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SUMMARY

Cable robots are a type of robotic manipulator that has recently attracted

interest for large workspace manipulation tasks. Cable robots are relatively simple

in form, with multiple cables attached to a mobile platform or end-effector. The

end-effector is manipulated by motors that can extend or retract the cables.

Cable robots have many desirable characteristics, including low inertial prop-

erties, high payload-to-weight ratios, potentially vast workspaces, transportability,

ease of disassembly/reassembly, reconfigurability and economical construction and

maintenance. However, relatively few analytical tools are available for analyzing and

designing these manipulators.

This thesis focuses on expanding the existing theoretical framework for the

design and analysis of cable robots in two areas: disturbance robustness and

workspace generation. Underconstrained cable robots cannot resist arbitrary external

disturbances acting on the end-effector. Thus a disturbance robustness measure for

general underconstrained single-body and multi-body cable robots is presented. This

measure captures the robustness of the manipulator to both static and impulsive

disturbances. Additionally, a wrench-based method of analyzing cable robots has

been developed and is used to formulate a method of generating the Wrench-Feasible

Workspace of cable robots. This workspace consists of the set of all poses of the

manipulator where a specified set of wrenches (force/moment combinations) can be

exerted. For many applications the Wrench-Feasible Workspace constitutes the set

of all usable poses. The concepts of robustness and workspace generation are then

combined to introduce a new workspace: the Specified Robustness Workspace. This

workspace consists of the set of all poses of the manipulator that meet or exceed a

specified robustness value.

xiv



CHAPTER 1

INTRODUCTION

This research addresses the analysis and design of cable-driven robots. Cable-driven

robots have many desirable attributes, particularly for large workspace manipulation

tasks. However, much of the existing research on cable-driven robots only applies to

a class of cable-driven robots known as fully constrained manipulators. The research

presented in this thesis focuses on extending the existing theoretical framework

of cable-driven robots to include analysis techniques for underconstrained cable-

driven robots. Specifically, this thesis presents disturbance robustness measures

for underconstrained cable-driven robots and Wrench-Feasible Workspace generation

techniques for general cable-driven robots.

1.1 Cable Robots

Cable-driven robots, referred to as cable robots in this thesis, are a type of robotic

manipulator that has recently attracted interest for large workspace manipulation

tasks. Cable robots are relatively simple in form, with multiple cables attached

to a mobile platform or end-effector as illustrated in Figure 1. The end-effector is

manipulated by motors that can extend or retract the cables. These motors may be

in fixed locations or mounted to mobile bases. The end-effector may be equipped with

various attachments, including hooks, cameras, electromagnets and robotic grippers.

Figures 1(a), 1(b) and 1(c) illustrate cable robots with eight, four and three cables,

respectively, each equipped with a robotic gripping tool grasping a barrel.

Cable robots possess a number of desirable characteristics, including: 1) stationary

heavy components and few moving parts, resulting in low inertial properties and high

1



(a)

(b) (c)

Figure 1: Example cable robots: a) fully constrained, b) underconstrained and c)
underconstrained point-mass.

payload-to-weight ratios, 2) potentially vast workspaces, limited mostly by cable

lengths, interference with surroundings, and force/moment exertion requirements,

3) transportability and ease of disassembly/reassembly, 4) reconfigurability by

simply relocating the motors and updating the control system accordingly, and 5)

economical construction and maintenance due to few moving parts and relatively

simple components.

Consequently, cable robots are exceptionally well suited for many applications

such as material handling, manipulation of heavy payloads, high-speed manipulation

(with fully constrained manipulators), rapidly deployable rescue robots, cleanup of

disaster sites, access to remote areas and interaction with hazardous environments.

On the other hand, cable robots do sacrifice some accuracy due to cable sag and

stretch. Additionally, traditional methods of robot analysis and control do not apply

to cable robots due to the unidirectional cable forces.

Current research challenges for cable robots include the optimization of workspace

properties, maintenance of positive cable tensions, resisting external disturbances,

design of suitable control algorithms, sensing of end-effector motion and avoidance of

cable interference. Workspace issues are particularly important, as many large-scale

2



applications require the end-effector to operate in regions of a particular shape and to

exert certain minimum force/moment combinations (or wrenches) throughout those

regions.

1.2 Classification of Cable Robots

In this thesis, different analysis techniques will be applied to different manipulators

depending on characteristics of the manipulator. Thus in order to properly present

and discuss these techniques the pertinent classifications of cable robots must be

detailed.

1.2.1 Fully Constrained and Underconstrained Cable Robots

Cable robots can be classified as fully constrained or underconstrained [49] based

on the degree to which the cables determine the pose of the manipulator. In the

fully constrained case the pose (position and/or orientation) of the end-effector can

be completely determined given the current lengths of the cables. An example of a

fully constrained cable robot is shown in Figure 1(a). In addition to providing exact

knowledge of the end-effector pose, these manipulators can have very high stiffness by

pretensioning the cables. However, these manipulators may not always be practical

because of the relatively large number of motors necessary and the possibility of cables

interfering with the end-effector, surroundings and each other.

In contrast, underconstrained manipulators use fewer cables than fully constrained

manipulators and thus the pose of the end-effector is not completely determined by

the lengths of the cables. Instead, these manipulators rely on the presence of gravity

to determine the resulting pose of the end-effector. While this complicates the forward

kinematics of underconstrained cable robots (in fact it causes it to become a “forward

statics” problem), it decreases problems with cable interference. For example, the

manipulator in Figure 1(b) is underconstrained. Because underconstrained cable

3



robots are not fully constrained and must rely on gravity to determine the pose

of the end-effector, it is possible for the pose of the end-effector to be changed by

the presence of external disturbances. This motivates a study of the robustness of

underconstrained cable robots to disturbances.

1.2.2 Point-Mass Cable Robots

An additional classification of cable robots are point-mass cable robots. In these

manipulators all cables attach to a single point on the end-effector and can change

lengths to control the position of the end-effector. Typically the end-effector is

modeled as a lumped mass located at the point of intersection of the cables. As an

example, the manipulator in Figure 1(c) is a 3-cable point-mass cable robot. Although

in many cases the center of mass of the end-effector is not truly located at the point

of intersection of the cables, the distance of this offset is assumed small in comparison

to the scale of the manipulator. In addition, in order to avoid interference between

the cables and the surroundings most point-mass cable robots are underconstrained.

Point-mass cable robots are well suited to perform operations similar to those of

construction cranes – positioning an end-effector but not controlling its orientation.

However, a cable robot has significantly less swaying of the payload than a crane in

performing the same operation due to its parallel architecture. This class of robots

is also useful for camera positioning operations [5] and is a promising candidate for

rapidly-deployable manipulators for disaster relief.

1.3 Research Focus

Given the potential for cable robots to be used in a variety of applications, it is

important to have tools for analyzing and designing such manipulators. The goal of

this research is to expand the theoretical framework for cable robots. As Chapter 2

details, most of the existing theory that has been developed for cable robots applies
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only to fully constrained cable robots. Thus the aim of this research is to develop

analysis techniques that apply to underconstrained (and potentially fully constrained)

cable robots.

Towards that end, two main areas of research are presented in this thesis:

1. Disturbance robustness of underconstrained cable robots. Robustness

to disturbances is an important concern for underconstrained cable robots as

they have a limited ability to resist unknown external disturbances. This

ability to resist external disturbances is quantified by a disturbance robustness

measure.

2. Wrench-Feasible Workspace generation for underconstrained and ful-

ly constrained cable robots. For many manipulators the most appropriate

workspace to consider is the Wrench-Feasible Workspace, which represents

the set of end-effector poses where the end-effector can exert a user-specified

minimum set of force/moment combinations. The Wrench-Feasible Workspace

therefore constitutes the “usable” workspace of the manipulator. While this

workspace has been described in general terms by previous researchers, no tools

exist to date for analytically calculating the Wrench-Feasible Workspace. A

method is presented in this thesis for analytically forming this workspace for

both underconstrained and fully constrained cable robots.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the relevant

literature. This includes not only literature on cable robot design and control, but

also relevant literature from problems in parallel robots and grasping.

Much of the work presented in this thesis relies on concepts from screw theory

and parallel robots. As such, Chapter 3 provides an introduction to the basics and
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relevant concepts in screw theory as well as an introduction to relevant topics in

parallel robots, such as Jacobian matrix relationships and manipulator redundancy.

Chapter 4 then presents an analysis of the robustness of unconstrained cable robots

to external disturbances. The problem is split into two cases: static disturbances

and impulsive disturbances, resulting in two measures of disturbance robustness.

These measures are related to each other and combined to form a single measure

of disturbance robustness.

In Chapter 5 the issue of workspace generation is addressed. Specifically, a method

is developed for forming the Wrench-Feasible Workspace of both underconstrained

and fully constrained cable robots. Building on the concepts presented in Chapter 3,

geometric conditions are formulated for analytically finding the workspace boundaries.

The concepts developed in Chapters 4 and 5 are combined in Section 5.6 to create the

Specified Robustness Workspace. This workspace consists of the set of all manipulator

poses that meet or exceed a specified robustness value.

Lastly, Chapter 6 concludes the thesis, discusses the contributions of this work

and presents possibilities for future continuations of this work.
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CHAPTER 2

LITERATURE REVIEW

There have been a number of researchers who have developed analytical tools for cable

robots that relate to the analyses presented here. Related work is first presented in

the areas of existing manipulators, control, and parallel robots and grasping, followed

by the areas most closely related to this thesis: disturbance robustness and workspace

generation.

2.1 Existing Manipulators

Existing cable robots can be divided into fully constrained manipulators and

underconstrained manipulators.

Fully Constrained Cable Robots

Fully constrained cable robots have often been designed for applications that

require high speed/acceleration or high stiffness. High speed cable robots include

the WARP manipulator [42] which uses 8 cables and the FALCON [34], a 7-cable

manipulator (shown in Figure 2) that was able to achieve accelerations up to 43g. The

Charlotte robot is an 8-cable manipulator designed for use inside space structures,

where the motors that control the cables are located inside the end-effector [71].

High stiffness fully-constrained cable robots have been designed for applications in

teleoperation [35], haptics [52], [81], and virtual reality rides [67]. The planar cable

robot haptic device developed in [81], termed the Cable-Suspended Haptic Interface,

is shown in Figure 3.
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(a) A prototype of the FALCON. (b) A diagram of the
FALCON.

Figure 2: The FALCON [31].

Figure 3: The Cable-Suspended Haptic Interface [27].

Underconstrained Cable Robots

Underconstrained manipulators have more typically been designed for applications

where large workspaces are required. The NIST ROBOCRANE [1] is a six-cable, six

degree-of-freedom cable robot designed for use in tasks such as material handling,

inspection, pipe/beam fitting and manufacturing operations such as welding, sawing

and grinding [13], [14]. Several versions of the ROBOCRANE are shown in Figure 4,

including a ROBOCRANE mounted to a mobile base (Figure 4(a)), a ROBOCRANE

used as a gantry crane (Figure 4(b)) and a ROBOCRANE modified to handle pallets

of munitions (Figure 4(c)). Cable robots such as the ROBOCRANE have also been
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(a) A scale model of the
ROBOCRANE mounted to mobile

bases.

(b) A 1/3 scale model of the
ROBOCRANE used as a gantry

crane.

(c) The ROBOCRANE
modified to handle

munitions.

Figure 4: The ROBOCRANE [29].

used as motion bases on which serial robots are mounted [13], [57].

Cable robots have also been proposed for use in transferring cargo to and from

ships. One such system is the Automated All-Weather Cargo Transfer System

(AACTS) [6] made by August Design and shown in Figure 5. The system utilizes

a large SCARA robotic arm (shown in Figure 5(a)) combined with a rigid hoist

9



(a) The AACTS unloading cargo from a
ship [6].

(b) Closeup of the ISB [4].

Figure 5: The Automated All-Weather Cargo Transfer System (AACTS) and
Intelligent Spreader Bar (ISB).

to position a six-cable, six degree-of-freedom spreader bar cable robot [4] (shown

in Figure 5(b)) that will pick up freight containers from cargo ships in high sea

states. Another manipulator designed for transferring cargo to and from ships is

the Cable Array Robot [22], [66]. The Cable Array Robot was developed at the

Pennsylvania State University and is a 4-cable point-mass cable robot. Figure 6(a)

shows a prototype of the Cable Array Robot and Figure 6(b) shows a diagram of the

Cable Array Robot being used to load containers onto a ship.

Another point-mass manipulator is the SkyCam [5], made by August Design.

SkyCam is a cable robot that positions a video camera for use in stadiums and

indoor arenas (shown in Figure 7). The use of underconstrained cable robots has also

been proposed for search and rescue in the event of urban earthquakes [68], haptics

[11], [46], [47] and pose-measurement systems [33], [70]. Cable robots have even been

proposed as bathroom cleaning robots [69].
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(a) Prototype of the Cable Array Robot. (b) Diagram of the Cable Array Robot used
for loading containers onto a ship.

Figure 6: The Cable Array Robot [28].

(a) A closeup of the
SkyCam

end-effector [26].

(b) The SkyCam in use at a stadium
[30].

Figure 7: The SkyCam.

2.2 Control

Because the robot’s cables can pull but not push, traditional robot control strategies

often cannot be used for cable robots. One of the major issues with control of cable

robots is maintaining positive cable tensions [2], [3], [36], [66], [76], [83]. Some work

has been done in trajectory generation for underconstrained cable robots [85].
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Nonlinear control schemes such as feedback linearization and sliding mode control

have also been applied to cable robots [2], [3], [22], [37], [43], [50], [86]. Another major

issue in cable robot control is reduction of the vibration caused by the flexibility of

the cables. Anti-sway control schemes have been proposed [84], [86] and observer

based optimal control [38] and input-shaping techniques [32] have been used to reduce

residual vibrations after movement of the end-effector.

2.3 Parallel Robots and Grasping

Some researchers have also pointed out the similarity of cable robots to parallel robots

and multi-fingered grasps [18], [34], [35]. The similarity to parallel robots allows the

use of the forward and inverse kinematic relationships and Jacobian relationships of

parallel robots (described in [48]) to analyze cable robots, provided all cables remain

in tension. However, the uni-directional forces provided by the cables prevent many of

the more advanced analysis tools from being applied to cable robots. Some researchers

have attempted to extend the concept of manipulability (originally formulated for

traditional robots [17]1, [47], [48], [88]) to apply to cable robots [21], [39], [64], [65].

The similarity between cable robots and problems in fixturing and grasping arises

because cables can pull but not push on the end-effector, while fixture contacts and

robot finger contacts can push but not pull on an object. Grasping and fixturing

have been studied in great detail (for example [9], [16], [44], [45], [51], [54], [55], [56]).

The grasp map, which defines the relationship between finger forces and the resulting

wrench on the grasped body, is analogous to the transpose of the Jacobian matrix

for cable robots. The application of the concept of grasp stability to cable robots is

discussed in the following section.

1Note that a common problem with manipulability measures is that they do not appropriately
take into account mixed dimensional task spaces. In [17] this is remedied by using the inertia matrix
of the end-effector as a weighting matrix, similar to what is done in Chapter 4.
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2.4 Disturbance Robustness

The robustness of cable robots to external disturbances has not been addressed at

all by the existing literature. The most closely related concept is that of stability.

Stability of a particular cable robot was investigated in [87]. A condition for stability

of a spatial 3-cable crane was developed based on the curvature of the path of the

center of gravity. The approach does generate a test for stability, but does not develop

an adequate quantification of stability because the approach does not appropriately

handle the mixed-dimensions of the task space.

The only other closely related area of existing research is grasp stability. Grasp

stability has been studied by a number of researchers (for example [24], [25], [62]),

[72], [73], [74]. However, these studies have often included the effects of friction,

soft fingers and curvature of the grasped object. Because a cable cannot exert forces

perpendicular to the direction of the cable, there is no analogy to friction for cable

robots. Likewise, a cable cannot exert a moment about the axis along the cable, thus

there is no analogy to soft finger contacts for cable robots. There is also no analogy

in cable robots to the curvature of a grasped object. This is detailed in [18], but

essentially stems from the fact that in a frictionless grasp the direction of applied

force is always normal to the object and thus translates and rotates with the object

during manipulation, while in a cable robot the direction of applied force is dependent

upon the cable direction, which changes with respect to the end-effector during

manipulation. The remaining studies of grasp stability typically focus on fixtures

or grasps that fully constrain the object, which are analogous to fully constrained

cable robots. Thus the majority of the research to date on fixture and grasp stability

does not transfer easily to the stability/disturbance robustness of underconstrained

cable robots.

The disturbance robustness analysis presented in Chapter 4 also defines norms for

twists (combinations of linear and/or angular velocities) and wrenches (combinations
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of forces and/or moments). Defining norms for twists and wrenches is a form of

creating a metric on SE(3) (the set of all rigid-body motions). Existing literature

for metrics on SE(3) tells us that any distance metric on SE(3) must necessarily

be parameterized by a choice of length scale (i.e. characteristic lengths) [59]. In this

thesis the radii of gyration are used as characteristic lengths, resulting in a frame-

invariant, objective metric [40].

2.5 Workspace Generation

Several different workspaces have been addressed previously. A number of researchers

have investigated the set of all poses that the end-effector can attain statically (with

no external forces or moments acting besides gravity) [1], [2], [3], [19], [20], [50], [63],

[67]. A variety of terms have been used to refer to this workspace, but in this thesis

the term Static Equilibrium Workspace is used to denote this workspace.

In most cases formulation of the Static Equilibrium Workspace has been done

numerically via “brute force” methods, where the entire taskspace is discretized and

exhaustively searched to find the statically reachable poses. One exception is in [20],

where the boundaries of the Static Equilibrium Workspace were defined analytically

for an underconstrained and fully-constrained planar cable robot. However, this was

done for a special geometry end-effector and does not generalize to other geometries.

The second exception is in [1], where the Static Equilibrium Workspace of the

ROBOCRANE was found analytically, but again this formulation relied on the special

geometry of the manipulator and does not generalize to other geometries.

Another workspace that has been researched is the “dynamic workspace,” defined

in [8] as the set of all poses where the end-effector can be given a specific acceleration.

This workspace was determined for a planar cable robot by analytically forming the

workspace boundaries.

The Wrench-Feasible Workspace is defined as the set of poses where the
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manipulator can counteract a specified set of wrenches. For many applications the

Wrench-Feasible Workspace constitutes the “usable” workspace of the manipulator

and is thus one of the main considerations in this thesis. While the Wrench-Feasible

Workspace has been defined in general terms [18], [78], it has generally been formed

numerically using an exhaustive search approach [42], [75], [77], [78]. The boundaries

of the Wrench-Feasible Workspace were determined analytically for planar 4-cable

fully-constrained cable robots in [23], assuming infinite upper tension limits.

Some additional workspaces that are very similar to theWrench-Feasible Workspace

have also been defined. In [23] the “force-closure workspace” was introduced, which is

a special case of the Wrench-Feasible Workspace where only forces are considered. The

“workspace with tension conditions” [78] is defined similarly to the Wrench-Feasible

Workspace with the additional constraint that all cable tensions must remain above

a minimum tension value and below a maximum tension value. The “workspace with

stiffness conditions” [78] is defined similar to the Wrench-Feasible Workspace with the

additional constraint that the stiffness of the end-effector is above a threshold value.

Some researchers have also incorporated workspace limits based on cable interference,

but these workspace limits were determined either experimentally [42] or numerically

[82]. In addition, the workspace generation technique presented in this thesis has

been applied to planar and spatial cable robots with point-mass end-effectors [61],

[60], as is discussed in Section 5.4.

In formulating the Wrench-Feasible Workspace and performing the disturbance

robustness analysis, this thesis uses a construction called the Available Net Wrench

Set, the set of all forces and moments that the manipulator can exert without violating

cable tension limits. There are several similar concepts that have been developed by

other researchers. The “capable force region” is defined in [57] as the set of forces

that the manipulator can exert without consideration for the associated moments. In

[65] a 3-cable planar cable robot with point-mass end-effector was examined and a
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“set of manipulating forces” was formed. This is the set of all forces that the 3 cables

could exert on the end-effector. A similar set of wrenches was also defined in [8] and

termed a “pseudo-pyramid.” This pseudo-pyramid includes the set of all wrenches

(force/moment combinations) that the cables could apply to the end-effector at a

pose if the cables have no upper tension limits.

2.6 Summary

In summary, in nearly all of these theoretical studies the cable robots have been

assumed to be fully constrained. Thus there is a serious need to extend the existing

theoretical framework for cable robots to include underconstrained robots. The issues

of disturbance robustness and Wrench-Feasible Workspace generation are two of the

most important issues for these manipulators, and the existing literature does not

adequately address these issues.
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CHAPTER 3

SCREW THEORY AND WRENCH ANALYSIS

This chapter introduces some of the fundamental concepts that are used throughout

this thesis. Specifically, this chapter discusses some of the basics of screw theory,

shows how Jacobian relationships apply to cable robots, and introduces the Available

Net Wrench Set. Note that the introduction to screw theory relies primarily on the

screw theory overview presented in [41].

3.1 Introduction to Screw Theory

In the analysis of rigid body motion and the dynamics of moving bodies, both linear

and angular quantities are used. For example, consider a rigid body and a coordinate

frame x-y-z. The linear velocity of a point, P , on the body can be written as:

vP =




ẋP

ẏP

żP




(1)

and the angular velocity of the body can be written as:

ω =




ωx

ωy

ωz



. (2)

If a force and moment are applied to the body at point P , the force applied to

the body can be written as:

F =




Fx

Fy

Fz




(3)

17



and the moment about point P can be written as:

MP =




MP,x

MP,y

MP,z



. (4)

The screw, first introduced by Ball [7], combines rotational and linear quantities

into a single element called a screw. Screw theory is based on two theorems:

• Chasle’s Theorem: Rigid-body motion is equivalent to a twist on a screw (i.e.

a rotation along a unique axis and translation parallel to that axis).

• Poinsot’s Theorem: Rigid-body action is equivalent to a wrench on a screw (i.e.

a force along a unique line and a couple parallel to that line).

The concept of a screw is similar to that of a mechanical screw. When turning a nut

on a screw, turning the nut produces rotation about the screw centerline (axis) and

any point on the nut has translation along the screw axis proportional to the pitch of

the screw and translation perpendicular to the screw axis proportional to the distance

of the point from the axis. A twist, denoted as $t, is the velocity form of a screw,

describing the simultaneous linear and angular velocity of a body1, while a wrench,

denoted as $w, is the simultaneous force and moment combination acting on a body.

Because screws provide a compact way to describe both motion of a body and

action applied to a body, twists and wrenches will be used throughout this thesis.

There are several ways to express screw quantities, including vector form (describing

the screw axis, pitch and the vector from the axis to the point), dual numbers, Plücker

coordinates and Lie algebra. For our purposes, the easiest screw representation is

Plücker coordinates.

1Note that while it is possible to consider twists in a finite sense (finite displacements), in this
thesis twists will be assumed to refer to instantaneous velocities.
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In Plücker coordinates a twist $t is written2 as:

$t =




vO

ω


 (5)

where O is the origin of the coordinate frame. Throughout this thesis the origin of

the coordinate frame is chosen to coincide with G, the center of gravity of the body,

thus without loss of generality vO can be replaced with vG. Note that because the

origin is placed at G throughout this thesis the subscript will generally be dropped.

Similarly, a wrench $w in Plücker coordinates is written3 as:

$w =




F

MO


 (6)

where again O is chosen here to be G, thus without loss of generality MO can be

replaced with MG. Note again that because the origin is placed at G throughout this

thesis the subscript will generally be dropped. If it is desired for a wrench or twist

to be expressed at a different point on a body a coordinate transformation can be

used as described in [7], [41], but these transformations are not used in this thesis and

thus are not discussed here. It is also possible to determine for any twist or wrench

the corresponding axis, pitch, radius and rotation of the screw, but this will not be

necessary for the analysis performed in this thesis.

In addition, if a body undergoes twist $t under the action of wrench $w then the

power generated is:

P = $w · $t =




F

M




T 


v

ω


 (7)

which is also referred to as the power product between a wrench and a twist. When

the power product vanishes (P = 0), the twist and wrench are said to be reciprocal.

2This is also said to be written in axis coordinates, where the upper (velocity) component varies
depending on which point on the body is considered.

3This is also said to be written in ray coordinates, where the lower (moment) component varies
depending on which point on the body is considered.
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motor i

cable i

ci

ui

G

Figure 8: Diagram of kinematic parameters.

3.2 Jacobian Relationships

As Chapter 2 mentioned, there is a structural similarity between cable robots and

parallel robots and multi-fingered grasps [34], [35], [18]. This allows the Jacobian

relationships of parallel robots [48] and the grasp map for grasps with frictionless

contact points [54], [45] to be used in the analogous case of cable robots [63], provided

all cables remain in tension.

Note that in the analysis presented in this section it is assumed that the cables

have negligible mass and do not stretch or sag, the end-effector is a single rigid body

with known cable attachment points on the end-effector relative to the center of

gravity, the locations of the attachments of the cables to the motors are known and

each motor controls exactly one cable. Cable lengths, the direction of gravity and the

resulting pose of the mechanism are also assumed to be known.

Consider the cable robot shown in Figure 8. Let the length of cable i be qi. Then

the velocity of cable i extending or retracting is q̇i, with q̇i > 0 corresponding to

cable i being reeled in. Let the number of cables be p and the dimension of the

task space (the space in which the end-effector operates) be n. Note that typically

n = 3 (for point-mass or planar cable robots) or n = 6 (for spatial cable robots). Let

the twist, $t, of the end effector be $t =


 v

ω


. The Jacobian matrix, J , defines the

linear relationship between the velocities of the cables extending or retracting and
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the resulting twist of the end-effector assuming all cables are taut:




q̇1
...

q̇p




= J$t (8)

where

J =
[
$w1 ... $

w
p

]T
. (9)

Here $wi is the wrench4 along the ith cable:

$wi =




ui

ci × ui


 (10)

where ui is the unit vector running along cable i directed from the end-effector towards

motor i, ci is the vector from G, the center of gravity of the end-effector, to the point

on the end-effector where cable i is connected as illustrated in Figure 8 and there are

p cables attached to the end-effector.

A similar relationship can be formed for the statics of the end-effector. Let the

tension in cable i be ti. Let the wrench, $w, applied to the end effector by the

cables be $w =


 F

M


. The transpose of the Jacobian matrix, JT , defines the linear

relationship between the tensions in the cables and the resulting wrench applied to

the end-effector assuming all cables are taut:

$w = JT




t1
...

tp



, ti,max ≥ ti ≥ 0. (11)

The restriction that ti,max ≥ ti ≥ 0 stems from the fact that each cable can pull but

not push (i.e. a cable cannot have negative tension) and is restricted to be less than

4Note that $w
i does not actually have units of force and moment, but must be multiplied by a

scalar force factor in order to take on the standard units of a wrench. $w
i can also be thought of as

simply a screw in ray coordinates.
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or equal to a maximum tension ti,max. This maximum tension may be determined by

the torque limits of the motor reeling in the cable or by the maximum tension a cable

can withstand without breaking.

Note that the vectors (t1, ... , tp)
T and (q̇1, ... , q̇p)

T are vectors in the joint space of

the manipulator (which has purely linear units) and $w and $t are vectors in the task

space (which may have both linear and angular units). Note also that the workspace

of a manipulator is a set of poses in the taskspace.

Redundancy

In this thesis a manipulator is said to be redundant if there are more cables

than degrees of freedom (p > n). Thus the Jacobian matrix is non-square. Note

that some researchers do not use this definition, as p = n + 1 cables are required

to fully constrain a body [49] and thus some researchers define redundancy as when

p > (n+1). Redundancy is used here in the force sense, where given the wrench $w in

(11) there are too many cables to solve uniquely for the resulting cable tensions. Note

that (9) and (11) hold for both redundant and non-redundant manipulators. Note also

that redundancy does not imply full constraint (i.e. a robot may be underconstrained

and redundant). On the other hand, every fully constrained robot is redundant as it

has at least n+ 1 cables.

3.3 Wrench Analysis

3.3.1 Available Net Wrench Set

In order to use a cable robot to accomplish desired tasks, the cables driving the end-

effector must exert wrenches on the end-effector. Based on the current pose of the

robot, the Jacobian transpose relationship in (11) can be used to determine the set of

all possible wrenches that the cables can apply to the end-effector and thus the set of

all wrenches that the end-effector can apply to its surroundings. Let t be the vector

of cable tensions, t = (t1, ... , tp)
T . The set of all wrenches that the cables can exert
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on the end-effector is defined as the cable wrench set, CW , and is expressed as:

CW =
{
$w : $w = JT t ; ti,max ≥ ti ≥ 0

}
. (12)

We now wish to form the set of wrenches that the end-effector can apply to

its surroundings, taking into account the effect of constant external wrenches such

as gravity. This set is termed the Available Net Wrench Set, abbreviated NWavail.

Assuming a constant external wrench


 F

M




ext

is present (typically


mg

0


), where m

is the mass of the end-effector and g is the gravitational vector, directed downward),

the applied wrench set can be formed by simply shifting the wrench set in the direction

of the external wrench:

NWavail = CW ⊕
(

F

M

)

ext

=



$w : $w = JT t+

(
F

M

)

ext

; ti,max ≥ ti ≥ 0



 . (13)

Note that in this thesis


 F

M




ext

will be assumed to be the gravitational wrench


mg

0


.

3.3.2 Graphical Representation

If the dimension n of the task-space of the robot is less than or equal to three, it is

possible to construct a graphical representation of NWavail. As an example, consider

the planar manipulator in Figure 9(a). Given the geometry of the manipulator at the

current pose, the unit vectors u1, u2 and u3 can be constructed. Applying (10) results

in $w1 , $
w
2 and $w3 , respectively, which are wrenches along each of the cables. The set

NWavail can then be expressed as NWavail = {$w : $w = a1t1,max$
w
1 + a2t2,max$

w
2 +

a3t3,max$
w
3 + mg; 0 ≤ ai ≤ 1}. Figure 9(b) illustrates the resulting set where tmax

23



g

u1
u3

u2

x

y

G Mz

Fy

Fx
$1

$2
$3

m·g

(a) Example planar cable robot.
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(b) Available Net Wrench Set.

Figure 9: A planar cable robot and its Available Net Wrench Set.

is assumed to be the same for all three cables. We can see here that NWavail is

a parallelepiped. Note that this parallelepiped is defined in the mixed-dimensional

space of Fx-Fy-Mz.

