
This is a repository copy of Model-Based Development of Engine Control Systems : 
Experiences and Lessons Learnt.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177763/

Version: Accepted Version

Proceedings Paper:
Cooper, Justin, De La Vega, Alfonso, Paige, Richard Freeman orcid.org/0000-0002-1978-
9852 et al. (5 more authors) (Accepted: 2021) Model-Based Development of Engine 
Control Systems : Experiences and Lessons Learnt. In: ACM/IEEE 24th International 
Conference on Model Driven Engineering Languages and Systems. . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/477906867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Model-Based Development of Engine Control

Systems: Experiences and Lessons Learnt

Justin Cooper, Alfonso de la Vega,

Richard Paige, Dimitris Kolovos

Department of Computer Science

University of York, York, UK

{justin.cooper, alfonso.delavega,

richard.paige, dimitris.kolovos}@york.ac.uk

Michael Bennett, Caroline Brown,

Beatriz Sanchez Piña, Horacio Hoyos Rodriguez

Rolls-Royce, Birmingham/Derby, UK

{mike.bennett, caroline.brown2,

beatriz.angelica.sanchez.pina, horacio.hoyos}
@rolls-royce.com

Abstract—Rolls-Royce Control Systems supplies engine control
and monitoring systems for aviation applications, and is required
to design, certify, and deliver these to the highest level of safety
assurance. To allow Rolls-Royce to develop safe and robust
systems, which continue to increase in complexity, model-based
techniques are now a critical part of the software development
process. In this paper, we discuss the experiences, challenges
and lessons learnt when developing a bespoke domain-specific
modelling workbench based on open-source modelling technolo-
gies including the Eclipse Modelling Framework (EMF), Xtext,
Sirius and Epsilon. This modelling workbench will be used to
architect and integrate the software for all future Rolls-Royce
engine control and monitoring systems.

Index Terms—Domain Specific Language, Component Ori-
ented Architecture, Graphical Modelling Workbench, Xtext,
Sirius, EMF

I. INTRODUCTION

CaMCOA (Controls and Monitoring Component Oriented

Architecture) is a new software architecture designed to sup-

port future generations of Rolls-Royce’s Controls and Moni-

toring systems.

Component-Oriented Architectures (COAs) allow function-

ality to be encapsulated within a component that has a clearly-

defined interface and conforms to a prescribed behaviour (e.g.,

scheduling, communication) common to all components within

the architecture. This highly standardised approach is intended

to improve productivity and quality. The resultant system

is intended to be highly cohesive with well-defined system

behaviour, yet be loosely coupled, allowing components to be

upgraded, replaced or moved.

Examples of the use of COAs in related industries include:

• AUTOSAR [1] – The AUTomotive Open Software AR-

chitecture is a multi-partner standard intended to provide

a standardised platform (supporting specification of basic

software, middleware for engine control unit information

interchange, and application software) for automotive

software.

The work in this paper has been partially funded through an InnovateUK co-
funded Knowledge Transfer Partnership between the University of York and
Rolls-Royce plc (contract no. KTP011043), the HICLASS InnovateUK project
(contract no.113213) and the Engineering and Physical Sciences Research
Council (EPSRC) under Grant No.: EP/R512230/1

• ECOA [2] – the European Component Oriented Architec-

ture is intended to create a market for standard defence

mission system software components.

• SAVOIR [3] - the Space AVionics Open Interface aR-

chitecture has similar goals to ECOA but is targeted at

space applications. This has resulted in the definition of a

standardised On-Board Software Reference Architecture

(OSRA) with supporting toolset.

Fig. 1. CaMCOA Architecture

One of the main motivational points for CaMCOA is

support for Model-Based Application Development. Appli-

cation development for Controls and Monitoring systems is

increasingly undertaken using model-based approaches. Tools

such as Simulink [4] allow algorithms to be designed and

simulated graphically and then the implementation to be

produced automatically using code generation technologies.

These environments are increasingly supporting qualifiable

toolchains that provide evidence to support the required cer-

tification objectives, according to relevant standards such as

DO-178C, automatically.

The CaMCOA architecture, whose main components are

shown in Figure 1, is defined as follows:

• Application Partitions provide a container to execute

Application Services. Application Services can be im-

plemented in multiple programming languages, including

Simulink Models.



Fig. 2. Components of CaMCOA Studio

• The Runtime Configuration Layer (RCL) contains all the

specific configuration data for activities such as schedul-

ing, initialisation, and network messages.

• The Platform Abstraction Layer (PAL) contains all the

OS services that are required for the system (e.g. a Real-

Time Operating System (RTOS), Debug and Network).

• The Node Abstraction Layer (NAL) contains hardware

specific services (e.g. device drivers) which are defined

in Simulink and auto-generated to C code.

• The Microcontroller Abstraction Layer (MCAL) abstracts

low-level microcontroller functionality from the higher

layers.

In this paper, we present the experiences of creating

a domain-specific modelling workbench, CaMCOA Studio,

whose main components are shown in Figure 2. CaMCOA

Studio is being used on all new engine control and monitoring

projects at Rolls-Royce to deploy instances of the CaMCOA

architecture.

CaMCOA Studio has been under development since 2017,

and from 2018 its development has been partially supported

by a Knowledge Transfer Partnership (KTP) between Rolls-

Royce and the University of York. Motivation for building a

new domain-specific workbench came from many sources:

• The desire to support a bespoke DSML acceptable to

Rolls-Royce engineers, instead of a general-purpose mod-

elling language. The use of a DSML is expected to have

substantial adoption benefits, e.g., easier validation [5];

• The need to support integration with MATLAB/Simulink;

• The need to support traceability between CaMCOA mod-

els and MATLAB Simulink models, including specifica-

tion, querying and maintenance of tracebility links, e.g.,

to enable impact analysis;

• The desire to support model management (e.g., vali-

dation, transformation, comparison, querying), including

both known model management scenarios, and future

innovative scenarios;

• The desire to exploit advanced open-source technologies

while reducing the chance of vendor lock-in;

• The necessity to eventually support qualification of the

toolchain, e.g., against DO-330 [6].

The selection of the individual technologies atop which

CaMCOA Studio has been built has been broadly driven by

the combined team’s expertise and prior knowledge, and by

common open-source software health indicators such as the

size and activity of the community around each technology,

its development and maintenance activity, and the availability

of up-to-date documentation. With this in mind, it is entirely

possible that other technologies (e.g. Graphiti [7] instead of

Sirius [8] for graphical model editing, or Acceleo [9] instead of

EGL [10] for model-to-text transformation) would have been

as – or even more – effective for the respective tasks. On

a similar note, we make no direct or indirect claims on the

relative fitness of the Eclipse Modelling ecosystem compared

to alternatives such as JetBrains MPS [11] or MetaEdit+ [12],

which we have not explored for CaMCOA Studio.

