Table 4.15. a) MAX and b) MIN quaternary functions.

The MAX and MIN functions are a simple extension of the binary OR and AND 

functions respectively. Indeed examination of table 4.15 shows that if binary data 

were applied to either, they would appear to be the binary function that they are an 

extension of. The SUM and PRODUCT functions do not possess this property. MAX 

and MIN functions, however are not enough on their own to implement logical 

functions. It is necessary to have an equivalent to the Boolean NOT gate. There are a 

number of different options for the extension to a Boolean NOT gate and some of 

these are given in table 4.16. These are all single input or 'unary' functions.

Input a
Option

b C d
0 i 3 2 3
1 2 0 ~ 5 ~ 2
2 3 1 0 1

~ T ~ 0 ~ T ~ l 0

Table 4.16. Various quaternary extensions to the NOT gate

The first three options are modulo 4. They are a) input+1 (SUCCESSOR), b) input-1, 

c) input+2. Option d is 3-input (COMPLEMENT). The COMPLEMENT function, 

with the MAX and MIN functions will allow all logical functions to be produced 

[Hurst84], There are other unary functions that are well used such as the literal 

operator which outputs a zero unless one particular value is input, when it outputs the 

maximum possible value (3 in the quaternary case). For a quaternary system there are 

4 literal operators.
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4.3: Basic circuit functions for current mode MVL

To give a minimum number of logic gates to be designed, the modulo 4 SUM 

and PRODUCT is the best solution, and the addition of carry output circuitry would 

give easy arithmetic circuit production. A second choice is MAX, MIN and 

COMPLEMENT. It was shown earlier that the MAX function had an efficient 

implementation, and so this set may yield better circuits in terms of time and area than 

the SUM and PRODUCT circuits. In the following sections, unary functions in 

general, the MAX and MIN functions, and the SUM and PRODUCT are all shown in 

further detail.

4.3.2. Encoders as unary  functions

In current mode MVL the most useful circuit element is the current summing 

node. For two input functions, the summing node is used to sum the inputs. 

However, with unary functions there is only one input anyway, and so no use is made 

of the sum. A unary function could be constructed from a DLE type of structure, as 

shown in figure 4.8.

However, the only sensible input encoding would be a simple linear encoding. This 

would be immediately decoded, and fed to some binary logic. It is therefore a simple 

matter to omit the output encoder of the previous function, and replace it with the logic 

and encoder stage of the unary function as shown in figure 4.9. Whereas when the 

interconnection between the two input (dyadic) function and the unary function is a 

current mode signal the two circuits could be physically separate from each other 

without much routing being required, the removal of the encoder and decoder could 

easily leave the designer with up to 3 wires to route instead of the single current mode

Unary function

v Dec- -N Log- _k Enc- 
'  ode ode

V
WDec- Y i  Log- LtJ Enc- 

ode J> 4  ic fy  ode Dec- -N Log- Enc­
ode i v i i i l i n  ode

Other input
Linear

Figure 4.8. A unary function in a circuit in DLE form.
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4.3: Basic circuit functions for current mode MVL

signal. The solution to this is to view the unary function as the output stage of the 

dyadic function before it. Hence the two functions are placed physically next to each 

other.

Unary function

Figure 4.9. A unary function as the output of another multi input function.

The output of the unary function will be fed, most probably to a dyadic gate, 

so its output must be encoded correctly for that gate. Therefore, each unary function 

must be designed, with an encoder for each dyadic function.

4.3.3. MAX and MIN

Earlier in this chapter, two designs for MAX functions were shown. The MIN 

function is very similar indeed. Examination of the MAX and MIN functions given in 

table 4.15 shows that a MIN function can be constructed from a MAX gate by 

complementing both of the inputs, and the output. If a COMPLEMENT is represented 

by an overhead bar, MAX is represented by a v, and MIN is represented by a a , then 

this can be written as:

x  a  y  =  x  v  y

This is very similar to De Morgan's theorem in Boolean logic:

x - y  -  x  +  y

It is therefore possible to construct a MIN gate from a MAX gate and 3 

COMPLEMENT functions. It is however still interesting to examine the MIN gate 

designs in order to evaluate whether or not they are more efficient than the MAX 

COMPLEMENT design. Indeed, there is no reason to suppose that the MAX gate 

should be more efficient to design than the MIN gate. It is even conceivable, that a 

MIN gate with its inputs and output complemented could form an efficient MAX gate.
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4.3: Basic circuit functions for current mode MVL

Having designed a MAX gate, there is prior knowledge that can he used to help the 

MIN gate design. It was noted that in the MAX gate design, the encoded current for a 

value x+l had to be more than twice the sum of the current for x. For the MIN 

encoding, the equivalent requirement is that the current for a value of x summed with 

the maximum current encoded is less than twice the encoding of x+ l. In other words, 

for the same A() and B():

A(x)  + A(3) < A(x + 1) + A(x + l)

This ensures that any set of inputs produces a lower summed current than any other 

set of inputs with a higher minimum. Two encodings that satisfy this criterion are 

given in table 4.17. Table 4.17a is a simple encoding whilst 4.17b makes use of a 

grounded input encoder. The tables assume that A() and B() are the same.

Input A(Input) Input A(Input)
0 0 0 « 0
1 4 1 0
2 6 2 3
3 7 3 4

a) b)

Table 4.17. Two encodings for a MIN function.

The encodings shown can be analysed, and put into current sum vs. required output. 

This is done for the simple encoding in table 4.18, and for the grounded output 

encoding in table 4.19.

0
Min

1 2 3
0 ✓

C 4 y
U 6 y
r ~ T ~ y
r 8 y
e 10 y
n 11 y
t 12 y

13 y
14 y

Table 4.18. The simple MIN encoding current sum vs. required output.
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4.3: Basic circuit functions for current mt>de MVL

The simple encoding gives rise to a similar decoding to that used by the MAX 

function. However, the thresholds for the MIN function would be 7.5, 11.5, and

13.5. This means that the MIN circuits would require high resolution, and consume 

much more power. Hence at this stage it can be seen that the simply encoded MIN 

function is not a good choice for direct implementation.

0
Mod 4 

1
Sum

2 3
c 0
U 1 y
r 4 y
r 5 y
e 7 y
n 8 y
t 9 y

Table 4.19. The grounded output MIN encoding current sum vs. required output.

The grounded output encoding suffers similar problems to the simple encoding, and 

so it is not worth expending effort on the MIN function. Instead, a second encoder 

that performs a complement function is required that will allow a MAX function to 

become a MIN.

Figure 4.10 gives a possible encoder for an complemented simple MAX 

encoding. The inputs are all inverted, and the current weights are reversed to form the 

complement. It may be possible, depending on technological constraints to replace the 

inverter and p-type transistor with a single n-type transistor. In this case, the 

complement function is in effect free, since no extra area would be used relative to a 

normal encoding.

Inputs

Output

Figure 4.10. A complemented MAX encoder (simple encoding).
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4.3: Basic circuit functions for current mode MVL

The grounded output encoding can also he complemented as shown in figure 4.11. As 

with the simple encoder, the inverters may he omitted if n-type transistors can he used 

as the current switches. In this case, the complemented encoding would he smaller that 

the un-complemented encoding, as the grounding transistor must be an n-type 

transistor. Hence the inverter in the un complemented encoding cannot be removed. 

Even using p-type switch transistors, the complemented encoder uses only one more 

inverter (i.e. two transistors) than the un-complemented encoder.

Figure 4.11. A complemented MAX encoder (grounded output encoding).

The MAX function using optionally complemented grounded output encoders 

provides the ability to produce any logical function, with very low resolution 

requirements (maximum threshold of 3.5 current units). Its importance as a current 

mode MVL building block is un-questionable.

4.3.4. SUM and PRODUCT

The modulo 4 sum function has been described earlier in this chapter and in 

previous chapters. The effect of the modulus is that a maximum number of decoders 

(6) is required to decode the function. Because no two adjacent sum values give the 

same output, there is nothing to be gained by using a grounded output encoder.

The modulo 4 product must also be designed to allow logic circuits to be 

constructed arbitrarily. The product can be simply implemented in two ways:

I . A set of switched copies of the one input could be summed together using modulo 4 

sum circuits according to the magnitude of the second input. However, does not take

Vdd

Gnd

Output
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4.3: Basic circuit functions for current mode MVL

advantage of the current sum to reduce the amount of interconnect between basic 

blocks. Also, being itself constructed from other building blocks, means that its 

implementation will be relatively large in comparison to the other basic building 

blocks.

2. The methodology described earlier can be employed. In this case it would not be 

unreasonable to start with a linear encoding as was done in the example. However, it 

is well known that:

x y ~  log-l(logjf + logy)

This gives an instant set of functions A(), B(), and C(). The encoders should produce 

an approximation to the log form. Table 4.20 shows the log of the quaternary values.

Input log(Input)
0 -00
1 0
2 0.693...
3 1.098...

Table 4.20. The natural logarithm.

The log of zero could give some cause for concern, since it is minus infinity, however 

this can be approximated as « 0 , and hence the encoding will produce a grounded 

output style of circuit. The other values can be scaled up such that there is a difference 

of at least 1 between each output value. The approximation is shown in table 4.21.

Input A(Input)
0 « 0
1 0
2 2
3 3

Table 4.21. The log approximation encoding 

This encoding can be used as the first guess encoding for the methodology described 

earlier. The sum of currents versus the required output is shown in table 4.22. The 

encoding works with a unit current added to the summing node to distinguish between 

a grounded output and no current flow. The grounded output must be capable of 

sinking 3 current units from the other encoder, and one current unit that is added to the 

node, without an appreciable voltage drop.
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0
Mod 4 

1
Product

2 3
(■ 0 ✓
u 1 y
r 3 y
r 4 y
e 5 y
n ~~5~ y

1 ; 7 y

Table 4.22. The current sum vs. required output for the log encoding.

The encoding given works, in that a function C() is realisable. However, the 

function is not very efficient since related outputs are not grouped together. The 

function C() can be taken from the sum of currents table, and is shown in figure 4.12. 

The circuit consists of six threshold functions and the equivalent of about 6 logic 

gates. This makes the modulo 4 product roughly the same size as the modulo 4 sum.

Figure 4.12. The modulo 4 product decoder.

The encoder for the modulo 4 product is shown in figure 4.13a. The encoding can be 

modified to give a purely positive output current to increase the speed of the circuit. 

The encoding for the circuit is shown in table 4.23, and the encoder circuit is shown in 

figure 4.13b.

Input A(Input)
0 7
1 3
2 1
3 0

Table 4.23. A modulo 4 product encoding using all positive currents.
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The encoding that does not make use of the grounded output will clearly use more 

power, hut the resolution required is no higher. The all positive encoding is formed by 

inverting the value of the encoding, and then finding the minimum value for which the 

function C() is realisable. In this case it is necessary for the sum of the encoding for 

zero to be greater than the sum of any two other encodings. Hence the encoding for 

zero is 7 current units.

Figure 4.13. Encoders for a modulo 4 product, a) grounded output b) positive current.

The decoder for the positive current encoding is shown in figure 4.14. It is very 

similar to the grounded output decoder in terms of numbers of thresholds, and gates. 

The maximum threshold is the same as the grounded output version, since all the 

currents above 6.5 current units indicate a zero output.

Vdd

Gnd

a) b)

Inputs
encoded ■<
{ « 0 ,0 ,2,3}

^ 2  LOutputs

Decoder Logic

Figure 4.14. A positive current modulo 4 product decoder.
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One major area in which the SUM and PRODUCT building blocks are likely to be 

more efficient than MAX and MIN circuits is in the design of arithmetic units. For 

example, a multiplier will typically he constructed from a set of partial product 

generators and adders to sum the partial products together. If carry circuitry is added 

to the SUM and PRODUCT building blocks, then a multiplier can be constructed from 

them. The two inputs are put into an array of partial product generators, and the 

outputs of these generators are then summed to form the product. Two sets of adders 

are needed in each row because the output from the partial product generator has a 

carry output which it would not have in the binary case. The array cell is shown in 

figure 4.15 in block form.

Sum in In 2

•...b.. . . . . . . . . . . . . . . . . . . . ..b.J
Sum out In 2

In 1 Less Significant 
Digits

Product 
carry in

Sum 1 
carry in

Sum 2 
carry in

Figure 4.15. A multiplier cell block diagram.

It should be noted, that the input digits INI and IN2 must be voltage mode signals. 

The encoding to a current mode log encoded signal must be made at the multiplier cell. 

Either a pair of binary signals could be used, or a four level voltage mode encoding 

could be used as described in an earlier chapter.
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4.4: Current mode MVL libraries

4.4. Current mode MVL libraries

When laying out larger circuits that use the building blocks already described, 

more than one encoding of a particular output, or more than one copy of an encoding 

may be needed. This is because of the unity fan-out of current mode circuits. A library 

could be designed so as to have each function as, an input section, and a set of output 

sections, one output section for each encoding type. It should be possible to fit any 

number of these output sections onto a single input section. Figure 4.16 shows a 

schematic for this style of library. The variables are shown with the way they have 

been encoded in brackets after the variable name. The decoder, and logic are in the 

SUM or PRODUCT sections, and the encoders (marked linear, and log) are simply 

slotted on the end. Encoding is logarithmic to perform a product, and a linear manner 

to perform a sum. This system makes use of the fact that the logic section output is 

voltage mode, and hence has an infinite fan-out, allowing it to drive as many encoders 

as necessary. The schematic shown is a logic circuit that has been described in modulo 

4 sum and product form. MAX, MIN and COMPLEMENT circuits could also be 

used.

a(lin) b(lin) c(log) d(log) }Inputs

Figure 4.16. An example schematic of a current mode circuit.

Table 4.24 shows the minimum requirements in terms of input and output functions 

required for a full logic set for both SUM and PRODUCT, and MAX and MIN logic 

forms. The binary converters allow the circuits to interface easily with conventional
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4.4: Current mode MVL libraries

voltage mode binary circuits. Only one type of converter is needed when decoding to 

binary, since an encoder will have to be assigned to that particular output anyway.

Logic type Encoders [5ccoaers
SUM. PRODUCT Linear (SUM) 

Log (PRODUCT) 
Binary to Linear 
Binary to Log

SUM
PRODUCT 

Linear to binary

MIN, MAX Max encoding
Complemented Max encoding 

Binary to Max
Binary to complemented Max

Ma X
Max encoding to binary

Table 4.24. The minimum cells required for a library of different logic types.

It will probably be beneficial to individual library designers to incorporate their own 

special library cells that will aid efficient implementation of the particular operation that 

may be required by a design.

4.4.1. Abutment

In table 4.24, an assumption has been made. The assumption is that one output 

encoder can be used in conjunction with a number of decoder and logic circuits. For 

this to be practical, there needs to be an interface between the two that is structured 

enough to allow the construction of many interlocking cells that fit easily and 

efficiently together. Typically, library cells are designed so that they fit neatly next to 

each other in a row, with the power rails, and possibly clock signals running down the 

row. All other connections are made from the top and bottom of the cell. With the 

current mode MVL circuits, the decoders, and encoders need to be physically next to 

each other, and so it makes sense for the lines connecting them to travel along the row. 