As a second illustration, consider the manipulator in Figure 10(a). Here the

end-effector is a point-mass suspended from four cables. Because the task space

has only linear dimensions, the wrenches $w1 through $w4 are simply u1 through u4

(the unit vectors along the cables), respectively, resulting in NWavail = {$w : $w =

a1t1,maxu1 + ... + a4t4,maxu4 + mg; 0 < ai ≤ 1}, shown in Figure 10(b). Note that

because tmax has been assumed to be the same for all four cables and because this set

is defined in the force domain only (Fx-Fy-Fz), the length of every edge of NWavail

is tmax. Also, the geometry of the set is somewhat altered here due to the fact that

the number of cables is larger than the degrees of freedom of the task space (i.e. the

manipulator is redundant). In this caseNWavail is the projection of a four-dimensional

hyper-parallelepiped onto three-dimensional space.

In general it can be seen that NWavail is some form of a parallelogram,

parallelepiped or hyper-parallelepiped, depending on the number of cables and the
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Figure 10: A 4-cable point-mass cable robot and its Available Net Wrench Set.

dimension of the task-space. In all cases, however, NWavail is a volume bounded by

lines (2-D task space), planes (3-D task space) or hyperplanes (task space > 3-D),

where the number of boundaries is 2
(

p
q−1
)
= 2p!
(q−1)!(p−(q−1))! , and where p is the number

of cables and q is the dimension of the task space.
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CHAPTER 4

DISTURBANCE ROBUSTNESS MEASURES

FOR UNDERCONSTRAINED CABLE ROBOTS

4.1 Introduction

Because underconstrained cable robots are not fully constrained and must rely on

gravity to determine the pose of the end-effector, it is possible for the pose of the

end-effector to be changed by external disturbances. Due to the likelihood that these

external disturbances cannot be completely predicted, the possibility arises that the

resulting pose of the manipulator cannot be known. If external wrenches change

the pose of the end-effector, the manipulator is said to have been disturbed. Such a

situation will cause problems in many applications and thus should be avoided. It is

therefore of interest to investigate the ability of the manipulator to resist external

disturbances. In this chapter a Disturbance Robustness Measure is developed to

describe how much the manipulator is affected by disturbances.

4.1.1 Organization

In the analysis presented in this chapter, two types of disturbances will be considered:

static disturbance wrenches and impulsive disturbance wrenches. Static disturbance

wrenches are constant external wrenches applied to the end-effector by things such

as a steady wind, a steady flow of water past an underwater end-effector, magnetic

attraction, etc. Impulsive disturbance wrenches, in contrast, are brief impulses that

impart a velocity (and corresponding kinetic energy) to the end-effector. Impulsive

disturbance wrenches may be the result of a gust of wind or a collision between the

end-effector and another object. These two types of disturbances are important to
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consider because most disturbances that a cable robot encounters can be modeled as

one of these two types of disturbances. In addition Section 4.5.1 briefly discusses how

the robustness analysis can be extended to other types of disturbances.

Analysis of static and impulsive disturbances leads to two measures, Static

Disturbance Robustness and Impulsive Disturbance Robustness, respectively. Both

of these analyses are facilitated by the construction of a vector space referred to here

as the intermediate space. Section 4.2 describes a mapping of twists and wrenches to

this intermediate space as well as the properties of this space.

Section 4.3 presents the static disturbance analysis, which is primarily concerned

with the question of what is the “smallest” static wrench that will disturb the end-

effector. Because wrenches include both forces and moments, the standard Euclidean

norm is not defined. Thus it is necessary to develop a physically meaningful wrench

norm in order to define what the smallest static disturbance wrench is. This analysis

also uses some of the wrench analysis described in Chapter 3. A measure of Static

Disturbance Robustness is then presented.

Next Section 4.4 presents the impulsive disturbance analysis, which aims to quan-

tify the degree to which an impulsive wrench disturbs the end-effector. Specifically,

the acceleration of the end-effector back toward the equilibrium pose is found. This

is accomplished by using the uni-directional constraints imposed by the cables to

form the set of all twists that the end-effector can undergo. The concept of slope

is then generalized to mixed dimensions (via the intermediate space) and then used

to determine the worst-case acceleration of the end-effector back to its equilibrium

pose. Based on these results, a measure of Impulsive Disturbance Robustness is

presented. Section 4.5 then uses the intermediate space to show that the Static

Disturbance Robustness Measure and Impulsive Disturbance Robustness Measure

are equal, leading to a single measure, the Disturbance Robustness Measure.

After a discussion of the Disturbance Robustness Measure (Section 4.5.1) a
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method is presented in Section 4.6 for extending the Disturbance Robustness Measure

to manipulators with multi-body end-effectors. This is an important case to consider,

as cable robots used in material handling operations frequently carry suspended

payloads. This extension of the measure allows for the analysis of such situations. The

chapter concludes with some future work that can be done in the area of disturbance

robustness analysis (Section 4.8).

4.1.2 Assumptions

For this disturbance robustness analysis it is assumed that the cables have negligible

mass and do not stretch or sag, the end-effector is a single rigid body (until Section

4.6) with known cable attachment points on the end-effector relative to the center of

gravity, the locations of the attachments of the cables to the motors (or any pulleys

the cables are routed through) are known and each motor controls exactly one cable.

Cable lengths, the direction of gravity and the resulting pose of the end-effector

are also assumed to be known. External disturbances are assumed to be unknown

wrenches of unknown magnitudes that act only on the end-effector. Additionally, the

lengths of the cables are assumed to be held constant.

4.2 Intermediate Space

In analyzing the robustness of a manipulator to a variety of disturbances it is of

interest to talk about the ‘magnitude’ of a wrench, or a twist and wrench being

‘parallel.’ However, because twists and wrenches have both linear and angular

units, such vector operations are generally not defined. For example, the magnitude

(Euclidean norm) of a twist or wrench and parallelism between a twist and a wrench

are not defined unless both the twist and wrench have purely linear units or purely

angular units. A linear mapping is presented here that maps twists and wrenches to

an intermediate space based on the inertial properties of the end-effector. This space
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has only linear units, allowing standard vector operations to be defined while at the

same time producing results that retain physical significance due to the manner in

which the mapping is defined. As a result, examining twists and wrenches in this

space is useful for both the static disturbance analysis and impulsive disturbance

analysis presented in the following sections.

4.2.1 Mapping

Using the inertial properties of the end-effector, a mapping to an intermediate space

can be defined for both twists and wrenches. The mass of the end-effector is m and

ρi is the radius of gyration of the end-effector about axis i. Any twist, $t, in the task

space of the manipulator can be expressed as:

$t =




v

ω


 (14)

and any wrench, $w, in the task space of the manipulator can be expressed as:

$w =




F

M


 . (15)

Without loss of generality, the origin of the coordinate frame can be placed at the

center of gravity, G, with the axes aligned with the principal axes of the end-effector.

A mapping can then be defined between the task space and the intermediate space

for both twists and wrenches as follows.

If the dimension of the task space is n and the task space has ` linear dimensions

and n − ` angular dimensions, a twist $t can be mapped to a generalized velocity v̂

by:

v̂ = A$t (16)

where
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$t
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Figure 11: A twist and wrench mapped to a generalized force and velocity in the
intermediate space.

A =




I`×` 0 · · · 0

0 ρ1 . . . 0

...
...

. . .
...

0 0 · · · ρ(n−`)




(17)

where I`×` is the `×` identity matrix. Note that (ˆ) is used to denote that the vector

is defined in the intermediate space.

A mixed-dimensional wrench $w can be mapped to a generalized force f̂

f̂ = B$w (18)

where

B = A−1 =




I`×` 0 · · · 0

0 1
ρ1

. . . 0

...
...

. . .
...

0 0 · · · 1
ρ(n−`)



. (19)

These two mappings produce n-dimensional vectors (usually n = 3 or n = 6),

with consistent units of linear velocity and force, respectively. Figure 11 illustrates

the mapping of twists and wrenches to the intermediate space.

4.2.2 Properties

This mapping is using the radii of gyration of the end-effector as characteristic lengths

for the corresponding rotation elements of the twists and wrenches. As a result, vector
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operations in the intermediate space have physical significance. First, the dot product

between a generalized velocity and a generalized force is equal to the power product

between the associated twist and wrench:

v̂T f̂ = $t
T
ATB$w = $t

T
$w. (20)

As a result, perpendicularity between a generalized velocity and a generalized force

in the intermediate space implies that the associated twist and wrench are reciprocal

(they have a zero power product).

Second, the magnitude of a generalized velocity is proportional to the kinetic

energy of the end-effector undergoing the associated twist. For compactness, define

the kinetic energy, KE, of a twist $t (with respect to the end-effector) as:

KE
(
$t
)
=

1

2
$t

T
M$t (21)

where M = A2m is the inertia matrix of the end-effector. Then:

KE
(
$t
)

=
m

2
$t

T
A2$t

=
m

2
$t

T
ATA$t

=
m

2

(
A$t

)T (
A$t

)

=
m

2
‖ v̂ ‖2 . (22)

Third, the magnitude of a generalized force is proportional to the acceleration

energy of the corresponding wrench with respect to the end-effector. While

acceleration energy is not a commonly used quantity, it is closely connected to kinetic

energy and will be discussed in more detail in Section 4.3.5. The acceleration energy,

AE, of a wrench $w (with respect to the end-effector) is defined as:

AE ($w) =
1

2
$wT

M−1$w (23)
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where M−1 = 1
m

A−2 = 1
m

B2. Then:

AE ($w) =
1

2m
$wT

B2$w

=
1

2m
$wT

BTB$w

=
1

2m
(B$w)T (B$w)

=
1

2m
‖ f̂ ‖2 . (24)

Fourth, parallelism between a generalized velocity and a generalized force has

physical meaning. This can be interpreted in several different ways. Consider a twist

$t and a wrench $w. Let the kinetic energy of $t with respect to the end-effector be

b and let the acceleration energy of $w with respect to the end-effector be c. Let $t

and $w be mapped to the generalized velocity v̂ and the generalized force f̂ . The dot

product between the two vectors is then

v̂ · f̂ =‖ v̂ ‖‖ f̂ ‖ cos θ (25)

where θ is the angle between the two vectors. If v̂ and f̂ are parallel and in the same

direction, then

v̂ · f̂ =‖ v̂ ‖‖ f̂ ‖ . (26)

Thus if the generalized velocity and generalized force are parallel, the dot product

between the two vectors is maximized.

The analogous relationship between the intermediate space and the task space

produces the following two interpretations:

1. Given a wrench $w. Out of all the twists that have an associated kinetic energy

of b (with respect to the end-effector), the parallel twist $tpar has the maximum

power product with $w, i.e.

max
1
2
$tTM$t= b

$t
T
$w = $tpar

T
$w = d. (27)
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Figure 12: Interpretations of twist and wrench parallelism.

2. Given a twist $t. Out of all the wrenches that have an associated acceleration

energy of c (with respect to the end-effector), the parallel wrench $wpar has the

maximum power product with $t, i.e.

max
1
2
$wTM−1$w= c

$t
T
$w = $t

T
$wpar = d. (28)

These two properties are illustrated in Figure 121. Figure 12(a) illustrates the first

property, where for a given wrench $w, out of the set of all twists where KE($t) = b,

$tpar maximizes $t
T
$w. Similarly, Figure 12(b) illustrates the second property, where

for a given twist $t, out of the set of all wrenches where AE($w) = c, $wpar maximizes

$t
T
$w.

Now assume that the dot product between v̂ and f̂ (which are not assumed

parallel) is a known value d. Then given v̂ we can find the set of all generalized

forces that have the same dot product with v̂ as f̂ . Out of this set of generalized

forces, f̂par has the smallest magnitude. In other words, if for some f̂

v̂ · f̂ =‖ v̂ ‖‖ f̂ ‖ cos θ = d (29)

1Note that twists and wrenches are shown in the same reference frame for illustration only. In
general the difference in units between them prevent them from being plotted in the same space.
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Figure 13: Interpretations of twist and wrench parallelism.

then ‖ f̂ ‖ is minimized when θ = 0, corresponding to f̂ = f̂par. The same relationship

is true when v̂ and f̂ are switched (i.e. v̂par is found by considering the set of all

generalized velocities where (v̂ · f̂) = d). The analogous relationship between the

intermediate space and the task space produces the following two interpretations:

3 Given a wrench $w. Out of all the twists that have a power product of d with

the wrench, the parallel twist has the smallest associated kinetic energy (with

respect to the end-effector)

min
$tT $w= d

1

2
$t

T
M$t =

1

2
$tpar

T
M$tpar = b. (30)

4 Given a twist $t. Out of all the wrenches that have a certain power product with

the twist, the parallel wrench is the one that has the smallest corresponding AE

(with respect to the end-effector)

min
$tT $w= d

1

2
$wT

M−1$w =
1

2
$wpar

T
M−1$wpar = c. (31)

These two properties are illustrated in Figure 132. Figure 13(a) illustrates the third

property, where for a given wrench $w, out of the set of all twists where $t
T
$w = d,

2Note that twists and wrenches are shown in the same reference frame for illustration only. In
general the difference in units between them prevent them from being plotted in the same space.
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$tpar minimizes KE($t). Similarly, Figure 13(b) illustrates the fourth property, where

for a given twist $t, out of the set of all wrenches where $t
T
$w = d, $wpar minimizes

AE($w).

Summary

In short, parallelism between a generalized velocity and a generalized force

corresponds to a sort of optimal solution to a power product type problem, using

acceleration energy or kinetic energy as a norm for the wrench or twist, respectively.

If a twist and wrench are parallel when mapped to the intermediate space, they are

denoted as a corresponding twist and wrench.

4.3 Static Disturbance Analysis

4.3.1 Motivation

This section investigates the effects of static disturbance wrenches on the pose of a

cable robot. Specifically, we are concerned with the question of what is the “smallest”

static wrench that will disturb the end-effector. This smallest static disturbance

wrench represents a sort of “worst-case scenario” for the manipulator, and can be

thought of as being applied in the direction of least constraint for the end-effector. By

defining the static disturbance robustness measure using this approach, the measure

provides a conservative estimate of the static wrenches that can be resisted by the

manipulator. However, in order to find the smallest static disturbance wrench it is

necessary to define the magnitude of a wrench. In general cable robots have mixed-

dimensional task spaces, and thus the magnitude of a wrench in such a space cannot

be defined using the Euclidean norm.

In order to find the smallest static disturbance wrench, it is first necessary to

show how to find the static wrenches that disturb the end-effector (Section 4.3.2).

Then three different approaches to defining a physically meaningful wrench norm are

investigated. These approaches include: 1) examining pure force disturbances applied

35



to the end-effector at arbitrary locations (Section 4.3.3), 2) analyzing disturbance

wrenches in the tension (joint) space (Section 4.3.4) and 3) analyzing disturbance

wrenches using acceleration energy (Section 4.3.5).

4.3.2 Static Disturbance Wrenches

As stated earlier, there is an infinite number of static wrenches that will disturb

the end-effector. However, because we are interested in the smallest static

disturbance wrench we only need to consider the set of wrenches that just

begin to disturb the end-effector. In order to define this set we can use the

Available Net Wrench Set. Recall from Chapter 3 the Available Net Wrench Set,

NWavail, is the set of all wrenches that can be exerted by the manipulator, factoring

in cable forces and gravity. Define −NWavail as the opposite of NWavail. That is,

−NWavail = {$w : −$w ∈ NWavail} . (32)

−NWavail is the set of external wrenches that can be resisted by the manipulator

without violating tension limits. While the boundaries of NWavail represent the limits

of the wrenches that the manipulator can exert, the boundaries of −NWavail represent

the limits of the wrenches that can be resisted. As an example, consider Figure 14.

Figure 14(a) shows an example NWavail and Figure 14(b) shows the corresponding

−NWavail. Thus any external wrench applied to the manipulator that is not in the

−NWavail in Figure 14(b) cannot be resisted by the manipulator.

Let the set of all wrenches on the boundaries of −NWavail constitute the set of all

boundary wrenches. That is, a wrench $wbound is defined as a boundary wrench if and

only if for α ∈ IR,

1 ≥ α ≥ 0 ⇒ α$wbound ∈ −NWavail

and α > 1 ⇒ α$wbound /∈ −NWavail. (33)

In other words, the wrench α$wbound can be resisted by the manipulator (without
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Figure 14: Example NWavail and the corresponding −NWavail.

violating tension limits) if 1 ≥ α ≥ 0 but cannot be resisted if α > 1. These wrenches

are the boundary between the set of wrenches that can be resisted by the manipulator

and the set of wrenches that can not.

We are now interested in a particular subset of the boundary wrenches. When a

disturbance causes the pose of the manipulator to change, this is generally because the

disturbance causes one or more of the cables to go slack3. While it is important not

to exceed upper tension limits in the cables, the upper tension limits are often very

large and they can typically be made irrelevant or of little concern by appropriate

sizing of the cables and motors and constraining the end-effector to operate in an

appropriate workspace (discussed in Chapter 5). Thus for the purpose of this analysis

the upper tension limits will be ignored. In the case that this assumption cannot be

made and disturbance wrenches cause upper tension limits to be reached, additional

considerations must be taken into account as will be discussed in Chapter 4.

3In the case where p < n, the disturbance can change the pose of the manipulator without
causing a cable to go slack or overtensioning the cables. Regardless, the same reasoning applies for
neglecting the upper tension limits.
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Thus we will focus on the external wrenches that disturb the manipulator by

causing one or more of the cables to have zero tension. As was discussed in Chapter

3, the lower sides of NWavail correspond to exerting a wrench while having one or

more of the cables have zero tension. Consequently, the upper sides of −NWavail

correspond to disturbance wrenches that cause one or more of the cables to have zero

tension. Thus in order to find the smallest disturbance wrench, the upper sides of

−NWavail is the set of wrenches that will be examined to find the smallest static

disturbance wrench4. Let us refer to these wrenches as the critical wrenches and

denote the set of all critical wrenches by C. The critical wrenches are a subset of the

boundary wrenches. Specifically, a wrench $wcrit is defined as a critical wrench if the

wrench α$wcrit (α ∈ IR) can be resisted by the manipulator if 1 ≥ α ≥ 0 but disturbs

the manipulator (i.e. causes a cable to go slack) if α > 1.

2-D Test Case

Consider the manipulator in Figure 15(a), which is used in later sections as a

test case for different definitions of a wrench norm. The manipulator is a a 2-D

underconstrained point-mass cable robot with two cables, the lengths of the cables

are not changing and the end-effector is in static equilibrium. The manipulator is

assumed to have very large upper tension limits and the end-effector weighs 10 N.

Figure 15(b) shows −NWavail for this pose of the manipulator, in which the critical

wrenches, C (the two upper sides of −NWavail), are highlighted. In order to find the

disturbance robustness of this pose of the manipulator we wish to find the smallest

wrench in C. In this case the magnitude of a wrench is easily defined because the

task space has only linear dimensions, thus the magnitude of the wrench is found

using the Euclidean norm. By calculating the shortest distance between the origin

4Again, in the case where p < n, the disturbance can change the pose of the manipulator without
causing a cable to go slack. In this case the dimension of −NWavail is less than n and so C =
−NWavail.
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Figure 15: Minimum disturbance force example.

x

y

g 3

4

x

y

fmin

fmin

-mgC

x

y

g

3

4

x

y

fmin

fmin

-mg
C

(a) Example manipulator and
minimum disturbance force.

x

y

g 3

4

x

y

fmin

fmin

-mgC

x

y

g

3

4

x

y

fmin

fmin

-mg
C

(b) −NWavail for this pose
of the manipulator.

Figure 16: Minimum disturbance force example.

and C, the smallest wrench in C can be found to be fmin = (−24
5
N, 18

5
N)T , as shown

in Figure 15(b).

Consider now the manipulator in Figure 16(a). It is the same manipulator as

in Figure 15(a), only the left motor mount location has been lowered, changing the

angle of the left cable. Figure 16(b) shows −NWavail for this pose of the manipulator,

with the critical wrenches highlighted. In this case the smallest wrench in C is still

fmin = (−24
5
N, 18

5
N)T , as shown in Figure 16(b).

In this simple example, the smallest static disturbance that causes a cable to go

slack can be found in a straightforward manner because the task space had only linear

dimensions, thus the magnitude of the wrench was found using the Euclidean norm.

However, this problem is complicated for general underconstrained cable robots by
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the fact that the norm of a mixed-dimensional wrench (with forces and moments) is

not defined. Thus we must develop some meaningful form of a wrench norm if we

are to talk about which is the smallest. This norm should also remain consistent

with the simple case of a manipulator with a point-mass end-effector, such as the one

discussed above. The following three subsections consider three different approaches

to defining a wrench norm. It is shown that the first two approaches in Sections 4.3.3

and 4.3.4 do not produce acceptable wrench norms, while the approach in Section

4.3.5 does.

4.3.3 Pure Force Disturbance Norm

The first approach considered here for defining a wrench norm is to consider only pure-

force disturbances applied at arbitrary locations. The magnitude of such wrenches

would then be defined by the magnitude of the applied force. That is, if a force F dist

is applied to the end-effector and r is the vector from G to the point at which F dist

is applied, the disturbance wrenches are modeled as being of the form:

$w =




F dist

Mdist


 =




F dist

F dist × r


 . (34)

This model of the disturbance essentially removes the possibility of having any

moment about the line of action of the force. This appears to be a reasonable model

of disturbance wrenches, as it seems that a common scenario would involve a pure

force being applied to the end-effector.

If the magnitude of such a wrench is defined as the magnitude of the applied force,

the wrench norm is the pure-force norm, ‖ $w ‖f , defined to be:

‖ $w ‖f = ‖F dist ‖=
√

$wT
W $w (35)

where the weighting matrix W is

W =




I`×` 0`×(n−`)

0(n−`)×` 0(n−`)×(n−`)


 (36)

40



and where 0 is a zero matrix, the dimension of the task space is n and the task space

has ` linear dimensions and n− ` angular dimensions. Using the pure-force norm, the

disturbance robustness measure Rf would be:

Rf = min
$w∈C

‖ $w ‖f . (37)

Comparing this result to the 2-D test case, we see that this norm is consistent

with the case of a point-mass end-effector, as n − ` = 0 for such a manipulator and

the norm simplifies to be the Euclidean norm.

However, for a general underconstrained manipulator, a pure moment above a

certain magnitude cannot be resisted and will cause a cable tension to become zero.

Thus a pure force applied at a very large distance (perpendicular to the direction

of the force) will result in a very large moment, thus a vanishingly small force will

result in a large moment if applied at a distance that approaches infinity. As a

result, the smallest pure-force disturbance that causes a cable to have zero tension is

a force with magnitude approaching zero. Thus applying this wrench norm to

a general underconstrained manipulator results in the magnitude of the

smallest disturbance wrench to approach zero (Rf = 0)5, regardless of the

arrangement of the cables, the end-effector geometry, etc. Thus this norm

is not an appropriate choice. Similarly, a wrench norm based on a pure-moment

disturbance would have the same problems and thus will not be considered.

4.3.4 Tension Space Norm

Another approach for constructing a wrench norm would be to map the wrenches to

the tension space and defining the magnitude of a wrench as the norm of the resulting

cable tensions6. The mapping of a disturbance wrench back to the tension space is

5Note that the minimum of ‖ $w ‖f is not actually attained in C, but approaches 0 in the limit.
Thus the infimum of ‖ $w ‖f is actually used.

6This approach was suggested by Dr. Harvey Lipkin.
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accomplished using the inverse of the transpose of the Jacobian matrix:

t = J−T$w (38)

assuming that JT is invertible. In the case of a redundant manipulator (p > n), J−T

can be replaced by
(
JT
)†
, the right pseudo-inverse7 of JT . If the magnitude of the

wrench is defined as the Euclidean norm of the resulting tension vector, the wrench

norm is called the tension-space norm, ‖$w ‖t, defined as:

‖$w ‖t= ‖ t ‖= ‖J−T$w ‖=
√

$wT
J−1J−T$w (39)

where J−T is replaced by
(
JT
)†

for redundant manipulators. Using the tension-space

norm, the disturbance robustness measure Rt would be:

Rt = min
$w∈C

‖$w ‖t . (40)

Note that if the manipulator is not redundant but is in a particular pose where

JT is singular, the tension-space norm is assumed to equal 0. This is because an

infinitesimally small external wrench can disturb the manipulator in such a pose.

Additionally, this provides continuity, as Rt → 0 as the pose approaches such a

configuration.

It is actually fairly simple to find Rt for a pose of a manipulator. The tensions of

the manipulator with no disturbance wrenches present are found by:

tmg = J−T (mg) . (41)

When the disturbance wrench is applied:

$wtot = mg + $wdist = JT (tmg + tdist). (42)

Thus for cable i to go slack, ti = 0 = tmg,i+tdist,i. Thus tdist,i = −tmg,i. If the smallest

cable tension tmg,i is tmg,min, the resulting robustness measure would be Rt = tmg,min.

7
(
JT

)†
= J

(
JT J

)−1
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By mapping the wrench to the tension space, the issue of mixed-dimensional

wrenches is overcome. That is, regardless of the units of the task space, the tension-

space norm can be calculated. However, examination of the results of this wrench

norm are not consistent with the 2-D test case examined earlier. Consider again

the manipulators shown in Figures 15(a) and 16(a). In both cases the smallest

external force that caused a cable to go slack was fmin = (−24
5
N, 18

5
N)T . For the

first manipulator the slope of the left cable is -1 and the slope of the right cable is 4
3
.

The tensions in the left and right cables of the first manipulator are then 30
√
2

7
N and

50
7
N, respectively, resulting in Rt =

30
√
2

7
N. For the second manipulator the slope of

the left cable is − 1
3
and the slope of the right cable is 4

3
. The tensions in the left and

right cables of the second manipulator are 2
√
10N and 10N, respectively, resulting

in Rt = 2
√
10N. Clearly, this measure produces different results despite the fact

that the smallest disturbance force is the same in both cases. As a result, the ability

of this approach to deal with mixed-dimensional wrenches is outweighed by the fact

that the results do not agree with the natural result for the point-mass case.

4.3.5 Acceleration Energy Norm

The last approach considered here for constructing a wrench norm is to use the

acceleration energy associated with a wrench to define its magnitude. While

acceleration energy is not a commonly used quantity, it is closely connected to kinetic

energy. Therefore, before the wrench norm based on acceleration energy is presented,

acceleration energy will be discussed.

4.3.5.1 Acceleration Energy

Let an orthonormal coordinate frame be defined as fixed to the end-effector with its

origin at the center of gravity, G. The acceleration energy of the end-effector (also

referred to as Appel’s function, the Appelian or the Gibbs-Appel function [58]) is

defined as:

43



AE =

∫

body

1

2
a2dm. (43)

Where a is the magnitude of the linear acceleration of the differential mass dm. If

the body is a rigid body, a is the linear acceleration of the center of gravity, rpi/G is

the vector from G to point pi on the body, ω is the angular velocity of the body and

α is the angular acceleration of the body, then the acceleration api of point pi on the

body is:

api = a+ α× ri/G + ω ×
(
ω × ri/G

)
.

In the problem considered here the end-effector is initially at rest before the wrench

acts on it. Thus api simplifies to:

api = a+ α× rpi/G

which is a screw quantity. Thus let the acceleration screw $a is defined as:

$a =




a

α


 =

(
ax ay az αx αy αz

)T

(44)

where ax, ay and az are the components of the linear acceleration of the center of

gravity and αx, αy and αz are the components of the angular acceleration of the body.

The acceleration energy then simplifies8 to:

AE =

∫

body

1

2
a2dm =

1

2




a

α




T

M




a

α


 =

1

2
$aTM$a (45)

where M is the inertia matrix of the end-effector. Because the end-effector is initially

at rest the applied wrench is related to the resulting acceleration screw by:

$w = M$a. (46)

8The expression in (43) is nearly identical in form to the expression for the kinetic energy of a
body, thus the complete derivation of the expression for acceleration energy follows the same steps

as the derivation of the kinetic energy expression KE($t) = 1
2
$tT

M$t. As such, the complete
derivation is not included here.
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Noting that M is square, symmetric and invertible, we can see that

$a = M−1$w (47)

thus

AE =
1

2
$wT

M−1MM−1$w =
1

2
$wT

M−1$w. (48)

Thus we define the acceleration energy of a wrench $w with respect to the end-

effector as

AE($w) =
1

2
$wT

M−1$w. (49)

At this point we note the similarity of the acceleration energy expression to that

of the magnitude of a generalized force in the intermediate space. Recall that in the

intermediate space the magnitude of a generalized force is:

‖ f̂i ‖=
√

$wi
T
B2$wi =

√
2mAE ($wi ). (50)

Thus the acceleration energy of a wrench can be found directly from the magnitude

of the associated generalized force in the intermediate space:

AE($w) =
1

2m
‖ f̂i ‖2 . (51)

4.3.5.2 Correlation of Acceleration Energy to Kinetic Energy

For a wrench applied to a body at rest, the acceleration energy of the

wrench with respect to the body is directly proportional to the resulting

kinetic energy of the body after a short period of time. If a wrench is applied

to the body over a small time ∆t (and no other external wrenches are present) the

acceleration energy of the wrench relates to the resulting kinetic energy of the body

as follows. If we approximate:

$t ≈ $a∆t = M−1$w∆t
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then we get the relationship:

KE($t) =
1

2
$t

T
M$t (52)

≈ 1

2
$wT

M−1$w(∆t)2 (53)

= AE($w)∆t2 (54)

where the approximation becomes exact as ∆t → 0. Equivalently, the wrench can

be made impulsive ($wdist = $wδ(t)), in which case the body will be given an initial

velocity (twist) of $t0 determined by the impulse-momentum relationship9:
∫ 0+

0−
$wδ(t)dt = M$t0+

$wsec = M$t0+

M− 1
2$wsec = M

1
2$t0+

$wT
M−1$wsec2 = $t0+

T
M$t0+

AE($w)sec2 = KE($t0+) (55)

As the previous equations demonstrate, the acceleration energy of a wrench

is proportional to the kinetic energy of the resulting twist of the body. In

fact, it can be shown that if the applied wrench and the resulting twist are mapped

to the intermediate space they are parallel. Recall

$w = M$a (56)

and

$t ≈ $a∆t. (57)

If the wrench is applied over an infinitesimally small period of time and we let α = 1
∆t
,

the previous expression becomes

α$t = $a. (58)

9Note that here
∫ 0+

0−
δ(t)dt ≡ 1sec
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Then

$w = αM$t (59)

= αmA2$t (60)

B$w = αmA$t. (61)

Let β = αm, then

f̂ = βv̂. (62)

Thus we can see that the generalized force and generalized velocity associated with

the applied wrench and resulting twist are parallel and in the same direction (because

β > 0). An applied wrench and the resulting twist are termed here as a corresponding

wrench and twist, denoted $tc and $wc , respectively. We can now apply the property

of parallelism in the intermediate space to make the following claims:

• Given a twist $tc, then out of all the wrenches that have the same acceleration

energy as $wc , $
w
c has the maximum power product with $tc.

