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Abstract

The problem of determining the forces among contacting rigid bodies is fundamental to many areas of robotics,
including manipulation planning, control, and dynamic simulation. For example, consider the question of how to
unstack an assembly, or how to find stable regions of a rubble pile. In considering problems of this type over discrete
or continuous time, we often encounter a sequence of problems with similar substructure. The primary contribution
of our work is the observation that in many cases, common physical structure can be exploited to solve a sequence of
related problems more efficiently than if each problem were considered in isolation.

We examine three general problems concerning rigid-body assemblies: dynamic simulation, assembly planning,
and assembly stability given limited knowledge of the structure’s geometry.

To approach the dynamic simulation and assembly planning applications, we have optimized a known method for
solving the system dynamics. The accelerations of and forces among contacting rigid bodies may be computed by
formulating the dynamics equations and contact constraints as a complementarity problem [34]. Dantzig’s algorithm,
when applicable, takes n or fewer major cycles to find a solution to the linear complementarity problem corresponding
to an assembly with n contacts. We show that Dantzig’s algorithm will find a solution in n − k or fewer major cycles
if the algorithm is initialized with a solution to the dynamics problem for a subassembly with k internal contacts.

Finally, we show that if we have limited knowledge of a structure’s geometry, we can still learn about stable regions
of its surface by physically pressing on it. We present an approach for finding stable regions of planar assemblies:
sample presses on the surface to identify a stable cone in wrench space, partition the space of applicable wrenches
into stable and unstable regions, and map these back to the surface of the structure.
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A B C

(a) Three examples of stable piles (b) Rubble pile at New Jersey Task Force One field exercise.

Figure 1: Simple and complex multibody systems.

1 Introduction

The problem of determining the forces among contacting rigid bodies is fundamental to many areas of robotics,
including manipulation planning, control, and dynamic simulation. For example, consider the problem of unstacking
any of the structures in figure 1(a), or finding stable regions of the rubble pile in figure 1(b). We might also ask how
an assembly moves under certain external forces, for applications in mechanical engineering or computer graphics.
In considering problems of this type over discrete or continuous time, we often encounter a sequence of problems
with similar substructure. The primary contribution of this thesis is the observation that in many cases, common
physical structure can be exploited to solve a sequence of related problems more efficiently than if each problem were
considered in isolation.

We examine three general problems concerning rigid-body assemblies: dynamic simulation, assembly planning,
and assembly stability given limited knowledge of the structure’s geometry. Our approach to both dynamic simulation
and assembly planning is based on a theoretical result regarding computation reuse in a known method for solving the
system dynamics.

• Dynamic simulation. During simulation, the positions of several bodies might remain fixed throughout a
sequence of frames; figure 2 shows an example. We present an algorithm that computes the dynamics to identify
the set of motionless bodies, re-computes the dynamics of that substructure, and uses the result as a starting point
to compute the dynamics of the complete structure in successive time steps.

• Assembly planning. In many manipulation planning problems, some parameters or conditions are held constant
while other conditions are not. For example, consider the problem of finding a sequence in which to disassemble
the simple five-block structure shown in the upper left corner of figure 3 so that it does not collapse. At one point
in the planning algorithm it may be necessary to analyze the stability of the structure {1, 3, 5}; at another point,
it may be necessary to analyze the stability of the structure {1, 3, 4, 5}. We show that it is possible to reuse the
results of the stability computation for the smaller structure to compute the stability of the larger structure more
quickly.

• Stability of assemblies. In some real-world problems, we do not have complete information about the geometry
of an assembly. However, we can still find stable regions of its surface if we know that the geometry of the
structure does not change over time. We show that by applying known forces to the surface of an assembly, we
can partition the space of possible wrenches into stable and unstable regions, and map this information back to
the surface to define the assembly’s stability profile. In addition, we prove the existence of assemblies for which
no set of applied wrenches will reveal information about stability along other areas of the surface.

1



Frame 1 Frame 40 Frame 60 Frame 90

Figure 2: A column falling apart. Dark gray blocks are motionless. The motionless set changes at frame 60.

Figure 3: A simple structure and its disassembly graph.

The results we present in this thesis show that common physical substructure can be exploited to optimize compu-
tations across a series of related problems. We believe that this approach to rigid-body dynamics is broadly applicable
to multibody systems.

In general, the level of complexity that arises when a complete assembly is considered can be prohibitive. For
example, most robust methods for determining the stability of rigid-body assemblies have an exponential running time.
The manipulation of multibody systems is something relatively few researchers have even considered. Of those who
have [1, 10, 11], all have focused on developing a dynamics formulation and establishing the existence of a solution
method; to our knowledge, they have not considered how common physical structure can be used to make solving
these problems more efficient. It is our hope that the ideas presented in this thesis may provide tools for thinking about
how to handle multibody problems more simply and with reduced levels of complexity. We hope this work takes steps
toward making multibody grasping and manipulation a more manageable and accessible area of research.

1.1 Approach

Our approach to computation reuse is based on the observation that fundamental components of the system statics
and dynamics have a certain structure. In solving system dynamics, we use this structure explicitly to optimize our
solution methods; in the stability of assemblies problem, the structure is implicit, but our knowledge of it allows us to
answer questions about stability that we would not have been able to address otherwise.

The typical model of contacting rigid bodies consists of the Newton-Euler dynamics equations, unilateral-force
constraints, non-penetration constraints, and frictional constraints. With the correct choice of coordinates, the equa-
tions and constraints form a complementarity problem, which will be discussed in greater detail in section 3.3. One
method for determining stability is to use the system dynamics to show that there exists a solution such that a structure
is not in motion. In this thesis, we consider only linear complementarity problems (LCPs), such as those that arise
in planar systems, in spatial systems without friction, and in spatial systems with linear approximations of Coulomb
friction, such as those considered in [64, 67, 65].

2



Figure 4: Structures with identical surfaces can have very different stability profiles.

In a linear complementarity problem (A,b), we seek to find vectors f , a, that satisfy the system

a = Af + b, (1)

a, f ≥ 0, (2)

aT f = 0, (3)

where A is a constant n×n matrix, and b is constant vector of length n. We call a solution to equation 1 that satisfies
constraints 2 and 3 a complementary feasible solution.

The structure of the matrix A and the physical interpretation of the vectors depend on the particular dynamics
formulation. For example, in [6], a is a vector of accelerations at the contact points, f is a vector of forces applied at
the contacts, and

A = JM−1JT and b = JM−1Fext, (4)

where M is the mass matrix, J is the Jacobian relating motion of the bodies in generalized coordinates to motion of
the contact points, and Fext is the vector of external and velocity-dependent forces. In [64], a is a vector of velocities,
and f contains impulses. In most formulations, A can be partitioned in such a way that each block corresponds to a
particular contact present in the physical system.

There are a variety of solution methods for LCPs, some of which will be discussed in more detail in section 3.
Of these methods, we apply the principle of computation reuse to Dantzig’s principle pivoting method, which forms
the basis for Baraff’s approach to solving the system dynamics in [6]. In its unmodified form, Dantzig’s algorithm
performs a series of n or fewer major cycles to successively satisfy each constraint a i ≥ 0, fi ≥ 0 of equation 2.
We show that the solution to the dynamics equations for a structure can be found in n − k or fewer major cycles of
Dantzig’s algorithm if the solution for the dynamics equations are known for any substructure with k internal contacts.
The size of k depends on the problem we consider: in the assembly planning application, k is typically equal to n− 2,
so the algorithm runs in 2 or fewer major cycles, whereas in the dynamic simulation application, k may range from
n − 1 to zero, depending on the structure we simulate. Although this result seems physically intuitive, it is not clear
how computation can be similarly reused in other complementarity algorithms such as Lemke [32] or PATH [19]. We
apply this computation reuse method to both the stability problem in section 4.3 and the dynamic simulation problem
in section 4.4.

To calculate stability as described above, we must make the limiting assumption that we have perfect knowledge of
the geometry of the system. This has a significant effect on our ability to analyze how to manipulate and interact with
the physical world. In section 5, we consider how to approach computation reuse in the face of geometric unknowns.

Consider an assembly such as one of those shown in figure 4, and assume we know nothing about its geometry
below the surface. How might we learn about the stability of the structure? One approach is to physically press on it.
If it is stable under several presses, can we predict other areas of the surface where we can apply stable presses?

Our goal in section 5 is to take steps toward characterizing what we can learn about the stability of a structure by
pressing on it. By a theorem given by Romney in [60], any linear combination of stable wrenches is stable. If we can
find stable wrenches W1, W2, and W3 by experimentation, we can determine that a wrench W 4 is stable if the linear

3



program

Wx = W4,x ≥ 0 (5)

has a solution. Moreover, we can use the polyhedral convex cone defined by the stable wrenches to partition regions
of wrench space into stable and unstable regions, which we can then map back to the surface of the assembly, to define
its stabilit profile.

For a structure with a polygonal surface and two stable presses on it, we describe the magnitude of a press between
them that we can guarantee to be stable. We give experimental evidence both that structures exist for which our
magnitude function is precisely true, and for which it is conservative. For structures with edges that can be modeled
with smooth parametric equations, we give the general form for the space of wrenches that can be applied to the
surface, and discuss how to select presses that contain this space in a stability cone. We also present a theoretical
result showing the existence of surfaces for which no information can be obtained about the stability of the surface by
applying frictionless presses.

1.2 Thesis overview

In this section, we have presented the objectives of the thesis and our approach to accomplishing them. The primary
focus of this research is to illustrate that, for many types of robotics problems, knowledge of forces among contacting
rigid bodies can be used to quickly solve related problems with common substructure. In section 2, we describe
work in the related areas of grasping, rigid body dynamics, simulation, and assembly planning, and highlight any
methods for reusing computation the authors discuss. In section 3, we describe several formulations of rigid-body
system dynamics, introduce some terminology regarding LCPs, and discuss two important methods for solving them.
In section 4, we present our modification to Dantzig’s algorithm, and describe how we have applied it to the problems
of determining a stable disassembly path for a given structure (such as the ones shown in figures 5, 6(a) and 6(b))
and optimizing dynamic simulations, specifically those where the integration time step is small. In section 5, we give
theoretical and experimental results for the stability problem with limited knowledge of geometry (figure 24, 4). At
the end of sections 4 and 5, we discuss open problems and areas where these ideas may be applied further.

2 Related work

Sequences of systems involving common physical structures can be found in a wide range of computational problems.
This section presents related work in the areas of stability, assembly planning, and dynamic simulation. Within stability
we consider approaches to stabilizing single parts as well as assemblies, from the areas of grasping, fixturing, and
manipulation. In the area of dynamic simulation, we discuss a number of ways researchers have formulated the
system dynamics, along with various approaches to solving the different formulations. Within assembly planning we
look at methods for generating assembly sequences for a structures, and ways of optimizing these methods.

In many of the papers we consider in this section, the authors are aware that common substructure is present in
the problems they are solving, and may discuss ways of exploiting this to improve the efficiency of their methods.
Yet with few exceptions (notably [73, 29]), computation reuse is considered only as an implementation detail, and
mentioned more as an afterthought than as an observation that carries a deep fundamental significance. Throughout
the following discussion we will highlight where researchers have noted the possibility of computation reuse, and in
some cases, where they have not, but where methods are known for employing it.

2.1 Stability

Stability is a fundamental and well-studied problem in robotics and mechanical design, with applications in grasping
and manipulation, assembly planning and fixturing. A number of researchers have given characterizations of stability;
in general, we define a structure as stable if it does not collapse under gravity, or some set of external forces. The
following discussion focuses first on how researchers have addressed stabilizing a single workpiece, and then considers
stability of assemblies.
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Figure 5: Stable pile of blocks with non-obvious unstacking order.

The robotics community generally recognizes the terms form closure and force closure to describe the immobility
of an object held in a multi-fingered grasp. Rimon and Burdick discuss the relationship between these concepts
and give precise definitions for them in [58]. Practically speaking, an object that is immobilized completely by the
geometry of the grasp on it is held in form closure, whereas a force closure grasp stabilizes the object against any set
of external forces. For a frictionless grasp, the concepts are equivalent; for friction, force closure grasps are a superset
of form closure grasps – the friction in the system may provide force closure where form closure is not present. Early
work by Mishra et al. gave sufficient conditions and algorithms for placing frictionless fingers to ensure a stable
grasp [43, 44] with respect to a force or set of forces. Rimon and Burdick considered immobility under the less
restrictive notion of second-order geometry, i.e., where the surface normals indicate the object is not immobilized, but
the curvature of the surface prevents any kind of motion [57]. Nguyen [50] developed means for constructing grasps
by identifying regions on the perimeter of a part where, by placing fingers in those regions, the part would be held in
form or force closure. Erdmann’s [21] work on representing frictional contacts in configuration space is also seminal.
Recent work by Cheong et al. considers the problem of grasping a collection of polygons connected by hinges [14].

One approach to determining stability is to solve the system dynamics: if a structure is in motion, it is unstable.
However, as will be discussed in the following section, if multiple solutions exist to the dynamics equations, it is
unclear whether to designate the structure as stable or unstable. Several researchers have proposed different char-
acterizations for stability to address this problem, known as indeterminacy. Palmer [52] analyzed the computational
complexity of calculating stability for planar rigid polygons. He defined two simple classifications: potential stability,
in which a solution for the contact forces in an assembly satisfies the equilibrium equations and friction laws, and
guaranteed stability, in which such a solution exists when friction is neglected. Both of these problems are in P, and
can be easily tested by solving a linear program. His third classification, infinitesimal stability, in which there is no
infinitesimal motion for which the configuration is unstable, he showed to be NP-hard.