The paper is structured as follows. Section II discusses the

approach and challenges that we encountered when defining

the abstract syntax of the core domain-specific language of

CaMCOA Studio using the Eclipse Modelling Framework and

Ecore. Section III discusses the concrete syntax of the lan-



guage, noting our experiences with tools such as Sirius, Picto

and Xtext. Section IV introduces our approach to automated

model management using the Epsilon family of languages to

validate and migrate models and to generate code, Simulink

models, Excel spreadsheets and XML documents. Section V

discusses the tooling facilitating collaborative model devel-

opment. Section VI discusses how we are testing CaMCOA

Studio. Section VII introduces and motivates a custom work-

flow UI tooling that can guide engineers through the supported

modelling and model management activities. Section VIII

discusses the feedback received from Rolls-Royce engineers.

Section IX details the open challenges we face with CaMCOA

Studio. Section X summarises related work, and Section XI

provides an overall conclusion of our experiences.

II. ABSTRACT SYNTAX

Defining the abstract syntax of the CaMCOA DSL1 was

a challenging task, as there is no easy metric or method

to determine whether the abstract syntax is correct. During

the initial development of the abstract syntax, we needed

several attempts as we attempted to create the metamodel

in a “big-bang” style approach (i.e. creating the complete

metamodel in absence of creating the concrete syntax or any

model transformations). We then found when subsequently

developing the concrete syntax or model transformations, the

metamodel was not fit for purpose. After several iterations of

the metamodel, we established the following guidance.

Firstly, it is crucial that the modelling team work closely

with the domain experts in “pair programming” style sessions.

When we did not follow this approach, we found that the

domain expert attempted to model in Ecore directly, causing

integration issues where the domain expert did not understand

the current metamodel structure, or the metamodeling team

were modelling the domain incorrectly.

Secondly, we found it important to model the domain

incrementally, ensuring there was a continuous thread from

abstract syntax to concrete syntax to generating artefacts. This

ensured we had continuous feedback that the abstract syntax

could be represented appropriately in the concrete syntax and

that the abstract syntax captured all the necessary detail to

be able to generate artefacts (e.g. code and models) from the

language.

Thirdly, we found it useful to have a simple extension

mechanism in the DSL. We decided to follow the pattern of

lightweight UML 1.x-style stereotypes, allowing new parts of

the domain to be modelled without changing the underlying

metamodel. If required, these features could then be promoted

to a first-class citizen in later versions of the abstract syntax.

Finally, we decided to split the domain into separate meta-

models where appropriate to improve the maintainability of

the DSL. For example, rather than modelling different parts of

the architecture (such as electronics and software) in the same

metamodel, we split the metamodel into smaller metamodels

relating to specific viewpoints of the DSL.

1This section does not include or describe the complete abstract syntax of
the CaMCOA DSL due to it being the intellectual property of Rolls-Royce.

When defining the abstract syntax of the CaMCOA DSL,

we used the Ecore language, part of the Eclipse Modelling

Framework (EMF) [13]. In general, we found that Ecore

allowed us to express the domain accurately, however we

encountered challenges when attempting to instantiate and re-

use modelled components.

In initial modelling attempts, we created a shared library

model containing re-usable components (such as processors

for example). A processor may have attributes which will

remain the same for all its instances (such as a name and

endianness), but also attributes that differ per instance (such

as serial number and clock speed). When an engineer wanted

to use an instance of this processor, they would copy the

processor into the relevant part of the model and change serial

number attribute as desired. This “clone-and-own” approach

had multiple issues. For example, if there was a mistake on

the clock speed attribute the engineer would have to find all

instances of this processor and update the clock speed in

them manually or by writing a script. Ideally, we wanted all

changes to be propagated to all instances, without the need to

synchronise them manually.

One approach we considered was to define two classes in the

metamodel. One “Processor” class and a “ProcessorInstance”

class. In this approach, static attributes of processors (such

as the name) can remain attributes of a “Processor”, however

attributes specific to the instance (such as serial number and

clock speed) are now attributes of the ProcessorInstance. Fi-

nally, a “ProcessorInstance” has a non-containment reference

allowing the instance to reference the processor (shown in

Figure 3).

This pattern worked in simple cases of instantiation; how-

ever, we still had a problem when trying to instantiate elements

inside of other instances. Consider the slightly more complex

example where we needed to model and create instances

of electronic boards. A board contains a processor instance,

and for each instance of the board, the processor must have

a unique serial number. In this case, we need to introduce

a “ProcessorConfiguration” class which captures the serial

number as an attribute and a (non-containment) reference to

the “ProcessorInstance” class (shown in Figure 4). Although

this approach provided the required functionality, the verbosity

negatively impacts the readability of the metamodel. A multi-

level modelling approach could have helped reduce this acci-

dental complexity in principle, however none of the multi-level

modelling frameworks we are aware of (e.g. Melanee [14],

MetaDepth [15]) are compatible with mainstream frameworks

for graphical modelling, model comparison/merging and trans-

formation in the Eclipse modelling ecosystem.

Fig. 3. Processor with Processor Instance



Fig. 4. Processor with Instance and Configuration Classes

Another issue we encountered was preserving and reviewing

the hand-written Java implementations of Ecore operations

and derived attributes. Ecore allows for derived attributes and

operations to be implemented in Java, but by default, the

user is required to modify the generated Java implementation

with handwritten code using “@Generated Not” annotations.

Although this does preserve the hand-written code, it can be

very difficult to review and maintain this handwritten code

when surrounded by generated code. We decided to split our

handwritten and generated code into separate source folders

(src and src-gen) and then use the “factory override” extension

point provided by EMF. This meant that, when reviewing

code changes, the generated code directories did not need

to be reviewed in detail. Alternatively, OclInEcore [16] and

Xcore [17] provide support for specifying the body of derived

attributes and operations within the metamodel itself.

We initially used Ecore Tools [18] to define the metamodel

using a graphical class diagram-like notation as many domain

experts were already familiar with UML. As the DSL grew,

we found it increasingly difficult to use Ecore Tools to explore

and edit the metamodel. For example, Ecore Tools provides

a layer to show related EClasses, but activating this layer on

an existing diagram which already contains many elements

can result in very complex diagrams showing all the related

elements of all classes in a diagram. Also, the layout tooling

did not produce readable layouts reliably, meaning time was

spent having to manually layout diagrams.

As such, we eventually decided to use Emfatic [19] (i.e. a

textual syntax for Ecore) and then generate graphical views

using Picto [20], an Eclipse view for visualising models via

model-to-text transformations. This approach meant that we

could benefit from the advantages of textual modelling (fewer

clicks when defining model elements, easier to review in

version control tooling), but also easily communicate with

stakeholders as they were more familiar with a graphical

syntax. An additional feature of Picto meant that we could vi-

sualise constraints when reviewing the metamodel. This meant

that when combined with the Epsilon Validation Language

(EVL) we could verify that appropriate constraints had been

defined without polluting the metamodel validation logic.

III. CONCRETE SYNTAX

When creating the concrete syntax for CaMCOA, it was

critical to consider the engineers using the DSL, as this

would be their primary way they interact with the model. It

is generally good practice to follow a user-centered design

process before creating any parts of the concrete syntax and

avoid rushing into the implementation. Our design process is

as follows:

• Persona - Define a typical user, noting their background

(e.g. familiar with specific tools such as Simulink) and

goals (e.g. model a processor)

• Scenario - Detail a situation of how the user will interact

with the model editor to achieve their goals

• Prototype - Construct a low fidelity sketch of the concrete

syntax

• Review - Can the persona use the prototype in the sce-

nario to achieve their goals? Does the prototype consider

the persona’s background?

