16 research outputs found

    Searching force-closure optimal grasps of articulated 2D objects with n links

    Get PDF
    This paper proposes a method that finds a locally optimal grasp of an articulated 2D object with n links considering frictionless contacts. The surface of each link of the object is represented by a finite set of points, thus it may have any shape. The proposed approach finds, first, an initial force-closure grasp and from it starts an iterative search of a local optimum grasp. The quality measure considered in this work is the largest perturbation wrench that a grasp can resist with independence of the direction of the perturbation. The approach has been implemented and some illustrative examples are included in the article.Postprint (published version

    Flexible Object Manipulation

    Get PDF
    Flexible objects are a challenge to manipulate. Their motions are hard to predict, and the high number of degrees of freedom makes sensing, control, and planning difficult. Additionally, they have more complex friction and contact issues than rigid bodies, and they may stretch and compress. In this thesis, I explore two major types of flexible materials: cloth and string. For rigid bodies, one of the most basic problems in manipulation is the development of immobilizing grasps. The same problem exists for flexible objects. I have shown that a simple polygonal piece of cloth can be fully immobilized by grasping all convex vertices and no more than one third of the concave vertices. I also explored simple manipulation methods that make use of gravity to reduce the number of fingers necessary for grasping. I have built a system for folding a T-shirt using a 4 DOF arm and a fixed-length iron bar which simulates two fingers. The main goal with string manipulation has been to tie knots without the use of any sensing. I have developed single-piece fixtures capable of tying knots in fishing line, solder, and wire, along with a more complex track-based system for autonomously tying a knot in steel wire. I have also developed a series of different fixtures that use compressed air to tie knots in string. Additionally, I have designed four-piece fixtures, which demonstrate a way to fully enclose a knot during the insertion process, while guaranteeing that extraction will always succeed

    Computation Reuse in Statics and Dynamics Problems for Assemblies of Rigid Bodies

    Get PDF
    The problem of determining the forces among contacting rigid bodies is fundamental to many areas of robotics, including manipulation planning, control, and dynamic simulation. For example, consider the question of how to unstack an assembly, or how to find stable regions of a rubble pile. In considering problems of this type over discrete or continuous time, we often encounter a sequence of problems with similar substructure. The primary contribution of our work is the observation that in many cases, common physical structure can be exploited to solve a sequence of related problems more efficiently than if each problem were considered in isolation. We examine three general problems concerning rigid-body assemblies: dynamic simulation, assembly planning, and assembly stability given limited knowledge of the structure\u27s geometry. To approach the dynamic simulation and assembly planning applications, we have optimized a known method for solving the system dynamics. The accelerations of and forces among contacting rigid bodies may be computed by formulating the dynamics equations and contact constraints as a complementarity problem. Dantzig\u27s algorithm, when applicable, takes n or fewer major cycles to find a solution to the linear complementarity problem corresponding to an assembly with n contacts. We show that Dantzig\u27s algorithm will find a solution in n - k or fewer major cycles if the algorithm is initialized with a solution to the dynamics problem for a subassembly with k internal contacts. Finally, we show that if we have limited knowledge of a structure\u27s geometry, we can still learn about stable regions of its surface by physically pressing on it. We present an approach for finding stable regions of planar assemblies: sample presses on the surface to identify a stable cone in wrench space, partition the space of applicable wrenches into stable and unstable regions, and map these back to the surface of the structure

    Computation and analysis of natural compliance in fixturing and grasping arrangements

    Get PDF
    This paper computes and analyzes the natural compliance of fixturing and grasping arrangements. Traditionally, linear-spring contact models have been used to determine the natural compliance of multiple contact arrangements. However, these models are not supported by experiments or elasticity theory. We derive a closed-form formula for the stiffness matrix of multiple contact arrangements that admits a variety of nonlinear contact models, including the well-justified Hertz model. The stiffness matrix formula depends on the geometrical and material properties of the contacting bodies and on the initial loading at the contacts. We use the formula to analyze the relative influence of first- and second-order geometrical effects on the stability of multiple contact arrangements. Second-order effects, i.e., curvature effects, are often practically beneficial and sometimes lead to significant grasp stabilization. However, in some contact arrangements, curvature has a dominant destabilizing influence. Such contact arrangements are deemed stable under an all-rigid body model but, in fact, are unstable when the natural compliance of the contacting bodies is taken into account. We also consider the combined influence of curvature and contact preloading on stability. Contrary to conventional wisdom, under certain curvature conditions, higher preloading can increase rather than decrease grasp stability. Finally, we use the stiffness matrix formula to investigate the impact of different choices of contact model on the assessment of the stability of multiple contact arrangements. While the linear-spring model and the more realistic Hertz model usually lead to the same stability conclusions, in some cases, the two models lead to different stability results