More recently, the problem of finding sufficient conditions for stability with friction has been explored by Pang
and Trinkle [54, 68], who revise Palmer’s notions of potential and guaranteed stability, calling them overly restrictive.
In their place, the authors define weak and strong stability. A system of rigid bodies is weakly stable if there exist
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feasible contact forces such that there exists a solution to the equilibrium equations consistent with immobility. A
system is strongly stable if there do not exist feasible contact forces consistent with motion. In this system, weak
stability corresponds to Palmer’s potential stability, while the set of strongly stable loads strictly contains the Palmer’s
set of guaranteed stable loads. Balkcom and Trinkle [4] provide a complete, albeit exponential, solution for computing
a set of external wrenches with regard to which a single planar block is strongly stable.

Given the complexity of computing strong stability, it is common in assembly planning to focus exclusively on
finding weak stability for an assembly. We adopt this convention in the following discussion.

Blum et al. developed and implemented a stability test based on the well-known static equilibrium equations
in [12]. As discussed in previous sections, this approach uses the geometry of an assembly to determine whether
contact forces between objects can balance the known external gravitational force. If a solution exists, the structure is
said to be stable. This problem can be formulated as a linear program (LP), and solved by testing the feasibility of the
LP, which has the same asymptotic complexity as finding a solution to the linear program [17]. There are a variety of
solution methods for linear programs, including the simplex method, which in the worst case can run in exponential
time, but tends to be quite efficient in practice. Interior-point methods such as the one discovered by Karmarkar [30]
can be proven to run in polynomial time, but seldom improve on the performance of simplex in practice. A variety
of methods are known for reusing computation in simplex implementations. Starting simplex with an optimal basis
from a similar problem may reduce the number of iterations it takes to find an optimal solution [24]. Within the same
problem, there are ways to use an old basis to solve systems of equations involving the current basis [18] or to update
LU-factorizations between pivots [23], which are described by Vanderbei in [70].

Boneschanscher et al. [13] explore the problem of subassembly stability, and give an algorithm for computing
potential stability of stable orientations of an assembly on a table, by means of a series of culling tests. The first test
assumes all parts in the assembly are attached and prune unstable orientations by determining whether the center of
mass is over the convex hull of the assembly’s support polygon. The next considers parts as unattached and converts
the geometric model into a network. Then, for each part, the network is reduced to a relationship between the part
and the table, and a linear program is solved to determine potential stability of the part. This is an improvement over
prior methods such as the one presented by Blum et al. [12], since it can indicate which part in an assembly is unstable
and can address external insertion forces in addition to gravitational forces. However, if there are loops in the contact
graph, which is a characteristic of many assemblies, the geometry of the assembly must be altered for the algorithm to
work correctly.

Mattikalli et al. consider the problem of finding potentially stable orientations of assemblies. Such work is useful
for assembly planning, because reorienting a structure during its assembly can reduce the need for complicated and
costly fixtures to maintain stability, and may reduce sensing costs for determining where objects are after manipulation.
In [38], the authors present a method for finding a stable orientation of a frictionless assembly, or the “least unstable”
orientation if no stable one exists. They formulate the problem a constrained maximin problem, and show that the
most stable orientation can be found by solving a single linear program. In [39], the authors build on this work to
give an exact characterization of the entire set of stable orientations for an assembly with Coulomb friction under
gravity. They use parametric programming and sensitivity analysis techniques to determine the vertices and traverse
the perimeter of the stability region.

Mosemann et al. [48] address several shortcomings of Mattikalli’s algorithm and give an alternate approach for
finding the set of all potentially stable orientations of an assembly with friction. They argue that Mattikali’s method
is not guaranteed to terminate and does not produce the magnitudes of forces required to make an assembly stable.
They formulate the three-dimensional stability problem as a linear program and enumerate all vertices of the space of
feasible solutions. The complexity of their algorithm is O((m+n)mn

(
n−2
m−1

)
), which is exponential in m, the number

of objects, and n, the number of contacts, in the assembly.
Bernheisel and Lynch are among few researchers who have explored the manipulation of multi-object assemblies.

In [10], the authors describe a graphical method that gives conservative bounds on pushing motions which guarantee
the stability of a planar stack of objects during the push. Their approach finds the set of all stable motions for a stack
by intersecting the set of all stable pushes on each part with the sets of stable pushes for objects below it in the stack.
This method solves a series of subproblems where each part in the stack is pushing the parts ahead of it. In [11], the
authors propose a linear constraint satisfaction problem formulation for determining stable pushes of a planar stack.
If no solution exists, the assembly is guaranteed to be unstable for the given pushing motion. If any force necessary
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(a) Object masses can affect stability. (b) Object geometries can affect stability.

Figure 6: Several interesting assemblies.

to assure stability of the system can be generated as a linear combination of the pushing contacts, then it is possible to
generate weakly stable pushes of the system. The method to determine this requires considering all 8 n combinations of
support wrenches. If a stable push is neither impossible nor always possible, then the stack is classified as undecided.

A survey of stability in the context of fixturing can be found in [27]; with regard to grasping and manipulation,
Mason gives an excellent discussion of geometric and algebraic methods for finding stable configurations for objects
in [36].

Various other methods for computing stability are employed that are specific to their application. Ayyadevara et
al. have developed a stacking planner and methods for generating interference-free part configurations by minimizing
a cost function [3]. For robotic excavation, Singh et al. [61] describe a voxel model of soil to analyze stability during
planning and execution of digs. For self-reconfiguring robots, Kotay et al. have precomputed motion sequences to
ensure dynamic stability at each step [31]. Unsal et al. propose verifying that the center of mass of a self-reconfiguring
robot held together by link joints remains over its convex hull as part of a decision-making algorithm for the robot’s
motions [69].

Certain special cases of assemblies have been completely analyzed, including the popular unstacking game of
Jenga, for which Zwick [75] gives simple sufficient conditions for stability in the case where there are three blocks in a
row. Paterson et al. [55] use a linear programming approach to determining stability to solve the problem of overhang,
or how far off the edge of a table a stack of blocks can reach.

In this thesis, we are concerned with determining stability across a sequence of related problems. We show that by
exploiting a knowledge of common substructures, we can improve on the linear programming approach to stability.
Additionally, to our knowledge, we are the first researchers to propose a method for determining stability against
external forces when the geometry of the structure beneath the surface is unknown.

2.2 Rigid-body dynamics

Computing the forces between contacting bodies is a fundamental problem in rigid-body dynamics, and integral to any
understanding of how a robot interacts with its environment, whether the goal is to solve optimal control problems,
plan robot manipulation tasks, or determine the stability of an assembly [67]. Because rigid-body models require that
both forces and accelerations at contact points be non-negative, i.e. prevent penetration, the constraints forces that
arise are unilateral, which result in systems of linear or nonlinear inequalities. This turns out to be a harder problem
than computing bilateral constraint forces, e.g. forces imposed by joints, for which there are linear-time algorithms for
loop-free systems [7, 22].
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Lötstedt was the first to show that if the system constraints are inequality constraints the system dynamics can
be modeled as a quadratic program [35] or a linear complementarity problem [34]. Typically, these problems are
formulated in such a way that their solution represents accelerations and contact forces between bodies in the system.
For the frictionless case, such problems always have a solution, and if A is nonsingular, then that solution is unique.

For most applications of practical interest, a frictionless model is not sufficient, but introducing friction into the
model adds a host of complications. As first observed in 1895 by Painlevé [51], the dynamics equations for a Coulomb
friction model may have multiple solutions (indeterminacy) or no solutions at all (inconsistency). One-contact point
configurations that demonstrate indeterminacy and inconsistency are explored in [5, 21, 34, 37].

For much of the early 1990’s, researchers formulated and solved constraint equations in order to cope with these
problems in simulating the frictional model. Baraff showed in [5] that the problem of computing contact forces
for consistent configurations is NP-hard if applying impulsive forces to consistent configurations is prohibited. By
relaxing this assumption and allowing for impulsive forces in consistent configurations, he was able to interpret a
result from Lemke’s algorithm that does not find a solution (i.e. termination in an unbounded ray) as an impulsive
force, thus finding a “valid contact impulse” according to his definition of the term, in what is considered polynomial
time in practice. However, using Lemke’s algorithm, static and dynamic friction must be handled as separate cases.
Baraff is able to unify his treatment of static and dynamic friction by using Dantzig’s principle pivoting method for
solving the dynamics LCP, with modifications to maintain auxiliary friction constraints [6].

Trinkle et al. propose a model that approximates the nonlinear friction cone from Coulomb friction with a friction
pyramid in [67]. Their resulting LCP always has a solution for small enough values of the friction coefficient µ.
For arbitrary values of µ or rank-deficient system Jacobians, however, their solution methods are not guaranteed to
converge. Other researchers work around limitations in the rigid-body model by allowing bodies to deform slightly.
Witkin and Welch eliminate inconsistency and indeterminacy in configurations with one contact point by allowing
linear and quadratic deformations of a shape, but the problems remain for multiple contact points [74].

In contrast to the traditional acceleration/contact force approach, more recent formulations try to sidestep the
problem of inconsistency by formulating the system dynamics so that their solutions represent velocities and contact
impulses. By considering the integrals of force over a time step, these methods allow an impulse to occur at any
point in the duration of contact, rather than at the precise moment of impact. Stewart and Trinkle build on the work
of Moreau [46], [47] and Monteiro-Marques [45] to develop an implicit time-stepping scheme in which a mildly
nonlinear complementarity problem is solved using a sequence of LCPs [64], which are guaranteed to have a solution
when contact normals are linearly independent. In [1], Anitescu and Potra extend this result so that the formulation is
guaranteed to have a solution regardless of configuration or number of contacts. These models may achieve the desired
degree of accuracy by adding edges to the linear approximation of their friction cones, however the complexity of the
algorithm is exponential in the number of edges. Pang and Stewart discuss techniques that use general convex friction
cones, but their formulation is highly nonlinear, making it difficult to find solutions for [53]. Anitescu et al. give
an overview of time-stepping methods in [2], and Stewart summarizes much of the current research on rigid-body
dynamics with friction and impact in [65].

2.3 Solution methods for simulation

All of the above formulations are complementarity problems, for which there are a variety of solution methods. More
of them than can be covered here are discussed in detail in Cottle et al. [16] and Murty [49], both of which provide
excellent coverage of LCPs in general. Here we consider two different types of approaches to solving an LCP: those
where physical accuracy is desired, which are well-suited to applications such as fixturing and mechanical design
where accuracy is valued over speed; and those used in graphics and animation, when a fast algorithm that produces a
visually believable simulation is sufficient.

Within the robotics and mechanical simulation communities, attention has been primarily focused on Lemke’s
complementary pivot algorithm [32] and Dantzig’s principle pivoting method [15] for LCPs, about which solution
properties may be proven for certain classes of matrices. Dantzig’s algorithm is guaranteed to find a solution if one
exists, and A is either a P-matrix (has positive principle minors) or is positive semi-definite. Lemke’s algorithm is
applicable to a somewhat larger class of problems, and guaranteed to find a solution if A is a P-matrix. If A is
copositive-plus, termination of Lemke’s algorithm in an unbounded ray indicates inconsistency of the system, which
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Figure 7: Aphysical configurations can result from the disabling function in ODE: these images show an assembly in
its final resting state, when simulated using ODE’s StepFast method. Used with permission of Russell Smith.

implies that Lemke’s algorithm will find a solution if one exists, or indicate that no solution exists. Cottle, Pang, and
Stone [16] make additional guarantees for copositive matrices, specifically that if A is copositive and b is in the dual
cone of the homogeneous LCP, a solution must exist and Lemke’s algorithm will find it. Stewart and Trinkle use this
property to prove the existence of solutions for their formulation [64]. In practice, Dantzig and Lemke often converge
even in the case where A is not of a suitable class. For nonlinear complementarity problems (NCPs), researchers often
use Dirkse’s PATH solver [19], which is generally regarded as a robust solver, although instances are known in which
the PATH solver has not converged [66].

In [5], Baraff discusses a case where computing the solution to an LCP may be sidestepped entirely. He observes
that the index set denoting the basic solution to the assembly’s LCP usually remains valid across a number of time
steps. As long as this is the case, the contact force vector may be found simply by solving a linear equation. This
method of computation reuse is different from the approach we employ in section 4.4, when we reuse the solution to
an LCP for a motionless substructure to more quickly compute the dynamics of the complete assembly.

When the physical accuracy of a simulation is not of primary importance, much faster solution methods may
be used. It is instructive to look at solution methods in industry-standard physically-based modeling systems, for
example, Russell Smith’s Open Dynamics Engine (ODE) [62], which is generally considered to be the best open-
source physics engine available. ODE implements Baraff’s fast contact force computation algorithm [6], which, in the
frictionless case, reduces to Dantzig’s algorithm; with friction, the problem is not strictly an LCP, and the algorithm
is not guaranteed to converge, although it is thought to be robust in practice. As the problem size grows beyond a
dimension of a few hundred (for three-dimensional problems, this may happen when as few as twenty blocks are
in contact), the solution time may become intractable, the matrix size too large, or round-off errors may cause the
algorithm to proceed incorrectly, a problem that affects all pivoting methods [16]. Because of this, ODE provides
several optimization methods that trade accuracy for speed and substantially less memory use. The first is StepFast,
which makes the assumption that the effect of every contact is localized, and uses Baraff’s algorithm to solve the
LCPs for much smaller problems ([62], Chapter 8). The experimental automatic disabling functionality associated
with this approach, however, can lead to unconvincing configurations as shown in figures 7(a) and 7(b). These images
are screenshots taken of an assembly at rest, when the system dynamics were computed using the StepFast method.
A faster approximation method is given by ODE’s QuickStep method, which uses a successive overrelaxation (SOR)
method to solve the LCP, which introduces some degree of error into its solutions. In general, the class of iterative
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methods, which include SOR’s and interior-point methods, is considered better for solving large-scale LCPs, as are
less sensitive to round-off error, and better problem structure such as sparsity. However, they typically converge only
in the limit [16].

