
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation for published version:

Anthony, Richard (2006) Policy-based techniques for self-managing parallel applications. The
Knowledge Engineering Review, 21 (3). pp. 205-219. ISSN 0269-8889

Publisher’s version available at:
http://dx.doi.org/10.1017/S0269888906000890

__

Please note that where the full text version provided on GALA is not the final published
version, the version made available will be the most up-to-date full-text (post-print) version as
provided by the author(s). Where possible, or if citing, it is recommended that the publisher’s
(definitive) version be consulted to ensure any subsequent changes to the text are noted.

Citation for this version held on GALA:

Anthony, Richard (2006) Policy-based techniques for self-managing parallel applications. London:
Greenwich Academic Literature Archive.
Available at: http://gala.gre.ac.uk/976/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

The Knowledge Engineering Review, Vol. 21:3, 205–219. 2006, Cambridge University Press
doi:10.1017/S0269888906000890Printed in the United Kingdom

Policy-based techniques for self-managing
parallel applications

R I C H A R D J O H N A N T H O N Y
Department of Computer Science, University of Greenwich, London SE10 9LS, UK;
e-mail: r.j.anthony@gre.ac.uk

Abstract

This paper presents an empirical investigation of policy-based self-management techniques for
parallel applications executing in loosely-coupled environments. The dynamic and heterogeneous
nature of these environments is discussed and the special considerations for parallel applications
are identified. An adaptive strategy for the run-time deployment of tasks of parallel applications
is presented. The strategy is based on embedding numerous policies which are informed by
contextual and environmental inputs. The policies govern various aspects of behaviour, enhancing
flexibility so that the goals of efficiency and performance are achieved despite high levels of
environmental variability. A prototype self-managing parallel application is used as a vehicle to
explore the feasibility and benefits of the strategy. In particular, several aspects of stability are
investigated. The implementation and behaviour of three policies are discussed and sample results
examined.

1 Introduction

This paper presents an investigation into ways that policy-based autonomics can be integrated into
parallel applications that execute in loosely-coupled systems, and the extent of the benefits that can
be achieved. The adopted implementation strategy involves embedding self-configuring and
self-optimizing capabilities (Koehler et al., 2003; Kephart & Chess, 2003) into applications to
enable continuous adaptation to the context and run-time environment to maintain performance
and efficiency.

A complexity problem arises in the configuration and management of systems of interacting
components, especially as the scale of the systems, and the sophistication of the components,
increases. The field of autonomics currently enjoys rapidly growing interest; fundamentally because
it offers a solution to this problem. The autonomic computing paradigm advocates self-managing
behaviour in which applications modify their behaviour to suit their environment and context; see,
for example, Badr et al. (2004).This approach reduces the emphasis on the preconfiguration of
components, and relies instead on inbuilt learning and discovery capabilities.

The IBM autonomics model (IBM, 2004) provides a popular framework in which self-
management is divided into four specific self-categories (configuration, healing, optimization and
protection). Using this model as a reference point, this paper is concerned with self-configuration
and self-optimization. Additionally, this paper is particularly concerned with self-stabilization,
which is a concept that can be considered to cut across all of the other self-behaviours. A system
or application needs to be able to adapt to changes in its environment and operating context whilst
remaining stable. The exact fine-grained behaviour at any moment may not be precisely knowable
to an outside observer but it is fundamentally important that the more general, high-level behaviour
be predictable and ‘legal’ as defined by the semantics of the application itself.

Policy-based computing is a versatile and accessible means of implementing autonomics, because
it is relatively easy to codify a wide range of behavioural parameters into policy rules. In particular,
this is also a viable approach for retrofitting autonomic behaviour into legacy applications, as the
policy can be kept separate from the mechanism, so that modifications need only be made at a few
carefully selected interface points.

As LAN technology continues to improve in terms of reliability and performance, loosely-
coupled systems are increasingly popular platforms for parallel processing. Cluster and Grid
configurations provide a viable, relatively cheap and commonly available alternative to specialised
tightly-coupled systems (Hobbs & Goscinski, 2000)for a wide variety of coarser-grained parallel
applications. Often, the physical resources that constitute the cluster or Grid are already installed
and thus represent a free resource. For example, it is common to use ‘standard’ office PCs
interconnected with LAN technology, reconfigured with a Grid or cluster software layer for
out-of-hours processing of computationally-intense applications when the physical resource would
otherwise be idle.