Indeed, as a number of encoders may be connected to the same decoder, the lines 

should pass right through the encoder cells. Figure 4.17 shows the perimeter of a 

typical decoder, and encoder using this design style. To prevent the lines through the 

encoders of two adjacent circuits from touching (which could happen if one circuit 

was mirrored about the vertical axis), it may be necessary to have a short dummy cell 

to place between adjacent circuits. This dummy cell will pass the power lines along

119



4.4: Current mode MVL libraries

voltage mode binary circuits. Only one type of converter is needed when decoding to 

binary, since an encoder will have to be assigned to that particular output anyway.

Logic type tincoderii Decoder*
SUM, PRC)DUCT Linear (SUM) 

Log (PRODUCT) 
Binary to Linear 
Binary to Log

SUM
PRODUCT 

Linear to binary

MIN, MAX Max encoding
Complemented Max encoding 

Binary to Max
Binary to complemented Max

Ma K
Max encoding to binary

Table 4.24. The minimum cells required for a library of different logic types.

It will probably be beneficial to individual library designers to incorporate their own 

special library cells that will aid efficient implementation of the particular operation that 

may be required by a design.

4.4.1. Abutment

In table 4.24, an assumption has been made. The assumption is that one output 

encoder can be used in conjunction with a number of decoder and logic circuits. For 

this to be practical, there needs to be an interface between the two that is structured 

enough to allow the construction of many interlocking cells that fit easily and 

efficiently together. Typically, library cells are designed so that they fit neatly next to 

each other in a row, with the power rails, and possibly clock signals running down the 

row. All other connections are made from the top and bottom of the cell. With the 

current mode MVL circuits, the decoders, and encoders need to be physically next to 

each other, and so it makes sense for the lines connecting them to travel along the row. 

Indeed, as a number of encoders may be connected to the same decoder, the lines 

should pass right through the encoder cells. Figure 4.17 shows the perimeter of a 

typical decoder, and encoder using this design style. To prevent the lines through the 

encoders of two adjacent circuits from touching (which could happen if one circuit 

was mirrored about the vertical axis), it may be necessary to have a short dummy cell 

to place between adjacent circuits. This dummy cell will pass the power lines along
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down the row, but nothing else. It is also important to define precisely, what lines will 

be where at the interface of the encoder and the decoder. This allows all the encoders 

to line up with all the decoders.

Power

Ground

Power ÜJ
# 7

£  Power

Ground

Inputs
(binary)

P
tz

P

1...............

Ground

Through
lines
(binary)

Output 

b) Encoder.

Figure 4.17. The perimeter of library cells.

The choice of what exactly the signals mean is also important. It must be standardised 

for the system to work, but it must also allow easy implementation of the encoder 

functions. The > 0 , > I , and > 2 signals have been the choice so far in this chapter. 

This is because it makes linear encoders, and decoders easy to design, and because 

other encoders seem to map well to this set o f functions. The value of the multiple 

valued signal for given individual binary levels is shown in table 4.25.

Value > 0 > l > 2
0 ~ T ~ 1
1 0 l 1

~ r ~ 0 0 1
~ n ~ 0 0 0

Table 4.25. A suggested decoder to encoder signal interface.
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It is possible to use two lines instead of three, but this makes both the logic in the 

decoder, and the encoder more complex. So as the circuits are physically separated by 

only the smallest of possible distances, it is probably more area efficient to use three 

lines.

4.5. MVL circuits in VLSI

The design of VLSI circuit components is difficult and time consuming. Since 

a large number of the design tools available are only written to cope with binary 

signals, the design of an MVL circuit must be done as an analogue circuit. Some of the 

design tools for analogue circuits arc considerably slower than their binary 

counterparts. For this reason, it is not practical to design large MVL circuits at present.

This section describes the design and testing of three MVL circuits on two test 

chips. The circuits designed were a current mode modulo 4 sum and product circuit, 

and a voltage mode binary full adder with a quaternary internal node. Two of these 

circuits have been previously reported by others (the modulo 4 sum |Current87|, and 

the adder |Schult/.89]), and the purpose of fabricating them was to investigate the 

problems involved with the design and fabrication process.

The test circuits were fabricated as additional circuitry on chips used for a final 

year course for undergraduates in VLSI design. Hence the number of output pins 

available was severely limited. These circuits were not designed as library cells, 

enough of the circuit was designed simply to test the current mode sections.

4 .5 .1 .  T h e  f ir s t  test ch ip

The first test chip was fabricated using a European Silicon Structures (ES2) 

2pm basic CMOS process. This process is tuned for binary digital circuits. Four 

circuits were actually fabricated on this test chip, but problems with the binary 

interface logic caused three of these to be untcstablc. The testable circuit was a pair of 

current mode modulo 4 sum circuits. The circuits had additional carry outputs, and
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were linked together by the carry line, in effect forming a 4 bit adder. The current 

inputs were formed by 9 inputs to I and 2 current unit switched sources. These were 

summed together to give an input to both of the sum circuits. The current unit used 

was lOpA, and offset currents were used to speed up the sum circuits. The test circuit 

is shown in figure 4.18.

a)

Figure 4.18. The first test chip circuit, a) Circuit layout b) floorplan.

It was not possible to have any analogue connections to the circuit, and so all the 

inputs and outputs were voltage mode binary signals. This was unfortunate, since it 

vastly reduced the observability of the circuits, and reduced the number of useful tests 

possible considerably. The current mirrors used were of the cascode type, and unit
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4.5: MVL circuits in VLSI

transistor design was employed to increase relative accuracy between the current 

sources. The modulo 4 sum circuit is shown in figure 4.19.

Figure 4.19. Current mode modulo 4 sum. a) Layout, b) floorplan.

The devices were tested, and some but not complete functionality was 

observed. The different circuits each had their own reference voltage generators, 

which could potentially cause different parts of the circuit to be producing different 

current levels. However, since the main errors occurred in the majority of the devices, 

it is unlikely that transistor parameter variation across the circuit caused these errors. A 

more likely cause is that the parameters of the N and P type FETs used for the design 

were different to those on the actual chip fabricated. There are two possible 

explanations for this:
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1. The chips fabricated were fabricated in such a way that they did not have nominal 

characteristics of the process. This is possible since the upper and lower bounds of the 

process parameters (the 'skew' parameters) were not tested in the design.

2. The model parameters provided, produce accurate timing results for binary circuits, 

hut do not accurately model the analogue behaviour of the transistors.

One error that gave insight into the problems with the circuit was the fact that the 

output circuits never registered an output level of 3 current units. This means that a 3 

current unit signal fed to a 2.5 unit threshold circuit was not switching the threshold 

circuit. The most probable cause of this is an error in the size of the transistors relative 

to each other. However, a simulation showed the sizes to be correct, and so the 

simulation was probably at fault. Since the simulator used (SPICE) is well known and 

highly regarded in the VLSI design community, the only remaining '¡omponent of the 

simulation, the model parameters, must be suspected. Despite these problems, the 

circuits did provide indications that 8 or so current units is not an unreasonable 

resolution to expect for a circuit of this type.

4 .5 .2 .  T h e  se c o n d  test  ch ip

The second test chip was fabricated using an Orbit 1.5pm process. This was 

also a CMOS process aimed at binary circuits. Both a voltage mode and a current 

mode circuit were constructed in the process. The voltage mode circuit was the binary 

full adder described by Schultz [Schultz89]. The transistor sizes were modified so that 

the circuit operated properly in simulations. The current mode circuit was the encoders 

and decoders for the grounded output modulo 4 product circuit described earlier. The 

current unit for the current mode circuits was set at lOpA. The outputs of the circuits 

were multiplexed together to reduce the number of output pins required. The logic for 

the product circuit was not included since this section is binary and thus easy to 

design. Instead, the decoder threshold outputs are fed to inverters that buffer the 

signal, and then they are fed via the multiplexers to the output. The circuit fabricated 

on the second test chip is shown in figure 4.20. The mirrors in the current mode
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circuit are cascode mirrors, and the N-type mirrors were extended to reduce errors as 

much as possible.

a)

Encoders

Inverters

b)

Figure 4.20. The second test circuit.

The current encoders used in this circuit are not exactly the same as those described 

earlier. Only two inputs are used, but the 4 possible output values are obtainable. The 

layout of the current encoder is shown in figure 4.21a, and the circuit schematic is 

given in figure 4.21b. The N-type transistors only need to be unit sized transistors to 

sink enough current to form a grounded encoder output. These circuits are not
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intended to be used in a library, but simply to allow the form of circuit to be tested. 

There was the opportunity with the second test circuit to have an unbuffered output, 

and so the central quaternary voltage mode signal from the adder was connected to an 

external pin on the chip. This allowed the analogue voltages on this node to be 

measured, and checked against the simulated values.

Vdd

Ref2
Refl

Out

Gnd

a) b)

Figure 4.21. The grounded output, 2 input encoder, a) Layout, b) schematic.

Because the second test chip had an analogue output, it was possible to get 

much more certain results about the differences between the models used in 

simulation, and the actual circuits that were fabricated. The simulation results were in 

fact very different to the results actually measured. The voltage mode adder quaternary 

internal node voltages bore very little resemblance to the simulations. From these test 

results, the only conclusion that can be drawn is that the simulation models for MVL 

circuits must be as of as high a standard of accuracy as the models used in analogue 

simulation. The current mode circuit showed clearly that the grounded output 

technique works. The grounded signal was easily distinguishable. The other signal 

levels suffered similar problems to the current mode circuit on the first test chip, again 

pointing to problems with the models. The models used were investigated, and they
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are designed for binary simulation. Better models are clearly the priority, and for 

practical commercial circuits, the circuits must operate over the full range of the 

process parameters, and the full temperature and voltage supply range.

4.6. Summary

This chapter has described a methodology for the design of uni-directional 

current mode MVL circuits that could be easily extended to bi-directional circuits, and 

has potential for the design of optical logic circuits. The design method has been 

discussed in detail, and although this methodology is by no means perfect, it gives a 

good insight into how to design such circuits, and can provide very encouraging 

results. Single input functions can be implemented as the output stage of a circuit, with 

little or no overhead. The MAX, MIN and COMPLEMENT multiple valued logical 

form can be created most efficiently be using just a MAX gate with normal or 

complemented outputs. This is because the MIN gate is far less easy to implement. 

Modulo 4 sum and product circuits have also been designed. These circuits are less 

efficiently implemented because of the modulus effect, but in arithmetic applications 

they are the obvious basic building blocks. Libraries of current mode MVL circuits can 

be built up, and if the guidelines given in this chapter are followed, the efficiency of 

these designs in implementing larger functions should be good.

Despite the trends in CMOS processes, circuits such as the MAX function 

require so little in terms of resolution, that these circuits may well be viable until 

CMOS is finally replaced by a new commercial technology such as optical logic. At 

this point the concepts behind the circuits presented here could be easily transferred 

across. These designs and concepts allow larger circuits to be considered in a general 

sense for current mode MVL rather than just for individual applications.
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Function 
evaluation 
in many 
dimensions.

5.1. Introduction

In a previous chapter, the CORDIC algorithm has been described in two, three 

and four dimensions [Volder59, Delosme90], There are other ways to operate the 

CORDIC algorithm in three and more dimensions other than the method already 

shown. A three dimensional algorithm is developed and this is then generalised to take 

account of the work of others already shown on the two dimensional algorithm. 

Following this, a new two dimensional CORDIC system which has a unit scale factor 

is also shown. A comparison of the various algorithms presented in this chapter is 

given, which includes a comparison relative to the methods used by others. Finally the 

layout of a three dimensional pipelined redundant arithmetic processor is described.

5.2. CORDIC in more than two dim ensions

In this section, the theory behind multi-dimensional vector rotations will be 

considered. Starting with three dimensions, the CORDIC algorithm is generalised to N 

dimensions. It is shown that a three dimensional CORDIC algorithm can be used as a 

two dimensional algorithm eliminating the need for a scaling factor operation. The 

unit scale factor is achieved by rotating the vector in three dimensional space in a 

manner which scales its projection onto the X-Y plane by the reciprocal of the overall 

scale factor. This new technique takes the same number of cycles as the standard

1 2 8
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5.2: CORDIC in more than two dimensions

CORDIC algorithm. The system is shown to be entirely compatible with redundant 

number system implementations of the CORDIC algorithm and has only a marginally 

slower cycle time than the redundant system of Takagi |Takagi9l|. The extensions 

given by Walther |Walther71 ] are not considered, although they could be incorporated 

into this later without much difficulty. The use of redundant [Takagi9l ] and high radix 

[RodriguesSI ] number systems is considered, as are hybrid systems.

Unless other wise stated, it will be assumed that a fixed point fractional 

representation is being used for vector lengths.

5 .2 .1 . 3 D  C O R D IC

The CORDIC algorithm is a two dimensional vector rotator. Its function is 

based upon the fact that a rotation of a vector (jt.y) by an angle a  results in a new

vector:

(x c o s a -y s in a .y c o s a  + xsince) ( 1

Hence the new vector can be represented by the old vector and a simple function of the 

rotation angle. In three dimensions, the rotation is defined by two variables. There are 

a number of choices for these two variables, but the most well known is to have one 

value representing the rotation away from the z-axis and one representing the rotation 

about the z-axis. This is a spherical coordinate system. However there are many other 

choices available such as that taken by Delosme and Hsaio [Delosme90]. The problem 

with a spherical coordinate system is that a vector (x.y.z) which is rotated by the

angles A and B around and away from the z-axis respectively, cannot easily be 

represented by x ,y ,z  and the sines or cosines of A and B. Ways around this problem 

are now examined.

5 .2 .1 .1 .  B a s is  o f  e x te n s io n  to  th r e e  d im e n s io n s

A vector in three dimensional space is shown in figure 5.1. It has Cartesian 

coordinates (X, ,Yt ,Z ,) and spherical coordinates (/?, ,0, ,0 ,) .
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Y

X

Figure 5.1. A vector in three dimensional space.

