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Abstract

Flexible objects are a challenge to manipulate. Their motions are hard to predict, and the high
number of degrees of freedom makes sensing, control, and planning difficult. Additionally, they have
more complex friction and contact issues than rigid bodies, and they may stretch and compress. In
this thesis, I explore two major types of flexible materials: cloth and string.

For rigid bodies, one of the most basic problems in manipulation is the development of immo-
bilizing grasps. The same problem exists for flexible objects. I have shown that a simple polygonal
piece of cloth can be fully immobilized by grasping all convex vertices and no more than one third
of the concave vertices. I also explored simple manipulation methods that make use of gravity to
reduce the number of fingers necessary for grasping. I have built a system for folding a T-shirt
using a 4 DOF arm and a fixed-length iron bar which simulates two fingers.

The main goal with string manipulation has been to tie knots without the use of any sensing.
I have developed single-piece fixtures capable of tying knots in fishing line, solder, and wire, along
with a more complex track-based system for autonomously tying a knot in steel wire. I have also
developed a series of different fixtures that use compressed air to tie knots in string. Additionally,
I have designed four-piece fixtures, which demonstrate a way to fully enclose a knot during the
insertion process, while guaranteeing that extraction will always succeed.
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Chapter 1

Introduction

From observing humans, we can infer that flexible manipulation skills require a high degree of
dexterity, as well as the ability to see and intuitively analyze objects as they are manipulated.
Children need help learning to tie their shoes. We can learn to fold paper into an origami flower,
but only after practicing with simpler constructions. We must fold many loads of laundry before
we learn how to do so efficiently, and in such a way that our clothes are not wrinkled when we
want to put them on at a later time. In this thesis, I will show that various simplifications can
be made to reduce the complexity of manipulators and the need for sensing when handling flexible
materials. I will focus on laundry folding and knot tying.

We can simplify cloth folding by using gravity to supplement a small set of manipulators. We
have built a system for folding a T-shirt, using a fixed-length iron bar as a manipulator (Figure 1.1).
Magnets on the shirt function as stand-ins for a more complex gripper, such as the one developed
by Shibata [75]. Based on this system, we can make some observations on the behavior of cloth
in the presence of gravity, and use these observations to build a basic framework that defines the
types of grasps that are possible with only two fingers.

Flattening the cloth in preparation for folding is the biggest challenge. We would like to fully
immobilize a piece of cloth in a flat configuration, which is equivalent to the problem of finding
immobilizing grasps for rigid bodies. For any shape, it is always at least necessary to grasp the
convex corners, and it may even seem that this is true for all shapes. However, there exist shapes
for which rotational motion is possible even if all convex corners are grasped. Figure 1.2 shows
such a polygon, with arrows indicating the direction of rotation. This polygon is part of a class
of polygons that we call pinwheels. Using pinwheels, we can show that there exist polygons for
which a grasp consisting of the convex vertices plus one third of the concave vertices is necessary.

Figure 1.1: Shirt folded with robot arm Figure 1.2: Polygon requiring extra fingers

1



2 CHAPTER 1. INTRODUCTION

Figure 1.3: Track-based fixture for an overhand knot

We have also shown that this many fingers are sufficient to grasp any polygon, thus giving tight
bounds on the number of fingers needed to immobilize a non-stretchable cloth polygon.

String can be thought of as one-dimensional cloth; in fact, we use string as a fundamental unit
in our cloth grasping proofs. Our main goal with string manipulation has been to tie knots without
the use of any sensing. We have developed single-piece fixtures capable of tying knots in fishing line,
solder, and wire. Lessons learned from the single-piece fixtures led to a spectrum of different types
of fixtures that work with both wire and string. These fixtures use air and motors for insertion,
and range from simple tubes to complex multi-walled tubes and tracks with sliders.

Many of the knot fixtures rely on the fact that when pulled, string tends towards the shortest
path between the pulled points. Within a curved tube, string moves to the inside of the curve. If
we somehow insert string into a tube in the shape of a knot, we can use this property to make it
possible to extract the string while maintaining the knot. We use various methods to accomplish
this, from slits to removable pieces of the fixture.

We use two main methods for inserting string or wire into a knot fixture: manual/motorized
pushing for wire, and compressed air for string. We built a motorized feeding mechanism for wire
that uses rubber rollers to insert wire into our knot fixtures. This feeder has been combined with
a track-based fixture to create a system capable of tying simultaneous overhand knots in multiple
strands of steel wire (Figure 1.3). Additionally, we developed several different types of fixtures that
rely on compressed air for insertion.

1.1 Related Work

Our work on cloth grasping is related to rigid body grasping, capturing and caging rigid bodies,
deformable object manipulation, and cloth simulation, manipulation, and sensing. Our knot tying
research is related to fixturing, string and linear deformable object models, robotic knot tying,
snake robots and steerable needles, and extraction of parts from molds.
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1.1.1 Rigid Body Grasping

We are interested in grasping cloth and string; however, most existing work on grasping has focused
on rigid bodies. Numerous papers have been written on the subject, as evidenced in Bicchi and
Kumar’s survey of theoretical work on grasping [7]. The listing here is meant to be a subset of
rigid body grasping work that is closest to our work.

Early work on immobilizing grasps was done by Reuleaux in 1876 [64]. Reuleaux devised a
geometric method for analyzing a grasp of a planar rigid body by a set of frictionless points.
However, it was not possible to easily generate a minimal grasp using Reuleaux’s method.

Nguyen developed algorithms for constructing force-closure grasps for a given planar object [50].
Mishra, Schwartz, and Sharir found bounds on the number of fingers needed to grasp a rigid
object [49]. Specifically, to hold a rigid object at equilibrium, 4 fingers suffice for a two-dimensional
object, and 7 fingers suffice for a three-dimensional object. Rimon and Burdick refined this result
for two dimensions by showing that 3 convex fingers suffice to immobilize any smooth or polygonal
planar object [66].

Zhu et al. gave a metric for analyzing how well a given grasp is capable of withstanding external
forces [76], which can be used to compare grasps produced by different algorithms. Jia developed
a fast algorithm for computing all antipodal grasps that place a parametric plane curve in force
closure [38].

1.1.2 Caging

Perfect immobilization is hard for flexible objects; instead, approximate or partial immobilization
may be required. Caging is a weaker form of grasping, where the object might not be immobilized,
but is instead prevented from leaving some bounded region (motions to move it to infinity do not
exist). Caging may be weaker, but it can also be more useful, as it allows for some uncertainty in
the position of the object to be grasped. In some sense, we can state that our knot fixtures are
caging the string in a configuration that happens to also tie the string in a knot.

Kuperberg posed the 2D caging problem in 1990 [45]. Rimon and Blake developed an algorithm
to answer Kuperberg’s problem [65]. They determined the maximal set of arm and manipulator
configurations that resulted in the caging of an object. This set could be used to cage an object in
an unknown configuration, and to slowly contract the caging grasp to an immobilizing grasp.

Erickson et al. examined the use of three disc-shaped robots for capturing an arbitrary convex
object in the plane [23, 24]. They fix the locations of two of the robots, and determine the “capture
region”, which is the set of configurations of the third robot that capture the object. They show
that determining the capture region is equivalent to a visibility problem.

1.1.3 Deformable Object Manipulation

For rigid bodies, grasping and manipulation are often separate operations, although they are occa-
sionally combined for the purpose of removing error. Once a part is in an immobilizing grasp (which
can be achieved with a small number of fingers), end effector motions result in predictable changes
in configuration. However, for deformable objects, grasping and manipulation are closely coupled.
A grasp may deform part of an object in a way that causes major changes in other portions of the
object. As with rigid bodies, deformable objects are predictable if they are fully immobilized; in
practice, such immobilization requires more fingers than are available.

Wakamatsu et al. developed the concept of bounded force closure for deformable parts [84].
Bounded force closure is an extension of force closure in which the grasp can withstand external
forces up to some bound. They applied this to linear deformable objects as an example.
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Howard and Bekey developed a system for generalized handling of 3D deformable objects [34].
They developed a ball and spring model, and used machine learning to compute deformation
characteristics for different objects. These characteristics were then used to grasp unknown objects.

Hirai et al. worked on combining grasping and manipulation for deformable objects [32]. They
developed a robust control system that incorporated tactile and vision data to influence controls,
and experimentally verified their control scheme using a planar deformable sponge.

Gopalakrishnan and Goldberg created the concept of deform closure [29]. They define a de-
formable object to be in deform closure if positive work is needed to release the part, and show that
if a given set of frictionless contacts holds a rigid object in form closure, the same set of contacts
holds the equivalent deformable object in deform closure.

Cheong et al. gave bounds for the number of fingers that immobilize an acyclic flexible chain
of hinged polygons [18]. They show that (p + 2) frictionless point contacts suffice to immobilize a
chain of p 6= 3 polygons if the polygons do not have parallel edges. An arbitrary chain of p polygons
can be immobilized by at most (p + 3) contacts.

Rodŕıguez, Lien, and Amato worked on motion planning in an environment where every object
is deformable [67]. They focus on maintaining constant volume for all deformable objects, and use
a tree-based planner to explore the system. This type of planning can also be applied to grasping
problems in deformable environments.

1.1.4 Cloth Simulation

The ubiquitous presence of cloth has led to extensive research in simulation, such as in the field of
computer graphics, where realistic cloth is very desirable.

The earliest cloth model for simulation was developed by Weil in 1986 [86]. Weil’s model uses a
rectangular grid to represent the cloth, and analyzes a piece of cloth that has been suspended from
a set of fixed points. First, the resulting shape is approximated based on the constraints of the
fixed points. This is followed by a relaxation process that incorporates distance constraints present
in cloth.

In 1987, Feynman developed a physically-based cloth model, which was also designed to compute
static configurations of draped cloth [25]. This model also uses a grid of points spaced out over the
cloth surface, and tries to minimize the energy of the cloth by relaxing individual points. The cloth
energy function is based on physical cloth, and incorporates stretching, bending, and buckling,
among other properties.

Breen et al. worked on developing a cloth model to analyze the draping behavior of different
types of cloth [9]. This model used a particle mesh, where particle behavior is governed by a set
of energy functions that represent properties such as gravity, bending, and stretching. They used
a standard cloth testing system, the Kawabata Evaluation System, to measure the mechanical
properties of different types of cloth, and used these properties as inputs to the cloth model. This
allowed them to test draping behavior of the same cloth shape using different materials.

Baraff and Witkin published one of the seminal works on cloth simulation, which focused on
modifying cloth simulators to allow for larger time steps [3]. They developed an implicit integration
method that uses direct constraint satisfaction, which yields computation times on the order of
seconds per frame of a 30 Hz animation.

Choi and Ko developed a cloth simulation method that attempts to realistically model buck-
ling [19]. They focus on correctly displaying the results of buckling, while preventing stability issues
caused by buckling. This model is also particle-based, and uses a semi-implicit integrator to enable
large time steps.
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1.1.5 Cloth Manipulation

Work has also been done on manipulating cloth in the real world. Patton et al. developed an
adaptive force feedback controller for handling cloth [58]. This controller was used to apply a
desired tension to cloth, and to straighten wrinkles in the cloth. They simplified grasping by
attaching wooden rods along two sides of the cloth, and grasped one of these rods with the robot’s
end effector. The other rod was fixed to the table. Additionally, they assumed that the cloth
handling only took place in 2D. The primary focus was the use of a force/torque sensor to estimate
the tension and configuration of the cloth.

Cloth manipulation has been used in various laundry folding projects; typically, only a few
fingers are used for grasping in these projects. Ono et al. have worked on a manipulator for cloth
handling [53]. This manipulator consists of a pair of fingers that grasp one point of a piece of
cloth, and is designed for picking up cloth rectangles from a stack. One finger is a blade that slides
between pieces of cloth, and the second is a piece of balsa wood that pins the cloth against the
blade. They make use of sensors to verify that only one piece of cloth was grasped.

Ono et al. also developed a cooperative system combining touch and vision to unfold cloth [54].
They use the gripper mentioned in their previous work, with the addition of a stationary camera
and a second camera attached to a robot arm. They developed a very basic planner for unfolding
a rectangular piece of cloth with one fold in it. They analyzed the outline of the folded cloth,
estimated the location of a moved corner, tried to grasp it, and then simply used straight line
motion to move the grasped corner to its final location.

Hamajima and Kakikura worked on isolating individual pieces of cloth from a mass of washed
clothing, and on unfolding the selected item [30]. They segment an image of a mass of clothing
based on color, and select a point to grasp within a single piece of cloth. Their system uses a
gripper that consists of a pair of rubberized wheels, which rotate inward to pull a small fold of
cloth between them. The wheels are then pushed together to hold this fold. They use a pair of
robot arms with such grippers to grasp cloth on a hemline, and to spread out the cloth along this
line.

Kaneko and Kakikura continued this work by focusing on classifying the type of cloth after an
initial grasp [40]. Once the cloth has been hung by a pair of robot arms, they classify the resulting
shape as one of three types based on the protruding regions. Given this classification, they would
measure portions of the cloth, and try to identify the shape as an example of a towel, shirt, or
pants. They state that their classifier had a success rate of about 90%.

Salleh et al. developed a system consisting of two robot arms in which they traced cloth bound-
aries with grippers to flatten towels [71]. They used a camera and standard image processing
techniques to find and grasp one corner of the cloth. The second robot arm loosely gripped the
towel next to this corner, and dragged the gripper along the towel until an adjacent corner was
reached. At this point, the hanging cloth is essentially flattened. Their system has a success rate
of about 50%, although they can detect failure and repeat portions of the process as needed.

Salleh et al. refined this result by developing an improved gripper to avoid dropping the cloth
during the tracing process [72]. The key difference is that the tracing gripper actually consists of a
pair of grippers, separated by a linear actuator that allows the distance between them to change.
During the tracing motion, one gripper is always holding the cloth securely while the other slides
along the cloth. With this method, they were able to improve their success rate to 75%.

Kita et al. worked on developing a deformable model for clothing, and used stereo vision to
match this model to the position of an observed hanging pullover [43, 44]. Their model consists
of 20 nodes interconnected by springs. They suspend this model in gravity, and match it to the
observed cloth. At this point, they estimate a grasp location in 3D space for a second manipulator.
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Shibata et al. use a single-armed robot with multiple grippers to unfold a hemmed, rectangular
piece of cloth [75]. Their gripping mechanism uses four fingers that are capable of grasping along
two axes. Pairs of fingers can also be spread apart to grasp two distinct points on the cloth. They
successfully pick up a partially folded cloth rectangle and spread out the two pairs of fingers along
an edge to flatten the cloth in mid-air.

1.1.6 Cloth Immobilization

Our work on cloth immobilization is dependent on several concepts in computational geometry. In
our work, we develop a new type of polygon skeleton, which we refer to as a support tree. There
are two major types of polygon skeletons that are similar to our support trees. The first is the
medial axis [60], which has the same number of vertices and edges as a support tree. However,
medial axes allow for curved edges. The second similar type of skeleton is the straight skeleton [1],
which has straight edges, but contains more vertices and edges than are needed for a support tree.

Our cloth immobilizing work also depends on concepts in visibility, such as those surveyed by
Ghosh [28], and in triangulation and its applications to the art gallery problem, as explored by
O’Rourke [55].

Finally, the problem of immobilizing cloth is related to the problem of trying to determine if a
structure consisting only of cables is infinitesimally rigid when it is pinned at a set of points. This
type of problem is briefly mentioned in Connelly’s work on tensegrities and rigidity theory [20].

1.1.7 Cloth Sensing

One of the major difficulties in cloth manipulation is locating the cloth. As seen in previous sections,
most existing systems use vision to infer cloth position, with additional input from strain gauges
or other sensors to determine if and how much cloth is grasped between fingers. Other methods
are also possible, however.

Nishikawa et al. proposed the use of an ultrasonic sensor for measuring a cloth surface in
3D [51]. The use of an ultrasonic sensor removes any problems posed by colored materials. They
experimentally found that their sensor gave them an accuracy down to 1 mm. They measured the
position of a shirt on a person by manually moving the sensor on an arm around the person’s torso
at discretized heights, yielding a contour map of the shirt.