However, loosely-coupled environments can be highly dynamic (Shum, 1999;Weng et al., 2004).
Congestion is dynamic in the time, location, and severity of its formation and causes proportionally
dynamic communication delay. Processing nodes are rarely performance-homogenous, differing in
many ways, including: memory capacity, processing speed and secondary storage capacity. The
number of processing nodes available can also vary over time. A workstation cluster or Grid is not
always dedicated to the execution of a single application. The presence of other tasks constitutes a
background workload with which a deployed task must compete for resources. Therefore, the
effective processing capacity of nodes (as seen by a specific task) is variable. The extent of the
dynamism varies from system to system and over time within systems. The longer the run-time of
a parallel application, the more exposed it is to changes in its environment that effect its execution
efficiency. Thus, static deployment in loosely-coupled environments is potentially highly inefficient.

2 Parallel processing in loosely-coupled systems

Much theoretical work has been done to solve aspects of the dynamic decomposition and dynamic
deployment problems. For example, Jin & Liu (2004)discuss an agent-based solution, but assumes
that Grid nodes are homogenous and that applications are arbitrarily divisible. Such approaches
make the fundamental assumption that loosely-coupled systems are high-communication-latency
versions of tightly-coupled systems; for example, Goscinksi (1999) advocates that homogenous
clusters of workstations (COWs) should be used for parallel processing, to avoid problems
associated with computational imbalance.

Dynamic decomposition remains a tricky problem (Hendrickson, 2000) and thus, commonly,
static task decomposition and deployment techniques are used when adapting parallel applications
for execution in loosely-coupled environments such as clusters and Grids; see, for example, Gottlieb
(2001).Generally, the partitioning is related to a pre-determined deployment plan; for example, the
run-time system is known to contain a certain number of machines with (assumed) similar
processing capacities and connectivity, therefore the partitioning is carried out appropriately
(subject to limitations of the application architecture); see, for example, Allen (2005),Grandison
et al. (2005)and Du et al. (2005).

However, loosely-coupled systems typically comprise resource-heterogeneous nodes and are
much more dynamic in nature than tightly-coupled systems. The sources of dynamic behaviour
include:

1. asynchronous scheduling and communication arising from the autonomy of the individual
nodes;

2. background workload variability, which influences the effective performance of nodes;
3. independent failure and recovery of worker nodes, and the arrival of new workers;
4. end-to-end communication delay, impacted by network congestion which varies between

locations and over time.

206 . .

The suitability of a particular application for parallel deployment over a loosely-coupled system is
determined fundamentally by the granularity of tasks. When executing in a loosely-coupled
environment the granularity (expressed as the ratio of computation time to communication time)
is variable because both factors are subject to variability in the environment, as discussed above.
The granularity is acceptably coarse only when the computational time to communication time
ratio is sufficiently high that the worker is used efficiently and contributes to an overall speedup.
This must be determined dynamically for each worker node. The dynamic behaviours of
loosely-coupled environments are a barrier to achieving optimal or efficient performance if static
application configurations are used, and can be problematic for externally-managed run-time
configuration (Ibrahim et al., 2004;Barrett et al., 2004).

The proposed strategy is to embed self-managing capabilities (in the form of numerous adaptive
policies) into the components of parallel applications so that the run-time behaviour, including
deployment, can be continuously fine-tuned during execution to maintain high performance and
efficiency despite environmental fluctuations. The overall goal is to minimise the makespan by using
the available resources efficiently.

Dynamic configuration could be introduced either at the point of decomposition into tasks, or
during the deployment of tasks over processing nodes. To avoid most of the complexity, and still
achieve most of the potential gains (and the advantage of generalization), it was decided to adapt
the deployment dynamically. The decomposition is done prior to run-time because, generally, this
is governed by problem-specific constraints (see, for example, Hu & Zou (2005)),and also because
dynamic decomposition is generally a hard problem, although Clementi & Corongiu (1999)describe
a dynamic decomposition that is performed at the level of subroutines. The strategy requires that
all run-time influence is removed from the decomposition (partitioning and deployment should be
regarded as separate unrelated activities). To provide the maximum deployment flexibility, the
partitioning should be carried out at the finest feasible granularity, given the internal architecture
of the application code (i.e. without regard to the characteristics of the run-time environment). The
actual deployment is dynamic; tasks are created by the client component during application
execution. The number and size of tasks is continually tuned to suit the available worker
population, taking into account their individual performance, workloads and connectivity.
Run-time flexibility is enhanced by dynamic discovery and incorporation of workers.