The vector can be rotated by an angle a, around the z-axis and by an angle ft,

away from the z-axis to become a new vector which has Cartesian coordinates 

and spherical coordinates (/?, ,0, + a i ,<pi + /S,). In this case, the

relationship between the Cartesian and spherical coordinates of the two vectors are 

shown in equations 2 to 7.

manner as the two dimensional algorithm. However, when equations 5 to 7 are 

expanded, the result is:

X, -  R, cos 0, sin ipi 

Yi -  0, sin 0, sin <p,

( 2

Z. - R: cos <p, ( 4

X,.i -  0, cos(0, + a i )sin(0, + ftt ) 

T(>l = /?, sin(0, + a, )sin(0, + ft, )

( 5

( 6

It is preferable to form an iteration such that allows (Xj+1,Yjtl,ZI>() to be found 

from knowing ( x ,  ,Y, ,Z, ) and the sines and cosines of the rotation angles in the same

Xm = X, cosa, cos ft, -  Y, sin a, cos/?,
+ /?, cos 0( cos 0, cos a, sin ft, -  R, sin 0( cos 0; sin a, sin ft, ( 8
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YM -  Y, cos a , cos ft, + X, sin a, cos ft, ( g
+ /?, sin 0, cos <pi cos a, sin ft, + /if, cos 0, cos <p, sin a, sin ft,

Zut -  Z, cos ft! -  R, sin <p, sin ft, (10

These are not fully defined in terms of the original vector. However, it is 

possible to define the following set of scalars:

U, = R, cos 6, cos </>, (11

V, -  /f, sin 0, cos <p, (12

W, = /?, sin <p, (13

Uiti -  R, cos(0, + a, )cos(<p, + f t , ) (14

V,tl -  R, sin(0, + a, )cos(<p, +ft, ) (15

-  R, sin(<p, + ft,) (16

These, in combination with equations 2 to 7 gives a set that will iterate. The W 

variable is the magnitude of the vector projected onto the x-y plane, but the physical 

meaning of the U and V variables is unclear. Expanding the left hand side of equations 

5 to 7 and 14 to 16 and substituting from equations 2 to 7 and II to 13 wherever 

possible, the following set of iterating equations is found:

i/,tl = i/( cos a . cos ft, -  X, cos a, sin ft,

-  V, sin a, cos/3, + T, sin a ; sin ft,
(17

Vi+I -  V, cos a, cos/3, -  Y, cos a, sin/3,

+ (/, sin a, cos/3, -  X, sin a, sin/8,
(18

-  W, cos/3, + Z, sin/3, (19

X,., = X, cosa, cos/3, + l/, cosa, sin/3,

-  T, sin a, cos/3, -  V, sin a , sin/3,
(20

Ym  = K, cosa, cos/3, + V, cosa, sin/3,

+ X, sin a, cos/3, + i/, sin a , sin/8,
(21

Z,„ = Z, cos^, -  W, sin/3, (22
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This set of equations divides any rotation into a set of smaller rotations in the 

same way as the two dimensional CORDIC algorithm. This is possible since there is 

now a definition of the rotated vector in terms of the original vector, and the rotations 

a  and ft. The rotation can therefore he divided into a set of smaller rotations, a , and 

ft. have the same magnitude, but their signs may differ. This is simply for

convenience. It also means that the accuracy of the algorithm is the same in all 

dimensions at a given iteration i. As with the two dimensional CORDIC algorithm, 

a, = a, .arctan2~‘ and f t i « bt ,arctan2'' are chosen, where a, and are E {-l,l} .

From this, equations 23 to 26 can be derived for the sine and cosine of a, and ft, . 

The a, and b, factors disappear from the cosine equations because cosò -  cos- Ò , 

whereas they are present in the sine equations because sin ò = -  sin -  ò .

cos ft, -

sin/?,
b, 2 ~'

yi+2-ji

cosa,

(23

(24

(25

sin a, (26

The divisor of all these equations is a constant for each iteration step. We will 

call this constant fc,. Substituting equations 23 to 26 into equations 17 to 22, gives:

UM -  p - W  -  X, b, 2-‘ -  V, a, 2-‘ + Y. a,b, 2'2i) (27

VM = p - ( V ,  -  Y,b, 2-‘ + U,a, r ‘ -  X,a,b, 2'21) (28

K
(29

Xu, -  (X, + U, b, 2-1 -  Y, a, 2-‘ -  V, a, b, 2'2‘ ) (30

1
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i

(31

Z>«mT < Z '- W ,b l 2-') (32

The scale factor for Zitl and Wjtl is different to that of Uu l , V,*,, Xul and 

Ym . This is not a problem since the two sets of variables do not interact in any way.

These equations can be used to rotate a three dimensional vector. The equations 27 to 

32 are iterated ignoring k, . We can pre-scale the inputs, or post-scale the outputs by 

the overall scale factor K, for Z and W and K 2 for U, V, X and Y, where:

5.2.1.2. Convergence and accuracy

In expanding the CORDIC algorithm to more than two dimensions, it is not 

unreasonable to assume that obtaining an iteration that gives convergent results will be 

more difficult than in the two dimensional case. Indeed that is exactly what Delosme 

and Hsaio found [Delosme90]. They used a system similar to that used by Walther for 

his hyperbolic rotations of repeating a number of iterations. The repetitions roughly 

follow a 2k-\ sequence, but not exactly. However, when the rotation system already 

described is used, the planes of rotation are orthogonal to each other and hence can be 

considered separately. The planes of rotation for a polar coordinate system are shown 

in figure 5.2.

(33
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5.2: CORDIC in more than two dimensions

Each of the planes of rotation acts on its own, as a simple two dimensional 

vector rotation and so convergence is assured in just the same way as for the 2D case, 

except that both planes must be shown to converge. Since the case under investigation 

is that of circular rotations, the algorithm must converge as it is known that:

tan' 1 2 ~' 
tan' 1 2 -'-'

s 2 (34

As with the two dimensional algorithm, there are two sources of errors, the 

rounding error and the angle approximation error. The iterations for W and Z form a 

two dimensional algorithm for a rotation in the $ rotation plane and so the results given 

by Hu [Hu92] are still valid. The errors for U, V, X  and Y however are different. 

There is an angle approximation error from both the 0 and <f> rotations and the 

rounding errors are different since they are propagated to the output differently.

The angle approximation error of the 0 and <|> rotations is s  tan*' 2‘"*' in each 

plane. The planes are at right angles to each other, so the error of the two angles
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combined is \[2  of the error of a single rotation. The error due to the angle 

approximation in any of the four variables will be less than:

V2/?sin(tan"'2"*""1*) (35

Where K is the vector magnitude. The worst case vector magnitude appears 

when the vector starts with unit magnitude. This vector is extended by the scaling 

factor during the iterations, but post scaling then removes this factor. For practical 

values of n, 2 '*"*1* is small enough that both the tangent and sine functions can be 

ignored. Hence the angle approximation error Em,lr is given by:

C oni,1' i (36

The rounding error is formed by observing that there is a rounding error at 

each iteration and that this error is modified by subsequent stages. Assuming an 

internal resolution of 6 bits, the maximum error from one rounding operation on the 

vector will be s  2~b ■ V2 . The effect of propagating this error (at the /'th iteration) to 

the final result can be found by considering the transfer matrix of the iteration in matrix 

form:

1 -a ,2 - ‘ - 6,2 -' a,b,2-2‘

1 a(2 "' 1 -a ,6,2 "2' - 6,2 -'
1 + 2 "2' b,2-‘ - a tb,2~21 1 -«, 2 -

ap t 2 ‘2' b, 2 -' a, 2 " 1

The error will be scaled by the determinant of this matrix multiplied by the 

factor given. Overall the rounding error will be the initial error scaled by the 

subsequent iterations:

J~J(l + 2 '2')1 (38
j - i  +  1

The error due to rounding in the final result Ertmnd will therefore be the sum of 

the individual rounding errors, each propagated to the result of the final iteration and 

then post-scaled, i.e.:
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5.2: CORDIC in more than two dimensions

The output accuracy b„ (given in bits) can be found by the following 

equation:

* „ - - l o g 2( i W + £ „ w )  (40

The result of this analysis is shown in table 5.1. The table shows the output 

accuracy b„ in bits according to the number of iterations performed n and the number 

of bits used internally b. The table shows the region around b0 -  16 bits. The right 

hand set of figures are taken from a bit level simulation of the algorithm and they show 

that the theoretical errors are very accurate, although there seems to be a small 

additional error source. This seems to be due to the post-scaling operation. The bit 

level simulation performed 10,000 random sized rotations on random vectors. 

Combinations where n > b + 1 are not shown since the final iteration(s) would be 

pointless (the rotation angles would be smaller than those representable with the given 

accuracy). Indeed, during these extra iterations, errors could increase.

20 21
^ T "

22 23 24
— TT 14.4/14 14.8/14 15.1/14 15.3/14 15.4/14

18 14.7/14 15.3/15 15.8/15 16.1/15 16.3/15
19 14.9/14 15.6/15 16.3/15 16.8/16 17.1/16

n 20~ 14.9/15 15.8/15 16.6/16 17.3/16 17.7/17
21 14.9/15 15.9/16 16.8/16 17.6/17 18.2/18
22 n/a 15.9/16 16.8/16 17.7/17 18.5/18
23 n/a n/a I6 .S/16 17.8/18 18.6/18
24 n/a n/a n/a 17.8/17 18.7/18

Table 5.1. The result accuracy as a function of the internal resolution and number of 
iterations used. Theoretical/measured results.

5.2.1.3. Initial conditions

When starting, at i  -  1, not only the Cartesian coordinates X ,, K, and Z, 

need to be known, but also U , , V, and W, . These would need to be calculated, 

which is a significant overhead. One way around this is to constrain the start vector to
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lie on an axis, as this would cause (/,, V, and IV, to be trivial. Otherwise, it would 

be necessary to pre-calculate t/, , V, and W, and then store them between operations. 

This would double the storage requirement for a vector. In addition, it should be noted 

that it is not possible to sum two vectors simply by summing the corresponding 

variables in each vector representation. This can be seen by considering IV which is 

the magnitude of the projection of the vector onto the x-y plane. The magnitude of the 

sum of two vectors is not necessarily equal to the sum of the individual vector 

magnitudes, as shown in figure 5.3.

Y

5.2.1.4. Application to scaleless 2D

It can be seen from the above discussion, that this 3D CORDIC algorithm 

suffers from a problem at the first iteration. However, when this system is used as a 

unit scale factor 2D CORDIC, the effect disappears. The X-Y plane is used for the two 

dimensional rotation. The vector is rotated out of the plane to reduce its projected 

length on the plane. The rotation out of the plane is chosen to have the opposite effect 

to that of the vector extension and hence they cancel each other out, giving a unit scale 

factor. This is shown in figure 5.4. Assume a start vector A, this rotates in the 2D 

case to B which is extended. Instead, the vector is rotated to C. This vector is also 

extended, but the projection on the X-Y plane (D) is of the same length as A and 

rotated by the correct angle in the X-Y plane.
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Z

C

Y

A X

Figure 5.4. Rotating in 3D to remove the 2D scale factor.

calculate X„ and Yn, neither Wn nor Zn need be calculated and hence W, and Z, are 

not needed. All that needs to be done is to set X, and Y, to the initial vector and, t/, 

and V, to 0. To perform a rotation with no scale factor, 0 is rotated by the required

rotations is a single unsealed rotation.

It is worth noting at this point, that the rotation out of the plane is a constant 

value and so the signs of the rotations b: can be pre-calculated. This makes the form of 

the iteration similar to that given by Ahmed |Ahmed82J. Indeed, the method described 

here is a more general version of that given by Ahmed.

5.2 .1 .5 . Redundant numbers

Redundant number arithmetic can be incorporated into this scaleless algorithm 

without difficulty. To use the double rotation method, the rotations in each dimension 

are split into two sub-rotations as shown in figure 5.6. Figure 5.5 shows the 3D 

CORDIC algorithm given earlier in the same form for comparison.
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* I

It can be seen from figure 5.6, that it is possible to perform a positive, negative 

or no rotation in 0 and <j> independently. This means that the convergence is assured in 

the same way as in the two dimensional case. The selection of the rotation direction, 

can be made independently and in parallel for the two rotations. The iteration is now:
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UM -  U,st -  X,S2 -  V,S, + Y,St (41

v M  -  v,s, -  y,s2 + u,sy -  x,s< (42

W ^ ~ W ,(\ -b ,d ,2 -2,- 2)* Z ,{(b ^ d ,)2 -‘- ') (43

XM -  X& + U& -  Y&  -  V{St (44

Ym  -  K,5, + VtS2 + X,Sy + U,S4 (45

ZM  -  Z(( l - M 2 - J'-J) -  +</()2 -'- ') (46

Where:

5, -  1 -  (a,ct + b,d, )2 -2‘- 2 + a i M 2 ' , w (47

S2 -  (b, + d ) 2 - ‘-' -  a fi{b , + d , ) T * '2 (48

S3 “ (a, + cj)2 ‘<"1 -  bldi(aj +  c1)2 '3i_J (49

(50

a ,, blt c, and dt S { l,-l}  indicate the direction of the subrotations, a, and c\ 

represent the rotation in the x-y plane. b: and d, represent the rotation out of the x-y 

plane. If the T variable represents the angle to be rotated about the Z axis (i.e. the 

rotation in the X-Y plane) and the R variable represents the angle to be rotated away 

from the Z axis, then a,, i>,, c, and <7 are given by the selection equations below. The

iteration equations for T and R are also given:

- 1 - 1  «/ f / ' - W l*< ‘¡*i
a, Ci - 1 - 1  i f V-'/'r'*1*1 Vi

1 1 «/ V'-'r'r'*1'1

- 1 - 1  i f r i - ' y 1

b, dt - 1 - 1  i f V '- v v 1w r tr t
1 » i f r ' - W 1 '< rr i

<0
- 0
>0

<0
- 0
>0

(51

(52

Where t j  is theyth bit of Ti and similarly for R. 

Tm  -  Tt -  (a, + c()tan"' 2*1' 1 (53
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/?„, -  R, -(b , +</1)tan-'2-'-' (54

Bit level simulations of this algorithm have been used to assess the accuracy of 

the outputs for varying numbers of iterations and internal accuracies. Each 

combination of numbers of iterations n and internal accuracies b was simulated for 

1000 random vectors, rotated through random angles. The results of these simulations 

is shown in table 5.2.

19 20 21 22 23
17 14 14 14 15 14
18 14 15 15 15 16
19 14 15 16 l7 I6

n ~ W 14 15 16 17 17
21 n/a 15 16 l7 18
22 n/a n/a 16 17 I8
23 n/a n/a n/a 17 18

Table 5.2. 3D Redundant CORDIC output accuracy in fractional bits 
for n iterations and b bits internal accuracy.

When the 3D CORDIC is to be used to create a scaleless 2D CORDIC, the 

rotation of <p is known at the design stage and so the double rotation method suggested 

by Takagi [Takagi91], or the multiple engine system of Duprat (Duprat91] are not 

necessary for this rotation. If double rotation method is to be used for the rotation of 

0, then equations 55 to 60 will be used, where c, and e, are G {l,-l} , each denoting

the sign of a half rotation in the X-Y plane. These two half rotations combine to form a 

positive, a negative, or no rotation. When there is no rotation there is still an extension 

of the vector.

Um - U , * -  X, S, b, 2 -  -  V. S2 2-‘ + Y, S2b, 2 '2' (55

-  Yl S, b, 2 " +U,S22-* -  Yi S2bt 2~2i (56

A + U, 5, b, 2~‘ -  Y, S2 2-‘ -  V, S2b, 2 '21 (57

Y u t - ^ S , + V, 5, b, 2" + X, S2 2" + U, S2bt 2~2i (58
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5.2: CORD1C in more than two dimensions

where:

and:
S, ~ \ - c tet 2 '

5,

(59

(60

The scale factor still needs to be calculated, to find the correcting rotation of the 

vector off the X-Y plane. The new scaling factor K in this case is:

K -  J J ( l + 2 -Ji-2).^/l + 2-J‘ (61

The rotation of <t> will be arccos— . Note that this scale factor is different to
K

that in the previous section.