Other methods used in computer graphics to find contact force magnitudes between rigid bodies quickly include
using a time step equal to the frame rate of the simulation [42], and propagation methods for contact resolution.
Guendelman et al. propose a method which consists of determining contacts by sequentially allowing individual
objects to fall for a small time increment, holding the remaining objects stationary. The resulting contact graph
expresses contact relationships and dependencies between bodies. They then iterate through the contacts in an order
suggested by the graph, and solve for the force magnitudes over several passes. In order to produce a plausible
simulation in a small number of iterations, they complete their contact force calculation with a shock-propagation
step, which forces stationary objects to have a velocity of zero. This algorithm is capable of solving for contact forces
for up to a thousand objects in a matter of minutes per frame [26], but it is not physically accurate.

Given the speed of the algorithms used in simulations whose applications are primarily in computer graphics [62,
42, 26], it is important to remark that the goal of this thesis is not to improve upon these results (it has not been
explored whether our techniques would provide an effective means of doing so). Our focus is to provide a means
for improving the efficiency of algorithms that provide exact solutions. We consider our results to be most useful
for simulating small-to-medium sized systems, where the relative position between a subset of objects remains fixed
across a number of time steps. This is most likely to be true for simulations where the integration time step is small.

2.4 Assembly planning

Subassembly stability strongly affects the order in which an assembly may be put together or taken apart. For most
assembly tasks, it is a requirement that the assembly remain stable after any part or set of parts is added. Many
researchers in the area of automated assembly planning have considered generating assembly sequences.

In [40], de Mello et al. show that an AND/OR graph can be used to represent all possible assembly plans for a
given structure. In [41], the authors give an algorithm for generating such a graph, which runs in polynomial time for
weakly connected assemblies and exponential time for strongly-connected assemblies.

As structures grow in the number of components, the search space for an assembly sequence becomes intractable
very quickly. In an industrial setting, it is rare that all assembly sequences are considered before selecting one that
will be used, however there is concern among researchers that methods used to prune the search space be chosen
carefully, lest they cull a good sequence prior to optimization. Heemskerk [28] has suggested heuristics that gener-
ate sequence plans by collecting parts that can be assembled as one group. Primarily, however, such methods are
concerned with kinematic constraints such as mating characteristics of parts [20], or how different parts block each
others’ insertion. Wilson et al. optimize the disassembly sequence algorithm by returning a precedence expression
when their planner makes queries the regarding moveability of parts. Precedence expressions are boolean rules that are
evaluated to determine whether a given part is moveable. Evaluating the expression is typically faster than performing
a geometric check on the remaining assembly to determine moveablility. Hoffman [29], too, considers the freedom of
motion of subassemblies, and shows how freedom calculations can be reused for other spatial configurations of curved
components. While Wilson and Hoffman recognize the importance of common substructure geometry in making dis-
assembly sequence planners more efficient, neither of them consider computation reuse for determining the stability
of a structure.

In [72], Wilson and Latombe use the moveability constraint to produce a polynomial-time algorithm for mono-
tone, binary assembly sequences using straight-line insertions, by employing the non-directional blocking graph data
structure. In [71], the authors address the more general partitioning problem, for which the goal is to find a proper
subset of objects in an assembly that can be removed without violating a non-penetration constraint, and show that in
its full generality, the problem is NP-complete. A structure that can be partitioning in this way is sometimes said to be
able to be taken apart with two hands. Snoeyink has discovered a class of assemblies that cannot be taken apart with
two hands [63].

In contrast to earlier researchers, Romney considers the issue of stability alongside that of sequencing. In [59], he
presents a method for concurrently generating an assembly sequence and an associated fixture to hold subassemblies
in place during assembly. He is concerned primarily with insertion-force stability (IFS), or the ability of a subassembly
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Figure 8: Two polygonal objects supported by the ground.

to remain stable when a part is inserted. He observes that IFS-checks may be cached for reuse, and gives conditions
on the circumstances under which different subassemblies may reuse the same stability result [60]. Romney’s results
will be discussed in greater detail in section 5.

3 Physical model and solution methods

In the following section, we discuss how to formulate statics and dynamics equations from the geometry of the system.
The statics formulation is a linear program (LP), and the dynamics equations, as given in [6], form a linear comple-
mentarity problem (LCP). Because we are concerned primarily with computation reuse in the dynamics formulation
(which we use in section 4 both to determine stability and simulate the motions of the system), we look in depth
at LCPs and several methods for solving them. First, we give an overview of the LCP, some common terminology
regarding its solutions, and a geometric interpretation of the problem. We consider a brute-force algorithm for solving
an LCP, which runs in exponential time and is therefore impractical for solving the general problem. We then discuss
both Lemke’s complementary pivot method and Dantzig’s principle pivoting method, focusing in greater detail on
the latter. We conclude with an examination of the advantages and disadvantages of these and several other methods
commonly used to solve LCPs.

3.1 Rigid-body model

In this section, we discuss how to formulate the system Jacobian J from the force-balance equations, and then show
how it is used in the system statics equations. We then present Baraff’s system dynamics model from [6].

3.1.1 System statics

We focus first on formulating the system statics for planar systems.
Consider the equations for static equilibrium of object 1 in figure 8. Let n j be the unit contact normal representing

the direction of the contact force at point j, and f j be the magnitude of the force. Let g be the unit vector representing
the orientation of gravity. Let τnj be the torque due to contact j. Summing the forces and torques,

f1n1 + f2n2 + f3n3 + fGg = 0 (6)

τn1 + τn2 + τn3 = 0 (7)

must be satisfied for object 1 to be at rest. We can collect the equilibrium equations for each body in the system into
the matrix equation 8. If fj < 0, the contact force is attractive. Since the rigid-body model adopts a non-penetration
constraint, we require that fj ≥ 0. Thus we can formulate an LP from the static equilibrium equations

JT f = Fext, f ≥ 0 (8)

where JT is the transpose of the system Jacobian and describes the constraints imposed on each body by the contact
forces, and Fext is a vector of external forces acting on the system. For a frictionless system, JT contains blocks of
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Figure 9: A contact point between two blocks. Contact normal, tangent, and left and right edges of the friction cone
are shown.

the form

JT
ij =


 njx

njy

rij × nj


 (9)

where rij is the position vector from the center of mass of object i to contact point j, and n j is the normal to the
contact. To model Coulomb friction, the blocks of JT take on the form

JT
ij =


 jjx kjx

jjy kjy

rij × jj rij × kj


 (10)

where jj and kj are the left and right edges of the friction cone at contact point j, as shown in figure 9. Solving this
equation corresponds to finding, for each contact, a force that is a positive linear combination of the left and right
edges of the friction cone, i.e. lies within the friction cone. Thus, if a solution exists to the LP in system 8, it means
that, at each contact point there is some force that satisfies the model of Coulomb friction and the entire system is at
equilibrium.

An alternative formulation of JT for the frictional model has blocks of the form

JT
ij =


 njx tjx

njy tjy

rij × nj rij × tj


 (11)

where nj and tj are the normal and tangent vectors at contact point j. Formulating J in this way, system 8 is no
longer applicable to determine the stability of the structure, as tangent force magnitudes f t may be negative, and
must satisfy the additional Coulomb friction condition |f t| ≤ µfn in order to lie within the friction cone. This is,
however, the formulation that Baraff uses in [6], and thus represents the structure of J in the system dynamics model
in section 3.1.2.

For planar structures, each row of JT indicates how each one of the three degrees of freedom in two-dimensional
space is constrained by the contact forces on a given body. We can extend this formulation to three dimensions by
constraining each of the six degrees of freedom in three-dimensional space. Friction is handled by approximating the
nonlinear friction cone from the Coulomb model of friction with a linearized friction cone, discussed in more detail
in [65]. Depending on the application, this is a good approximation, since a small number of edges gives a reasonable
degree of accuracy, and edges can be added to increase accuracy to the desired amount.
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Figure 10: Example of a structure for which a necessary condition for stability, Af + b = 0, is satisfied, but the
structure is not stable.

3.1.2 System dynamics

As in the prior section, let ni be the contact normal between two bodies, and let f i be the magnitude of the contact
force between them. Recall that the rigid body model adopts a non-penetration constraint, so we require that f i ≥ 0.
Similarly, let ai be the relative acceleration between the bodies in the direction of n i, and require that ai ≥ 0. If the
bodies are separating at a contact point, then there is no force between them. Conversely, if f i > 0 the bodies remain
in contact, so their relative acceleration is zero. Thus, a third constraint is that one of a i or fi must always be zero, or
aifi = 0. We collect ai and fi into the vectors a and f , respectively.

The Newton-Euler equations describe the dynamics of the system, and give the linear relationship between f and
a given in equation 1 where

A = JM−1JT and b = JM−1Fext. (12)

J is the system Jacobian, M is a block-diagonal matrix that describes the mass characteristics of the system, and F ext

is a vector that represents the net external force acting on the system, including all inertial velocity-dependent forces.
Equation 1, along with conditions

ai ≥ 0, fi ≥ 0 and fiai = 0, (13)

form an LCP (equation 13 is equivalent to equations 2 and 3). We can use this formulation to solve both the stability
problem and to simulate the system dynamics.

To determine the stability of an assembly we need only solve the LCP. If a solution (a, f ) is found that satisfies
equations 2 and 3 such that 1) a = 0 and 2) f satisfies the system’s static equilibrium equations, J T f = Fext, then
the structure is weakly stable. (Figure 10 shows a structure for which the first condition, a = 0, is satisfied but the
equilibrium equations are not.) If a solution is found such that some a i > 0, then we know that the structure is not
strongly stable.

We can simulate the system dynamics by solving the LCP for the forces and accelerations at each time step. This
will be discussed in greater detail in section 4.4.

3.2 Static friction

We add static friction to the model by augmenting the normal force conditions with several static friction conditions.
The force due to friction at a contact point always acts in a direction tangent to the contact surface. Let a Fi be the
acceleration due to friction in the tangent plane at the ith contact, and let f Fi be the magnitude of the friction force.
At this point, we relabel ai and fi as aNi and fNi , to signify that they are in the direction of the contact normal, in
contrast to aFi and fFi . Having introduced this notation, we can state the static friction conditions as follows. If there
is no frictional acceleration at some contact i, then fFi must lie within the friction cone of the ith contact. Otherwise,
in order to maintain the condition of static friction, i.e. that the structure has zero velocity at every contact point, we
require that fFi does the maximum possible work to counter the frictional acceleration. Finally, we require that the
friction force and acceleration are in opposite directions, that is, fFi and aFi must have opposite signs.
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These conditions are summarized mathematically as

|fFi | ≤ µfNi , aFi(µfNi − |fFi |) = 0, and aFifFi ≤ 0. (14)

Baraff describes the necessary changes to Dantzig’s algorithm to maintain these additional conditions in [6]. For
our purposes, it suffices to say that the algorithm is essentially the same, except for the shape of the variables in the
equation Af + b = a. Each of A, f ,b and a now contains frictional variables for every contact. We can arrange rows
and columns so that the problem has the form

A




fN1

...
fNn

fF1

...
fFn




+ b =




aN1

...
aNn

aF1

...
aFn




. (15)

The necessary condition for stability is no longer a = 0. Let aN be the upper partition of a containing aNi for all i,
and let aF be the lower partition. Then for the assembly to be stable, we must have aN = 0 and aF such that for all
aFi �= 0, fFi = µfNi .

3.3 Introduction to the LCP

In this section, we introduce some terminology necessary to our discussion of solution methods for LCPs. The or-
ganization of this section is loosely based on Chapter 1 of Murty [49], “Linear complementarity, its geometry and
applications,” with certain fundamental concepts augmented by Dantzig’s introduction to linear systems in [17].

A linear complementarity problem consists of a matrix equation

a = Af + b, (16)

where A is a constant n × n matrix, b is constant vector of length n, and a and f are unknown vectors of size n. A
solution is any value for (a, f) that satisfies equality 16. We seek to find a solution that satisfies the constraints

a, f ≥ 0, (17)

aT f = 0. (18)

We say that a solution (a, f) to equality 16 is feasible if it satisfies equation 17. One that satisfies equation 18 is called
complementary.

Most algorithms for solving LCPs partition the variables in a and f into two sets called basic and nonbasic vari-
ables. We describe these sets as follows. Consider the term Px, where P is an m × n matrix. Without loss of
generality, assume Rank(P) = m. We can write Px as

Px = BxB + NxN (19)

where B is a square, invertible, m × m submatrix of P, and N is a matrix composed of the remaining columns of
P. The variables contained in xB are called basic variables, and those contained in xN are nonbasic variables. In
a canonical system, the ith basic variable has a unit coefficient in the ith equation, and zero coefficients elsewhere.
Equation 16 can be rewritten as the canonical system

Ia − Af = b. (20)

We call a solution to equation 16 a basic solution if all nonbasic variables have a value of zero. Every solution
technique for an LCP seeks a complementary basic feasible solution for equation 16.
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(-5, -6)

(a) A complementary cone for the LCP given
by equation 22.

(b) The complete set of complementary
cones of the matrix given by equation 25.

Figure 11: Two views of complementary cones.

Consider an example from Murty [49] where

A =
[

2 1
1 2

]
, b =

[ −5
−6

]
. (21)

In the form of equation 16, this corresponds to the matrix equation[
2 1
1 2

] [
f1

f2

]
+

[ −5
−6

]
=

[
a1

a2

]
, (22)

or the canonical system

a1 − 2f1 − f2 = −5,
a2 − f1 − 2f2 = −6.

(23)

We can also write equation 16 as a weighted sum of the vectors that contribute the columns of I and −A,

a1

[
1
0

]
+ a2

[
0
1

]
+ f1

[ −2
−1

]
+ f2

[ −1
−2

]
=

[ −5
−6

]
. (24)

From this last interpretation, it is easy to see that a complementary feasible solution to equation 16 exists if b is a
nonnegative linear combination of the two remaining vectors when either a 1 = a2 = 0, a1 = f2 = 0, f1 = a2 = 0 or
f1 = f2 = 0. For example, if we set a1 = 0 and a2 = 0, then finding a solution reduces to finding b as a weighted sum
of the columns of −A, as illustrated in figure 11(a). The positive span of these two vectors is called a complementary
cone.