• Given a twist $tc, then out of all the wrenches that have the same power product

with $tc as $
w
c , $

w
c has the minimum acceleration energy.

• Given a wrench $wc , then out of all the twists that have the same kinetic energy

as $tc, $
t
c has the maximum power product with $wc .

• Given a wrench $wc , then out of all the twists that have the same power product

with $wc as $tc, $
t
c has the minimum kinetic energy.

These relationships illustrate two things. The first is the unique relationship between

an applied wrench and the resulting twist of the manipulator. The relationships

show how the corresponding twist and wrench represent solutions to several optimal-

value power-product problems. Secondly, these relationships illustrate the symmetry
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between acceleration energy and kinetic energy. While acceleration energy may not

be as widely used as kinetic energy, it is clear that the two are naturally tied to one

another. In fact, Section 4.3.6 will show how acceleration energy can be used to solve

initial-value problems for cable robots.

4.3.5.3 Acceleration Energy Norm

Based on the concept of acceleration energy, the acceleration energy norm, ‖$w ‖a, is

defined as:

‖$w ‖a =
√

2mAE($w) (63)

=
√
m$wT

M−1$w (64)

= ‖ f̂ ‖ . (65)

Note that the 2m term is added such that the acceleration energy norm of a wrench

is equal to the magnitude of the associated generalized force. As a result, applying

this norm is relatively simple. If all wrenches are mapped to the intermediate space,

the magnitudes of the wrenches can be calculated in the same way as they would in

a pure-force case. Note also that this norm produces results with units of force. This

can be interpreted as the norm producing the magnitude of a pure-force wrench that

would have the same acceleration energy with respect to the end-effector as the given

wrench.

Comparing this norm to the 2-D test case reveals that it is consistent with the

case of a point-mass end-effector, as the norm simplifies to be the Euclidean norm

for a task space with only linear units. The significant advantage of this norm over

the previously considered norms is that it also accommodates the mixed dimensions

of general wrenches and produces results that have physical meaning.

As a side note, a norm similar to the acceleration energy norm can be defined

for twists using the kinetic energy associated with the twist. While this norm is not
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used in the static disturbance analysis, it will be useful for the impulsive disturbance

analysis. The kinetic energy norm, ‖ $t ‖k, is defined as:

‖ $t ‖k =

√
2

m
KE($t) (66)

=

√
1

m
$tTM$t (67)

= ‖ v̂ ‖ . (68)

Note that the addition of the 2
m

term is added such that the kinetic energy norm of

a twist is equal to the magnitude of the associated generalized velocity. Note also

that this norm produces results with units of linear velocity. This can be interpreted

as the norm producing the magnitude of a linear velocity that would have the same

kinetic energy with respect to the end-effector as the given wrench.

4.3.6 Static Disturbance Robustness Measure

Because the acceleration energy norm provides the most meaningful wrench norm,

the proposed static disturbance robustness measure is based on this norm.

Definition: The static disturbance robustness measure, Rs, for a pose of a cable

robot is:

Rs =
1

mg
min
$w∈C

√
$wT

B2$w (69)

=
1

mg
min
f̂∈Ĉ
‖ f̂ ‖ (70)

=
1

mg
min
$w∈C

‖$w ‖a . (71)

where B is the mapping matrix used to map wrenches to the intermediate space and

Ĉ is the set of wrenches in C mapped to the intermediate space.

This measure uses the acceleration energy norm to define the magnitude of a

disturbance wrench, which is equivalent to mapping all wrenches to the intermediate

space and considering the magnitude of the corresponding generalized forces. The
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measure then finds the smallest wrench in C, which is the set of all critical

wrenches (the static wrenches that just begin to disturb the manipulator).

The resulting magnitude is then normalized by the factor 1
mg

. This normalization

produces a result between 0 and 1, with 1 corresponding to a manipulator with

the highest static disturbance robustness and 0 corresponding to the lowest static

disturbance robustness.

As a result of the normalization, the magnitude of this smallest static disturbance

wrench ismgRs. SinceRs is pose-dependent,Rs will have different values throughout

the workspace of a manipulator. Note that the extension of this measure to include

multi-body end-effectors will be discussed in Section 4.6.

4.3.6.1 Calculation and Interpretation

Calculation:

As was discussed in the previous section, the use of acceleration energy to

formulate a wrench norm has several advantages, including consistency with the point-

mass end-effector case, easy calculation of wrench magnitudes in the intermediate

space, and a physically meaningful way of resolving the mixed-dimensionality of the

wrenches. The measure is also scale- and frame-invariant. That is, it does not matter

where the global coordinate frame is placed or what system of units is used, the result

will be the same. The measure also handles redundant manipulators just as easily as

it does non-redundant manipulators.

By providing a lower bound on the wrenches that disturb the end-effector, this

measure also allows for other types of disturbances to be analyzed. For example,

an oscillating disturbance wrench or random wrenches (like white noise) could be

applied to the end-effector. If the acceleration energy norm of such a disturbance has

a known upper bound that is at or below mgRs then the end-effector can resist that

disturbance.
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Figure 17: Calculation of the smallest wrench in Ĉ.

Note also that finding the smallest generalized force in Ĉ in the intermediate space

is fairly simple. Consider Figure 17. Because C is made up of planar segments, Ĉ

is made up of planar segments (because the mapping to the intermediate space is

linear). From geometry we know that the shortest distance between a point and a

plane is along a line perpendicular to the plane. Thus the vector to the smallest

generalized force in Ĉ will be perpendicular to one of these segments. In order to find

the smallest generalized force only the forces perpendicular to the planar segments of

Ĉ need to be considered.

The calculation of the smallest wrench in C can also be formulated as an optimiza-

tion problem. For brevity this will be described here for the non-redundant case of p =

n. Let a modified Jacobian matrix be defined as JT
mod,i =

[
$w1 . . . $wi−1 $wi+1 . . . $wp

]
.

Note that the columns of JT
mod,i span one of the sides of C. Let us also define

tmod,i = (t1 . . . ti−1 ti+1 . . . tp)
T . Finding the smallest wrench in one of the sides of

C becomes:

minimize
1

2
$wT

M−1$w

such that $w = JT
mod,itmod,i +mg

and tmod,i ≥ 0 (72)

where tmod,i ≥ 0 implies that each element of tmod,i is nonnegative. The solution

(when tmod,i > 0) is:

$wmin,i = −mJT
mod,i

(
Jmod,iM

−1JT
mod,i

)−1
Jmod,iM

−1g +mg. (73)
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Then $wmin, the smallest wrench in C, is found by:

$wmin = min
i∈{1,2,...p}

$wmin,i. (74)

Interpretation:

In addition, the use of an acceleration energy norm to find the smallest disturbance

wrench has another connection to the physical behavior of the system. Consider a

general underconstrained cable robot with p cables10 where p = n. Then JT =
[
$w1 · · · $wp

]
is n× n, where $wi is the wrench along the ith cable. Assume that JT is

full rank.

Now consider what happens if cable i (which is assumed to have a nonzero

tension) is cut. The manipulator cannot counteract the force of gravity and thus

the manipulator will begin to accelerate. Let the initial wrench that accelerates the

end-effector from its original pose be called $winit. Note that $
w
init is exerted by gravity

and the remaining p − 1 cables. At this instant the new Jacobian transpose, J T
new,

will be JT =
[
$w1 · · · $wi−1 $wi+1 · · · $wp

]
and is now n × (n − 1). Initially all cables

will remain taut, and thus the initial twist of the manipulator $tinit is reciprocal11

to the columns of JT
new. As we know from discussion of the intermediate space,

reciprocality between a twist and a wrench corresponds to perpendicularity between

the associated generalized velocity and generalized force. Thus since $tinit is reciprocal

to {$w1 , · · · , $wi−1, $wi+1, · · · , $wp }, it is reciprocal to the hyperplane spanned by these

wrenches. In the intermediate space, the generalized velocity is thus perpendicular to

the side of Ĉ corresponding to the hyperplane spanned by those generalized wrenches.

Recall that Ĉ is the set of upper sides of −NWavail mapped to the intermediate

space. Let −Ĉ be the set of lower sides of NWavail mapped to the intermediate

space. Because $winit is exerted by gravity and the remaining p− 1 cables, it must lie

10Note that this analysis works equally well for redundant manipulators, but for simplicity of
explanation the manipulator is assumed non-redundant

11Note that this analysis will be described in greater detail in Section 4.4.2.
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on one of the lower boundaries of NWavail. Specifically, it must be on the lower side

of NWavail spanned by {$w1 , · · · , $wi−1, $wi+1, · · · , $wp }. Thus in the intermediate space

it lies on the corresponding side of −Ĉ. As discussed earlier, the wrench (generalized

force) applied to a body is parallel to the resulting twist (generalized velocity) of the

body in the intermediate space. From the previous reasoning we know that the vector

corresponding to the resulting generalized velocity v̂init is perpendicular to the side of

Ĉ in the intermediate space. The vector to f̂init must therefore also be perpendicular

to the corresponding side of −Ĉ. Thus in the intermediate space the generalized force

f̂init is parallel to v̂init and thus is also perpendicular to the side of −Ĉ. Therefore we

can conclude that f̂init is the smallest generalized force in the side of −Ĉ.

Let us instead consider the side of C that corresponds to the p− 1 cables that are

not cut. If we use the acceleration energy norm to find the smallest wrench in this set,

we get a wrench that corresponds to a generalized force with the minimum distance

from the origin. The vector to this wrench in Ĉ is perpendicular to that side of Ĉ, as

illustrated in Figure 17. This wrench is the smallest wrench (using the acceleration

energy norm) that causes cable i to go slack. Let us call this wrench $wdist,i and the

corresponding generalized force f̂dist,i. Because this wrench is the smallest wrench

in the side of C, it must be equal and opposite to f̂init. Thus we can see that

the wrench $wdist,i is in fact the exact same wrench as $
w
init, but now in the

opposite direction. That is, $winit = −$wdist,i.

Summary:

Thus we see that using the acceleration energy norm produces a wrench that

exactly opposes the wrench exerted on the end-effector if the constraint of a cable is

lost. In other words, out of all the wrenches that could be exerted by the

cables and gravity on the end-effector, the manipulator naturally exerts

the wrench with the smallest acceleration energy. If we consider each of the p

different cases of a cable being cut, the smallest possible wrench that the robot will
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Figure 18: Static robustness measure example.

exert out of these cases has magnitude mgRs. Thus this measure produces results

consistent with the physical behavior of the system.

4.3.6.2 Example

Consider the planar 3-DOF 3-cable manipulator shown in Figure 18. The end-effector

is a 2 m × 4 m rectangle with a mass of 100 kg and rotational inertia of 500
3
kg ·m2

(ρz =
√
5
3
m). In the given pose the bottom edge has a slope of − 1

2
with respect to

gravity (i.e. tan θ = 1
2
), cable 1 is collinear with G, cable 2 is vertical and cable 3

is aligned with the right edge of the end-effector. The origin of the x-y coordinate

frame is placed at G, with the axes parallel to the edges of the end-effector. While

in a planar problem it would be possible to simply align the y-axis with gravity, the

coordinate frame is aligned with the geometry of the end-effector to illustrate how

the coordinate frame would align with the principal axes of a spatial end-effector.

Forming JT results in:

JT =




−2√
5

−1√
5

0

1√
5

2√
5

1

0 −3√
5
m 2m



=

[
$w1 $w2 $w3

]
.
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Calculation of the gravitational wrench results in:

$wgrav =




1√
5

−2√
5

0




980N. (75)

Mapping the gravitational wrenches and the columns of JT to the intermediate space

results in:

f̂grav =




1√
5

−2√
5

0




980N f̂1 =




−2√
5

1√
5

0




m

s

f̂2 =




−1√
5

2√
5

−3
√
3

5




m

s
f̂3 =




0

1

2
√
3√
5




m

s
.

In the intermediate space the smallest generalized force in C is perpendicular to

a planar side of Ĉ. Thus the smallest generalized force in the side of Ĉ spanned

by f̂i and f̂j is perpendicular to both f̂i and f̂j. Let us construct unit vector ûi,j

perpendicular to f̂i and f̂j directed such that ûi,j · f̂grav > 0. This results in:

û1,2 =




−
√
3

2
√
5

−
√
3√
5

−1
2




û1,3 =




−
√
15
10

−
√
15
5

1
2




û2,3 =




7
√
3

2
√
41

√
3√
41

−
√
5

2
√
41



.

Note that the smallest wrench in the side of Ĉ spanned by f̂i and f̂j is f̂ij,min =

‖ f̂i,j,min ‖ ûi,j . Then using the fact that:

(
f̂i × f̂j

)
· f̂grav =

(
f̂i × f̂j

)
· f̂ij,min
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we can find the smallest ‖ f̂i,j,min ‖:

‖ f̂1,2,min ‖=

(
f̂1 × f̂2

)
· f̂grav

(
f̂1 × f̂2

)
· û1,2

= 509.2N

‖ f̂1,3,min ‖=

(
f̂1 × f̂3

)
· f̂grav

(
f̂1 × f̂3

)
· û1,3

= 509.2N

‖ f̂2,3,min ‖=

(
f̂2 × f̂3

)
· f̂grav

(
f̂2 × f̂3

)
· û2,3

= 177.8N.

Thus the smallest static disturbance wrench has a magnitude of 177.8N (using

the acceleration energy norm). The corresponding static robustness measure is

Rs =
‖f̂2,3,min‖

mg
= 177.8N

980N
= 0.1815. Note that the calculation of the smallest static

disturbance wrench has also been verified using computer simulation, as discussed in

Appendix B.

4.4 Impulsive Disturbance Analysis

4.4.1 Motivation

In contrast to the previous section, which focused on static disturbance wrenches,

this section will examine the effect of impulsive disturbance wrenches. Whereas

some static wrenches will disturb a manipulator and some will not, all12 impulsive

disturbance wrenches disturb the end-effector. This is because all impulsive wrenches

have an infinite magnitude (theoretically), albeit acting over an infinitesimally small

period of time.

Once the end-effector is disturbed it will follow some trajectory, which is limited

by the constraints imposed by the cables (assuming the cables do not break). These

constraints form constraint surfaces in the task space of the manipulator. For

12Note that we will not be considering impulsive wrenches that act against the constraint of the
cables, because the magnitude of an impulse is theoretically infinite, and thus would always cause a
cable to break.
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example, consider the cable robot with a point-mass end-effector shown in Figure

19. The end-effector (labeled ee) is suspended from two cables. Each of the cables

has a fixed length and thus imposes a constraint on the position of the end-effector.

In this case the constraint surfaces are represented by the dashed arcs, where the

end-effector must be inside the circle bounded by each dashed arc. Thus the shaded

area is the set of all positions that the end-effector could be located without violating

the cable constraints.

Given that the end-effector will be disturbed, we wish for the end-effector to

return to its original pose as quickly as possible. However, determining the complete

trajectory of the end-effector is very complex and will depend on many factors not

included in the idealized model, including contact of cables with the end-effector,

contact of cables with each other, damping due to the environment, friction, spring

rates of the cables, mass of the cables, losses in the cables, etc. In particular, if a

manipulator is given a significantly large disturbance, the manipulator will “bounce

around” the constraint surfaces as the end-effector moves until a cable is taut and

then springs back. Such a system is highly unpredictable and extremely difficult to

analyze. Large displacements of the end-effector also require complete knowledge

of the constraint surfaces, which are quite complicated. Rather than trying to

determine the trajectory and corresponding settling time for a disturbed end-effector,

this analysis will focus on determining the initial acceleration of the end-effector back
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toward the original pose assuming small displacements of the end-effector. Examining

the initial acceleration of the end-effector provides insight into the response of the

manipulator without requiring analysis of unpredictable motion, knowledge of non-

ideal system behavior or a complete model of the constraint surfaces.

The approach for this analysis is to determine the possible initial accelerations of

the end-effector, specifically the vertical acceleration of the end-effector. We choose

to examine the vertical acceleration of the end-effector because it will be shown in

Section 4.4.3 that the vertical acceleration is proportional to the magnitude of the

acceleration energy of the total (linear and angular) acceleration vector.

The set of possible initial accelerations of the end-effector is determined by

the possible initial twists of the end-effector, which are in turn determined by the

constraint surfaces. Section 4.4.2 describes the effect of the constraint surfaces

by forming the set of all possible initial twists of the end-effector. Section

4.4.3 then shows how the corresponding accelerations of the end-effector can be

determined. Based on this set of accelerations, the impulsive disturbance

robustness measure is defined in Section 4.4.4 by the smallest (magnitude)

acceleration of the end-effector back towards its original pose. Note that

since no initial acceleration will have an upward component, the smallest

vertical acceleration possible is 0 (the worst case) and the largest possible

is g (the best case). Similar to the static disturbance robustness measure, this

measure captures the worst-case scenario for the manipulator. Defining impulsive

robustness using the lowest acceleration provides a lower bound on the magnitude of

the initial acceleration of the end-effector back to its original pose and corresponds

(excluding the case of unpredictable “bouncing”) to the slowest return of the end-

effector to its original pose.

Assumptions

As stated earlier, the analysis will be performed assuming small displacements of
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the end-effector in order to reduce the complexity of modeling the constraint surface.

A displacement is considered to be “small” if a linear approximation of the constraint

surfaces is valid. Note that for simplicity we are considering an impulsive disturbance

that acts on the end-effector and then no additional disturbances are present. The

lengths of the cables are held constant and the end-effector is in static equilibrium

prior to the disturbance.

4.4.2 Unconstrained Twists

Forming the complete constraint surface for a particular pose of an underconstrained

cable robot can be very difficult. However, in order to find the initial twists

(and corresponding accelerations) of the end-effector it is only necessary to form

the constraint surface locally, that is, in an infinitesimal sense. Because the local

constraint surface only limits the infinitesimal displacement of the end-effector, it

is appropriate to think of the constraint surface as providing a constraint on the

instantaneous twists that the end-effector could be given at this pose. Thus the

effects of the local constraint surface can be examined by forming the set of all twists

that the end-effector can undergo instantaneously without violating the constraints

imposed by the cables. This set will be referred to as the set of unconstrained twists,

U .

The set U can be formed by analysis of the Jacobian matrix of the robot. Recall

from Chapter 3 that the Jacobian matrix J defines the linear relationship between

the velocities of the cables extending or retracting (q̇1 ... q̇m) and the resulting twist

of the end-effector $t =


 v

ω


:




q̇1
...

q̇p




= J$t (76)

59



motor i

cable i

ci

ui

G

Figure 20: Diagram of kinematic parameters.

where

J =
[
$w1 ... $

w
p

]T
(77)

and $wi is the wrench from the ith cable (in ray coordinates):

$wi =




ui

ci × ui


 (78)

where ui is the unit vector running along cable i directed away from the end-effector,

ci is the vector from G, the center of gravity of the end-effector, to the point on the

end-effector where cable i is connected, as illustrated in Figure 20, and there are p

cables attached to the end-effector. Note that q̇i > 0 corresponds to the ith cable being

reeled in. For this Jacobian relationship to hold all cables must remain in tension.

Based on J , the set of unconstrained twists U can be formed. A method is

presented first for determining U when the manipulator is not redundant. After the

method is presented, it will be discussed briefly how the method must be modified

for redundant manipulators.

The set U consists of two subsets of twists, termed Bi-Directional Unconstrained

Twists and Uni-Directional Unconstrained Twists. These subsets can be formed by

examining the nullspace of J and the nullspaces of modified J ’s, respectively.
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4.4.2.1 Bi-Directional Unconstrained Twists

In order to find the bi-directional unconstrained twists (also referred to here as

simply “bi-directional twists”), it is necessary to determine whether J has a nontrivial

nullspace. If it does, that means that there exists a twist that the end-effector can

instantaneously undergo without violating any cable constraints or causing any of the

cables to go slack. If p < n, this will always be the case regardless of the location of

the end-effector within the workspace. If, however, p ≥ n, a nontrivial nullspace of

the Jacobian means that the manipulator is in a configuration where the constraints

imposed by the cables have degenerated due to the geometry of the pose. Such a

situation has been termed a “wrench deficiency” of a cable robot [12], and is very

similar to a singularity of a parallel robot.

Regardless, if a nontrivial nullspace of J exists of dimension s, then a set of s

linearly independent twists that span the nullspace of J can be formed and labeled

$tbi,1 through $tbi,s. These twists are bi-directional twists, so named because the end-

effector can move in either the positive or negative direction, $tbi,j or −$tbi,j, without

violating a cable constraint. The span of these twists forms the complete set of all

bi-directional twists.

4.4.2.2 Uni-Directional Unconstrained Twists

The remaining elements of U are uni-directional unconstrained twists (also referred

to here as simply “uni-directional twists”), which cause one or more cables to go

slack. In order to form the uni-directional twists, sub-matrices of the Jacobian must

be formed. First we form the Jacobian matrix, Jmod,i, that would result if the ith

cable were removed by removing the ith row of J :

Jmod,i =
[
$w1 ... $

w
i−1 $wi+1 ... $

w
p

]T
. (79)

The nullspace of this modified matrix Jmod,i is one dimension higher than the original

nullspace of J . A new twist, termed $tuni,i, can be constructed such that the set of
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twists
{
$tuni,i, $tbi,1, ... , $

t
bi,s

}
spans the nullspace of Jmod,i and $i

T$tuni,i > 0.

If the end-effector undergoes any twist β$tuni,i, where β is a scalar, then if β > 0

cable i will go slack, if β < 0 the constraint imposed by cable i is violated, and if β = 0

cable i remains taut. This is the source of the name “uni-directional unconstrained

twist,” because β$tuni,i is an instantaneously permissible motion only if β ≥ 0 (i.e. the

motion along the twist is permitted in only one direction). This can be easily verified

by noting that

J
{
β$tuni,i

}
= β




$1
T

...

$p
T



$tuni,i = β




0

...

0

$i
T$tuni,i

0

...

0




=




0

...

0

q̇i

0

...

0




(80)

where q̇i is the velocity at which cable i must be reeled in (q̇i > 0) or out (q̇i < 0) in

order to keep the cable taut. Noting that q̇i = β$i
T$tuni,i, and $i

T$tuni,i > 0, then if all

cable lengths are held fixed, β < 0 would result in the cable needing to be reeled out,

thus the cable constraint is being violated. β > 0 would result in the cable needing

to be reeled in, thus the cable will go slack.

This procedure can be repeated for each of the cables, where the nullspace of

Jmod,i is used to form the twist $tuni,i, resulting in the set of twists
{
$tuni,1, ... , $

t
uni,p

}
.

The set of bi-directional and uni-directional twists
{
$tbi,1, ... , $

t
bi,s, $tuni,1, ... , $

t
uni,p

}
is

referred to here as the set of principal twists, denoted by P .
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4.4.2.3 Forming U

Theorem :

The set of all unconstrained twists U can be described as:

U = {$t | $t = a1$
t
bi,1 + a2$

t
bi,2 + ...+ as$

t
bi,s

+ b1$
t
uni,1 + b2$

t
uni,2 + ...+ bp$

t
uni,p,

where ai ∈ (−∞,∞) and bj ∈ [0,∞) }. (81)

Proof :

First we prove that the twists in
{
$tbi,1 ... $

t
bi,s $tuni,1 ... $

t
uni,p

}
are linearly independent

by contradiction. Assume that these twists are linearly dependent. Then there are

coefficients a1, ..., as, b1, ..., bp ∈ IR, with not all coefficients zero such that:

a1$
t
bi,1 + ...+ as$

t
bi,s + b1$

t
uni,1 + ...+ bp$

t
uni,p = 0 (82)

so

J
(
a1$

t
bi,1 + ...+ as$

t
bi,s + b1$

t
uni,1 + ...+ bp$

t
uni,p

)
= J0 = 0 (83)

a1J$tbi,1 + ...+ asJ$tbi,s + b1J$tuni,1 + ...+ bpJ$tuni,p = 0. (84)

Because each $tbi,i is in the nullspace of J , J$tbi,i = 0 for i = 1, ..., s. Thus

b1J$tuni,1 + ...+ bpJ$tuni,p = 0. (85)

Let $i
T$tuni,i = di > 0. Then using the results of (80) equation (85) becomes:

b1




d1

0

...

0



+ ...+ bp




0

...

0

dp



=




b1d1
...

bpdp



= 0. (86)
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And because each di > 0, the only way this can be true is if b1 = ... = bp = 0.

Thus equation (82) can only be true if a1$
t
bi,1 + ... + as$

t
bi,s = 0. Not all ai

may be zero, thus in order for this to be true, the twists $tbi,1, ..., $
t
bi,s must be

linearly dependent. However, this set is defined in Section 4.4.2.1 as being linearly

independent. This is a contradiction. Thus the assumption cannot be true and the

twists in
{
$tbi,1 ... $

t
bi,s $tuni,1 ... $

t
uni,p

}
are linearly independent.

Because these twists are linearly independent and s + p = n (because the

manipulator is not redundant), these twists span the space IRn and thus any arbitrary

twist $ti can be expressed as a linear combination of these twists:

$ti = a1$
t
bi,1 + ...+ as$

t
bi,s + b1$

t
uni,1 + ...+ bp$

t
uni,p. (87)

Now we investigate the range of values of ai and bj that define the unconstrained

twists. It can be determined whether or not this twist $ti violates any of the cable

constraints by checking the power product of this twist with the wrench along each

cable. If the power product with any cable is less than zero, the cable constraint is

violated. The power product of the twist with the screw along cable j is:

Pj = $Tj $
t
i. (88)

Because $ti can be expressed as a linear combination of the previously defined twists,

this becomes:

Pj = $Tj
(
a1$

t
bi,1 + ...+ as$

t
bi,s + b1$

t
uni,1 + ...+ bp$

t
uni,p

)
. (89)

However, because $Tj is a row of J and all twists $tbi,1, ..., $
t
bi,s lie in the nullspace of

J ,

Pj = $Tj
(
b1$

t
uni,1 + ...+ bp$

t
uni,p

)
. (90)

Also, because each twist $tuni,k lies in the nullspace of Jmod,k,

$Tj $
t
uni,k = 0 k 6= j. (91)
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Thus the power product of the twist with wire j becomes:

Pj = bj$
T
j $

t
uni,j . (92)

Because $tuni,j is constructed such that $Tj $
t
uni,j > 0, Pj will be greater than zero

iff bj > 0. Thus if any bj’s are less than zero, Pj will be less than zero and thus

a cable constraint will be violated, while if no bj’s are less than zero, all Pj’s will

be greater than or equal to zero and no cable constraints are violated and thus the

twist is unconstrained. Therefore a twist lies in the set of unconstrained twists U iff

ai ∈ (−∞,∞) and bj ∈ [0,∞). Q.E.D. ¤

4.4.2.4 Modification for Redundant Manipulators

Note that for non-redundant cable robots p+s = n, where s was the dimension of the

nullspace of J and n is the dimension of the task space. For a redundant manipulator,

the procedure must be modified slightly. If there are p cables and the dimension of

the task space is n and p > n, then the modified Js must be formed by removing

(p − n + 1) rows at a time. The corresponding uni-directional twists must then be

formed by checking that each $tuni,i,j,... has a positive power product with the rows

removed from J to form the corresponding Jmod,i,j,....

Example:

For example, if a manipulator with a point-mass end-effector (n = 3) is suspended

from four cables (p = 4), 6 modified Jacobian matrices (Jmod,1,2, Jmod,1,3, Jmod,1,4,

Jmod,2,3, Jmod,2,4, Jmod,3,4) must be formed, where Jmod,i,j is formed by removing

rows i and j from J . The corresponding uni-directional twists $tuni,i,j can then be

constructed using these matrices in the same manner as before, where $tuni,i,j must

satisfy $i
T$tuni,i,j > 0 and $j

T$tuni,i,j > 0. Note, however that not all twists $tuni,i,j

can be constructed such that both inequalities are satisfied. If such a twist cannot

be constructed it is discarded. In general,
(

p
p−n+1

)
different Jmod matrices must be

formed, but the maximum number of resulting uni-directional twists is p.
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4.4.3 Acceleration

Recall that the end-effector started in a static-equilibrium pose and an impulsive

disturbance was applied to the end-effector, resulting in an initial twist. We now

wish to find the possible initial accelerations of the end-effector (after the impulse is

done acting on the end-effector) and then define the disturbance robustness of the

pose of the manipulator by the lowest acceleration.

For general motion, the equations of motion of the end-effector are:




F

M


 = M




a

α


+




0

ω × ([In]ω)


 (93)

where M is the 6 × 6 inertia matrix and [In] is the 3 × 3 rotational inertia (mass

moment of inertia) matrix.

Because a linear approximation of the constraint surface is being used locally (they

are modeled as planar), this approximation is only valid if the displacements of the

end-effector are small. If the impulse is large (i.e. it imparts a large amount of kinetic

energy to the end-effector) then the resulting twist will be large, causing the end-

effector to have a large displacement. Thus in order to use the linear approximation

of the constraint surfaces the analysis here is restricted to situations where the impulse

is small. As such, it is also assumed that the initial angular velocity is small enough

that the term ω × ([In]ω) can be neglected. In other words, it is assumed that

‖ ω × ([In]ω) ‖¿‖ [In]α ‖. Then the equations of motion are approximately:




F

M


 ≈M




a

α


 . (94)
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Recall that $a =




a

α


, so since M = mA2 and B = A−1

$w ≈ M$a (95)

$w ≈ mA2$a (96)

B$w ≈ mA$a. (97)

Let the mapping of $a to the intermediate space (via A) be called a generalized

acceleration, â. Then the equations of motion become:

f̂ = mâ (98)

which is equivalent in form to the dynamics of a point-mass. Thus if the assumption

that ω is very small is valid, the dynamics of the end-effector reduce to that of

a (generalized) point-mass with pure forces acting on it. In addition, because

the constraint surfaces are approximated as planar in the intermediate space, the

generalized force reactions due to the constraint surfaces will be perpendicular to

these planar surfaces. This allows the acceleration of the end-effector to be found

relatively easily.