Figure 1 contrasts static decomposition implicitly determined by a deployment plan (i.e. the
run-time system is known to comprise three nodes, so the application is coarsely decomposed
accordingly), with finer-grained decomposition that is completely free of any run-time influence. In
the example shown, three worker nodes are available at initialization; a fourth becoming available
mid-execution. The figure illustrates the deployment flexibility benefit of finer-grained decomposi-
tion; the allocation can be adjusted dynamically to reflect changes in the effective performance of
worker nodes and the available worker population.

3 Policy-based autonomics

Policy-based systems use one or more policies dynamically to inform their run-time behaviour;
examples include Ananthanarayanan et al. (2005)and Maglio et al. (2005).A policy can be selected
from a library of policies, and initialised from a template of preferences. Policies can be
subsequently adapted to suit environmental or application-specific conditions.

Policy-based autonomic systems require certain capabilities:

• monitor the current system;
• identify problems, inefficiencies or anomalies (generally, where the system state diverges away

from its goal state);
• devise possible solutions (to move the system to within an acceptable distance from the goal

state);
• apply the solutions (in such a way that erratic sudden changes are avoided to maintain stability).

Policy-based techniques for self-managing parallel applications 207

These activities form a loop in which the system continually modifies its behaviour to match the
demands of its environment. Certain conditions may trigger the replacement of the current policy
with another from a library, or modification of the current policy rules. In this way the system’s
behaviour is not only responsive to its environment; it can also evolve as trends are identified. In
the specific context of a policy governing parallel application deployment, the monitor aspect is
concerned with activities such as the calibration of the effective processing speed at each node and
the communication cost of communicating with that node. The planning aspect is concerned with
determining whether the current configuration is appropriate for the context and environment, or
whether any configuration changes can be applied better to optimize the deployment. The
adaptation aspect is concerned with managing the deployment over the longer term by updating the
policy configuration.

3.1 Defining and achieving stability in policy-based systems

Autonomic systems must reach a balance between freedom to adapt to ambient conditions,
and stable behaviour which is ‘legal’ as defined by the application’s semantics. One feasible
solution is to identify ‘bounds’ to constrain the operational envelope of components (Ibrahim et al.,
2004).

Figure 2 provides a simplified illustration of bounded behaviour in which the policy has only one
dimension of freedom. The upper and lower bounds can be set externally and passed into the policy
at initiation. So long as the policy remains with these bounds, its behaviour is considered legal.
However, there is no requirement that the bounds are fixed (as depicted in the left-hand side of the
figure); they may be linked to another dynamic aspect of the system (as depicted in the right-hand
side of the figure). Clearly the policy can be more or less restricted by controlling the margin
between the bounds. It is important to realise that, in such a system, even when it exhibits ‘legal’
behaviour it is not possible to state exactly what it will do next — if we wish to be that prescriptive
we are defeating the object of self-adaptability.

There will always be some environmental randomness and hysteresis in the control and feedback
mechanisms, so it is not possible to perfectly track a goal state that is itself dynamic. Attempting
a perfect track can lead to oscillation arising from the continual fine adjustments, leading to
additional corrective work. However, a dead zone can be introduced either side of the goal state
such that, once inside this zone, the policy makes no adjustment.

Figure 1 Contrasting diverse approaches to decomposition and deployment

208 . .

Figure 3 illustrates how the dead zone enhances stability by reducing the amount of behavioural
‘noise’, especially micro-oscillation around the goal state. If the goal state changes significantly, the
policy eventually finds itself outside the dead zone and once again must adapt the system.

As illustrated in Figures 2 and 3, it is very likely that the policy is tracking a goal state that is
itself dynamic, being influenced by environmental conditions. Because of this, it is important to
consider the rate of adaptation (in terms of the amount of adjustment applied at any single step).
The significance of this issue is relative to the extent of dynamism in the end goal. An adaptation
strategy is defined, in which stability is ranked as the highest priority of the non-functional
requirements for autonomic systems (followed by performance, scalability, etc.). Purposely, to
avoid erratic behaviour and oscillation, successful adaptation is defined as ‘moving the system from
its current state towards the currently perceived optimum state’. In this way a gradual convergence
is achieved. To implement the strategy, the concept of an adaptation factor A is introduced which
governs the fraction of the calculated adjustment (based on current distance from the perceived
optimum state at that moment) that is actually applied. The adaptation is most aggressive when A
= 1.0 (which means that the policy output at time t+1 is the value of the system goal at time t) but
can be locally unstable. Conversely, convergence might not occur, or may occur too slowly, if a low
value (such as A = 0.25) is used.

