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Abstract

This thesis focuses on improving the productivity of autonomous and telemanipula-
tion systems consisting of a manipulator arm mounted to a free flying underwater
vehicle.

Part I minimizes system sensitivity to misalignment by developing a gripper and
a suite of handles that passively self align when grasped. After presenting a gripper
guaranteed to passively align cylinders we present several other self aligning handles.
The mix of handle alignment and load resisting properties enables handles to be
matched to the needs of each task. Part I concludes with a discussion of successful
field use of the system on the Jason Remotely Operated Undersea Vehicle operated
by the Woods Hole Oceanographic Institution.

To enable the exploitation of contact with the environment to help stabilze the
vehicle, Part II develops a technique which identifies the contact state of a planar
vehicle interacting with a fixed environment. Knowing the vehicle geometry and
velocity we identify kinematically feasible contact points, from which we construct
the set of feasible contact models. The measured vehicle data violates each model’s
constraints; we use the asociated violation power and work to select the best overall
model. Part II concludes with experimental confirmation of the contact identification
technique’s efficacy.
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4-11 Upper plot: Distance between corner ¢l and the znv points for edge 3,

arc 4 and edge 5. Lower plot: Distance between corner ¢2 and the znv

points for edge 3, arc 4 and edge 5.
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