Pritchard and Heidrich developed a motion capture system for determining the geometry of a
piece of cloth [61]. Their system uses three cameras to produce a partial description of the cloth’s
geometry. They use the SIFT algorithm to find feature points in an arbitrary pattern on the cloth.
This information is combined with the partial geometry to produce a full parametric model of
the cloth surface. This system reconstructs each frame individually, which can result in motion
discontinuities between frames.

Scholz and Magnor used optical flow between video frames to compute 3D scene flow [73]. This
method works best when the cloth has a detailed texture. In regions without detailed texture
information, the geometry is interpolated using a grid-based deformable cloth model. To avoid
accumulated error over multiple frames, the mesh is constrained to match the silhouette visible in
video data.

Scholz et al. further developed this work by using cloth with a color-coded pattern [74]. The
pattern is an M-array, which has the property that every 3× 3 neighborhood of a point uniquely
identifies the point. This allows a very accurate reconstruction to be computed, which is filled in
as necessary for deep folds that have poor visibility even with multiple cameras.
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RFID has the advantage of not suffering from occlusion, and of uniquely identifying each point.
As far as we are aware, no prior work exists for using RFID tags to uniquely identify points on
a piece of cloth. However, RFID tags have been used for localization. Song, Haas and Caldas
developed a method for locating materials at a construction site using RFID tags combined with
GPS data [78]. In this system, rather than having each object know its location, a mobile unit
(in this case, the construction supervisor) moves around the construction site with a GPS receiver
and a RFID reader. When tags are detected, they are known to be within a certain radius of the
currently reported location from the GPS receiver. This radius is based on the properties of the
RFID tags and reader.

1.1.8 Fixturing

Fixtures present a way to manipulate or grasp flexible materials with little or no sensing, and with
simplified motions. The primary complexity lies in designing the fixture to correctly accomplish its
task.

Traditionally, fixtures are used to immobilize a part in order to perform some tasks upon
it, such as precisely drilling holes. Modular fixturing systems exist that can be reconfigured for
different types of parts. Brost and Goldberg developed an algorithm to enumerate all possible
fixture designs for an arbitrary polygon silhouette, and to select the optimal design based on some
quality metric [10]. The modular fixturing system they work with has a precise lattice of holes as
its base. Brost and Goldberg used three round locators as well as one translating clamp to create
fixtures.

There has been significant work on reducing the time needed to create fixtures, with a number
of computer-aided fixture design systems in existence. For example, Boyle et al. designed a system
called CAFixD, which uses case-based reasoning to produce a fixture design for an arbitrary 3D
part [8].

Lu and Akella developed a method of folding cardboard cartons using fixtures as manipula-
tors [47, 48]. They view the unfolded carton blank as a robot with a series of revolute joints con-
necting the segments, and develop a motion planning algorithm that generates folding sequences
for such robots, provided that there are no kinematic loops. From these sequences, it is possible to
generate fixtures that fold the carton blank into a box.

This is also loosely related to work on designing tracks for vibratory bowl feeders. In such
devices, spiral tracks are constructed with obstacles that are designed to allow parts to be fed
along the track only if they are in one particular configuration. Invalid configurations are rejected
back into the bowl, and start up the track again. One example of research in this area is work by
Barretty et al. on automatically designing traps (polygonal holes cut into the track) that remove
undesirable configurations [6].

1.1.9 String Models

Linear deformable objects (LDOs) and string have been analyzed extensively, and many different
models have been developed. Pai used Cosserat rods to simulate thin strands, such as sutures [57].
The Cosserat rod model correctly captures behaviors associated with twisting, which are not ac-
counted for in finite element method or ball and spring models. They develop a fast simulator using
this model, which is capable of supporting real-time interaction with a virtual suture.

Wakamatsu and Hirai developed a detailed model of linear object deformation based on differ-
ential geometry [83]. This model correctly describes flexure, torsion, and extension. They apply
their model to path planning with an LDO. Wakamatsu et al. also developed a 2D model of LDOs
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in contact with obstacles [85]. The basic model is equivalent to their full 3D model, and also uses
differential geometry. They extend their model to support dynamic deformation as a result of ex-
ternal forces and moments, as well as geometrical constraints. They also model contact of an LDO
with a circular obstacle.

1.1.10 Knot Tying

Reidemeister moves are a major component of knot theory, which we use in developing some of our
work [63]. Reidemeister moves are a set of three motions that change a diagram of a knot without
changing the topology of a knot. In addition, these three motions suffice to change any diagram of
an unknot into a trivial unknot (a circle).

While our robot is not the first to tie knots autonomously, our system is considerably less
complex than others. Knot tying was first explored by Inoue and Inaba using a 6+1 DOF robot
arm with stereo machine vision [36]. With this system, they successfully insert a rope into a ring,
and then tie the rope into a knot around the ring.

Hopcroft et al. developed a graph-based language meant for programming knot tying motions
at a fairly high level [33]. Since rope motions are unpredictable, it does not make sense to operate
on fixed positions, since these will not be known in advance. Instead, the language consists of
motions of points on segments along paths, which are located with a vision system. A higher level
consisting of segment and crossing operations is built on top of the point and path-based level.
Hopcroft et al. developed a parser and compiler for this language, and tested it by tying knots with
a robot arm.

Phillips, Ladd and Kavraki created a simulator capable of handling realistic rope, with suturing
explored as a possible application [59]. Their rope model consists of a spline formed from linear
springs, with control points located at the ends of the springs. They employ adaptive subdivision
as needed to refine the model. Their simulator includes support for collision detection, which is
required for simulated knot tying.

Takamatsu et al. created a system that could learn to tie a knot by observing a human tying
the same knot [79]. They analyze images of multiple steps of the knot tying process, and recognize
the state of the knot in each image. From this sequence of states, they generate a sequence of knot
tying motions based on Reidemeister moves. However, they do not seem to have extended this
work to actually having a robot tie a knot.

Taylor gives a survey of medical robots in general, with some mention of suturing systems [81].
One such suturing system is the EndoBot, developed by Kang and Wen [41]. EndoBot is a system
designed to assist surgeons in minimally invasive surgeries. Their system includes algorithms for
autonomously tying knots while suturing, and they have modified a shuttle needle device for use
by the robot.

Saha, Isto, and Latombe developed a string model and motion planning algorithms for tying
simulated knots [68, 70, 69]. They model LDOs as a cylinder described by a smooth curve, with
a coordinate frame at each point along the curve for describing torsion. They analyze a knot, and
come up with a sequence of motions for tying it using two robot arms. They have implemented the
motions both in simulation and using actual robot arms.

Wakamatsu, Arai and Hirai developed a very detailed description of the theory involved in tying
and untying knots with robots [82]. They created a description of the topological state of a knot,
and defined a set of four basic operations for transitioning between states. With these operations,
they used a tree search to find sequences of motions from an initial state to a goal state. They
developed a planner that determines grasp points and uses the state transitions to guide a robot
arm in knot tying. They also showed that a SCARA robot (three translational DOF and one
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rotational DOF) is sufficient to tie an LDO into a knot.
In addition, there are many patents for various devices to assist in knot tying. The patents all

involve complex devices with moving parts, and are used for many applications, from tying fishing
line [14] and shoelaces [12], to suturing [77].

1.1.11 Snake Robots and Needle Steering

Snake robots are another area loosely related to string manipulation, since they are in some sense
also LDOs with the addition of some amount of actuation.

Burdick et al. analyzed the kinematics of a snake modeled as a continuous flexible curve [11].
They developed locomotion algorithms to enable the snake to travel in a uniform direction using
sidewinding motions, as well as enabling it to change direction.

Wright et al. developed a modular snake robot that is capable of motion in a variety of environ-
ments, such as the inside and outside of pipes [88]. They develop a custom servo motor for control,
and covered their modules in high-friction skin to assist in locomotion.

Webster et al. designed a system that uses nonholonomic controls to steer a flexible, bevel-tipped
needle through soft tissue [35]. They observed that the bevel tip of the needle makes it possible to
steer the needle by controlling insertion and axial rotation, and developed a model using standard
nonholonomic unicycle and bicycle models. They created a planner, and experimentally verified
the ability to control the needle.

1.1.12 Mold Parting Directions

In order to build multi-piece knot fixtures, we need to know how to separate the fixture pieces to
free the entire knot. This is very similar to the problem of extracting cast or injection-molded parts
from their molds. Typically, only 2-moldability is considered, in which there are two mold pieces
that are separated with one translation. Early approaches only considered the three principal axes
as parting directions; however, they allowed complex (non-planar) parting surfaces [62, 16]. Later
approaches allowed for multiple mold pieces. Chen gave criteria for identifying parting faces, which
are used with a reverse glue operation to produce a set of mold pieces [17]. Finally, Khardekar et
al. developed an algorithm running on graphics hardware for computing a feasible parting direction
for two mold pieces [42]. On a modern GPU, this is fast enough to allow for real-time highlighting
of undercuts (regions that would get stuck during mold separation).
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Chapter 2

Cloth Grasping
1

Cloth manipulation is difficult as a result of the flexibility of cloth. When cloth is suspended from
one or two points, it develops buckles in a manner that is hard to predict. Grasps that minimize
buckling will therefore make it easier to handle a piece of cloth, such as during the flattening or
folding of laundry. One guaranteed way to avoid buckling is to fully immobilize cloth in a flattened
state.

Once we have cloth immobilized in a flat state, we have full configuration information with which
we can plan further actions. Further, once we have a set of points necessary for an immobilizing
grasp, we only need to sense these points to get information about the cloth. If all of the grasp
points are in locations corresponding to a flat configuration, we know that the rest of the cloth
must be flat without directly sensing it.

We make a few simple assumptions about the cloth grasping problem. The cloth is non-
stretchable, and we will place some number of point fingers on the cloth. These fingers are “pinned”
to the plane; once they are placed, they do not move and they directly immobilize the point on the
cloth underneath them.

The fundamental questions in grasping ask how many fingers are needed for a grasp, and where
they should be placed. Figure 2.1 shows three pieces of cloth, all of which are immobilized except
for b).

a) b) c)

Figure 2.1: Three flat cloth shapes grasped by fingers. All but b) are immobilized.

Fact 2.1. Any line segment with pinned endpoints that is fully contained in a polygon (the end-
points are mutually visible) is immobilized.

First order line segments of this type are indicated by solid lines in Figure 2.1. If a point
somewhere in the polygon lies on a line segment between grasp points or first order lines, then
it too will be immobilized, since the endpoints of this second order line are immobilized. A few
second order lines are shown as dashed lines in the figure. This process can be repeated as needed
with higher order line segments until the entire cloth is immobilized.

1Portions of this chapter were published as [5]
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x

Figure 2.2: Star grasped with three fingers.

(a) Arrows indicate pos-
sible instantaneous ve-
locities.

(b) Paper polygon after
motion was applied.

Figure 2.3: Polygon that cannot be immobilized
by pinning convex vertices (closed circles).

There are some cases where we cannot validate a grasp by drawing immobilized lines between
fingers. Consider the polygon shown in Figure 2.2. No finger is visible from another finger. How-
ever, no point in the shaded hexagon can move further from any of the fingers, so this region is
immobilized; therefore the entire polygon is immobilized.

To immobilize a cloth polygon, there must be a finger at least at each convex vertex; other-
wise, that convex vertex will be free to move. In some cases, pinning just the convex vertices is
enough. However, the piece of cloth shown in Figure 2.3 cannot be immobilized by pinning the
three convex vertices of the shape. We have verified this result experimentally (Figure 2.3(b)) and
theoretically (Section 2.3.1).

This polygon is representative of a class of polygons which we call pinwheels. These polygons
all require more than nconvex fingers for immobilization. In Theorem 2.6, we will show that the
upper bound is nconvex +

⌊
1
3nconcave

⌋
fingers for simple polygons. This bound is tight; there exist

polygons that require this many fingers for immobilization.

2.1 Cloth Models and Definitions

Cloth can be modeled in several different ways. In the graphics and simulation worlds, ball and
spring models are quite common. However, for our approach, we want the cloth to not stretch,
which suggests a developable surface model.

We will use a model that is “almost” a developable surface model. We assume the cloth cannot
stretch, but that the cloth may compress slightly. Our upper bound on the maximum number of
fingers needed to grasp cloth (nconvex +

⌊
1
3nconcave

⌋
) holds for developable surfaces, but we discuss

the existence of polygons requiring this many fingers only for the compressible model.

2.1.1 Support Graphs

To discuss polygon immobilization, we use a specific type of polygon skeleton called a support
graph; an example is shown with dotted lines in Figure 2.4.

Definition 2.1. A support graph for a polygon is an embedded planar graph contained within
the polygon, such that every point of the polygon falls on a line segment (possibly of length zero)
that

• is completely contained within the polygon, and

• has endpoints that are points of the embedded graph (on an edge or at a node).
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Figure 2.4: Example of a support graph in a cloth
polygon.

Figure 2.5: Allowed motion of a
non-positively-spanned vertex.

A support tree is a support graph with no cycles.

It is clear that if a support graph for a polygon is immobilized by some set of fingers, every line
segment specified in the definition is immobilized, and therefore the polygon is immobilized. We
can examine the immobilization of support graphs by placing fingers at vertices.

Definition 2.2. A pinned vertex is a graph or polygon vertex that is held in place by a finger.
This is indicated in diagrams by a closed circle. (Unpinned vertices have open circles).

Definition 2.3. A positively-spanned vertex is a vertex in a graph whose adjacent edges
positively span R2. (For a definition of positive linear spans, see [22].)

There are many ways to construct a support graph for a polygon. Figure 2.4 shows a support
graph constructed by hand, but we can always easily construct a (possibly more complex) support
graph by triangulating a polygon. If a triangulation of the polygon is immobilized, the polygon is
immobilized.

We assume a model of cloth that allows the cloth to compress. In this case, if a triangulation
of the cloth is not immobilized by a set of fingers, the cloth is not immobilized.

2.2 Immobilizing Trees, Graphs, and Polygons

As an approach to specifying the fingers required to grasp a piece of cloth, we can first describe
the fingers needed to immobilize a connected, linear network of non-stretchable string embedded
in the plane. If this network is a support graph for a polygon, then that polygon is immobilized in
2D and 3D.

At a minimum, all vertices that are not positively-spanned must be pinned in order to immobilize
a non-stretchable planar graph. The shaded region in Figure 2.5 illustrates the free motions of an
unpinned and non-positively-spanned vertex.

2.2.1 Immobilizing Non-stretchable Graphs

Initially, we consider a non-stretchable tree, and assume that all vertices have degree one or three.
Additionally, we will assume that all interior vertices (non-leaves) are positively-spanned vertices.
These assumptions will be relaxed later, but they are useful in the first stage of the proof.

In the theorems that follow, we consider only first order constraints on the free motions of
vertices, since linear constraints are sufficient for the proofs and simpler to analyze. Using quadratic
distance constraints yields the same results. We will use the notation −→uv to indicate a normalized
vector pointing from vertex u to vertex v. Figure 2.6 illustrates the following lemma.
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v u

vu

Figure 2.6: Restriction on allowed motions
of u.

v u

vu

Figure 2.7: Base case (vertex v is pinned, as
indicated by the closed circle).

Lemma 2.1. Consider a planar non-stretchable tree, with all vertices of degree one or three, and
with only positively-spanned interior vertices. Let all the leaves (non-positively-spanned vertices)
be pinned, except for one leaf, labeled u. Let v be the vertex adjacent to u. Vertex u cannot move
into the half plane defined by normal −→vu. (This can also be written as a constraint of the form
u̇ · −→vu ≤ 0.)

Proof. Induction Hypothesis: Consider a tree subject to the assumptions with all leaves pinned
except for u, and let v be the vertex adjacent to u. u cannot move into the half plane indicated by
the constraint u̇ · −→vu ≤ 0.

Base Case: The base case is a tree consisting of only vertices v and u (Figure 2.7), with vertex
v pinned. The proof is clear for this case.