Figure 4 indicates how lower values of A lead to more-gradual, but also less-erratic tracking of
the perceived ‘ideal’ behaviour. In the first graph the system goal follows a steady upward trend; in
the second graph the system goal follows an upward trend but is locally unstable; in the third graph
the system goal is unsteady.

A clear example of locally-bounded behaviour is provided by the round-trip-time (RTT)-
measurement-optimization policy. The dead zone and adaptation factor concepts are exemplified
by the granularity policy. Section 5 discusses the implementation details for these policies.

It is worth noting (although outside of the scope of this paper), that all of the parameters that
might be short-term fixed with respect to a specific low-level policy, such as the bounds, the size of
the dead zone and the value of the adaptation factor, could all be determined over a longer time
frame by higher-level policies, arranged hierarchically.

Figure 2 Policy behaviour scoped by externally defined bounds

Figure 3 Tracking goal state behaviour using a ‘‘dead zone’’

Policy-based techniques for self-managing parallel applications 209

4 A self-managing parallel application

To demonstrate the feasibility of the strategy, a self-managing parallel application has been
developed. Several embedded policies govern the way in which the application behaves in a given
context. This context arises from a combination of application features and behaviour, and
environmental conditions. A ‘client’ dynamically discovers workers during execution and adjusts its
deployment function to issue a share of the work accordingly. Similarly, workers who disappear are
factored out and the allocations to remaining workers adjusted.

In addition to the processing done at worker nodes, the client is able to execute a worker thread
locally in certain execution contexts. This can shorten the total run-time, and is useful to ensure
eventual completion when no workers are available. As the number of remote workers increases,
more effort is required to manage them, and the benefit of local processing at the client is
diminished in terms of the effect on makespan. Thus, a threshold is crossed at which the client ceases
to execute the local worker thread. The value of this threshold can be adjusted to reflect the relative
processing performance of the client and worker nodes.

The demonstration implementation internally uses a very fine-grained calculation, Monte-Carlo
approximation of Pi, in which there are no causal relationships nor communication between the
individual calculations. This approach facilitates exploration of a wide range of dynamic
deployment behaviours by permitting many different ‘applications’ to be emulated. This emulation
is achieved by means of a user-supplied minimum granularity value g which limits the minimum
task size to an integer number of the internal calculations. Thus, g defines an ‘application’ in terms
of its decomposition granularity. For example, if g = 1 million, then the client must issue task sizes
to workers of integer multiples of 1 million of the Monte-Carlo computations, i.e. 1 million,
2 million, etc. (this is the dynamically-determined deployment granularity). No upper limit is
imposed on the deployment granularity. The granularity policy has rules to ensure that work can
be distributed efficiently and thus utilize workers as flexibly as possible.

If the run-time system represents a homogenous and highly stable environment it would be
efficient simply to divide up the work in accordance with the instantaneous number of workers
existing and issue the coarsest-grained tasks algorithmically possible. Such an approach becomes
less attractive in more dynamic environments. For example, initial allocation of the entire workload
would be counterproductive if an additional worker subsequently became available during a
long-running execution and could not be utilized, or a long-running worker crashed just before
reporting its results. Thus, in dynamic environments the client should allocate smaller tasks to
retain scheduling flexibility.

In order that the deployment can be maintained within an efficient operational envelope, the
processing performance of worker nodes, and the RTT between the client and each worker is
measured periodically. This enables the work to be distributed in proportion to nodes’ instan-
taneous processing capacities, obviates the need to relocate work for the achievement of load
balance, and is more transparent with respect to node failure because a smaller fraction of the total
work is lost (and is subsequently reissued to another worker).

Figure 4 The effect of different values of the adaptation factor (A) with different system behaviours

210 . .

5 Selected policies

Several policies have been implemented to facilitate the investigation and evaluation of autonomic
behaviour in the context of parallel processing. Each policy controls a specific aspect of behaviour
(although the policies interact indirectly; for example, one policy may govern the way in which
measurement data is collected whilst another policy may use this measurement data to adjust
workload deployment). This paper concentrates on three of the policies, which are described in turn
below.

The local-worker-thread policy determines whether the client should execute a local worker
thread or should rely entirely on the remote workers to complete the computation. This policy takes
into account contextual conditions (such as the instantaneous number of remote worker nodes),
and environmental conditions (such as whether the client’s power source is mains or battery, and
how much battery life remains). The policy ensures that the local worker thread is executed only
when it is both affordable and beneficial. The relative value of the local worker thread diminishes
as the number of remote workers increases (in terms of its effect on the overall application
makespan, and because of the increased overhead of managing the remote workers).