• Iterate - iterate over each of the previous stages, adding

extra details and refining if necessary

• Implement - implement the final prototype

A. Graphical syntax

The majority of engineers in the company have strong skills

in Simulink and Microsoft Excel, therefore an early decision

was made for the concrete syntax to be based on node-edge

diagrams and tables. We briefly evaluated Sirius, EuGENIA

[21] and Graphiti [7] to build our graphical syntax. Sirius

was preferred over the other two options due to the native

support it provides for both node-edge style diagrams and

tables, due to being interpreted (allowing rapid prototyping

without having to start run-time instances of Eclipse) and

under active development.

Sirius allows for a graphical concrete syntax (diagrams,

tables and trees) to be defined by a viewpoint specification

model (VSM), building atop lower-level Eclipse graphical

frameworks such as GMF Runtime and GEF [22]. This VSM

is typically modified via a tree-based editor, allowing the user

to build the graphical concrete syntax without having to write

code. However, for more complex diagrams, it is necessary to

write model queries in the provided Acceleo Query Language

(AQL) [9] and Sirius also provides the ability to write custom

logic in Java where appropriate.

Sirius also provides many user-oriented features. For ex-

ample, dialogs, filters, layers and wizards can be created

to help the user construct and navigate around the model.

To support our instancing solution (presented in II), Sirius

provides support for building custom Properties views via the

Eclipse Extended Editing Framework (EEF) [23]. All of these

features significantly improved the usability of the tool for the

end user.

Although Sirius is interpreted, we did not notice any ma-

jor performance issues when rendering diagrams and tables,

although typically our largest single diagram contains 300

elements and models have fewer than 5000 model elements.

The diagram containing 300 elements opens in less that 10

seconds on a mainstream laptop, there is no noticeable lag

whilst browsing the model and running auto-layout (ELK

layered algorithm) typically takes less than 10 seconds.

One of the challenges we found when using Sirius was

that it is tedious to create certain aspects of the viewpoint



specification model, such as dialog boxes, edge re-connection

tools and palette tools. In order to reduce this effort, we

created model-to-model transformations which automatically

generated parts of the viewpoint specification model from an

annotated Ecore metamodel.

We have faced challenges dealing with changes to the ab-

stract syntax (model migration). All information relating to the

concrete syntax of a Sirius model is stored in a representations

(.aird) model. This model contains details such as the layout

of diagrams, what layers and filters are active on diagrams

and what representations (tables/trees/diagrams) exist in the

model. This representations model references semantic model

elements, however as the underlying abstract syntax of the

language evolves, semantic model elements may not exist or

might have changed in later versions of the language. To the

best of our knowledge, there is no current best practice when

dealing with changes to the abstract and concrete syntax, and

we have been relying on bespoke automated migration scripts,

as described in Section IV-D, to migrate and repair broken

references, or even have to ask engineers to delete and re-

create the diagrams where possible.

Another challenge relating to diagram editing is layouting.

The default strategies for diagram layouting in Sirius pro-

vided unsatisfactory results, and in most instances caused a

worse layout than the one created by the users themselves.

In recent versions of Sirius, however, there is experimental

support for including layouting from the ELK [24] (Eclipse

Layout Kernal) project. This has provided us with significant

improvements in the layouting of diagrams.

We have also found it challenging when creating a strategy

to best manage the .aird representations model. By default,

all representations are stored in a single model at the root of

the project. This can however cause conflicts when multiple

engineers are working collaboratively on the model. Sirius

does provide tooling to fragment and extract parts of the main

representations.aird to separate aird files, reducing the risk of

creating merge conflicts, however we then need additional

logic to manage the model fragments (for example, if the

semantic model element representing the root of a diagram

had been deleted, the diagram should be deleted too).

In some Sirius diagrams, it was necessary to provide

additional read-only views to complement the information

provided by the diagrams. An example of this is when a

user was scheduling the system using CaMCOA Studio. When

an engineer is scheduling a system, they typically need to

analyse different parts of the system to see details of what

tasks are consuming the most resources, how much slack

there is available on the system etc. To render these read-only

views, we again relied on Picto [20] to create visualisations via

model-to-text transformations. Engineers would still edit the

model via Sirius diagrams and these extra views are rendered

alongside the editor.

Picto has been used with ChartJS [25] to render charts and

PlantUML [26] to render timing diagrams, and provides many

useful features such as navigation between elements in the

rendered view and the Sirius-based editor, support for layers

and lazy evaluation, meaning only the details needed to be

shown are computed.

B. Textual syntax

In some cases, a tree, table, or diagram does not provide the

most intuitive concrete syntax for editing the model, and a tex-

tual syntax allows a user to more efficiently create and modify

model elements. One requirement within the CaMCOA DSL

was to be able to precisely define the format of messages being

sent and received on the internal and external data buses, and

to associate specific semantic attributes with elements of the

message so they can be processed on transmission/reception.

These messages require an Interface Description Languages

(IDL) that declares how the message should be formatted and

treated. IDLs are used to precisely define the required format

of interfaces between computing systems, particularly where

processor architecture and language differences could lead to

a mismatch in the representation of the expected data. There

are several standardised IDLs, for example ASN.1 [27] and

the OMG IDL [28].

In a white paper [29] Obeo and Typefox have shown how

it is possible to integrate Xtext [30] based textual DSLs into

the Sirius properties view. This approach stores textual DSL

snippets in textual attributes of the DSL. Sirius then provides

the ability to embed custom widgets into the properties view

and Xtext provides an embedded editor widget as part of the

framework. The implementation in the white paper showed

a basic implementation of the glue-code required to embed

an editor providing content-assist, syntax highlighting, code

completion, references between the Xtext and Sirius models

and navigation. We did encounter several challenges when

trying to embed a textual DSL into the Sirius properties view

which are detailed in [31].

IV. MODEL MANAGEMENT

CaMCOA Studio needs to generate many different artefacts

from a CaMCOA model to create and test software builds,

including source code, Simulink models, tests and XML

documents. Although the generation of these artefacts can be

performed in general-purpose programming languages such as

Java, we decided to use the Epsilon family of tools [32] for

model management tasks. The architecture of Epsilon contains

a model connectivity layer that abstracts any of the specific

low-level modelling technology details such as querying the

CaMCOA model (EMF model), parsing XML or modifying a

Simulink model, allowing access to the models in a uniform

way. Epsilon then provides a set of languages built atop the

Epsilon Object Language (EOL) [33] to write and maintain

model management operations following a declarative style.

This means time is not wasted having to write, maintain and

review boilerplate Java code for any of our model transfor-

mations. Epsilon programs can also be called “headlessly”

(i.e. invoked by command-line interfaces). This allows the

model management programs to be executed outside of an

Eclipse environment, ensuring that any issues with the models



or model management tasks can be identified as part of a

continuous integration build.

One of the powerful features of Epsilon is its dynamic

typing support. However, Epsilon’s Eclipse-based editors do

not provide context-aware code completion or static type-

checking facilities, meaning some errors are not always iden-

tified until the script has been executed. One way to improve

the execution time error reporting is to make sure types are

assigned to variables (unless it is intended to hold values of

different types) and to operations, parameters and return types.