Inductive step: Given a tree T , break it at vertex v into two trees, T1 and T2. Let a be the
vertex adjacent to v in T1, and b be the vertex adjacent to v in T2 (Figure 2.8). By the induction
hypothesis, T1 imposes the constraint v̇ · −→av ≤ 0 (equivalent to v̇ · −→va ≥ 0), and T2 imposes the
constraint v̇ · −→bv ≤ 0 (equivalent to v̇ · −→vb ≥ 0).

From our assumptions, we know that −→va,
−→
vb, and −→vu positively span R2. As a result, if both

v̇ · −→va ≥ 0 and v̇ · −→vb ≥ 0 are satisfied, then v̇ · −→vu ≤ 0, proving the induction hypothesis.

This lemma can be extended from restricted motion to immobilization.

Lemma 2.2. Consider a planar non-stretchable tree, with all vertices of degree one or three, which
contains only positively-spanned vertices in its interior. If all the leaves of this tree are pinned, the
tree will be immobilized.

Proof. Consider a tree that satisfies Lemma 2.1, and label its unpinned leaf u. Leaf u cannot move
away from its adjacent vertex v (u̇ · −→vu ≤ 0, which also implies v̇ · −→vu ≤ 0). If we now pin u, we
impose a constraint on v of v̇ · −→uv ≤ 0. Combined with the previous constraints at v from the
other adjacent edges (which we know positively span R2 if edge vu is included), this completely

v u

vu

a

b

T
1

T
2

Figure 2.8: Inductive step.
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immobilizes v. The immobilization of v can now be used to show that the vertices adjacent to v
are also immobilized. This immobilization can be continued throughout the tree, showing that the
entire tree is immobilized.

This result can be strengthened to any non-stretchable planar tree. The next theorems depend
on the concept of splitting vertices of a non-stretchable tree or graph by pinning them. If a vertex v
has k adjacent edges, and we pin v, then this is equivalent to having k pinned vertices all located at
the same point as v, with each vertex adjacent to exactly one of the edges adjacent to v. Physically,
the resulting tree or graph is exactly equivalent to the original tree or graph, as constraints do not
propagate past pinned vertices.

Theorem 2.3. Any planar non-stretchable tree embedded in R2 (with vertices of any degree) that
has its non-positively-spanned vertices pinned is immobilized.

Proof. First, we will remove the assumption that all interior vertices must be spanned vertices, and
we allow degree 2 vertices. If any vertex is non-positively-spanned, then it is pinned, as is specified
by the theorem statement. Additionally, note that any degree 2 vertices can never have edges
positively spanning R2, and therefore must be pinned. If we break the tree into a forest by splitting
it at each non-positively-spanned (and pinned) interior vertex, each component of the forest will
be immobilized by Lemma 2.2. When joined, the resulting complete tree is still immobilized.

Finally, we allow vertices of degree greater than 3. If such a vertex is non-positively-spanned,
we can simply use the argument above. If it is positively-spanned, then we need to slightly rework
the inductive step of Lemma 2.1. If vertex v is of degree d > 3, it will be split into d− 1 subtrees
(along all edges except vu). By the inductive hypothesis, we know there are constraints of the form
v̇ · −→vai ≥ 0 for each subtree Ti. We can pick a pair of subtrees Ti and Tj , such that −→vai, −→vaj , and−→vu positively span R2. Now, as in the original inductive step, this gives us the desired constraint
on u.

If we split a graph into a tree by adding one finger per cycle (and pinning non-positively-spanned
vertices), the graph is immobilized.

Theorem 2.4. Any planar non-stretchable graph with all non-positively-spanned vertices pinned
and at least one vertex pinned within each cycle is immobilized.

Proof. Pin one vertex per cycle of the graph. This splits the graph at all of these pinned ver-
tices. Splitting each cycle with one finger converts the graph into a tree, with properties satisfying
Theorem 2.3.

If no vertices in a cycle are pinned, the vertices in the cycle can typically move. One case in
which the cycle is immobilized occurs if the edges supporting the cycle bisect the exterior angles of
the cycle, but this case is rare.

2.2.2 Grasping Polygons

A tree or graph embedded in a cloth polygon can be used to show that the polygon is immobilized.

Theorem 2.5. If a cloth polygon contains a planar non-stretchable graph G such that non-positively-
spanned vertices of the graph correspond exactly to the convex vertices of the polygon, then the graph
is a support graph for the polygon, and immobilizing the graph immobilizes the polygon.
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Figure 2.9: Two types of cells (A and B) in a polygon containing a support graph.

Proof. By the definition of a support graph (Definition 2.1), every point in the polygon must lie
on a line with endpoints on the support graph.

Consider the polygon and graph shown in Figure 2.9. Since non-positively-spanned vertices of
the graph (thin line) exactly map to all convex vertices, the polygon (thick line) is divided up into
two types of cells. Cells that are contained within cycles of the graph are trivial to handle (indicated
by A in the figure). For any point within a cycle, any line through the point has endpoints on the
graph, and thus is immobilized if the graph is immobilized.

The other type of cell is enclosed by graph edges and a chain of (possibly zero) concave vertices
on the polygon boundary (B in the figure). The polygon boundary must consist purely of concave
vertices, as a convex vertex would have a non-positively-spanned graph vertex located at it, splitting
the cell. Now, consider any point x in the cell. Find the closest polygon edge e. Extend a line
through x parallel to e until both ends of the line hit the boundary of the cell. The endpoints must
both lie on graph edges; if this were not the case, the polygon boundary would contain a convex
vertex, and it does not. Therefore, for any point in this type of cell, there exists a line with both
endpoints on the graph.

Since both types of cells satisfy the definition of a support graph, G is a support graph. By
definition of a support graph, if G is immobilized, the polygon is immobilized.

We can now show that nconvex+
⌊

1
3nconcave

⌋
fingers are always sufficient to immobilize a polygon.

In the following proof, we view a triangulation of a polygon as a graph embedded in the polygon.

Theorem 2.6. A simple cloth polygon can always be immobilized by pinning nconvex +
⌊

1
3nconcave

⌋
vertices.

Proof. Portions of this proof are similar to Fisk’s proof that an art gallery requires
⌊

n
3

⌋
guards [26].

In both proofs, the main problem is placing one item (a guard or a pinned vertex) per triangle.
As in Fisk’s proof, we begin by considering a triangulation T = (V, E) of the polygon P . We

consider the most strict form of a triangulation, in which triangle vertices must also be polygon
vertices. In this type of triangulation, concave polygons vertices will be positively-spanned by
incident graph edges, and convex vertices will not be. Concave vertices must be positively-spanned
because each exterior angle at a concave vertex is less than π

2 , and the interior angle is split into
angles of less than π

2 by the triangulation.
Let all convex vertices of the polygon (and thus all non-positively-spanned vertices of T ) be

pinned. By Theorem 2.4, T is immobilized if we also pin one vertex per cycle (which, for a
triangulation, means one pinned vertex per triangle).
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Figure 2.10: Convex quadrilateralization of an orthogonal polygon, with extra edges (dashed lines)
necessary for 4-colorability.

Convex vertices must always be pinned, so we can ignore any edges that are adjacent to them,
and we can construct a T ∗ = (V ∗, E∗) that removes these edges. Specifically, T ∗ contains only
the concave vertices of P , and only edges that are between pairs of concave vertices. Since any
triangulation can be 3-colored [55], and since T ∗ is a subset of a (3-colorable) triangulation T ,
T ∗ is also 3-colorable. As in Fisk’s proof, one of the three colors must be used no more than
b1

3 |V ∗|c = b1
3nconcavec times. Now, pin each vertex labeled with the least frequently used color.

Since each triangle must have one vertex of each color, each triangle (and therefore cycle) of T ∗

has one pinned vertex, and therefore each cycle of T has one pinned vertex. As a result, T (and
thus P ) is immobilized.

The above proof does not hold for non-simple polygons, as triangulations of such polygons are
not necessarily 3-colorable. However, we can use the same idea to give a bound for polygons with
holes as well.

Corollary 2.7. A cloth polygon with nholes holes can always be immobilized by pinning nconvex +⌊
1
3nconcave

⌋
+2nholes vertices, where both nconcave and nconvex include the concave and convex vertices

in the polygon’s holes.

Proof. If we place cuts in the polygon such that each hole is open to the region outside the polygon
(either directly through a single cut, or by a chain of cuts through other holes), then we have
turned the polygon with holes into a simple polygon with at most 4nholes new vertices (careful
cutting can reduce this to 2nholes new vertices if the cuts go between existing vertices). These new
vertices will be convex vertices; however, since the two sides of the cut are in the same place, we
can use one finger to pin each pair of new convex vertices. As in Theorem 2.6, we now triangulate
the simple polygon, which requires us to pin up to

⌊
1
3nconcave

⌋
concave vertices, plus the original

convex vertices, plus two fingers per cut (equivalent to two fingers per hole). Therefore, a polygon
with holes will be immobilized with nconvex +

⌊
1
3nconcave

⌋
+ 2nholes vertices.

We can also refine this proof for orthogonal polygons. Figure 2.10 illustrates the following
theorem.

Theorem 2.8. A simple orthogonal cloth polygon can always be immobilized by pinning nconvex +⌊
1
4nconcave

⌋
vertices.
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Proof. As with the proof for general simple polygons, this proof is similar to the proof that an
orthogonal art gallery requires

⌊
n
4

⌋
guards, given by Kahn [39].

We begin by taking a convex quadrilateralization Q of the orthogonal polygon P . A convex
quadrilateralization subdivides the polygon into convex quadrilaterals by placing non-intersecting
diagonals between polygon vertices; the existence of such a decomposition for orthogonal polygons
is proved by Kahn. Additionally, in order to force the quadrilaterals to be 4-colorable, we add
a pair of diagonals to each quadrilateral, and consider the result as a graph. Figure 2.10 illus-
trates this structure; the thin black lines indicate the polygon, the medium green lines indicate the
quadrilateralization, and the thin, dotted lines show the extra diagonals added to each quadrilat-
eral. Concave polygon vertices become positively-spanned vertices of the graph as a result of the
requirement that the quadrilaterals be convex.

The remainder of the proof is essentially identical to Theorem 2.6. We pin all convex vertices,
4-color the graph, and discard edges adjacent to pinned vertices to produce Q∗. In the resulting
colored graph, one of the four colors is used no more than b1

4nconcavec times. If we pin the vertices
corresponding to this color, Q∗ has one pinned vertex per cycle (or per quadrilateral), and thus Q
has one pinned vertex per cycle, indicating that Q and P are immobilized.

Although some of the proof techniques and bounds are related to similar techniques and bounds
for the art gallery problem, there are polygons for which a solution to the art gallery problem is not
also a solution to the immobilization problem, and vice versa. For example, in Figure 2.10, after
culling edges adjacent to convex vertices, we are left with the central quadrilateral. A guard in the
middle of this quadrilateral (at the intersection of the middle diagonals) would be enough to watch
the entire quadrilateral, but a finger placed at this vertex does not immobilize the polygon when
combined with the additional fingers gripping the convex vertices. With this grasp, the polygon
would still be able to rotate about the central finger. For the reverse statement, an immobilization
of the shape in Figure 2.4 is not a solution to the art gallery problem.

An important distinction is that for cloth, we are operating only on the concave vertices, whereas
for the art gallery, we are using all polygon vertices. The similarity between the problems comes
up when we remove edges adjacent to convex vertices, and are left with a smaller polygon (or
potentially a set of polygons). Within this smaller polygon, we are trying to place one finger on
the edges of each subdivision (triangle or quadrilateral), which is the same as the goal for an art
gallery.

2.3 When Convex Vertices Are Not Enough

We have shown that nconvex+
⌊

1
3nconcave

⌋
fingers are always sufficient to immobilize a simple polygon,

but in order to show that this bound is also necessary, we must first show that there are polygons
for which a convex vertex grasp is insufficient for immobilization.

2.3.1 Determining Free Motions

If we can compute possible free motions of a grasped cloth polygon, then the grasp is clearly
insufficient. We can verify a grasp by constructing an appropriate linear program, and by testing
to see if it has any nonzero solutions. This LP is built from distance constraints, which require
that the endpoints of an edge cannot move apart beyond their initial stretched distance. We use
the standard notion of polygon visibility in this section.
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Figure 2.11: A network of points connected by strings (closed circles are pinned).

If xi and xj are mutually visible, then at every time t, the distance between the points must
not be greater than the initial (fully stretched) distance:

||−−→xixj(t)||2 ≤ ||−−→xixj(0)||2. (2.1)

At time 0, the time derivative of every distance between pairs of mutually visible points must
be non-positive.

ẋi · −−→xjxi + ẋj · −−→xixj ≤ 0 (2.2)

A simple example is a network of points attached by strings as shown in Figure 2.11. Let x1

and x2 be unpinned points, and let x3 through x6 be pinned. There are five distance constraints,
corresponding to the edges. Using the constraints from equation 2.2, we have




−−→x3x1 0−−→x5x1 0
0 −−→x4x2

0 −−→x6x2−−→x2x1
−−→x1x2




(
ẋ1

ẋ2

)
≤ 0. (2.3)

We can rewrite this as

Jẋ ≤ 0 (2.4)

This is in the form of constraints for a linear program, and therefore we can use a solver to see
if there are any solutions other than ẋ = 0. If such solutions exist, then the line network can move
as described by one of these solutions.

Theorem 2.9. If the only solution to Jẋ ≤ 0 is ẋ = 0 for a triangulation of a polygon, then the
corresponding cloth polygon is immobilized.

Proof. Consider any point p on the cloth, and let this point be contained in the triangle Tp. Any
motion of p will pull on at least one of the edges ep of Tp. Since we know that the triangulation
network is immobilized, it is not possible for ep to move, and therefore p cannot move.

This gives us an algorithm for verifying a grasp for a cloth polygon. To do this, we take any
triangulation of the polygon, and consider this as our line network. We then build J , which has
one row for every edge of the triangulation (with the exception of any edges between pinned points,
since the coefficients would all be zero in this case). If Jẋ ≤ 0 only has the solution ẋ = 0, then
the triangulation network is immobilized by the given grasp. We have implemented this algorithm
in Matlab, using CGAL [13] to construct triangulations and lp solve to check for nonzero solutions
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Figure 2.12: A dual pinwheel, with free motions as shown. Adding fingers at the X’s immobilizes
the polygon.
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Figure 2.13: A 4-pinwheel, with its cyclic support graph and first-order visibility polygons.

given the constraints. An example run of this algorithm for a non-immobilized polygon is shown in
Figure 2.12, with X’s indicating one possible set of additional fingers that immobilize the polygon.

If nonzero solutions exist for the lines of a triangulation, we believe that this means that the
cloth can move within the given grasp. However, this statement may depend on the cloth model
that we use. If we assume that the cloth can simply compress into itself, then it is clear that a
nonzero solution will allow movement of the cloth. It is less clear as to what happens if a more
realistic model that involves buckling is used, or if the cloth is a developable surface.

2.3.2 Pinwheels

As shown with the example in Figure 2.12, there are polygons for which a convex vertex grasp is
insufficient. All such polygons that we have found fall into a class that we refer to as pinwheels.

Definition 2.4. An n-pinwheel is a polygon with a cyclic first order visibility structure, where
a first order visibility structure is defined as the set of visibility polygons from all of the convex
vertices of the polygon. The number n refers to the number of points in the pinwheel.

In an n-pinwheel, the visibility polygon from a vertex v2 first intersects its clockwise neighbor’s
(v1) visibility polygon, followed by its counter-clockwise neighbor’s (v3) visibility polygon (See
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Figure 2.14: Multiple pinwheels.

Figure 2.13 for an example of a 4-pinwheel). The directions can be reversed; if a vertex first sees
its counter-clockwise neighbor’s visibility polygon, followed by that of its clockwise neighbor, then
the polygon also has a pinwheel structure. In order to actually be a pinwheel, this type of visibility
intersection must be repeated for all vertices, leading to a cycle of visibility intersections.

Theorem 2.10. A non-stretchable cloth n-pinwheel can always be immobilized with nconvex + 1
fingers.