The policy uses three threshold values and one boolean condition to divide up the possible
behaviour space into distinct regions, as illustrated in Figure 5. These are set, initially, by means of
a template of preference values. By keeping the policy logic separate from the implementation
mechanism, it is possible for these values to be subsequently adjusted by the policy itself or by
another policy operating at a higher level.

Figure 6 shows typical template values for the local-worker-thread policy and shows how the
condition and thresholds map onto the behaviour-space graph (Figure 5).

The local-worker-thread policy logic, shown in Figure 7, involves interactions between contex-
tual information from the policy variables (which are shown italicized) and environmental
information such as the remaining battery life and the instantaneous number of remote workers
present (which are shown underlined). The resulting behaviour directives are shown in bold. The
policy logic has been annotated to provide a mapping of the policy behaviour onto the relevant
regions of the behaviour-space graph (Figure 5).

The RTT-measurement-optimization policy governs the measurement of the RTT between the
client node and each worker. Performance measurement information (which includes the RTT as
well as the effective processing performance of each node), forms part of the execution context and

Figure 5 The local-worker-policy behaviour-space is divided into regions by the policy parameters

Figure 6 Template values for the local-worker-thread policy

Policy-based techniques for self-managing parallel applications 211

is used to determine the efficiency of using each node as a worker and the appropriate task size to
issue to that node. Measurements are performed using live problem data so that they form part of
the useful work done and are not entirely overhead. This approach also ensures that the calibration
is reliable, because the resource-usage signature on the node is true to the real problem. The amount
of time taken to process a specific-sized task is used to determine the current processing
performance of each worker, taking into account its ambient workload. The RTT, which includes
the round-trip communication latency as well as the scheduling delay at the worker in responding
to the message, is used by the granularity policy to determine the relative speedup achieved by each
worker which in turn is used to identify inefficient/ineffective workers that should be rejected.
Figure 8 depicts the worker thread calibration.

The frequency of RTT measurement can be optimized to suit the variability of the network
behaviour. The more stable the network, the less frequent the RTT is measured, saving some
processing overheads and messages. The policy is differently parameterised for each worker, based
on their current and previous behaviour and environmental influences. RTT is measured the first
time a task is issued to a particular worker. For subsequent tasks, if the current RTT measurement
is within an acceptable distance from the previous value (the dead zone is determined to be, by
default, ± 10%of the previous value), a count of similar RTT values is incremented, otherwise it is
reset to zero. When a sufficient number of similar values occur in sequence, the policy allows a

Figure 7 The local worker-thread self-configuration logic

Figure 8 Calibration of worker performance and RTT

212 . .

number of RTT calibrations to be skipped (the ‘calibration interval’). This saves some computation
and, more importantly, some messages and thus outweighs the costs of the policy itself. The
calibration interval is dynamically incrementally adjusted up to a policy maximum (the upper
bound) if the network remains stable over a longer period. When the period of stability comes to
an end, the calibration interval is reset to its lower bound value. The template settings for the policy
are shown in Figure 9. Figure 10 illustrates the policy logic, showing the interaction between the
context variables (underlined) and policy variables (italicized) in determining whether the RTT
should be calibrated the next time the worker is sent a task. The resulting behaviour directives are
shown bold.

Figure 11 provides an example of the behaviour of the policy when operating in a non-dedicated
wired-LAN in which significant load fluctuations occur. For maximum clarity, the graph shows
data pertaining to only a single worker. When there is low variance in the RTT over successive
measurements the policy increments the calibration interval (the number of consecutive RTT
messages that can be skipped) until it hits the upper bound (which was set at 5 in the template
values). Small changes in the RTT value are ignored because a relative tolerance zone (dead zone)
of ± 10% of the previous RTT value is used. When the RTT changes sufficiently sharply to move
outside of the tolerance zone the policy adjusts the calibration interval back to the lower bound
(which was set at 1 in the template values). The graph shows a trace of 352 work grains issued to
the remote worker, and in 184 cases the RTT calibration was skipped, representing a saving of
52.27%of calibration messages. The policy strives to maintain an optimal balance between saving
messages as the network load increases, and performing sufficient measurement so that the
application deployment can be appropriately tuned.

