13 research outputs found

    A General Methodology for Internalising Multi-level Model Typing

    Get PDF
    Multilevel Modelling approaches allow for an arbitrary number of abstraction levels in typing chains. In this paper, a transformation of a multi-level typing chain into a single all-covering representing model is proposed. This comprehensive model is of equal size as the most concrete model in the chain and encodes all typing information in its labels, such that the typing chain can completely be restored. This guideline for maintaining multi-level typing chains in respective implementations of multi-level typing environments is based on a categorical equivalence theorem, which we generalize to a more convenient graph-oriented version.acceptedVersio

    A Vision for Flexibile GLSP-based Web Modeling Tools

    Full text link
    In the past decade, the modeling community has produced many feature-rich modeling editors and tool prototypes not only for modeling standards but particularly also for many domain-specific languages. More recently, however, web-based modeling tools have started to become increasingly popular for visualizing and editing models adhering to such languages in the industry. This new generation of modeling tools is built with web technologies and offers much more flexibility when it comes to their user experience, accessibility, reuse, and deployment options. One of the technologies behind this new generation of tools is the Graphical Language Server Platform (GLSP), an open-source client-server framework hosted under the Eclipse foundation, which allows tool providers to build modern diagram editors for modeling tools that run in the browser or can be easily integrated into IDEs such as Eclipse, VS Code, or Eclipse Theia. In this paper, we describe our vision of more flexible modeling tools which is based on our experiences from developing several GLSP-based modeling tools. With that, we aim at sparking a new line of research and innovation in the modeling community for modeling tool development practices and to explore opportunities, advantages, or limitations of web-based modeling tools, as well as bridge the gap between scientific tool prototypes and industrial tools being used in practice.Comment: 8 pages, 5 figure

    Multi-level model product lines: Open and closed variability for modelling language families

    Full text link
    Modelling is an essential activity in software engineering processes. It typically involves two meta-levels: one includes meta-models that describe modelling languages, and the other contains models built by instantiating those meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary number of meta-levels. A scenario that profits from multi-level modelling is the definition of language families that become specialized by successive refinements at subsequent meta-levels, hence promoting language reuse. This enables an open set of variability options for the possible specializations of a given language. However, multi-level modelling lacks the ability to express closed variability regarding the supported language primitives and their realizations. This limits the reuse opportunities of a language family. To improve this situation, we propose a novel combination of product lines with multi-level modelling to cover both open and closed variability. Our proposal is backed by a formal theory that guarantees correctness, and is implemented atop the MetaDepth multi-level modelling tool.Work funded by the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00) and the R&D programme of Madrid (project FORTE, P2018/TCS-4314)

    Open meta-modelling frameworks via meta-object protocols

    Full text link
    Meta-modelling is central to Model-Driven Engineering. Many meta-modelling notations, approaches and tools have been proposed along the years, which widely vary regarding their supported modelling features. However, current approaches tend to be closed and rigid with respect to the supported concepts and semantics. Moreover, extending the environment with features beyond those natively supported requires highly technical knowledge. This situation hampers flexibility and interoperability of meta-modelling environments. In order to alleviate this situation, we propose open meta-modelling frameworks, which can be extended and configured via meta-object protocols (MOPs). Such environments offer extension points on events like element instantiation, model loading or property access, and enable selecting particular model elements over which the extensions are to be executed. We show how MOP-based mechanisms permit extending meta-modelling frameworks in a flexible way, and allow describing a wide range of meta-modelling concepts. As a proof of concept, we show and compare an implementation in the MetaDepth tool and an aspect-based implementation atop the Eclipse Modelling Framework (EMF). We have evaluated our approach by extending EMF and MetaDepth with modelling services not foreseen initially when they were created. The evaluation shows that MOP-based mechanisms permit extending meta-modelling frameworks in a flexible way, and are powerful enough to support the specification of a broad variety of meta-modelling featuresWork partially funded by projects RECOM and FLEXOR (Spanish MINECO,TIN2015-73968-JIN (AEI/FEDER/UE) and TIN2014-52129-R) and the R&D programme of the Madrid Region (S2013/ICE-3006

    Facet-oriented Modelling

    Full text link
    © ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Software Engineering and Methodology, http://dx.doi.org/10.1145/10.1145/3428076Models are the central assets in model-driven engineering (MDE), as they are actively used in all phases of software development. Models are built using metamodel-based languages, and so objects in models are typed by a metamodel class. This typing is static, established at creation time, and cannot be changed later. Therefore, objects in MDE are closed and fixed with respect to the class they conform to, the fields they have, and the well-formedness constraints they must comply with. This hampers many MDE activities, like the reuse of model-related artefacts such as transformations, the opportunistic or dynamic combination of metamodels, or the dynamic reconfiguration of models. To alleviate this rigidity, we propose making model objects open so that they can acquire or drop so-called facets. These contribute with a type, fields and constraints to the objects holding them. Facets are defined by regular metamodels, hence being a lightweight extension of standard metamodelling. Facet metamodels may declare usage interfaces, as well as laws that govern the assignment of facets to objects (or classes). This article describes our proposal, reporting on a theory, analysis techniques, and an implementation. The benefits of the approach are validated on the basis of five case studies dealing with annotation models, transformation reuse, multi-view modelling, multi-level modelling, and language product linesWork partially funded by the R&D programme of the Madrid Region (project FORTE, S2018/TCS-4314) and the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00

    Role-Modeling in Round-Trip Engineering for Megamodels

    Get PDF
    Software is becoming more and more part of our daily life and makes it easier, e.g., in the areas of communication and infrastructure. Model-driven software development forms the basis for the development of software through the use and combination of different models, which serve as central artifacts in the software development process. In this respect, model-driven software development comprises the process from requirement analysis through design to software implementation. This set of models with their relationships to each other forms a so-called megamodel. Due to the overlapping of the models, inconsistencies occur between the models, which must be removed. Therefore, round-trip engineering is a mechanism for synchronizing models and is the foundation for ensuring consistency between models. Most of the current approaches in this area, however, work with outdated batch-oriented transformation mechanisms, which no longer meet the requirements of more complex, long-living, and ever-changing software. In addition, the creation of megamodels is time-consuming and complex, and they represent unmanageable constructs for a single user. The aim of this thesis is to create a megamodel by means of easy-to-learn mechanisms and to achieve its consistency by removing redundancy on the one hand and by incrementally managing consistency relationships on the other hand. In addition, views must be created on the parts of the megamodel to extract them across internal model boundaries. To achieve these goals, the role concept of Kühn in 2014 is used in the context of model-driven software development, which was developed in the Research Training Group 'Role-based Software Infrastructures for continuous-context-sensitive Systems.' A contribution of this work is a role-based single underlying model approach, which enables the generation of views on heterogeneous models. Besides, an approach for the synchronization of different models has been developed, which enables the role-based single underlying model approach to be extended by new models. The combination of these two approaches creates a runtime-adaptive megamodel approach that can be used in model-driven software development. The resulting approaches will be evaluated based on an example from the literature, which covers all areas of the work. In addition, the model synchronization approach will be evaluated in connection with the Transformation Tool Contest Case from 2019

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution
    corecore