Proof. A support graph with one cycle and nconvex non-positively-spanned vertices located at the
convex vertices of the pinwheel can be constructed from the cyclic visibility intersections present
in a pinwheel (Figure 2.13). We already know that all nconvex convex vertices must be pinned. By
Theorem 2.4, pinning any one vertex of the cycle immobilizes the graph, and therefore, pinning the
corresponding point in the pinwheel immobilizes the pinwheel.

We will use pinwheels to show that our upper bound on the number of fingers needed for
immobilization is a tight bound.

Theorem 2.11. There exist non-stretchable cloth polygons that require a grasp of nconvex+
⌊

1
3nconcave

⌋
fingers to be immobilized.

Proof. The class of polygons that we will use to satisfy the statement is based on 3-pinwheels.
Consider the triple 3-pinwheel shown in Figure 2.14. The points have been expanded to two vertices
to simplify the edge that is common to pairs of 3-pinwheels. As discussed in Section 2.3.1, we can
build a linear program that gives the possible motions of a 3-pinwheel. From this, we can easily
show that only pinning the six convex vertices does not suffice to immobilize one of the modified
3-pinwheels by itself. It is possible to immobilize a single pinwheel by adding one additional finger.

Now, consider attaching pinwheel B to pinwheel A, with all convex vertices pinned. Let us
assume that the dual A-B pinwheel can be immobilized with just one additional finger. If this
finger is on the boundary between A and B, then neither pinwheel will be immobilized, as this
single finger will provide no more support than would have existed had we pinned the convex
vertices of each pinwheel. Next, assume that we have placed the extra finger in such a way that all
of A is immobilized (note that this is not actually possible). If this is the case, the boundary line
between A and B will also be immobilized. However, as we have already stated, this is not enough
to immobilize B. The same situation exists in reverse if we put a finger in B that immobilizes B.

Finally, we can extend this chain by adding pinwheel C, followed by another pinwheel attached
to C’s right point, and so on (Figure 2.15). There must be one finger per pinwheel to be able
to immobilize the entire shape, as fingers outside the boundaries of a pinwheel do not suffice to
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Figure 2.15: Repeating chain of pinwheels.

(a) Monotone polygon. (b) Orthogonal poly-
gon.

Figure 2.16: Monotone and orthogonal polygons
that cannot be immobilized by a convex vertex
grasp.

immobilize it. Since each pinwheel has 3 concave vertices, this means that the overall shape requires
nconvex +

⌊
1
3nconcave

⌋
fingers.

Theorem 2.12. There exist non-stretchable orthogonal cloth polygons that require a grasp of
nconvex +

⌊
1
4nconcave

⌋
fingers to be immobilized.

Proof. This theorem is identical to Theorem 2.11, except that we chain together the orthogonal
4-pinwheel in Figure 2.16(b).

We are able to make statements about several classes of polygons. It is possible to place a
support tree with non-positively-spanned vertices only at convex vertices in all star-shaped and
convex polygons; such polygons are thus immobilized by a convex vertex grasp. Pinwheels do not
fall into either of these classes. Interestingly, we can construct monotone (Figure 2.16(a)) and
orthogonal (Figure 2.16(b)) pinwheels.

We have now shown that for a simple non-stretchable cloth polygon, the minimum number of
fingers needed to immobilize it is nmin ∈ [nconvex, nconvex + b1

3nconcavec].

2.4 Grasping with Fewer Fingers

Algorithm 1 (Grasp-Build) gives a simple algorithm for generating grasps. It begins by testing
a convex vertex grasp using our linear program formulation from Section 2.3.1. If this fails, the
triangulation method is used to get a grasp that pins one third of the concave vertices.

Disregarding the LP step, this algorithm has a running time of O(n). Chazelle showed that
triangulation of a simple polygon requires O(n) time [15], and the 3-coloring of a triangulation can
be implemented with a simple linear time algorithm.

Grasp-Build is guaranteed to generate a valid grasp; however, the grasp may include unnec-
essary fingers if there are lengthy chains of concave vertices, as in Figure 2.17.

2.4.1 Grasp Reduction

We have developed an algorithm to reduce the size of the grasp, which removes certain fingers by
checking to see if they are already immobilized by other portions of the grasp. Consider the generic
polygon shown in Figure 2.18, and assume that v2 is pinned as a result of Grasp-Build. There
exist lines starting from the neighboring vertices of v2 (v1 and v3) that pass through v2 and hit
other edges of the polygon (e1 and e3, respectively). Arbitrarily pick one of these neighbors. The
selected neighbor is either convex or concave. We will consider these cases independently.
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Algorithm 1 Grasp-Build

Require: P is a simple polygon
Ensure: Grasp is a valid grasp for P

Grasp = Vconvex

if LPVerify(Grasp) then
return Grasp

end if
T = Triangulate(P )
T∗ = T with Vconvex and edges adjacent to Vconvex removed
Coloring = 3Color(T∗)
MinColor = color applied to fewest vertices in Coloring
Grasp = Grasp + (vertices colored with MinColor)
return Grasp

(a) A valid (minimal) grasp (1 pinned
concave vertex).

(b) Grasp built by Grasp-Build
(9 pinned concave vertices).

(c) The result of Grasp-Reduce
(4 pinned concave vertices).

Figure 2.17: A polygon with nconcave = 28, nconvex = 6.

Case 1: Convex neighbor (v1): Since initially the polygon was immobilized, e1 has immo-
bilized endpoints, and thus is a support line. Therefore v1v2e1 (the blue dashed line) is also a
support line that immobilizes v2. In order to keep this second order support line valid, v1 and e1

must remain immobilized. Since v1 is convex, it is guaranteed to remain immobilized. In addition,
the endpoints of e1 must remain immobilized, so we will simply require that they both remain
pinned if they were pinned by the given grasp.

Case 2: Concave neighbor (v3): If we extend v2v3 to some polygon edges (in the figure,
edges e3 and e2, at the ends of the red dotted line), then we see that v2 and v3 lie on a support line
if e3 and e2 are immobilized. Again, this requires that any pinned endpoints of e2 and e3 remain
pinned.
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Figure 2.18: Method for reducing the number of pinned points.

In either case, we can unpin v2, reducing the size of the grasp. Algorithm 2 (Grasp-Reduce)
is based on this method. This still does not guarantee a minimal grasp, but it will at least produce
a reasonable approximation.

Algorithm 2 Grasp-Reduce

Require: Grasp is a valid grasp for a simple polygon P
Ensure: Grasp remains a valid grasp for P

Unpinnable = {v : v ∈ Grasp ∧ v is a concave vertex}
for all v ∈ Unpinnable do

-Construct lines l1 and l2 through v from v’s neighbors.
-If either neighbor is concave, continue the line past the neighbor to a polygon edge.
-Pick the line that involves the fewest vertices in Unpinnable (a vertex is involved if it is an
endpoint of an edge hit by the line).
-If an edge that is hit contains any vertices that were not in the original grasp, invalidate the
line that hits it, as there is no guarantee that unpinning vertices will not allow these vertices
to move.
-If any of the endpoints of edges hit by the chosen line are in Unpinnable, remove these vertices
from Unpinnable, and keep them as part of the grasp.
-Remove v from Unpinnable and Grasp.

end for
return Grasp

Grasp-Reduce has a running time of O(n2). The outer loop runs O(n) times, and the various
set operations take either O(1) or O(n) time. The key factor in the inner loop is determining which
edges are hit by l1 and l2, which takes O(n) time, as we must scan through all edges to find the
closest one that intersects l1 or l2.

Figure 2.17 shows example results from our algorithms. Figure 2.17(a) gives a minimal grasp,
which consists of 6 convex vertices, plus one concave vertex. Figure 2.17(b) shows the results of the
grasp building algorithm, and Figure 2.17(c) shows the grasp after it has been reduced. A few extra
vertices still remain; the algorithm could be improved by enabling it to recognize immobilized lines
between immobilized edges, such as a vertical line through the hourglass portion of Figure 2.17(a).

2.4.2 Graphical Method for Analyzing Immobilization

We have developed a graphical method for determining if a cloth polygon is immobilized by a
given grasp. This method relies on embedding a support tree within a polygon. A support tree



2.4. GRASPING WITH FEWER FINGERS 25

1

2
3 4

5

1

2 3 4

5

(a) Convex vertex visi-
bility

1

2

2

3 4

5

1 A

3 4

5

(b) Picking intersection
(1,2) (hatched region)

1

2

2

3 4

5

1

3 4

5

A=(1,2)

A

C=(4,5)

C

B=(A,3)

B

(c) Visibility tree

1

2

2

3 4

5

1

3 4

5A C

B

(d) Polygon and tree af-
ter clipping

Figure 2.19: Steps in constructing a support tree, with the corresponding visibility tree at each
step

is fundamentally based on visibility; in particular, adjacent vertices in the support tree must be
mutually visible. Visibility is fairly easy to assess visually, and therefore manually placing a support
tree in a polygon is a quick method for determining if a polygon is immobilized with a given grasp.
We have taken this manual method and expanded it into an algorithm for constructing support
trees. Our algorithm repeatedly intersects visibility regions to form a skeleton, and uses an optimizer
to try to shift the vertices of the skeleton until the skeleton becomes a support tree.

In order for a tree to be valid, we require that the graph consisting of the tree plus polygon
edges be planar. Also, if a pair of convex vertex visibility regions are intersected, the convex vertices
must have been concave-adjacent, meaning that they were separated only by a chain of concave
vertices (such as vertices 2 and 3 in Figure 2.19(a)).

The planarity requirement comes from the fact that we are dealing with cloth, and not string. In
a line network, as in Section 2.2.1, it does not matter if two of the string edges cross, as there will be
no interaction at the intersection. However, in a piece of cloth, if the support tree intersects itself,
this intersection effectively becomes a vertex of the graph. This introduces a potentially problematic
cycle into the support graph. We can check to see if the tree intersects itself by augmenting the
support tree with edges between each pair of vertices corresponding to concave-adjacent convex
vertices (e.g., in Figure 2.19(d), we would connect vertices (1,2); (2,3); (3,4); (4,5); and (5,1)). If
this new graph is not planar, then the support tree self-intersects, and is considered invalid.

If a pair of intersecting convex vertex visibility regions are chosen as the site for a new vertex vn,
the vertices (vi, vj) must be concave-adjacent. If they are not concave-adjacent, that would imply
that there are convex vertices in both polygons formed by partitioning the original polygon into
two pieces using edges vivnvj . We are only allowing degree 3 vertices to simplify the construction;
therefore, this implies that a tree edge crosses vivnvj , violating our planarity constraint.

We have developed an algorithm for constructing a support tree; however, it involves an opti-
mizer, and is non-deterministic, which makes it difficult to prove anything regarding correctness
or termination. Therefore, we will only provide a basic sketch of the algorithm rather than a full
description.

To clarify our algorithm, the comb-shaped polygon in Figure 2.19 will be used as an example.
The basic form of the construction is as follows: 1) find the regions visible from each currently
existing vertex of the tree (Figure 2.19(a)), 2) find an intersecting pair of visibility regions, place a
vertex in the intersection, and add edges to this vertex (Figure 2.19(b)), and 3) add the visibility
region from this new vertex to the list of regions that are being considered. This is repeated until
we have a tree that describes the visibility structure of the polygon (Figure 2.19(c)). At this point,
we prune the intersecting regions to ensure mutual visibility between them, and then we place an
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Figure 2.20: Output from the support tree construction algorithm.

initial estimate of the support tree in the polygon (Figure 2.19(d)). Our algorithm next runs an
optimizer to try to make non-pinned vertices of the tree be spanned vertices, while keeping the
tree inside the polygon. If the optimizer is unsuccessful, the algorithm repeats with a new tree by
choosing visibility intersections in a different order.

The cost function tries to maximize the spanning of R2 at each interior vertex of the tree. If the
edges at a vertex do not positively span R2, a penalty is assigned. There are additional penalties
for vertices that leave their visibility region, or that leave the polygon entirely.

We select visibility intersections randomly, since both bad and good solutions may form clusters
in the graph of possible intersection choices. However, in the worst case, this algorithm still has
an exponential runtime. Additionally, there is no guarantee that the optimizer will correctly find
a solution if one exists.

We have implemented this algorithm in Matlab, using CGAL [13] and VisiLibity [52] to handle
polygon and visibility operations, and OGDF for graph planarity testing. We have tried three
of Matlab’s built-in optimizers: pattern search (patternsearch), the genetic algorithm (ga), and
constrained nonlinear optimization, which utilizes an SQP method (fmincon). We found that the
genetic algorithm had the best results, both in terms of speed and convergence, possibly because
no gradient is available for the cost function. Figure 2.20 shows the result of running the algorithm
on the comb shape.

2.5 Conclusion

We have determined that for simple cloth polygons,

nmin ∈
[
nconvex, nconvex +

⌊nconcave

3

⌋]
(2.5)

for simple orthogonal polygons,

nmin ∈
[
nconvex, nconvex +

⌊nconcave

4

⌋]
(2.6)

and for non-simple polygons,

nmin ∈
[
nconvex, nconvex +

⌊nconcave

3

⌋
+ 2nholes

]
(2.7)

We have shown that both bounds are tight for simple polygons, and that the lower bound is tight
for polygons with holes. Additionally, we have developed the geometric method of using support
trees to determine if a polygon is immobilized with a given grasp. This method is particularly
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valuable for visually determining if a polygon is likely to be immobilized with a given grasp.
Our theorems directly led to an algorithm for constructing a valid grasp for any simple cloth

polygon. This algorithm does not guarantee a minimal grasp, but it is a significant first step
in designing grasps for cloth objects. The algorithm makes use of a simple linear programming
method for verifying the validity of a given grasp. We implemented both a linear program based
grasp verifier, and a support tree construction algorithm.

Natural extensions of this work include polygons with holes, and 3-dimensional cloth, such as
cloth polyhedra. Our results are also applicable to cloth sensing. If the location of any grasp point
is unknown, there is no way to show that the cloth is in a flat configuration. Thus, by sensing all
of the grasp points, we can determine if a piece of cloth is flat.
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Chapter 3

Cloth Folding

To manipulate cloth, we must first be able to grasp it. In the previous chapter, we showed that
at a minimum, all the convex corners of a piece of cloth must be grasped to immobilize the cloth.
In some cases, this is insufficient, and we may also need to grasp up to one third of the concave
vertices. Even for a simple rectangular handkerchief, this indicates that four grasp points are
required. Clearly, this rapidly becomes impractical for a robotic solution. Humans can only grasp
two points at a time, and are able to accomplish folding tasks by using these two grasp points along
with gravity and a flat surface; however, even folding a T-shirt can be tedious and cumbersome.

Osawa et al. implemented a folding technique in which they use a pair of robot arms to place a
T-shirt on a surface consisting of one hinged plate [56]. One of the robot arms uses a high-friction
flat plate to translate and rotate the shirt into position, at which point the hinged plate puts a fold
in the shirt. This process is repeated until the shirt is fully folded. Correct placement during the
folds is critical, and there is significant risk of destroying previous folds during the lengthy sequence
of motions involved in the folding task.

A DailyMotion video on the web titled “ALLTRIBES” provides instructions for building a
manually actuated foldable fixture, which consists of three hinged cardboard plates, depicted in
Figure 3.1 [2]. This fixture is effectively a specialization of Osawa’s work that only works for T-
shirts, but which does not require repositioning of the shirt between folds. The shirt must initially
be perfectly flat, and placed in a precise orientation on the plates. Any wrinkled regions in the
shirt prior to folding will persist in the folded shirt. Once the shirt has been placed correctly, one
of the side plates folds one sleeve inward. The plate then returns to its original flat position so
that it is out of the way. Next, the plate on the other side folds the other sleeve inward. At this
point, the central plate folds the shirt in half. With fast motors, this technique is very quick once
the shirt has been flattened.