The granularity policy is responsible for dynamically maintaining the deployment of work over
the available workers such that each task issued to a specific worker reflects its current effective
processing capacity. In addition, the granularity policy must incorporate newly-arriving workers;
reallocate work when existing workers depart (which is taken to include node crashes and mobile
nodes moving out of contact); and reject workers that are determined to be inefficient.

In order dynamically to achieve a balance of the workload over the available workforce, and to
be able to incorporate new workers mid-execution, the policy must carefully determine (for each
worker) the appropriate size of tasks (the deployment granularity). It is undesirable to issue
too-large tasks for several reasons.
1. It may prevent the inclusion of a subsequently-discovered worker (if all the work has been

allocated).
2. It requires expensive reallocation if conditions change (this is often not facilitated, but see

Baiardi et al. (2001),for an example).
3. Worker failure represents a significant cost in terms of wasted processing effort and the delay

incurred while the processing is re-done. Reducing the deployment granularity increases the
retained scheduling flexibility, allowing the policy to be responsive to changes in the number of
workers and their effective processing capacities.

However, it is undesirable to issue too-small tasks because of the additional communication
overheads and management overheads that are incurred. The decomposition granularity (g)
provides a lower limit on the deployment granularity.

An application-wide flexibility factor (F) is introduced to facilitate dynamic calculation of the
initial deployment granularity for workers based on the size of, and extent of variance in, the
worker population. The initial task size is given by WR / FN where WR is the instantaneously

Figure 9 Worker-RTT calibration policy template values

Policy-based techniques for self-managing parallel applications 213

determined amount of work remaining (not allocated), and N is the instantaneously determined
number of worker nodes present. The same formula is applied to workers present at the start of
processing and to workers that join mid-execution. Optimization of the initial deployment
granularity is achieved by dynamically adjusting the value of F, which has a default initial value of
5, to suit the extent of dynamism in the environment. F is incremented each time a remote worker
joins or leaves; and is then gradually reduced back to its default value at a slow rate. The effect of

Figure 10 Part of the RTT calibration self-optimization logic

214 . .

this simple mechanism is that the value of F reflects the recent variability in the remote worker
population. This ensures that the scheduling agility is suitably increased in more volatile conditions,
so that relatively smaller tasks are issued, yielding greater scheduling flexibility and representing less
wasted processing if a worker departs abruptly without reporting its partial result.

Determination of subsequent task-size allocations for each worker is based on the worker’s
current effective performance (which takes into account the size of its most recent task and the time
taken to process the task, inclusive of RTT). The performance is measured relative to the
performance of the other workers. The policy tolerates significant performance differentials and
attempts to normalise the distribution. For example, a node that took longer to process its most
recent task (relative to the mean processing time of the other workers) will be subsequently issued
a smaller task. To avoid continual minor adjustments, a dead zone (± 10%margin each side of the
mean) is used.

The whole system is dynamic, which implies that the perceived optimum deployment is also
subject to change over time. To avoid sudden destabilizing changes and potential oscillation, a
self-stabilizing approach is followed in which workers’ allocations are adjusted towards the
perceived desired value in small progressive steps. To achieve this, an adaptation factor A (discussed
earlier in Section 3.1) is introduced. Empirical investigation has determined that a value of A = 0.5
yields good all-round performance for this specific policy. This is a compromise between higher
values, which give faster adaptation when the system is stable but can cause oscillation when the
system is unstable, and smaller values, which are better in unstable conditions but can be very slow
to converge when the goal state follows an upward or downward trend (refer to Figure 4). The
actual allocation-size adjustment (for a given worker) is thus based on AD where D is the calculated
distance from the mean. For example, if the current mean processing time is 100 s and a specific
worker took 50 s to process its most recent task, the distance D = 50, thus AD = 25. The task size
would thus be increased by 50% to yield an expected processing time shift from 50 to 75 s for the
next task. The stable converging effect of this mechanism is evident in Figure 14.

Where the performance of a particular worker is found to be below an acceptable standard and
there are sufficient workers to do the job, the worker is rejected. This optimization reduces the
communication overhead and the management overhead on the client. The work that would have
been allocated to the slow worker can be allocated to the remaining (faster) workers. The effective
value of a slow worker is greater when there are few remote workers, and diminishes as more
workers become available.

Figure 11 A sample of the behaviour of the RTT-measurement-optimization policy

Policy-based techniques for self-managing parallel applications 215

For each worker, the policy responds with a decision to increase, decrease or leave unchanged
the task size; or to reject the worker. The actual amount of adjustment is calculated externally to
the policy. This simplifies the policy implementation and helps maintain the overall design goal of
inserting numerous simple policies. The default template preferences for the policy are shown in
Figure 12. The policy logic is presented in Figure 13.

