33,279 research outputs found

    Policy-based techniques for self-managing parallel applications

    Get PDF
    This paper presents an empirical investigation of policy-based self-management techniques for parallel applications executing in loosely-coupled environments. The dynamic and heterogeneous nature of these environments is discussed and the special considerations for parallel applications are identified. An adaptive strategy for the run-time deployment of tasks of parallel applications is presented. The strategy is based on embedding numerous policies which are informed by contextual and environmental inputs. The policies govern various aspects of behaviour, enhancing flexibility so that the goals of efficiency and performance are achieved despite high levels of environmental variability. A prototype self-managing parallel application is used as a vehicle to explore the feasibility and benefits of the strategy. In particular, several aspects of stability are investigated. The implementation and behaviour of three policies are discussed and sample results examined

    Real-Time Containers: A Survey

    Get PDF
    Container-based virtualization has gained a significant importance in a deployment of software applications in cloud-based environments. The technology fully relies on operating system features and does not require a virtualization layer (hypervisor) that introduces a performance degradation. Container-based virtualization allows to co-locate multiple isolated containers on a single computation node as well as to decompose an application into multiple containers distributed among several hosts (e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g., in industrial automation, automotive, and aviation industry where mixed criticality containerized applications from various vendors can be co-located on shared resources. However, such industrial domains often require real-time behavior (i.e, a capability to meet predefined deadlines). These capabilities are not fully supported by the container-based virtualization yet. In this work, we provide a systematic literature survey study that summarizes the effort of the research community on bringing real-time properties in container-based virtualization. We categorize existing work into main research areas and identify possible immature points of the technology

    Coordination dynamics in the sensorimotor loop

    Get PDF
    The last two decades have witnessed radical changes of perspective about the nature of intelligence and cognition, leaving behind some of the assumptions of computational functionalism. From the myriad of approaches seeking to substitute the old rule-based symbolic perception of mind, we are especially interested in two of them. The first is Embodied and Situated Cognition, where the advances in modeling complex adaptive systems through computer simulations have reconfigured the way in which mechanistic, embodied and interactive explanations can conceptualize the mind. We are particularly interested in the concept of sensorimotor loop, which brings a new perspective about what is needed for a meaningful interaction with the environment, emphasizing the role of the coordination of effector and sensor activities while performing a concrete task. The second one is the framework of Coordination Dynamics, which has been developed as a result of the increasing focus of neuroscience on self-organized oscillatory brain dynamics. It provides formal tools to study the mechanisms through which complex biological systems stabilize coordination states under conditions in which they would otherwise become unstable. We will merge both approaches and define coordination in the sensorimotor loop as the main phenomena behind the emergence of cognitive behavior. At the same time, we will provide methodological tools and concepts to address this hypothesis. Finally, we will present two case studies based on the proposed approach: 1. We will study the phenomenon known as “intermittent behavior”, which is observed in organisms at different levels (from microorganisms to higher animals). We will propose a model that understands intermittent behavior as a general strategy of biologica organization when an organism has to adapt to complex changing environments, and would allow to establish effective sensorimotor loops even in situations of instable engagement with the world. 2. We will perform a simulation of a phonotaxis task performed by an agent with an oscillator network as neural controller. The objective will be to characterize robust adaptive coupling between perceptive activity and the environmental dynamics just through phase information processing. We will observe how the robustness of the coupling crucially depends of how the sensorimotor loop structures and constrains both the emergent neural and behavioral patterns. We will hypothesize that this structuration of the sensorimotor space, in which only meaningful behavioral patterns can be stabilized, is a key ingredient for the emergence of higher cognitive abilities

    Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments

    Full text link
    The feasibility of deep neural networks (DNNs) to address data stream problems still requires intensive study because of the static and offline nature of conventional deep learning approaches. A deep continual learning algorithm, namely autonomous deep learning (ADL), is proposed in this paper. Unlike traditional deep learning methods, ADL features a flexible structure where its network structure can be constructed from scratch with the absence of an initial network structure via the self-constructing network structure. ADL specifically addresses catastrophic forgetting by having a different-depth structure which is capable of achieving a trade-off between plasticity and stability. Network significance (NS) formula is proposed to drive the hidden nodes growing and pruning mechanism. Drift detection scenario (DDS) is put forward to signal distributional changes in data streams which induce the creation of a new hidden layer. The maximum information compression index (MICI) method plays an important role as a complexity reduction module eliminating redundant layers. The efficacy of ADL is numerically validated under the prequential test-then-train procedure in lifelong environments using nine popular data stream problems. The numerical results demonstrate that ADL consistently outperforms recent continual learning methods while characterizing the automatic construction of network structures
    • 

    corecore