So far the issue of making the decision of whether to rotate in a positive or 

negative direction at any particular stage has not been addressed. The case of rotations 

of <p for scaleless 2D is simple because the angle through which B  will be rotated is 

known in advance. Hence it is possible to pre-calculate the set of bt so that:

n
B = Y  fc, arctan 2 ' 1 (62

Once calculated, bt can be stored in a very small ROM (n bits). The calculation

of the rotations in the X-Y plane (and away from the X-Y plane for the general 3D 

system) is done as Takagi suggested. The calculation of c. and ei is made by 

evaluating the most significant three digits of Ti at stage i. Then c, and ei are defined 

as follows:

- i i i f t l ' t l C 1'

c e * .t » i - i i f t l ' t l C 1'

i i i f ’w '
(63

Note that ct indicates the direction of rotation and represents whether the

second rotation is in the same direction as the first (+1), or not (-1). The new value 

Tul can be found from equation 64.
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5.2: CORDIC in more than two dimensions

Tu, -  T, - c ,  (e, + l)arctan2'' (64

5.2.1.6. Impact o f the 21) Scaleless CORDIC Algorithm

The equations for the ‘scale factor’-less redundant arithmetic CORDIC system 

are more complex than the equations suggested by Takagi (Takagi4) IJ. The number of 

terms is doubled. This would, however only lead to a 50% longer delay in the adder 

stage due to the increased number of inputs from 3 to 6, as shown in figure 5.7.

6 inputs

3 inputs

a b

Figure 5.7. Example bit slice of redundant adder layouts for a) A unit scale factor 
system b) Takagi’s suggestion.

As well as the increased need for addition, there would need to be two more 

registers for U and V and multiple shifters. The addition of more shifters and registers 

should not greatly affect the clock period of a hardware implementation of the new 

algorithm because the operations would be performed in parallel. We could use the 

redundant method suggested by Duprat [Duprat9l] and this would result in an adder 

delay equal to that of the constant scale factor technique given by Takagi. It would also 

be possible to incorporate this new system into the unified algorithm of Walther 

[Walther71], It should be noted however, that when using the unified algorithm, the 

scale factor is greater than 1 in the circular rotation case, equal to 1 in the linear case 

and less than 1 in the hyperbolic case. This means that a different correction is
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5.2: CORDIC in more than two dimensions

required for each type of rotation. The obvious solution is to arrange for the two 

rotations to be of the same type. The sets of additions and subtractions necessary to 

compensate for the scale factor will be different in each case and trivial for the linear

case.

5.2 .1 .7 . H ybrid system s

The work of Timmermann et. al. and Ahmed |Timmermann89a, Ahmed82| 

that reduces the number of iterations required for a given accuracy can be extended to 

three dimensions. The technique relies on the first term of the Taylor series and 

therefore comes under the heading of a hybrid system.

The approximations used are:

cos 5 — 1 (65

sin 5 — 6 (66

From this it is possible to see that a final iteration needs to be added to the 

algorithm in rotation mode that uses these approximations. Clearly, if only (jr.y.z)

needs to be evaluated, then it is only necessary to do the final iteration for those 

equations. The equations for u, v and w, are not given because it will not normally be 

necessary to store these variables. If they are required, it would be a simple matter to

work out the equations for them.

x n -  *„-i -  Y '-fo  + U '- f t  ~ V .-ir ,r f (67

Y„ -  Y„.> + X ' . f »  + V„_,rf + Un, lr„rt (68

■ 1 1 ♦ (69

The variables r „  and r0 are the remaining angles to be rotated through. They 

are the remainder stored in the R and T registers. To get an overall accuracy of m bits, 

it is necessary to use the standard CORDIC algorithm to obtain m bit variables to an 

accuracy of n bits and then one iteration as described above. The relationship between 

m and n is

~(=r)
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5.2: CORDIC in more than two dimensions

This result is found directly from the second term of the Taylor series (the 

others do not need to be taken into account). Bit level simulation accuracy results are 

shown in table 5.3 for both redundant and conventional arithmetic types over 10,000 

random vector rotations for each result. Because the remaining angle must be small 

and the number of bits to which the angles are stored will be the same as the 

coordinates, the bits that can be anything other than zero will only be in the lower half 

of the word. It is therefore possible to use a fairly small multiplier (in the region of m 

bits by ™ bits) for the most of the multiplications.

18 19
b

20 21 22
~~§~ 13 14 14 14 14

10 13 15 16 16 16
n 11 13 14 16 16 17

12 13 14 15 l6 17
13 13 14 15 16 17

a)

18 19
" T "

20 21 22
“ 5“ 13 14 15 15 15

10 13 14 15 16 16
n 11 l3 14 15 16 17

12 13 14 15 16 17
13 13 14 15 16 17

b)

Table 5.3. The accuracy of a 3D Hybrid CORDIC for a) conventional, 
and b) redundant arithmetic.

5.2 .1 .8 . Higher radix algorithm s

The use of higher radix techniques was shown earlier, [Rodrigues81 ] and this 

approach can be considered in the three dimensional case. The basis of the extension 

in two dimensions is that the scaling factor becomes a stable number to m bits long 

before the mth iteration. This also holds in the three dimensional case and is shown in 

table 5.4. The underlined figures indicate the limit of accuracy at a particular stage.
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5.2: CORDIC in more than two dimensions

Iterations Scale Factor (Conventional) Scale Factor (Redundant)
1 I Q .0000000000000000000 1 J.0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 .1 0 00000000000000000 1 .1 1 0 0 0 0 1 1 100100000000
3 1 0 .1 0 1 0 1 0 0 000000000000 1 .1 1 0 10001110010001011
4 1 0 .1 0 1 1 0 0 1 010100000000 1 .1 1 0 10101011011100001
5 10 .1011010101010010101 1 .11010110010110001111
6 1 0 .1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 .11010110100100111011
7 1 0 .1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 . . . 1 .11010110101000100111
8 1 0 .1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 . . . 1 .11010110101001100001
9 1 0 .1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 . . . 1 .11010 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0
00 1 0 .1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 . . . 1 .1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 ..

Table 5.4. The scaling factor accuracy for 3D CORDIC.

For a given desired final accuracy, it is possible to determine how many radix 

2 iterations are required before the scale factor becomes, in effect a constant. After this 

iteration, it is possible to use a radix 4 system to halve the number of remaining 

iterations. Because the radix 4 system used by Rodrigues et al. uses a redundant form, 

it fits very well with the redundant CORDIC form, although it is possible to use the 

radix 4 system in combination with a conventional CORDIC system (this was the 

technique used by Rodrigues). If the number of radix 2 iterations needed is j  (which is 

shown for various configurations in table 5.5, then the radix 4 iterations (for the three 

dimensional non redundant case) are of the form given in equations 71 to 78.

2D 3D

Number of bits Conventional Redundant Conventional Redundant
8 5 6 7 5
16 9 8 10 9
32 17 16 19 17

Table 5.5. The number of radix 4 iterations for the scale factor to become (apparently)
constant.

VM ~Ut -X,b,d,-V,a,Sl + Y,a,b,6f (71

V't., -V , -Y,b,6, + U, a, 6, -  Xt at b, 6? (72

W„, -W , + Z > ,6, (73
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5.2: CORDIC in more than two dimensions

x ul -  X t + Ut b, 6, -  Kj at 6, -  V, a, bt 6*

-  y, +V,b,6, + X, a, 6,

Where 6t -  2“ ' 1 and :

¿.♦i “ 4  *  6,
The selection variable ai e { -2 ,- l,0 ,l ,2 }  is now given by:

-2 i f E, ( * K

- 1 i f
8 ’U J  8

0 i f
5— — < 
8 :£ > ( t K

1 i f 8 8

2 i f £ '(A )  8

(74

(75

(76

(77

(78

E J(jr) is jc to a precision of j  fractional bits. This does not require a full evaluation of 

since it can be shown that:

(79

The selection process for bt relative to T, is identical to the selection process of 

a, relative to St .

The above set of equations gives an algorithm with an accuracy of n fractional 

bits in less than n iterations and it would be possible to create a scaleless 2D vector 

rotator in this manner. The accuracy of this algorithm is shown in table 5.4 for an 

accuracy of 16 fractional bits. Hence, from table 5.5 there are 10 radix 2 iterations
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5.2: CORDIC in more than two dimensions

followed by a number of radix 4 iterations. The results shown in table 5.6 are taken 

from a bit level simulation of the algorithm.

Radix 2
terations 

Radix 4 Total

Inter
20

ruil acci 
21

iracy (fr 
22

actional

23
bits)

24 i
10 1 11 9 9 9 9 9
10 2 12 11 11 11 11 11 I
10 3 13 13 13 13 13 13 ,
10 4 14 14 15 15 15 15
10 5 15 15 16 16 16 16
10 6 16 15 16 16 16 17

Table 5.6. The output accuracy of the conventional arithmetic 3D algorithm 
with radix 4 iterations.

These techniques can be applied to the equations given by Takagi [Takagi91] 

for the double rotation method and can then be generalised to three dimensions. The 

equations for UM , V(+|t Xi4., and are given by equations 41 ,42 , 44 and 45. 

ZU\ , Wltl and S,_4 are given by equations 74 to 81.

“ W,(l -  b,d,df) + Z,((b, + d, )6,) (74

Z(*( -  Z,(l -  b ^ d f ) - + < )6() (75

5, -  1 -  (0,0,. + bidj )6I2 + a p fa d fi*  (76

S2 - { b l + dl )6l - a lcl(bl + dl )6 ! (77

s> ~ (a, + c, )<5, -  + ct )d f (78

“ (at + ci + dt )&? (79

where:

and at the first radix 4 iteration, after m radix 2 iterations:

(80

6m -  2~m (81
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5.2: CORDIC in more than two dimensions

Terms containing d to the power of three or more can in fact be ignored since 

these will be beyond the precision of the arithmetic being used. The iterations are very 

similar for radix 2 and radix 4 when using redundant numbers and so very little extra 

hardware would be needed to allow the radix 4 iterations.

Results of a bit level simulation are shown in table 5.7 for 9 and 10 radix 2 

iterations. This gives us an algorithm that can supply vector rotations faster than 1 bit 

per cycle, with each cycle taking time 0(1). These can be three dimensional 

incorporating a scale factor, or two dimensional with no scale factor.

In
radix 2

’rations 
radix 4

n)
total

Ir
19

temal
20

Accu
21

racy ( 
22

5)
23

9 4 13 13 14 14 14 13
10 4 14 14 14 15 15 15
9 5 14 15 15 15 15 15
10 5 15 14 15 16 16 17
9 6 15 n/a 15 15 15 15

10 6 16 n/a n/a 16 17 17

9 7 16 n/a n/a n/a 15 15

10 7 17 n/a n/a n/a n/a 17

Table 5.7. Accuracy results for a 3D redundant CORDIC with radix 4 iterations.

5.2.2. Evaluation of 3 Dimensional CORDIC algorithm s

A number of variations have now been shown on the original three 

dimensional CORDIC algorithm given at the beginning of the chapter. No indication 

has been given on which algorithm is 'best' for a given set of requirements. There are 

two major areas to consider, the comparison of two and three dimensional algorithms 

and the comparison of the various three dimensional algorithms. In the following 

assessment of the different algorithms, only the datapath is considered. Since the 

datapath is likely to be much larger than the control section of the circuit, the omission 

of the control section from the analysis is unlikely to cause any major errors in the 

results. The time taken by the control unit will also be constant for most situations.
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5.2: CORDIC in more than two dimensions

5.2.2.1. Two versus Three dim ensional CORDIC

A two dimensional CORDIC engine can be made to perform the same function 

as a three dimensional engine. For a general rotation of a 3D vector, the 2D CORDIC 

must rotate the projection of the vector onto the X or Y axis, rotate in the X-Z, or Y-Z 

plane and then rotate the vector in the X-Y plane again to get it to its final position. In 

this way, the rotation is restricted to changing only two of the three coordinates at any 

one time. Hence 3, 2D CORDIC operations are needed. If U, V and W variables are 

not known, it will take 2, 2D CORDIC operations to find them before the 3D 

CORDIC could be used. Hence for a single rotation, there is no benefit to be gained 

from using a 3D CORDIC system. However, once the variables have been calculated, 

they can be stored and used again when the vector is next rotated. Unfortunately, if 

two vectors are summed, then U, V and W must be re-evaluated . When using the 3D 

CORDIC to produce a scaleless 2D CORDIC, only one 3D CORDIC operation is 

required as opposed to two for the 2D CORDIC. The number of CORDIC engines 

required and the number of sequentially performed operations are given in table 5.8 

for a number of different possible uses. Values are given for time efficient and area 

efficient solutions. In the table \ D and A,() are the areas taken up by a 2D and 3D 

CORDIC unit respectively and T2D and 7*,0 are the times taken by a 2D and 3D 

CORDIC operation respectively.

2

\ Time

Are
0

Area

a Efficient 
3D 

Time Area
2

Time

Tirr
D
Area

e Efficient 
3D 

Time Area

2D Scale-less 2TIP A d Tjd ^ 3  D 2T1P A d ^ 3  D A d

3D without 
U, V and W

37V A d 77*20 +  7 jd ^ 3  D 27*20 3 * 2 0 27*20 +  7*30 A d

3D with 
U, V and W

3 7 V A d 7*20 27*20 3 ^ 0 7*30 A d

Table 5.8. The 2D verses the 3D CORDIC algorithm for various operations.

150



5.2: CORDIC in more than two dimensions

Relative values for A2l), <4,u , T2ll and Tyo need to be found. If a 16 fractional 

bit result is required, then both two and three dimensional algorithms require 19 

iterations. However, the three dimensional algorithm requires 23 bits of internal 

fractional accuracy, 3 overflow bits and a sign bit (total: 27 bits), whereas the two 

dimensional case requires 2 1 bits of internal fractional accuracy 2 overflow bits and a 

sign bit (total: 24 bits). Similar reasoning can be used for other required accuracies. 

Hence it is possible to find the hardware required for a single unit in terms of basic 

gates over a range of accuracies. Graph 5.1 shows the variation of gate counts for two 

and three dimensional CORDIC systems. Graph 5.2 gives corresponding overall 

execution time. ROM and Taylor series solutions are also shown assuming that the 

application is a scaleless two dimensional vector rotation. The ROM area estimates are 

omitted from graph 5.1 because they are so large. With the scale shown, the plotted 

point for the ROM for a 32 bit accuracy would be of the order of ten thousand million  

light years above the top of the graph! Even at an accuracy of 4 bits the ROM solution 

would not be on the graph. This is a reflection of the exponential increase in size of 

ROM style solutions.

Graph 5.1. Gate counts for vector rotations with various required accuracies.
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5.2: CORDIC in more than two dimensions

The 2D CORDIC gate counts and execution times given are for a 2D 

conventional CORDIC with a multiplication using the CORDIC processor. The time 

taken for an operation could be improved by about 20% by using scale factor 

compensation. This compares with 35% to 50% improvement by using a 3D CORDIC 

and a 10% to 35% improvement by using a Taylor's series implementation in the 

range shown.

Graph 5.2. Execution times for vector rotations with various required accuracies.

S.2.2.2. T hree D im ensional A lgorithm s

A number of different three dimensional CORDIC algorithms have been 

discussed. In order to get some kind of understanding for the relative merits of each of 

these algorithms, area and time estimates will be shown. Time for execution can be 

divided into two parts: cycle time and number of iterations. Either time parameter, or 

the product of the two can be important and so all are given. Serial execution and 

pipelined cases are considered. Figure 5.8 is the legend for graphs 5.3 to 5.9. Graphs 

5.3 to 5.6 relate to the different algorithms running in a serial manner. The 

multiplications used by the hybrid algorithms are implemented using extra iterations in 

the CORDIC unit.
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5.2: CORDIC in more than two dimensions

The 2D CORDIC gate counts and execution times given are for a 2D 

conventional CORDIC with a multiplication using the CORDIC processor. The time 

taken for an operation could be improved by about 20% by using scale factor 

compensation. This compares with 35% to 50% improvement by using a 3D CORDIC 

and a 10% to 35% improvement by using a Taylor's series implementation in the 

range shown.