We have also found it very useful when developing Epsilon

programs to use the Epsilon interpreter2 to check queries

whilst writing transformations. Our current model manage-

ment solution is split across 73 model-to-text transformation

(EGL) templates, 28 model-to-model transformation (ETL)

scripts and approximately 150 validation (EVL) constraints.

A. Model-to-text transformation

CaMCOA Studio is required to generate source and build

files. All model-to-text transformations are implemented using

the template-based Epsilon Generation Language (EGL) [10].

EGL supports many powerful features such as traceability

from the source model to the generated code. EGL transfor-

mations can be orchestrated via a dedicated rule-based sub-

language (EGX). EGX ensures that all the logic for running

the EGL templates is captured in a declarative way, without

having to maintain boilerplate code for coordinating model-

to-text transformations. Although EGL supports features such

as protected regions (i.e. allowing handwritten code and gen-

erated code to co-exist in the same file), this has not been

necessary in CaMCOA.

The main challenges we have encountered whilst writing

EGL templates is ensuing the generated code conforms to

the Rolls-Royce coding standard. In an attempt to automate

this process, we run both static analysis and code formatting

compliance tooling during our continuous integration builds.

This means that any errors on the templates can be identified

automatically.

B. Model-to-model transformation

1) CaMCOA-to-Simulink transformations (EMF to

Simulink): As discussed in Section I, support for model-

based application development in tools such as Simulink is

a major motivational factor for CaMCOA Studio. This is

because the logic for any application or platform services

can be defined in the Simulink environment where an

engineer can easily simulate and test behaviour, auto-generate

the implementation and then provide evidence to support

certification objectives.

The CaMCOA model captures deployment-specific details

relating to the Node Abstraction Layer (NAL) in the CaMCOA

Architecture. With these details, Simulink models can be

instantiated for the deployment of an engine project and

then the Simulink code generator can generate all the code

2https://www.eclipse.org/epsilon/doc/articles/eol-interpreter-view/

related to the behavioural part of the engine deployment.

Note that CaMCOA Studio does not generate complete be-

havioural models for the Node Abstraction Layer; it creates

Simulink models that instantiate Simulink library components

created internally within Rolls-Royce. CaMCOA allows for the

deployment-specific data to be captured and when combined

with the library models, a complete implementation for the

NAL layer in the CaMCOA architecture can be generated.

CaMCOA Studio uses the Epsilon Transformation Language

(ETL), combined with Epsilon’s EMF and Simulink Epsilon

drivers [34] to perform the EMF to Simulink transformations.

In general this has been a successful approach to generat-

ing Simulink models from CaMCOA Studio. One challenge

we have encountered is performance. The Simulink models

generated from CaMCOA Studio are typically in the region

of a few hundred model elements and take approximately 5

minutes to generate. After initial investigations, we found that

each command sent via the official MATLAB Java engine

takes approximately 10ms. When using it through Epsilon

to generate a Simulink model from a CaMCOA model with

approximately 300 elements, over 40,000 commands need to

be sent to the engine to create, configure and link the elements.

2) Simulink-to-CaMCOA transformations (Simulink to

EMF): CaMCOA needs to be aware of the interfaces of the

application services (defined in the Application Partitions in

the CaMCOA architecture). The behaviour of the services is

defined in Simulink models and then the implementation is

generated via the MATLAB code generator. For creating an

instance of the CaMCOA architecture, CaMCOA Studio must

import the relevant data from the application service models

into the CaMCOA model.

Although the Epsilon Simulink driver can query the

Simulink model directly, to improve performance and to allow

for other tools to consume the application service interfaces, a

model-to-model transformation happens in Simulink to trans-

form the Simulink model to an intermediate XML model

(this is out-of-scope of CaMCOA Studio and therefore not

performed using Epsilon). The intermediate XML model is

then is imported into CaMCOA Studio using the Epsilon XML

driver [35].

One issue we have faced during this approach is keeping

the application services (Simulink models) and CaMCOA

models synchronised. For example, if the interface of the

application service component changes, this change needs to

be updated in the CaMCOA model. To detect such changes,

we have utilised the Epsilon Comparison Language (ECL)

to identify mismatches between the application services and

the CaMCOA model, and the Epsilon Validation Language

(EVL) to suggest quick fixes to perform the synchronisation.

Bidirectional transformation languages such as JTL [36] or

eMoflon::IBeX [37] may have been better suited to this task,

however the constraints of the project did not allow for a

comprehensive evaluation of all available options and direct

model transformations may suffer due to the performance of

the MATLAB Java engine.



3) CaMCOA-to-XML and CaMCOA-to-Excel transforma-

tions: In order to test software deployments, internal Rolls-

Royce testing tools need setting up with engine specific data.

The internal testing tools consume XML models and Microsoft

Excel spreadsheets to configure the test environment. By using

the Epsilon XML driver [35], the Epsilon Excel driver [38]

and ETL, the test model can be generated automatically from

the data in the model. Before CaMCOA Studio this was a

manual process where an engineer would have to construct

the models or spreadsheets by hand from Microsoft Excel and

Word documents.

C. Model Validation

Model validation is an essential part of CaMCOA Studio to

alert engineers of potential problems in the model. The Epsilon

Validation Language (EVL) [39] provides a declarative syntax

for defining constraints on model elements. Violations of these

constraints can be presented to the user as either a warning

or an error depending on the severity and the ability to write

“quick-fixes” to help users solve any issues in their model.

EVL provides extension points allowing it to integrate with

many different frameworks such as EMF, Xtext and Sirius

editors without having to write any additional code other than

the constraints themselves.

To ensure any regressions or errors can be identified in the

model as early as possible, we have found it very useful to run

model validation scripts as part of any continuous integration

builds involving the CaMCOA model. Another useful feature

of Epsilon is that it provides good profiling tooling to identify

constraints which were taking a long time to execute. Before

running any profiling, model validation was taking approxi-

mately 1 minute with a model size of approximately 2,000

elements and 150 EVL constraints. However, by using the

profiling we reduced this down to approximately 15 seconds.

D. Model migration

As the abstract and concrete syntax of the DSL are con-

tinuously evolving as the tooling becomes more stable, it has

been important to migrate older models conforming to earlier

versions of the DSL. In order to do this, we have needed to

use model migration frameworks.

To define and perform model migrations, we investigated

two frameworks: Edapt [40] and Epsilon’s Flock [41]. Edapt

is a migration framework for Ecore based models that can

automatically generate any migrations by tracking the changes

to the abstract syntax. This is very powerful as it means a user

does not need to manually define migration rules for simple

changes. One of the main disadvantages of this approach,

however, is all metamodel edits must occur in the Ecore tree

editor. As described in Section II, we use Emfatic as an editor

for our Ecore based metamodel, therefore this would require

us to prototype the changes in Emfatic and then re-implement

the changes based in the Ecore tree-based editor for Edapt to

capture all the of the changes.