Consider equation 20. Each variable a i corresponds to the ith column of I, and each variable f i corresponds to
the ith column of −A. We call ai and fi each other’s complements, since in a complementary solution, one or the
other of them must be zero. Thus, a complementary solution of equation 16 is a weighted sum of n n-dimensional
column vectors, where the ith vector is the ith column of either I or −A. Each of the 2n vector combinations for a
given LCP corresponds to a complementary cone of the matrix A. In a sense, the problem of finding a complementary
feasible solution to an LCP is the same as finding a complementarity cone of A that contains b. Figure 11(b) shows
all complementary cones of the matrix

A =
[

2 −1
1 3

]
. (25)
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Interestingly, since the union of the complementary cones of A spans R
2, the LCP (A,b) has a solution for any choice

of b.
We conclude our introduction to LCPs with a simple but inefficient solution method, which Murty calls the total

enumeration method. Let yi be one of {ai, fi}, and let y = (y1, . . . , yn). Let Yi be the column of I or −A that
corresponds to yi. Let Yr be the matrix formed from columns Y1, . . . ,Yn. Then, for each complementary vector y r,
solve the linear program

Yryr = b (26)

yr ≥ 0. (27)

Clearly, solving 2n linear programs is not something we would do in practice, but this algorithm provides valuable
intuition for understanding the LCP.

3.4 Lemke’s complementary pivot method

In this section, we discuss Lemke’s algorithm, which is commonly used to solve dynamics problems in robotics. We
first present a high-level explanation in the terms described in the previous section, and then consider the algorithm in
more detail. Our discussion is based on descriptions of the algorithm found in Cottle and Dantzig [15], Murty [49],
and Cottle, Pang and Stone’s volume on the LCP [16], which provides an excellent comprehensive treatment of the
subject.

At the highest level, Lemke’s algorithm is simply a series of steps between basic feasible solutions of 16. It
begins with an almost complementary solution, that is, a solution which contains exactly one pair (a i, fi) such that
aifi �= 0. The algorithm steps between solutions as long as the solution is almost complementary, following an almost-
complementary path. If it reaches a solution that is complementary, then the algorithm terminates and returns this as
the solution to the LCP. If the algorithm tries to take a step of infinite size, it terminates without finding a solution. For
certain classes of the matrix A, this implies that no complementary basic feasible solution exists.

The method finds an initial almost-complementary basic feasible solution as follows. For the general case, it is
necessary to augment the original matrix A with a column of positive values. Typically, a column of ones, e n, is
added. The vector f is augmented with an artificial variable f 0, as in equation

[
e A

] [
f0

f

]
+ b = a. (28)

f0 is increased until a ≥ 0 to find a starting solution.
The algorithm steps between solutions by selecting a nonbasic variable, called the driving variable, to increase by

some amount. (Recall from section 3.3 that a nonbasic variable has a value of zero in a basic solution.) The driving
variable is increased until it is blocked by some basic variable. We say a nonbasic variable is blocked if it reaches
the point at which increasing it further would cause some basic variable to become negative. Since the algorithm
maintains a feasible solution at all times, negative values are not allowed for any of the variables. Thus, the basic
variable that has reached zero, called the blocking variable, is moved into the nonbasic set, and the driving variable is
moved into the basic set. The process of exchanging variables between the basic and nonbasic sets is called a pivot
operation, and may be characterized in several ways; see [17], Chapters 4 and 9. The nondegeneracy assumption by
definition guarantees that at every step of the algorithm the blocking variable is unique. Techniques exist for dealing
with degenerate matrices, and are addressed in section 4.9 of [16].

Because f0 is increased to find an initial basic feasible solution, it is the initial driving variable. Subsequent
driving variables are selected by the complementary pivot rule, which dictates that, after the initial step, the next
driving variable is always the complement of the variable that has just left the basic set. This rule is the reason the
algorithm is sometimes referred to as the complementary pivot method.

The algorithm may terminate in one of two ways. If f 0 leaves the basic set, then (f , a) is a complementary basic
feasible solution, and the algorithm terminates with this solution to the LCP. Alternatively, the algorithm may attempt
to take a step of infinite size. In this case, the algorithm terminates without finding a solution. Depending on the class
of matrix A, this may indicate that a solution exists but the algorithm was unable to find it, or that no solution exists.
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Figure 12: Intermediate solutions in Dantzig’s method illustrated as force magnitudes at contact points in structure.

3.5 Dantzig’s principle pivoting method

In this section, we describe the principle pivoting method first in the terms of Cottle and Dantzig [15], and draw an
analogy between it and Lemke’s algorithm. We then give a physical interpretation of the algorithm in terms of the
system dynamics, and look in greater detail at the method in the terms of Baraff, who proposed this as fast algorithm
for computing contact forces for his formulation of the system dynamics in [6]. We focus on this method in greater
detail than on Lemke because our primary result for computation reuse is based on modifications to this method.

In contrast to Lemke’s complementary pivot method, which steps between basic feasible solutions,
Dantzig’s principle pivoting method steps between complementary basic solutions. It progresses by means of major
and minor cycles. The goal of a major cycle is to achieve feasibility for a single pair of complementary variables
(fi, ai). During the cycle, the complementarity condition is relaxed for these variables, so the intermediate solutions
are points along an almost complementary path. Some number of minor cycles occur within the major cycle, to ensure
that feasibility and complementary conditions are maintained for all variables that have already attained feasibility. At
the end of the major cycle, the pair is feasible and complementarity. The algorithm continues until a complementary
feasible solution is attained.

A starting complementary solution is found by initializing (f , a) with the complementary solution (0,b). If the
problem is nontrivial, there exists an index i such that a i < 0, and fi is selected as the driving variable. There may be
many values of i that satisfy this condition; the driving variable is selected arbitrarily. It is this arbitrary selection that
makes computation reuse possible in our modification of the algorithm.

Once a driving variable fi has been selected, a major cycle begins, with the goal of increasing f i until ai reaches
zero. Within a major cycle there may be some finite number of minor cycles. The driving variable f i (which is
nonbasic and begins with a value of zero) is increased until it is blocked by some basic variable. The blocking variable
is then transfered to the nonbasic set, and its complement enters the basic set. Because A has positive principle minors,
this exchange of the blocking variable with its complement permits the further increase of f i (by [15], theorem 10). A
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Set f = 0, a = b
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Figure 13: Block diagram for Baraff’s implementation of Dantzig’s algorithm.

new minor cycle begins, and fi is increased again. The major cycle terminates when a i, the complement of the driving
variable, reaches zero. fi enters the basic set, ai moves to the nonbasic set, and a new major cycle begins. The process
terminates when no negative variables remain in a.

A major cycle of Dantzig’s method is in some ways analogous to Lemke’s method as a whole. An initial nonbasic
driving variable is chosen and is increased until it is blocked by some basic variable, at which point a pivot operation
occurs. The difference here is that, instead of exchanging the blocking variable with the driving variable, the blocking
variable is exchanged with its own complement, and the driving variable is the same over the course of the entire
major cycle. However, much like Lemke’s method, the algorithm proceeds along an almost-complementary path until
a complementary solution is achieved.

3.5.1 Physical interpretation

Baraff’s algorithm for solving the system dynamics in [6] is equivalent to Dantzig’s method in the frictionless case.
We can use his model to give an interpretation of what is happening physically as the algorithm progresses.

As explained in section 2, Baraff is concerned with finding a vector of contact force magnitudes, f , that satisfies
the system dynamics equations. For a given structure, we set all the contact forces equal to zero, and then consider
the result that doing so has on the contact accelerations. Clearly, the objects in the structure will accelerate into each
other because of the gravitational force on them. We then consider each contact point in sequence, and attempt to
increase the magnitude of the contact force at that point until the relative acceleration between the two objects is zero.
Since the force magnitude variable we increase is the driving variable, for our physical explanation we will call this
the driving force. If, in the process of increasing the driving force, some contact force between two other blocks is in
danger of becoming aphysical, i.e. becomes zero and would be an attractive force if the driving force were to continue
to increase, we exchange force and acceleration at this contact point and, instead of reducing the contact force at this
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point, we increase the relative acceleration between the two blocks. Alternatively, if some contact acceleration that
was decreasing as a result of our increase to the driving force would become aphysical, i.e. would allow two contacting
bodies to accelerate toward each other causing interpenetration, then we stop reducing the acceleration at this contact
point and instead increase the magnitude of the contact force. We continue this process for every contact force in the
structure until we have found a solution such that the structure is at rest or contains objects are accelerating away from
each other.

Figure 12 illustrates the solution process for Dantzig’s method by showing the intermediate force magnitudes
calculated during the solution of the LCP for this physical structure. Negative values are not drawn.

3.5.2 Baraff’s implementation

This process is implemented as illustrated in figure 13. We set the force vector f to zero, and consider the resulting
acceleration vector a. If (f ,a) is feasible, then the procedure terminates with this solution. Otherwise, we select a
driving variable fd such that ad < 0. In order to determine how much we can increase fd before it is blocked, we
consider a unit increase to fd, and examine the effect of this increase on the forces and accelerations at previously
considered contact points.

As we consider each index i from 1 to n, once the pair (f i, ai) is feasible, we place i in an index set to determine
which variable of the pair is basic and which is nonbasic. We put i in the set C if f i is basic, or i in NC if ai is basic.
Recall that basic variables are dependent variables, and in a basic solution, nonbasic variables have a value of zero.
Baraff picked C to indicate “clamped” contact points where f i ≥ 0, and NC to indicate “not-clamped”, or separating,
contact points where ai ≥ 0.

The index sets C and NC help us find ∆f and ∆a, the changes to vectors f and a in a given minor cycle. For a
unit increase of fd, we maintain fi = 0 for all i ∈ NC and ai = 0 for all i ∈ C. Accordingly, ∆fd = 1, ∆fi = 0 for
all i ∈ NC, so we can arrange the rows of ∆f such that

∆f =


 x

0
1


 .

← i ∈ C
← i ∈ NC
← i = d

(29)

The above equation is annotated to show that indices i ∈ C are in the first row, i ∈ NC are in the second, and the
index of the driving variable is in the final row. We can partition A similarly,

A =


 A11 A12 v1

AT
12 A22 v2

vT
1 vT

2 α


 . (30)

∆f and ∆a are related by

∆a = A(f + ∆f) + b − (Af + b) = A∆f , (31)

so ∆a may also be partitioned as

∆a =


 A11 A12 v1

AT
12 A22 v2

vT
1 vT

2 α





 x

0
1


 =


 A11x + v1

AT
12x + v2

vT
1 x + α


 (32)

Since we seek to find ∆f such that ∆ai = 0 for all i ∈ C, the top row of ∆a must be zero. Thus, x must satisfy

A11x = −v1. (33)

Once x is known, ∆f and ∆a are easily calculated from

∆f =


 x

0
1


 , and ∆a = A∆f . (34)
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Baraff shows that equation 33 always has a solution.
To complete the major cycle, we must find s such that

ad + s∆ad = 0, (35)

however, s must also satisfy

f + s∆f ≥ 0, and a + s∆a ≥ 0. (36)

The greatest value of s that satisfies equation 36 is found in linear time by iterating through all previously considered
contact points. If s can be large enough to satisfy equation 35, the major cycle ends, otherwise, another minor cycle
begins.

3.6 Pivot rules in Lemke and Dantzig

Essentially, we can reuse computation in Dantzig’s algorithm because the choice of pivot element at the start of a major
cycle is arbitrary. In contrast, Lemke’s algorithm completely specifies each pivot element with its complementary pivot
rule, and the proof of correctness of the algorithm is based on this pivot choice [15]. We do not give a formal proof,
but we conjecture that it is not possible to reuse computation in Lemke’s algorithm. However, optimal methods for
selecting pivot elements are not completely known theoretically [56], so it is possible that an algorithm similar to
Lemke’s could be devised for which computation reuse is possible for the same larger class of matrices. Developing
such an algorithm is left as an open problem.

4 Computation reuse in the linear complementarity problem

In this section, we present the first major results of this thesis. First, in sections 4.1 and 4.2 we present a theoretical
reuse result for LCPs. Dantzig’s algorithm, when applicable, will find a solution to the linear complementarity problem
corresponding to an assembly with n contacts in n or fewer major cycles. The actual number of major cycles depends
on the values of A and b in the problem, but for the LCPs corresponding to the physical structures we have considered,
Dantzig’s algorithm usually takes all or very close to n major cycles. We show that Dantzig’s algorithm will find a
solution in n − k or fewer major cycles if the algorithm is initialized with a solution to the dynamics problem for a
subassembly with k internal contacts. In the assembly planning application we consider in section 4.3, k is typically
n − 2, so the time savings from reusing computation is substantial.

We then discuss several applications of this result, first to the stability problem, and then to dynamic simulation.
Specifically, in section 4.3 we use this result to generate a stable disassembly sequence, that is, an order in which we
can remove every object from the structure without causing it to collapse under gravity after any step. We show that,
by reusing computation in this way in the dynamics formulation, we are able to find a stable disassembly sequence in
a constant number of major cycles, and in less time than if we use a simpler statics formulation, determining stability
by solving a linear program. In section 4.4, we use the LCP result to improve the performance time of a dynamic
simulation in which the structure being simulated shares a common geometry between time steps. If the unmoved
substructure has k internal contacts, then we can solve the dynamics formulation for the next frame in n − k or fewer
major cycles using Dantzig’s algorithm modified with computation reuse.

4.1 Computation reuse

To solve an LCP (A,b), Dantzig’s principle pivoting method may execute as many as n major cycles. This is shown
in [15], by the argument that at the end of each major cycle, the number of negative elements in the vector a is
reduced by one, so the method can make no more than n major cycles. We show in this section that if we initialize
the algorithm with a solution to an LCP corresponding to a subassembly, we reduce the maximum number of major
cycles the algorithm can make.
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f gc1 c2 f gc1 c2

f gc3 c4 f gc3 c4

f gc5 c6

f gc1 c2

Figure 14: Sequential computation of contact forces for subassemblies. c i indicates the ith contact force and fg the
gravitational force. The length of an arrow shows the relative magnitude of the force it represents.