Figure 3.1: Foldable fixture (diagram based on Alltribes video [2])

A different folding technique uses two fingers to grasp the shirt at three points, and relies on
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Figure 3.2: Configuration of T-shirt before and after folding using the two-finger technique

gravity and a table for assistance. A popular YouTube video titled “Japanese way of folding T-
shirts” introduced this method [37]. The two-finger, three-point technique is simpler for a human
to do; in particular, it does not require an extra mechanical system. The only needed components
are two hands, gravity, and a flat surface. The T-shirt also does not need to be in a perfectly flat
initial configuration; rather, it is only necessary that the three grasp points (shown in Figure 3.2(a))
are visible and accessible. To actually fold the shirt, a human would stand to the right of the shirt
in the diagram, and reach across the shirt to grasp U in the right hand and M in the left hand.
Point U is brought across to point L, at which point the right hand grasps L in addition to U. The
human’s hands are now crossed; uncrossing them and shaking the shirt results in the shirt hanging
in the configuration visible in Figure 3.3(f). Now, the shirt is placed on the flat surface, and half
the shirt is flipped back over to complete the fold. This sequence of steps is shown in Figure 3.3.

A key observation is that the location of the dotted line containing the grasp points matters for
the final configuration, as it forms one of the edges of the final fold (Figure 3.2(b)). Sliding this
line left or right (along with the grasp points) results in different amounts of the shoulder seam
present in the final folded configuration. This also affects the location of the fold created using the
table and gravity, which is the fold on the right side of the folded shirt. Typically, it is desirable
to have a symmetrically folded shirt; thus, the right side fold has to be the same distance from the
collar as the left side fold.

3.1 Automating the two-finger, three-point method

We observed that the middle grasp point must always be located halfway between the upper and
lower grasp points, and the distance between these points never changes during the folding process,
suggesting that a fixed-length manipulator suffices to grasp all three points and fold a shirt. For
a real application, a custom gripper that reliably grasps multiple layers of the shirt is necessary.
For our proof of concept, we attached magnets to the shirt at the three grasp points shown in
Figure 3.2(a), and used a fixed-length iron bar to pick up the magnets. Since it is not necessary to
release any grasps until the shirt is folded, the inability to drop the magnets does not matter.

Our folding system is pictured in (Figure 3.4). The major component is a 4-DOF SCARA arm.
A high-torque servo motor has been attached to the end effector to give us the extra DOF necessary
for folding. An iron bar is attached to the servo. Finally, we have a piece of sandpaper attached to
the region of table that we use for the last fold of the T-shirt). The sandpaper prevents the shirt
from slipping while it is being folded in half.

The folding process is shown in Figure 3.5. The steps are very similar to those described for
manually folding a shirt with the Japanese method. First, the magnets at the top and middle grasp
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(a) Flattened T-shirt (b) Grasping top and middle points

(c) Grasping bottom point (d) Uncrossing arms

(e) Shaking (f) Result after shaking

(g) Laying the shirt on the table (h) Folding completed

Figure 3.3: Manually folding a T-shirt using the two-finger, three-point method
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Figure 3.4: Folding system

points are picked up using the iron bar, followed by the bottom point (Figures 3.5(a) and 3.5(b)).
These steps result in portions of the shirt sitting above the iron bar. Since we need the entire
shirt to hang freely from the bar, the robot arm first rapidly shakes the shirt from side to side
(Figures 3.5(c)-3.5(e)), and then shakes it vertically (Figure 3.5(f)). The shirt is laid out on the
sandpaper on the table (Figure 3.5(g)). Finally, the shirt is folded in half (Figure 3.5(h)), with the
sandpaper ensuring that the shirt does not slide off the table during this step.

These experiments suggest that T-shirt folding is not a particularly difficult problem if we are
given an initially flat piece of cloth. Two fingers appear to be sufficient when combined with gravity
and a table (after all, humans make do with the same limitations). However, a true clothing folding
system should be able to handle any type of clothing, in any size. The fixed-length bar method has
the limitation of only working for T-shirts of one size; a full system would need to have an adjustable
length bar with at least two manipulators, similar to the one used by Shibata et al. [75]. In addition,
a full system would need planning capabilities, which require an underlying understanding of the
behavior of cloth in the presence of gravity, and knowledge of what sets of points are good grasp
points for a two-fingered manipulator. In the next sections, we will discuss some basic analytical
observations that serve as a basis for future formalized research in this direction.

3.2 Behavior of Cloth in a Vector Field

As already discussed, from examining human manipulation of cloth, we can see that two hands
are sufficient. Manipulation typically involves suspending the cloth into some flat configuration,
and then using a flat surface to assist with folding. To develop a planner to manipulate cloth
autonomously, we must first understand how cloth behaves in the presence of gravity. In this
analysis, it is trivial to generalize from cloth in the presence of gravity to cloth in the presence of
any uniform or radial vector field.

First, consider a piece of string in a uniform vector field, such as gravity. Let one end of this
string be grasped (Figure 3.6(a)). If the vector field is parallel to the string, then the force applied
to every point mass in the string will also be parallel to the string. Since one end of the string is
pinned, none of the point masses will move, and the string as a whole will not move. If the string
is not parallel to the vector field, it will move until it is parallel to the field.
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(a) Picking up top and middle points (b) Picking up bottom point

(c) Before shaking (d) Shaking to ensure that the shirt hangs freely

(e) After shaking (f) Additional vertical shaking

(g) Laying the shirt on the table (h) Folding completed

Figure 3.5: Folding a T-shirt with a robot arm
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(a)
String in
vector
field

(b) Cloth strip
in vector field

Figure 3.6: String and a cloth strip in uniform vector fields. A closed circle denotes a pinned point,
while an open circle is unpinned.

(a) No buck-
ling

(b) Buckling

Figure 3.7: Cloth hanging in a vector field, with and without buckling present.

Now, we can consider a strip of cloth, which is effectively a large number of strings adjacent
to each other. We will pin the two upper corners of the strip, which sets up a first order support
line between these corners (Figure 3.6(b)). If each strand of string is parallel to the vector field,
then each strand will not move, and the entire strip of cloth will not move. If the strip is not
parallel to the vector field, then it will buckle as it moves into a configuration where each strand is
approximately parallel to the field. Predicting the final configuration of buckled cloth is difficult.
Since this state is undesirable when folding cloth, we will not analyze what actually happens to
cloth when it buckles, and will instead simply avoid such states.

As already stated, we know that a piece of string pinned at one end and parallel to a vector
field is in a stable configuration. Using this, we can develop a general model for cloth in a vector
field. A piece of cloth in a vector field is in a stable configuration if, for every point p on the cloth,
there exists an immobilized point pi (either directly pinned, or immobilized by support lines), such
that the vector −→pip lies entirely in the cloth and is parallel to the vector field. Figure 3.7 shows an
example of cloth that is stable, and also of cloth that will buckle.

In addition to uniform vector fields, we can also consider radial fields emanating from a single
point pr on the cloth. If pr is pinned, then the entire cloth is stable if for every point p, the vector−→prp lies entirely within the cloth and is parallel to the radial field (Figure 3.8). Radial fields may
be useful for manipulation; for example, spinning a piece of cloth about a center point may be a
good way to flatten the cloth.

Non-uniform vector fields pose a problem, as it becomes difficult to analyze how cloth will
respond to such fields. However, we do not anticipate the use of non-uniform vector fields for
manipulation, and therefore we will not analyze this situation.
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Figure 3.8: Cloth in a radial vector field.
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Figure 3.9: Two ways of gripping a cloth rectangle (grasp points indicated by closed circles)

3.3 Folding With Two Fingers and Gravity

The grasps that we considered in the previous section all involved grasping along an edge of a piece
of cloth. In this section, we will discuss grasps that result in support lines that cross the cloth, and
grasps where multiple vertices of the cloth are pinned together at one point. These types of grasps
set up folds in the resulting cloth. We can analyze these by considering separate polygonal regions
of the cloth.

In Figure 3.9, a rectangular piece of cloth is grasped at two different sets of points. Figure 3.9(a)
indicates the direction of the gravity field on either side of the fold, along with the resulting shape
when the field is applied. Triangular regions A and B can be considered independently, as they are
separated by the dashed first order support line. Each region is stable, as explained in Section 3.2.
In Figure 3.9(b), the grasp shown results in buckling, since points p in the shaded region do not
have corresponding supported points ps such that −→psp is parallel to gravity.

Grasping multiple points with the same finger also introduces folds into the cloth. In Fig-
ure 3.10(a), we take the right point of the triangle, and fold it across to the upper left point. The
resulting fold lies on the line that reflects the right point onto the upper left point. In general,
a fold introduced by gripping two points of the cloth with the same finger will lie on the line of
reflection between the two points, as shown in Figure 3.10. However, there is no guarantee that
the resulting folded shape will not buckle in the presence of gravity. For example, Figure 3.10(a)
will buckle if the right point is not pinned. In addition, the folded shape in Figure 3.10(b) may be
unstable, as the smaller triangular section is not supported by a support line.

The order of the folds is also important. For example, there are two ways to fold a square of
cloth to match the folded shape in Figure 3.10(b). The first ordering is to fold the lower right
corner to the upper left corner, followed by folding the lower left corner to the upper left corner
(Figure 3.11(a)). The second option folds the lower left corner to the upper left corner first, followed
by the lower right corner to the upper left corner (Figure 3.11(b)). In this second case, the resulting
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(a) Stable
grasp at 3
points using
2 fingers.

(b) Possibly un-
stable grasp.

Figure 3.10: Two grasps of a folded triangle.

(a) Possibly stable folding of a
square

(b) Unstable folding of a square

Figure 3.11: Two fold orderings for a cloth square.

shape has a loose unpinned vertex, indicated by the open circle. This vertex can fall downward,
leading to buckling.

The folded shape in Figure 3.11(a) poses an interesting question, as we have experimentally
verified that it does not buckle, yet it does not satisfy the conditions given in Section 3.2, as the
points in the folded triangular region in the lower left do not have immobilized points directly
above them. In experiments with very flexible cloth, the lower fold does not end up tightly folded
along its entire length, although no buckling is introduced. The cloth model needs to be developed
further to understand cases like this shape and the triangle in Figure 3.10(b).

3.4 Enumerating Valid Two Finger Grasps

The theoretical examples in this chapter have all used two fingers to grasp hanging cloth. Such
grasps involve the cloth hanging from the support line between the two grasped points. We can
make two important statements that must always be true for a grasp that involves no buckling.

Rule 1. If a grasp point is located on an edge e of the cloth, the other grasp point must be placed
such that the support line between the two points is perpendicular to edge e. If this is not the case,
there will be regions of cloth that will buckle (illustrated by the shaded regions in Figure 3.12(a)).
By extension, if both grasp points are edges, the support line must be perpendicular to both edges.

Rule 2. Edges “below” (in both directions from) the support line must have angles ≤ 90◦ with
respect to the support line, as measured from the edge towards the interior of the cloth polygon.
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(a) Grasp violating rule 1 (b) Grasp violating rule 2 (the
indicated angle exceeds 90◦)

Figure 3.12: Illustration of the two rules governing two finger grasps

Any edges with angles greater than 90◦ will never be supported by the support line (the shaded
region and its edges in Figure 3.12(b) are not supported).

There are three possible cases for valid two finger grasps: edge-edge, vertex-edge, and vertex-
vertex. It is also possible for one of the fingers to be placed somewhere inside the cloth polygon,
but all such grasps result in buckling, so we will disregard these cases.

3.4.1 Edge-Edge

Based on Rule 1 above, edge-edge grasps can only take place between parallel edges, as a support line
between non-parallel edges cannot be perpendicular to both edges. For parallel edges, the grasp can
fall anywhere along the length of the edges provided that the support line remains perpendicular,
and provided that the support line is fully contained within the cloth polygon (which is equivalent
to stating that the grasp points must be mutually visible within the polygon).

To enumerate all possible edge-edge grasps, first find all pairs of parallel edges. Any pairs of
points on parallel edges that are mutually visible constitute a valid grasp, provided that Rule 2 is
met.

3.4.2 Vertex-Edge

For vertex-edge grasps, the support line must be perpendicular to the edge. This implies that for
every vertex-edge pair, only one point on the edge may produce a valid grasp (a normal from this
point must intersect the vertex, with the normal lying entirely in the cloth polygon). From Rule
2, the edges adjacent to the vertex must have angles ≤ 90◦ with respect to the support line. This
implies that the vertex must be a convex vertex.

To enumerate all valid vertex-edge grasps, loop over all edges. For each edge, sweep a normal
along the edge, recording all convex vertices encountered by the sweep (along with the point on
the edge where the convex vertex was encountered). For all these points, Rule 2 must be met to
ensure that the grasp is valid.

3.4.3 Vertex-Vertex

For vertex-vertex grasps, both vertices must be convex, and mutually visible. To enumerate all
such grasps, find all pairs of mutually visible convex vertices, and check if Rule 2 holds for each pair.

Now, for a given cloth polygon, we can enumerate all valid two-finger grasps that do not result
in buckling. Based on this list, it is possible to build a simple planner that picks a fold from the
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list, and enumerates a new list of two-finger grasps for the folded shape. By repeating this process,
it is possible to fold a piece of cloth until it fits within some maximum size given to the planner.

The planner relies on being able to compute valid two-finger grasps for partially folded shapes.
The above enumeration methods are still valid; the only modification is that there may be multiple
layers of cloth, which we can view as multiple overlapping polygons. A grasp must be valid for all
polygons for it to be valid for the folded piece of cloth.



Chapter 4

Knot Tying

String can be thought of as one dimensional cloth. We have used string models as a fundamental
element to develop an understanding of cloth. We used string lattices to build our theorems on
cloth grasping, and also to aid in understanding the behavior of cloth in a vector field.

We have also worked directly on string manipulation, particularly on the challenging problem of
knot tying. Autonomous knot tying machines have often used complex manipulators and extensive
sensing. For example, Inoue and Inaba developed a system using a 6+1 DOF arm with stereo
machine vision [36]. Wakamatsu et al. analyzed knotting and unknotting tasks, and developed a
planner for tying arbitrary knots [82]. They tested their results with a 6 DOF arm and a single
camera; however, they also proved that a SCARA arm (3 translational and one rotational DOF) is
sufficient to tie any knot. They did this with the assumption that local manipulation did not cause
effects to occur farther along the string (e.g., moving one segment of string did not introduce kinks
elsewhere), and with the assumption that the knot is placed loosely enough to allow manipulation.

In contrast, we have shown that knot tying is possible with fixtures with very few degrees of
freedom, and with no sensing (see Figure 4.1 for an example). In the context of this work, we
consider fixtures to be static devices that manipulate an object into a desired configuration when
the object is pushed against or through the fixture. A fixture allows a complex manipulation task
to be achieved with a simple (typically one DOF) control.

air

slit
cutstring

string

Figure 4.1: Example of knot tying fixture for the overhand knot
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Our goal is to design a fixture such that string is inserted into one opening, pushed or pulled
through, and knotted. It might seem surprising that this is possible, since we might expect the
knot to become untied as the string is extracted. We accomplish this by exploiting the difference
between pushing and pulling string through a curved tube. When pushed, string tends towards
the outside of a curved tube, whereas when pulled, it moves towards the inside. If the inside is cut
away, string will leave the tube when pulled, rather than being pulled back along the length of the
tube. In all of our fixtures, the fundamental element is a tube in the shape of a knot, along with
some means of extracting and tightening the knot.

A fixture’s design is dependent on the properties of the string or wire for which the fixture
will be used. Our fixtures for wire generally rely on the difference in behavior in pushing wire as
opposed to pulling wire. Since it is impossible to move string through a tube just by pushing at
the entrance to the tube, string fixtures rely on air power to act along the entire length of a string.
Differences in air flow along the length of the string make this function as both a pushing and
pulling motion. This typically requires string-tying devices to be more fully enclosed to prevent
the string from falling out.

We will describe a set of techniques for inserting string or wire into fixtures, as well as techniques
for extracting and tightening the knot. Finally, we will present several examples of fixtures that we
have built for tying knots in a variety of materials. We will examine the ways of constructing knot
fixtures, along with the benefits of our choice to use a rapid prototyper for construction. We will
discuss the problems encountered, and apply the various techniques to a complete implementation
of an autonomous system for tying an overhand knot. Our system is capable of tying an overhand
knot in a bundle of 4 steel wires 87% of the time with 1 DOF and no sensing.