Flock on the other hand allows for migration scripts to

be written in a similar fashion to ETL (model-to-model)

transformations. An advantage of using Flock rather than a

plain model-to-model transformation is that Flock will au-

tomatically copy elements unaffected by the transformation,

avoiding unnecessary logic to be defined by the user compared

to writing the equivalent ETL transformation. Flock requires

the source and target Ecore metamodels to be present for

the transformation to work correctly. This means that the

metamodel needs to be versioned correctly, for example by

using the namespace URI attribute in Ecore to capture the

version. All versions of the metamodel must then be shipped

with the tool. Edapt, differs slightly as it captures all revisions

in a single “history” model with releases being defined after

certain set of changes have been made.

E. Epsilon in CaMCOA Studio

At this point it is worth mentioning that Epsilon was the

technology of choice for automating model management tasks

such as model validation and transformation in CaMCOA

Studio before the involvement of the authors from the Uni-

versity of York (who are also contributors to Epsilon) in

the project. However, we also recognise that the adoption of

further Epsilon-based technologies such as Flock for model

migration and Picto for model visualisation (discussed in

Sections II and IV-D) may have been influenced substantially

by the availability of expertise and direct support from the

York collaborators.

V. COLLABORATIVE MODEL DEVELOPMENT

A. Comparison and merging

Defining a CaMCOA deployment takes expertise spread

across multiple teams, and different users are required to work

on different parts of the model in parallel. At Rolls-Royce,

all artefacts are stored as files using the Git version control

system, including CaMCOA models and Sirius representation

models. Without good support for comparison and merging,

it can be time consuming and error prone to review model

changes, identify merge conflicts and automatically merge

non-conflicting changes. Both the CaMCOA model and the

Sirius representation models are stored using the XMI [42]

format. This means if a user were to use traditional comparison

and merging tools such as WinMerge [43], users would see

many low-level details of the model which are not easily

understandable to humans (such as XMI IDs). Two frame-

works which allow for model comparison and merging to be

carried out at the model level are EMF Compare [44] and

EMF Diff/Merge [45].

1) EMF Compare: By default, EMF Compare allows per-

forming model comparison and merging via a tree interface.

EMF Compare has good performance, allowing a three-way

merge across a model with over 2k elements being loaded in

less than 10 seconds. Being able to compare and merge models

as trees is very powerful, however it is not the syntax that

the users are typically editing the model in. For example, in

CaMCOA, users are typically editing the model within Sirius

diagrams rather than a tree editor.



EMF Compare has support for comparing models as di-

agrams and provides integration with Sirius. However, users

can become overwhelmed with the low-level details of changes

to the Sirius representations model. For example, some of

the diagrams in CaMCOA Studio typically contain more than

100 elements. If two users had run the auto-layout feature

on the same diagram on different branches, there may be

100 differences or conflicts in the x,y positioning of the

diagram elements. This means users typically prefer to merge

the semantic model (CaMCOA model) using the tree syntax

provided by EMF Compare, leading to the user having to take

either “Theirs” our “Ours” during a Git merge of the Sirius

representations model. This can have side-effects, such as the

diagram model referring to semantic elements that no longer

exist.

2) EMF Diff/Merge: EMF Diff/Merge was also reviewed

and was found to provide similar functionality to EMF Com-

pare. Comparison and merging were only supported via a tree

interface, however we found EMF Diff/Merge did not properly

support references to model elements stored in separate files,

resulting in it being unusable for CaMCOA Studio.

3) Xtext: Serialising the model using Xtext, rather than

XMI has also been considered. By storing the CaMCOA

model as text, all the standard code reviewing tooling (such as

WinMerge) can be used as elements, e.g., references, can be

stored as a more meaningful name. We rejected this approach

however, as an Xtext grammar would need to be implemented

and maintained for the DSL, on top of the Ecore meta-

model and Sirius viewpoint specification model. Language

specific details such as custom scoping rules may need to be

implemented too, to avoid multiple elements containing the

same name being identified as conflicting references (as Xtext

references elements by name rather than ID).

B. Model Reviewing

Any code or artefacts at Rolls-Royce are required to be

reviewed on a pull-request before the changes can be merged

onto the main development branch. This review typically

happens within a web-browser, using the reviewing tooling

provided by Microsoft Team Foundation Server (TFS) [46].

This interface allows users to attach review comments on

specific parts of artefacts (e.g. locations in text files), and allow

the author to respond or raise further work items (tickets) to

record any required follow-up work.

As the reviewing of artefacts typically happens in a web

browser, users have to annotate any model review comments to

the XMI file directly (as TFS cannot render CaMCOA or Sirius

models from within the browser). This means that to properly

review the model, a user must check-out the branch, use EMF

Compare to review the changes and then attach any review

comments in the web-browser based on what was displayed

in EMF Compare. This is a very tedious and error-prone task

for reviewers and there have been occasions where regressions

have been introduced due to the difficulty of reviewing of

models from within a browser. There is a strong desire for

users for better browser-based reviewing tooling; we discuss

this further in Section IX.

VI. TESTING AND RELEASE ENGINEERING

In order to test CaMCOA Studio, we have used a range of

testing frameworks. All of the tests run as part of a continuous

integration build to ensure any regressions or errors in the tool

can be identified as early as possible.

A. Testing

a) JUnit: Custom code relating the metamodel, such as

the implementation of Ecore operations or derived attributes

are tested using the JUnit [47] framework. JUnit supports

coverage frameworks such as JaCoCo [48] to gain an insight

into the quality of testing.

b) EUnit: Model management tasks such as EVL con-

straints and model-to-model transformations are tested using

the Epsilon Unit Test framework (EUnit) [49]. EUnit provides

extra support for loading model management operations and

models compared to JUnit when testing model management

tasks. Currently, however, there is no support for gaining

coverage metrics for EUnit tests.

c) SWTBot: To ensure no regressions have occurred in

the Sirius viewpoint specification model (which defines the

editors for the graphical concrete syntax), we use the SWTBot

[50] framework and support libraries provided by the Sirius

framework.

We had initially investigated RCPTT [51] to test the Sirius

editors as RCPTT provides features such as the Eclipse

Command Language DSL [52] and a recording application

to reduce the amount of effort when writing tests. In our

experiences however, the test recorder generated lots of noise

that needed to be manually removed.

Although SWTBot does have a test recorder, the test

recorder does not support Sirius based editors meaning the

tests must be handwritten. We did, however, successfully

generate approximately 40% of our tests by writing custom

model-to-text transformations from the CaMCOA metamodel

and Sirius viewpoint specification model.

B. Release Engineering

The Eclipse Tycho project provides good support for build-

ing Eclipse plug-ins and tooling based on an Eclipse target

platform. On each successful merge back to our main devel-

opment branch, we generate an Eclipse P2 update site [53] for

CaMCOA Studio. We also create Oomph [54] setup models

to allow users to install CaMCOA Studio.

C. Managing External Dependencies

Eclipse follows a 13 week release cycle and many of our

dependencies (Sirius, Xtext, EMF) obey this. To minimise

disruption, we follow 1 release behind (e.g. in June 2020 we

adopted the March 2020 release). We detect breaking changes

by running our extensive suite of automated tests, and any such

changes can be identified one release ahead which allows for

major issues to be dealt with prior to adoption.