Theorem 1 Let (A,b) be an LCP, let A11 be any k × k principle submatrix of A, and let b1 be a k-dimensional
subvector of b with the same rows removed. If (x,y) is a complementary feasible solution to the LCP (A11,b1) , then
initializing Dantzig’s algorithm with the complementary solution ([ x 0 ]T , [ y A21x + b2 ]T ) will allow it to find a
complementary feasible solution for the LCP (A,b) in at most n − k major cycles.

Proof: Observe that if (x,y) is a complementary feasible solution to the LCP (A11,b1), then there exists a such
that ([ x 0 ]T ,a) is a complementary solution to (A,b). Specifically, since the order in which we number contacts is
arbitrary, we can arrange A and b such that A11 is the upper left k × k principle submatrix of A, and b1 is the upper
k-dimensional subvector of b. Thus, we may partition A and b as in the equation[

A11 A12

A21 A22

] [
x
0

]
+

[
b1

b2

]
=

[
y

A21x + b2

]
. (37)

Since (x,y) is complementary, (f ,a), where f = [ x 0 ]T , a = [ y A21x + b2 ]T , is a complementary solution for
(A,b).

The argument that the maximum number of major cycles Dantzig’s algorithm can make if initialized with this
complementary solution is n − k follows that in [15]. Each major cycle reduces the number of negative variables in
a by at least one. Since y is feasible, all negative variables in a are contained in the (n − k)-dimensional subvector
A21x + b2. Thus, the algorithm can make no more than n − k major cycles.

4.2 Reuse for physical structures

Figure 14 gives some intuition for applying Dantzig’s algorithm to a physical system. In the left frame, the contact
forces on the bottom block are computed without considering the force contributions of the other blocks. In the center
frame, the second block is added, and the contact forces on the first block are adjusted; contact forces on the second
block are computed. In the right frame, the final block is added, and the contact forces associated with the first two
blocks are adjusted.

The optimization described in the previous section can be used to reduce the computation required to find contact
forces in assemblies of rigid bodies if a complementary feasible solution to a substructure LCP is known. Specifically,
we show that for the LCP (A,b) from Baraff’s model of the system dynamics, described in equation 12, (A 11,b1) is
exactly the LCP corresponding to a substructure.

In equation 12, rows of J correspond to contacts in the structure and columns correspond to bodies, rows and
columns of M correspond to bodies, as do rows of F ext. Thus, for a superstructure, we can partition these terms as

J =
[

J11 J12

J21 J22

]
, M−1 =

[
M−1

11 0
0 M−1

22

]
, Fext =

[
Fext

1

Fext
2

]
, (38)

where the top and left partitions correspond to elements present in the superstructure but not in the substructure. Then,

A11 = J11M−1
11 JT

11 + J12M−1
22 JT

12,

b1 = J11M−1
11 F1 + J12M−1

22 F2.
(39)
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Figure 15: Number of pivots required by a single stability test, by the size of the subassembly tested, for a 91-block
pyramid.
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Figure 16: Number of pivots required by a single stability test, by the size of the subassembly tested, for the 84-block
randomly generated structure show in figure 19(b).

However, J12 = 0, since no contacts present in the substructure are contacts between objects that are not in the
substructure. Thus equation 39 reduces to

A11 = J11M−1
11 JT

11,

b1 = J11M−1
11 F1,

(40)

the exact formulation of the substructure LCP.

4.3 Application: assembly planning

A fundamental problem in mechanical assembly is to find an order in which a product can be assembled or disassem-
bled. We consider the problem of finding a stable disassembly sequence, that is, an order in which we can remove
every object from the structure without causing it to collapse under gravity after any step. Structures with substructures
in identical configurations arise naturally in this problem. Researchers have considered reusing similar geometries for
moveability [29, 73], but, to our knowledge, not for determining stability. In automated assembly sequencing, it is
typical to determine stability by solving a linear program (LP) corresponding to the static force-balance equations [59].
We show that our LCP stability test with computation reuse outperforms this approach, even though we expect system
dynamics to be more complicated than statics, as illustrated by the difference between LpSolve and Dantzig LCP
columns in table 2.
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Figure 17: Time taken for a single stability test, by the size of the subassembly tested, for a 91-block pyramid.
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Figure 18: Time taken for a single stability test, by the size of the subassembly tested, for a 253-block pyramid.

A basic approach for finding a stable disassembly sequence is as follows. Consider the set of all objects in a
structure. Collect all possible subsets into a disassembly graph, as shown in figure 3. Search the graph, testing the
stability of each node as it is visited. Any path of stable nodes from start to goal is a stable disassembly sequence.

Many researchers including [20, 28, 73] have considered the problem of improving the performance of this algo-
rithm by reducing the number of nodes visited; we focus on reducing the amount of time spent testing the stability of
a node. We can test stability by computing a solution for the contact forces, and then verifying that body accelerations
are zero. As discussed in section 2, if there is friction, this test is only a necessary condition for stability; computing
strong stability is beyond the scope of this thesis.

Since we add a single block at a time and only consider successors to stable nodes, we can use the complementary
feasible solution from any parent of the current node to initialize the stability test, reducing the maximum number of
major cycles in the stability test from n to a small constant.

To verify the feasibility and correctness of our optimizations, we have developed an efficient unstacking planner
for planar systems with static friction. Computation reuse has been implemented for assemblies with and without
friction. The planner can be configured to find a stable unstacking sequence using one of three stability tests: by
finding a solution to the system statics, solving the system dynamics using Dantzig’s algorithm, or by solving the
system dynamics using Dantzig’s algorithm with our modifications for computation reuse. The system statics stability
test was implemented with lp solve – a fast, open-source linear program solver written in C, that uses the revised
simplex method [9] – to determine the feasibility of a structure’s LP.

Figures 15 and 16 show the differences in the number of pivot operations between the three algorithms for a single
stability test of a frictionless 91-block structure, and the frictionless 84-block randomly generated structure show in
figure 19(b). Figure 17 shows the time difference between the three algorithms for the 91-block pyramid. Figure 18
shows the time difference between the linear programming approach and the LCP approach with computation reuse
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Table 1: Total number of pivots by algorithm.

Structure Blocks LpSolve Dantzig LCP LCP + Reuse
Random 10 102 127 13
Column 50 2352 2352 96
Column 80 6162 6162 156
Random 84 11,975 15,136 420
Pyramid 91 8190 8190 180

Table 2: Average time by algorithm, measured over 100 executions.

Structure Blocks LpSolve Dantzig LCP LCP + Reuse
Random 10 0.017 s 0.024 s 0.010 s
Column 50 0.483 s 2.987 s 0.469 s
Column 80 2.880 s 20.997 s 2.005 s
Random 84 9.396 s 72.099 s 5.532 s
Pyramid 91 5.260 s 38.825 s 3.074 s

implemented, for a single stability test of a frictionless 253-block pyramid. In each case, a depth-first search strategy
was used to explore the assembly graph. Our implementation of the LCP algorithm with computation reuse, written
in Java, consistently outperformed the lp solve implementation, as shown in table 2.

We have not tested the stable disassembly sequence algorithm using Lemke’s method as the stability test, so we do
not include results for Lemke’s method in our comparison here. However, we note that Lemke’s method is similar to
the simplex method and Dantzig’s method for LCPs, in that it is also a pivoting method, and has an exponential running
time in the worst case, but an expected running time that is polynomial in n. We expect Lemke to require roughly the
same number of pivot operations as simplex or Dantzig’s LCP method, thus, we would expect its running time to be
similar to that of LpSolve or Dantzig’s method without computation reuse, depending on the implementation.

We tested the different algorithms on a variety of examples, including columns, pyramids, and randomly-generated
structures, such as the one shown in figure 19(b). More detailed discussion of early examples can be found in [33]. For
large structures, memory is the limiting factor. With 256 MB allocated to the Java Virtual Machine, and testing stability
using Dantzig’s algorithm with computation reuse, a stable disassembly sequence can be found for a maximum-sized
structure of 280 blocks. This is because, for optimal time-efficiency, we store the matrix A for every node in the path
from the root to the current node. We conjecture that there is a time/space efficiency tradeoff that can be made to
reduce the number of nodes at which we store the A matrix and still substantially improve the performance time of
the total number of stability tests the algorithm makes; however, finding the optimal number of matrices stored is left
as an open problem. Table 1 gives the total number of pivots in both major and minor cycles of the algorithm for a
few example problems. Table 2 presents the run-time of the algorithm for the same examples. All tests were run on a
1.5 GHz PowerBook G4.

In addition to the unstacking platform, we have developed software for generating structures in different ways.
The first parses an svg file that contains a structure drawn in Adobe Illustrator and converts it to a format our planner
can use. The second generates a structure at random using the following procedure. Starting with an empty world,
pick a random offset on the first row and place a block there. Test the stability of the resulting structure. If it is
unstable, remove the last block that was added and continue. Repeatedly pick rows and offsets at random, placing
blocks and testing the stability of the assembly, until the structure is a prespecified number of rows high. The structure
in figure 19(b) was generated with this algorithm.
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(a) A simple structure, labeled with an unstacking order. (b) A randomly-generated assembly, where unstacking order is in-
dicated by block color. Observe that blocks in the column on the
far right must be removed before other blocks at higher levels in
the structure.

Figure 19: Several assemblies and their unstacking sequences.

Figure 20: Non-intersecting stable subassemblies.

4.3.1 Graph search

In addition to finding ways to reuse computation in the test for stability, the basic unstacking algorithm can be improved
by finding better paths through the disassembly graph. We have made steps toward improving the graph search by
identifying strategies that may allow us to test fewer nodes in the graph by stability properties. While this has not been
a primary focus of this thesis research, it is of interest because heuristics for culling the search graph are known based
on kinematic constraints, as discussed in section 2.4, but not based on stability. We have not added these methods to
our software implementation.

Culling rules. Since we are interested only in complete paths from root to leaf in the assembly graph, some culling
of nodes may be possible during the search.

1. If a node is unstable, cut all of its edges.

2. If there is a stable path to a node from the root, cut all of the node’s entrant edges.

3. If there is a stable path to a node from the leaf, cut all of the node’s exit edges.

If a subgraph has no entrant edges or exit edges, the stability of the nodes in the subgraph need not be calculated.
We have not determined whether efficient ordering of the search could be used to remove significant subgraphs from
consideration.

Union of subassemblies. Intuitively, if two subassemblies are weakly or strongly stable and do not touch, their union
is also weakly or strongly stable. In fact, even if the stable subassemblies touch, their union is guaranteed to be at least
weakly stable.
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Figure 21: Illustration of how an LCP solution may be reused in dynamic simulation. Shaded areas represent the
portion of the LCP that must be evaluated at each step. In frame k, an element that was previously motionless begins
to move, so we must solve the LCP corresponding to the new motionless set and store it for reuse in subsequent frames.

Theorem 2 (Union of subassemblies) The union of non-intersecting weakly-stable subassemblies is a
weakly-stable assembly.

Proof: Consider the contact graph for the assembly. Each subassembly is stable. Set the force magnitudes at
contacts connecting subassemblies to zero.

Heuristics, search order, and existence. Since all successful stacking sequences are of length n, depth-first search
is an obvious choice for searching the disassembly graph. Other strategies may be more effective for some types
of structures. Search algorithms that give preference to stacking from the ground up also seem to be more likely to
succeed quickly.

We expect artificial structures to have a stable unstacking sequence, but the set of structures that are stably unstack-
able may be small. Whether we can determine the existence of a stacking sequence for a structure more efficiently
than we can construct the sequence is an open question.

We expect squat structures will be more likely to be stable than tall spires.

4.4 Application: dynamic simulation

In this section, we look at how the computation reuse result from sections 4.1 and 4.2 can be applied to the problem of
dynamic simulation. During simulation, it is often the case that a subset of contacting rigid bodies remains motionless
for many time steps. Reusing the solution for the persistent substructure allows us to optimize the contact force calcu-
lation for the simulation as described in the previous section. Figure 21 illustrates the concept behind the algorithm.
We compute the dynamics to identify the set of motionless bodies, re-compute the dynamics of that substructure as a
partial solution, and use this partial solution as a starting point to compute the dynamics of the complete structure in
successive time steps. If the set of motionless bodies changes, we compute the partial solution corresponding to the
new motionless set, and use it until the motionless set changes again. This may be written

SIMULATE(world)

1 prevSoln ← ∅
2 prevMotionless ← ∅
3 time ← 0
4 while (time++ < SIMULATIONTIME)
5 do SOLVELCP(world, prevSoln)
6 motionless ← GETMOTIONLESSBODIES(world)
7 if (prevMotionless �= motionless)
8 then prevSoln ← SOLVELCP(motionless, ∅)
9 prevMotionless ← motionless
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Figure 22: A column falling apart. Dark gray blocks are motionless. The motionless set changes at frames 60 and 195.

We might further improve the performance of this algorithm at line 8, by reusing the solution from the prior frame
corresponding to the elements of the new motionless set, instead of solving the new LCP from scratch. It is well-
known that starting a linear program with a solution to a similar problem often reduces the time to solve it, but we
have not focused on determining whether the same is true for LCPs.

We have implemented a planar dynamic simulator with friction based on the design described by Baraff and Witkin
in their 2001 SIGGRAPH Course Notes [8]. The simulator uses the same components as the disassembly planner to
read in a structure’s description, before simulating the system dynamics. At each time step, we apply the external and
contact forces to find the acceleration of each body, and then integrate accelerations to find the location and velocity
of the bodies in the next time step. The algorithm described above is implemented to exploit computation reuse.
In the frictionless case, the algorithm reduces to Dantzig’s principal pivoting method. For friction, we use Baraff’s
modification to Dantzig’s algorithm. This formulation is not a true LCP, as it also includes a number of auxiliary
conditions in addition to the standard complementary and feasibility conditions of an LCP [6]. Baraff is unable to
prove that this algorithm converges, but is considered to be reliable in practice.