Graph 5.2. Execution times for vector rotations with various required accuracies.

S.2.2.2. Three D im ensional Algorithm s

A number of different three dimensional CORDIC algorithms have been 

discussed. In order to get some kind of understanding for the relative merits of each of 

these algorithms, area and time estimates will be shown. Time for execution can be 

divided into two parts: cycle time and number of iterations. Either time parameter, or 

the product of the two can be important and so all are given. Serial execution and 

pipelined cases are considered. Figure 5.8 is the legend for graphs 5.3 to 5.9. Graphs 

5.3 to 5.6 relate to the different algorithms running in a serial manner. The 

multiplications used by the hybrid algorithms are implemented using extra iterations in 

the CORDIC unit.
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O  3D 
D  Redundant 

3D
—& — Radix 4 3D 

Redundant 
Radix 4 3D

)K Hybrid 3D 
—O  Redundant 

Hybrid 3D

Figure 5.8. Graph Legend.

Graph 5.3 shows the number of clock cycles (or algorithm iterations) required for a 

given output accuracy. Whether the arithmetic used is conventional or redundant, there 

is a saving of about 20% gained from the use of either a radix 4 or hybrid algorithm. 

The hybrid algorithms are shown in the graph as taking slightly more cycles than the 

radix 4 approach. A careful examination of the accuracy required in the multiplication 

could possibly remove this difference. The radix 4 algorithms provide a convergence 

of better than 1 bit per cycle for more than 8 bit output accuracies, but it should be 

noted that the unmodified algorithms do not quite produce 1 bit per cycle.

35 

30 

25 

20
Cycles

15 

10 

5 ■ ■

0 -------------------------1---------------------- 1------------------------- 1
8 16 24 32

Output (bits')

Graph 5.3. Number of cycles taken in various 3D CORDIC algorithms (serial
execution).

Graph 5.4 shows the cycle period of the algorithms. As would be expected, the 

algorithms using conventional arithmetic show a linear dependence on word length, 

whereas the redundant arithmetic algorithms are largely unaffected by the word length.
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5.2: CORDIC in more than two dimensions

Some parts of the redundant algorithms such as the shifters are affected by the word 

length, but their delay is small in comparison to the other components that make up the 

majority of the delay.

Graph 5.4. Cycle period in gate delays for various 3D CORDIC algorithms (serial
execution).

Graph 5.5 shows the overall time taken (the number of cycles multiplied by the cycle 

period) to execute the algorithm. This is the important value when throughput is the 

most important design factor. At 32 bits output accuracy, the redundant algorithm is 5 

times faster than the conventional 3D algorithm and the radix 4 version is 7 times 

faster.

Graph 5.5. Overall time taken for various 3D CORDIC algorithms (serial execution).
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5.2: CORDIC in more than two dimensions

Graph 5.6 shows the area required to construct the circuits. The area required for a 

redundant arithmetic circuit is about 3 times that of a conventional arithmetic circuit. 

The area requirement of both types of algorithms grows slightly more than linearly 

with required accuracy due to the area required by the shifters. However, the 

redundant arithmetic algorithms are less affected by the shifter area.

45000 
40000 
35000 
30000Circuit

area 25000 
(gates) 20000 

15000 
10000 

5000 
0

8 16 24 32
Output (bits)

Graph 5.6. Area required for various 3D CORDIC algorithms (serial execution).

In figure 5.9 the area used by the two unmodified algorithms is split up so as to show 

the proportions of the area used for different parts of the circuit. Redundant arithmetic 

CORDIC circuits are less heavily affected by the size of the shifter circuits because 

they use fewer in proportion to the rest of the circuit. This is due to the fact that each 

shifter output can be used to produce more than one adder input. This reduces the 

number of shifters required. The 'Other' section refers to multiplexers, conditional 

inverters and other similar parts of the circuit. These are much more predominant in 

the redundant arithmetic circuit because adder word inputs may be zero as well as 

positive or negative versions of the register values.
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5.2: CORDIC in more than two dimensions

Other

a) b)

Figure 5.9. The fractional area used by the different parts of a) conventional and b) 
redundant arithmetic CORDIC processors.

The three dimensional CORDIC algorithms can also be implemented as 

pipelined structures. In this case, the most significant part of the serial circuits; the 

shifters, can be hard wired. It has been shown that the hybrid algorithms are almost 

identical to the radix 4 algorithms in terms of area and time, so only the radix 4 

algorithms are plotted. Graph 5.7 shows the clock period of the circuits. As shifters 

are no longer present, the period of the redundant arithmetic circuits is totally 

independent of word length.

Graph 5.7. Cycle period in gate delays for various pipelined CORDIC algorithms.
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5.2: CORDIC in more than two dimensions

Graph 5.8 shows the overall time taken for an operation. It can clearly be seen that the 

redundant arithmetic circuits offer a much faster operation than the conventional 

arithmetic circuits. It should also be noted, that at any one time, a number of 

operations are in progress so that the operation time is an indication of the latency of 

the circuit, whilst the reciprocal of the period indicates the throughput of the circuit.

Graph 5.8. Overall time in gate delays for various pipelined CORDIC algorithms.

Graph 5.9. shows the area requirements of the different pipelined versions of the 

algorithms. The redundant algorithms take in the region of 4 times as much area as the 

conventional arithmetic, whereas it can be seen that they are more than 6 times faster. 

It should be remembered, however that if a binary result is required, then the 

redundant numbers will need conversion. The time required would be similar to the 

difference between the unmodified and the radix 4 or hybrid algorithms. However, the 

extra area required would be very small due to the fact that most of the variables used 

in the algorithm would not be needed. The redundant algorithms would still be about 6 

times faster.

I
157



5.2: CORDIC in more than two dimensions
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Graph 5.9. Area required in gates for various pipelined CORDIC algorithms.

5.3. 3D CORDIC in VLSI

The area estimates given in the previous section do not allow for two major 

factors in VLSI design. The first factor is wiring which can take up very considerable 

areas, and is not necessarily related to the number of gates. The second factor is 

wasted area. Very irregularly shaped circuits do not fit neatly next to other circuits 

incorporated on the same device, or need space left around them if they are the only 

circuit on the device. However, for a set of similar circuits, such as piplelined 3D 

CORDIC circuits, the layout, and hence the wiring overheads and wasted space will 

be roughly the same for the different circuits relative to their own gate counts. For 

example, it can be seen in graph 5.9, that the gate count for a 32 bit pipelined radix 

four 3D CORDIC using redundant arithmetic is about twice that of a 24 bit pipelined 

radix two 3D CORDIC using conventional arithmetic. Wasted space and wiring will 

also take up area in roughly the same proportions. To assess the amount of wasted 

space, and wiring area in the 3D CORDIC circuits, a 32 bit pipelined radix 4 3D 

CORDIC using redundant arithmetic has been floorplanned, and partially laid out. The 

fabrication process assumed was a double metal CMOS 1.5pm process, and the circuit 

was laid out using the design rules for an Orbit process of this type. Transistor sizing 

for high speed operation was not considered since this would not affect the circuit area
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5.3: 3DCORDIC in VLSI

greatly. The work involved in fully laying out and testing a design such as this is 

huge, and as only a small amount of time was available, only a portion of the circuit 

was laid out. In addition, no attempt was made to optimise pipeline sections to take 

account of parts of the standard section not used at that point in the pipeline. This 

section was however, significant enough to allow a confident assessment of the area 

of the whole circuit.

The floorplan for the circuit is shown in figure 5.10. The circuit has been split 

into three major sections: the angle register pipeline, the WZ pipeline, and the UVXY 

pipeline. Redundant number to binary converters are placed at the end of the circuit to 

convert X, Y, and Z back into binary. Each pipeline has fifteen stages, ten radix two, 

and five radix four, and the length of each pipeline is the same. This causes the circuit 

to be rectangular which reduces the amount of wasted area at the edge of the circuit. A 

similar floorplan would be applicable to all 3D CORDIC pipelined circuits.

Both the WZ pipeline, and the angle register pipeline have been fully laid out. Twenty 

four bit pipelines were needed to provide a 16 bit result, as can be seen by referring to 

table 5.7, Twenty one fractional bits are needed for accuracy, and three non fractional 

bits are needed to prevent overflow due to scaling. In the following sections, the basic 

building blocks for the circuit are described, followed by a description of the two
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pipelines laid out. Finally, the area of the overall circuit is estimated, and compared 

with the estimates given earlier. The wiring area, and wasted area is also assessed. 

The circuit areas are given in units of A3. A is a layout parameter based on the 

process dimensions. In this case, A is 0.8pm, and hence A2 is 0 .6 4 p » r.

5.3.1. Basic building blocks

The pipelined 3D CORD1C algorithm consists of a set of stages, each of 

which is a sum of shifted register outputs. The two major components of the circuit 

are therefore registers and adders. Both must cope with redundant arithmetic. The 

shifting of variables is constant for a particular stage in the pipeline, and so it is simply 

hardwired. Some additional circuitry was also required to conditionally invert the 

digit, and other similar operations. These additional circuits are not shown here. The 

redundant number representation chosen was two bits, one indicating a positive value, 

and the other indicating a negative value. The representation is given in table 5.9.

A* 4; Value
0 0 0
0 i 1
1 0 -1
1 1 X

Table 5.9. The Redundant number representation.

To reduce wiring space, it was decided that the adder circuits should be designed 

using only the first metal layer, to allow the hardwired shifting operation to be overlaid 

on top of the adders. The adder block is similar to that used by McQuillan et. al 

[McQuillan91 J, and is shown in block form in figure 5.11. Because the t and t' 

variables change adder stages as they move up the adder, no carry propagation is more 

than 2 digits long.
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Next
Digit

¿ { - 1,0,1} « {- 1,0,1} 

i

r { - i , o }  "

W + 27 - ¿  + ö

W{-2 , - l , 0 }̂

S + 2 T -  W + T

S{0 ,1}̂
[____________

c - s  +  r

/

Previous
Digit

T{0,1}

T  {-1,0}

C{-1,0,1}

Figure 5.11. Block diagram of a single digit redundant full adder.

There must be an additional stage at the most significant end of the adder to prevent 

unnecessary overflow. This circuitry is not shown here, but was included in the 

design of the adders. The single metal layout of a redundant full adder is shown in 

figure 5.12. The circuit has one slight modification to a conventional adder. The 

adders cells placed in a column produce two adders with bits of equivalent significance 

next to each other. This is used in the WZ pipeline as will be shown later. The area of 

the adder is about 50,000A2, which is much higher than the estimate used in an earlier 

section. The increase in area is due to three major reasons. First, the circuit is 

produced in single metal to allow over-routing, and is being compared to circuits laid 

out in two metal layers. Secondly, due to time constraints, really compact design was 

not achieved. Thirdly, a number of signals had to he routed through the circuit, adding 

to the wiring area.
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Figure 5.12. The redundant full adder single digit section.

The register circuit used was a simple one. The circuit schematic for a single 

register bit is shown in figure 5.13. For each digit, two of these were required, one 

for the positive bit, and one for the negative bit. In the schematic, 0, and <p2 are the 

two phases of a non-overlapping clock. The data is output to the rest of the circuit on 

the rising edge of tp2 and computation must be complete by the falling edge of <pr  

This gives almost the whole cycle for the computation.

01 02

Figure 5.13. Bit register schematic.

Two single bit registers are shown in figure 5.14. They form a single digit register that 

can be replicated vertically to form a word register. The area of the register was about 

3000A2.

I
162



5.3: 3D CORD1C in VLSI

Figure 5.14. Single digit register layout

For comparison purposes, a two input NAND gate was laid out and is shown 

in figure 5.15. The circuit uses both metal layers and has an area of approximately 

1000A2. This is the standard gate referred to in the previous area estimates.

Figure 5.15. A double metal NAND gate layout

5.3.2. The angle register pipeline

The angle register pipeline takes two rotation angles as inputs and outputs 

control signals to the WZ, and UVXY pipelines on the directions and magnitudes of 

each rotation stage in the pipeline. At each stage in the pipeline, there are two 

operations performed on each of the angle variables. The first operation is the 

evaluation of the most significant few bits, and the second is the addition or 

subtraction of a constant according to the result of the evaluation. The evaluation stage

l
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also provides the control signals for the other pipelines. The radix two evaluation 

circuitry is shown in figure 5.16. The radix four circuit was a little more complex. The 

area of this circuit is comparable with the area of a single digit redundant adder circuit, 

but there are only two of these circuits per stage as opposed to forty eight adder cells 

in the angle pipeline alone. Consequently, the evaluation circuit area is not significant 

in the overall circuit area.

Figure 5.16. Radix two angle evaluation circuit.

At first sight , it would appear that the most sensible way to set out the angle 

register pipeline would be to have two identical pipelines, one for each angle variable, 

placed next to each other. However, if this is done, large amounts of padding would 

be required to lengthen the angle register pipeline to fit with the other pipelines. By 

combining the two pipelines as shown in figure 5.17, the angle register pipeline can be 

made to match the WZ pipeline. The two angle pipeline stages are placed next to each 

other, and each stage has lines to route through the data for the other stage.

T i

Ri

i+i

i+i

Figure 5.17. The angle register pipeline organisation (bit slice).

At each stage in the pipeline, the angle value gets smaller. This would mean a different 

wiring to the evaluation circuitry at each stage in the pipeline. To remove this need the 

angle value is simply shifted up one place during each of the radix two stages, and two 

places at each of the radix four stages. Digits shifted into the bottom of the word are 

always zero, and digits shifted out of the top of the bit are tested for overflow (which
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would only occur in the case of error in the circuit design). The constant that is added 

to or subtracted from the angle variables is different in the different stages of the 

pipeline, but is the same for the two angle variables (although its sign may be 

different). A simple one word ROM circuit is placed in between the two angle register 

circuits in each stage of the pipeline. The output from this ROM is then used by both 

of the angle register circuits. The layout of a radix two angle register single pipeline 

stage is shown in figure 5.18. Only the wiring layers are shown for clarity. The area 

of the radix two circuit is about 4.1A/A*. The area of the radix four circuit is about 

10% more.

a) b)

Figure 5.18. a) A radix two angle register single pipeline stage.b) Circuit block
diagram.

5.3.3. The WZ pipeline

The WZ pipeline performs a fairly simple iteration. Both variables are summed 

with a shifted version of themselves and each other. The shifted versions may be 

zeroed, or negated. The data is stored in a register, and added together in two adders 

placed horizontally next to each other. The variables are shifted using metal layer 2 

over the adders. If the adders for the two variables were placed vertically above each 

other, the shifting wires would be very difficult to lay out efficiently. However by 

interleaving the adders as shown in figure 5.19, the wiring is made much easier. The
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reason for this is that with interleaved registers, at any particular stage, the wiring of 

one shifted digit is almost identical to all the others, and there is no significant need to 

have one signal cross over another (which would require the use of metal layer 1 as 

well).