VII. CUSTOM PARTS

A. CaMCOA Workflow UI

In early CaMCOA Studio versions, users relied heavily on

the tree-based Model Explorer view provided by Sirius to

navigate around the model and perform model management

tasks. As the CaMCOA DSL grew in complexity, it became

difficult for novice users to know how to interact with the

model as it required a good understanding of the underlying

metamodel structure. The main challenges we faced were: 1) a

growing number of types: What elements must be defined?,

2) a growing number of relations: Which elements must be

defined first?, and 3) identifying transitive relations: How can

changes in a part of the model affect other parts?.

Our initial solution was to define a wizard which guided

engineers through the construction of a CaMCOA model,

known as the CaMOCA Workflow. This addressed the first

two challenges and partially addressed the third one. 1) Each

step required the user to instantiate a set of elements: As new

classes were added to the CaMCOA metamodel, we could add

them to a step’s set or create a new step. 2) The step order

implicitly captured the before-after relations and ensured that

elements required at later steps had been created. 3) Modifying

elements as part of a step implied that all subsequent steps

should be revisited as they might have been impacted.

After deploying this solution, we discovered flaws with our

approach. Firstly, a guided process works well for creating a

model from scratch, however when editing a particular part

of the model, the workflow did not provide any information

to find the step to start that change process. Secondly, the

guided process works well for engineers that are unfamiliar

with CaMCOA Studio, but but can become obtrusive for

experienced users that knew where to go but where forced by

the workflow to follow a predefined path to get there. Thirdly,

according to the user role (e.g. Electronic Engineers, System

Architects, etc.), users need to work on different parts of the

model, revealing multiple entry points. Finally, pre- and post-

dependencies that are not in the immediate step were easy to

miss. For example if a user added a new component using the

wizard and skipped to the code generation step, the user may

miss the step to schedule the component. Overall, this made

it harder for engineers to visualise and understand the impact

of a change.

After taking these issues into consideration, the workflow

was redesigned as a graph, where nodes represent the steps

that can be carried out to complete a CaMCOA model and

edges capture the dependencies between these steps. In early

development stages the relations can be used as a guide

of what needs to be completed to populate a CaMCOA

model from scratch, as in the old workflow process. For later

development stages, the relations can be used to inform users

on how steps can affect each other and which parts of the

model are impacted. The graph also provides a less restrictive

view, which allows users to quickly navigate to different steps

of the development.

To easily maintain the workflow, we have implemented a

separate workflow DSL to capture the steps of the workflow

along with their activities, tools and dependencies. The steps

may be linked to Sirius views (tables or diagrams) where

the user can modify the CaMCOA model. We then transform

the workflow model into the HTML, CSS and JavaScript for

rendering in an embedded browser within Eclipse.

We have also introduced a context-sensitive documentation

view which, depending on the active editor, will navigate to the

correct CaMCOA Wiki page (stored in TFS) allowing the user

to see all relevant documentation without having to manually

navigate to it in a web browser.

VIII. CAMCOA STUDIO RECEPTION

CaMCOA Studio is now being used on all new engine

control and monitoring projects and has received very positive

feedback from users. Engineers appreciate and are exploiting

the higher level of abstraction and automation that CaMCOA

Studio provides. Previously, engineers would need to work

across many sources of information (including Microsoft Word

and Excel documents) and manually construct engine software

deployments. During the development of CaMCOA Studio,

four trial events were undertaken. In each trial event, when

engineers used CaMCOA Studio, it took a team of five

engineers approximately one week per trial event to deploy

components. Informal feedback from experienced engineers

at the company has indicated that these activities would have

taken several months with a much larger team.

Users have also highlighted areas for improvement. Firstly,

some users have found it challenging to understand and navi-

gate around the model. To address this, we have implemented

the workflow as described in Section VII. We are continuously

working with engineers to improve the workflow to help them

better navigate and use CaMCOA Studio. Secondly, users find

collaborative working difficult, even when using tooling such

as EMF Compare. Some users have commented that they are

spending a large percentage of their time trying to review

changes and resolve conflicts as they find EMF Compare

confusing. We are hoping to customise EMF Compare and

investigate diagram comparison and merging in the future

based on user feedback. Finally, as integration engineers were

previously manually constructing software deployments, they

were more easily able to modify and debug code. Now, as

the level of abstraction has increased and code is generated,

engineers have to seek advice from the CaMCOA Studio

development team to help with debugging and modification

of transformations. As CaMCOA Studio further matures,

we expect to create distinct roles for the development and

maintenance of the model transformations to avoid integration

engineers attempting to debug issues themselves. To support

Rolls-Royce engineers, we have adopted the Scrum framework

with three week sprint cycles. As part of each sprint, our

users are involved in planning and review sessions to provide

feedback and requirements. We run quarterly trial events for

more formal evaluation.



IX. OPEN CHALLENGES

In this section we summarise the main open challenges we

are facing in CaMCOA Studio for which we have not found

publicly available solutions that work satisfactorily out of the

box.

A. Diagram comparison and merging

As discussed in Section V-A1, the only tool that provides

some support for comparing and merging Sirius diagrams at

present is EMF Compare. While EMF Compare can display

the two versions of the diagram in a graphical form side

by side, comparison and merging needs to be carried out

through EMF Compare’s standard tree-based representation.

This representation exposes so much low-level detail to users

that in practice we have found it to be unusable. As a result,

engineers tend to fall back to either comparing and merging

diagrams at the XMI level or accepting the incoming version

of the diagram and repeating their changes manually through

the Sirius diagram editor. We are hoping to implement custom

filters in EMF Compare to filter irrelevant changes.

B. Model reviewing

As discussed in Section V-B, our procedures for collab-

orative development include a standard review process via

pull-requests managed in a web browser. The main issues

come from the review system presenting model changes in

their serialised XMI textual format. As it is not possible to

reliably visualise changes in XMI, reviewers need to perform

the comparison locally by using EMF Compare. XMI also

makes it very laborious to leave comments in specific parts of

models. For instance, reviewers wanting to put a comment in

a model element would first need to know the line in which

that element was serialised into XMI. We are looking at ways

to improve this review process from inside the Eclipse IDE, so

that comments can be left on individual model elements, and

the back-and forth process of relating those comments with

the serialised XMI is done automatically. Our investigation of

existing tools suggest that it could be feasible to extend Mylyn

[55] to support this functionality.

C. Comparing models conforming to evolving metamodels

As the CaMCOA metamodel evolves at a fast pace, it is

not uncommon for engineers to have to compare and merge

models that conform to different versions of the metamodel.

Existing model comparison frameworks such as EMF Com-

pare and DiffMerge are based on the assumption that the mod-

els compared conform to the same metamodel and therefore

they cannot be of assistance in such scenarios. As a result,

models conforming to different versions of the metamodel end

up being compared and merged in their XMI representation,

which is far from ideal.

X. RELATED WORK

Multiple experience reports on the application of model-

based software development in real-world projects can be

found in the literature, which usually come in one of two

types.

The first type of reports consists of surveys carried out by

researchers [56]–[59], where MBE industry practitioners are

interviewed to identify, among other things, where and how

modelling is used (or not [60]), or what are the social or

technical factors limiting its adoption on each concrete context.

A result often provided by these surveys is a research agenda

for the academic community in the form of a list of open

challenges in the field, which have evolved over time [61].

