9 research outputs found

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Quality of Service Improvement in Femto based Cellular Networks

    Get PDF
    A cellular network serve the high service demands of the indoor users it is very expensive to obtain macrocell coverage which results in requirement of new methods to solve problem of high capacity indoor coverage femto cell is one of the solutions. Deployment of femto cell networks embedded into macro cell coverage improves the coverage, capacity and quality of service in indoor environments. Due to its ad-hoc nature, the information about its density and location is not known a-priori. As femtos and macros share the same licensed spectrum, interference is one of the major problems observed and has to be mitigated. In this paper two existing channel allocation schemes such as opportunistic channel allocation scheme and orthogonal channel allocation scheme are discussed and their performance is compared to the proposed Max-SINR scheme. To reduce the interference further a self-organized and intelligent resource allocation is also proposed .Parameter such as average SINR experienced by each femto user is calculated by varying the percentage of active Femto cells in a network. Simulation results are carryout using MATLAB

    Quality of Service Improvement in Femto based Cellular Networks

    Get PDF
    A cellular network serve the high service demands of the indoor users it is very expensive to obtain macrocell coverage which results in requirement of new methods to solve problem of high capacity indoor coverage femto cell is one of the solutions. Deployment of femto cell networks embedded into macro cell coverage improves the coverage, capacity and quality of service in indoor environments. Due to its ad-hoc nature, the information about its density and location is not known a-priori. As femtos and macros share the same licensed spectrum, interference is one of the major problems observed and has to be mitigated. In this paper two existing channel allocation schemes such as opportunistic channel allocation scheme and orthogonal channel allocation scheme are discussed and their performance is compared to the proposed Max-SINR scheme. To reduce the interference further a self-organized and intelligent resource allocation is also proposed .Parameter such as average SINR experienced by each femto user is calculated by varying the percentage of active Femto cells in a network. Simulation results are carryout using MATLAB

    Radio Access Network Selection in a Heterogeneous Communication Environment

    Get PDF
    In recent years, a variety of wireless network technologies have been developed and deployed, including UMTS, WiFi, and WiMAX. The overlapping of different networks creates heterogeneous wireless environments, which can enable seamless communications, joint resource management and adaptive quality of service. In such environments, operators do not need to reject user requests, but redirect them to the most appropriate networks. However, heterogeneous wireless systems still have many pending issues to solve. One of them is the selection of the most appropriate radio access network when receiving a service request. This paper addresses this issue by proposing an adaptive and efficient algorithm. The simulation results show that the proposed radio access network selection algorithm can improve the network performance and capacity

    Contribution to resource management in cellular access networks with limited backhaul capacity

    Get PDF
    La interfaz radio de los sistemas de comunicaciones móviles es normalmente considerada como la única limitación de capacidad en la red de acceso radio. Sin embargo, a medida que se van desplegando nuevas y más eficientes interfaces radio, y de que el tráfico de datos y multimedia va en aumento, existe la creciente preocupación de que la infraestructura de transporte (backhaul) de la red celular pueda convertirse en el cuello de botella en algunos escenarios. En este contexto, la tesis se centra en el desarrollo de técnicas de gestión de recursos que consideran de manera conjunta la gestión de recursos en la interfaz radio y el backhaul. Esto conduce a un nuevo paradigma donde los recursos del backhaul se consideran no sólo en la etapa de dimensionamiento, sino que además son incluidos en la problemática de gestión de recursos. Sobre esta base, el primer objetivo de la tesis consiste en evaluar los requerimientos de capacidad en las redes de acceso radio que usan IP como tecnología de transporte, de acuerdo a las recientes tendencias de la arquitectura de red. En particular, se analiza el impacto que tiene una solución de transporte basada en IP sobre la capacidad de transporte necesaria para satisfacer los requisitos de calidad de servicio en la red de acceso. La evaluación se realiza en el contexto de la red de acceso radio de UMTS, donde se proporciona una caracterización detallada de la interfaz Iub. El análisis de requerimientos de capacidad se lleva a cabo para dos diferentes escenarios: canales dedicados y canales de alta velocidad. Posteriormente, con el objetivo de aprovechar totalmente los recursos disponibles en el acceso radio y el backhaul, esta tesis propone un marco de gestión conjunta de recursos donde la idea principal consiste en incorporar las métricas de la red de transporte dentro del problema de gestión de recursos. A fin de evaluar los beneficios del marco de gestión de recursos propuesto, esta tesis se centra en la evaluación del problema de asignación de base, como estrategia para distribuir el tráfico entre las estaciones base en función de los niveles de carga tanto en la interfaz radio como en el backhaul. Este problema se analiza inicialmente considerando una red de acceso radio genérica, mediante la definición de un modelo analítico basado en cadenas de Markov. Dicho modelo permite calcular la ganancia de capacidad que puede alcanzar la estrategia de asignación de base propuesta. Posteriormente, el análisis de la estrategia propuesta se extiende considerando tecnologías específicas de acceso radio. En particular, en el contexto de redes WCDMA se desarrolla un algoritmo de asignación de base basado en simulatedannealing cuyo objetivo es maximizar una función de utilidad que refleja el grado de satisfacción de las asignaciones respecto los recursos radio y transporte. Finalmente, esta tesis aborda el diseño y evaluación de un algoritmo de asignación de base para los futuros sistemas de banda ancha basados en OFDMA. En este caso, el problema de asignación de base se modela como un problema de optimización mediante el uso de un marco de funciones de utilidad y funciones de coste de recursos. El problema planteado, que considera que existen restricciones de recursos tanto en la interfaz radio como en el backhaul, es mapeado a un problema de optimización conocido como Multiple-Choice Multidimensional Knapsack Problem (MMKP). Posteriormente, se desarrolla un algoritmo de asignación de base heurístico, el cual es evaluado y comparado con esquemas de asignación basados exclusivamente en criterios radio. El algoritmo concebido se basa en el uso de los multiplicadores de Lagrange y está diseñado para aprovechar de manera simultánea el balanceo de carga en la intefaz radio y el backhaul.Postprint (published version