4.1 Overview of the knot tying process

Knot fixtures are based on a tube in the shape of a knot (Figure 4.2(a)). Inserting string into this
tube ties the string into a knot, although the knot has not yet been tightened. If it were possible
to dissolve the fixture, the knot could be tightened, and the process would be complete.

Instead, as we pull on the ends of the inserted string, the string tightens towards the inside of
the curves of the tube. Based on this observation, we can redesign the tube by placing a thin slit
along the length of the tube in the region contacted by the partially tightened string. Now, pulling
on the string will cause the string to leave the tube through the slit (Figure 4.2(b)). As in the figure,
portions of the tube will be within loops of the string, preventing the knot from tightening fully.
For some knot shapes, such as the overhand knot in the figure, we can free the knot from the fixture
by sliding the knot along portions of the tube until the knot can be fully tightened. However, this
process requires careful manipulation, and it seems likely that there exist knots for which this is
not even possible. To resolve this, we extend the slit to cut through tubes (Figure 4.2(c)), enabling
the knot to tighten fully in one smooth motion. Support pieces (not shown in the figure) hold the
resulting tube components together.

4.2 Construction

We have built all of our fixtures using rapid prototypers, as machining techniques cannot build our
knot fixtures out of a solid piece of metal due to the complex internal geometries. There are rapid
prototypers capable of creating metal parts; however, these do not have the required resolution and
surface smoothness for fixtures. Casting a fixture as a single piece is also not possible, since there
is no way to make a rubber mold from a fixture. Prototypers capable of printing investment wax
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(a) Knot-shaped tube (b) Knot tube with slit. To extract the knot, the wire
loops must slide off the ends of the tube.

(c) Knot tube with cuts to make extraction easier

Figure 4.2: Knot fixture basics

directly also exist, but the resolution is not high enough for knot fixtures. Once these technologies
develop further, it should be possible to make more durable fixtures, with less friction than our
plastic fixtures.

Our original process involved a fused deposition modeling (FDM) machine (a Stratasys FDM
2000). The support material used by our FDM machine had to be scraped off of the part by hand,
which greatly limited our ability to build fixtures that had difficult to reach areas; in general, it
was necessary to split fixtures into multiple pieces that were bolted together after cleaning, causing
minor discontinuities in the knot tube. The FDM 2000 has a vertical layer size of 0.01”; as a result,
fixtures produced on this machine had noticeable ridges between the layers, which snagged wire
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ends in fixtures.
We have since switched to an Objet Eden 250, which has 16 micron (0.0006”) thick vertical

layers (with no ridges resulting between layers). The support material can be removed with high-
pressure water, allowing us to build the fixtures as one piece. However, even with the Objet
machine, support material is hard to remove from deep, narrow regions, such as the pressurized
chamber described in Section 4.3.3. Cleaning such regions is impossible with the FDM machine,
and very tedious and time-consuming with the Objet machine.

4.3 Insertion

The fixture-based knot tying process can be broken down into two major tasks: insertion and
extraction. There are many ways to accomplish each task; in this section, we will discuss the
various insertion methods and their advantages and disadvantages. Typically, string and wire
techniques are distinct; for example, only wire is easy to push, whereas only string is easy to propel
with air.

4.3.1 Pushing vs. pulling

There are two ways to get string or wire into a fixture: pushing or pulling. These differ in terms of
where contact occurs between the string and the fixture. Pushing causes contact along the outside
of the curves in the fixture, whereas pulling causes contact along the inside of the curves. If we
can predict where this contact is for a given combination of fixture and material, we can design the
fixture to correctly allow insertion.

Pushing a material along a tube requires the material to be capable of transmitting axial force
over a long distance, through multiple curves. In general, stiffer materials such as wire are better
at transmitting axial force. The inherent bending resistance reduces the risk of buckling. More
flexible materials such as string are more difficult to push. Once string buckles, the normal force
on the string from the walls of the tubes increases, causing even more buckling.

The easiest way to insert wire into a fixture is to push it by hand into the insertion end of the
fixture. This has the advantage of being quick and easy to implement, and allows direct human
sensing to inform the pushing motion.

The next logical step beyond manual pushing is motorized feeding, again at the insertion end
of the fixture. In a conference paper, we described our implementation of using a robot arm to feed
solder into a single-piece fixture [4]. We have since developed a much simpler feeding mechanism
that uses a motor to drive a pair of rubber rollers. The rollers are clamped together with adjustable
screws, and can thus be adapted to a wide variety of wire types.

Pulling for insertion is somewhat problematic, as our fixtures typically rely on a slit on the
inside curvature of the tube for extraction, and this slit will interfere with pulling. If there is no
such slit, pulling is quite reliable for a wide variety of material types, with the only limitation being
friction between the fixture and the wire or string. However, extraction becomes very difficult if
there is no slit; the fixture needs to be made of multiple pieces or have walls that slide out of the
way to allow the string to be removed.

Many of our designs use compressed air to force string through fixtures. The goal is to set up
airflow along the length of the knot tube such that it both pushes and pulls the entire length of the
string. We have tried directing a nozzle into the entrance tube of a fixture; however, this did not
give good results, as this did not provide enough air pressure to set up a good flow throughout the
tube, particularly in the presence of a slit in the tube. Other designs with multiple air jets spaced
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Figure 4.3: Three methods of reducing tip friction: wax, cap, and bent wire

(a) Slider with hook (b) Slider with ball-shaped
ends

Figure 4.4: Possible track and slider designs

along the entire fixture gave much better results, particularly if the end of the string is modified in
some way (such as with a small knot or a plug) to allow the air to apply greater force.

4.3.2 Pushing wire: Track/slider

The end of a piece of wire typically has a sharp point, which tends to get stuck in our fixtures. The
plastic material produced by our rapid prototypers is soft enough that very hard and sharp wires
dig into the tube walls. We considered three ideas for reducing the friction between the wire tip
and the fixture: a bend in the end of the wire, a wax bead, and a cap (Figure 4.3).

Adding a bend to the end of a wire is difficult to do with materials that do not hold bends well,
such as fishing line or steel wire, but is easy for electrical wires and solder. Our robot arm system
used this method, placing a loop in the end of the solder before inserting it into the fixture. A bead
of wax is functional for more materials, but the wax needs to be manually molded onto the wire
tip to ensure that it stays attached.

Finally, we can place a small plastic (prototyped) cap on the end of the wire. This cap is a small
cylinder, with a hole bored part of the way down its length for the wire. Using a cap requires the
knot tube to be of uniform diameter, with a slit small enough to prevent the cap from jumping out
of the tube. Of these methods, the cap shows the most promise for automation, although a simple
cylindrical cap is insufficient, as insertion into a small cap is difficult, and extraction is hard when
the wire end is covered with a cap. By attaching a cylindrical cap to a sliding piece, the insertion
and extraction problems can be simplified. A slider can be used to guide the wire along a track in
the shape of a knot.

“Rails” for the track can be designed in many different ways; we considered two designs. The
slider can either have a hook that wraps around the track (Figure 4.4(a)), or it can have a cylindrical
or ball-shaped piece that rides inside of a tube (Figure 4.4(b)). We tried both methods, and found
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air

string

Figure 4.5: Single air nozzle in tube

that we had better results with tubular tracks, as small hooks tended to flex undesirably.
A tubular rail needs to have a slit through the tube to attach the cap portion of the slider to

the ball or cylinder that sits inside the tube. We designed this as a 2 mm slit, with a 1.25 mm wide
connector between the cap and the ball. This fairly significant clearance allows a flat connector
piece to slide through a variety of curvatures of the tube without getting caught. We used a ball-
shaped piece inside the tube as opposed to a partially cylindrical piece, as the spherical shape will
slide easily in any configuration. The loose clearance in the slit combined with the ball-shaped
guide allows the slider to rotate about 45◦ in either direction from parallel. This rotation makes it
easier to push the slider with wire through variations in the track.

In addition to rails for the slider, the track also needs to have a region to guide the wire into
the correct shape. A half-tube is sufficient to guide the wire, and allows easy extraction during the
tightening process. Based on this design, a track with just one rail tube does not seem feasible, as
the only way to make the force on the slider not have a component pushing the slider against the
slit wall is to put the rail tube behind the half-tube. In this case, the slit would be in the half-tube,
which would allow the wire to jump into the rail tube. Therefore, we used a symmetrical design,
with two rail tubes located above and below the wire-guiding half-tube.

With our rapid prototyper, none of the components of the slider or track can be smaller than
1-1.5 mm without risking accidental breakage during use, which makes it difficult for us to test this
technique at smaller scales. However, this could be reduced further by building the slider out of
stronger materials, such as some form of metal.

4.3.3 Pushing string

It is impossible to push string through a fixture by applying force only at the insertion point into
the fixture, as we do for wire. Instead, we use compressed air to provide force along the entire
length of the string within the fixture. We have examined several possible ways to apply air within
fixtures.

Single air jets at intervals

Multiple air nozzles built directly into the knot fixture make air delivery consistent in a way that
is not possible with a hand-held nozzle aimed at the entrance to the fixture. A basic approach is
to have barbed connectors on the outside of the fixture, which directly deliver air to the knot tube
(Figure 4.5). Such nozzles can be spaced at appropriate intervals along the knot tube, and they
will set up an overall airflow along the tube, propelling string inserted into the tube.

This design has one flaw, which is the directionality of the air nozzles. Ideally, the air flow
should be perfectly parallel to the tube everywhere, but at the nozzles, the flow is coming in at an
angle. As indicated in the figure, this pushes the string up against the tube wall opposite to the
nozzle, increasing the normal force (and thus friction).
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(a) End view (b) Side view

Figure 4.6: Air ring with pressurized chamber (darker region indicates air chamber)

Air rings with pressurized chamber

A second method of setting up a flow of air in the knot tube is to use a symmetrical ring of small
air nozzles. While this still does not provide air flow parallel to the tube near the nozzles, the
symmetry should at least prevent the string from being wedged up against the tube wall. The air
volume can be approximately equalized across the nozzles by having a pressurized chamber outside
of the knot tube, with the nozzles embedded in the wall between this pressurized chamber and
the knot tube (Figure 4.6). The pressurized chamber can be created by having a larger diameter
tube fully enclosing the knot tube, with barbed connectors for air input. Occasional walls can be
inserted to break up the air chamber into multiple smaller chambers, as needed.

Improving air impulse

Particularly with thin or smooth string, it is difficult to ensure that air exerts enough force on the
string. This can be improved by expanding the size of the end of the string to enable the air to
push it. One option is to tie a knot in the leading end of the string. This seems contrary to the
point of the knot fixtures, but it would make sense to tie one or two simple overhand knots prior
to using a fixture meant for a much more complex knot.

The second option is to attach a small plug to the end of the string, either with some sort of
clamp, or by tying the string onto the plug. This serves a similar purpose as the knot, but is more
effective since the diameter of the plug can be tailored to match the diameter of the knot tube.
However, this also has the limitation of adding a step to the tying process.

4.4 Extraction

We consider extraction separately from insertion. The choice of an extraction method tends to
be motivated most by the material that a fixture is meant for. For example, the size of a slit in
the tube is dictated by the diameter of the wire or string, as we want to ensure that extraction
is actually possible, while preventing the string from accidentally falling through the slit during
insertion.

4.4.1 Slit

We can extract string from a fixture by cutting a slit in the knot tube on the inside of the tube’s
curves. At this point, it is necessary to slide the loops of the knot along the various sections of
the tube to fully free the knot from the tube. It is unclear if this is always possible, although
topologically it seems as though it should be, since a knot in the physical sense typically has two
ends (as opposed to the mathematical sense with no ends), and can be reduced to a point. However,
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Figure 4.7: Knot tube with shortened en-
trance and exit tubes

Figure 4.8: Supports for holding cut portions
of tube in place.

it is very likely that there are knots for which it is prohibitively difficult to slide all the loops of
the knot off the ends of the knot tube. For other knots, such as the overhand knot, it is possible to
carefully position the entrance and exit portions of the tube, such that minimal motion is necessary
to free the knot from the tube (Figure 4.7). In the figure, this was accomplished by cutting the
tube at the point at which the tightening knot would intersect the tube, and by removing the ends
that were freed.

4.4.2 Slit with cuts through tube

In cases where it is not possible to manipulate the tube to simplify freeing the knot from the tube,
we can cut through any additional tubes in the way (previously shown in Figure 4.2(c)). This can
be done by identifying a central region into which the knot will tighten, and by cutting any tubes
that obstruct portions of the knot from reaching this center region. In our experience, it has only
ever been necessary to cut across one tube to allow a portion of the knot to reach the center region;
however, it is unclear if this is the case for every knot.

These cuts introduce discontinuities into the knot tube walls. With string, this is typically not
an issue, as the cut size is relatively small (approximately the same as the diameter of the string),
and the string does not exit the tube through the cut. However, this can be a problem for pushing
wire if the wire is following the tube wall (i.e., any method except those involving a cap). In the
single-piece fixtures, this is solved by shifting the tube slightly, with the tube wall after the cut
being slightly farther out from the center of the tube than in the portion before the cut.

Cutting the tube in this way breaks the tube into multiple components. To ensure that these
components are always aligned, we need to attach them to each other without introducing obstacles
that prevent the knot from tightening. Figure 4.8 shows how these supports are placed. In the
figure, the slit from the horizontal tube has been extended to cut the vertical tube into two pieces.
Rectangular support pieces have been added to connect the cut portions of the vertical tube to
points above and below the slit in the horizontal tube. These supports also serve to guide string
from the horizontal tube into the cut in the vertical tube during the extraction process. The use
of such supports is visible in the fixtures shown in Figures 4.25 and 4.32.

4.4.3 Rubber-covered slit

Another option would be to have a permanent slit with a rubber flap covering it. While difficult to
construct with our rapid prototyper, machines do exist that can print rubber and plastic materials
in the same part, making this type of design possible. This flap would provide some resistance to
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Figure 4.9: Knot tube with rollers

string, preventing it from easily falling through the slit, but would fold out of the way when the
string is actually being tightened into a knot.

4.4.4 Retractable rollers

A more complex approach is to use a small number of rollers placed strategically along a half-tube
(Figure 4.9). These can serve as low-friction barriers to guide string or wire to the correct path at
critical points (e.g., near crossings), while leaving things open in less critical regions. This reduces
the overall friction on the string or wire, and should allow for significantly longer knot tubes. Some
mechanism for moving the rollers out of the way would then allow for extraction of the string or
wire.

4.4.5 Two-piece approach (removable fixture wall)

In some cases, we may not want to have a standard slit, as the string or wire may accidentally
escape the tube through the slit prematurely. To prevent this, the fixture can be designed with a
removable fixture wall that can be closed up for insertion, and opened for extraction. It is possible
to design a fixture such that moving portions of the fixture up and portions down (in one translation
direction) exposes the entire string. Such a fixture would be comprised of just two pieces, for the
up and down portions.

To show the design of such a fixture, we will begin by considering several definitions:

Definition 4.1. A theoretic knot K ⊂ R3 is a subset of points homeomorphic to a circle [21].

Definition 4.2. The unknot is defined as a planar, round circle.

Definition 4.3. A link is the finite union of disjoint knots. (In particular, a knot is a link with
one component). An unlink is the union of any number of unknots all lying in a plane [46].

Definition 4.4. A knot projection is a projection of a knot or link from R3 into R2. A knot
projection is called a regular projection if no three points on the knot project to the same point,
and no vertex projects to the same point as any other point on the knot [46].
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Figure 4.10: Knot coloring example

We will only consider regular projections. This means that each crossing consists of exactly
two lines crossing, and that strands to not overlap. Such knot diagrams can also be thought of as
graphs, which have the property that they are 4-regular graphs (graphs with degree 4 for every
vertex).

Lemma 4.1. Consider a knot projection. If we use the knot strands as the boundaries of regions,
we can consider the projection to be a planar map. This planar map is 2-colorable.