Figure 14 provides an example of the granularity policy behaviour in a scenario where workers
arrive gradually, joining at an approximately 15 s inter-arrival interval. Workers had low stable
background workloads throughout the experiment. The flexibility factor (F) was initialised to 15
and was automatically incremented each time a worker arrived to reflect the extent of variation in
the worker population. This has the effect of increasing the scheduling flexibility by enabling smaller
fractions of the remaining work to be issued as initial tasks to newly-arriving workers, thus allowing
finer-grained optimization. After initial allocation the policy adapts the granularity of subsequent
tasks towards the mean over all workers to ensure that the workload is evenly distributed.

Stable adaptation is evidenced by the way the task allocations converge quickly towards the
mean size (which is itself dynamic) but do not tend to oscillate around it. Two mechanisms directly
contribute to the stability achieved.

1. The adaptation factor A (set at 0.5) governs the way the allocated task sizes home-in
progressively towards the mean task size.

Figure 12 Granularity policy template values

Figure 13 Outline of the granularity policy logic (some detail omitted)

216 . .

2. The dead zone halts the adaptation process (for a specific worker) as its allocated task size
becomes sufficiently close to the mean.

The policy managed to adapt task allocations sufficiently that it could utilize each worker
effectively, achieving an overall speedup of 0.593against a base-line configuration comprising 10
constantly-available workers. The gradual-arrival scenario is particularly challenging in terms of
scheduling optimization; the accuracy of the adaptation and the extent of the performance results
achieved powerfully illustrate the feasibility and benefits of the flexible deployment approach for
dynamic environments.

6 Conclusion and further work

This paper has presented an empirical investigation into ways in which autonomic behaviours can
be embedded into parallel applications that target loosely-coupled environments such as clusters
and Grids. These environments have potentially highly dynamic and heterogeneous natures, so a
strategy of continually re-evaluating the deployment of tasks across worker nodes is proposed with
the goal of maintaining high performance despite the environmental volatility.

A prototype application has been developed, in which self-managing behaviour is achieved
through the use of several policies, each responding to specific aspects of environmental or
contextual state in the governance of a clearly-defined dimension of behaviour. A high degree of
flexibility is required to ensure that an executing application is sufficiently responsive to a wide
range of ambient conditions. In this regard, several mechanisms have been implemented to facilitate
dynamic monitoring of environment and context, including: node discovery; detection of failed
workers; calibration of network connections; and calibration of effective worker-node performance.

The policies have been equipped with various self-stabilization features including the incorpor-
ation of behavioural bounds, dead zones and gradual adaptation to help ensure that they
continuously track their goal states in a convergent manner despite considerable environmental
perturbations.

The prototype application has been used to explore the feasibility of the strategy and the extent
of the associated benefits. The design of three policies has been discussed. The behaviour of these
policies has been described in terms of the ways they react to contextual and environmental stimuli.

Figure 14 An example of the behaviour of the granularity policy when the worker population increases
dynamically

Policy-based techniques for self-managing parallel applications 217

Empirical results demonstrating the adaptive behaviour of the policies have been presented.
Sample RTT-measurement-optimization policy results demonstrate bounded self-optimization, and
the effectiveness of using a dead zone to ignore noise-level changes in communication latency.
Sample granularity-policy results demonstrate:

• the achievement of deployment flexibility in the way in which the policy holds back sufficient
work to be able to utilize new workers (and the way in which the flexibility factor is itself adapted
to reflect variability in the workforce);

• discovery and self-configuration through the automatic incorporation of newly-arriving workers;
• stable, convergent self-optimization through the subsequent gradual adjustment of the deploy-

ment function such that the response times of the worker population are normalized.

By combining the behaviour of several policies (there are actually five implemented), quite
sophisticated self-managing behaviour is achieved. The application is able to adjust several
dimensions of its behaviour sufficiently quickly to be effective, yet in a progressive manner, avoiding
destabilizing sudden shifts.

References
Allen, C. B. 2005 Parallel simulation of lifting rotor flows: a wake capturing study. In Proceedings of the

DCABES and ICPACE Joint Conference on Distributed Algorithms for Science and Engineering. University
of Greenwich: CMS Press, pp. 23–30.