The initial acceleration of the end-effector depends upon the direction of the initial

twist, because the effect of the constraint surfaces on the initial acceleration will differ

depending on the initial motion. Several cases must now be considered in order to

find the case that corresponds to the smallest magnitude vertical acceleration. The

disturbance can cause the initial twist to be 1) along a bi-directional twist (0 cables

go slack), 2) along a uni-directional twist (1 cable goes slack13), 3) along a constraint

surface (but not a principal twist - more than 1 cable goes slack), and 4) not along a

constraint surface (all cables go slack).

13One cable goes slack for motion along a uni-directional twist for a non-redundant manipulator.
In the case of redundancy (p > n), then p− n+ 1 cables go slack for motion along a uni-directional
twist.
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(b) Marble 1) rolling along an
edge, 2) rolling along a side and
3) moving up into the air.

Figure 21: Analogy of a marble rolling inside a box.

As a simple illustration of these cases, consider Figure 21. The movement of the

end-effector along the constraint surfaces in the intermediate space can be thought

of as a marble moving in a box. The marble begins in static equilibrium and is then

disturbed by an impulse, resulting in a small initial velocity. We wish to then find the

initial acceleration of the marble due to gravity back towards is equilibrium position.

Figure 21(a) shows a case where the sides of the box are such that the marble can roll

horizontally to the right or left. Given a horizontal disturbance the marble can roll in

either direction. This is analogous to motion of the end-effector along a bi-directional

twist. Figure 21(b) shows the case where the box is angled such that the marble rests

in one of the corners of the box. If the marble is disturbed it can 1) roll along one

of the edges of the box (analogous to motion along a uni-directional twist), 2) roll

along one of the sides of the box (analogous to motion along a constraint surface)

or 3) move up into the air, not contacting the box (analogous to motion not along a

constraint surface).

68



Z

fgrav

vbi

Figure 22: Acceleration along a bi-directional twist in the intermediate space.

4.4.3.1 Acceleration Along Bi-Directional Twists

The first case is when the disturbance causes the initial twist to be along a bi-

directional twist. For any bi-directional twist $tbi,i, the end-effector can undergo $tbi,i

and −$tbi,i without violating any cable constraints. Let these twists be mapped to v̂bi,i

and −v̂bi,i and let the gravitational wrench mg be mapped to f̂grav. Because the end-

effector begins at a static equilibrium pose, v̂bi,i and −v̂bi,i must both be perpendicular

to f̂grav. That is because if v̂bi,i or −v̂bi,i were not perpendicular to f̂grav, the power

product between the twists and gravity would be nonzero, and thus gravity would

push the end-effector “downhill.” Thus in the intermediate space v̂bi,i and −v̂bi,i are

horizontal (with respect to gravity). Because the constraint surface along this twist

is horizontal, the reaction from the constraint surface will be vertical and equal and

opposite to f̂grav as shown in Figure 22. Thus the sum of the generalized forces on the

end-effector are zero and the acceleration of the end-effector is zero. As a result, if

any pose of a manipulator has any bi-directional twists associated with it, the initial

acceleration of the end-effector back towards its original pose will be zero. This is the

lowest possible initial acceleration of the end-effector (âvert = 0). Because of this, the

following three cases will only consider situations where the pose has no bi-directional

twists associated with it.
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Figure 23: Acceleration along a uni-directional twist in the intermediate space.

4.4.3.2 Acceleration Along Uni-Directional Twists

The second possibility is that the initial twist is along a uni-directional twist. Let

uni-directional twist $tuni,i be mapped to a uni-directional generalized velocity v̂uni,i.

As illustrated in Figure 23(a), a uni-directional twist runs along the intersection

of two constraint surfaces. These constraint surfaces will cause the end-effector to

remain along this uni-directional twist while it accelerates or decelerates, much like a

point-mass would slide along the slide along the “valley” between two planar surfaces.

Thus in order to determine the acceleration of the end-effector it is only necessary

to consider the vertical plane in the intermediate space that contains v̂uni,i and f̂grav,

shown in Figure 23(b), as all other generalized forces acting on the end-effector

act to keep the end-effector along the generalized uni-directional velocity and thus

cancel out to zero. Because the end-effector cannot accelerate into the constraint

surface, the component of f̂grav perpendicular to the constraint surface will be exactly

canceled by the generalized reaction force. Thus the magnitude of the reaction force

is ‖ f̂grav ‖ cos θuni, where θuni is defined as the angle of the generalized uni-directional

velocity (which is along the constraint surface in this plane) with respect to horizontal.
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Since the generalized reaction force cancels out the component of f̂grav perpendicular

to the constraint surface, the net generalized force on the end-effector has magnitude

‖ f̂net ‖= ‖ f grav ‖ sin θuni and is directed along the constraint surface back towards

the original pose. Thus the generalized acceleration is â = − ‖f̂grav‖
m

sin θuni
v̂uni,i
‖v̂uni,i‖ .

Because the vertical component of v̂uni,i is ‖ v̂uni,i ‖ sin θuni, the vertical acceleration

of the end-effector reduces to:

âvert = −‖ f̂grav ‖
m

sin θuni
‖ v̂uni,i ‖ sin θuni
‖ v̂uni,i ‖

(99)

âvert = −g sin2 θuni. (100)

By mapping the result back to the task space we get:

avert = −g sin2 θuni. (101)

The angle of the generalized uni-directional velocity with respect to horizontal,

θuni, can be calculated by decomposing the generalized velocity into a vertical

component and a horizontal component. The vertical component of v̂i can be found

by projecting v̂i onto f̂grav:

v̂i,vert =
f̂grav

‖ f̂grav ‖2
f̂grav · v̂i (102)

then

sin θuni =
‖ v̂i,vert ‖
‖ v̂i ‖

. (103)

Thus the vertical acceleration becomes:

avert = −g
‖ v̂i,vert ‖2
‖ v̂i ‖2

. (104)

Applying the relationship between the magnitude of a generalized velocity and the

kinetic energy of the associated twist then results in:

avert = −g
KE($ti,vert)

KE($ti)
. (105)
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Figure 24: Acceleration along a constraint surface in the intermediate space.

4.4.3.3 Acceleration Along Constraint Surfaces

Thirdly, the initial twist can be along a constraint surface (not along a bi- or uni-

directional twist), as shown in Figure 24(a). If the end-effector moves along the

constraint surface, the reaction force will be normal to the constraint surface. Thus

if we now consider the plane that contains f̂grav and the normal to the constraint

surface, all the generalized forces are in this plane as shown in Figure 24(b), and thus

the resulting acceleration of the end-effector must be in this plane.

In the same manner as was done for acceleration along a uni-directional twist, the

generalized gravitational force can be decomposed into a component normal to the

constraint surface and tangent to the constraint surface. The generalized reaction

force must be equal and opposite to the component of the generalized gravitational

force normal to the constraint surface. Thus the magnitude of the reaction force is

‖ f̂grav ‖ cos θcs, where θcs is defined as the angle of the constraint surface with respect

to horizontal14. Since the generalized reaction force cancels out the component of

14Note that θcs is also the angle between the surface normal and vertical.
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f̂grav perpendicular to the constraint surface, the remaining generalized force on the

end-effector has magnitude ‖ f̂grav ‖ sin θcs and is directed along the constraint surface

in the most “downhill” direction. Because this is in the same form as the result for

acceleration along a principal twist, we can apply the same procedure, which results

in:

avert = −g sin2 θcs. (106)

4.4.3.4 Acceleration if Not Along a Constraint Surface

The last possibility is that the initial twist is not be along a constraint surface. In

this case there are no reaction forces from the constraint surfaces as the motion of the

end-effector causes every cable to go slack. Thus the only force on the end-effector is

gravity and the acceleration of the end-effector is a = g (and thus avert = −g).

4.4.4 Impulsive Disturbance Robustness Measure

Now that the possible initial acceleration of the end-effector has been determined for

all the different possible cases, it is necessary to determine which of these cases results

in the smallest (magnitude) vertical acceleration. Note that at the end of this section

the smallest total acceleration will be determined as well, using acceleration energy

as the norm.

Examining the different cases, it is clear that the smallest possible acceleration

is 0, corresponding to the case where there are bi-directional unconstrained twists.

However, many manipulators do not have bi-directional unconstrained twists (because

the associated Jacobian matrix is full rank) and thus we must consider the other cases.

In the case of motion not along a constraint surface the magnitude of the vertical

acceleration is g, while in the cases of motion along a uni-directional twist and motion

along a constraint surface the magnitude of the associated vertical accelerations are

g sin2 θuni and g sin2 θcs, respectively. Because 0 ≤ sin2 θ ≤ 1, the smallest vertical

acceleration results from motion along a uni-directional twist or motion along a
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constraint surface. It is shown here that for these two types of motion, the smallest

vertical acceleration results from motion along a uni-directional twist. Thus because

the smallest vertical acceleration of the end-effector is along one of the uni-directional

twist, it is only necessary to calculate the acceleration along the p different uni-

directional twists.

Theorem :

Given two uni-directional twists that positively span a constraint surface. Then the

magnitude of the acceleration of the end-effector due to gravity while moving along

one of the uni-directional twists will be less than or equal to the magnitude of the

acceleration of the end-effector due to gravity while moving along the constraint

surface.

Proof :

Included in Appendix A.

There are now only two cases to consider: if the manipulator has bi-directional

twists and if it does not. If the manipulator has bi-directional twists (which have a

corresponding sin θ = 0 in the intermediate space) the smallest initial vertical (and

total) acceleration of the end-effector is zero, while if the manipulator has no bi-

directional twists the smallest initial vertical acceleration is −g sin2 θuni. Recall that

P is the set of principal twists (the bi-directional twists and uni-directional twists),

then these two situations can be combined as follows:

avert,min = min
$t∈P
−g sin2

(
θ($t)

)
(107)

where θ($t) is now shown as a function of $t to emphasize that each θ is found by

mapping the twist to a generalized velocity in the intermediate space and determining

the angle of the generalized velocity from horizontal.
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Total Acceleration

Let us now also consider the total acceleration of the end-effector. Recall that the

net generalized force for motion along a principal twist has magnitude:

‖ f̂net ‖= mg sin θ (108)

and is parallel to the principal twist and directed towards the original pose. The

resulting total generalized acceleration is

â =
1

m
f̂net. (109)

This is the total acceleration of the end-effector, mapped to the intermediate space.

Recall the definition of acceleration energy given in (45), which can be used to relate

the magnitude of the total acceleration in the intermediate space to the acceleration

energy of the corresponding acceleration screw $a:

AE($a) =
1

2
$aTM$a =

m

2
$aTA2$a =

m

2
‖ â ‖2 . (110)

The acceleration energy of the net wrench $wnet = A−1f̂net is then

AE($wnet) =
1

2m
‖ f̂net ‖2=

1

2m
‖mg sin θ‖2= m

2
‖g sin θ‖2= AE($a). (111)

Thus because the magnitude of a generalized acceleration in the intermediate space is

tied to the acceleration energy of the corresponding acceleration screw, the magnitude

of the total acceleration of the end-effector will be defined as the magnitude of the

total generalized acceleration vector in the intermediate space. That is,

‖$a ‖a := ‖ â‖ =
√

2

m
AE($a). (112)

Thus the magnitude of the smallest total acceleration of the end-effector is:

‖$a ‖a,min= min
$t∈P

g sin
(
θ($t)

)
. (113)
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Because of the common term of sin (θ($t)) in the vertical acceleration and

total acceleration of the end-effector, the proposed impulsive disturbance robustness

measure is defined as follows:

Definition: The impulsive disturbance robustness, Ri is defined as

Ri = min
$t∈P

sin
(
θ($t)

)
. (114)

Then if an impulsive disturbance is applied to the manipulator the smallest

possible initial vertical acceleration of the end-effector is avert,min = −gR2i
and the smallest possible initial total acceleration of the end-effector is

‖$a ‖a,min= gRi.

Thus it is clear that the possible initial accelerations of the end-effector are

determined by the lowest “slope” twists in P15. This measure can have values between

0 and 1, with 1 corresponding to a manipulator with the highest impulsive disturbance

robustness (where the initial vertical acceleration is g) and 0 corresponding to the

lowest impulsive disturbance robustness (where the initial acceleration is 0). Like the

static disturbance robustness measure, Ri is pose-dependent. The calculation of this

measure is also relatively easy, as demonstrated in the following example.

Example

Consider the planar 3-DOF 3-cable manipulator shown in Figure 25. Note that

this is the same manipulator used in the example in 4.3.6.2. The end-effector is a

2 m × 4 m rectangle with a mass of 100 kg and rotational inertia of 500
3
kg · m2

(ρz =
√
5
3
m). In the given pose the bottom edge has a slope of − 1

2
with respect to

gravity (i.e. tan θ = 1
2
), cable 1 is collinear with G, cable 2 is vertical and cable 3

is aligned with the right edge of the end-effector. The origin of the x-y coordinate

frame is placed at G, with the axes parallel to the edges of the end-effector. While

15Note that if the gyroscopic effect were included in this analysis, the initial acceleration would
depend not only on the slopes of the constraint surfaces but also on the magnitude of the initial
twist.
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Figure 25: Impulsive robustness calculation example.

in a planar problem it would be possible to simply align the y-axis with gravity, the

coordinate frame is aligned with the geometry of the end-effector to illustrate how

the coordinate frame would align with the principal axes of a spatial end-effector.

Forming J results in:

J =




−2√
5

1√
5

0

−1√
5

2√
5

−3√
5
m

0 1 2m



.

Calculation of the gravitational wrench and U results in:

$wgrav =




1√
5

−2√
5

0




980N $tuni,1 =




−7m

−2m

1




1

s

$tuni,2 =




1m

2m

−1




1

s
$tuni,3 =




1m

2m

1




1

s

where U =
{
$t | $t = c1$

t
uni,1 + c2$

t
uni,2 + c3$

t
uni,3

}
. A is:

A =




1 0 0

0 1 0

0 0
√
5
3
m



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and B = A−1.

Mapping the gravitational wrench and uni-directional twists to the intermediate

space results in:

f̂grav =




1√
5

−2√
5

0




980N v̂uni,1 =




−7

−2
√
5
3




m

s

v̂uni,2 =




1

2

−
√
5
3




m

s
v̂uni,3 =




1

2
√
5
3




m

s
.

By applying (102) the vertical components of the generalized velocities can be

formed. Here the twists were chosen such that the generalized velocities all have the

same vertical components:

v̂uni,1,vert = v̂uni,2,vert = v̂uni,3,vert =
3

5




−1

2

0




m

s

thus

‖ v̂uni,1,vert ‖ = ‖ v̂uni,2,vert ‖ = ‖ v̂uni,3,vert ‖ =
3
√
5

5

m

s
.

Equation (103) can now be applied to find sin θ for each generalized principal

velocity:

sin θ1 =
‖v̂uni,1,vert‖
‖v̂uni,1‖ =

(
3
√

5
5

m
s

)

(√
164
3

m
s

) = 0.1815

sin θ2 =
‖v̂uni,2,vert‖
‖v̂uni,2‖ =

(
3
√

5
5

m
s

)

(√
20
3

m
s

) = 0.5196

sin θ3 =
‖v̂uni,3,vert‖
‖v̂uni,3‖ =

(
3
√

5
5

m
s

)

(√
20
3

m
s

) = 0.5196.

Because sin θ1 is the smallest, Ri = sin θ1 = 0.1815 and the smallest initial

acceleration of the end-effector will occur for motion along $tuni,1.

78



Interpretation

Thus if the end-effector is disturbed by an impulsive disturbance, the smallest

possible initial vertical acceleration of the end-effector will be avert = −gR2i =

−
(
9.81m

s2

)
0.18152 = −0.323m

s2
, and the smallest possible initial total acceleration

of the end-effector (using the acceleration energy norm) will be ‖ $a ‖a= gRi =
(
9.81m

s2

)
0.1815 = 1.78m

s2
.

4.5 Robustness Measure

Now that there are two robustness measures, Rs and Ri, it is of interest to see how

these measures relate to each other. This relationship can be found by examining the

geometry of NWavail in the intermediate space.

Figure 26(a) shows an example NWavail. For this example the manipulator has

three cables and is planar (and thus the task space is three-dimensional). However,

the analysis and results of this example apply to a manipulator with any number

of cables and a task space of any dimension. Recall that in Section 4.3.6 it was

shown that the smallest static disturbance wrench is found by examining C, the set

of critical wrenches, that cause a cable to go slack. This set was mapped to Ĉ in

the intermediate space and the smallest static disturbance wrench was the one that

corresponded to the smallest generalized force in Ĉ. Note that C is the set of upper

boundaries of −NWavail, so −C is the set of lower boundaries of NWavail. Thus if

we find the smallest wrench in the lower boundaries of NWavail, this wrench is the

smallest wrench in −C and thus will be equal and opposite to the smallest disturbance

wrench in C. Let us thus consider one of the lower boundaries of NWavail, labeled in

Figure 26(a) as side S. Note that S ∈ −C.

Let us map the wrenches in S to the intermediate space, resulting in the set

Ŝ. An edge-view close-up of Ŝ is shown in Figure 26(b). Because S is spanned by

$2 and $3, the smallest generalized force in Ŝ is equal and opposite to the smallest
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Figure 26: Robustness measure example.

generalized force that causes cable 1 to go slack. Because Ŝ is planar, the vector

to the smallest generalized force in Ŝ is perpendicular to this plane. Figure 26(b)

shows the generalized force f̂min. This generalized force is perpendicular to Ŝ and is

equal and opposite to the smallest generalized force in Ŝ. Thus f̂min is the smallest

generalized force that causes cable 1 to go slack. We know from Section 4.3.6 that

this generalized force has a magnitude of mgRs. Because f̂min is perpendicular to

Ŝ, if the angle of f̂min with respect to horizontal is θ, then the angle between Ŝ and

vertical is also θ. Then ‖ f̂min ‖= ‖ f̂grav ‖ sin θ, and because ‖ f̂grav ‖= mg we can

conclude that ‖ f̂min ‖= mg sin θ. However, we also know that the principal twist

$tuni,1 is reciprocal to $2 and $3 (the columns of Jmod,1). Consequently the generalized

principal twist vector v̂uni,1 is perpendicular to Ŝ and must therefore be parallel to

f̂min. Thus the angle of v̂uni,1 with respect to horizontal must also be θ.

This procedure can be repeated for each of the lower sides of NWavail to determine

the θ for each side. Let the angle θ for side i be denoted θi. Then becauseRs is defined
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as

Rs =
1

mg
min
f̂∈Ĉ
‖ f̂ ‖ (115)

then

Rs = min
i=1,2,3

sin θi. (116)

Similarly, because Ri is defined as

Ri = min
$t∈P

sin
(
θ($t)

)
(117)

then

Ri = min
i=1,2,3

sin θi. (118)

Noting again that this procedure can be repeated for any number of cables and a task

space of any dimension with the same result, it is clear thatRs = Ri. Let us therefore

combine these two measures and define the Disturbance Robustness Measure:

Definition: The Disturbance Robustness Measure, R is defined as:

R = Rs = Ri . (119)

Thus this single measure describes both the static and impulsive

disturbance robustness of the manipulator. In addition, there are several

equivalent ways to calculate this measure:

R = min
$t∈P

sin
(
θ($t)

)
(120)

= min
$t∈P

√
KE($tvert)

KE($t)
(121)

= min
$a∈A

1

g
‖$a ‖a (122)

= min
a∈Avert

√
1

g
‖a‖. (123)

where A is the set of all possible acceleration screws of the end-effector after it is

disturbed and Avert is the set of all possible vertical accelerations of the center of
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gravity of the end-effector after it is disturbed. This is very advantageous, because it

allows calculation of R in whatever method is easiest.

4.5.1 Discussion

The fact that this measure captures both the static and impulsive disturbance robust-

ness is very significant. In both cases the measure describes the worst-case scenario for

the manipulator: the smallest static disturbance wrench (‖$wmin ‖a= mgR) and the

lowest acceleration of an impulsively disturbed end-effector back to its original pose

(‖$amin ‖a= gR, avert,min = −gR2). Because the robustness measure is equivalent to

Rs and Ri, it has the same properties of scale- and frame-invariance. In addition,

it is not difficult to adapt this measure to allow robustness to be computed in the

presence of any constant external wrench, not just gravity. This can be accomplished

by simply replacing $wgrav in all calculations with the net external wrench due to

gravity and additional constant external wrenches.

The robustness measure does have some limitations. First, the inertial properties

of the end-effector must be known completely. This information may not be available

if the end-effector picks up objects with unknown masses and dimensions.

Second, the measure only describes the robustness of a single pose of a manipu-

lator, but does not provide an overall measure of robustness for a manipulator. This

is addressed in Section 4.5.2.

Additionally, poses with very high robustness may sometimes require very high

cable tensions to counteract the gravitational wrench. Thus it is important to ensure

that cable tension limits are not exceeded.

Lastly, it is not obvious what an acceptable minimum value is for R. This will

typically be application-dependent and experimentation and practical considerations

may need to be taken into account to determine what constitutes an appropriate

minimum necessary value of R for a given manipulator. However, given such a value,
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it is possible to construct a Specified Robustness Workspace, the set of all poses of

a manipulator where R meets or exceeds the a specified robustness value. This

workspace is discussed in more detail in Section 5.6. Consideration of upper tension

limits can also be incorporated into this workspace, allowing avoidance of the high

cable tension condition mentioned earlier.

The following section discusses the application of the robustness measure to the

problem of determining the overall robustness of a manipulator. Section 4.6 then

shows how the robustness measure can be extended to the case of cable robots with

multi-body end-effectors.

4.5.2 Applications

The question remains as to how a manipulator can be described as robust or not

robust to disturbances considering that the robustness of the poses of the manipulator

can differ greatly from one pose to another. One approach involves examining the

robustness of poses of the robot within its desired workspace (the positional and

rotational space that the robot can reach statically and in which the robot is required

to operate). The desired task space, D, can be discretized into a finite number

of poses, P , and the robustness measure can be applied to each one of these poses,

resulting in a scalar field of manipulator robustness over the desired workspace. There

are many possible ways to use this information to define the robustness of the robot,

but only three will be described here.

• Average Robustness Over Desired Workspace - Defined as:

Rave =

∫
D

R(P ) dP
∫
D

dP
. (124)

This measure determines the robustness of a manipulator based on the average

robustness of each pose in the desired workspace. While this provides a good

overall indication of the robustness of the manipulator, it does not factor in how
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widely the robustness may vary over the workspace. The best possible value of

Rave is 1 and the worst possible value is 0.

• Minimum Robustness Over Desired Workspace - Defined as:

Rmin = min
P∈D
R(P ). (125)

This measure characterizes the manipulator by its lowest robustness value in D,

essentially providing the worst-case scenario for using the manipulator in this

workspace. The best possible value of Rmin is 1 and the worst possible value is

0.

• Weighted Average Robustness Over Desired workspace - Defined as:

Rw.a. =

∫
D

w(P )R(P ) dP
∫
D

w(P )dP
. (126)

This measure is very similar to Rave but now the function w(P ) is added as

a weighting function. This allows more emphasis to be placed on regions of

the workspace that are used more frequently or possibly in regions where more

external disturbances are expected. The best possible value of Rw.a. is 1 and

the worst possible value is 0.

Using this kind of measure to describe the overall disturbance robustness of a cable

robot, it is possible to now use that information to optimize the robot by choosing

optimal cable-mount locations or end-effector geometry. Additionally, it would

make sense to use these measures in conjunction with each other. For example, a

manipulator could be optimized to maximize Rw.a. but must also meet a certain

standard for Rmin. Note, however, that calculating the overall robustness of a

manipulator using one of these methods may be computationally time-consuming

as the task space must be discretized and the robustness measure applied at each of

these poses.
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Figure 27: Example manipulator with a four-body end-effector.

4.6 Disturbance Robustness of Cable Robots with

Multi-Body End-Effectors

The development of the disturbance robustness measure assumed an end-effector

comprised of a single rigid body. However, the analysis developed for single-bodies

can be extended to include the case of multiple suspended bodies. The approach

here is to develop a similar mapping to the intermediate space and to develop the

robustness measure based on geometric properties within this space.

4.6.1 Mapping to the Intermediate Space

Let us assume that there are b rigid bodies suspended from p cables. The bodies may

be connected to each other by additional cables and/or by passive joints16. For each

body let a coordinate frame be defined with the origin located at the center of gravity

of the body and axes aligned with the principal axes of the body as illustrated for a

manipulator with a 4-body end-effector in Figure 27.

Let the twist $ti of body i be expressed in terms of the coordinate frame associated

16Note that if two bodies are joined by an actuated joint, the actuator is assumed locked and the
two bodies can be treated as a single rigid body.
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with body i. Let the collective twist, $tcoll of the system of bodies be defined as:

$tcoll =




$t1

$t2
...

$tb



. (127)

Note that the collective twist is not technically a twist, but rather a vector containing

b different twists. Similarly, let $wi be the wrench acting on body i in terms of the

coordinate frame associated with body i. Then the collective wrench, $wcoll acting on

the system of bodies is defined as:

$wcoll =




$w1

$w2
...

$wb



. (128)

We now wish to define a mapping to the intermediate space that is consistent with

the mapping defined for single bodies. Let the mass of body i be mi and the total

mass of the bodies be mtot = m1 +m2 + ... +mb. Also, let us define the normalized

mass of body i, µi, as µi =
mi

mtot
. The mapping of a collective twist to a generalized

collective velocity in the intermediate space is now defined as:

v̂coll = A$tcoll (129)

where

A =




√
µ1A1 0 · · · 0

0
√
µ2A2 · · · 0

...
...

. . .
...

0 0 · · · √µbAb




(130)
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and where Ai is the mapping matrix for body i defined in (17), such that M i = miA
2
i .

Note that the total system inertia matrix, M , is defined as M = mtotA
2:

M = mtotA
2 = mtot




µ1A
2
1 0 · · · 0

0 µ2A
2
2 · · · 0

...
...

. . .
...

0 0 · · · µbA
2
b



=

=




m1A
2
1 0 · · · 0

0 m2A
2
2 · · · 0

...
...

. . .
...

0 0 · · · mbA
2
b



=




M 1 0 · · · 0

0 M 2 · · · 0

...
...

. . .
...

0 0 · · · M b



. (131)

Similarly, the mapping of a collective wrench to a generalized collective wrench in

the intermediate space is defined as:

f̂coll = B$wcoll (132)

where

B = A−1 =




1√
µ1

B1 0 · · · 0

0 1√
µ2

B2 · · · 0

...
...

. . .
...

0 0 · · · 1√
µb

Bb



. (133)

The mapping matrices A and B are defined this way such that all of the properties

of the intermediate space described in Section 4.2.2 still hold. For example, the total

kinetic energy of the system undergoing collective twist $tcoll is:

KE($tcoll) =
1

2
$tcoll

T
M$tcoll =

mtot

2
$tcoll

T
A2$tcoll =

mtot

2
‖ v̂coll ‖2 . (134)

4.6.2 Principal Collective Twists

As in the single-body case, the fixed lengths of the cables impose constraints on the

poses of the bodies. In this case, however, there may also be constraints due to the
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passive joints. As in the case of the single-body end-effector, these constraints limit

the possible initial twists of the bodies. Thus in order to define these constraint

surfaces locally it is necessary to form the set of all possible initial collective twists

that the system of bodies can undergo without violating any constraints. While it

was possible to use the Jacobian matrix to find this set for a single body, it is very

complex to form the possible velocities of a collection of bodies coupled by joints and

cables. In fact, for many traditional manipulators (those without cables) mobility

analysis can be very complicated, particularly for closed-chain linkages. Thus it is

beyond the scope of this research to formulate the set of all possible instantaneous

motions for a general set of bodies joined by cables and joints. Instead, in order to

continue this analysis it will be assumed that this set of motions can be formed and

is termed the set of unconstrained collective twists. Note that for simple systems it is

still fairly easy to form this set of twists, as is illustrated in Section 4.6.5.

While the set U is not known in general, we know that it is possible to positively

span the set U with a set of principal collective twists because the constraint surfaces

are locally linear. Thus if there are κ different principal collective twists, $tprinc,i, then

for any collective twist $tcoll in U

$tcoll = b1$
t
princ,1 + ...+ bκ$

t
princ,κ. (135)

Let the set of principal collective twists {$tprinc,1, ... , $tp,κ} be again denoted by P .

We now wish to analyze this set of twists in the same way as for a single-body

end-effector. That is, given an impulsive disturbance we wish to find the smallest

acceleration of the bodies back toward their original pose. Because the constraint

surfaces are again modeled locally as linear constraints, the same method for finding

this acceleration can be used. Thus the lowest acceleration will be determined by the

principal collective twist with the lowest slope in the intermediate space.
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4.6.3 Definition of Vertical Direction

Before the principal collective twist with the lowest slope can be calculated, we first

need to define the vertical direction in the intermediate space for the collection of

bodies. This is not trivial, as each of the bodies has a unique coordinate frame in the

task space in which the vertical direction is defined. We wish for this definition of

the vertical direction to be consistent with the single-body case. That is, if a single

body is treated as a collection of particles, the result for the multi-body case ought

to be consistent with the results already determined for the single-body case.

In the single-body case, the vertical direction in the intermediate space is parallel

to the generalized gravitational force. Let the gravitational wrench on body i be

denoted $wgrav,i. Let f̂grav,i = Bi$
w
grav,i. Combining the gravitational wrenches of all

of the bodies into the collective gravitational wrench, $wcoll,grav, and mapping it to the

generalized collective gravitational force, f̂coll,grav, results in:

f̂coll,grav = B$wcoll,grav = B




$wgrav,1

$wgrav,2
...

$wgrav,b




=




1√
µ1

B1$
w
grav,1

1√
µ2

B2$
w
grav,2

...

1√
µb

Bb$
w
grav,b




=




1√
µ1

f̂grav,1

1√
µ2

f̂grav,2

...

1√
µb

f̂grav,b




. (136)

Let us now construct the vertical unit vector ûvert by normalizing f̂coll,grav. Noting

that ‖ f̂grav,i ‖= mig and µ1 + µ2 + ...+ µb = 1, we get
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ûvert = −
f̂coll,grav

‖ f̂coll,grav ‖
=

1

‖ f̂coll,grav ‖




− 1√
µ1
f̂grav,1

− 1√
µ2
f̂grav,2
...

− 1√
µb
f̂grav,b




=
1

‖ f̂coll,grav ‖




− 1√
µ1
(µ1mtotg)

f̂grav,1

‖f̂grav,1‖

− 1√
µ2
(µ2mtotg)

f̂grav,2

‖f̂grav,2‖
...