The SIMULATE function with computation reuse is also applicable to Baraff’s three-dimensional model, and to
three-dimensional models that employ linearized friction cones, where A is a P-matrix or is PSD.

For the example in figure 22, simulated with a small coefficient of friction, our optimized algorithm reduced the
time spent solving LCPs from 2.2 s to 1.2 s, a reduction of 45%. For those frames where five of the seven blocks are
motionless, the average savings from computation reuse was 65%.

We expect the simulation reuse algorithm to be fastest when the motionless structure is large and when we are
able to reuse a solution across many frames, as is the case when we use a small integration step. Thus, this algorithm
allows a more fine-grained time step, and we expect it to be particularly useful for applications where a highly detailed
simulation is required, such as mechanism analysis.

27



a
b

c

d

e

Figure 23: Three different motionless sets appear in this simulation: first only a and b are in motion, then c, d, and e
move as well, then all blocks fall.

Although reducing the number of major cycles in Dantzig’s algorithm usually improves the overall running time
of the algorithm, this is not always the case. The number of minor cycles within a major cycle depends on the order in
which contacts are considered. We have observed that in some cases, the contact ordering imposed by the computation
reuse algorithm causes major cycles to take more time. In the example in figure 23, there are three simulation segments.
For the first 41 frames, only blocks a and b are in motion. In the next 46 frames, c, d, and e are in motion as well. For
the remainder of the simulation, all blocks except for ground are in motion. LCPs in the second segment take nearly
four times as long to compute with computation reuse, in spite of the fact that the algorithm makes only 22 major
cycles instead of 60. This is likely because the average number of minor cycles within a major cycle is high for the
particular LCP we are solving at each step.

Methods for determining when reusing computation is less efficient are left as an open problem. Another open
problem is how to determine an optimimal sensitivity level for designating objects as being in motion.

4.5 Open Problems

Throughout this section, we have noted where other researchers might extend our results. The most notable open
problems involve extending our computation reuse results to complementarity problem algorithms for larger classes of
matrices, to nonlinear program solvers, and to addressing the questions that remain in the assembly stability problem,
many of which were outlined in section 5.6.

In this section, we list several additional open problems we have identified regarding computation reuse in statics
and dynamics.

4.5.1 Computation reuse for linear programs

In addition to considering system dynamics, we might try to reuse computation in the statics formulation. One idea
is to use an approach similar to the one used for the LCP formulation. Consider the LP for a subassembly of one
block. Solve for the contact force magnitudes using the simplex method. Add an object to the structure, and add the
necessary rows and columns to the LP, applying to them the affine transformation that would have been applied had
they been present in the LP from the beginning of the problem.

Dual form of the system statics. Given a linear program of the form

max cx, Ax = b, x ≥ 0, (41)

its dual is

min by, AT y = c, y unrestricted. (42)
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Equation 41 is known as the primal problem.
By the duality theorem of linear programming [17], if both the primal and dual have solutions, then they both have

optimal solutions, and these solutions are equivalent. A consequence of this theorem is that if the dual is feasible but
unbounded, then the primal does not have a feasible solution.

We might use this to exploit computation reuse for solving the system statics. The dual of system given in equa-
tion 8 is

Jy = c, y unrestricted, (43)

where c is an objective function whose values we are unconcerned with. Presumably, we can choose c to have any
value. If we add objects to a structure, J has the form,

J =
[

J11 0
J21 J22

]
(44)

where J11 is the Jacobian of the assembly before the object were added. If we view this in terms of the geometric
interpretation of the simplex method, i.e. traversing the edges of a simplex in n-dimensional space until an optimal
solution is reached, then the variables added in column 2 simply extrude the simplex in these dimensions. If the dual
was bounded for the linear program

minb1y1, J11y1 = c, y unrestricted, (45)

then it seems likely that we should be able to determine the boundedness in terms of the variables in y 2 in a reduced
amount of time. Determining whether this is the case is left as an open problem.

Solving an LP as an LCP. Alternatively, we might try to convert the LP to an LCP and solve the LCP in a manner
that reuses computation. The following is a discussion of how to convert an LP to an LCP, as presented by Cottle
in [15]. Consider an LP in the primal-dual form. In the primal LP, the goal is to find x such that the objective function
zp is minimized:

Ax ≥ b, x ≥ 0, zp = cx. (46)

In the dual LP, the goal is to find y such that the objective function z d is maximized:

yA ≤ c, y ≥ 0, zd = yb. (47)

The duality theorem of linear programming states that min zp = max zd when the primal and dual systems are both
feasible. Thus, we must find a solution such that

yb = cx. (48)

We can convert the LP inequalities to equalities by introducing slack variables v and u, subject to nonnegativity
constraints

Ax − v = b, v ≥ 0, x ≥ 0, (49)

AT y + u = c, u ≥ 0, y ≥ 0. (50)

Then, we can convert the LP to the LCP

Bz + q = w, z ≥ 0, w ≥ 0, z · w = 0 (51)

where

B =
[

0 −AT

A 0

]
, z =

[
x
y

]
, q =

[
c
−b

]
, w =

[
u
v

]
. (52)

We believe that we can solve this LCP with an algorithm that reuses computation, in order to efficiently solve the LP.
Dantzig’s algorithm for LCPs, which we have shown to work on our dynamics formulation, is not likely to work on
this formulation in the general case, as it relies on B being positive definite or positive semidefinite. Finding a solution
to the general case is left as an open problem.
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(a) An assembly with complete geometry known. (b) An assembly with only surface geometry known.

Figure 24: We can answer questions about assembly stability without complete knowledge of its geometry.

4.5.2 Questions about strong stability

Recall that to determine strong stability of a structure, we must show that no solutions exist to the system dynamics
that indicate the structure is in motion. Known solutions to this problem take exponential time [4, 25]. We propose an
approach to solving for strong stability that, if viable could be more tractable.

Consider the interpretation of the system dynamics given by the LCP in equations 1,2, and 3, where f represents
the force magnitudes at contact points, and a represents contact accelerations. Is it possible to rephrase the LCP such
that a basic feasible solution is required to contain some a i in the set of basic variables? If so, for nondegenerate
matrices A, the existence of a solution would indicate that a structure is not strongly stable. If no solution exists, then
the structure is strongly stable.

5 Stability of assemblies

In previous sections, we have considered the problem of determining forces between objects in an assembly; in this
section we ask how to find the set of external forces an assembly can withstand. Our goal is to take steps toward
characterizing precisely what we can learn about the stability of a structure by pressing on it. For many real-world
applications this is a more important question, since it is common that we know very little about the geometry of a
structure. For example, obtaining precise geometric information about the interior a rubble pile in an urban search-and-
rescue environment, if even possible, would be expensive, time-consuming, and potentially dangerous. In this section,
we address the multibody stability problem assuming only geometric knowledge of the surface of an assembly.

Imagine, for example, how a person might go about crossing a small creek with rocks visible not far below the
surface. If the person could see a path of rocks, she might put a foot in to test the stability of the first rock, and if it
seemed to be stable, she might stand on this rock and test the next rock, and so on until she reached the other side. If
some rock were deemed too unstable, this person might choose not to stand on it, but to try a different rock instead.
If she were particularly clever, she might even use a stick to poke at some of the rocks, to decide whether they could
bear her weight before wetting her feet.

How can we quantify what humans seem to know innately – that if I push on this surface in this way and it doesn’t
budge, the odds are good that it will hold my weight? Such information might prove useful in answering the following
types of questions:

1. Consider a rubble pile in an urban search-and-rescue environment. We would like to send a 200-pound person
across the pile, but we do not know if it will be safe for him. We have a fleet of ten 20-pound robots we can use
to obtain information about the stability of the pile. What is the most effective strategy for deploying them to
determine a safe path for the human?

2. A 200-pound person has walked across the rubble pile, marking each place he stepped. Can we now send a
500-pound robot across the pile without causing it to collapse? Can we send two 100-pound people? What
paths should each of them follow?
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3. A rover on Mars reaches a patch of rocky, unstable terrain that it must cross. The robot risks slipping, getting
wedged between rocks and being unable to free itself; loosening a rock that might fall and crush it; or collapsing
a region of the terrain and falling and breaking. If the rover is equipped with a stick it can use to apply a force
that varies depending on the angle of the press, how can it use this tool to find a safe path across the terrain?

4. We are assigned the task of developing a fixture that will stabilize an engine against part insertion forces during
assembly. Specifications are unavailable, but we have access to an assembly line of robots that can put together
parts in precisely the same way each time. How can we develop the required fixture with only the resources we
have?

5. A part of the engine has gotten jammed during insertion. How should we instruct a robot to press on it to unjam
it?

Our goal in this section is to approach answering questions like these by identifying stability characteristics that
can be obtained experimentally. We would additionally like to take steps toward developing methods for using these
characteristics to effectively and efficiently partition a surface into stable and unstable regions. One method is as
follows. Given knowledge of an assembly’s surface (which we assume can be easily obtained), describe the set of
forces we can apply to the surface as a shape in wrench space. We call this shape the space of applicable wrenches.
Select points on this shape, such that the convex hull of the points contains the shape. Test each point by physically
pressing on the surface. We call the convex hull of the stable points the known stability cone, and every point inside
it is a wrench we can stably apply to the surface. We can map these regions back to the surface to identify the set of
stable presses.

If the known stability cone contains the space of applicable wrenches, then we are done: every press we can apply
to the surface is stable. How we handle unstable points depends on the specific problem we are addressing, and our
model of it. In questions 1 and 2 above, we might require that if we push on the structure and it collapses, we begin
the procedure again from the beginning. We might relax this constraint by assuming that if, while pressing, we sense
that only one block along the top has moved, we can simply replace it and continue. Alternatively, in questions like
4 and 5 above, we assume that we can reset the structure after an unstable press. This assumption allows us to learn
more about stable regions of a structure, since we can use this information to find the boundaries of the stability cone.

In the described approach, we might attempt to maximize the volume of the known stability cone in wrench space.
But such an exhaustive approach might be unnecessary. If we can model the wrenches we will apply to the structure
during a given task, we might instead try to contain only this set of wrenches in the known stability cone.

In the general case, the goal of the assembly stability problem is to partition wrench space (and, as a result, surface
space) into stable and unstable regions. We consider several simplified models, which we describe along three axes:
surface shape, information, and press type.

In section 5.1, we present the mathematical tools we use to address this problem, and in section 5.2 we describe
the space of models we consider. In subsequent sections, we pose the following simplified question for different
models: “Given k presses on a structure about which we have limited knowledge of geometry, what is the space of
wrenches that we can apply without causing the structure to collapse?” In section 5.3 we give an expression for the
magnitude of a stable press between two stable presses along a polygonal edge. In section 5.5 we discuss how the
approach described above can be applied to curved surfaces as well. However, there is a caveat: we show that there
exist surfaces for which our approach does not work, since no set of frictionless normal presses tells anything about
presses at other points on the surface.

5.1 Background

In this section, we introduce the mathematical framework we use in analyzing the assembly stability problem.
Consider figure 24(b). We define a press as a pair P = (f , l) where f is a known force applied at location l on the

assembly surface. A press applies a wrench

w =
[

f
τ

]
(53)
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Figure 25: If we know the geometry of a structure, we can determine the space of stable and unstable presses.

to a single object on the surface, where w is a three-dimensional vector for a planar assembly, and a six-dimensional
vector for a three-dimensional assembly. A press is said to be unstable if any non-empty subset of objects in the
assembly shifts when the press is applied, and stable if all objects remain fixed. If we press in several places along the
surface of the assembly, we can use what we learn about the stability of each press to describe the space of wrenches
the structure can stably withstand. In terms of computation reuse, we say that we experimentally obtain a set of
solutions that we can then reuse to make guarantees about the stability of the assembly.

Consider the simple example in figure 25(a), where n1 and n2 are the outward-pointing contact normals, and P1

and P2 are presses at the extreme ends of the top edge of the rhombus. If we know the geometry of this structure, we
can use the force balance equations

JT f = Fext, f ≥ 0 (54)

to determine the space of stable presses, where JT is the transpose of the system Jacobian, f is the vector of unknown
contact force magnitudes, and Fext is the vector of external wrenches, as discussed in section 3.1.1. The external
wrench vector Fext can be broken down into the external wrench due to gravity, and the external wrench due to
applied presses, [

n1 n2

r1 × n1 r2 × n2

] [
f1

f2

]
=

[
P

P × rp

]
+

[
G

G × rg

]
, f1, f2 ≥ 0. (55)

Any press P for which this linear program has a solution is weakly stable (weak and strong stability are discussed in
greater detail in section 2.1).

For the remainder of this section, we will consider any structure for which a solution exists to equation 55 to
be stable. Although is is possible that this assumption is not physically accurate, since it does not prove that the
structure is strongly stable, it is a common convention in assembly planning literature. The difficulty with determining
strong stability with Coulomb friction is that known methods for doing so take exponential time. However, it is worth
recalling that Coulomb friction is an experimentally determined model. In those cases where we have experimentally
verified our results, our predictions match them very well.
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Figure 26: Jenga pile with stability profile drawn in. Black regions are unstable. White regions support presses of
nonzero magnitude. Stability profile was obtained by sampling the surface at 0.3 cm intervals.

Graphically, equation 55 can be represented as the wrench space in figure 25(b). Let N 1 and N2 be the wrenches
applied by unit contact forces n1 and n2, and let P1 + G and P2 + G be the wrenches applied by presses P1 and
P2 with gravity present. We call the positive linear span of N1 and N2 the stability cone; all wrenches that lie in this
cone are stable. The positive linear span of P1 + G and P2 + G is called the space of applicable wrenches; all the
wrenches we can apply by pressing the top edge of the rhombus lie this this space. The intersection of these two spaces
gives us the set of stable wrenches that can be applied to this edge. The set of wrenches we can apply that lie outside
the stability cone are unstable. This partitioning of the assembly surface into stable and unstable regions is called the
assembly’s stability profile, and can be mapped back to the surface of the assembly. Figure 26 gives an example of a
complex structure for which the stability profile was obtained by sampling the surface at regular intervals. Methods
regarding the collection of experimental data are discussed in greater detail in section 5.4.