Ananthanarayanan, R., Mohania M. & Gupta, A. 2005 Management of conflicting obligations in self-
protecting policy-based systems. In Proceedings of the 2nd International Conference on Autonomic
Computing (ICAC). Seattle, WA: IEEE, pp. 274–285.

Badr, N., Taleb-Bendiab, A., Randles, M. & Reilly, D. 2004 A deliberative model for self-adaptation
middleware using architectural dependency. In Proceedings of the 15th International Conference on
Database and Expert Systems Applications (DEXA 2004). IEEE, pp. 752–756.

Baiardi, F., Chiti, S., Mori, P. & Ricci, L. 2001Integrating load balancing and locality in the parallelization
of irregular problems. Future Generation Computer Systems 17(8), 969–975.

Barrett, R., Maglio, P., Kandogan, E. & Bailey, J. 2004 Usable autonomic computing systems: the
administrator’s perspective. In Proceedings of the 1st International Conference on Autonomic Computing
(ICAC 2004). New York: IEEE Computer Society, pp. 18–25.

Clementi, E. & Corongiu, G. 1999Early parallelism with a loosely coupled array of processors: the ICAP
experiment. Parallel Computing 25(13–14), 1583–1600.

Du, Z. H., Wang, H., Yang, F. & and Li, S. L. 2005Pattern-based parallel model to decide suitable-grained
parallelism for cluster computing. In Proceedings of the DCABES and ICPACE Joint Conference on
Distributed Algorithms for Science and Engineering, August 2005. University of Greenwich: CMS Press,
pp. 191–194.

Goscinksi, A. 1999 Finding, expressing and managing parallelism in programs executed on clusters of
workstations, Computer Communications 22, 998–1016.

Gottlieb, S. 2001Comparing clusters and supercomputers for lattice QCD. Nuclear Physics B (Proc. Suppl.)
94, 833–840.

Grandison, A. J., Gallea, E. R., Patel, M. K. & Ewer, J. A. C. 2005Parallel CFD based fire modelling on
conventional office based PCs. In Proceedings of the DCABES and ICPACE Joint Conference on Distributed
Algorithms for Science and Engineering, August 2005. University of Greenwich: CMS Press, pp. 43–46.

Hendrickson, B. 2000Load balancing fictions, falsehoods and fallacies. Applied Mathematical Modelling 25,
99–108.

Hobbs, M. & Goscinski, A. 2000 A The GENESIS parallelism management system employing concurrent
process-creation services. Microprocessors and Microsystems 24, 415–427.

Hu, Q. & Zou, J. 2005Nonoverlapping domain decomposition methods for three-dimensional maxwell system
in non-homogeneous media. In Proceedings of the DCABES and ICPACE Joint Conference on Distributed
Algorithms for Science and Engineering. University of Greenwich: CMS Press, pp. 17–21.

IBM. 2004An architectural blueprint for autonomic computing. IBM Autonomic Computing White Paper.
Available at: http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf.

Ibrahim, M., Telford, R., Dini, P., Lorenz, P., Vidovic N. & Anthony, R. 2004 Self-adaptability and
man-in-the-loop: a dilemma in autonomic computing systems. In Proceedings of the 2nd International
Workshop on Self-Adaptable and Autonomic Computing Systems — SAACS ’04 (DEXA 2004), Zaragoza,
Spain, September. IEEE, pp. 722–729.

218 . .

Jin, X. & Liu, J. 2004 Characterizing autonomic task distribution and handling in Grids. Engineering
Applications of Artificial Intelligence 17(7), 809–823.

Kephart, J. O. & Chess, D. M. 2003The vision of autonomic computing. Computer 36(1), 41–50.
Koehler, J., Giblin, C., Gantenbein, D. & Hauser, R. 2003On autonomic computing architectures. Research

Report (Computer Science) RZ 3487(#99302),IBM Research (Zurich).
Maglio, P., Campbell, C. & Kandogan, E. 2005On the need for negotiation in policy-based interaction with

autonomic computing systems. In Proceedings of the 2nd International Conference on Autonomic Computing
(ICAC). Seattle, WA: IEEE, pp. 356–357.

Shum, K. H. 1999Effective fault tolerance for agent-based cluster computing. Journal of Systems and Software
48(3), 189–196.

Weng, J., Miao, C. & Goh, A. 2004 Dynamic negotiations for Grid services. In Proceedings of the 1st
International Conference on Autonomic Computing (ICAC 2004). New York: IEEE Computer Society,
pp. 296–297.

Policy-based techniques for self-managing parallel applications 219