The WZ pipeline has been laid out and tested, and a single radix two pipeline 

stage is shown in figure 5.20. The area of a radix two stage is about 7.4A/A2. The 

gate count for the pipeline as a whole is higher than estimated by 50%. This seems like 

a large error, but is mainly due to the larger than estimated number of transistors in the 

redundant adder circuit. A more thorough design of this circuit would reduce this 

factor very considerably.

More Significant Digit

M . .-it
w-»- Adder -<-Zj2

Carry

Adder +W 2
Z -H

line Less Significant Digit

Figure 5.19. The layout of the WZ pipeline adders
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Figure 5.20. a) A radix two stage of the WZ pipeline, b) Circuit block diagram.

5.3.4. The com plete pipeline

The complete pipeline has not been laid out. However, a significant proportion 

(20% in terms of gates) has, and is shown in figure 5.21. This section of the design is 

shorter than the UVXY pipeline, and would be stretched so that the pipeline stages of 

the WZ and angle register pipeline were the same length as the UVXY pipeline stages. 

This introduces wasted area into the design, but the regularity of the layout would be 

much better, and the extra length of the UVXY stages would only be apparent in the 

first few stages as will be explained later.
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Figure 5.21. The WZ. and angle register pipelines.

The UVXY pipeline would be very similar to the WZ pipeline, but eight 

interleaved adders would be needed. This is because up to seven adders would be 

needed per stage, and these would be put in two rows for each register and there are 

four registers. Any more rows would be pointless as there would not be enough room 

in the width of the adders for all the metal 2 shift lines that are needed. In all but the 

first few stages, the terms that are scaled by , and can be neglected since

the number of digits shifted is greater than the number of digits in the register. Hence 

the result of the shift must be zero. In subsequent stages, the adders used for these 

terms can be omitted leading to a shorter pipeline stage. The area of the circuit 

including wiring and wasted space is estimated to be about 2.5 times it's basic area 

given by the gate count of circuit multiplied by the area of a basic gate. For a circuit of 

this kind, a factor of 2.5 is very reasonable. In the 1,5pm process that it was designed 

in, the circuit would measure approximately 20mm, by 30mm. This is very large, but 

scaled to a more modern process with a 0.5pm line width, this becomes 7mm by 

10mm, and this would be a suitable size for fabrication on a single Integrated Circuit 

(IC). The removal of adders that sum terms scaled by 2"2" 2 once they are obviously 

zero (after the eleventh stage in this design) and the possibility of merging the WZ and 

angle register pipelines could reduce this area still further. These area estimates are 

based upon the redundant adder designed, and are heavily dependant upon it. Any 

decrease in the area of this one cell would result in significant overall area savings 

provided the cell was kept long enough to allow over-routing of the shifted variables.
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5.4. Sum mary

This chapter has described and examined an extension to the CORDIC 

algorithm |Volder59] which allows us to remove the need for scaling. The extension 

also has applications in the conversion of spherical polar coordinates into Cartesian 

coordinates. The removal of the need for scaling significantly improves the CORDIC 

algorithm and increases its potential throughput. This algorithm is entirely compatible 

with Walther’s unified algorithm |Walther71] and the various redundant arithmetic 

schemes [Takagi91, Duprat91] for the CORDIC algorithm.

When used as a 3D rotator it has been shown that the throughput per unit area 

can be significantly increased by the use of higher radices. This is true even when the 

circuit is implemented in binary and with binary inputs and outputs. In short, higher 

radices can out perform binary even in a heavily binary biased environment.

The area and floorplanning of these circuits has been examined, and it has been 

shown that circuits of reasonable accuracy and speed are possible. The layout of these 

circuits is a large task, but the important basic cells have been identified, which allows 

effort to be put into parts of the circuit that give maximum area reduction benefits.
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Conclusions 
and Future 
Work

In this thesis, the design of circuits that operate in a non-binary manner has 

been examined. These MVL circuits are either constructed using a direct approach 

using multiple levels on a single interconnection, or using an indirect approach, having 

a single multiple-value signal communicated by a number of binary interconnections. 

The new concept of non-linear current encoding has been explained, and a 

methodology for the design of circuits using this concept has been described. Novel 

extensions have also been shown to the CORDIC vector rotation algorithm. This 

chapter concludes the thesis by drawing together the major points made in the thesis. 

Following this, suggestions are made for possible areas for further research.

6.1. C onclusions

The conclusions drawn from this thesis can be split into three broad categories: 

direct MVL implementation, indirect MVL implementation, and extensions to the 

CORDIC algorithm. In this section conclusions are drawn from the work described in 

earlier chapters.

6.1.1. Direct MVL im plem entation

The direct implementation of MVL in CMOS has been examined in detail. The 

trends in CMOS production technology indicate that MVL circuits will become more
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difficult as the process sizes shrink. The channel modulation effect, and variations in 

transistor threshold voltages make the smaller processes less predictable for non­

binary circuits. For simulation purposes. MVL circuits need to be considered as non­

linear analogue circuits to get reasonable results.

It is possible to add extra processing steps in order to produce devices that give 

good MVL performance. For example the low threshold variation depletion mode 

transistor used by Kawahito et. al. |Kawahito87). However, this will inevitably affect 

the yield of the production process as extra processing steps are involved. In addition, 

the use of a non-standard process precludes a circuits use as a part of any integrated 

circuit not using that process. Even new binary processes can take many years to 

become well used. For example, the BiCMOS process has not supplanted CMOS yet 

[Alvarez9IJ. Bearing in mind, that binary logic is almost universal in its use, it would 

be foolish to attempt to supplant it completely. MVL circuits must therefore compete 

with binary circuits using in a standard binary VLSI process to have a reasonable 

chance of being used. This has been done for example in the case of the ROM on the 

INTEL 8087 [Stark81], but as has already been pointed out, this will become less 

likely in the CMOS process at least.

The use of non-linear encoding of current mode signals has been shown to 

allow the construction of efficient functions that don't contain an obvious input sum. 

Other functions are produced by summing non-linear functions of the input values, 

and then applying another non-linear function to the sum, to form the result. The non­

linear encoding technique which was first described by the author of this thesis in 

[Summerfield92] has been extended, and a new methodology for the design of these 

circuits has been described. The methodology gives an indication at an early stage of 

the area and resolution required to implement a given function. It has been shown that 

a modulo 4 sum is not very well suited to design in current mode MVL as a single 

stage function, because of the modulus part of the function, the maximum function has 

been shown to be well suited to this kind of implementation, especially when a highly 

non-linear 'grounded output' encoding is used. The design of libraries of current
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mode MVL functions has been examined, and guidelines explained. The guidelines 

take into account the specific advantages and disadvantages of current mode MVL.

The idea that bandwidth can be increased by the use of voltage mode MVL 

input and output on VLSI devices has been shown to be false. If the comparison is 

made for differential signalling, MVL can show improvements |Baltus90]. However, 

power consumption of MVL input and output drivers has potential for being much 

lower than binary I/O when the same power supply voltage is used. In addition, the 

actual increase in power from increasing the maximum voltage supply in an voltage 

mode MVL circuit in order to increase the radix is far less than would be expected.

Bipolar technology offers better characteristics for MVL than binary, but its 

use is declining. This means that MVL bipolar circuits will become appropriate for 

fewer and fewer designs. BiCMOS, however is a technology that is becoming more 

widely accepted, and so BiCMOS designs could have potential in the future. The 

process offers high density CMOS transistors, and low parameter tolerance bipolar 

transistors. The bipolar transistors could offer MVL designers with an opportunity to 

produce circuits more easily in a standard binary logic process that is likely to be 

useful for a considerable period of time.

In the future, optical logic circuits may become a major logic technology. 

Current mode techniques for logic implementation would transfer well to this 

technology. Current mode techniques have been developed in this thesis for the 

general design of logic circuits. BiCMOS circuits could also make use of these 

designs. There is the potential to implement algorithms such as the 3D CORDIC 

algorithm presented in this thesis using circuits based upon the novel design 

methodology described.

6.1.2. Indirect MVL implementation

The indirect implementation of MVL algorithms and techniques in binary has 

been shown to have advantages over binary algorithms. Indeed some of the best 

binary algorithms are really MVL algorithms. For example, carry save addition
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|Wallace64) is really a redundant radix two addition with digits e {0,1,2.3}. as the 

carry and sum output for each digit can be viewed as a single four valued signal. In 

this thesis, the use of redundant radix two arithmetic, and higher radix arithmetic has 

been shown to give algorithms that have better performance than traditional binary 

algorithms. The specific case of the three dimensional CORDIC algorithm has been 

used in this thesis. The implementation of this algorithm is by no means a trivial task, 

but indirect implementation of a Multiple-Valued version of the algorithm has been 

shown to have advantages over a conventional arithmetic version.

6.1.3. Extensions to the CORDIC algorithm

The CORDIC algorithm [Volder59] has been examined in detail, and 

significant extensions made. The three dimensional radix four CORDIC algorithm 

provides the ability to calculate vector rotations at a rate exceeding 1 bit per iteration, 

without the excessive hardware requirements of a high speed Taylor series evaluation. 

Pipelined versions using redundant arithmetic would give very high throughputs with 

a reasonable latency. It is also interesting to note that the redundant number 

implementations of all of the CORDIC algorithms have stable outputs MSB first. This 

would make them ideal for connection to many other redundant number circuits 

[McQuillan91 ]. In this case, care should be taken to ensure that a sufficient latency is 

allowed to ensure the stability of the digits. The three dimensional algorithm is useful 

in the conversion of spherical polar coordinates into Cartesian coordinates, and general 

three dimensional vector rotations. However the general three dimensional vector 

rotations can only be performed on a vector that starts on one axis, or a vector for 

which the extra components U, V and W are known.

6.2. Suggestions for future work

The use of MVL has, so far, been split into two distinct sections: direct 

implementations of MVL circuits, and indirect implementations of MVL algorithms. 

However, the combination of the MVL circuits and MVL algorithms is clearly an area
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for further research. This section examines possible further work in MVL circuits, 

algorithms, and combinations of the two.

6.2.1. MVL circuits

The direct implementation of MVL in a standard CMOS process is becoming 

less practical as the process advances. However, the use of a small number of bipolar 

transistors could help to alleviate the problems with MVL design. For this reason, 

BiCMOS technology offers the potential for easy implementation of MVL circuits, 

although scaling issues must still be addressed. Another technology that should be 

investigated in detail is optical technology. The ability to sum light sources is identical 

to Kirchoffs current law, making optical technology ideal for extending the concepts 

of current mode logic. As optical technology is a quite different to the current design 

technologies, it may be that designers will accept more readily the concept of MVL 

design as they shift to using this new technology.

6.2.2. MVL algorithm s

The implementation of MVL in an indirect form has been shown to have very 

definite benefits over conventional binary algorithms. Further work in this area could 

focus on Walthers extensions [Walther64], and extending them to the three 

dimensional case. It should be possible to produce a scaleless two dimensional 

hyperbolic rotation by performing a three dimensional hyperbolic rotation in the same 

way as the scaleless two dimensional circular rotation was performed. It may also be 

possible to combine rotation types to, for example, get cosh Ax sin B.  Higher 

numbers of dimensions should also be possible, although the number of variables 

used will roughly double for each extra dimension. This is because each extra 

dimension adds an extra cosine or sine function to each variable. The rotated vector 

will expand out to twice the number of terms half relating to the sine, and half to the 

cosine of the angle of the vector in the extra dimension. This increase is large, but as 

many of the extra terms will be shifted by large amounts, they will quickly become
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negligible. Only the first few iterations would be much more complicated than with 

fewer dimensions.

6.2.3. The com bination of MVL circuits and algorithms

It is clear that circuits constructed using MVL building blocks will have MVL 

algorithms. Circuits of this kind have been reported for example Kawahito et al 

produced a radix four multiplier based on current mode MVL adders [Kawahito87]. 

Redundant arithmetic (even when the radix is two) uses non-binary signals. All 

redundant arithmetic circuits have potential for implementation in MVL. A clear area 

for further research would be an investigation of the effect of using MVL circuits to 

implement the CORDIC algorithms presented earlier.

I 175



[Ahmed82]:

[Alvarez91]:

|An92J:

|Aragaki92]:

|Aytac87]:

| Babbage 1837]:

|Baltus90]:

|Barr88]:

|Barr89]:

|Barr90]:

|Bastiaansen91]:

Bibliography
"Signal Processing Algorithms and Architectures", H.M. 
Ahmed, PhD thesis, Stanford University, June 1982.

"BiCMOS-has the promise been fulfilled?", A.R. Alvarez, 
IEEE International Electron Devices Meeting 1991 Technical 
Digest, 1991, pp. 355-358.

"Integrated optical nand gate". X. An, K.M. Geib, M.J. 
Hafich, L.M. Woods, S.A. Feld, F.R. Beyette. Jun., G.Y. 
Robinson and C.W. Wilemsen, Electronics Letters. Vol. 28, 
No. 16, July 1992, pp. 1545-1546.

"A Multiple-Valued Content-Addressable Memory Using 
Logic-Value Conversion and Threshold Functions", S. 
Aragaki.T. Hanyu and T. Higuchi, Proceedings IEEE 23rd 
International Symposium on Multiple Valued Logic, May 
1993, pp. 170-175.

"Ternary logic based on a novel MOS building block circuit", 
H.M. Aytac, International Journal of Electronics, Vol. 63, 
No. 2, 1987, pp. 241-251.

"On the mathematical powers of the calculating engine" C. 
Babbage, Unpublished manuscript, Dec. 1837, Reprinted in: 
The Origins of Digital Computers Selected Papers, Springer- 
Verlag, 1982, pp. 19-54.

"An Efficient Multi-Level Multi-Wire Differential Interface", 
P. Baltus, P. van der Meulen and R. Morley, Proceedings 
IEEE 20th International Symposium on Multiple Valued 
Logic, May 1990, pp. 181-188.

"The incremental-cost approach for synthesis of CCD 4- 
valued unary functions", M.H. Abd-El-Barr, T.D. Hoang and 
Z.G. Vranesic, Proceedings IEEE 18th International 
Symposium on Multiple Valued Logic, May 1988, pp. 82-89.

"Programmable realisation of multi-valued multi-threshold 
functions using CCDs", M.H. Abd-El-Barr, T.D. Hoang and 
Z.G. Vranesic, Proceedings IEEE 19th International 
Symposium on Multiple Valued Logic, May 1989, pp. 42-53.

"On the synthesis of MVMT functions for PLA 
implementation Using CCDs", M.H. Abd-El-Barr and H. 
Choy, Proceedings IEEE 20th International Symposium on 
Multiple Valued Logic, May 1990, pp. 316-323.

"A 10-b 40-MHz 0.8pm CMOS Current-Output D/A 
Converter", C.A.A. Bastiaansen, D.W.J. Groeneveld, H.J. 
Schouwenaars and H.A.H. Termeer, IEEE Journal of Solid 
State Circuits, Vol. 26, No. 7, July 1991,917-921.

I 176



Bibliography

|Bhattacharya90]: "Binary to quaternary encoding on clocked CMOS circuits 
using weak buffer", D. Bhattacharya, Proceedings IEEE 20th 
International Symposium on Multiple Valued Logic, May 
1990, pp. 174-180.