− 1√
µb
(µbmtotg)

f̂grav,b

‖f̂grav,b‖




=
1

‖ f̂coll,grav ‖




−√µ1(mtotg)
f̂grav,1

‖f̂grav,1‖

−√µ2(mtotg)
f̂grav,2

‖f̂grav,2‖
...

−√µb(mtotg)
f̂grav,b

‖f̂grav,b‖



. (137)

Then using the fact that ‖ f̂coll,grav ‖= mtotg, we get

ûvert =




−√µ1 f̂grav,1

‖f̂grav,1‖

−√µ2 f̂grav,2

‖f̂grav,2‖
...

−√µb f̂grav,3

‖f̂grav,3‖



. (138)

Note that − f̂coll,grav

‖f̂coll,grav‖
is used rather than

f̂coll,grav

‖f̂coll,grav‖
so that ûvert is pointed upward.

This vector can now be used to calculate the vertical component of a generalized

collective velocity or a generalized collective force. The vertical component of a

generalized collective velocity v̂coll is:

v̂coll,vert = (v̂coll · ûvert)ûvert. (139)

Similarly, the vertical component of a generalized collective force f̂coll is:

f̂coll,vert = (f̂coll · ûvert)ûvert. (140)
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Note that if we calculate the vertical component of f̂coll,grav, the gravitational wrench,

the gravitational wrench is returned (f̂coll,grav,vert = f̂coll,grav).

Theorem :

If the vertical component of a generalized collective velocity is calculated, the

magnitude of the result is equal to the vertical velocity of the center of mass of

the system of b bodies.

Proof :

Calculating the vertical component of a generalized collective velocity results in:

v̂coll,vert = (v̂coll · ûvert)ûvert

=




√
µ1A1$

t
1

√
µ2A2$

t
2

...

√
µbAb$

t
b




T 


−√µ1 f̂grav,1

‖f̂grav,1‖

−√µ2 f̂grav,2

‖f̂grav,2‖
...

−√µb f̂grav,3

‖f̂grav,3‖



ûvert. (141)

Let Ai$
t
i = v̂i. Then

v̂coll,vert =

(
µ1v̂1 ·

−f̂grav,1
‖ f̂grav,1 ‖

+ µ2v̂2 ·
−f̂grav,2
‖ f̂grav,2 ‖

+ ...+ µbv̂b ·
−f̂grav,b
‖ f̂grav,b ‖

)
ûvert.

(142)

Now it can be seen that v̂i · −f̂grav,i‖f̂grav,i‖
produces the vertical component of the generalized

velocity of the center of gravity of body i in the associated coordinate frame. That

is:

v̂i ·
f̂grav,i

‖ f̂grav,i ‖
= v̂i,vert. (143)

Let the linear velocity portion of twist $ti be denoted as $ti,lin and the corresponding

linear portion of the generalized velocity denoted as v̂i,lin. Also let the vertical

component of $ti,lin be denoted as $ti,vert and the corresponding component of the

generalized velocity denoted as v̂i,vert. Then because the portion of Ai that maps the
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linear velocity terms is the identity matrix (the upper left quadrant),

$ti,lin = A−1
i v̂i,lin = v̂i,lin. (144)

Thus

$ti,vert = v̂i,vert (145)

so

v̂coll,vert =
(
µ1$

t
1,vert + µ2$

t
2,vert + ...+ µb$

t
b,vert

)
ûvert. (146)

Since ûvert is a unit vector,

‖ v̂coll,vert ‖= µ1$
t
1,vert + µ2$

t
2,vert + ...+ µb$

t
b,vert. (147)

Now we can use the fact that for a collection of b bodies, if the center of gravity of

each body i is located at point ri = (xi, yi, zi) in a fixed global coordinate frame, then

the center of gravity, Gcoll, of the collection of b bodies is given by:

Gcoll =
m1
mtot

r1 +
m2
mtot

r2 + ...+
mb

mtot

rb. (148)

Taking the vertical component of these vectors and differentiating them produces the

vertical velocity $tG,vert of the center of gravity of the system of bodies and b vertical

velocities $ti,vert of the bodies:

$tG,vert = µ1$
t
1,vert + µ2$

t
2,vert + ...+ µb$

t
b,vert. (149)

By comparing this result with (147) we see that

‖ v̂coll,vert ‖ = ‖$tG,vert ‖ . (150)

Q.E.D. ¤

In summary, if we map a collective twist to the intermediate space,

find the vertical component, and map the vertical component back to the

task space, the magnitude of the result is equal to the vertical velocity
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of the center of gravity of the system of bodies. This is consistent with the

single-body case. That is, if we treat a single body as a collection of smaller bodies,

the vertical component of the collective twist of the smaller bodies is equal to the

vertical component of the twist of the original body.

4.6.4 Multi-Body Robustness Measure

Because of the form that has been chosen for the mapping to the intermediate space

and the manner in which the vertical direction in this space has been constructed the

analysis of this space is identical to that performed for the single-body case.

Definition: The robustness measure for manipulators with multi-body end-effectors

is defined as:

R = min
$t
coll
∈P

sin θ($tcoll) (151)

where

sin θ($tcoll) =
KE($tcoll,vert)

KE($tcoll)
=
‖ v̂coll,vert ‖
‖ v̂coll ‖

(152)

and where $tcoll,vert is found via (139). Like the single-body case, this

measure describes the magnitude of the smallest static disturbance wrench

(‖$wmin ‖a= mtotgR) and the lowest acceleration of an impulsively disturbed

end-effector back to its original pose (‖$amin ‖a= gR, avert,min = −gR2).

Because this measure is also energy based it has the same properties of scale- and

frame-invariance.

4.6.5 Example

As an example, consider the cable robot in Figure 28. The manipulator has a two-

body end-effector, which can also be thought of as a single-body end-effector (end-

effector is body 1) with a suspended point-mass payload (body 2). The mass of

body 1 is m1 = 3kg with a radius of gyration of ρ1 = 1.5m and the mass of body

2 is m2 = 1kg. Thus mtot = 4kg, µ1 = 3
4
and µ1 = 1

4
. A coordinate frame has
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Figure 28: Example manipulator with a two-body end-effector.

been attached to each body, with each origin placed at the center of gravity of the

respective body and the y axes aligned with gravity for simplicity. The collective

twist of the bodies has the following form:

$tcoll =




$t1

$t2


 =




ẋ1

ẏ1

θ̇1

ẋ2

ẏ2




.

The set of principal collective twists, P , can be found fairly simply for this

manipulator. Each principal twist can be found by keeping four of the cables taut

while the twist causes the fifth cable to go slack. The cables are labeled a through e.

The principal collective twists are:

$tprinc,1 =

(
−5 2 −1 1

m
−8 2

)T
m

s

$tprinc,2 =

(
3 2 −1 1

m
0 2

)T
m

s

$tprinc,3 =

(
1 2 1 1

m
4 2

)T
m

s

$tprinc,4 =

(
0 0 0 −1 1

)T
m

s

$tprinc,5 =

(
0 0 0 1 1

)T
m

s
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where $tp,1 causes cable a to go slack, $tp,2 causes cable b to go slack, etc.

The matrices A1 and A2 are found by (17):

A1 =




1 0 0

0 1 0

0 0 1.5m




A2 =




1 0

0 1


 .

The matrix A is then found by (130):

A =




√
3
2

0 0 0 0

0
√
3
2

0 0 0

0 0 3
√
3
4
m 0 0

0 0 0 1
2

0

0 0 0 0 1
2




.

This can now be used to map each of the principal collective twists to the

corresponding principal collective generalized velocities:

v̂princ,1 = A$tprinc,1 =

(
−5
√
3

2

√
3 −3

√
3

4
−4 1

)T
m

s

v̂princ,2 = A$tprinc,2 =

(
3
√
3
2

√
3 −3

√
3

4
0 1

)T
m

s

v̂princ,3 = A$tprinc,3 =

(
√
3
2

√
3 3

√
3
4

2 1

)T
m

s

v̂princ,4 = A$tprinc,4 =

(
0 0 0 −1

2
1
2

)T
m

s

v̂princ,5 = A$tprinc,5 =

(
0 0 0 1

2
1
2

)T
m

s
.

The vertical unit vector ûvert is formed according to (138):

− f̂grav,1

‖ f̂grav,1 ‖
=

(
0 1 0

)T

− f̂grav,2

‖ f̂grav,2 ‖
=

(
0 1

)T
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then

ûvert =



−√µ1 f̂grav,1

‖f̂grav,1‖

−√µ2 f̂grav,2

‖f̂grav,2‖


 =




0
√
3
2

0

0

1
2




.

The vertical component of each principal collective generalized velocity is found

via (139):

v̂princ,1,vert =
(
2
m

s

)
ûvert

v̂princ,2,vert =
(
2
m

s

)
ûvert

v̂princ,3,vert =
(
2
m

s

)
ûvert

v̂princ,4,vert =

(
1

4

m

s

)
ûvert

v̂princ,5,vert =

(
1

4

m

s

)
ûvert.

Calculating the magnitude of each principal collective generalized velocity results in:

‖ v̂princ,1 ‖ =

√
647

4

m

s

‖ v̂princ,2 ‖ =

√
199

4

m

s

‖ v̂princ,3 ‖ =

√
167

4

m

s

‖ v̂princ,4 ‖ =

√
2

2

m

s

‖ v̂princ,5 ‖ =

√
2

2

m

s
.
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And for each principal collective generalized velocity sin θi =
‖v̂princ,i,vert‖
‖v̂princ,i‖ , thus:

sin θ1 =
8√
647

= 0.315

sin θ2 =
8√
199

= 0.567

sin θ3 =
8√
167

= 0.619

sin θ4 =

√
2

4
= 0.354

sin θ5 =

√
2

4
= 0.354.

Applying the definition of the robustness measure given in (151) results in R = 0.315.

Thus the magnitude of the smallest static disturbance wrench that causes a cable

to go slack is ‖ $wmin ‖a= mtotgR = (4kg)(9.81m
s2
)(0.315) = 12.36kg·m

s2
. The lowest

acceleration of an impulsively disturbed end-effector back to its original pose has

magnitude ‖ $amin ‖a= gR = (9.81m
s2
)(0.315) = 3.09m

s2
with a vertical component of

acceleration of avert,min = −gR2 = (9.81m
s2
)(0.315)2 = 0.973m

s2
.

4.7 Summary and Conclusion

In conclusion, the disturbance robustness measure, R, presented here is an energy-

based measure of the robustness of an underconstrained cable robot to static and

impulsive disturbances at a particular pose. In order to facilitate the analysis, the

intermediate space was introduced. Vector operations within this space carry physical

meaning and allow simplified computation of the twist “parallel” to gravity.

The analysis of robustness to static disturbances used the Available Net Wrench

Set to find the set of all static disturbance wrenches that cause a cable to begin to

go slack. Out of this set, the smallest wrench was found, using acceleration energy to

form the wrench norm. The magnitude of this smallest wrench is mgRs.

The analysis of robustness to impulsive disturbances began with the calculation

of the unconstrained twists, U , which is the set of all twists that the end-effector can
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instantaneously undergo without violating cable constraints. This set is spanned by

the principal twists. If an impulsive disturbance is applied to the end-effector, the

resulting initial acceleration (after the impulse has ended) of the end-effector back

towards the original pose was found. The smallest acceleration was found to be along

a principal twist and has vertical acceleration of −gR2i and a total acceleration of

magnitude gRi (using an acceleration energy norm).

It was then proven thatRs = Ri and thus the robustness measureR was chosen to

be R = Rs = Ri. Several measures of overall cable robot robustness were presented.

Each of these measures was based on evaluating the robustness measure at all poses

within the desired task space. While these measures may be computationally time-

consuming to compute, they provide a way of evaluating the overall robustness of the

robot and can be used to optimize cable robot designs for robustness.

Lastly, the robustness measure was extended to apply to cable robots with multi-

body end-effectors. The mapping to the intermediate space and the definition of the

vertical direction in this space was chosen such that it was consistent with the single-

body case. As such, the analysis of the manipulator in this space was analogous to

that performed in the single-body case, resulting in a nearly identical form for the

resulting robustness measure.

4.8 Future Work

There are several areas where future work on disturbance robustness could lead. First,

the analysis presented here has been based on linear approximations of the constraint

surfaces and small displacements of the end-effector. To refine the analysis, more work

is necessary in order to factor in the curvature of the constraint surfaces. Because

curvature of constraint surfaces is used in some work in grasp stability, it may be

possible to leverage the work that has already been done in this area. However,

determining the behavior of the end-effector as it goes through finite displacements
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is expected to be very challenging.

The analysis of finite end-effector motion could also lead into an investigation

of disturbances that cause the static equilibrium pose to change. Because there are

sometimes multiple static-equilibrium poses that the end-effector can take for a given

set of cable lengths, it is possible for a disturbance to be large enough that it causes

the end-effector to transition into a different static equilibrium pose, and thus never

return to the desired pose. The robustness of the end-effector to this type of pose-

transition could possibly be measured by the “transition energy” of the pose – the

smallest amount of potential energy that must be added to the end-effector in order

to move it to a different equilibrium pose.

Because of the similarity between cable-robots and grasping (due to the uni-

directional constraints), the disturbance robustness measure could also possibly be

extended to an equivalent measure for underconstrained grasped objects.

For some manipulators the effects of cable sag and stretch are too great to be

ignored. Thus it is of interest to include cable sag and stretch in the disturbance

robustness analysis. A brief initial study on these effects is included in Appendix B.

Lastly, it would also be of interest to see if it is possible to actively cause the

manipulator to return to its original pose. That is, to use a control strategy that

recognizes when the end-effector has been disturbed and reacts accordingly to bring

the end-effector back to its original pose as quickly as possible, preferably with as

little residual vibration in the cables as possible.
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CHAPTER 5

WRENCH-FEASIBLE WORKSPACE

GENERATION

5.1 Introduction

One of the most important issues in robotics is that of manipulator workspace. A

workspace is defined in a general sense as the set of all poses that the end-effector can

reach1 and operate at effectively. The various types of workspaces are then derived

from the many possible ways to define what it means to “operate effectively.” While

many researchers refer to the “workspace” of a manipulator as simply the set of all

reachable poses, not all reachable poses are necessarily useful. For cable robots only

a subset of reachable poses are statically stable, and if the manipulator is expected to

perform certain operations requiring wrench exertion, not all of the statically stable

poses are useful.

Many cable robot applications require the end-effector to operate in regions where

it can exert certain wrenches. The Wrench-Feasible Workspace is defined as the set

of poses where the manipulator can exert a specified set of wrenches. That is, if a

given set of wrenches must be exerted by the end-effector on its surroundings in order

to accomplish a task, the manipulator can exert these required wrenches at any pose

in the Wrench-Feasible Workspace. This region therefore constitutes the workspace

which is “usable” by the robot for a particular application. While this workspace has

been described in general terms by previous researchers, no tools exist to date for

analytically calculating the Wrench-Feasible Workspace.

1Note that the workspace is defined as a subset of the task space.
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As was stated in Chapter 1, one of the primary advantages of cable robots is that

they can have very large workspaces, limited mostly by cable lengths, interference

with surroundings, and wrench exertion requirements. This is a significant advantage

over traditional manipulators, which typically have relatively small workspaces. In

order to fully take advantage of this attribute of cable robots it is important to

fully understand the workspace of these manipulators. However, relatively little prior

work exists in the area of cable robot workspaces, as was described in Chapter 2.

Additionally, most of this work does not provide much insight into the characteristics

of cable robot workspaces because the workspace generation was done numerically

via “brute force” methods, where the entire taskspace is discretized and exhaustively

searched to find the statically reachable poses.

This chapter aims to address this deficiency in cable robot workspace generation.

A method is presented here for forming the Wrench-Feasible Workspace (abbreviated

WFW) of cable robots. This method applies to both underconstrained and fully-

constrained cable robots and is also analytically based, thus the resulting description

of the workspace provides insight into the workspace geometry that cannot be

obtained through numerical approaches alone.

Organization

The organization of this chapter is as follows. Section 5.2 builds on the wrench

analysis presented in Chapter 3 to develop a geometric interpretation of wrench-

feasibility. Using this geometric understanding of wrench-feasibility, Section 5.3 shows

how geometric methods can be applied to generate the Wrench-Feasible Workspace

by defining its boundaries analytically. Section 5.4 discusses the WFW boundary

equations and resulting workspace properties for point-mass cable robots2. Section

2Note that this work was performed by Andrew Riechel in [60]. That work was based on the
workspace generation approach presented in this thesis and thus the relevant results of that work
are summarized here.
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5.5 then applies the workspace generation approach to general planar and spatial

cable robots. The concepts developed in Chapter 4 and Section 5.3 are combined in

Section 5.6 to create the Specified Robustness Workspace. This workspace consists

of the set of all manipulator poses that meet or exceed a specified robustness value.

Section 5.7 includes a discussion of several other applications of the available net

wrench set and the workspace generation method. Lastly, Section 5.8 discusses and

summarizes these results and Section 5.8 presents areas of future work.

Note that in the analysis presented here it is assumed that the cables have

negligible mass and do not stretch or sag, the end-effector is a single rigid body

with known cable attachment points on the end-effector relative to the center of

gravity, the locations of the attachments of the cables to the motors are known and

each motor controls exactly one cable. Cable lengths, the direction of gravity and the

resulting pose of the mechanism are also assumed to be known.

5.2 Wrench-Feasibility

In many applications, the requirements for a task or set of tasks can be characterized

by a required set of wrenches that the end-effector must apply to its surroundings.

Given this requirement, the Wrench-Feasible Workspace is defined in [18] as the set of

all poses that are Wrench-Feasible, i.e. where the manipulator can apply the required

set of wrenches. Let this set of required wrenches be called NWreq, the Required Net

Wrench Set.

Recall from Chapter 3 that NWavail is the set of wrenches that can be exerted

by the manipulator3. Thus the Wrench-Feasible Workspace can then be described as

the set of all poses P of the end-effector where:

NWreq(P ) ⊆ NWavail(P ). (153)

3Also recall that the geometry of NWavail is pose-dependent.
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Figure 29: A point-mass 3-cable manipulator and its Available Net Wrench Set
containing its Required Net Wrench Set.

Although NWreq can be chosen arbitrarily, it is typically chosen to be a geometrically

simple set of wrenches that is independent of P .

For example, consider the point-mass 3-cable manipulator shown in Figure 29(a).

Assume that the manipulator’s task requires it to exert a minimum required force

Freq in any direction. The corresponding choice for NWreq would then be the set of

all forces F such that ‖F ‖ ≤ Freq. Graphically this set NWreq is simply a sphere

centered at the origin with radius Freq. Figure 29 illustrates an example manipulator

(29(a)) and its spherical Required Net Wrench SetNWreq and parallelepiped Available

Net Wrench Set NWavail (29(b)) at that pose. Note that in Figure 29, NWreq is

completely contained within NWavail; thus this end-effector pose is wrench-feasible

and is therefore contained within the Wrench-Feasible Workspace of this manipulator.

This geometric construction of NWreq not only allows wrench-feasibility to be

visualized, but also allows wrench-feasibility to be determined by simple geometric
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calculation. In this example, determining analytically if the pose is wrench-feasible

reduces to simply testing whether the distances between the planes that define the

boundaries of NWavail and the origin are greater than or equal to Freq.

While visualization of these sets may break down for cases where the dimension

of the taskspace is higher than three, the geometric conditions for wrench-feasibility

do not. Thus for higher-dimensional task spaces the wrench-feasibility of a pose can

be calculated from the distance between the hyperplanes that bound NWavail and the

hyper-object (such as a hyper-sphere) that represents NWreq.

In general, it is very likely that the geometry of NWreq will be simple, resulting

in simple geometric conditions for NWreq ⊆ NWavail. In the case that NWreq is more

complex, an approximation of this set can be made by choosing a simpler geometry

that contains NWreq. Using this approximate set will give a conservative estimate of

whether or not the pose is wrench-feasible.

5.3 Constructing the Wrench-Feasible Workspace

While it is very advantageous to now be able to check whether or not a pose is

wrench-feasible by simple geometric conditions, it is still necessary to construct the

entire Wrench-Feasible Workspace. A simple method to accomplish this would be

to discretize the task space and evaluate each discrete pose of the manipulator, thus

constructing a discretized Wrench-Feasible Workspace as the set of discrete poses

that are wrench-feasible. Such a method, while relatively simple, would be time-

consuming, computationally expensive and would not produce a complete description

of the continuous Wrench-Feasible Workspace. Moreover, such a method would not

provide any insight into the nature of the Wrench-Feasible Workspace.

Instead, the Wrench-Feasible Workspace can be constructed by generating the

boundaries of the workspace analytically. Consider a pose of a manipulator where

NWreq is contained in NWavail and is contacting one of the sides of NWavail. A small

104



change in the pose of the manipulator can cause the pose to remain wrench-feasible (if

NWreq remains inside NWavail) or to become not wrench-feasible (if part of NWreq is

now outside of NWavail). Thus this pose of the manipulator must be on the boundary

of the WFW because it it is a point of transition between being wrench-feasible and

no longer being wrench-feasible. Thus the boundaries of the WFW consist of

the set of all poses of the manipulator such that NWreq ⊆ NWavail and one

or more of the planes bounding NWavail contact NWreq.

The conditions for this to occur can be represented as geometric conditions on the

geometry of the pose. Each plane defining a boundary of NWavail can be expressed

as a function of the cable wrenches $w1 through $wp , which are functions of the pose

P . The condition of contact between one of these planes and NWreq results in a

relationship between the screws $1 through $p that causes contact to occur. This

relationship can then be used to construct the geometric conditions that result in the

pose being on the boundary of the workspace. Thus these geometric relationships

represent an analytical definition of a boundary of the Wrench-Feasible Workspace.

Repeating this process for each of the planes that bounds NWavail results in a set of

analytical expressions that define the Wrench Feasible Workspace boundaries. Note

that because there are 2
(

p
q−1
)
sides that bound NWavail, at least 2

(
p

q−1
)
workspace

boundaries must be formulated.

Sections 5.4 and 5.5 now formulate the boundaries of the WFW for two cases:

point-mass cable robots and general cable robots, respectively. Section 5.4 assumes a

spherical NWreq, as was the case for the example manipulator in Figure 29. Section

5.5 assumes a polyhedral NWreq for general cable robots.

5.4 Point-Mass Cable Robots

Based on the approach presented in 5.3, a detailed investigation of forming the

WFW for point-mass cable robots was performed by Andrew Riechel in [60] and
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[61]. Because that work was based on the workspace generation approach presented

in this thesis, the relevant results of that work will be summarized in this section.

5.4.1 Forming the Wrench-Feasible Workspace Boundaries

Point-mass cable robots can only exert forces on their surroundings (and no moments),

thus for point-mass cable robots NWreq is a set of pure forces. Common geometries

of NWreq for point-mass cable robots are circles or rectangles for the planar case and

spheres or cylinders for the spatial case. Without specific knowledge about the task

requirements for the manipulator, it is reasonable to assume the manipulator needs to

be able to exert a minimum required force Freq in any direction. The corresponding

choice for NWreq would then be the set of all forces F such that ‖ F ‖ ≤ Freq.

Graphically this set NWreq is simply a sphere centered at the origin with radius

Freq, as was shown in Figure 29(b). Because this choice of NWreq is fairly general

and also simplifies geometric calculations of wrench-feasibility, a spherical NWreq is

used here.

Given a 3-D point-mass cable robot with three cables (p = 3)4 in a particular end-

effector pose, the Available Net Wrench Set is known to be a parallelepiped described

by NWavail = {$w : $w = a1t1,maxu1 + a2t2,maxu2 + a3t3,maxu3 + mg; 0 < ai ≤ 1},

as shown in Figure 30(b). The Required Net Wrench Set, NWreq, is assumed to be a

sphere with radius Freq.

Based on the conclusions made in Section 5.3, at every pose on the boundary of

the Wrench-Feasible Workspace at least one side of NWavail is tangent to the spherical

NWreq. A set of six vectors can be defined, where each vector is the shortest vector

from the origin to one of the six sides of NWavail (orthogonal distance vectors) as

illustrated in Figure 30(b). For each of the lower three sides of NWavail the vector dij

is directed towards the lower side spanned by ui and uj. For each of the three upper

4Note that this procedure can be extended to a point-mass cable robot with any number of cables.
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Figure 30: A point-mass 3-cable manipulator and its Available Net Wrench Set
containing its Required Net Wrench Set.

sides of NWavail the vector d
′
ij is directed towards the upper side spanned by ui and

uj.

Because NWreq is a sphere of radius Freq, an intersection with the boundary of

NWavail will occur whenever ‖ dij ‖≤ Freq or ‖ d ′ij ‖≤ Freq. Thus an end-effector

position is included in the Wrench-Feasible Workspace if and only if it satisfies the

following inequalities:

‖dij ‖≥ Freq and ‖d ′ij ‖≥ Freq, (154)

for {i, j} ∈ {{1, 2}, {2, 3}, {3, 1}} .

By forming a series of vector loop equations involving known vectors the

magnitudes ‖ dij ‖ and ‖ d ′ij ‖ can be calculated. For brevity the details of the

derivation are not included here but can be found in [60]. If ui = (xi, yi, zi),

motor mount location i is M i = (Mx,My,Mz) and the end-effector location is
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ee = (eex, eey, eez), then solving the vector loop equations for each dij and d
′
ij results

in:

‖dij ‖ =
mg(xjyi − xiyj)√

(yizj − yjzi)2 + (xjzi − xizj)2 + (xiyj − xjyi)2
(155)

‖d ′ij ‖ = tk,max sin
[
cos−1 (uj · uk)

]
sin
[
cos−1 (uk · ui)

]
− dij (156)

for {i, j, k} ∈ {{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}

where

x` =
M`x − eex√

(M`x − eex)2 + (M`y − eey)2 + (M`z − eez)2
(157)

y` =
M`y − eey√

(M`x − eex)2 + (M`y − eey)2 + (M`z − eez)2
(158)

z` =
M`y − eey√

(M`x − eex)2 + (M`y − eey)2 + (M`z − eez)2
(159)

for ` = 1, 2, 3.

Note that cos−1 is assumed to yield a result between 0 and π.

The boundaries of the Wrench-Feasible Workspace can now be expressed ana-

lytically. By substituting identities (157) through (159) into Equations (155) and

(156) and setting each distance ‖dij ‖ and ‖d
′
ij ‖ equal to Freq, Equations (155) and

(156) represent six implicit expressions of the six boundaries of the Wrench-Feasible

Workspace. The Wrench-Feasible Workspace can alternatively be constructed by

substituting ‖dij ‖, ‖d
′
ij ‖≥ Freq into Equations (155) and (156) and determining the

intersection of the six resulting regions.

5.4.2 Results of Workspace Derivation

From the equations for the WFW boundaries in the previous section, several

workspace properties and trends can be observed. These will be listed briefly here,
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but full derivations of the properties and workspace trends are included in [60] and

[61]. In addition, details of the workspace derivation for a 2-cable planar point-mass

cable robot are also included in [60] and [61].

Based on the expressions for the boundaries of the WFW for a point-mass cable

robot with spherical NWreq the following properties can be observed. The properties

of the 2-D case (a planar point-mass cable robot with circular NWreq) are included

in parentheses.

Property 1: Lower workspace boundaries, i.e. those defined by Equation (155), are

always planes. (For the 2-D case the lower boundaries are lines.)

Property 2: All lower workspace boundaries have the same relative angle from

vertical. (For the 2-D case the lower boundaries are lines with the same relative angle

from vertical.)

Property 3: Each workspace boundary must pass through exactly two motor mount

locations.

As an illustration of these properties, consider the WFW shown in Figure 31 for

a 2-cable point-mass 2-D cable robot. Here NWreq is a circle. The four curves are

the four workspace boundaries found using the 2-D versions of (155) and (156) and

the shaded region is the resulting WFW. The lower two boundaries (the straight

lines) come from the 2-D version of (155), which correspond to the condition of

contact between NWreq and the lower sides of NWavail. Similarly, the upper two

boundaries (the curved lines) come from the 2-D version of (156), which correspond

to the condition of contact between NWreq and the upper sides of NWavail.

As an example of what a 3-D version of the WFW looks like for a point-mass cable

robot, consider Figure 32, which shows a discretized 3-D workspace with the edges

of the planar lower boundaries highlighted. Note that the workspace can be found

analytically, but is plotted in a discretized manner in order to make visualization
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Figure 32: Example of discretized 3-D Wrench-Feasible Workspace for a 3-cable
point mass cable robot.

easier.

Given the analytical expressions for the workspace boundaries, it is possible to

vary different design parameters and see how they affect the geometry of the Wrench-

Feasible Workspace. When designing a point-mass cable robot these trends can be

used to adjust the manipulator design appropriately to achieve the desired workspace

geometry. The specific trends are not included here, but [60] and [61] examine the

effects of 1) varying maximum cable tensions, 2) varying end-effector mass, 3) varying

the radius of NWreq and 4) varying motor mount locations.
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5.5 General Cable Robots

5.5.1 Polyhedral Required Net Wrench Set

Because point-mass cable robots only exert forces, the selection of an appropriate

geometry forNWreq is relatively simple. However, for general cable robots the wrench-

exertion requirements may vary greatly from task to task. For example, one task

may primarily require large moments to be exerted with very small associated forces,

while another task may primarily require large forces to be exerted with very small

associated moments. Thus it is not easy to choose a single geometry of NWreq that

is representative of the various possible task requirements.

Therefore, rather than selecting a single geometry of NWreq and formulating the

WFW boundary equations for that geometry, NWreq will be assumed to be defined by

an arbitrary polyhedron (or collection of polyhedra) with a finite number of vertices5.

This allows a great deal of flexibility when specifying NWreq, as nearly any arbitrary

object can be closely approximated by a collection of polyhedra.

Given such a geometry for NWreq, the question now is how to test if a pose

is wrench-feasible. It is shown in the following theorem that in order to test if

NWreq ⊆ NWavail we only need to check that V , the set of vertices of NWreq, is

inside NWavail.

Theorem :

If NWreq is a collection of a finite number of bounded polyhedra6, each of which has

a finite number of vertices, and if the set of vertices for the polyhedra is V , then

NWreq ⊆ NWavail ⇔ V ⊆ NWavail. (160)

5A polyhedron is defined as a body bounded by planes [15] or equivalently as the intersection of a
finite number of half-spaces [80]. It is assumed that none of the vertices of the polyhedra are located
at infinity, and thus NWreq is actually assumed to be a set of polytopes, or bounded polyhedra [80].