The second type includes those works where experiences,

success stories and pain points are shared by the modelling

practitioners themselves [62]–[64], as we do in this paper.

For instance, authors of [62] presented their experience and

problems when doing collaborative work over software models

within teams of hundreds of developers. In [63], cultural and

institutional issues resulting from the adoption of MBE are

discussed. One of these issues refers to the reception of new

tools and methodologies (that we discussed in Section VIII),

which were easier to adapt to by junior workers than by those

with decades of experience doing work in a concrete manner.

In [5], experiences of building and applying a DSML-based

workbench for safety critical systems engineering is described.

Of particular importance is the highlighting of a number of

risks associated with using DSML-based workbenches in a

safety domain, and mitigations for these risks. The approach

is also applied in some detail to a healthcare system.

XI. CONCLUSIONS

In this paper we have presented the experiences and lessons

learnt through the implementation of CaMCOA Studio, a

domain-specific model-based development workbench, used to

architect and integrate engine control and monitoring systems

at Rolls-Royce. We have detailed our approach to developing

the abstract and concrete syntaxes of its underpinning domain-

specific language, and we have discussed the model manage-

ment operations, testing and release engineering aspects of the

workbench, noting any best practices we have developed and

challenges we have encountered.

Feedback from engineers using the tool in practice has been

very positive, as CaMCOA Studio has been shown to automate

several previously manual processes, allowing software de-

ployment activities that previously took months worth of effort

with larger teams, to be carried out by smaller teams in days.

The main open challenges we see at the moment are support

for diagram comparison and merging, model reviewing, and

comparison and merging of models conforming to evolving

metamodels.

Going forward, and to eliminate issues with deploying and

installing Eclipse instances on user PCs and aid in collab-

orative working, moving CaMCOA Studio to the web (or

at least providing a web-based counterpart for the Eclipse-

based workbench) is very appealing to the business. In this

direction, we plan to evaluate Sirius Web [65] and GLSP

[66] as both frameworks offer strategies for migrating existing

Eclipse modelling based tooling to web-based tooling.



REFERENCES

[1] AUTOSAR. AUTomotive Open System ARchitecture. https://www.
autosar.org/.

[2] T. E. Consortium. European Component Oriented Architecture (ECOA).
http://www.ecoa.technology/.

[3] European Space Agency. Space Avionics Open Interface Architecture
(SAVOIR). https://savoir.estec.esa.int/.

[4] MathWorks. Simulink. https://mathworks.com/products/simulink.html.

[5] M. Voelter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart,
A. Wortmann, and A. Nordmann, “Using language workbenches and
domain-specific languages for safety-critical software development,”
Softw. Syst. Model., vol. 18, no. 4, pp. 2507–2530, 2019. [Online].
Available: https://doi.org/10.1007/s10270-018-0679-0

[6] Radio Technical Commission for Aeronautics (RTCA), “DO-330 Soft-
ware Tool Qualification Consideration,” 2011.

[7] Eclipse Foundation. Eclipse Graphiti. https://www.eclipse.org/graphiti/.

[8] ——. Sirius. https://www.eclipse.org/sirius/.

[9] ——. Eclipse Acceleo. https://www.eclipse.org/acceleo/.

[10] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. Polack, “The
epsilon generation language,” in Model Driven Architecture -

Foundations and Applications, 4th European Conference, ECMDA-FA

2008, Berlin, Germany, June 9-13, 2008. Proceedings, ser. Lecture
Notes in Computer Science, I. Schieferdecker and A. Hartman,
Eds., vol. 5095. Springer, 2008, pp. 1–16. [Online]. Available:
https://doi.org/10.1007/978-3-540-69100-6 1

[11] Jetbrains. Meta Programming System (MPS). https://www.jetbrains.com/
mps/.

[12] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ A fully configurable
multi-user and multi-tool CASE and CAME environment,” in Seminal

Contributions to Information Systems Engineering, 25 Years of CAiSE,
J. A. B. Jr., J. Krogstie, O. Pastor, B. Pernici, C. Rolland, and
A. Sølvberg, Eds. Springer, 2013, pp. 109–129. [Online]. Available:
https://doi.org/10.1007/978-3-642-36926-1 9

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework, 2nd ed. Addison-Wesley Professional, 2009.

[14] C. Atkinson and R. Gerbig, “Flexible deep modeling with melanee,”
in Modellierung 2016 - Workshopband, S. Betz and U. Reimer, Eds.
Bonn: Gesellschaft für Informatik e.V., 2016, pp. 117–121.

[15] J. de Lara and E. Guerra, “Deep meta-modelling with metadepth,”
in Objects, Models, Components, Patterns, J. Vitek, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–20.

[16] Eclipse Foundation. OCLinEcore. https://wiki.eclipse.org/OCL/
OCLinEcore.

[17] ——. Xcore. https://wiki.eclipse.org/Xcore.

[18] ——. Ecore Tools. https://www.eclipse.org/ecoretools/.

[19] ——. Eclipse Emfatic. https://www.eclipse.org/emfatic/.

[20] D. Kolovos, A. de la Vega, and J. Cooper, “Efficient generation
of graphical model views via lazy model-to-text transformation,” in
Proceedings of the 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, ser. MODELS ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
12–23. [Online]. Available: https://doi.org/10.1145/3365438.3410943

[21] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C.
Polack, and G. Botterweck, “Taming EMF and GMF Using Model
Transformation,” in Model Driven Engineering Languages and Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6394, pp.
211–225, series Title: Lecture Notes in Computer Science. [Online].
Available: http://link.springer.com/10.1007/978-3-642-16145-2 15

[22] Eclipse Foundation. Eclipse Graphical Modelling Project. https://www.
eclipse.org/modeling/gmp/.

[23] ——. Eclipse EEF. https://www.eclipse.org/eef/.

[24] ——. Eclipse Layout Kernel. https://www.eclipse.org/elk/.

[25] ChartJS. ChartJS. https://www.chartjs.org/.

[26] PlantUML Team. PlantUML. https://plantuml.com.

[27] International Telecommunication Union. Abstract Syntax Notation One
(ASN.1). https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx.

[28] Object Management Group. Interface Definition Language. https://www.
omg.org/spec/IDL/.

[29] Obeo/TypeFox. Xtext Sirius Integration - The Main Use-Cases.
https://www.obeodesigner.com/resource/white-paper/WhitePaper
XtextSirius EN.pdf.

[30] Eclipse Foundation. Eclipse Xtext. https://www.eclipse.org/Xtext/.

[31] J. Cooper and D. Kolovos, “Engineering Hybrid Graphical-Textual
Languages with Sirius and Xtext: Requirements and Challenges,”
in 2019 ACM/IEEE 22nd International Conference on Model

Driven Engineering Languages and Systems Companion (MODELS-C).
Munich, Germany: IEEE, 2019, pp. 322–325. [Online]. Available:
https://ieeexplore.ieee.org/document/8904580/

[32] Eclipse Foundation. Eclipse Epsilon. https://www.eclipse.org/epsilon/.