Proof. It is a known result that the dual of any planar Eulerian graph is a planar bipartite graph [87].
All 4-regular graphs are Eulerian, and therefore their duals are bipartite and 2-colorable. Since
knot diagrams are 4-regular graphs, their duals (which are equivalent to the planar map of the
knot) are 2-colorable.

Corollary 4.2. The planar map formed by any link is 2-colorable.

Proof. A link is also 4-regular, and therefore the same proof applies.

Figure 4.10 shows an example of a 2-coloring for the map of a more complex knot. The type of
crossing (under or over) is not indicated, as it does not matter for coloring purposes.

The 2-colorability of a knot diagram can also be seen by using a constructive proof relying on
Reidemeister moves and knot theory. We begin as before by considering a knot diagram. Every
knot K has some unknotting number, denoted by u(K) [21]. This represents the number of times a
strand of the knot must be passed through another strand to turn K into the unknot. Equivalently,
this can be thought of as switching which strand is on top of the other at a crossing in the knot.
It should be clear that u(K) is finite, as there are finitely many crossings in any knot. Thus, we
can turn any knot (or link) into the unknot (or unlink) with a finite sequence of steps. According
to Hass [31], we know that any diagram of a link (or knot) can be converted to another diagram
of the same link (or knot) with a finite sequence of Reidemeister moves. Thus, we can use a finite
sequence of Reidemeister moves to convert the unknot created in the first step to the trivial unknot.

If we reverse the above process, we can construct any knot (or link) from an unknot (or unlink)
by using Reidemeister moves until we have the right knot shape, and then by switching crossings
until we have the correct knot. It is trivial to show that 2-colorability is preserved during this
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Figure 4.11: Unknot coloring

(a) RI (b) RII

(c) RIII

Figure 4.12: Coloring under Reidemeister moves

construction, starting from the 2-colorable unknot shown in Figure 4.11. We will show that applying
Reidemeister moves does not change the colorability of the knot. These moves are abbreviated as
RI, RII, and RIII. As shown in Figure 4.12, the three moves do not affect the 2-colorability of the
knot. RI simply twists the string to add a loop. RII also adds a loop, but it does so by sliding one
strand past a second strand. RIII slides a strand past a crossing, and this move only switches the
color of the small triangle at the center of the diagram. The coloring of the rest of the knot diagram
(everything outside of the regions shown in Figure 4.12) is not affected by these moves. To see this
more clearly, note that the colors at the edges of the diagrams in the figure remain the same when
the Reidemeister moves are performed. Finally, it is clear that switching crossings has no effect on
colorability. Therefore, any knot remains 2-colorable as it is constructed from the trivial unknot.

Lemma 4.1 can be used to show that any knot box can be separated into two pieces with one
translation in order to expose the knot. This is accomplished by projecting the knot box along
any axis to obtain a knot diagram. Ideally, the projection with the minimum number of crossings
should be used, to minimize the number of regions that need to be colored. Once this projection
is obtained, it is used to slice entirely through the knot box along the axis of projection. This
cuts the box into c pieces, where c is the number of components in the planar map formed by the
knot diagram. Actually coloring the map (and box) is achieved by picking a region to color dark
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Figure 4.13: Diagram of simple knot box from the top (left) and side (right)

Figure 4.14: Diagram of a junction in the knot box

green, coloring all adjacent regions light blue, and so on. Next, solid rectangular caps are placed
on opposite ends of the cuts. Label one cap dark green, and the other light blue. Each cap is then
joined to the pieces of the knot box that correspond to its color. By following this procedure for
creating a box, we can ensure that the tube is cut along its entire length, and that it will be fully
exposed to air when one side of the knot box is removed.

The resulting box is shown in Figure 4.13 for the trivial unknot. The left side of the figure
shows the projection of the knot, which is used to cut the box. The right side shows a side view of
the box, with the rectangular caps attached. The small dark circles represent the knot tube, which
extends into and out of the page to form the full circle. The light blue piece is a solid cylinder,
which slides into a cylindrical hollow in the dark green piece.

The two-piece knot boxes we have considered so far have no connection to the outside world. As
such, the only way to actually make a knot is by injecting it into the knot tube. We can easily extend
this to knots with multiple strands, as such knots are links, which are 2-colorable by Corollary 4.2.
Extending to boxes with entrance and exit tubes is also simple. If we draw the boundary of the
knot box as another loop of string, we have a different link, which is 2-colorable. We can discard
graph edges and planar regions outside the boundary without affecting the colorability (note that
the region outside the boundary is not colored in this case), so the resulting modified map is still
2-colorable, and a knot box with a connection to the outside world can be broken into two pieces
separable by translation.

There are at least two potential practical issues with constructing knot boxes in this way. The
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first happens at junctions. Such a junction is pictured in Figure 4.14. One of the two pieces of the
knot box is shown in light gray. The other piece would sit in the other two corners of the junction.
As shown in the figure, each piece of the knot box has 2 components, connected on the diagonal
across the junction (although in reality, only one of the two sets of components will be connected
on the diagonal). The real issue has to do with extraction of the string. There will always be solid
material both above and below any point in the tube (where above and below are defined along
the slices through the box). Normally, this is not a problem, as the string can shift to one side of
the tube as needed. At a junction, though, there will be a solid piece over the tube along one of
the two diagonals, which will prevent removal of one of the pieces. We can attempt to solve this
problem by drilling small holes at each junction. This will create some tolerance at the junctions,
but it also adds extra possible paths for string, which is opposed to the goal of having a fully closed
knot tube.

The second practical issue has to do with actually removing the knot from the box. Even
removing one side of the box by sliding it apart from the other half can be tricky, since string is
not infinitely thin. The actual knot may be even more difficult to remove. Consider again the knot
box of Figure 4.13. If the string ends up left in the dark green piece, it is trivial to remove by
tightening the circle. If it is left in the light blue piece, it will be wrapped around a cylinder, and
will be more difficult to remove. This will become especially problematic for more complex knots.
There is no clear means for solving this problem for two-piece knot boxes; however, the four-piece
fixtures discussed in the next section provide a more feasible method of constructing fully enclosed
fixtures that solves the extraction problem.

4.4.6 Four-piece fixtures

By splitting a knot box into four pieces instead of two, we can solve some of the practical issues
involved in separating the box and exposing the knot. During conversations with Yuliy Barysh-
nikov, we developed a proof that for any knot, a four-piece fixture can be designed such that pure
translations of the fixture pieces fully expose the knot. To construct a four-piece fixture, we begin
by creating a knot diagram based on the knot description given as a Gauss code, which consists
of an ordered list of junctions, each of which is denoted as an over-crossing or an under-crossing.
A Gauss code can be thought of as an Eulerian path through the directed graph representing the
knot. As an example, the overhand knot shown in Figure 4.15(a) has the Gauss code 1o, 2u, 3o,
1u, 2o, 3u. We can construct a planar directed graph from the diagram by placing a graph node
at each crossing, and a graph node on each strand between crossings (Figure 4.15(b)). Crossing
nodes (shown in black) are located at crossings, and segment nodes (in gray) are located along
knot segments between crossings. The resulting graph is 4-planar (a planar graph with maximum
degree 4).

Next, we separate the graph into “up” and “down” layers by walking through the graph using
the Gauss code. If an edge is adjacent to an over-crossing, that edge is in the upper layer; if it is
adjacent to an under-crossing, it is in the lower layer. Each graph edge is labeled with ‘+’ or ‘-’ to
indicate its layer (Figure 4.15(c)). For convenience, the start and end segments (adjacent to S and
E in the figure) receive the same label as the next segments in from the start and end.

The segment nodes are labeled based on whether the adjacent edges are ascending from the
lower layer to the upper layer (‘- +’), descending (‘+ -’), or remaining in the same layer (‘=’). We
can uniquely identify segment nodes by using the adjacent crossing node labels; for example, the
node that is moved in Figure 4.15(e) is 1(+ -)2.
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(d) Orthogonal version of knot graph
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Figure 4.15: Development of orthogonal structure for overhand knot
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Figure 4.16: Two grid units of space are required between shaft edges to allow for rounded corners.

This graph is then converted into an orthogonal graph (Figure 4.15(d)). Tamassia showed
that this can be done while preserving faces (the regions between graph edges) for 4-planar
graphs [80]. Tamassia presented an O(n2 log n) algorithm for constructing an orthogonalization
with the minimum number of bends; this bound was subsequently refined by Garg and Tamassia
to O(n

7
4
√

log n) [27].
To construct the actual box, we add a third dimension to our orthogonal grid, with two possible

coordinates: top or bottom. Edges are placed at the appropriate coordinate based on their label.
At ascending or descending segment nodes, we add a shaft edge from the top layer to the bottom
layer. Now, all planar edges are located in either the top or bottom layers, and the middle layer
contains only out-of-plane shaft edges. This is similar to a two-layer circuit board, with the shaft
edges equivalent to vias.

Two pieces of the four-piece knot box act as caps for the top and bottom layers of the 3D
orthogonal graph. These pieces are removed by translating them up or down, respectively. The
remaining two pieces slide together horizontally to form the middle layer. In order for these pieces
to be separable, the middle layer must be arranged such that there is some projection direction
in which no shaft edges occlude each other (in the example of Figure 4.15(d), the dashed boxes
indicate the occluded nodes in both the x and y directions ).

To allow for rounded corners, we can impose an additional restriction that there must be at
least two grid units between shaft edges (and thus segment nodes) to allow for rounded corners.
Figure 4.16 illustrates the need for the space. The two curved tube pieces are at different depths
in the page. In order for the entire curved portion to be on one of the middle box pieces at the
correct depth, the cut in the middle piece must be at least one unit away from the shaft, since the
curves are of unit radius. This constraint only needs to be applied when the edges adjacent to a
shaft edge are orthogonal to the projection direction (i.e., when the curves are visible along the
projection direction, as in the figure). If the adjacent edges are parallel to the projection direction
(as with the edges adjacent to segment node 2(+ -)3 in Figure 4.15), then the extra unit needed
for the curve is guaranteed to be available, since there will always be at least one unit between the
segment node and any adjacent bends, or crossing or segment nodes.

A very basic algorithm for expanding the graph to remove occlusion is as follows:

1. Pick a projection direction (x or y) with the fewest occlusions. With n shaft edges, this will
always result in no more than n/2 occlusions. Without loss of generality, let the projection
direction be along the y-axis.

2. For each pair of occluding edges (ei, ej) with |xj − xi| < 2:

(a) Take all vertices with xv > xj , and set x′v = xv + (2 − |xj − xi|). This expands the
graph at xj , shifting everything to the right of xj one or two grid units (as needed) to
the right. This shift preserves the graph regions (and the knot).
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(b) Shift ej to the right (x′j = xj + (2− |xj − xi|)).
(c) If ej was connected to an edge ey parallel to the y-axis, keep ey in place while shifting

ej , and add a new edge parallel to the x-axis between ey and ej (this new edge should
be in the same layer as ey).

In the example shown in Figure 4.15(e), only one node (1(+ -)2) needs to be moved to remove
the occlusion in the y direction. The apparent occlusion of segment nodes (between 2(+ -)3 and
3(=)E) is not actually an issue, as the 3(=)E node remains in the same layer, and thus no shaft
edge is present.

At worst, the graph will expand by n/2 units in the x-axis during this algorithm. At step 2a, we
can insert a check to see if it is possible to simply shift ej without having to shift the entire graph
right of xj , which may reduce the amount of expansion if the graph was not initially compact.

Once there is no occlusion along the projection direction, it is trivial to slice the middle layer
to allow the two pieces to slide free, fully exposing the knot and allowing it to tighten. Given a list
of shaft edges Ev, sorted by x coordinate, the slice between shaft edges ek and ek+1 is given by the
set of coordinates {(xk, yk), (

xk+xk+1

2 , yk), (
xk+xk+1

2 , yk+1), (xk+1, yk+1)}. Figure 4.15(f) shows the
location of the cut for the overhand knot.

Since this procedure of orthogonalizing the graph, splitting it into top and bottom pieces,
expanding the orthogonalization, and slicing the middle layer of the fixture yields a four-piece
fixture, we have proven the following theorem:

Theorem 4.3. A four-piece fixture can be constructed for any knot consisting of one or more
strands of string, such that all four pieces can be removed by pure translation without colliding with
the string.

Building the knot on an orthogonal grid with extra space between shaft edges guarantees that
there will be enough room to round off the corners when actually building the knot box. Corners
both in the plane and transitioning from the plane to the shaft direction can be replaced with arcs
with grid unit radius. Thus, the maximum curvature is bounded exactly based on the choice of
grid size. For a grid with spacing r, the maximum curvature is κ = 1/r.

4.4.7 Scalability

Fixture size is affected by the flexibility of the material for which it will be used (steel wire,
solder, fishing line, string, or thread). Very flexible materials such as solder and string can be used
in small-scale fixtures, while materials which are difficult to bend, like steel wire, require larger
fixtures.

Additionally, our construction techniques impose limitations on scale. Prototyping very large
fixtures is expensive (and impossible on our machines once the size exceeds a 10 inch cube). In
the other direction, the Objet machine’s resolution is high enough to allow fixtures to be built at a
very small scale (for example, we have built a functional single-piece overhand fixture that is 0.5”
in diameter). However, the plastic material becomes fragile when the feature size gets below 1 mm.
Thin walls will break easily if they are bent. Cleaning also becomes more difficult when all of the
internal openings are much smaller. As mentioned, metal should enable smaller scales when the
technology is better developed.
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Figure 4.17: Single-piece fixture for overhand knot

4.5 Case studies

We combined the above techniques in various ways to produce a variety of fixture types that work
on both wire and string. Many of these fixtures use slits for extraction; any of these designs can
be further modified with a rubberized slit or rollers to make them more versatile. We have taken
the most practical wire-tying system, the track-based system, and implemented a full autonomous
knot tying device for tying overhand knots in bundles of steel wire. This will be discussed in detail
in Section 4.5.8.

During the design process, we have sometimes found it useful to consider fixtures that do not
allow the knot to remain tied during extraction (i.e., the string can only be extracted by reversing the
insertion process). This allows us to evaluate different insertion methods without any interference
from extraction regions cut into the tube.

4.5.1 Single-piece fixtures 1

Insertion methods: Manual or motorized pushing for wire, air at tube entrance for string
Extraction: Slit with cuts through tube

Our initial single-piece fixture designs relied on manual creation of the slit and the cuts, with
the result that both are uneven and relatively large with respect to the tube. The slit opens up
into a hollow inner region in the center of the box, the knot extraction region. The tube, slit, and
extraction region are subtracted from a cylinder or cube to form a “knot box”. Figure 4.17 shows
a single-piece fixture for an overhand knot. When wire is pulled after insertion, the wire passes
through the slit into the extraction region. At this point, the wire can be tightened into a knot
and removed through one of the holes in the knot box.

In order to remove the knot from the fixture without breaking the fixture, the volume swept
by the string as it tightens into the knot must be free of obstacles. We can ensure that this is the
case by making the entire interior region of the box topologically spherical. This is not a sufficient
condition for extraction, as it is possible to have obstacles that maintain a spherical topology inside
the box, but yet still cause the knot to become stuck. For example, if there is a spool-like shape in
the fixture, the knot can wrap around it with no possibility of extraction (Figure 4.18). All of our
knot boxes satisfy this constraint, which is particularly critical when multiple tubes are involved,

1This section is based on work published at ICRA 2008 [4].
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Figure 4.18: Obstacle preventing extraction
Figure 4.19: Square knot (left) and overhand
knot (right, 2 sizes) fixtures

1

2

3

(a) Overhand knot (b) Square knot (c) Knots tied by manually using the
knot boxes (overhand, double overhand,
square)

Figure 4.20: Diagrams of the knot types, with knot examples

such as in the square knot.
We have developed knot boxes for two different knots (Figures 4.19 and 4.20). The most basic

is the overhand knot. This fixture can be used in two ways. Pushing a single wire into it will simply
tie a knot in the wire (Figure 4.20(c), left). Simultaneously pushing two wires through will tie both
wires together into the same knot, effectively joining the wires (Figure 4.20(c), center). The next
is the square knot, which allows us to more securely tie two wires together (Figure 4.20(c), right).
The knot boxes all work on a variety of materials, including thin wires and fishing line.