If we do not know the geometry of the structure but know where some stable presses may be applied along the
surface, we can still determine sections of an assembly’s stability profile. It is straightforward to show that an object
can resist any positive linear combination of known stable wrenches. The proof of this is given in [60], and the theorem
is stated as follows.

Theorem 3 (Theorem 6.1 of Romney) If an assembly is stable against an external wrench W 0, and it is also stable
against an external wrench W1, then it is stable against any external wrench uW0 + vW1, for u, v ≥ 0.

By this theorem, if we know wrenches W1, W2, and W3 are stable, we can determine that W4 is also stable if a
solution exists to the linear program

Wx = W4,x ≥ 0, (56)

where

W =
[

W1 W2 W3

]
. (57)
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Consider the geometric implication of this theorem. A wrench applied to an assembly represents a single point in
wrench space. For any stable press, a ray from the origin through the corresponding point is a stable ray. The convex
hull of these rays gives us the known stability cone. It is important to distinguish between the known stability cone,
of the type shown in figure 28, and the actual stability cone, of the type shown in figure 25(b). Given some set of
stable presses, we can determine the known stability cone, but without additional information, we cannot partition
the wrench space outside this cone into stable and unstable regions. In contrast, if we assume complete geometric
information, as we do in the case of the actual stability cone, we can partition the space completely.

5.2 Problem space

In this section, we map out the problem space in terms of the parameters that vary for each case of the problem we
consider. In all cases, we assume contacts forces are unilateral, and that the geometry of the visible surface can be
obtained.

The first variable is surface shape: we consider polygonal models in section 5.3 and continuous parametric models
in section 5.5. We do not consider three-dimensional surfaces, but conjecture that our methods are similarly applicable.

The second variable we consider is information: how much information do we have about the geometry and inertial
properties of the structure? If we have complete information, we can determine stability using a physical model, as
discussed in the previous section. In the following sections we consider first the case where we know the center of
mass of objects at the surface of an assembly, and therefore the gravitational wrench on these objects; and second,
the case that we have no information about the structure other than the geometry of its surface. If we know the mass
characteristics of surface objects, we consider both the case that G = 0 and G �= 0.

Finally, we discuss varying press type: either pressing with a frictionless finger normal to the surface (a frictionless
normal press), or with a frictional finger that can apply forces within the friction cone at a point on the surface.

5.3 Polygonal surface model

For a polygonal edge with frictionless normal presses, we can state the problem as:

A given planar assembly is stable under gravity. It remains stable under two separate presses on the same
polygonal edge: A, of magnitude a, and B, of magnitude b and distance xb from A, as in figure 27(a). Find the
magnitude c of the maximum guaranteeably-stable press C between A and B as a function of xc, the distance
of C from A.

Choose coordinates so that the origin is at the contact point of press A, and the x-axis is coincident with the
polygonal edge, as in figure 27(b). Then, the wrenches applied by presses A, B and C are

A =


 0

a
0


 , B =


 0

b
bxb


 , C =


 0

c
cxc


 (58)

where c is unknown.
Since the fx-coordinate of each press is zero, we can draw wrenches A and B as points in the f yτ -plane of wrench

space, as in figures 28, 29 and 30. If there is gravity, then there is a third stable wrench. In section 5.3.1, we consider
first the case that G is zero, then the case that G is nonzero but known. Finally in section 5.3.2, we consider the case
that we know nothing about G.

5.3.1 Gravity is known

Case 1: G = 0. If gravity is absent then the known stability cone is exactly the space of applicable wrenches
between A and B, as shown in figure 28. A press of any magnitude between two stable presses is also stable. The
following is a corollary to theorem 3.

Corollary 1 If G = 0, C is stable for all xc, 0 ≤ xc ≤ xb.
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Figure 28: Known stability cone in wrench space, for G = 0.

Proof: By theorem 3, any wrench that lies in the positive linear span of wrenches A and B is stable. The slopes
of rays O + tA, O + uB, and O + vC, are 0, xb, and xc, respectively. Thus, if 0 ≤ xc ≤ xb, C lies in the positive
linear span of A and B, so press C is stable.

Case 2: G �= 0. If gravity is non-zero, the known stability cone no longer strictly contains the space of applicable
wrenches, as is illustrated in figure 29. However, since we know G, we know the edge is stable under three applied
wrenches: G, A + G, and B + G. We can draw the known stability cone with edge rays O + u(G), O + v(A + G)
and O + w(B + G). By theorem 3, any wrench that falls in this cone is stable. If in addition we know a magnitude
for which a press at A or B is unstable, we can make guarantees regarding the space of unstable presses as well, as
discussed in the following section.

5.3.2 Gravity is unknown

In the following section, we examine how much we can guarantee about the stability of an assembly when we know
nothing about the mass characteristics of objects along its surface. Although we do not explicitly do so, we effectively
identify the space of wrenches that are stable under all possible directions of gravity. This space turns out to be a
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triangle in wrench space. We can use this fact to determine the magnitude of presses that must be stable for any
assembly for which we have some set of known stable presses. Given additional information about unstable presses,
we may make further guarantees about the assembly’s stability profile.

Let A′ = G + A and B′ = G + B. Let �GA′B′ be the convex hull of points the G, A ′ and B′.

Lemma 1 Every wrench in �GA′B′ is stable.

Proof: By theorem 3, any positive linear combination of G, A ′ and B′ is stable. �GA′B′ always lies in the
positive linear span of these points.

Given that G + A and G + B are known stable wrenches, the smallest space of stable wrenches occurs when
G+A and G+B lie on the same edge of the stability cone, and every point on the other side of this edge is unstable.
The following theorem gives the equation for points that lie on the line between G + A and G + B. Presses of this
magnitude must be stable for all assemblies.

To simplify the following equations, we choose wrench space coordinates with the origin at G.

Theorem 4 If A and B are stable presses of magnitudes a and b, respectively, and B is a distance x b from A, then a
press C, a distance xc from A, with magnitude

c =
abxb

bxb − xc(b − a)
, (59)

is stable.

Proof: By lemma 1, all wrenches that lie in �GAB are stable, regardless of the value of G. Let E be the vector
with a unit projection onto the fy-axis and slope xc, as shown in figure 30. The value of c for which the ray O + cE
intersects the line segment AB gives us magnitude c of a press C that must be stable.

We can find this intersection as follows. The equation for line segment AB is given by A + s(B−A), s ∈ [0, 1].
This intersects ray O + cE where

A + s(B − A) = O + cE (60)[
a
0

]
+ s

[
b − a
bxb

]
= c

[
1
xc

]
(61)

for some values of s, c. Breaking these vectors into fy and τ coordinates, we have two variables and two equations,
and can solve for c at the point of intersection.

a + s(b − a) = c (62)

sbxb = cxc (63)
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Solving equation 62 for s,

s =
c − a

b − a
, (64)

and then substituting the value of s into equation 63, we find c:

c − abxb

b − a
= cxc (65)

c
bxb − xc(b − a)

b − a
=

abxb

b − a
(66)

c =
abxb

bxb − xc(b − a)
. (67)

A graph of this function for a = 5, b = 20 and xb = 1 is shown in figure 31. An alternate proof of theorem 4 is
given in Appendix A.

If a = b, the term (b − a) = 0, so the independent variable xc is removed from the equation, and we have c = a.
Thus, as a consequence of theorem 4, given two stable presses of the same magnitude along a polygonal edge, we can
predict that a press with the same magnitude will be stable at any point between them.

Theorem 4 allows us to guarantee that some press between two stable presses will also be stable. Moreover, it
allows us to characterize the stable magnitude of this press, either conservatively or precisely, as discussed in greater
detail in section 5.4.

An immediate consequence of this theorem is that, given any two stable presses along a polygonal edge, at all
locations between them there is some stable press. This allows us to make predictions about unstable regions of the
assembly’s surface as well.
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Define a function stable(P ), which takes a press P = (f , l).

stable(P ) =

{
1 if P is stable for ||P || > 0
0 otherwise.

Corollary 2 The preimage of stable(P ) is an interval.

Proof: Assume there is some unstable press U that lies in the domain of stable(P ) between two stable presses
X and Y . U must be a linear combination of some X and Y . Then, by theorem 3, U is stable.

If, in addition to a stable press, we know some press on an edge of the assembly is unstable, then we can designate
a region of wrench space as unstable.

Corollary 3 If B is a stable wrench and (1 + ε)B is unstable for ε > 0, then ∀δ > ε, O + t[(1 + δ)B] is a ray of
unstable wrenches.

Proof: By corollary 2, the space of stable presses is contiguous.
The implications of corollary 3 are useful in reducing the number of points we must test along a polygonal edge.

In surface space, any press with magnitude greater than the known unstable press is also unstable. Additionally, if the
known unstable press is some distance xu > 0 away from a stable press, then all presses at distance x ≥ xu must also
be unstable. Thus, we can employ a binary search approach to finding the boundaries of the stable region once we
have obtained both a stable and an unstable press. This is discussed in greater detail in section 5.6.2.

5.4 Experimental results

In this section, we describe two experiments conducted to determine the correctness of our theoretical results. In the
first, we were concerned with showing that the magnitude function given by theorem 4 is correct when the geometry of
the structure is unknown. We also showed that the magnitude function is conservative, as expected. In the second, we
wished to show that there exist structures for which the magnitude function gives a precise description of the maximum
press magnitude that can be applied between two known stable presses. As might be expected, more computational
effort went into devising a structure for which this is true. In the following sections, we describe the objectives,
materials, procedures and results of both these experiments, and discuss our findings.

5.4.1 Experiment 1: does magnitude function predict correctly?

Objective. We wish to determine whether, for a structure with unknown geometry, the magnitude function given by
theorem 4 is correct. The only requirement for this structure is that it be asymmetric, so we can easily choose A and
B of different magnitudes. Masses and frictional characteristics of objects in the assembly should not be obtained.
Dimensions of objects are only obtained so that the structure can be precisely reassembled when it is disturbed.

Materials. The materials used in this experiment are:

• Wooden blocks with polyhedral edges

• Concrete bricks

• Template for constructing assembly, given in figure 44

• Flat backboard to which template can be affixed

• Force gauge, McMaster-Carr part #2115T14
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Figure 32: Assembly used for experiment 1.

Procedure. Affix the template to the backboard, and assemble the structure in the configuration specified by the
template. Place concrete bricks on either side of the structure. The complete assembly is shown in figure 32. The
force gauge is a linear tension and compression, spring-operated scale. It has gradations of 0.1 kg and accuracy of
+/- one gradation. Use the force gauge to determine the maximum magnitude press that can can be applied at each
of the 0.3 cm intervals marked on the template. It is important to apply each press at a perpendicular to the surface,
and to increase the force slowly, so that the magnitude can be read prior to the structure giving way. After each force
magnitude has been obtained, reassemble the structure, and continue sampling points until all test points have been
collected.

Results and discussion. The results of this experiment are displayed in figure 33, with the magnitude curves pre-
dicted by theorem 4 drawn in between all pairs. Please note that the straight lines drawn in gray between data points
are simply to aid visualization of the curve, and have no physical significance.

These results support the predictions of theorem 4. For any two stable presses, an intermediate press either lies on
or above the predicted curve.

We might ask what the best order to select presses is. We leave a formal answer to this question as an open
problem, and discuss it in greater detail in section 5.6.2. One approach is to select presses to maximize the area under
the stability curve.

There are a number of possible error sources in this experiment. The first is that, since we test the assembly to
failure for each press, the exact geometry of the structure may change slightly after each point is sampled. We work
against this as best we can by providing a template to help align the blocks precisely. A second source is in our force
gauge readings. We increase the force slowly so that we can read force measurements prior to failure, but it is difficult
to be certain of the exact value at the moment of failure, since the structure is falling apart. Finally, our theoretical
results apply to planar structures with frictionless presses. Although we approximate this as best we can with flat
blocks and normal presses, there is room for error to creep in here as well, since this is in fact a three-dimensional
structure and our force gauge is not actually frictionless.
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Figure 33: Results of experiment 1. For any two stable presses, the predicted curve is exceeded.

5.4.2 Experiment 2: are there instances where magnitude function predicts precisely?

Objective. In this experiment, we wish to show that there exist structures for which the magnitude function given in
theorem 4 is precise. We do this by first calculating the geometry of an assembly for which both stable pushes lie on
the edge of the stability cone. We then build this structure and determine whether our experimental results match our
predictions.

Materials. The materials used in this experiment are:

• One clay brick

• Two triangular wooden blocks

• Force gauge, McMaster-Carr part #2115T14

• Ruler

• Sharpie permanent marker

Structure design. In this subsection, we discuss how the geometry is calculated for the assembly. The equations
used here are discussed in greater detail in sections 3.1.1 and 5.1.

We use a wrench space construction to derive the geometry of the experimental assembly. Let press A be a
frictionless normal press at the reference point on the polygonal edge, and let its magnitude a be the maximum
magnitude for which a press at this point is stable. Let B be a similarly defined press at a distance x b from the
reference point. We would like to select A and B so that G+A and G+B lie on the same edge of the stability cone.
This way, the line between them gives not only the maximum press magnitude we can guarantee to be stable, but also
the maximum press magnitude that is actually stable for this structure. Figure 34 gives an instance of this construction
in the fyτ -plane of wrench space, with the opposite edge of the stability cone going through G.