6Note that for this proof and for the generation of the WFW a collection of polyhedra can be
equivalently replaced with the convex hull of the vertices of the polyhedra.
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Proof :

This proof contains two directions, the first of which is trivial:

Proof of NWreq ⊆ NWavail ⇒ V ⊆ NWavail:

V ⊆ NWreq, so from NWreq ⊆ NWavail it follows that V ⊆ NWavail.

Proof of NWreq ⊆ NWavail ⇐ V ⊆ NWavail:

First we must prove that NWavail is convex. A set S is said to be convex if

µx + (1 − µ)y ∈ S for all x, y ∈ S and 0 ≤ µ ≤ 1 [79]. Recall that NWavail = {$w :

$w = a1t1,max$
w
1 + ... + aptp,max$

w
p +mg; 0 ≤ ai ≤ 1}, where ti,max is the maximum

allowable tension in cable i and $wi is the ith column of JT . Then given two wrenches,

$wα , $
w
β ∈ NWavail:

$wα = aα,1t1,max$
w
1 + ...+ aα,ptp,max$

w
p +mg 0 ≤ aα,i ≤ 1

$wβ = aβ,1t1,max$
w
1 + ...+ aβ,ptp,max$

w
p +mg 0 ≤ aβ,i ≤ 1.

Let 0 ≤ µ ≤ 1. Then let $wγ be a convex combination of $wα and $wβ :

$wγ = µ$wα + (1− µ)$wβ

= µaα,1t1,max$
w
1 + ...+ µaα,ptp,max$

w
p + µmg + ...

+ (1− µ)aβ,1t1,max$
w
1 + ...+ (1− µ)aβ,ptp,max$

w
p + (1− µ)mg

= (µaα,1 + (1− µ)aβ,1) t1,max$
w
1 + ...+ (µaα,p + (1− µ)aβ,p) tp,max$

w
p +mg.

Because 0 ≤ aα,i ≤ 1 and 0 ≤ aβ,i ≤ 1,

0 ≤ (µaα,i + (1− µ)aβ,i) ≤ 1.

If we define a new set of coefficients aγ,i as:

aγ,i = (µaα,i + (1− µ)aβ,i) i = 1, ..., p

then

$wγ = aγ,1t1,max$
w
1 + ...+ aγ,ptp,max$

w
p +mg 0 ≤ aγ,i ≤ 1.
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Thus $wγ ∈ NWavail. Therefore we conclude that NWavail is convex.

Because NWavail is convex, if the set of vertices V is contained in NWavail, then

conv(V ), the convex hull of V , is contained in NWavail. Because NWreq is a set of

polyhedra, NWreq ⊆ conv(V ). Thus because conv(V ) ⊆ NWavail, NWreq ⊆ NWavail.

Therefore NWreq ⊆ NWavail ⇐ V ⊆ NWavail. Q.E.D. ¤

Recall that the WFW boundaries are the set of all poses of the manipulator such

that NWreq ⊆ NWavail and one or more of the planes bounding NWavail contact

NWreq. Because NWavail is convex, if a plane bounding NWavail contacts NWreq, it

must contact it at at least one vertex. Thus the set of boundary equations is

simply the set of all expressions for contact between a vertex of NWreq and

a side of NWavail.

Consider Figure 33(a), which illustrates an example of a polyhedral NWreq (in

this case a cube) contained inside a NWavail. In order to form the WFW boundaries

it is necessary to form the set of equations that describe the condition of contact

between a vertex of NWreq and a side of NWavail.

The boundary equations can be formulated in determinant form. Consider the

illustration in Figure 33(b) of contact between a lower side of NWavail and vertex v1.

The vertex contacts the lower side if the vector (v1 −mg) is a linear combination of

$w2 and $w3 . This condition can be formulated as:

det

[
$w2 $w3 (v1 −mg)

]
= 0. (161)

Similarly, Figure 33(c) illustrates contact between an upper side ofNWavail and vertex

v2. The vertex contacts the lower side if the vector (v2 −mg − t3,max$
w
3 ) is a linear

combination of $w1 and $w2 . This condition can be formulated as:

det

[
$w1 $w2 (v2 −mg − t3,max$

w
3 )

]
= 0. (162)

In general, for an n-dimensional task space a side S of NWavail is spanned by

(n− 1) wrenches. Let E be the set of wrenches along the edges of NWavail that must
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Figure 33: An example Available Net Wrench Set containing its polyhedral Required
Net Wrench Set.

be traced to get from the bottom of NWavail (which is mg) to the bottom of side S

and let SP be the set of (n − 1) wrenches that positively span S. Then S can be

expressed as S = {$w : $w =
∑
$we ∈E

te,max$
w
e +

∑
$wj ∈SP

ajtj,max$
w
j ; 0 ≤ aj ≤ 1}. As an

example, again consider Figure 33. In the case of Figure 33(b), $w2 and $w3 span the

side we are interested in, and the bottom of the side is the same as the bottom of

NWavail. Thus E = {∅} and SP = {$w2 , $w3 }. In the case shown in Figure 33(c), $w1

and $w2 span the side we are interested in, and in order to get from the bottom of

NWavail to the bottom of the side, we must traverse the edge that is along $w3 . Thus

E = {$w3 } and SP = {$w1 , $w2 }. Thus the boundary equation corresponding to contact

between any vertex v and a side of NWavail is of the form

det

[
$wa $wb · · · $wi

(
v −mg − ∑

$wj ∈E
tj,max$

w
j

) ]
= 0 (163)

where {$wa , $wb , ... , $wi } = SP .

Note that this must be done for every vertex v of NWreq contacting each
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of the sides of NWavail. Thus if there are w different vertices of NWreq, then

2w
(

p
q−1
)
boundary equations must be formed. In the example shown in Figure 33,

NWavail has 6 sides and NWreq has 8 vertices, thus 48 boundary equations must

be formed. Clearly, the number of boundaries that must be formed is relatively

large, even for simple geometries of NWreq. Thus if NWreq is complicated, a

simplified approximation of NWreq with fewer vertices will make the computations

more manageable. In addition, for underconstrained robots if the upper tension

limits of the manipulator are high, the geometry of the WFW is dominated by the

boundaries corresponding to contact between the vertices of NWreq and the lower

boundaries of NWavail (i.e. those that correspond to a cable having zero tension).

Thus in some cases it may only be necessary to form a few of the workspace boundaries

in order to determine the majority of the geometry of the workspace.

5.5.2 Wrench-Feasible Workspace of Planar Cable Robots

This section examines in more detail the form of the WFW boundaries for planar

cable robots. The complete expression for the lower WFW boundaries (those that

correspond to contact between a vertex of NWreq and a lower side of NWavail) are

derived in Section 5.5.2.1 and applied to an example manipulator in Section 5.5.2.3.

Section 5.5.2.2 discusses the approach for formulation of the upper WFW boundaries

(those that correspond to contact between a vertex of NWreq and an upper side of

NWavail).

5.5.2.1 Analytically Determined Lower WFW Boundaries

Consider a general planar cable robot where the wrench-exertion requirements of a

task are defined by a polyhedral NWreq. Let the set of all vertices of NWreq be

V . As shown in Figure 34, the pose of the end-effector is defined as (x, y, θ), where

(x, y) is the position of the center of gravity of the end-effector in the fixed global

coordinate frame X-Y and θ is the rotation of the end-effector, defined as the relative
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Figure 34: Kinematic parameters for a planar cable robot.

angle between the moving coordinate frame X ′-Y ′ attached to the end-effector and

the global coordinate frame X-Y . Without loss of generality, the fixed coordinate

frame can be chosen such that the Y axis is vertical (aligned with gravity), the X

axis points to the right and counterclockwise rotations (and moments) are considered

positive.

The location of motor i (or location of the pulley through which the cable is

routed) with respect to the fixed global frame is mi and the vectors from (x, y) to

the attachment point of the cable i is ci. The notation used for these vectors is as

follows:

mi =



mi,x

mi,y


 ci =




ci,x

ci,y


 .

Note that the vector mi is defined in the fixed global coordinate frame, while ci

is defined in the moving coordinate frame attached to the end-effector. Thus both

vectors are constant vectors (i.e. they do not change in their respective frames as the

end-effector moves).

Let us define the cable length vector `i in the global coordinate frame as the vector

along cable i directed from the cable attachment points to the corresponding motor
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locations:

`i =mi −







x

y


+ R(θ)ci


 (164)

where

R(θ) =




cos(θ) − sin(θ)

sin(θ) cos(θ)


 . (165)

Note that the length of cable i is ‖`i ‖.

The unit vector ui along cable i directed away from the end-effector is then defined

as:

ui =
`i

‖`i ‖
. (166)

When ‖ `i ‖= 0, the corresponding unit vector is undefined and is chosen to be 0.

However, such a condition only results when the end-effector comes in contact with

the motor mount and should therefore be avoided in order to avoid interference. Thus

such a pose will not be considered to be part of the WFW.

Using (163), the equation for any one of the lower boundaries is of the form

det

[
$wi $wj (v −mg)

]
= 0. (167)

Let the wrench corresponding to vertex v be expressed as v = (Fx, Fy,M). Then

using (10) and noting that here mg = (0, −mg, 0)T , (167) becomes:

det




ui,x uj,x Fx

ui,y uj,y Fy +mg

(R(θ)ci)× ui (R(θ)cj)× uj M



= 0. (168)

Note that while the cross-product operation is only strictly defined for three-

dimensional vectors, it is used here on two-dimensional vectors in order to retain

the same form of the boundary equations as that obtained for the general case. In

two dimensions the operation a× b is defined as a× b = det
[
a b
]
.
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Evaluation of (168) results in the following:

ui,xuj,yM + ujx(Fy +mg)((R(θ)ci)× ui) + Fxui,y((R(θ)cj)× uj) −

− ui,x(Fy +mg)((R(θ)cj)× uj) − uj,xui,yM − Fxuj,y((R(θ)ci)× ui) = 0. (169)

Substituting for ui and uj in terms of `i and `j as defined in (166) results in each

term having a common factor of 1
‖`i‖·‖`j‖

. Thus multiplying both sides of (169) by

‖ `i ‖ · ‖ `j ‖ results in:

`i,x`j,yM + `jx(Fy +mg)((R(θ)ci)× `i) + Fx`i,y((R(θ)cj)× `j) −

− `i,x(Fy +mg)((R(θ)cj)× `j) − `j,x`i,yM − Fx`j,y((R(θ)ci)× `i) = 0. (170)

which eliminates the complexity of the square-root and quadratic terms in ‖ `i ‖ and

‖ `j ‖. Each of the terms in (170) can now be expressed in terms of known constants

(mi, mj, ci, cj, mg, Fx, Fy and M) and the variables of interest (x,y and θ):

`i,x`j,yM = (mi,x − x− cos(θ)ci,x + sin(θ)ci,y)(mj,y − y − sin(θ)cj,x − cos(θ)cj,y)M (171)

`jx(Fy +mg)((R(θ)ci)× `i) = (mj,x − x− cos(θ)cj,x + sin(θ)cj,y)(Fy +mg) · ...

... ·
[
(cos(θ)ci,x − sin(θ)ci,y)(mi,y − y − sin(θ)ci,x − cos(θ)ci,y)− ...

...− (sin(θ)ci,x + cos(θ)ci,y)(mi,x − x− cos(θ)ci,x + sin(θ)ci,y)
]

(172)

Fx`i,y((R(θ)cj)× `j) = (mi,y − y − sin(θ)ci,x − cos(θ)ci,y)Fx · ...

... ·
[
(cos(θ)cj,x − sin(θ)cj,y)(mj,y − y − sin(θ)cj,x − cos(θ)cj,y)− ...

...− (sin(θ)cj,x + cos(θ)cj,y)(mj,x − x− cos(θ)cj,x + sin(θ)cj,y)
]

(173)

`i,x(Fy +mg)((R(θ)cj)× `j) = (mi,x − x− cos(θ)ci,x + sin(θ)ci,y)(Fy +mg) · ...

... ·
[
(cos(θ)cj,x − sin(θ)cj,y)(mj,y − y − sin(θ)cj,x − cos(θ)cj,y)− ...

...− (sin(θ)cj,x + cos(θ)cj,y)(mj,x − x− cos(θ)cj,x + sin(θ)cj,y)
]

(174)

`j,x`i,yM = (mi,y − y − sin(θ)ci,x − cos(θ)ci,y)(mj,x − x− cos(θ)cj,x + sin(θ)cj,y)M (175)

Fx`j,y((R(θ)ci)× `i) = (mj,y − y − sin(θ)cj,x − cos(θ)cj,y)(Fx) · ...

... ·
[
(cos(θ)ci,x − sin(θ)ci,y)(mi,y − y − sin(θ)ci,x − cos(θ)ci,y)− ...

...− (sin(θ)ci,x + cos(θ)ci,y)(mi,x − x− cos(θ)ci,x + sin(θ)ci,y)
]
. (176)

Collecting terms results in a boundary equation of the form:

a1x
2 + a2x+ a3xy + a4y + a5y

2 + a6 = 0 (177)
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where each ai is a function of θ and known constants:

a1 = (Fy +mg)(sin(θ)(cj,x − ci,x) + cos(θ)(cj,y − ci,y)) (178)

a2 =
[
(mi,y −mj,y)− sin(θ)(ci,x − cj,x)− cos(θ)(ci,y − cj,y)

]
M − ...

...− (Fy +mg)
[
cos(θ)(ci,xmi,y − cj,xmj,y − ci,ymi,x + cj,ymj,x)− ...

...− sin(θ)(ci,ymi,y − cj,ymj,y + ci,xmi,x − cj,xmj,x)
]
+ ...

...+
[
Fx(mi,y−sin(θ)ci,x−cos(θ)ci,y)−(Fy+mg)(mi,x−cos(θ)ci,x+sin(θ)ci,y)

]
(sin(θ)cj,x+cos(θ)cj,y)+...

...+
[
(Fy+mg)(mj,x−cos(θ)cj,x+sin(θ)cj,y)−Fx(mj,y−sin(θ)cj,x−cos(θ)cj,y)

]
(sin(θ)ci,x+cos(θ)ci,y) (179)

a3 = (Fy +mg)
[
(cos(θ)(ci,x − cj,x)− sin(θ)(ci,y − cj,y)

]
+ Fx

[
(sin(θ)(ci,x − cj,x) + cos(θ)(ci,y − cj,y)

]
(180)

a4 =
[
(mj,x −mi,x)− cos(θ)(cj,x − ci,x) + sin(θ)(cj,y − ci,y)

]
M + ...

...+ Fx
[
cos(θ)(ci,xmi,y − cj,xmj,y − ci,ymi,x + cj,ymj,x)− ...

...− sin(θ)(ci,ymi,y − cj,ymj,y + ci,xmi,x − cj,xmj,x)
]
− ...

...−
[
Fx(mi,y−sin(θ)ci,x−cos(θ)ci,y)−(Fy+mg)(mi,x−cos(θ)ci,x+sin(θ)ci,y)

]
(cos(θ)cj,x−sin(θ)cj,y)−...

...−
[
(Fy+mg)(mj,x−cos(θ)cj,x+sin(θ)cj,y)−Fx(mj,y−sin(θ)cj,x−cos(θ)cj,y)

]
(cos(θ)ci,x−sin(θ)ci,y) (181)

a5 = Fx(cos(θ)(cj,x − ci,x)− sin(θ)(cj,y − ci,y)) (182)

a6 = (mi,x − cos(θ)ci,x + sin(θ)ci,y)(mj,y − sin(θ)cj,x − cos(θ)cj,y)M − ...

...− (mi,y − sin(θ)ci,x − cos(θ)ci,y)(mj,x − cos(θ)cj,x + sin(θ)cj,y)M + ...

...+
[
Fx(mi,y − sin(θ)ci,x − cos(θ)ci,y)− (Fy +mg)(mi,x − cos(θ)ci,x + sin(θ)ci,y)

]
· ...

... ·
[
cos(θ)(cj,xmj,y − cj,ymj,x)− sin(θ)(cj,ymj,y + cj,xmj,x)

]
− ...

...−
[
Fx(mj,y − sin(θ)cj,x − cos(θ)cj,y)− (Fy +mg)(mj,x − cos(θ)cj,x + sin(θ)cj,y)

]
· ...

... ·
[
cos(θ)(ci,xmi,y − ci,ymi,x)− sin(θ)(ci,ymi,y + ci,xmi,x)

]
. (183)

Because these coefficients are fairly complicated it is not trivial to plot this

workspace boundary. However, if the manipulator is considered at a known constant

orientation, each ai becomes a constant and the boundary equation reduces to

a relatively simple polynomial in x and y. Thus it is possible to get a good

representation of the workspace boundary by plotting multiple constant orientation

boundary curves, essentially viewing the workspace boundary one “slice” at a time.

This will be demonstrated using the example in Section 5.5.2.3.

Special Case:

If instead we would like to generate the static equilibrium workspace (NWreq =

(Fx, Fy, M)T = (0, 0, 0)T ), the expression for the workspace boundary becomes even

simpler:
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a1 = sin(θ)(cj,x − ci,x) + cos(θ)(cj,y − ci,y) (184)

a2 =
[
sin(θ)(ci,ymi,y−cj,ymj,y+ci,xmi,x−cj,xmj,x)−cos(θ)(ci,xmi,y−cj,xmj,y−ci,ymi,x+cj,ymj,x)

]
−...

...− (mi,x − cos(θ)ci,x + sin(θ)ci,y)(sin(θ)cj,x + cos(θ)cj,y) + ...

...+ (mj,x − cos(θ)cj,x + sin(θ)cj,y)(sin(θ)ci,x + cos(θ)ci,y) (185)

a3 =
[
(cos(θ)(ci,x − cj,x)− sin(θ)(ci,y − cj,y)

]
(186)

a4 = (mi,x − cos(θ)ci,x + sin(θ)ci,y)(cos(θ)cj,x − sin(θ)cj,y)− ...

...− (mj,x − cos(θ)cj,x + sin(θ)cj,y)(cos(θ)ci,x − sin(θ)ci,y) (187)

a5 = 0 (188)

a6 = −(mi,x − cos(θ)ci,x + sin(θ)ci,y)
[
cos(θ)(cj,xmj,y − cj,ymj,x)− sin(θ)(cj,ymj,y + cj,xmj,x)

]
+ ...

...+ (mj,x − cos(θ)cj,x + sin(θ)cj,y)
[
cos(θ)(ci,xmi,y − ci,ymi,x)− sin(θ)(ci,ymi,y + ci,xmi,x)

]
. (189)

Thus for the static equilibrium workspace the workspace boundary equation can be

put in the form y = g(x, θ), where

y = g(x, θ) = −a1x
2 + a2x+ a6
a3x+ a4

. (190)

Again if we consider a constant orientation of the end-effector each ai becomes a

constant and the constant-orientation boundary has a polynomial form. Thus the

lower boundaries of the static equilibrium workspace can be plotted quite easily for

constant orientation of a planar cable robot.

5.5.2.2 Upper WFW Boundaries

Using (163), an upper boundary of a planar cable robot has the form:

det

[
$wi $wj

(
v −mg − ∑

$w
k
∈E
tk,max$

w
k

) ]
= 0. (191)

Note that this is the same form as the lower boundaries, but for the lower boundaries

E = {∅}, while in this case E 6= {∅}. Let SP = {$wα , $wβ , ... }. Then using the

previously defined notation the boundary equation becomes:

det




ui,x uj,x Fx + tα,maxuα,x + tβ,maxuβ,x + ...

ui,y uj,y Fy +mg + tα,maxuα,y + tβ,maxuβ,y + ...

(R(θ)ci)× ui (R(θ)cj)× uj M + tα,max (R(θ)cα)× uα + tβ,max

(
R(θ)cβ

)
× uβ + ...


 = 0. (192)
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Evaluation of (192) results in an expression similar in form to (169), and substitutions

can be made for ui, uj, uα, uβ, etc. in terms of `i, `j, `α, `β, etc.. However, unlike

(169), the factor of 1
‖`i‖·‖`j‖·‖`α‖·‖`β‖·...

is not common to all terms and therefore cannot

be canceled. Thus the resulting boundary equation will no longer have polynomial

form and will include many square-root terms.

Because of this amount of complexity, it does not appear useful to fully detail

the analytical form of the upper WFW boundaries, as the resulting equations will

not provide much insight into the geometry of the boundaries and will likely need

to be plotted using numerical techniques. However, for both underconstrained and

fully-constrained manipulators, if the upper tension limits are relatively high then the

lower WFW boundaries determine the majority of the geometry of the WFW. Thus

the lower workspace boundaries found previously are the key boundaries to consider.

5.5.2.3 Example

As an example, let us examine the Wrench-Feasible Workspace of the manipulator

shown in Figure 35. The pose of the manipulator is (x, y, θ)T , where the pose of the

manipulator as shown in Figure 35 is (0, 0, 0)T . Motor 1 is located at (−1.5m, 2m)T ,

motor 2 is located at (0, 2m)T and motor 3 is located at (1.5m, 2m)T . The vectors

from the center of gravity to the cable attachment points are c1 = (−0.3m, 0)T ,

c2 = (0, 0.05m)T and c3 = (0.3m, 0)T . The weight of the end-effector is 20N and

the cables are assumed to have very high upper tension limits. We will now generate

the WFW numerically for several choices of NWreq and compare the results to the

analytically determined WFW boundaries.

Using MATLAB, the WFW is first calculated for NWreq = (0, 0, 0)T (i.e. the

static equilibrium workspace) using a numerical approach, where the taskspace is

discretized and searched exhaustively. The resulting discretized workspace is shown

in Figure 36. Note that due to the symmetry of the manipulator the workspace
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Figure 35: Example manipulator (note: not drawn to scale).

is symmetric. The MATLAB code for generating this workspace and each of the

following example workspaces is included in Appendix C.

Now let us change NWreq to a polyhedral with two vertices (i.e. a line segment).

Let the two vertices be the origin and a pure force of 5N to the right. Then NWreq =

conv{(0, 0, 0)T , (5N, 0, 0)T}. The resulting WFW is shown in Figure 37. Note that

because the origin is included in NWreq the WFW is a subset of the static equilibrium

workspace.

Let us also consider a case where the vertices are the origin and a pure moment

of 1N
m
. Then NWreq = conv{(0, 0, 0)T , (0, 0, 1N

m
)T}. The resulting WFW is shown in

Figure 38. Note again that because the origin is included in NWreq the WFW is a

subset of the Static Equilibrium Workspace.

Now let us compare the numerical results with analytical results for the workspace

boundaries. In the first case, where NWreq = (0, 0, 0)T , there is only one vertex to

consider. Because the upper tension limits of the cables are very high, only the

lower workspace boundaries will be considered. For simplicity we will only consider

a constant orientation “slice” of the workspace at θ = π
8
. Using (177) through (183),
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Figure 36: Numerically determined Static Equilibrium Workspace for an example
manipulator.
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Figure 37: Numerically determined Wrench-Feasible Workspace for an example
manipulator - NWreq = conv{(0, 0, 0)T , (5N, 0, 0)T}.
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Figure 38: Numerically determined Wrench-Feasible Workspace for an example
manipulator - NWreq = conv{(0, 0, 0)T , (0, 0, 1N

m
)T}.
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Figure 39: Numerically determined WFW and analytically determined WFW
boundaries for an example manipulator at a constant orientation of θ = π

8
and

NWreq = {(0, 0, 0)T}.

the three boundary equations are:

g1(x, y) = 3.22x2 + 14.851x− 5.161xy + 0.574y − 1.214 = 0

g2(x, y) = 1.372x2 + 9.494x− 5.926xy + 0.574y − 1.082 = 0

g3(x, y) = 4.592x2 + 22.173x− 11.087xy − 8.423 = 0

where g1(x, y) = 0 is the boundary equation corresponding to contact between NWreq

and the lower side of NWavail spanned by $w1 and $w2 , g2(x, y) = 0 is the boundary

equation corresponding to contact between NWreq and the lower side of NWavail

spanned by $w2 and $w3 and g3(x, y) = 0 is the boundary equation corresponding to

contact between NWreq and the lower side of NWavail spanned by $w1 and $w3 . The

boundary equations are plotted with the discretized workspace in Figure 39. Note

that the analytically determined boundaries agree exactly with the bounds of the

numerically determined workspace.

Let us now consider the second case, where NWreq = conv{(0, 0, 0)T , (5N, 0, 0)T}.

In this case there are two vertices to consider, thus we must form six boundary
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equations – three for each vertex. Because one of the vertices is the origin, which

was the vertex used in the previous case, the first three equations are g1(x, y) = 0,

g2(x, y) = 0 and g3(x, y) = 0 as given in the previous case. Using (177) through (183),

the three additional boundary equations are:

g4(x, y) = 3.22x2 + 16.461x− 5.966xy − 5.373y + 1.29y2 + 5.479 = 0

g5(x, y) = 1.372x2 + 10.18x− 6.269xy − 4.416y + 1.481y2 + 3.012 = 0

g6(x, y) = 4.592x2 + 24.469x− 12.235xy − 11.087y + 2.772y2 + 2.466 = 0

where g4(x, y) = 0 is the boundary equation corresponding to contact between

(5N, 0, 0)T and the lower side of NWavail spanned by $w1 and $w2 , g5(x, y) = 0 is

the boundary equation corresponding to contact between (5N, 0, 0)T and the lower

side of NWavail spanned by $w2 and $w3 and g6(x, y) = 0 is the boundary equation

corresponding to contact between (5N, 0, 0)T and the lower side of NWavail spanned

by $w1 and $w3 . The boundary equations are plotted with the discretized workspace

in Figure 40. Note that the analytically determined boundaries again agree exactly

with the bounds of the numerically determined workspace.

Note that because the third case (where NWreq = conv{(0, 0, 0)T , (0, 0, 1N
m
)T})

also has two vertices, six boundary equations are necessary for this case. However, be-

cause that case is very similar to the second case (NWreq = conv{(0, 0, 0)T , (5m, 0, 0)T})

the resulting plot of the boundary equations for the third case is very similar to the

one shown for the second case and thus is not included here.

5.5.3 Wrench-Feasible Workspace of Spatial Cable Robots

The formulation of the WFW boundaries for spatial cable robots is quite similar to

that of planar cable robots. Using (163), each boundary equation is of the form:

det

[
$wa $wb $wc $wd $we

(
v −mg − ∑

$wj ∈E
tj,max$

w
j

) ]
= 0 (193)
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Figure 40: Numerically determined WFW and analytically determined WFW
boundaries for an example manipulator at a constant orientation of θ = π

8
and

NWreq = conv{(0, 0, 0)T , (5m, 0, 0)T}.

where {$wa , $wb , ... , $we } = SP . Note that because the manipulator is spatial, this is a

6 × 6 matrix (i.e. SP always contains 5 wrenches). Also, note that each wrench $w

is a function of both the position of the end-effector (x, y, z) and of the orientation of

the end-effector, expressed here in Euler angles (ψ, θ, φ).

It would be desirable to expand (193) in terms of known system parameters and

the pose of the manipulator (x, y, z, ψ, θ, φ) similar to what was done for (5.5.2.1).

However, even in the simpler case of forming lower boundaries, evaluating (193) results

in a 5th order polynomial equation in x, y and z, where each of the 56 polynomial

coefficients is a function of ψ, θ and φ:

a1x
5 + a2x

4y + a3x
4z + ...+ a53xz

4 + a54yz
4 + a55z

5 + a56 = 0. (194)

Thus even for the simple case of the lower workspace boundaries the resulting

polynomial expressions are very complicated and thus are not detailed here. However,

if desired it would be possible to use a symbolic manipulation program to perform

the calculation of the coefficients. If that were performed, the easiest method of
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representing the boundaries would likely be examining a constant orientation of the

end-effector and plotting “slices” of the wokspace by also holding one of the position

variables constant and plotting 2-D workspace boundary curves. Keep in mind,

however, that if there are p cables and w vertices of NWreq, then (p · w) boundary

curves must be plotted.

As was the case for planar cable robots, the upper WFW boundaries for spatial

cable robots are more complicated, due to the inclusion of ‖ `i ‖ terms. As a result

it is unlikely that forming these boundaries analytically will be useful. Again, if the

upper tension limits of the cables are very high, the geometry of the WFW will be

largely determined by the lower workspace boundaries.

5.5.4 Discussion

The Wrench-Feasible Workspace analysis presented here developed a method for

forming the WFW boundaries for planar and spatial cable robots using a polyhedral

NWreq. Because NWreq is allowed to be a polyhedron or collection of polyhedra, this

allows for a wide variety of geometries to be chosen for NWreq. However, it was shown

that the number of workspace boundaries that must be calculated increases with the

number of vertices of NWreq, thus it is advantageous to keep the complexity of NWreq

lower so as to reduce the number of boundary equations that must be formed.

The method for forming workspace boundaries for a polyhedral NWreq can also

be extended to the case of point-mass cable robots. Specifically, (167) and (191)

can be used to form the lower and upper boundaries of such a WFW. By allowing

a polyhedral NWreq, this allows the WFW to be calculated for geometries of NWreq

other than a sphere. Note that even with a polyhedral NWreq many of the workspace

properties enumerated in Section 5.4.2 and [60] for point-mass cable robot Wrench-

Feasible Workspaces will still hold, such as having planar lower workspace boundaries.

For planar cable robots the complete analytical form of the lower WFW
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boundaries was calculated. The determinant form of the upper workspace

boundaries was given, but because these boundaries are much more

complicated their complete analytical form was not calculated. However,

if the upper tension limits in the cables is very high the lower boundaries

will largely determine the workspace geometry. An example manipulator

was considered and the WFW was calculated for a few different choices of NWreq.

Analytically calculated workspace boundaries were then compared to the numerically

determined workspaces and were found to agree exactly with each other.

For spatial cable robots the determinant form of the WFW boundaries is the

same as for the planar case. Due to the increased complexity of evaluating the

determinant of the 6 × 6 matrix the analytical form of the workspace boundaries

was not calculated. However, we did find that the form of the lower WFW

boundary equations is a 5th order polynomial in x, y and z with coefficients

that are functions of the end-effector orientation. Like the planar case,

the upper WFW boundaries are much more complicated and thus the

analytical expressions for the boundaries are not likely to be useful. Again,

if the upper tension limits in the cables are very high the lower boundaries will largely

determine the workspace geometry. If the upper tension limits are not very high in

either the planar case or the spatial case, then the most efficient method of forming the

WFW will be numerically. However, despite the complexity of the expressions for the

WFW boundaries of general cable robots, we now have a much better understanding

of the nature of the boundaries and their degree of complexity.