(Boylc70): "Charge Coupled Semiconductor Devices", W.S. Boyle and 
G.E. Smith, The Bell System Technical Journal, April 1970, 
pp. 587-593.

| Butler88]: "Multiple-Valued CCD Circuits", J.T. Butler and H.G. 
Kerkhoff, IEEE Computer, April 1988, pp. 58-68.

|Cavallaro»7]: "CORD1C Arithmetic for an SVD Processor", J.R. Cavallaro 
and F.T. Luk, Proceedings IEEE 8th Symposium on 
Computer Arithmetic, 1987, pp. 113-120.

[Chew»7]: "On the design of CMOS ternary logic circuits using T-gates", 
B.P. Chew and H.T. Mouftah, International Journal of 
Electronics. Vol. 63, No. 2. 1987, pp. 229-239.

[Cho88]: "A CMOS ternary ROM chip". Y.H. Cho and H.T. Mouftah, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 358-363.

[Chown90a]: "VLSI Design of a Pipelined CORDIC Processor", P. 
Chown, D.W. Walton and G.R.Nudd, Research Report 164, 
Department of Computer Science, University of Warwick, 
October 1990.

[Chown90b]: "Notes on the Design of a Barrel Shifter for the Warwick 
Pipelined CORDIC processor", P. Chown, D.W. Walton and 
G.R.Nudd, Research Report 161, Department of Computer 
Science, University of Warwick, August 1990.

[Clarke92a]: "A Redundant Arithmetic CORDIC System With A Unit Scale 
Factor", C.T. Clarke, 3rd IMA Conference on Mathematics in 
Signal Processing, December 1992. To be published in 
proceedings.

[Clarke92b]: "A Redundant Arithmetic CORDIC System With A Unit Scale 
Factor", C.T. Clarke, Research Report RR234, University of 
Warwick Dept of Computer Science, December 1992.

|Clarke94]: "Current Mode Techniques for Multiple Valued Arithmetic and 
Logic", C.T. Clarke, G.R.Nudd, and S. Summerfield, 
Submitted for IEEE International Symposium on Circuits and 
Systems 94, 1994.

[Current87]: "A CMOS multiple valued logic test chip", K.W. Current, F. 
Edwards and D. Freitas, Proceedings IEEE 17th International 
Symposium on Multiple Valued Logic, May 1987, pp. 16-19.

(Current88]: "A proposed DCT/IDCT chip design using quaternary logic", 
K.W. Current, Proceedings IEEE 18th International 
Symposium on Multiple Valued Logic, May 1988, pp. 40-44.

I 177



Bibliography

lCurrent89|: 

(Current 91):

[Daggett59]:

|Delosme89):

[Delosme90]

|Despain74):

lDewilde92|:

|Dimauro93):

(Dixon90|: 

[Dube 90]:

[Duprat91]:

(Edirisooriya92)

[Epstien93j:

"A CMOS quaternary latch", K.W. Current, Proceedings 
IEEE 19th International Symposium on Multiple Valued 
Logic. May 1989, pp. 54-57.

"A Bi-directional Current-Mode CMOS Multiple Valued Logic 
Memory Circuit", K.W. Current and M.E. Hurlston, 
Proceedings IEEE 21st International Symposium on Multiple 
Valued Logic, May 1991, pp. 196-202.

"Decimal-Binary Conversions in CORDIC", D. H. Daggett, 
IRE Transactions on Electronic Computers, Vol. EC-8, Issue 
3, 1959, pp. 335-339.

"CORDIC algorithms: Theory and Extensions" J.M. Delosme, 
SPIE Vol. 1152 Advanced Algorithms and Architectures for 
Signal Processing IV, 1989, pp. 131-145.

"CORDIC algorithms in four dimensions", J.M. Delosme and 
S.F. Hsiao, SPIE Vol. 1348 Advanced Signal-Processing 
Algorithms, Architectures and Implementations, 1990, pp. 
349-360.

"Fourier Transform Computers Using CORDIC Iterations", 
A.M. Despain, IEEE Transactions on Computers, Vol. C-23, 
No. 10. October 1974, pp. 993-1001.

"Standard Algebraic Problems And Bitwise Parallelism", P. 
Dewilde and G. Hekstra, Proceedings IEEE International 
Symposium on Circuits and Systems, May 1992, pp. 1634- 
1635.

"A New Technique for Fast Number Comparison in the 
Residue Number System", G. Dimauro, S. Impedvo and G. 
Pirlo, IEEE Transactions on Computers, Vol. 42, No. 5, May 
1993, pp. 608-612.

"An Array Processor Implementation of the CORDIC 
Algorithm", G. Dixon, Proceedings of IEE Colloquium on 
VLSI Signal Processing Architectures", May 1990, pp. 5/1-8.

"Alleviating memory bottlenecks using multi-level memory", 
D. Dube and A.V. Mayrhauser, Proceedings IEEE 20th 
International Symposium on Multiple Valued Logic, May 
1990, pp. 102-109.

"Fast VLSI Implementation of CORDIC using Redundancy", 
J. Duprat and J-M. Muller, Algorithms and Parallel VLSI 
Architectures Volume B: Proceedings, 1991, Elsevier Science 
Publishers, pp. 155-164.

"Aliasing in Multiple-Valued Test Data Compaction", G. 
Edirisooriya and J.P. Robinson, Proceedings IEEE 22nd 
International Symposium on Multiple Valued Logic, May 
1992, pp. 43-50.

"Multiple-Valued Logic Design: An Introduction", G. Epstein, 
IOP Publishing Ltd, Bristol, 1993.

I 178



Bibliography

|Ercegovac73]: "Radix-16 Evaluation of Certain Elementary Functions”. M.D. 
Ercegovac, IEEE Transactions on Computers, Vol. C-22, 
1973, pp. 361-966.

[Ercegovac90|: "Redundant and On-Line CORDIC: Application to Matrix 
Triangularization and SVD", M.D. Ercegovac and T. Lang, 
IEEE Transactions on Computers, Vol. 39, No. 6 , June 1990, 
pp. 725-740.

[Etiemble80|: "On the realisation of multiple-valued flip-flops", D. Etiemble 
and M. Israel, Proceedings IEEE 10th International 
Symposium on Multiple Valued Logic. 1980, pp. 16-23.

[Etiemble90]: "4-valued BiCMOS Circuits for the Transmission System of a 
Massively Parallel Architecture", D. Etiemble, C. Chanussot 
and V. Neri, Proceedings IEEE 20th International Symposium 
on Multiple Valued Logic, May 1990, pp. 348-353.

[Etiemble92]: "On the Performance of Multivalued Integrated Circuits: Past. 
Present and Future", D. Etiemble, Proceedings IEEE 22nd 
International Symposium on Multiple Valued Logic, May 
1992. pp. 156-164.

lFarmwald8 l]: "High Bandwidth Evaluation of Elementary Functions", P.M. 
Farmwald, Proceedings IEEE 5th Symposium on Computer 
Arithmetic, 1981, pp. 139-142.

|Freitas83]: "CMOS current comparator circuit", D.A. Freitas and K.W. 
Current, Electronics Letters, Vol. 19, No. 17, August 1983, 
pp. 695-697.

[Fulcher89]: "CORDIC Survey", J. Fulcher, Preprint No. 89/1, Dept of 
Computing Science, University of Wollongong, N.S.W., 
Australia.

[Ghest7l]: "Multiplying made easy for digital assemblies", C. Ghest, 
Electronics, Vol. 44, November 1971, pp. 56-61.

[Ginderdeuren85]: "CORDIC Based HIFI Digital FM Demodulator Algorithm for 
Compact VLSI Implementation", J. Van Ginderdeuren, L. 
Van Paepegem, J. Lecocq, R. Govaerts, F. Catthoor, P. 
Vandebroek, S. Slock, T.A.C.M. Claasen and H. De Man, 
Electronics Letters, Vol. 21, No. 25/26, December 1985, pp. 
1227-1229.

[Gise86]: "Modern semiconductor fabrication technology", P. Gise and 
R. Blanchard, Prentice-Hall, 1986.

[Hanyu87]: "Quaternary gate array for pattern matching and its application 
to knowledge information processing system", T. Hanyu, M. 
Kameyama and T. Higuchi, Proceedings IEEE 17th 
International Symposium on Multiple Valued Logic, May 
1987, pp. 181-187.

[Hanyu88]: "Design of a highly parallel AI processor using new multiple­
valued MOS devices", T. Hanyu, and T. Higuchi, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 300-306.

I 179



Bibliography

[Hanyu90]: "Design of a high-density multiple-valued content-addressable 
memory based on floating-gate MOS devices", T. Hanyu, and 
T. Higuchi. Proceedings IEEE 20th International Symposium 
on Multiple Valued Logic, May 1990, pp. 18-23.

|Harding91J: "A Comparison of Redundant CORDIC Rotation Engines", 
J.A. Harding, T. Lang and J.A. Lee, IEEE Conference on 
Computer Design, VLSI in Computers & Processors, 
Cambridge, MA, October 1991, pp. 556-559.

|Haviland80): "A CORDIC Arithmetic Processor Chip", G.L. Haviland and 
A.A. Tuszynski, IEEE Transactions on Computers, Vol. c- 
29, No. 2, February 1980, pp. 68-79.

|Haznedar91 ]: "D igital M icroe lectron ics" , H. H aznedar, The 
Benjamin/Cummings Publishing Company, 1991.

[Hekstra93]: "Floating Point CORDIC", G.J. Hekstra, and E.F.A 
Deprettere, IEEE 11th conference on computer arithmetic, 
1993, pp. 130-137.

lHo89]: "Switched capacitor circuits in the implementation of multiple­
valued logic", H.L. Ho and K.C. Smith, Proceedings IEEE 
19th International Symposium on Multiple Valued Logic, May 
1989, pp. 202-209.

[Horiguchi88]: "An Experimental Large-Capacity Semiconductor File 
Memory Using 16-Levels/Cell Storage", M. Horiguchi, M. 
Aoki, Y. Nakagome, S. Ikenaga and K. Shimohigashi, IEEE 
Journal of Solid State Circuits, Vol. 23, No. 1, February 
1988. pp. 27-33.

[Horowitz80]: "The Art of Electronics", P. Horowitz and W. Hill. 
Cambridge University Press, 1980.

|Hsiao9l]: "The CORDIC Householder Algorithm", S.F. Hsiao and J.M 
Delsome, Proceedings IEEE 10th Symposium on Computer 
Arithmetic, 1991, pp. 256-263.

|Hu86]: "Ternary Scan Design for VLSI Testability", M. Hu and K.C. 
Smith, IEEE Transactions on Computers, Vol. C-35, No. 2, 
February 1986, pp. 167-170.

[Hu90]: "A Novel Implementation of a Chirp Z-Transform Using a 
CORDIC Processor", Y.H. Hu and S. Naganathan, IEEE 
Transactions on Acoustics, Speech and Signal Processing, 
Vol. 38, No. 2, February 1990, pp. 352-354.

[Hu91]: "Expanding the Range of Convergence of the CORDIC 
Algorithm", X. Hu, R.G. Harber and S.C. Bass, IEEE 
Transactions on Computers, Vol. 40, No. 1, January 1991, 
pp. 13-21.

[Hu92]: "The Quantization Effects of the CORDIC Algorithm", Y.H 
Hu, IEEE Transactions on Signal Processing,Vol. 40, No. 4. 
April 1992, pp. 834-844.

I 180



Bibliography

|Huertas8 l |:

| Hurst8()|: 

(Hurst84): 

|Hwang87]:

|lshizuka90|:

|Kaliman88|:

|Kamiura92):

|Kamiura93j:

|Karasawa93]:

[Katter90]:

[Kawahito87]:

"Low-power CMOS implementation of some operators", J.L. 
Huertas and G. Sanchez-Gomez, Proceedings IEEE 11th 
International Symposium on Multiple Valued Logic, 1981, pp. 
196-199.

"Fibreoptics, a multiple-valued interconnection means?", S.L. 
Hurst, Proceedings IEEE l()th International Symposium on 
Multiple Valued Logic, 1980, pp. 115-119.

"Multiple-Valued logic - Its Status and its Future", S.L. 
Hurst, IEEE Transactions on Computers, December 1984, pp.
1160-1179.

"Evaluating Elementary Functions With Chebyshev 
Polynomials On Pipeline Nets", K. Hwang, H.C. Wang and 
Z. Xu, Proceedings IEEE 8th Symposium on Computer 
Arithmetic, May 1987, pp. 121-128.

"On design of multiple-valued static random-access-memory", 
O. Ishizuka, Z. Tang and H. Matsumoto, Proceedings IEEE 
20th International Symposium on Multiple Valued Logic, May 
1990, pp. 11-17.

"Ternary physical protocol for MARILAN a multiple access 
ring local area network", R.J. Kaliman and C.B. Silio Jr, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 14-20.

"Easily Testable Multiple-Valued Cellular Arrays", N. 
Kamiura, Y. Hata, F. Miyawaki and K. Yamoto, 
Proceedings IEEE 22nd International Symposium on Multiple 
Valued Logic, May 1992, pp. 36-42.

"A Repairable and Diagnosable Cellular Array on Multiple- 
Valued Logic", N. Kamiura, Y. Hata and K. Yamato, 
Proceedings IEEE 23rd International Symposium on Multiple 
Valued Logic, May 1993, pp. 92-97.

"Design and Examination of a Multiple-Valued Flip-Flop 
Circuit with Stair Shaped I-V Curved Device as a Coupling, 
Element", S. Karasawa and K. Yamanouchi, Proceedings 
IEEE 23rd International Symposium on Multiple Valued 
Logic, May 1993, pp. 152-163.

"A new CMOS gate - the balanced gate for detecting physical 
failures", O.E. Katter Jr and H.M. Razavi, Proceedings IEEE 
20th International Symposium on Multiple Valued Logic, May 
1990, pp. 25-31.

"A high-speed compact multiplier based on multiple-valued bi­
directional current-mode circuits", S. Kawahito, M. 
Kameyama, T. Higuchi and H. Yamada, Proceedings IEEE 
17th International Symposium on Multiple Valued Logic, May 
1987, pp. 172-180.

181



Bibliography

|Kawahito9l |:

|Kameyama80|:

|Kameyama81 J:

|Kameyama88):

|Lee91 ]:

[Lee92]:

[Lin90]: 

[MacSorleyól ]: 

[Mangin86]:

|Manzoul87]:

(Manzoul88|:

|McCluskey80]:

"Multiple-Valued Current-Mode Arithmetic Circuits Based on 
Redundant Positive-Digit Number Representations". S. 
Kawahito, K. Mizuno and T. Nakamura. Proceedings IEEE 
21st International Symposium on Multiple Valued Logic. May 
1991. pp. 330-339.

"Design of radix 4 signed-digit arithmetic circuits for digital 
filtering", M. Kameyama and T. Higuchi. Proceedings IEEE 
International Symposium on Multiple Valued Logic. June 
1980, pp. 272-277.

"Signed-digit arithmetic circuits based on multiple-valued logic 
and its applications", M. Kameyama and T. Higuchi, 
Proceedings IEEE International Symposium on Multiple 
Valued Logic, June 1981, pp. 41 -47.