[33] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Object
Language (EOL),” in Model Driven Architecture – Foundations and

Applications, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, A. Rensink, and J. Warmer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, vol. 4066, pp. 128–142, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/11787044 11

[34] B. Sanchez, A. Zolotas, H. Hoyos Rodriguez, D. Kolovos, and R. Paige,
“On-the-fly translation and execution of ocl-like queries on simulink
models,” in 2019 ACM/IEEE 22nd International Conference on Model

Driven Engineering Languages and Systems (MODELS), 2019, pp. 205–
215.

[35] D. Kolovos, L. M. Rose, J. Williams, N. Matragkas, and R. F. Paige, “A
lightweight approach for managing xml documents with mde languages,”
in Modelling Foundations and Applications, A. Vallecillo, J.-P. Tolvanen,
E. Kindler, H. Störrle, and D. Kolovos, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 118–132.

[36] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Jtl: a bidirec-
tional and change propagating transformation language,” in International

Conference on Software Language Engineering. Springer, 2010, pp.
183–202.

[37] E. Leblebici, A. Anjorin, and A. Schürr, “Developing emoflon with
emoflon,” in International Conference on Theory and Practice of Model

Transformations. Springer, 2014, pp. 138–145.

[38] M. Francis, D. S. Kolovos, N. Matragkas, and R. F. Paige, “Adding
spreadsheets to the mde toolkit,” in Model-Driven Engineering Lan-

guages and Systems, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and
P. Clarke, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 35–51.

[39] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, On the Evolution

of OCL for Capturing Structural Constraints in Modelling Languages.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 204–218.
[Online]. Available: https://doi.org/10.1007/978-3-642-11447-2 13

[40] Eclipse Foundation. Eclipse Edapt. https://www.eclipse.org/edapt/.

[41] L. M. Rose, D. S. Kolovos, R. F. Paige, F. A. C. Polack, and
S. Poulding, “Epsilon Flock: a model migration language,” Software &

Systems Modeling, vol. 13, no. 2, pp. 735–755, May 2014. [Online].
Available: http://link.springer.com/10.1007/s10270-012-0296-2

[42] Object Management Group. XML Metadata Interchange Specification.
https://www.omg.org/spec/XMI/.

[43] WinMerge. WinMerge. https://winmerge.org/.

[44] Eclipse Foundation. EMF Compare. https://www.eclipse.org/emf/
compare/.

[45] ——. EMF DiffMerge. https://www.eclipse.org/diffmerge/.

[46] Microsoft. Microsoft Team Foundation Server. https://docs.microsoft.
com/en-us/azure/devops/server/tfs-is-now-azure-devops-server?view=
azure-devops-2020.

[47] JUnit. JUnit. https://junit.org/.

[48] EclEmma. JaCoCo Java Code Coverage Library. https://www.jacoco.
org/jacoco/.

[49] A. Garcı́a-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige,
and I. Medina-Bulo, “EUnit: A Unit Testing Framework for Model
Management Tasks,” in Model Driven Engineering Languages and

Systems, J. Whittle, T. Clark, and T. Kühne, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, vol. 6981, pp. 395–409, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-24485-8 29

[50] Eclipse Foundation. SWTBot. http://www.eclipse.org/swtbot/.

[51] ——. RCP Testing Tool. https://www.eclipse.org/rcptt/.

[52] ——. Eclipse Command Language (ECL). https://www.eclipse.org/rcptt/
documentation/userguide/ecl/.

[53] ——. Eclipse Equinox p2. https://www.eclipse.org/equinox/p2/.

[54] ——. Eclipse Oomph. https://projects.eclipse.org/projects/tools.oomph.

[55] ——. Eclipse Mylyn. http://www.eclipse.org/swtbot/.



[56] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven
engineering practices in industry,” in Proceeding of the 33rd

international conference on Software engineering - ICSE ’11. Waikiki,
Honolulu, HI, USA: ACM Press, 2011, p. 633. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1985793.1985882

[57] M. Petre, “UML in practice,” in 2013 35th International Conference

on Software Engineering (ICSE). San Francisco, CA, USA: IEEE,
May 2013, pp. 722–731. [Online]. Available: http://ieeexplore.ieee.org/
document/6606618/

[58] H. Burden, R. Heldal, and J. Whittle, “Comparing and contrasting
model-driven engineering at three large companies,” in Proceedings

of the 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement - ESEM ’14. Torino,
Italy: ACM Press, 2014, pp. 1–10. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2652524.2652527

[59] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
challenges in model-driven engineering: an analysis of the state of
the research,” Software and Systems Modeling, vol. 19, no. 1, pp.
5–13, Jan. 2020. [Online]. Available: http://link.springer.com/10.1007/
s10270-019-00773-6

[60] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software
design models in software development practice: An empirical
investigation,” Journal of Systems and Software, vol. 95, pp. 176–193,
Sep. 2014. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S0164121214001022
[61] R. France and B. Rumpe, “The evolution of modeling research

challenges,” Software & Systems Modeling, vol. 12, no. 2, pp.
223–225, May 2013. [Online]. Available: http://link.springer.com/10.
1007/s10270-013-0346-4

[62] L. Bendix and P. Emanuelsson, “Collaborative work with Software
Models - Industrial experience and requirements,” in 2009 International

Conference on Model-Based Systems Engineering. Herzeliya and
Haifa, Israel: IEEE, Mar. 2009, pp. 60–68. [Online]. Available:
http://ieeexplore.ieee.org/document/5031721/

[63] J. Aranda, D. Damian, and A. Borici, “Transition to Model-Driven
Engineering,” in Model Driven Engineering Languages and Systems,
R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 692–708.

[64] A. Nordmann and P. Munk, “Lessons Learned from Model-Based
Safety Assessment with SysML and Component Fault Trees,” in
Proceedings of the 21th ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems. Copenhagen
Denmark: ACM, Oct. 2018, pp. 134–143. [Online]. Available:
https://dl.acm.org/doi/10.1145/3239372.3239373

[65] Eclipse Foundation. Sirius Web. https://www.eclipse.org/sirius/
sirius-web.html.

[66] ——. Graphical Language Server Protocol. https://www.eclipse.org/
glsp/.


	I Introduction
	II Abstract syntax
	III Concrete syntax
	III-A Graphical syntax
	III-B Textual syntax

	IV Model management
	IV-A Model-to-text transformation
	IV-B Model-to-model transformation
	IV-B1 CaMCOA-to-Simulink transformations (EMF to Simulink)
	IV-B2 Simulink-to-CaMCOA transformations (Simulink to EMF)
	IV-B3 CaMCOA-to-XML and CaMCOA-to-Excel transformations

	IV-C Model Validation
	IV-D Model migration
	IV-E Epsilon in CaMCOA Studio

	V Collaborative model development
	V-A Comparison and merging
	V-A1 EMF Compare
	V-A2 EMF Diff/Merge
	V-A3 Xtext

	V-B Model Reviewing

	VI Testing and Release Engineering
	VI-A Testing
	VI-B Release Engineering
	VI-C Managing External Dependencies

	VII Custom parts
	VII-A CaMCOA Workflow UI

	VIII CaMCOA Studio Reception
	IX Open challenges
	IX-A Diagram comparison and merging
	IX-B Model reviewing
	IX-C Comparing models conforming to evolving metamodels

	X Related Work
	XI Conclusions
	References