The edges of the stability cone give us the columns of JT as discussed in section 5.1, and JT also describes the
location of contact constraints in an assembly. Thus, we can derive the desired structure’s geometry by finding the
Jacobian from the stability cone we’ve drawn.
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We require that G + A and G + B lie on a line through the origin, as expressed by

α(G + B) = G + A, α > 0, (68)

and that both G + A and G + B lie on one edge of the stability cone, which is true if both equations

JT

[
f1

0

]
= G + A, f1 ≥ 0, JT

[
f1

0

]
= G + B, f1 ≥ 0 (69)

have a solution. Finally, so that G lies on the other edge of the stability cone, the equation

JT

[
0
f2

]
= G, f2 ≥ 0 (70)

must have a solution.
For this experiment, we may select any values for A, B and G that satisfy these constraints, and then scale them

according to the measured gravitational force. Choosing

G + A =
[ −2

−2

]
, G + B =

[ −4
−4

]
, and G =

[ −1
−2

]
, (71)

gives wrenches due to presses A and B,

A =
[ −1

0

]
, B =

[ −3
−2

]
, (72)

where a = −1, b = −3 and xb = 2
3 . A matrix JT that satisfies constraints 69 and 70 is

JT =


 0 0

−1 −1
−1 −2


 . (73)

This gives us outward-pointing contact normals

c1 =
[

0
−1

]
, c2 =

[
0
−1

]
(74)

with contact points at locations x1 = 1 and x2 = 2 from the reference point under press A. Figure 35(a) illustrates the
ideal geometry derived from this construction. Figure 35(b) shows the physical assembly built from this geometry.
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Figure 35: Physical constructions for experiment 2.
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Figure 37: Example of a smooth parametric edge, for r(s) = sin(s).

Procedure. Weigh the brick to determine the gravitational force G on it. Place one of the triangular blocks beneath
the center of the brick and move it until the brick is balanced. Mark the center of gravity on the brick with the
permanent marker.

Along the top edge of the brick, use the ruler to measure intervals of 0.5 cm, and mark these points with the
permanent marker. These will be used to guide the selection of test points, without having to re-measure every time.

Set up the assembly as shown in figures 35(a) and 35(b) by placing one triangular block directly below the center
of mass and another one unit to the left of it. Select a point on the far left of the brick and measure the maximum
force that can be applied at this point before each press, to ensure consistency between tests. Apply presses at 0.25 cm
intervals, reassembling the structure between presses, as described in section 5.4.1.

Results and discussion. The measured weight of the brick was 1.9 kg, and the center of mass was estimated to be
10 cm from the brick’s edge. Five sets of force measurements were taken every 0.25 cm along the surface of the block,
and averaged together. The closest values to those suggested by our geometric construction were selected as presses A
and B. Press A (of magnitude 1.93 kg) was applied at a distance 1.45 cm along the brick, and press B (of magnitude
5.76 kg) was applied at 4.2 cm. The predicted magnitude for C with a = 1.93, b = 5.76 and x b = 2.75 is plotted is
superimposed on top of the measured data in figure 36. Error bars show the range of measured values over the different
trials.

These results confirm that a structure can be constructed for which the magnitude function given by theorem 4 is
reasonably precise. The possible sources of error in this experiment are the same as those discussed in section 5.4.1.

5.5 Smooth surface model

In this section, we consider assemblies with surface edges that can be expressed as smooth parametric function r(s),
which are a superset of the straight-line edges we considered in section 5.3. With this change to the underlying model,
we address essentially the same question:

A given planar assembly is stable under gravity. It remains stable under k separate presses on an edge of the
same object at the surface of the assembly. What is the set of stable presses that can be applied to the structure?

As in the preceding sections, our goal is to obtain experimentally a known stability cone that contains the largest
possible set of applicable wrenches. For a smooth parametric curve, however, it is possible that the surface of appli-
cable wrenches is such that a known stability cone defined by a set of k points on the surface contains no points other
than these k points. In this section, we show that assemblies exist such that no set of frictionless normal presses can
give any information about the stability of other presses.
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Figure 38: Space of applicable wrenches for parametric curve r(s) = sin(s).

Let r(s) be the parametric equation of a smooth surface. For a planar surface,

r(s) =
[

x(s)
y(s)

]
. (75)

The tangent vector to the curve at r(s) is ṙ(s), and the unit press vector p(s) is the normalized tangent vector rotated
−90◦,

p(s) =
1√

ẋ(s)2 + ẏ(s)2

[
ẏ(s)
−ẋ(s)

]
. (76)

The torque is

τ = r(s) × p(s) (77)

=
1√

ẋ(s)2 + ẏ(s)2
(−x(s)ẋ(s) − y(s)ẏ(s)). (78)

Thus, the point w(m, s) in wrench space due to a frictionless normal press of magnitude m at surface location r(s) is

w(m, s) =
m√

ẋ(s)2 + ẏ(s)2


 ẏ(s)

−ẋ(s)
−x(s)ẋ(s) − y(s)ẏ(s)


 . (79)

Consider the example in figure 37. The equation of this smooth parametric edge is

r(s) =
[

s
sin(s)

]
, (80)

and the surface of applicable wrenches is described by

w(m, s) =
m√

1 + cos2(s)


 cos(s)

−1
−s − sin(s) cos(s)


 . (81)

Several views of this surface in three-dimensional wrench space are shown in figures 38(a), 38(b) and 38(c). In these
images, the surface of applicable wrenches is represented by the set of curves corresponding to presses of constant
magnitude for m = 1, 2, . . . , 10. We will use this convention for depicting the surface of applicable wrenches for
assembly edges elsewhere this section as well.
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46



-10

0

10
-10

0

10

-10

-8

-6

-4

-2

0

fy
fx

τ

ray of wrenches 
applied by a single 

press of varying 
magnitude

(a) Surface in wrench space.

-10

0

10

-10

-5

0

5

10

-10

-5

0

curve of wrenches 
applied by presses 
of magnitude m=8

(b) Constant-magnitude curves of surface.

Figure 41: Surface of wrenches that can be applied along the curved edge of the assembly in figure 40. The surface is
a circular cone, which is represented here both as a surface and as a collection of curves corresponding to presses of
constant integer magnitude.

5.5.1 Gravity is known

As in section 5.3, we begin by considering the case that gravity is zero, and that we apply frictionless normal presses
to the assembly surface. Given the latter assumption, we can only test points in wrench space that lie on the surface of
applicable forces. Thus, the edges of the known stability cone must intersect points on this surface. Because of this,
we can construct an assembly for which no press gives us stability information about any other presses we can apply.

Theorem 5 There exist surfaces such that the set of stable pushes on the surface is discrete.

Proof: Consider the frictionless assembly in figure 40, and let G = 0. The parametric equation of the object’s
curved edge is

r(s) =
[

sin(s) − s cos(s)
cos(s) + s sin(s)

]
, 0 ≤ s ≤ 9

8
π, (82)

and the transpose of the system Jacobian which relates presses to press wrenches is

JT =


 −1 0

0 −1
−1 −1


 . (83)

The surface of applicable wrenches is described by

w(m, s) = m


 cos(s)

− sin(s)
−1


 , (84)

where m is the magnitude of the press. The force-balance equations give us
 −1 0

0 −1
−1 −1


 [

f1

f2

]
=


 cos(s)

− sin(s)
−1


 , (85)
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Table 3: Stability of assemblies problem space.

Information G = 0 G �= 0 G unknown
Press Type Frictionless Frictional Frictionless Frictional Frictionless Frictional

Edge Model
Line � × � × � ×

Curve � × × × × ×
Plane × × × × × ×

Gen. Surf. × × × × × ×
� - Result Given × - Open Problem

which only has a solution for values of s that satisfy

sin(s) = 1 + cos(s). (86)

On the interval s ∈ [0, 9
8π], sin(s) and 1 + cos(s) intersect only at s = π

2 , π, thus only the two pushes

P1 =
[

0
−1

]
and P2 =

[ −1
0

]
(87)

are stable.
This result has a geometric interpretation as well. Consider the surface of applied wrenches for this assembly,

which is illustrated in figures 41(a) and 41(b). For constant m, w(m, s) is an arc of a circle in the τ = −m plane. It
is simple to show that a polyhedral convex cone defined by any set of points on the curve does not contain any other
points on the curve. Thus, no other presses on the object lie in the known stability cone, but any magnitude of a known
stable press is stable.

5.6 Conclusion and open problems

In this section, we have discussed the assembly stability problem as a multibody stability problem, with the goal
of finding stable regions along the surface of an assembly. And indeed, the results presented here are interesting
when applied to this application, given the relatively small amount of related work in multibody grasping and stability
problems. In addition, given the usual complexity of problems of this sort, our results are particularly noteworthy since
they introduce a major simplification by ignoring geometry beyond the surface of the structure. There remain some
limitations, however. We require that every object along the surface for which we wish to find a stability profile must
be pressed separately. Also, finding parametric equations for real-world surfaces is nontrivial, although if we consider
man-made assemblies, such as factory-built structures, or rubble from collapsed buildings, our results extended to
polyhedral models will likely prove useful.

Another interesting application we might consider is a two-block assembly problem such as fixturing. For example,
can we use pressing to determine whether an insertion task is complete, i.e. will this peg move further into this hole,
or has it gone as far as it can go? For this problem, we seek to find remaining unstable pushes, and our results could
be used to determine what region of applicable wrench space remains that has not yet been shown to be stable.

In the following sections, we discuss remaining open problems.

5.6.1 Classes of assembly

In section 5.2, we mapped out the problem space as shown in table 3. We have presented theoretical and experimental
results for surfaces with polygonal edges, and theoretical results for edges that can be modeled as smooth parametric
curves. In this section, we discuss areas where these results could be extended further.
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Figure 42: Surface of applicable frictionless wrenches contained in a known stability cone found by testing with
frictional presses.

G = 0, presses have friction. If, for the assembly given in figure 40 we can test wrenches that are not on the
surface of applicable wrenches, we can define a cone in wrench space that contains the entire surface, as shown in
figure 42. We can test these wrenches if we are allowed to press with a frictional finger. In this case, the set of
applicable wrenches is a volume, not a surface, and depending on the coefficient of friction, we can at least contain
the surface of wrenches applied normal to the surface. How we might select these points is left as an open question:
possible methods might include picking points on the smallest regular polyhedral convex cone that contains the surface
of frictionless presses, or finding local maxima in the curvature of the frictionless curve, and selecting wrenches where
lines tangent to the curve at these points intersect.

G = 0, presses have friction, surface of applied wrenches is not strictly convex. If the surface in wrench space
is not strictly convex (or strictly concave), we can contain it in a known stability cone through some set of frictionless
and frictional presses. Again, we leave the method for choosing the optimal points on and around the curve as an open
problem. It is interesting to ask how being able to select points on the surface of normal wrenches might change the
selection method.

Remaining cases. Additional open problems include how to select press points when the surface is translated by
a known gravity wrench, how to select these points when gravity is unknown, and importantly, how to apply these
principles to three-dimensional assemblies.

5.6.2 Selecting presses on an edge

Another open problem is to identify a method for determining the maximum area of an assembly’s surface profile in
the fewest possible presses. A related question is how to formalize the notion of information content in a press. In
previous sections, we have presented results which might be used to devise an optimal strategy for selecting presses.
In this section we briefly discuss some characteristics of such an algorithm for a planar assembly.

First, we must find, if they exist, a stable press and an unstable press on each side of it, in as few presses as possible.
One approach is to distribute our samples evenly by testing the endpoints of the edge, and testing the midpoint of any
region with unstable endpoints until a stable press is found. If we assume that every object in the assembly has a stable
region that covers more than k% of its surface, this is a constant-time operation per surface object, so takes O(n) time
to test the assembly, where n is the number of objects at the surface of the assembly.
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Once we have found a stable press on a given object, we must find the boundaries of the stable region. We may
do so by employing a binary search on either side of the stable press, to find the endpoints of the stable region to the
desired precision. This takes O(L/p), where L is the length of the object, and p is the precision we seek.

What must be learned about the interior of the stable region depends strongly on the requirements of the specific
application for which the stability profile is being determined. For some applications, we may be concerned with
finding some interval on which we can apply a constant force. For others, we may seek the point at which we can
apply the maximum force. Others, such as finding a force that can be applied to unjam a part during insertion, may
seek only the unstable presses that remain on the surface of an object. All of these are left as open problems.
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Figure 43: Simplified view of stable triangle in wrench space.

A Appendix: Law of sines proof of theorem 4

An alternative to solving for the point of intersection is to use trigonometric identities to solve for c directly. Consider
�OAP in figure 30. We know the length of side OA and the slope of side OP. As previously discussed, c is the
fy-projection of the vector P. A simplified view of the triangle from figure 30 is shown in figure 43. �OAP has
sides of length a, u, v, and opposing angles α, θ, φ. Given xc as the slope of side v,

sin θ =
xc√

1 + x2
c

, cos θ =
1√

1 + x2
c

. (88)

Thus,

c =
v√

1 + x2
c

. (89)

By the Law of Sines,

c =
a sin φ

sin α
√

1 + x2
c

. (90)

We can find sin φ and cosφ by taking cross- and dot-products of the vectors B−A and O−A. Let D = ||B−A|| =√
(b − a)2 + (bxb)2.

(B − A) × (O− A) = ||B − A|| ||O− A|| sin φ (91)[
b − a
bxb

]
×

[ −a
0

]
= aD sin φ (92)

sin φ =
bxb

D
(93)

(B − A) · (O − A) = ||B − A|| ||O− A|| cosφ (94)

(b − a)(−a) = aD cosφ (95)

cosφ =
a − b

D
(96)

Finally, since α = π − (θ + φ), sin α = sin(θ + φ). Let E =
√

1 + x2
c . Making the appropriate substitutions,

sin α = sin θ cosφ + cos θ sin φ (97)

=
xc

E

a − b

D
+

1
E

bxb

D
(98)

=
xc(a − b) + bxb

DE
(99)
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Substituting these values into equation 90, we find the same function for c as before,

c =
abxb

bxb + xc(a − b)
. (100)
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B Appendix: Templates
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Figure 44: Template used to set up experiment 1.
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Figure 45: Template for structure shown figure 26. Template has been reduced in size to fit page margins.
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