"A Multiplier Chip with Multiple-Valued Bidirectional 
Current-Mode Logic Circuits", M. Kameyama, S. Kawahito 
and T. Higuchi, Computer, IEEE Computer Society, April 
1988. pp. 43-56.

"SVD by Constant-Factor-Redundant-CORDIC", J.A. Lee 
and T. Lang, Proceedings IEEE 10th Symposium on 
Computer Arithmetic, June 1991, pp. 264-271.

"Dynamic Current-Mode Multi-Valued MOS Memory With 
Error Correction", E.K.F. Lee and P.G. Gulak, Proceedings 
IEEE 22nd International Symposium on Multiple Valued 
Logic, May 1992, pp. 208-215.

"On-Line CORDIC Algorithms", H.X. Lin and H.J. Sips, 
IEEE Transactions on Computers, Vol. 39, No. 8, August 
1990, pp. 1038-1052.

"High-Speed Arithmetic in Binary Computers", O.L. 
MacSorley, Proceedings of the IRE, Vol. 49, 1961, pp. 67- 
91.

"Characteristics of Prototype CMOS Quaternary Logic 
Encoder-Decoder Circuits", J.L. Mangin and K.W. Current, 
IEEE transactions on computers, Vol. C-35, No. 2, February
1986. pp. 157-161.

"Binary addition via MVL-CCD carry-look-ahead circuit", 
M.A. Manzoul and M. Ashraf, Proceedings IEEE 17th 
International Symposium on Multiple Valued Logic, May
1987. pp. 210-214.

"Quaternary logic for carry-look-ahead binary addition", M.A. 
Manzoul and A. Bommireddy, Proceedings IEEE 18th 
International Symposium on Multiple Valued Logic, May
1988. pp. 294-299.

"Logic design of MOS ternary logic", E.J. McCluskey, 
Proceedings IEEE International Symposium on Multiple 
Valued Logic, 1980, pp. 1-5.

182



Bibliography

|McCluskey82|: "A discussion of multiple-valued logic circuits", E.J. 
McCluskey, Proceedings IEEE International Symposium on 
Multiple Valued Logic, 1982, pp. 200-205.

lMcQuillan91J: " A VLSI Architecture for Multiplication, Division and Square 
Root", S.E. McQuillan and J.V. McCanny, Proceedings 
ICASSP91, May 1991.

|Millman871: "Microelectronics", J. Millman and A. Grabel, McGraw Hill, 
Singapore, 1987.

[Muzio86j: "Multiple Valued Switching Theory", J.C. Muzio and T.C. 
Wesselkamper, Adam Hilger Ltd, Bristol, 1986.

|Nairn88J: "High-resolution, current-mode A/D converters using active 
current mirrors", D.G. Nairn and C.A.T. Salama, Electronics 
Letters, Vol. 24, No. 21. October 1988, pp. 1331-1332.

|Nakamura9l ]: "A 10-b 70-MS/s CMOS D/A Converter", Y. Nakamura, T. 
Miki, A. Maeda. H. Kondoh and N. Yazawa, IEEE Journal of 
Solid State Circuits, Vol. 26, No. 4, April 1991, pp. 637- 
642.

[Nash82|: "Combinatorial Digital Logic Using Charge-Coupled 
Devices", J.G. Nash, IEEE Journal of Solid State Circuits, 
Vol. SC-17, No. 5, October 1982, pp. 957-963.

[Ohhashi85]: "High-Speed Computation of Unary Functions", M. Ohhashi 
and R.F. Schnieder, Proceedings of the IEEE Symposium on 
Computer Arithmetic, 1985, pp. 82-85.

[Osawa92]: "Two-dimensional optical and/or logic operations using an 
optoelectronic integrated functional device (OFD) array", Y. 
Osawa, K. Yamaguchi, H. Rondo and S. Satoh, Electronics 
Letters, Vol. 28, No. 22, October 1992, pp. 2084-2085.

[Prieto88] "The design of decoders for q-valued logic circuits", A. 
Prieto, P. M artin-Sm ith, F. Pelayo and A. Lloris, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 32-39.

|Rich86): "A Survey of Multivalued Memories", D.A. Rich, IEEE 
Transactions on Computers, Vol. C-35, No. 2, February 
1986, pp. 99-106.

[Rodrigues81]: "Hardware Evaluation of Mathematical Functions", M.R.D. 
Rodrigues, J.H .P. Zurawski and J.B. Gosling, IEE 
Proceedings Part E, Vol. 128, No. 4, July 1981, pp. 155- 
164.

[Rozon88]: "Pseudo-Random Testing of CMOS Ternary Logic Circuits", 
C. Rozon and H.T. Mouftah, Proceedings IEEE 18th 
International Symposium on Multiple Valued Logic, May 
1988, pp. 316-320.

[Rozon90]: "Realisation of a Three-Valued Logic Built-in Testing 
Structure", C.N. Rozon and H.T. Mouftah, IEEE Journal of 
Solid-State Circuits, Vol. 25, No. 3, June 1990, pp. 814-820.

183



Bibliography

[Rozon91]: "Testability Analysis of CMOS Ternary Circuits", C. Rozon 
and H.T. Mouftah, Proceedings IEEE 21st International 
Symposium on Multiple Valued Logic, May 1991, pp. 158- 
165.

|Sansen88): "A CMOS Temperature-Compensated Current Reference”, 
W.M. Sansen, F.O. Eynde and M. Steyaert, IEEE Journal of 
solid-state circuits, Vol. 23, No. 3, June 1988, pp. 821-824.

|Schultz89]: "A CMOS Binary Adder Using a Quaternary Ganged-Logic 
Internal Node", K.J. Schultz and K.C. Smith, Proceedings 
IEEE 19th International Symposium on Multiple Valued 
Logic, May 1989, pp. 356-359.

|Seymour88|: "Electronic Devices and Components", J. Seymour, Longman 
Scientific and Technical, 1988.

|Shanbhag90): "Quaternary Logic Circuits in 2pm CMOS Technology", N.R. 
Shanbhag, D. Nagchoudhuri, R.E. Siferd and G.S. 
Visweswaran, IEEE Journal of Solid-State Circuits, Vol. 25, 
No. 3, June 1990. pp. 790-799.

[Shieh93]: "Series Resonant Tunnelling Diodes as a Two-Dimensional 
Memory Cell", M.H. Shieh and H.C. Lin, Proceedings IEEE 
23rd International Symposium on Multiple Valued Logic, May 
1993, pp. 158-163.

[Shyu84J: "Random Error Effects in Matched MOS Capacitors and 
Current Sources", J.B. Shyu, G.C. Ternes, and F. 
Krummenacher, IEEE Journal of Solid State Circuits, Vol. 
SC-19, No. 6 , December 1984, pp. 948-955.

[Silio83 J: "Some device count comparisons for reduced control stores 
using multiple-valued MOS circuits", C.B. Silio and J.H. 
Pugsley, Proceedings IEEE 13th International Symposium on 
Multiple Valued Logic, 1983, pp. 249-254.

[Singh87a]: "Four-valued interface circuits for NMOS VLSI", A.D. 
Singh, International Journal of Electronics, Vol. 63, No. 2, 
1987, pp. 269-279.

|Singh87b): "Four valued buses for clocked CMOS VLSI systems", A.D. 
Singh, Proceedings IEEE 17th International Symposium on 
Multiple Valued Logic, 1987, pp. 128-133.

|Specker65]: "A Class of Algorithms for Ln jc, Exp jc. Sin x,  Cos x,
Tcin~'x and C o f 'x " ,  W.H. Specker, IEEE Transactions 
Electron. Comput. Vol. EC-14, 1965, pp. 85-86.

| StarkS 1 ]: "Two bits per cell ROM", M. Stark, Proceedings of 
COMPCON, 1981, pp. 209-212.

[Steer77]: "Digital Hardware for Sine-Cosine Function", D.G. Steer and 
S.R. Penstone, IEEE Transactions on Computers, Vol. 26, 
No. 12. December 1977, pp. 1283-1286.

184



Bibliography

[Summerfield92] "VLSI Arithmetic With Current Mode Multiple Valued Logic", 
S. Summerfield, C.T. Clarke and G.R. Nudd, Proceedings 
IEEE International Symposium on Circuits and Systems 92, 
May 1992, pp. 3001-3004.

[Swartzlander75): "The Sign/Logarithm Number System", E.E. Swartzlander Jr. 
and A.G. Alexopoulos, IEEE Transactions on Computers, 
Vol.C-24, 1975, pp. 1238-1242.

|Takagi91]: "Redundant CORDIC Methods with a Constant Scale Factor 
for Sine and Cosine Computation", N. Takagi, T. Asada and 
S. Yajima, IEEE Transactions on Computers, Vol. 40, No. 9, 
September 1991, pp. 989-995.

|Texas|: "The 9900 Family Data Book”, The Engineering Staff of 
Texas Instruments Semiconductor Group, Texas Instruments.

lTimmermann89a]: "Modified CORDIC Algorithm with Reduced Iterations", D. 
Timmermann, H. Hahn, B. Hostika, Electronics Letters, Vol. 
25, No. 15, July 1989, pp. 950-951.

|Timmermann89b]: "Hough Transform  Using CORDIC M ethod", D. 
Timmermann, H. Hahn and BJ. Hostika, Electronics Letters, 
Vol.25, No. 3, February 1989, pp. 205-206.

[Timmermann91 ]: "A Programmable CORDIC Chip for Digital Signal 
Processing Applications", D. Timmermann, H. Hahn, B.J. 
Hostika and G. Schmidt, IEEE Journal of Solid State Circuits, 
Vol. 29, No. 9, September 1991, pp. 1317-1321.

[Tzou85]: "The Temperature Dependence of Threshold Voltages in 
Submicrometer CMOS”, J.J. Tzou, C.C. Yao, R. Cheung 
and H. Chan, IEEE Electron Device Letters, Vol. EDL-6, No. 
5, May 1985, pp. 250-252.

[Ueno89]: "A programmable switched-capacitor circuit for multivalued- 
to-binary and binary-to-multivalued conversions", F. Ueno, 
T. Inoue, K. Sugitani and S. Araki, Proceedings IEEE 19th 
International Symposium on Multiple Valued Logic, May 
1989. pp. 195-201.

|Vaudin87]: "3pm VLSI Processing Element Using The CORDIC 
Algorithm", G.J. Vaudin and G.R. Nudd, Electronics Letters, 
Vol. 23, NO. 21, October 1987, pp. 1164-1166.

[Viswanathan85]: "Threshold Voltage in Short-Channel MOS Devices", C.R. 
Viswanathan, B.C. Burkey, G. Lubberts, T.J. Tredwell, 
IEEE Transactions on Electron Devices, Vol. ED-32, No. 5, 
May 1985, pp. 932-940.

[Volder59]: "The CORDIC Trigonometric Computing Technique", J.E. 
Voider, IRE Trans. Electron. Comput. EC-8, pp. 330-334.

185



Bibliography

[Wah93]:

(Wallace64]:

(Walther71 ]: 

[Watanabe87):

[Watanabe88|:

[Webb9l]:

[Wei9l]:

|Whitney88]:

[Wu88]:

[Wu89]:

[Wu90]:

"Report on Workshop on High Performance Computing and 
Communications for Grand Challenge Applications: Computer 
Vision, Speech and Natural Language Processing, and 
Artificial Intelligence", B.W. Wah, T.S. Huang, A.K. Joshi, 
D. Moldovan, J. Aloimonos, R.K. Bajcsy, D. Ballard. D. 
DeGroot, K. DeJong, C.R. Dyer, S.E. Fahlman, R. 
Grishman, L. Hirschman, R.E. Korf, S.E. Levinson, D.P. 
Miranker, N.H. Morgan. S. Nirenburg, T. Poggio, E.M. 
Riseman, C. Stanfill, S.J. Stolfo, S.L. Tanimoto and C. 
Weems, IEEE Transactions on Knowledge and Data 
Engineering, Vol. 5, No.1, February 1993, pp. 138-154.

"A Suggestion for a Fast Multiplier", C.S. Wallace, IEEE 
Transactions Electron. Comput., Vol. EC-13, 1964, pp. 14- 
17.

"A unified algorithm for elementary functions", J.S. Walther, 
Spring Joint Computer Conf., 1971, pp. 379-385.

"New logical-sum and logical-product circuits using CMOS 
transistors and their applications to four-valued combinational 
circuits", T. Watanabe, M. Matsumoto and T. Li, International 
Journal of Electronics, Vol. 63, No. 2, 1987, pp. 215-227.

"CMOS Four-Valued Logic Circuits Using Charge-Control 
Technique", T. Watanabe, M. Matsumoto, T. Li and T. 
Hirayama, Proceedings IEEE 18th International Symposium 
on Multiple Valued Logic, May 1988, pp. 90-97.

"Hybrid higher radix JK flipflop sequencer with ASIC 
implementation potential", J.A.C. Webb, S.M.N. Forbes, J. 
Wilson and S.J. Laverty, Electronics Letters, Vol. 27, No. 
21, October 1991, pp. 1933-1935.

"Multiple Peak Resonant Diode for Multi-Valued Memory", 
S.J. Wei and H.C. Lin, Proceedings IEEE 21st International 
Symposium on Multiple Valued Logic, 1991, pp. 190-195.

"Decisive Differences and Partial Differences for Stuck-at 
Fault Detection in MVL Circuits", M. Whitney and J. Muzio, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 321-328.

"Ternary CMOS Sequential Circuits", X. Wu and F. Prosser, 
Proceedings IEEE 18th International Symposium on Multiple 
Valued Logic, May 1988, pp. 307-313.

"An investigation into quaternary CMOS full-adder based on 
transmission function theory", X. Wu, X. Chen and F. 
Prosser, IEEE 19th International Symposium on Multiple 
Valued Logic, May 1989, pp. 58-62.

"CMOS ternary logic circuits", X.W. Wu and F.P. Prosser, 
IEE Proceedings, Pt. G, Vol. 137, No. 1, February 1990, pp. 
21-27.

I 186



Bibliography

[Wu93]:

|XuS8J:

|Xu89|:

|Yamakawa86]:

|Yuen88]:

"Novel CMOS Scan Design for VLSI Testability". H. Wu. N. 
Zhuang and M.A. Perkowski, Proceedings IEEE 23rd 
International Symposium on Multiple Valued Logic, May 
1993. pp. 82-91.

"Three-Valued System Diagnosis and Parallel Recovery", J. 
Xu, T. Chen, J. Xu and S. Huang, Proceedings IEEE 18th 
International Symposium on Multiple Valued Logic, May 
1988, pp. 329-335.

"A new current-mode multi-valued storage circuit", X. Xu, S. 
Li and Z. Cui, Proceedings IEEE 19th International 
Symposium on Multiple Valued Logic, May 1989, pp. 368- 
375.

"The Current Mode Fuzzy Logic Integrated Circuits Fabricated 
by the Standard CMOS Process", T. Yamakawa and T. Miki, 
IEEE Transactions on Computers, Vol. C-35, No. 2, 
February 1986, pp. 161-167.

"INTEL'S Floating-Point Processors", A.K. Yuen, 
Proceedings of Electro/88, 1988, pp. 48/5/1-6.

187