    Advances in grasping and vehicle contact identification : analysis, design and testing of robust methods for underwater robot manipulation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1999This thesis focuses on improving the productivity of autonomous and telemanipulation systems consisting of a manipulator arm mounted to a free flying underwater vehicle. Part I minimizes system sensitivity to misalignment by developing a gripper and a suite of handles that passively self align when grasped. After presenting a gripper guaranteed to passively align cylinders we present several other self aligning handles. The mix of handle alignment and load resisting properties enables handles to be matched to the needs of each task. Part I concludes with a discussion of successful field use of the system on the Jason Remotely Operated Undersea Vehicle operated by the Woods Hole Oceanographic Institution. To enable the exploitation of contact with the environment to help stabilize the vehicle, Part II develops a technique which identifies the contact state of a planar vehicle interacting with a fixed environment. Knowing the vehicle geometry and velocity we identify kinematically feasible contact points, from which we construct the set of feasible contact models. The measured vehicle data violates each model’s constraints; we use the associated violation power and work to select the best overall model. Part II concludes with experimental confirmation of the contact identification techniques efficacy

    Flexible manufacturing systems and the housing industry

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1997.Includes bibliographical references.by Frank Robert Altobelli.Ph.D

    Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots

    Get PDF
    Cable robots are a type of robotic manipulator that has recently attracted interest for large workspace manipulation tasks. Cable robots are relatively simple in form, with multiple cables attached to a mobile platform or end-effector. The end-effector is manipulated by motors that can extend or retract the cables. Cable robots have many desirable characteristics, including low inertial properties, high payload-to-weight ratios, potentially vast workspaces, transportability, ease of disassembly/reassembly, reconfigurability and economical construction and maintenance. However, relatively few analytical tools are available for analyzing and designing these manipulators. This thesis focuses on expanding the existing theoretical framework for the design and analysis of cable robots in two areas: disturbance robustness and workspace generation. Underconstrained cable robots cannot resist arbitrary external disturbances acting on the end-effector. Thus a disturbance robustness measure for general underconstrained single-body and multi-body cable robots is presented. This measure captures the robustness of the manipulator to both static and impulsive disturbances. Additionally, a wrench-based method of analyzing cable robots has been developed and is used to formulate a method of generating the Wrench-Feasible Workspace of cable robots. This workspace consists of the set of all poses of the manipulator where a specified set of wrenches (force/moment combinations) can be exerted. For many applications the Wrench-Feasible Workspace constitutes the set of all usable poses. The concepts of robustness and workspace generation are then combined to introduce a new workspace: the Specified Robustness Workspace. This workspace consists of the set of all poses of the manipulator that meet or exceed a specified robustness value.Ph.D.Committee Chair: Dr. Imme Ebert-Uphoff; Committee Member: Dr. Harvey Lipkin; Committee Member: Dr. Jarek Rossignac; Committee Member: Dr. Magnus Egerstedt; Committee Member: Dr. William Singhos

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement

    Silicon-Integrated Two-Dimensional Phononic Band Gap Quasi-Crystal Architecture

    Get PDF
    The development and fabrication of silicon-based phononic band gap crystals has been gaining interest since phononic band gap crystals have implications in fundamental science and display the potential for application in engineering by providing a relatively new platform for the realization of sensors and signal processing elements. The seminal study of phononic band gap phenomenon for classical elastic wave localization in structures with periodicity in two- or three-physical dimensions occurred in the early 1990’s. Micro-integration of silicon devices that leverage this phenomenon followed from the mid-2000’s until the present. The reported micro-integration relies on exotic piezoelectric transduction, phononic band gap crystals that are etched into semi-infinite or finite-thickness slabs which support surface or slab waves, phononic band gap crystals of numerous lattice constants in dimension and phononic band gap crystal truncation by homogeneous mediums or piezoelectric transducers. The thesis reports, to the best of the author's knowledge, for the first time, the theory, design methodology and experiment of an electrostatically actuated silicon-plate phononic band gap quasi-crystal architecture, which may serve as a platform for the development of a new generation of silicon-integrated sensors, signal processing elements and improved mechanical systems. Electrostatic actuation mitigates the utilization of piezoelectric transducers and provides action at a distance type forces so that the phononic band gap quasi-crystal edges may be free standing for potentially reduced anchor and substrate mode loss and improved energy confinement compared with traditional surface and slab wave phononic band gap crystals. The proposed phononic band gap quasi-crystal architecture is physically scaled for fabrication as MEMS in a silicon-on-insulator process. Reasonable experimental verification of the model of the electrostatically actuated phononic band gap quasi-crystal architecture is obtained through extensive dynamic harmonic analysis and mode shape topography measurements utilizing optical non-destructive laser-Doppler velocimetry. We have utilized our devices to obtain fundamental information regarding novel transduction mechanisms and behavioral characteristics of the phononic band gap quasi-crystal architecture. Applicability of the phononic band gap quasi-crystal architecture to physical temperature sensors is demonstrated experimentally. Vibration stabilized resonators are demonstrated numerically

    Thrust Area Report, Engineering Research, Development and Technology

    Full text link
    corecore