For both the planar and spatial case it is possible to examine the ana-

lytical expressions for the lower workspace boundaries and determine how

the workspace geometry is affected by the varying of different manipulator

parameters, similar to what was done for point-mass manipulators in [60].

This would allow design guidelines to be synthesized for obtaining a WFW of a
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desired geometry. Unfortunately, because the workspace boundary equations are so

complicated it is not easy to obtain these workspace properties directly from the

equations. Instead, it is likely necessary to plot a large number of workspaces for

various sets of design parameters and glean the workspace geometry trends from the

results. Such an analysis is beyond the scope of this thesis and is therefore left as a

topic for future research.

5.6 Specified Robustness Workspace

Given the results of the disturbance robustness analysis, we have a measure R that

describes the robustness of the manipulator to external disturbances at that pose. For

a given application, the manipulator might be required to maintain a certain required

amount of disturbance robustness throughout its motions. Because the robustness of

the manipulator is pose-dependent, it is of interest to determine the set of all poses

where the manipulator meets or exceeds this specified robustness value.

Definition: The Specified Robustness Workspace, or SRW, is defined as the set of all

poses where R(P ) is greater than or equal to a required robustness value Rreq.

Note that R is written explicitly as a function of the pose P to emphasize that the

robustness value is pose-dependent. It is assumed for the remainder of this discussion

that Rreq is a constant and is thus not pose-dependent.

5.6.1 Equivalent Required Net Wrench Set

The calculation of the SRW can actually be performed analytically using the same

approach used for the Wrench-Feasible Workspace. The approach is most easily

understood by considering the intermediate space. Consider a single pose of a

manipulator. If we then find the value of the robustness measure,R, for this pose then

the smallest static disturbance wrench that causes a cable to go slack has magnitude
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Figure 41: Three cases of N̂W req,eq = {f̂
∣∣ ‖ f̂ ‖≤ mgRreq}.

mgR.

Let us map NWavail to the intermediate space, producing N̂W avail. Let us then

construct a generalized Required Net Wrench Set (i.e. a Required Net Wrench Set

mapped to the intermediate space) as the set of all generalized forces, f̂ , such that

‖ f̂ ‖≤ mgR (i.e. N̂W req = {f̂ : ‖ f̂ ‖ ≤ mgRreq})7. Then N̂W req is a circle, sphere

or hypersphere (depending on the dimension of the task space) in the intermediate

space centered at the origin with radius mgR. Let the smallest static disturbance

wrench be $wmin and let this wrench be mapped to f̂min in the intermediate space.

Becasue ‖ f̂min ‖= mgR, f̂min ∈ N̂W req and −f̂min ∈ N̂W req. Because f̂min is in

Ĉ, the set of critical generalized forces, −f̂min must be on one of the lower sides of

NWavail. Thus N̂W req is tangent to NWavail, as shown in Figure 41(a) for a planar,

2-cable point-mass cable robot.

Now let us instead choose the radius of N̂W req,eq to be mgRreq (i.e. N̂W req,eq =

{f̂ : ‖ f̂ ‖ ≤ mgRreq}). If R ≥ Rreq then the pose is wrench-feasible, as shown in

Figure 41(b), and the pose is in the SRW (because the robustness of the pose exceeds

the required robustness). IfR < Rreq then the pose is not wrench-feasible, as shown in

Figure 41(c), and the pose is not in the SRW (because the robustness of the pose is less

than the required robustness). Thus for N̂W req,eq = {f̂ : ‖ f̂ ‖ ≤ mgRreq}), a pose

7Note that if NWavail and NWreq are mapped to the intermediate space the condition for wrench-
feasibility simply becomes NWreq ⊆ NWavail
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is wrench-feasible if and only if the pose meets the specified robustness

criteria (and is thus in the SRW).

This NWreq is termed the Equivalent Required Net Wrench Set, denoted NWreq,eq.

Note that the NWreq,eq is a sphere (or hypersphere) only in the intermediate space. In

the task space this set is an ellipsoid (or hyper-ellipsoid). In the task space NWreq,eq

is given by:

NWreq,eq =

{
$w =

(
F

M

)
: F 2x +F 2y +F 2z +

M2
x

ρ2x
+
M2

y

ρ2y
+
M2

z

ρ2z
≤ (mgRreq)

2

}
. (195)

Or more simply, in the intermediate space:

N̂W req,eq =
{
f̂ : ‖ f̂ ‖ ≤ mgRreq

}
. (196)

As a result, the workspace generation techniques developed earlier can be applied

to a manipulator using NWreq = NWreq,eq and no upper tension limits on the cables

(i.e. only the “lower” boundaries are needed) to produce the SRW. The procedure

is as follows: 1) specify Rreq, 2) define NWreq,eq according to (195), and 3) calculate

the WFW for NWreq,eq. The result is the SRW.

5.6.2 Modification

Alternatively, the upper tension limits can be used in addition to the lower tension

limits to generate a secondary workspace. Then the combination of the lower and

upper workspace boundaries ensure that the manipulator can resist a static wrench

with a specified acceleration energy norm without a cable going slack or a cable being

overtensioned.

5.7 Other Applications

The Available Net Wrench Set and the techniques developed for generating the

Wrench-Feasible Workspace can be used in several other applications. Sections 5.7.1
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and 5.7.2 discuss other applications of the WFW generation techniques and Sections

5.7.3 and 5.7.4 discuss other applications of the Available Net Wrench Set.

5.7.1 Force-Only Wrench-Feasible Workspace

In some cases a planar or spatial manipulator may be required to exert a certain set

of forces without consideration for the associated moments. That is, the manipulator

must exert the desired force while the corresponding moment it applies does not

matter. This kind of situation may occur if a manipulator is used to position an

object that has constrained orientation. In this case, the standard approach for

generating the WFW cannot be used, as there is no NWreq (with forces and moments)

corresponding to such task requirements.

Instead, a modification can be made to the workspace generation approach

that allows such a workspace to be generated. Recall that NWavail is the set

of wrenches that can be exerted by the manipulator: NWavail = {$w : $w =

a1t1,max$
w
1 + a2t2,max$

w
2 + ... + aptp,max$

w
p +mg; 0 ≤ ai ≤ 1}. Because we are only

interested in the forces that can be exerted, define the Available Force Set, Favail as

Favail = {F : F = a1t1,maxu1 + a2t2,maxu2 + ... + aptp,maxup +mg; 0 ≤ ai ≤ 1}. This

set is the set of all forces that can be exerted by the manipulator. Note the similarity

between this set and NWavail for point-mass cable robots. However, unlike the point-

mass case, ui is both a function of the position and orientation of the manipulator:

ui =
`i

‖`i ‖
(197)

where

`i =mi −







x

y

z




+ R(ψ, θ, φ)ci



. (198)

However, if the end-effector is considered at a constant orientation, a new motor

134



g

x

y

θ

3

21

c1

c2
c3

3

21

c1- c2-

c3-

g

x

y

θ

m1
m2

m3

m1
~

m2
~

m3
~

(a) Example planar cable robot.

g

x

y

θ

3

21

c1

c2
c3

3

21

c1- c2-

c3-

g

x

y

θ

m1
m2

m3

m1
~

m2
~

m3
~

(b) Equivalent point-mass cable robot.

Figure 42: Force-only WFW example.

mount location m̃i (as shown in Figure 42(b)) can be defined as:

m̃i =mi −R(ψ, θ, φ)ci. (199)

Then (198) can be rewritten as:

`i = m̃i −




x

y

z




(200)

which is identical to the case of a point mass cable robot with motors located at the

new positions given by m̃i. Thus for a planar or spatial cable robot, if only the forces

generated by the end-effector are of interest, an equivalent cable robot can be created,

with motor positions given by m̃i, such that the Wrench-Feasible Workspace of the

equivalent cable robot and the required set of forces for the planar or spatial cable

robot (expressed as NWreq for the point-mass manipulator) is exactly equal to the

Force-Only Wrench-Feasible Workspace of the corresponding planar or spatial cable

robot at the considered orientation.

As an example, consider the example planar cable robot in Figure 42(a). If we

wish to find the Force-Only Wrench-Feasible Workspace of the manipulator at this

orientation, we must construct the equivalent point-mass cable robot. For each motor
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we construct a new motor location m̃i =mi−R(θ)ci. In the pose shown here θ = 0,

thus R(θ)ci = ci. The equivalent point-mass cable robot for this orientation is shown

in Figure 42(b). Thus the Force-Only Wrench-Feasible Workspace of this manipulator

at this orientation can be determined in the same manner that the WFW would be

calculated for the point-mass cable robot shown in Figure 42(b).

This approach is very advantageous, because it allows us to utilize the workspace

generation approaches developed for point-mass cable robots. In fact, all of the

properties and workspace geometry trends found for point-mass cable robots apply

to this situation as well. Note that some caution must be taken in using this approach.

If wrenches are being applied to the manipulator (rather than being applied by

the manipulator), a large moment applied to the manipulator could possibly cause

cable tension limits to be exceeded even though the associated force applied to the

manipulator might be within the limits given by Favail.

5.7.2 Constructing Other Workspaces

One of the additional benefits of the method developed here for generating the WFW

is that several previously proposed workspaces can be described using this theoretical

framework. The Static Equilibrium Workspace is defined in [2] as the set of all end-

effector poses that can be reached statically. As discussed in previous sections, this is

actually a special case of the WFW where NWreq = {0}. The controllable workspace,

defined in [75], is a special case of the WFW where NWreq is a single point in the

wrench space. Thus the method presented in the previous sections for analytically

forming the WFW can be used to analytically form the Static Equilibrium Workspace

and controllable workspace.

The dynamic workspace, defined in [8] as the set of all poses of the end-effector

where the end-effector can be given a specific acceleration, can also be formed using

the method developed for the WFW. Assuming all cables are in tension, for a given
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pose and instantaneous velocities and accelerations the dynamic equations of motion

are as follows:

M




ẍ

ω̇


 = JT t+ $wext +B

(
ẋ, ω

)
(201)

where M is the inertia matrix of the end-effector defined about G, $wext is the external

wrench applied at the center of gravity of the end-effector (typically the gravitational

wrench), and B contains all other dynamic effects (i.e. gyroscopic effects, damping,

etc.). Note that it is assumed that the inertial effects of the cables and the motors

is very small compared to the inertial effects of the end-effector and thus can be

neglected. Using the fact that the set of all possible values of (J T t+$wext) is NWavail,

the set of all possible accelerations that the end-effector can be given without violating

the tension limits in the cables can then be defined as Aavail, the Available Acceleration

Set, where:

Aavail = M−1 [NWavail ⊕B
(
ẋ, ω

)]
. (202)

The set Aavail is simply NWavail shifted by B and scaled by M−1. Thus Aavail, like

NWavail, is some form of a parallelogram, parallelepiped or hyper-parallelepiped. If

we define the set of accelerations that are required of the end-effector at this pose as

Areq, the Required Acceleration Set, the dynamic workspace of the manipulator can

be defined as the set of poses P such that:

Areq ⊆ Aavail(P ). (203)

Because the geometric properties of Aavail are the same as NWavail, the

same geometric techniques can be used to form the dynamic workspace

analytically. In fact, this construction allows a more general definition of the

dynamic workspace. The dynamic workspace as defined by Barrette et al. [8] would

be limited to Areq consisting of a single acceleration of the end-effector. Here we can

extend this definition to allow Areq to consist of a set of accelerations.
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5.7.3 Optimal Control Using Acceleration Limits

The Available Acceleration Set (Aavail) may also be incorporated into a control scheme

for the cable robot. The set Aavail establishes limits on what accelerations the end-

effector can be given at pose P . Using Aavail to bound the accelerations of the end-

effector, the method proposed by Bobrow et al. [10] (often referred to as “bang-bang”

control) may be applied to determine the time-optimal trajectory of the manipulator

along a desired path. By keeping the acceleration of the end-effector within Aavail,

it is guaranteed that a trajectory can be followed without wires going slack, wires

exceeding their maximum tension, or the end-effector leaving its desired trajectory.

In addition, if a payload is suspended from the end-effector it may be desirable to

apply input-shaping to the resulting trajectory in order to prevent oscillation of the

payload as described in [32].

5.7.4 Payload Specification

Given NWavail(P ) and NWreq, it is possible to use these sets to specify the maximum

payload of a cable robot. If the WFW of the manipulator has been calculated and

the manipulator is required to operate in a region T within the task space, where

T ⊆ WFW , then at any pose in T the maximum payload8 can be determined by

adding mass to the end-effector until NWreq is no longer completely contained within

NWavail. The highest load at which NWreq is still contained within NWavail is L(P ),

the maximum payload for that pose. The maximum payload for each pose can be

found and the payload for the manipulator can be specified as the smallest of these

payloads:

Payload = min
P∈T

L(P ). (204)

8Note that it is assumed that the mass of the payload is added at G.
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5.8 Summary and Conclusion

For manipulator tasks that require the end-effector to exert a specific set of wrenches,

the Wrench-Feasible Workspace represents the usable workspace of the robot. The

Required Net Wrench Set, NWreq, was defined to be the set of wrenches that the

manipulator must exert. Using the Available Net Wrench Set, NWavail, which was

presented in Chapter 3, the condition of wrench feasibility could be represented as

NWreq ⊆ NWavail. The geometric construction of NWreq and NWavail not only

allowed for wrench-feasibility to be visualized, but also allowed wrench-feasibility to

be determined by simple geometric calculations.

The geometric properties of NWavail were then used to form analytical expressions

for the WFW boundaries for point-mass, planar and spatial cable robots. The

investigation of the point-mass case was performed in [60] and is summarized here. For

the investigation performed here, NWreq is assumed to be a collection of polyhedra.

This allows a great deal of flexibility when specifying NWreq, as nearly any arbitrary

object can be closely approximated by a collection of polyhedra. However, selecting

a very complicated set of polyhedra greatly increases the number of boundaries that

must be formed.

The complete analytical expressions of the lower WFW boundaries were detailed

for planar cable robots. For the spatial cable robots the analytical expressions were

not derived due to the large number of terms, but the approach for generating these

terms was presented. In both the planar and spatial case the upper boundaries are

too complex to be very useful, and thus were not calculated. However, if the upper

tension limits in the cables are relatively high then the lower workspace boundaries

largely determine the overall workspace geometry. Example workspaces were then

plotted for a planar cable robot to demonstrate agreement between the analytically

determined boundaries and numerical results.

The concepts of robustness and workspace generation were then combined to
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introduce a new workspace: the Specified Robustness Workspace. This workspace

consists of the set of all poses of the manipulator that meet or exceed a specified

robustness value. It was shown that the method for generating the WFW could be

used to construct this workspace analytically.

It was then shown how to generate the Force-Only Wrench-Feasible Workspace, a

special case where only the forces exerted by the manipulator are considered. It

was also shown that the method of calculating the WFW could be extended to

include calculation of the static equilibrium workspace, controllable workspace and

dynamic workspace. In fact, this approach allows generalization of the definition of

the dynamic workspace. In addition, it was shown that the Available Net Wrench

Set can be used for applications including optimal control and payload specification.

Limitations

There are, however, some difficulties with this approach that need to be addressed.

In order to perform this analysis the pose of the end-effector must be known. If only

the cable lengths are known it is not trivial to find the resulting pose of the end-

effector, particularly for underconstrained cable robots. The analysis would also need

to be modified if the end-effector is not a single rigid body. It has also been assumed

that stretching or sagging of the cables is negligible. Excessive cable stretch or sag

would change the end-effector pose and the sag would also change the direction of

the force applied to the end-effector by the cable. Thus this method would need to

be modified to accomodate significant cable stretch or sag.

5.9 Future Work

There are several topics for future work that can be done in this area. Because of

the complexity of forming the upper WFW boundaries for planar and spatial cable

robots, it is not currently feasible to formulate all workspace boundaries analytically.

Thus it would be advantageous to develop a more effective method for formulating
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the upper workspace boundaries. For example, an efficient numerical method could

be developed for approximating the upper boundaries, which could be coupled with

the analytically determined lower boundaries to form a more complete representation

of the WFW boundaries.

In addition, it may be necessary to incorporate the effects of cable interference.

Interference due to cables contacting each other and cables contacting the end-effector

reduces the effective workspace. Thus if analytical expressions were formulated for

the condition of interference, these would constitute additional workspace boundaries.

However, in order to determine if cables contact the end-effector the complete

geometry of the end-effector must be known. Additionally, if the geometry of

the end-effector is complicated the resulting “interference boundaries” will also be

complicated.

Another potential area of future work is to determine workspace properties and

workspace geometery trends similar to what was done for point-mass manipulators in

[60]. This would allow design guidelines to be synthesized for obtaining a WFW of a

desired geometry. As was mentioned previously, the workspace boundary equations

are so complicated that it is not easy to obtain these workspace properties directly

from the equations. Instead, it is likely necessary to plot a large number of workspaces

for various sets of design parameters and glean the workspace geometry trends from

the results.

Also, the Available Net Wrench Set can be used as described in Section 5.7.3 to

calculate time-optimal sway-free paths and trajectories. Based on the results of such

an analysis it would be possible to generate design guidelines for selecting optimal

paths and trajectories for certain classes of cable robots.

Lastly, it may be of interest to incorporate the effects of cable sag and stretch.

Sagging changes the direction of the cable at the point of contact with the end-

effector and thus changes the unit vectors u and thus changes the Jacobian matrix

141



and the resulting NWavail. However, different loading conditions on the end-effector

will change the amount of sag in the cables, and so a polyhedral model of NWavail

may no longer be appropriate. Incorporating cable sag into this workspace generation

approach is expected to be very difficult and may only be suitable for inclusion in

numerical calculation of the WFW.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

In summary, this work aimed to expand the existing theoretical framework for cable

robots in two key areas: disturbance robustness and Wrench-Feasible Workspace

generation. Chapter 3 presented the basics of screw theory and Jacobian relationships

and introduced the Available Net Wrench Set, the set of all wrenches that can be

exerted by the manipulator on its surroundings.

Using this set, Chapter 4 developed the disturbance robustness measure, R. In

order to facilitate the analysis, the intermediate space was introduced. The analysis

of robustness to static disturbances used the Available Net Wrench Set to find the

set of all static disturbance wrenches that cause a cable to begin to go slack. Out

of this set, the smallest wrench was found, using acceleration energy to form the

wrench norm. The magnitude of this smallest static disturbance wrench is mgRs.

The analysis of robustness to impulsive disturbances found the initial acceleration

(after the impulse has ended) of the end-effector back towards the original pose. The

smallest acceleration was found to have a vertical acceleration of −gR2i and a total

acceleration of magnitude gRi. It was then proven that Rs = Ri and thus the

robustness measure R was chosen to be R = Rs = Ri.

Several measures of overall cable robot robustness over the workspace were

presented. The robustness measure was then extended to apply to cable robots

with multi-body end-effectors, thus allowing analysis of cable robots with suspended

payloads.
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The Available Net Wrench Set was also used in Chapter 5 to generate the Wrench-

Feasible Workspace for cable robots. For manipulator tasks that require the end-

effector to exert a specific set of wrenches, the Wrench-Feasible Workspace represents

the usable workspace of the robot. The Required Net Wrench Set, NWreq, was defined

to be the set of wrenches that the manipulator must exert. Using the Available Net

Wrench Set, NWavail, the condition of wrench feasibility could be represented as

NWreq ⊆ NWavail. The geometric construction of NWreq and NWavail not only

allowed for wrench-feasibility to be visualized, but also allowed wrench-feasibility to

be determined by simple geometric calculations.

The geometric properties of NWavail were then used to form analytical expressions

for the WFW boundaries for point-mass, planar and spatial cable robots. NWreq was

assumed to be a collection of polyhedra, which allows a great deal of flexibility when

specifying NWreq, as nearly any arbitrary object can be closely approximated by

a collection of polyhedra. The complete analytical expressions of the lower WFW

boundaries were detailed for planar cable robots. For the spatial cable robots the

analytical expressions were not derived due to the large number of terms, but the

approach for generating these terms was presented. Example workspaces were then

plotted for a planar cable robot to demonstrate agreement between the analytically

determined boundaries and numerical results.

The concepts of robustness and workspace generation were then combined to

introduce a new workspace: the Specified Robustness Workspace. This workspace

consists of the set of all poses of the manipulator that meet or exceed a specified

robustness value. It was shown that the method for generating the WFW could be

used to construct this workspace analytically. It was also shown how to generate the

Force-Only Wrench-Feasible Workspace, a special case where only the forces exerted

by the manipulator are considered. Lastly, it was shown that this method could

be extended to include calculation of the Static Equilibrium Workspace, controllable
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workspace and dynamic workspace.

6.2 Contributions of this Work

The major contributions of this work are:

1. A measure of the robustness of a pose of a general underconstrained

cable robot. This measure allows calculation of the robustness of the

end-effector to static and impulsive external disturbances. The measure

applies to point-mass, planar and spatial cable robots and was extended to

include cable robots with multi-body end-effectors. The measure is easy to

calculate, requiring only the Jacobian matrix and the inertial properties of

the end-effector. The measure describes both the magnitude of the smallest

static wrench that disturbs the manipulator and the magnitude of the initial

acceleration of the end-effector back to its original pose if disturbed by an

impulsive wrench.

2. A geometric test for wrench-feasibility of a pose. This geometrically

based calculation allows wrench-feasibility to be tested for entire sets of

wrenches. This geometric analysis also enables geometric construction of the

Wrench-Feasible Workspace.

3. A technique for generating the Wrench-Feasible Workspace. Based

on the geometric test for wrench-feasibility, this method allows analytical

formulation of the equations that define the boundaries of the Wrench-Feasible

Workspace. Generating the Wrench-Feasible Workspace analytically should be

much faster and more accurate than generating it numerically. Based on the

expressions for the WFW boundaries, it should also be possible to determine

workspace properties and workspace geometry trends similar to what was done

for point-mass manipulators in [60]. However, because of the complexity of
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forming the upper WFW boundaries for planar and spatial cable robots, it is

not currently feasible to formulate all workspace boundaries analytically.

It was also shown how this method can be used to form a number of

other workspaces, including the Force-Only Wrench-Feasible Workspace, Static

Equilibrium Workspace, Controllable Workspace and Dynamic Workspace.

4. A new workspace for underconstrained cable robots – the Specified

Robustness Workspace. This workspace consists of the set of all poses that

meet or exceed a specified robustness value. Not only is this workspace a new

concept, it can also be calculated analytically using the techniques developed

for the Wrench-Feasible Workspace.

In addition, much of this work was performed using the “intermediate space.”

This space provided a novel approach for examining twists and wrenches that solves

the problem of mixed-dimensionality while still maintaining physical meaning through

the concepts of kinetic energy and acceleration energy.

In summary, the proposed research discussed here will greatly extend the

theoretical framework for underconstrained cable robots. Key issues of disturbance

robustness, wrench-feasibility and workspace generation were examined systematical-

ly, resulting in insight that can be used to more effectively design cable robots.

6.3 Future Work

The work presented in this thesis opens up several areas of potential future work.

Section 4.8 details several areas where future work on disturbance robustness could

lead. One possibility is to investigate the effects of curvature of the constraint surfaces

on the response of the manipulator to external disturbances. Because curvature

of constraint surfaces is used in some work in grasp stability, it may be possible

to leverage the work that has already been done in this area. Because of the
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similarity between cable-robots and grasping (due to the uni-directional constraints),

the disturbance robustness measure could also possibly be extended to an equivalent

measure for underconstrained grasped objects. Investigation of disturbances causing

a manipulator to transition to a different static equilibrium pose could lead to a

measure of the “transition energy” of the pose. The investigation of the effects of

disturbances on the end-effector pose could also lead to a control strategy for actively

causing the manipulator to return to its original pose.

Section 5.9 lists some of the potential future work in Wrench-Feasible Workspace

generation. One of these areas is formulation of the upper workspace boundaries.

Because of the complexity of forming the upper WFW boundaries for planar and

spatial cable robots, it is not currently feasible to formulate all workspace boundaries

analytically. Thus it would be advantageous to develop a more effective method for

formulating the upper workspace boundaries. It would also be desirable to incorporate

the effects of cable interference, which reduces the effective workspace. Based on

the expressions for the WFW boundaries, it would also be possible to determine

workspace properties and workspace geometry trends similar to what was done for

point-mass manipulators in [60]. This would allow design guidelines to be synthesized

for obtaining a WFW of a desired geometry. Also, the Available Net Wrench Set can

be used as described in Section 5.7.3 to calculate time-optimal sway-free paths and

trajectories. Based on the results of such an analysis it would be possible to generate

design guidelines for selecting optimal paths and trajectories for certain classes of

cable robots.

Based on the knowledge gained from these two areas of research, general guidelines

can be developed for maximizing manipulator robustness and achieving desired

geometries of the WFW. This would allow more systematic development of optimized

cable robot architectures. To date, most planar and spatial architectures are chosen

in a somewhat ad-hoc manner. The tools developed here allow a more systematic
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optimization of motor placements and end-effector geometry.

Lastly, it may be of interest to incorporate the effects of cable sag and stretch.

Cable sag and stretch affects both the analysis of disturbance robustness and wrench-

feasibility. Incorporating cable sag into this workspace generation approach is

expected to be very difficult. However, the effect of cable sag could be reduced

for the generation of the WFW by requiring non-zero minimum tension values (i.e.

using ti,max ≥ ti ≥ ti,min ≥ 0 when forming NWavail in (13)). This adjustment is

suggested in [78], where maintaining a minimum tension in each cable reduces the

effect of cable sag.
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APPENDIX A

PROOF OF THEOREM IN SECTION 4.4.4

Theorem :

Given two uni-directional twists that positively span a constraint surface. Then the

magnitude of the acceleration of the end-effector due to gravity while moving along

one of the uni-directional twists will be less than or equal to the magnitude of the

acceleration of the end-effector due to gravity while moving along the constraint

surface.

Proof :

Given two n-dimensional uni-directional twists $tb, $
t
c that positively span a planar

constraint surface CS. That is, any twist $t along CS can be written as $t = d1$
t
b +

d2$
t
c, where d1, d2 ≥ 0. Let these twists be mapped to the generalized velocities v̂b

and v̂c in the intermediate space.

Let Z be the vertical axis in the intermediate space (i.e. parallel to f̂grav) and

ẑ be a unit vector in the positive Z direction (upwards). Then for any generalized

velocity v̂, if θ is the angle between v̂ and horizontal then

sin θ =
v̂ · ẑ
‖ v̂ ‖ . (205)

Note that in the situation considered here, 0 < sin θ ≤ 1 because the pose considered

is an equilibrium pose. This is because sin θ = 0 corresponds to a bi-directional

twist, which we are assuming are not present, and sin θ < 0 corresponds to a

constraint surface that has a negative slope, which would cause the end-effector to

move away from this pose under the influence of gravity, which cannot be the case

for a static equilibrium pose. Thus for all equilibrium poses 0 < sin θ ≤ 1 along any
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Figure 43: Decomposition of generalized velocities that positively span a constraint
surface.

unconstrained generalized velocity.

From equation (205) it is also clear that multiplying v̂ by a positive scalar will not

change the result for sin θ, thus without loss of generality we can scale v̂b and v̂c to

have the same vertical component, as shown in Figure 43. A vector N̂ normal to the

constraint surface can be constructed such that N̂ and the Z axis are coplanar. If a

generalized velocity v̂N tangent to the constraint surface is constructed in this plane

(the plane that contains N̂ and the Z axis), the angle θcs between the constraint

surface and horizontal is the same as the angle between v̂N and horizontal. Without

loss of generality, we can scale v̂N to have the same vertical component as v̂b and v̂c.

Because the Z axis points vertically, let us denote the vertical component of a vector

with a subscript Z resulting in vN,Z = vb,Z = vc,Z . Thus,

sin θb =
vN,Z

‖ v̂b ‖

sin θc =
vN,Z

‖ v̂c ‖

sin θN =
vN,Z

‖ v̂n ‖
.

Now construct a line that passes through the endpoints of v̂b and v̂c and let the

origin of N̂ be placed at the tip of v̂N as shown in Figure 43. Because the line passes
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through the endpoints of v̂b and v̂c, which are at the same height, the line must be

perpendicular to the Z axis. Also, because v̂b and v̂c are tangent to the constraint

surface, they are both perpendicular to N̂ . Thus this line through the endpoints of

v̂b and v̂c is perpendicular to the plane that contains the Z axis and v̂N . Because N̂ ,

v̂N and the Z axis are constrained to be coplanar, the line between v̂b and v̂c must

also be perpendicular to v̂N .

Because v̂N is perpendicular to this line, it represents the shortest distance between

the origin and the line. Thus

‖ v̂N ‖ ≤ ‖ v̂b ‖ (206)

and

‖ v̂N ‖ ≤ ‖ v̂c ‖ . (207)

Recall vN,Z = vb,Z = vc,Z . Let vN,Z = d. Then,

sin θb =
d

‖ v̂b ‖
(208)

sin θc =
d

‖ v̂c ‖
(209)

sin θN =
d

‖ v̂N ‖
. (210)

Thus applying (206) and (207) results in:

sin θN ≥ sin θb (211)

and

sin θN ≥ sin θc. (212)

Recall that the vertical acceleration for motion along a uni-directional generalized

velocity is avert = g sin2 θuni while the vertical acceleration for motion along a

constraint surface is avert = g sin2 θcs. Thus for any uni-directional twists that

positively span a constraint surface the acceleration along the uni-directional twists

will be less than the acceleration along the constraint surface because sin θcs ≥ sin θuni

for each uni-directional twist. Q.E.D. ¤

151



APPENDIX B

SIMULATION OF A CABLE ROBOT WITH

NON-IDEAL CABLES

B.1 Motivation

In Chapter 4 a method was shown for calculating the robustness measure, R. This

method assumes ideal cables that are massless and do not stretch or sag. The purpose

of this brief study is to: 1) verify that the smallest static disturbance wrench, $wmin, is

found correctly for the case of ideal cables, and 2) investigate the effects of non-ideal

cables that stretch and sag.

This study is performed in computer simulation using VisualNastran4D software,

a software package meant for modeling and simulation of the motion of bodies. This

study is chosen to be performed in simulation in order to avoid the time and cost of

setting up a physical experimental test bed.

It is also anticipated that the effects resulting from non-ideal cables may vary

depending on the robustness of the pose (found using the assumption of ideal cables).

Thus two poses of a manipulator are considered here, one with relatively high

robustness and one with relatively low robustness. Each of these poses are considered

with both ideal and non-ideal cables.

