4,469 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Two stage Indian food grain supply chain network transportation-allocation model

    Get PDF
    This paper investigates the food grain supply chain, transportation allocation problem of Indian Public Distribution System (PDS). The different activities of Indian food grain supply chain are procurements, storage, movement, transportation and distribution. We have developed a mixed integer nonlinear programming model (MINLP) to minimize the transportation, inventory and operational cost of shipping food grains from the cluster of procurement centers of producing states to the consuming state warehouses. A recently developed chemical reaction optimization (CRO) algorithm is used for testing the model which gives the superior computational performance compared to other metaheuristics

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Partial flexible job shop scheduling considering preventive maintenance and priorities

    Full text link
    [EN] In this paper, a new mathematical programming model is proposed for a partial flexible job shop scheduling problem with an integrated solution approach. The purpose of this model is the assignment of production operations to machines with the goal of simultaneously minimizing operating costs and penalties. These penalties include delayed delivery, deviation from a fixed time point for preventive maintenance, and deviation from the priorities of each machine. Considering the priorities for machines in partial flexible job shop scheduling problems can be a contribution in closer to the reality of production systems. For validation and evaluation of the effectiveness of the model, several numerical examples are solved by using the Baron solver in GAMS. Sensitivity analysis is performed for the model parameters. The results further indicate the relationship between scheduling according to priorities of each machine and production scheduling.Farahani, A.; Tohidi, H.; Khalaj, M.; Shoja, A. (2020). Partial flexible job shop scheduling considering preventive maintenance and priorities. WPOM-Working Papers on Operations Management. 11(2):27-48. https://doi.org/10.4995/wpom.v11i2.14187OJS274811

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    A hormone regulation based approach for distributed and on-line scheduling of machines and automated guided vehicles

    Full text link
    [EN] With the continuous innovation of technology, automated guided vehicles are playing an increasingly important role on manufacturing systems. Both the scheduling of operations on machines as well as the scheduling of automated guided vehicles are essential factors contributing to the efficiency of the overall manufacturing systems. In this article, a hormone regulation¿based approach for on-line scheduling of machines and automated guided vehicles within a distributed system is proposed. In a real-time environment, the proposed approach assigns emergent tasks and generates feasible schedules implementing a task allocation approach based on hormonal regulation mechanism. This approach is tested on two scheduling problems in literatures. The results from the evaluation show that the proposed approach improves the scheduling quality compared with state-of-the-art on-line and off-line approaches.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was sponsored by the National Natural Science Foundation of China (NSFC) under grant nos 51175262 and 51575264 and the Jiangsu Province Science Foundation for Excellent Youths under grant no. BK2012032. This research was also sponsored by the CASES project which was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under grant agreement no. 294931.Zheng, K.; Tang, D.; Giret Boggino, AS.; Salido, MA.; Sang, Z. (2016). A hormone regulation based approach for distributed and on-line scheduling of machines and automated guided vehicles. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 232(1):99-113. https://doi.org/10.1177/0954405416662078S99113232

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Survey of dynamic scheduling in manufacturing systems

    Get PDF
    corecore