    Doctor of Philosophy

    Get PDF
    dissertationThe next generation mobile network (i.e., 5G network) is expected to host emerging use cases that have a wide range of requirements; from Internet of Things (IoT) devices that prefer low-overhead and scalable network to remote machine operation or remote healthcare services that require reliable end-to-end communications. Improving scalability and reliability is among the most important challenges of designing the next generation mobile architecture. The current (4G) mobile core network heavily relies on hardware-based proprietary components. The core networks are expensive and therefore are available in limited locations in the country. This leads to a high end-to-end latency due to the long latency between base stations and the mobile core, and limitations in having innovations and an evolvable network. Moreover, at the protocol level the current mobile network architecture was designed for a limited number of smart-phones streaming a large amount of high quality traffic but not a massive number of low-capability devices sending small and sporadic traffic. This results in high-overhead control and data planes in the mobile core network that are not suitable for a massive number of future Internet-of-Things (IoT) devices. In terms of reliability, network operators already deployed multiple monitoring sys- tems to detect service disruptions and fix problems when they occur. However, detecting all service disruptions is challenging. First, there is a complex relationship between the network status and user-perceived service experience. Second, service disruptions could happen because of reasons that are beyond the network itself. With technology advancements in Software-defined Network (SDN) and Network Func- tion Virtualization (NFV), the next generation mobile network is expected to be NFV-based and deployed on NFV platforms. However, in contrast to telecom-grade hardware with built-in redundancy, commodity off-the-shell (COTS) hardware in NFV platforms often can't be comparable in term of reliability. Availability of Telecom-grade mobile core network hardwares is typically 99.999% (i.e., "five-9s" availability) while most NFV platforms only guarantee "three-9s" availability - orders of magnitude less reliable. Therefore, an NFV-based mobile core network needs extra mechanisms to guarantee its availability. This Ph.D. dissertation focuses on using SDN/NFV, data analytics and distributed system techniques to enhance scalability and reliability of the next generation mobile core network. The dissertation makes the following contributions. First, it presents SMORE, a practical offloading architecture that reduces end-to-end latency and enables new functionalities in mobile networks. It then presents SIMECA, a light-weight and scalable mobile core network designed for a massive number of future IoT devices. Second, it presents ABSENCE, a passive service monitoring system using customer usage and data analytics to detect silent failures in an operational mobile network. Lastly, it presents ECHO, a distributed mobile core network architecture to improve availability of NFV-based mobile core network in public clouds

    An intelligent radio access network selection and optimisation system in heterogeneous communication environments

    Get PDF
    PhDThe overlapping of the different wireless network technologies creates heterogeneous communication environments. Future mobile communication system considers the technological and operational services of heterogeneous communication environments. Based on its packet switched core, the access to future mobile communication system will not be restricted to the mobile cellular networks but may be via other wireless or even wired technologies. Such universal access can enable service convergence, joint resource management, and adaptive quality of service. However, in order to realise the universal access, there are still many pending challenges to solve. One of them is the selection of the most appropriate radio access network. Previous work on the network selection has concentrated on serving the requesting user, but the existing users and the consumption of the network resources were not the main focus. Such network selection decision might only be able to benefit a limited number of users while the satisfaction levels of some users are compromised, and the network resources might be consumed in an ineffective way. Solutions are needed to handle the radio access network selection in a manner that both of the satisfaction levels of all users and the network resource consumption are considered. This thesis proposes an intelligent radio access network selection and optimisation system. The work in this thesis includes the proposal of an architecture for the radio access network selection and optimisation system and the creation of novel adaptive algorithms that are employed by the network selection system. The proposed algorithms solve the limitations of previous work and adaptively optimise network resource consumption and implement different policies to cope with different scenarios, network conditions, and aims of operators. Furthermore, this thesis also presents novel network resource availability evaluation models. The proposed models study the physical principles of the considered radio access network and avoid employing assumptions which are too stringent abstractions of real network scenarios. They enable the implementation of call level simulations for the comparison and evaluation of the performance of the network selection and optimisation algorithms
    corecore