B.2 Test Set-Up

The manipulator considered for this study is a 3-cable, planar cable robot as shown

in Figures 44 and 45. The end-effector geometry is chosen (arbitrarily) to be a

0.4m× 0.16m rectangle of uniform thickness and density with a mass of 20 kg. The
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(a) Test manipulator with ideal cables. (b) Test manipulator with non-ideal
cables.

Figure 44: High robustness pose of the test manipulator.

resulting rotational inertia of the end-effector is 0.3093 kg·m2. Note that in Figures 44

and 45 the center of gravity is represented by a black dot. The pose of the manipulator

is (x, y, θ)T , where the +x direction is to the right and the +y direction is upward,

as shown in Figures 44 and 45. θ is positive in the counter-clockwise direction.

Motor 1 is located at (−0.3m, 0.19m)T , motor 2 is located at (0.4m, 0.25m)T and

motor 3 is located at (0.55m, 0.25m)T , where the motors (and cables) are numbered

from left to right. Cables 1 and 2 are chosen to be attached to the upper-left corner

of the end-effector and cable 3 is chosen to be attached to the upper-right corner

of the end-effector. Thus the vectors from G to the attachment points are c1 =

c2 = (−0.2m, 0.08m)T and c3 = (0.2m, 0.08m)T (for θ = 0). The two poses of the

manipulator that are considered here are (0.2m, 0.08m, 0 rad)T (shown in Figure 44)

and (0.2m,−0.6m, 0 rad)T (shown in Figure 45).

The modeling and simulation software includes ideal cable elements, which were

used to construct the manipulators with ideal cables that are massless and do not

stretch (in Figures 44(a) and 45(a)). Because the software does not include non-ideal

cable elements, the non-idealities of the cables must be introduced manually. This

was accomplished by dividing each cable into three parts of equal length (as shown

in Figures 44(b) and 45(b)). The distributed mass of the cables was approximated

by two discrete masses placed at the two divisions between the three cable segments.

The stretch in the cables was approximated by replacing each middle cable segment
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(a) Test manipulator with ideal cables. (b) Test manipulator with non-ideal
cables.

Figure 45: Low robustness pose of the test manipulator.

by a linear spring. While this approximation is somewhat crude, it is sufficient for

the purpose of this initial study.

The mass of cable i can be found using:

mi = πR2ρLi (213)

where R is the effective radius of the cable, ρ is the density of the cable and Li is

the unstretched length of the cable. For a manipulator such as this, 2.5mm diameter

steel cables would be more than adequate to support the end-effector. For steel

ρ ≈ 7870 kg
m3 , resulting in mi = 0.0386 kg

m
· Li. The cables used in this example are

relatively short, and the effect of cable sag becomes more pronounced for manipulators

with longer cables, thus in order to accentuate the effect of cable sag the mass of each

cable was increased to mi = 1.0 kg
m
· Li. Because the distributed mass of the cable

is being approximated by two discrete masses, each discrete mass was given half the

total mass of the associated cable.
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The stiffness of cable i, ki, can be calculated as shown in [53] as:

ki =
πR2E

Li

(214)

where R is the effective radius of the cable, E is the modulus of elasticity of the cable

and Li is the unstretched length of the cable. Assuming 2.5mm diameter steel cables

are used, E ≈ 200GPa, resulting in ki = 982 kN · 1
Li
. Again, the cables used in this

example are relatively short. The effect of cable stretch becomes more pronounced

for manipulators with longer cables, thus in order to accentuate the effect of cable

stretch the stiffness of each cable was reduced to ki = 100 kN · 1
Li
.

B.3 Calculations

For the two poses considered ((0.2m, 0.08m, 0 rad)T and (0.2m,−0.6m, 0 rad)T ),

we must now calculate the robustness measure and the corresponding smallest

disturbance wrench for each pose. All robustness calculations were performed in

MATLAB and the results are shown with the numerical precision of the MATLAB

results. The MATLAB code used for this example is included in Appendix C. The

inertia matrix is:

M =




20 kg 0 0

0 20 kg 0

0 0 0.3093 kg ·m2



.

The motor locations are:

m1 =



−0.3m

0.19m


 m2 =




0.4m

0.25m


 m3 =




0.55m

0.25m


 .

The vectors from G to the attachment points are:

c1 = c2 =



−0.2m

0.08m


 c3 =




0.2m

0.08m


 .
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Table 1: Cable parameters for the pose shown in Figure 44(b).
high robustness pose:

Cable Length (m) Total Cable Mass (kg) Cable Stiffness (kN/m)
Cable 1 0.302 0.302 332
Cable 2 0.410 0.410 244
Cable 3 0.175 0.175 572

low robustness pose:

Cable Length (m) Total Cable Mass (kg) Cable Stiffness (kN/m)
Cable 1 0.771 0.771 130
Cable 2 0.868 0.868 115
Cable 3 0.785 0.785 127

Pose 1:

For the first pose, (x, y, θ) = (0.2m, 0.08m, 0 rad)T , the lengths of the cables are

found by:

Li = ‖mi − ((x, y) + ci) ‖ . (215)

Applying the cable properties chosen previously, the mass and stiffness of each cable

can be found. The results are shown in Table 1. The unit vectors along the cables

are found by:

ui =
mi − ((x, y) + ci)

‖mi − ((x, y) + ci) ‖
(216)

resulting in:

u1 =



−0.9950m

0.0995m


 u2 =




0.9756m

0.2195m


 u3 =




0.8575m

0.5145m


 .

The Jacobian matrix is found using:

J =




u1 u2 u3

det[c1 u1] det[c2 u2] det[c3 u3]




T

. (217)

resulting in

J =




−0.9950 0.0995 0.0597m

0.9756 0.2195 −0.1220m

0.8575 0.5145 0.0343m



.

The three modified Jacobian matrices are then:

Jmod,1 =




0.9756 0.2195 −0.1220m

0.8575 0.5145 0.0343m



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Jmod,2 =



−0.9950 0.0995 0.0597m

0.8575 0.5145 0.0343m




and

Jmod,3 =



−0.9950 0.0995 0.0597m

0.9756 0.2195 −0.1220m


 .

Using these three matrices the three principal twists can be found. For each modified

Jacobian matrix, a nullspace vector is found such that it has a positive vertical

component. The resulting principal twists are:

$tprinc,1 =




−0.2009 m
s

0.3945 m
s

−0.8967 rad
s




$tprinc,2 =




−0.0452 m
s

0.1413 m
s

−0.9889 rad
s




$tprinc,3 =




0.0782 m
s

0.1955 m
s

0.9776 rad
s



.

The principal twists are then mapped to principal generalized velocities by v̂i =

A$tprinc,i, where:

A =

(
1

m
M

) 1
2

=




1 0 0

0 1 0

0 0 0.1244m




(218)

resulting in:

v̂princ,1 =




−0.2009 m
s

0.3945 m
s

−0.1115 m
s




v̂princ,2 =




−0.0452 m
s

0.1413 m
s

−0.1230 m
s




v̂princ,3 =




0.0782 m
s

0.1955 m
s

0.1216 m
s



.

The sine of the angle of each generalized velocity with respect to horizontal is found

by:

sin θi =
(v̂princ,i)y
‖ v̂princ,i ‖

(219)
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Table 2: Cable parameters for the pose shown in Figure 44(b).

high robustness pose:

Cable Length (m) Total Cable Mass (kg) Cable Stiffness (kN/m)
Cable 1 0.302 0.302 332
Cable 2 0.410 0.410 244
Cable 3 0.175 0.175 572

low robustness pose:

Cable Length (m) Total Cable Mass (kg) Cable Stiffness (kN/m)
Cable 1 0.771 0.771 130
Cable 2 0.868 0.868 115
Cable 3 0.785 0.785 127

resulting in:

sin θ1 = 0.8642 sin θ2 = 0.7332 sin θ3 = 0.8041.

The robustness measure is then:

R = min
i∈{1,2,3}

sin θi = 0.7332.

Because the smallest sin θi corresponds to i = 2, the smallest generalized force that

disturbs the end-effector,f̂min, is parallel to v̂princ,2 and has magnitude mgR. Thus:

f̂min = mgR v̂princ,2
‖ v̂princ,2 ‖

=




−33.7500N

105.4687N

−91.8164N



.

The smallest static disturbance wrench, $wmin, is then found by mapping f̂min back to

the task space via A−1:

$wmin = A−1f̂min =




−33.7500N

105.4687N

−11.4188 N
m



.

Pose 2:

For the second pose, (x, y, θ) = (0.2m,−0.6m, 0 rad)T , the lengths of the cables

are again found by (215). Applying the cable properties chosen previously, the mass

and stiffness of each cable can be found. The results are shown in Table 2. The unit

vectors along the cables are found by (216), resulting in:
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u1 =



−0.3892m

0.9211m


 u2 =




0.4610m

0.8874m


 u3 =




0.1912m

0.9815m


 .

The Jacobian matrix is found using (217), resulting in:

J =




−0.3892 0.9211 −0.1531m

0.4610 0.8874 −0.2144m

0.1912 0.9815 0.1810m



.

The three modified Jacobian matrices are then:

Jmod,1 =




0.4610 0.8874 −0.2144m

0.1912 0.9815 0.1810m




Jmod,2 =



−0.3892 0.9211 −0.1531m

0.1912 0.9815 0.1810m




and

Jmod,3 =



−0.3892 0.9211 −0.1531m

0.4610 0.8874 −0.2144m


 .

Using these three matrices the three principal twists can be found. For each modified

Jacobian matrix, a nullspace vector is found such that it has a positive vertical

component. The resulting principal twists are:

$tprinc,1 =




−0.7685 m
s

0.2577 m
s

−0.5857 rad
s




$tprinc,2 =




0.4928 m
s

0.0640 m
s

−0.8678 rad
s




$tprinc,3 =




0.0782 m
s

0.1955 m
s

0.9776 rad
s



.

The principal twists are then mapped to principal generalized velocities by v̂i =

A$tprinc,i, where A was found in (218), resulting in:

v̂princ,1 =




−0.7685 m
s

0.2577 m
s

−0.0728 m
s




v̂princ,2 =




0.4928 m
s

0.0640 m
s

−0.1079 m
s




v̂princ,3 =




0.0782 m
s

0.1955 m
s

0.1216 m
s



.
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The sine of the angle of each generalized velocity with respect to horizontal is found

by (219), resulting in:

sin θ1 = 0.3167 sin θ2 = 0.1259 sin θ3 = 0.8041.

The robustness measure is then:

R = min
i∈{1,2,3}

sin θi = 0.1259.

Because the smallest sin θi corresponds to i = 2, the smallest generalized force that

disturbs the end-effector,f̂min, is parallel to v̂princ,2 and has magnitude mgR. Thus:

f̂min = mgR v̂princ,2
‖ v̂princ,2 ‖

=




23.9355N

3.1093N

−5.2413N



.

The smallest static disturbance wrench, $wmin, is then found by mapping f̂min back to

the task space via A−1:

$wmin = A−1f̂min =




23.9355N

3.1093N

−0.6518 N
m



.

B.4 Simulation Results

In order to test that the smallest static wrench, $wmin, is found correctly for the case

of ideal cables the simulation must show that if α$wmin is applied to the end-effector,

it is not disturbed when 1 > α ≥ 0 but is disturbed when α > 1. Thus four different

test wrenches are applied to the end-effector: α = 0, α = 0.5, α = (1 − ε) and

α = (1 + ε), where ε is a small positive number. In this case the size of ε is limited

by the numerical precision of the VisualNastran4D software. For the first pose

(1− ε)$wmin =




−33.7N

105N

−11.4 N
m




and (1 + ε)$wmin =




−33.8N

106N

−11.5 N
m



.
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where each term in (1 − ε)$wmin is simply $wmin rounded down (in magnitude) to the

nearest value with 3 significant figures and each term in (1 + ε)$wmin is simply $wmin

rounded up (in magnitude) to the nearest value with 3 significant figures1. Similarly,

for the second pose

(1− ε)$wmin =




23.9N

3.10N

−0.651 N
m




and (1 + ε)$wmin =




24.0N

3.11N

−0.652 N
m



.

where again each term in (1 − ε)$wmin is simply $wmin rounded down (in magnitude)

to the nearest value with 3 significant figures and each term in (1 + ε)$wmin is simply

$wmin rounded up (in magnitude) to the nearest value with 3 significant figures.

In order to investigate the effects of cable stretch and sag, these same static

wrenches are applied to the manipulators with non-ideal cables.

Each of these wrenches was applied to the end-effector in simulation, which

produced a time-varying displacement of the end-effector. The simulation was

allowed to run until the steady-state pose of the end-effector was reached. The

resulting displacement of the end-effector, (∆x,∆y,∆θ), was then measured in

terms of the change of the end-effector pose from the desired pose of (x, y, θ) =

(0.2m, 0.08m, 0 rad)T for the first pose and (x, y, θ) = (0.2m,−0.6m, 0 rad)T for the

second pose. The results are shown in Table 3 for the first pose and Table 4 for the

second pose.

B.5 Discussion

Examination of the simulation results for the manipulator with the ideal cables shows

exact agreement between the simulation and the theoretical results for both poses. In

both cases there was no displacement of the end-effector when the disturbance wrench

1Note that here (1− ε) and (1 + ε) are not a specific number, but are used more in a notational
sense.
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Table 3: Simulation results for the pose shown in Figure 44.
high robustness pose:

Applied Wrench ∆x (m) ∆y (m) ∆θ (deg) ∆x (m) ∆y (m) ∆θ (deg)
0 0.0000 0.0000 0.0000 0.0010 -0.0038 0.6780

0.5�$w
min 0.0000 0.0000 0.0000 0.0010 -0.0027 0.4170

(1-ε)�$w
min 0.0000 0.0000 0.0000 0.0000 0.0006 -0.5810

(1+ε)�$w
min 0.0000 0.0002 -0.0993 0.0000 0.0008 -0.6580

low robustness pose:

Applied Wrench ∆x (m) ∆y (m) ∆θ (deg) ∆x (m) ∆y (m) ∆θ (deg)
0 0.0000 0.0000 0.0000 0.0020 -0.0010 -0.1810

0.5�$w
min 0.0000 0.0000 0.0000 0.0040 0.0000 -0.4050

(1-ε)�$w
min 0.0000 0.0000 0.0000 0.0130 0.0010 -1.3000

(1+ε)�$w
min 0.0000 0.0000 -0.0160 0.0130 0.0010 -1.3100

Ideal Cables Non-Ideal Cables

Ideal Cables Non-Ideal Cables

Table 4: Simulation results for the pose shown in Figure 45.

high robustness pose:

Applied Wrench ∆x (m) ∆y (m) ∆θ (deg) ∆x (m) ∆y (m) ∆θ (deg)
0 0.0000 0.0000 0.0000 0.0010 -0.0038 0.6780

0.5�$w
min 0.0000 0.0000 0.0000 0.0010 -0.0027 0.4170

(1-ε)�$w
min 0.0000 0.0000 0.0000 0.0000 0.0006 -0.5810

(1+ε)�$w
min 0.0000 0.0002 -0.0993 0.0000 0.0008 -0.6580

low robustness pose:

Applied Wrench ∆x (m) ∆y (m) ∆θ (deg) ∆x (m) ∆y (m) ∆θ (deg)
0 0.0000 0.0000 0.0000 0.0020 -0.0010 -0.1810

0.5�$w
min 0.0000 0.0000 0.0000 0.0040 0.0000 -0.4050

(1-ε)�$w
min 0.0000 0.0000 0.0000 0.0130 0.0010 -1.3000

(1+ε)�$w
min 0.0000 0.0000 -0.0160 0.0130 0.0010 -1.3100

Ideal Cables Non-Ideal Cables

Ideal Cables Non-Ideal Cables

was smaller than $wmin. In both cases, when the disturbance wrench was increased to

be slightly greater than $wmin the end-effector was displaced. Thus this simulation

indicates that when the cables can be modeled as ideal cables, the disturbance

robustness analysis presented in this thesis produces results that are consistent with

the behavior of the system.

Examination of the simulation results for the manipulator with non-ideal cables

shows that there is displacement of the end-effector for each of the applied wrenches.

The end-effector is displaced for an applied wrench of 0 due to the weight of the end-

effector. We can also see that in some cases an applied load brings the end-effector

closer to its desired pose (for the first pose). The displacement of the end-effector

appears to be greater for the second pose, potentially indicating that a pose with low

robustness may experience more displacement of the end-effector than a manipulator

with high robustness. However, in order for an exact comparison of the displacements

to be performed a metric of finite motions in SE(3) must be chosen.

For the case of non-ideal cables, even a small disturbance wrench can change the

pose of the end-effector. Thus the robustness measure developed in this thesis will not
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completely describe the robustness of a pose to external disturbances for manipulators

with non-ideal cables. Further research will need to be done in order to determine

if a relationship can be established between the value of the robustness measure and

the amount of displacement that occurs when non-ideal cables are used.
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APPENDIX C

MATLAB CODE

C.1 Planar Cable Robot WFW Generation Code

This is the MATLAB code for plotting the Wrench-Feasible Workspace of a 3-cable

planar manipulator as described in Section 5.5.2.3. The motor mount locations, cable

attachment points (on the end-effector, with respect to the center of gravity), end-

effector mass and tension limits can be specified. An arbitrary number of vertices of

NWreq can also be specified.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Paul Bosscher

% WFW example - planar, 3 cable

% NWreq = a polygon

% produces a discretized plot of the WFW

% 6/14/04

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M1 M2 M3

% \ / /

% \ / /

% \ /--------\

% | ee |

% \--------/

%

% y |

% L__ x

clear all

clf

warning off
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% Motor locations

M1 = [-1.5,2];

M2 = [0,2];

M3 = [1.5,2];

% vectors from center of gravity (aka ee)

% to attachment points when theta = 0

c1 = [-0.3,0.0];

c2 = [0,0.05];

c3 = [0.3,0.0];

% end-effector mass*gravity

mg_ee = 20;

% mesh size

step = 0.075;

% define the required wrench set by the vertices

% (Fx, Fy, M)

F(1,:) = [0,0,0];

F(2,:) = [5,0,0];

%F(3,:) = [0,0.5,-0.5];

[vertices,void] = size(F);

% define the tension limits

tmin = 0;

tmax = 10000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% search through task space

% - start at bottom left of task space and

% search -theta to +theta, left to right, bottom to top

% x limits

LeftEdge = -2;

RightEdge = 2;

sidex = step/2;

% y limits

BottomEdge = -1;

TopEdge = 2;
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sidey = step/2;

% theta limits

ThetaMin = -1.5;

ThetaMax = 1.55;

sidez = step/8;

thetastep = step*2;

% initialize the ee position to the bottom left

ee = [LeftEdge, BottomEdge, ThetaMin];

hold on

for k = 1:((TopEdge-BottomEdge)/step+1)

for j = 1:((RightEdge-LeftEdge)/step+1)

for i = 1:((ThetaMax-ThetaMin)/thetastep+1)

% Rotation matrix R:

R = [cos(ee(3)) -sin(ee(3));

sin(ee(3)) cos(ee(3))];

% Form the Jacobian (F = JT*t)

Rc1 = R*(c1’);

Rc2 = R*(c2’);

Rc3 = R*(c3’);

v1 = M1’ - ([ee(1),ee(2)]’ + Rc1);

v2 = M2’ - ([ee(1),ee(2)]’ + Rc2);

v3 = M3’ - ([ee(1),ee(2)]’ + Rc3);

v1 = v1/norm(v1);

v2 = v2/norm(v2);

v3 = v3/norm(v3);

w1 = Rc1(1)*v1(2)-Rc1(2)*v1(1);

w2 = Rc2(1)*v2(2)-Rc2(2)*v2(1);

w3 = Rc3(1)*v3(2)-Rc3(2)*v3(1);

JT = [v1 v2 v3;

w1 w2 w3];

% Find the cable tensions and plot acceptable ee locations

t_error = 0;

for h = 1:vertices

t = inv(JT)*(F(h,:)’ + [0;mg_ee;0]);

if t(1) < tmin

t_error = 1;

elseif t(1) > tmax;

t_error = 1;

elseif t(2) < tmin
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t_error = 1;

elseif t(2) > tmax;

t_error = 1;

elseif t(3) < tmin

t_error = 1;

elseif t(3) > tmax;

t_error = 1;

end

end

if t_error == 0;

plotbox(ee(1),ee(2),ee(3),sidex,sidey,sidez)

end

ee(3) = ee(3)+thetastep;

end

ee(1) = ee(1)+step;

ee(3) = ThetaMin;

end

ee(2) = ee(2)+step;

ee(1) = LeftEdge;

end

axis([LeftEdge RightEdge BottomEdge TopEdge ThetaMin ThetaMax])

xlabel(’X (m)’)

ylabel(’Y (m)’)

zlabel(’Theta (rad)’)

view(-20,10)

set(gca,’PlotBoxAspectRatio’,[1 1 2])

C.2 Planar Cable RobotWFWCross-Section Gen-

eration Code

This is the MATLAB code for generating a cross-section of the WFW of a 3-cable

planar cable robot. The motor mount locations, cable attachment points (on the end-

effector, with respect to the center of gravity), end-effector mass and tension limits

can be specified. An arbitrary number of vertices of NWreq can also be specified. The

analytically determined boundaries are then plotted on the same figure in order to

allow comparison between the analytical and numerical results.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Paul Bosscher

% WFW example - planar, 3 cable

% NWreq = a polygon

% Produces a planar section of the

% discretized plot of the WFW and also

% plots the analytically determined

% boundary curves.

% 6/21/04

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M1 M2 M3

% \ / /

% \ / /

% \ /--------\

% | ee |

% \--------/

%

% y |

% L__ x

clear all

clf

warning off

% Motor locations

M1 = [-1.5,2];

M2 = [0,2];

M3 = [1.5,2];

% vectors from center of gravity (aka ee)

% to attachment points when theta = 0

c1 = [-0.3,0.0];

c2 = [0,0.05];

c3 = [0.3,0.0];

% end-effector mass*gravity

mg_ee = 20;

% mesh size

168



step = 0.05;

% define the required wrench set by the vertices

% (Fx, Fy, M)

F(1,:) = [0,0,0];

F(2,:) = [5,0,0];

%F(3,:) = [0,0.5,-0.5];

[vertices,void] = size(F);

% define the tension limits

tmin = 0;

tmax = 100;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% search through task space

% - start at bottom left of task space and

% search left to right, bottom to top

% x limits

LeftEdge = -1;

RightEdge = 2.0;

sidex = step/2;

% y limits

BottomEdge = -1;

TopEdge = 2.6;

sidey = step/2;

% initialize the ee position to the bottom left

ee = [LeftEdge, BottomEdge, (pi/8)];

hold on

% Rotation matrix R:

R = [cos(ee(3)) -sin(ee(3));

sin(ee(3)) cos(ee(3))];

for k = 1:((TopEdge-BottomEdge)/step+1)

for j = 1:((RightEdge-LeftEdge)/step+1)

% Form the Jacobian (F = JT*t)

Rc1 = R*(c1’);

Rc2 = R*(c2’);
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Rc3 = R*(c3’);

v1 = M1’ - ([ee(1),ee(2)]’ + Rc1);

v2 = M2’ - ([ee(1),ee(2)]’ + Rc2);

v3 = M3’ - ([ee(1),ee(2)]’ + Rc3);

v1 = v1/norm(v1);

v2 = v2/norm(v2);

v3 = v3/norm(v3);

w1 = Rc1(1)*v1(2)-Rc1(2)*v1(1);

w2 = Rc2(1)*v2(2)-Rc2(2)*v2(1);

w3 = Rc3(1)*v3(2)-Rc3(2)*v3(1);

JT = [v1 v2 v3;

w1 w2 w3];

% Find the cable tensions and plot acceptable ee locations

t_error = 0;

for h = 1:vertices

t = inv(JT)*(F(h,:)’ + [0;mg_ee;0]);

if t(1) < tmin

t_error = 1;

elseif t(2) < tmin

t_error = 1;

elseif t(3) < tmin

t_error = 1;

end

end

if t_error == 0;

plotsquare(ee(1),ee(2),sidex,sidey)

end

ee(1) = ee(1)+step;

end

ee(2) = ee(2)+step;

ee(1) = LeftEdge;

end

axis([LeftEdge RightEdge BottomEdge TopEdge])

xlabel(’X’)

ylabel(’Y’)

% plotting analytically determined boundaries

x = LeftEdge:step:RightEdge;

[void,length_x] = size(x);

y = BottomEdge:step:TopEdge;

[void,length_y] = size(y);
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% boundaries from vertex 1

for i = 1:length_x

y1(i) = -(3.22*x(i)^2 + 14.851*x(i) -1.214)/(-5.161*x(i)+0.574);

y2(i) = -(1.372*x(i)^2 + 9.494*x(i)-1.082)/(-5.926*x(i)+0.574);

y3(i) = -(4.592*x(i)^2 + 22.173*x(i)-8.423)/(-11.087*x(i));

end

plot(x,y1,’r’)

plot(x,y2,’b’)

plot(x,y3,’g’)

% boundaries from vertex 2

% boundary 1-2

a = 3.22;

b = 16.461;

c = -5.966;

d = -5.373;

e = 1.29;

f = 5.479;

for i = 1:length_x

y4a(i) = (-(d+c*x(i)) + sqrt((d+c*x(i))^2

- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

y4b(i) = (-(d+c*x(i)) - sqrt((d+c*x(i))^2

- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

end

plot(x,y4a,’c’)

plot(x,y4b,’c’)

% boundary 2-3

a = 1.372;

b = 10.18;

c = -6.269;

d = -4.416;

e = 1.481;

f = 3.012;

for i = 1:length_x

y5a(i) = (-(d+c*x(i)) + sqrt((d+c*x(i))^2
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- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

y5b(i) = (-(d+c*x(i)) - sqrt((d+c*x(i))^2

- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

end

plot(x,y5a,’m’)

plot(x,y5b,’m’)

% boundary 1-3

a = 4.592;

b = 24.469;

c = -12.235;

d = -11.087;

e = 2.772;

f = 2.466;

for i = 1:length_x

y6a(i) = (-(d+c*x(i)) + sqrt((d+c*x(i))^2

- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

y6b(i) = (-(d+c*x(i)) - sqrt((d+c*x(i))^2

- 4*e*(a*x(i)^2+b*x(i)+f)))/(2*e);

end

plot(x,y6a,’k’)

plot(x,y6b,’k’)

C.3 Function Code

This is the MATLAB code for the function ‘plotbox’. Given a point in x-y-z, the

function will plot a box centered on the point and with the lengths of the sides

specified by ‘sidex,’ ‘sidey’ and ‘sidez.’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plotbox function

% - for a point (x,y,z) and a box side

function void = plotbox(x,y,z,sidex,sidey,sidez)

hold on

x1 = x-sidex;

x2 = x+sidex;

y1 = y-sidey;
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y2 = y+sidey;

z1 = z-sidez;

z2 = z+sidez;

X = [x1, x1, x2, x2];

Y = [y1, y2, y2, y1];

Z = [z1, z1, z1, z1];

patch(X,Y,Z,’c’)

Z = [z2, z2, z2, z2];

patch(X,Y,Z,’c’)

X = [x1, x1, x1, x1];

Y = [y1, y2, y2, y1];

Z = [z1, z1, z2, z2];

patch(X,Y,Z,’c’)

X = [x2, x2, x2, x2];

patch(X,Y,Z,’c’)

X = [x1, x2, x2, x1];

Y = [y1, y1, y1, y1];

Z = [z1, z1, z2, z2];

patch(X,Y,Z,’c’)

Y = [y2, y2, y2, y2];

patch(X,Y,Z,’c’)

The following is the MATLAB code for the function ‘plotsquare’. Given a point

in x-y, the function will plot a rectangle centered on the point and with the lengths

of the sides specified by ‘sidex’ and ‘sidey.’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plotsquare function

% - for a point (x,y) and a square side

function void = plotsquare(x,y,sidex,sidey)

hold on

x1 = x-sidex;

x2 = x+sidex;

y1 = y-sidey;

y2 = y+sidey;
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X = [x1, x1, x2, x2];

Y = [y1, y2, y2, y1];

patch(X,Y,’c’)

C.4 Code for Example Problem in Appendix B

The following is the MATLAB code for calculating the robustness measure and

smallest static disturbance wrench for the example problem in Appendix B.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Robustness Calculation of Example Manipulator

% 11-12-04

% Paul Bosscher

% end-effector inertia matrix in moving coordinates

m = 20;

M = [m 0 0;

0 m 0;

0 0 1/12*m*(0.4^2+0.16^2)];

% motor locations in global coordinates

M1 = [-0.3; 0.19];

M2 = [0.4; 0.25];

M3 = [0.55; 0.25];

% cable attachment points in moving coordinates

c1 = [-0.2; 0.08];

c2 = [-0.2; 0.08];

c3 = [0.2; 0.08];

% end-effector location in global coordinates (theta = 0)

% pose 1

ee = [0.2; 0.08];

% pose 2

%ee = [0.2; -0.6];

% cable unit vectors

u1 = (M1-(c1+ee))/norm(M1-(c1+ee));

u2 = (M2-(c2+ee))/norm(M2-(c2+ee));
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u3 = (M3-(c3+ee))/norm(M3-(c3+ee));

% Jacobian matrix

J = [u1 u2 u3;

det([c1 u1]) det([c2 u2]) det([c3 u3])].’;

% modified Jacobian matrices

Jmod1 = [J(2,:); J(3,:)];

Jmod2 = [J(1,:); J(3,:)];

Jmod3 = [J(1,:); J(2,:)];

% principal twists

twist_princ_1 = null(Jmod1);

twist_princ_1 = twist_princ_1*sign(twist_princ_1(2,1));

twist_princ_2 = null(Jmod2);

twist_princ_2 = twist_princ_2*sign(twist_princ_2(2,1));

twist_princ_3 = null(Jmod3);

twist_princ_3 = twist_princ_3*sign(twist_princ_3(2,1));

% intermediate space mapping

A = (1/m*M)^0.5;

% calculation of R

vel_princ_1 = A*twist_princ_1;

vel_princ_2 = A*twist_princ_2;

vel_princ_3 = A*twist_princ_3;

R1 = vel_princ_1(2,1)/norm(vel_princ_1)

R2 = vel_princ_2(2,1)/norm(vel_princ_2)

R3 = vel_princ_3(2,1)/norm(vel_princ_3)

[R,i] = min([R1 R2 R3]);

R

% calculation of smallest critical wrench

velocities = [vel_princ_1, vel_princ_2, vel_princ_3];

force_min = R*m*9.81*velocities(:,i)/norm(velocities(:,i));

wrench_min = A*force_min
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