In addition, we have used the overhand knot box for autonomous knot tying. A Cobra i600
SCARA arm has been fitted with a custom manipulator that can both grip and cut wire. We have
been using solder for our experiments, as it is flexible, but also capable of maintaining a shape,
which makes its behavior more predictable. The system is capable of pushing the solder through
the knot box, cutting the knotted portion away from the spool, and extracting the knot. This
entire process can be repeated without human intervention to produce multiple separate knots in
sequence. This process is shown in Figure 4.21.

Using solder as the material, we are able to tie approximately one overhand knot per minute
using the automated system. It should be possible to increase this speed, as we are running the
robot arm at less than 50% of its full speed due to technical limitations of our setup. Under manual
operation, it is possible to tie knots much more quickly. An overhand knot can be tied using the
knot box in as little as 15-20 seconds. More materials can also be knotted by manually pushing
them through the knot box (Figure 4.22), including

1. 0.025” diameter solder
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(a) Cut solder (b) Create loop

(c) Insert loop (d) Push solder

(e) Cut solder (f) Extract knot

Figure 4.21: Autonomous Knot Tying

Figure 4.22: Overhand knots in different materials tied manually using the knot box (R to L: .032”
solder, fishing line, 30 and 22 AWG wire, wire loom)

2. 0.032” diameter solder

3. 25 lb fishing line

4. 22 AWG single strand wire

5. 30 AWG single strand wire wrap wire

6. 5 mm diameter wire loom

We have observed that we can place the knots at a specific point on the wire with some precision.
This occurs because the tightened knot must emerge from the knot box through a short section of
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narrow tube. The knot will not pass through this tube while the knot diameter is larger than the
tube diameter. As a result, the knot position is determined by the ratio of the lengths of wire that
are pulled out of each end. We have observed a high degree of repeatability when holding one end
of the wire at the same point, and pulling the other end out of the box. Multiple knots tied in this
manner are within 5 mm of the same point on the wire.

We also experimented with sending string through these fixtures by applying compressed air at
the entrance to the knot boxes; this was somewhat problematic because the air nozzle was manually
held in place. In the majority of these experiments, the string would jump through the slit into
the extraction region (and from there to the exit tube), thus skipping the knot tying portion of the
tube.

4.5.2 Two-piece fixtures

Insertion methods: Manual pushing, motorized pushing, or air at the entrance
Extraction: Separation of two pieces of fixture

We have already shown that a two-piece fixture exists for any knot, such that the entire knot is
exposed when the two pieces are pulled apart. Implementing a two-piece knot box is not practical,
however, due to the problems that result at crossings, particularly relating to extraction.

The simplest approach to splitting a box into two pieces is to cut the knot tube down the
middle. However, with this approach, string or wire in the tube will not consistently be in one
of the two pieces, and it is impossible to slide the two pieces apart since string and wire are not
infinitely thin. We can fix this problem by shifting the split so that it places most of the tube in
one piece, with just a tube wall on the other piece. At crossings, the split must switch sides to
ensure that the larger tube section remains on the same piece. Additionally, crossings must have
some open space surrounding them in order to allow the finitely thick string to slide through the
crossing without getting stuck when the pieces are separated.

The open spaces at crossings, combined with tube walls being formed from different pieces,
results in discontinuities in the tube wall. When wire is pushed through the box, it tends to get
stuck on these discontinuities. We did not experiment significantly with string in two-piece fixtures,
but based on our experience with single-piece and modular air-based fixtures, we believe that we
would not gain any advantages from two-piece air-powered fixtures, as tube length is more of a
limiting factor than the size of any slit in the tube.

4.5.3 Four-piece fixtures

Insertion methods: Fully actuated tube (cilia or rollers)
Extraction: Separation of four pieces of fixture

Constructing a four-piece fixture is a simple process. Given the graph produced by the algorithm
in Section 4.4.6, it is trivial to produce an orthogonal set of splines in 3ds max. The corners are
all filleted to a radius equivalent to the grid spacing. An extruded version of the knot spline is
subtracted from the top, bottom, and middle fixture pieces, and the middle piece is sliced according
to the path given by the algorithm. Once the fixture is built, it is clear that it is very easy to take
apart without any interference from any string or wire in the fixture (Figure 4.23). We built four-
piece fixtures for the overhand and square knots, along with plastic versions of the knots that fit
within the fixture for demonstration purposes.

Figure 4.24 shows a rendering of the four-piece square knot fixture, along with splines for three
other knots. The square knot and sheet bend both use two pieces of string, but the fixtures still
only require four pieces. Additionally, the sheet bend is meant for joining ropes of different sizes,
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(a) Top (b) Bottom

(c) Middle 1 (d) Middle 2

Figure 4.23: Sequence of steps for taking apart a four-piece fixture

which is possible with four-piece fixtures. Finally, the bowline is a knot that involves a large loop,
as indicated by the section of string indicated in a darker color. This loop would end up outside
the fixture, requiring the user to reinsert the string into the fixture after passing the loop around
some object.

It seems difficult to convert the mostly orthogonal design to a more rounded design without
drastically increasing the length of the tube. Although some of the sharp curves can be smoothed
easily, this is not the case for all the curves, particularly if we want to maintain the ease with which
the fixture is taken apart. In theory, if all of the curves entering and exiting shaft edges existed
along one principal axis (e.g., the x-axis, such as the two shaft edges between crossings 1 and 2
in Figure 4.15(f)), then we could set the projection direction along the other principal axis (the
y-axis in this example). Provided that there is enough room between shaft edges in the x direction,
this would allow much smoother curves into and out of the shaft edges, while still allowing the two
middle pieces to separate easily. The graph could be further expanded in the x and y directions to
allow the other bends to also be smoother, at the expense of a longer tube. The top and bottom
pieces would not be affected by these changes.

Due to the many bends resulting from the mostly orthogonal design of the four-piece fixtures,
it is impractical to push wire or blow string into the fixtures. A practical implementation would
require actuation along the entire length of the knot tube. Possible sources of this actuation are
cilia-like manipulators, or many drive rollers. Since the tube is fully enclosed, there will not be any
issues with string or wire going down unexpected side paths.

4.5.4 Single-chamber air fixtures

Insertion methods: Single air jets at intervals
Extraction: Slit with entrance/exit positioning, slit with cuts through tube
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(a) Square knot (two pieces of
string)

(b) Sheet bend (two different sized
pieces of string

(c) Figure eight (d) Bowline (dark loop is outside
fixture)

Figure 4.24: Orthogonal versions of several knots

The single-chamber air fixture design is a modification of the single-piece fixture design, in
which the knot tube is no longer subtracted from a larger solid. Instead, the knot tube exists as a
thin-walled (typically 1-2 mm) tube with a diameter of 5-6 mm. The slit is cut at a consistent-sized
1-1.5 mm. The slit size is dependent on the type of string used, and is designed to be slightly
narrower than the string, ensuring that the string does not easily jump through the slit when being
pushed with air. Actuation is provided by air jets built into the tube, which are able to provide air
at the same location through multiple experiments. For the overhand knot box, we used three air
nozzles (Figure 4.25).

4.5.5 Double-chamber air fixtures

Insertion methods: Air rings with pressurized chamber
Extraction: Slit with no cuts; slit with cuts through tube is possible, but design is more complex

By enclosing the entire knot tube with a pressurized chamber, it is possible to place air rings at
multiple locations along the knot tube. One challenge with this method is that the overall diameter
of the tube is increased, requiring a larger fixture.

The biggest practical problem with this method is the process of cleaning out support material
from the rapid prototyping process. Although we can soak parts in a sodium hydroxide solution
to remove support material, the minimal access to the pressurized chamber means that it can take
a long time to clean that region. In addition, prolonged soaking in NaOH makes the fixture more
flexible, leading to warping and breaks.

The results from the overhand fixture (Figure 4.26) were not particularly promising. Due to
the increase in diameter involved in this type of fixture, we switched to a thin suturing thread, and
rescaled the fixture appropriately. The diameter of the inner knot tube was 2.5 mm in this design,
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Figure 4.25: Overhand knot tube, with single-chamber air design

Figure 4.26: Overhand knot tube, with double-chamber air design

with a 0.4 mm slit. It was difficult to feed more than 10 cm of thread into the fixture (about half
the length of the tube). The first problem resulted from the slit; since the thread was at least
partially pulled by the air, it tended to get pulled into the slit. This caused the thread to get stuck,
since the slit size is slightly smaller than the thread’s diameter. The second problem is that there
is too much air pressure in the knot tube, which causes some air to move backwards out of the
insertion end of the tube, making insertion difficult.

4.5.6 Tubing with air accelerators

Insertion methods: Manual pushing combined with air rings with pressurized chamber
Extraction: None, or thin slit in tubing

To alleviate some of the problems with the high-friction surface of the rapid prototyped material,
we experimented with using flexible plastic tubing instead, with prototyped air-powered string
accelerators. The string accelerators are short double-chamber fixtures. The accelerator is about 1
inch long, with one or two rings of air jets from the pressurized chamber to the central string tube.
The accelerators are slit along one side for extraction, and have barbed connectors to attach to the
plastic tubing (Figure 4.27).
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Figure 4.27: Air accelerator side view

Figure 4.28: Overhand knot formed from air accelerators and increasing sizes of tubing

This system also suffered from an excess of air pressure, leading to air coming out the insertion
end of the first accelerator, as well as excess amounts of air emerging from the slits. The air coming
through the slits caused the string to try to emerge through the slits. We experimented with taping
over the slits, which had the effect of increasing the back-pressure at the insertion end. By reducing
the air flow to the system, we were able to achieve some success, inserting 85 cm of string into a
relatively curved system in the shape of an overhand knot (Figure 4.28).

A second attempt to deal with the pressure problem was to use steadily increasing tube di-
ameters, with appropriately sized air accelerators to act as adapters between tube segments. This
approach worked somewhat better, but the string still had a tendency to emerge through the slits
in the accelerators.

One unsolved problem is extraction from the plastic tubing. A possible solution is to use a knife
to cut the tubing, without removing any actual material. Since the tubing is flexible, string can be
pulled through such a cut. However, slit tubing is less flexible, since too much bending destroys
the tube shape, and opens the slit. It is also more difficult to attach the tubing to the accelerators.
Still, this method shows the most promise as being the most modular method that allows relatively
simple extraction.

4.5.7 Modular, enclosed, air-powered tubing

Insertion methods: Single air jets, plug attached to string
Extraction: None

The final air-powered variation that we built is a fully modular system, consisting of straight
and 45◦ curved segments that snap together, enabling the creation of essentially any knot (Fig-
ure 4.29(a)). There are also straight segments with single air jets placed at an angle (similar to
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(a) Air jet, straight, and 45◦ curved segments. (b) Plug

Figure 4.29: Modular air-based system components

Figure 4.30: Overhand knot formed using the modular components, with two air jet segments (the
two lighter colored segments)

those used in the single-chamber air fixtures). These air jet segments also have some openings to
relieve excess pressure in the tubing. String is attached to a small plastic plug that is designed to
take up almost the entire diameter of the tube, enabling the air to pull on the string with more
force (Figure 4.29(b)). The plug also ensures that the string does not leave the tube through the
pressure-reducing openings in the air jet segments. There is no way to extract string from this
system, although once a design is tested with the modular system, it can be built as a continuous
tube with a slit to allow extraction. Figure 4.30 shows an example of an overhand knot built with
this design. The tube shown in the figure is 50 cm long, and thread with a plug on the end can be
sent through almost instantaneously. In a longer curved tube (85 cm) with four air jet segments,
it is slightly more difficult to get the thread through the whole tube due to friction with the tube
walls.

This design still does not allow arbitrarily long knot tubes, as eventually the friction between
the string and the tube walls cannot be overcome by the airflow. Smoother tube walls would help,
as would greater air pressure, but the system would still be limited at some longer length.
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Figure 4.31: Knot in bundle of wires

Figure 4.32: Track-based fixture for overhand knot

4.5.8 Track-based fixtures

Insertion methods: Track/slider, motorized or manual pushing
Extraction: Very large slit (half-tube), with either entrance/exit positioning or cuts through tube

In response to a request by Veyance Technologies, we have worked on an improved automated
device for tying an overhand knot in wire. Specifically, Veyance wanted a device that could simul-
taneously tie an overhand knot in a bundle of 2 to 12 steel wires (Figure 4.31). This is something
that was possible to a limited degree with solder in the original single-piece fixture, but the steel
wire did not work well in the original knot box. The thin steel wire (0.01-0.015” diam.) has sharp
points and is fairly resistant to bending. The wire comes in spools, and when left loose, it tends to
coil in loose loops about 10 cm across. The sharpness of the wire caused problems in the original
fixture because the wire scratched the relatively soft plastic walls of the fixture, and became stuck
in the walls. With solder, it was easy to form a loop in the leading tip of the wire; with the stiff
steel wire, this was not possible. The bending resistance also led to an increase in the normal force
as the wire was forced through the tight (3 cm diam.) loop in the single-piece fixture.

We built a track and slider system as described in Section 4.3.2. Actuation was still accomplished
by pushing on the wire at the entrance to the fixture; the slider acts as a passive device to keep
the wire ends away from the track wall. The slider contains magnets to loosely attach the cap to
the steel wire. We used cuts through the tube to make extraction possible. The cuts are narrow
enough to not cause problems for the slider, while still being wide enough to allow the largest wire
bundle to pass through them. The resulting track is shown in Figure 4.32.

To more fully automate the process, we built two additional systems and made a minor change
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Figure 4.33: Feeding mechanism
Figure 4.34: Pneumatic gripper with custom
jaws

Figure 4.35: Full knot-tying system

to the track. The beginning of the track is carefully narrowed to ensure that the slider is in the
correct configuration (normally, the slider can rotate about 45◦ from parallel to the track; this
flexibility makes it easier to push the slider with wire). The feeder consists of a pair of rollers and
two guide tubes. One of the rollers is powered by a standard DC gearmotor, and the other idle
roller is adjustable to allow for different wire thicknesses (Figure 4.33). The first guide tube guides
the bundle of wires to the rollers, while the second guide tube aims the wires into the slider.

Once the wire is pushed through to the end of the fixture, we need a way to hold the end of
the wire while the rollers pull back on the wire to tighten the knot. The track at the very end of
the fixture consists of just the rail tubes, with no central half-open tube for guiding wire, which
provides space for a gripper to hold the end of the wire. The gripper is a standard pneumatic
gripper, with a custom set of jaws that are designed to fit into the space in the track (Figure 4.34).

When combined, these three components (motorized rollers, track/slider fixture, and gripper)
are a sufficient mechanical system for automatically tying knots in wire (Figure 4.35). One remain-
ing problem is that the roller system we are using does not have enough friction to fully tighten
knots in steel wire, again due to the bending resistance (although it is sufficient for producing a
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Table 4.1: Success rates for various wire sizes

Wire size Success
0.01” 100%
0.012” 87%
0.015” 60%

Table 4.2: Success rates for different bundles

Number of wires Success
1 93%
4 87%
8a 80%
12b 0%

a 0.012” and 0.015” only
b 0.015” only

fully tightened knot in solder). However, if the wire is pulled back by some other mechanism (such
as an external motorized spool), it is possible to tighten the knot. Replacing the rubber rollers
with some other type of roller with more friction might also be sufficient.

4.6 Verification and Experiments

We performed 45 trials of the track-based overhand fixture using various wire thicknesses (0.01”,
0.012”, and 0.015”) and wire bundle sizes (1, 4, 8, and 12 wires), with 5 trials for each combination.
Overall, we had a 78% success rate in tying overhand knots in wires. The thinner wires were
easier to tie, probably because of the smaller bending resistance. Larger wire bundles became more
difficult. Tables 4.1 and 4.2 show the results for the different variations.

In all cases of failure, the cause was an incorrect insertion into the slider. Once the wire was
correctly inserted into the slider, the slider and track mechanism worked 100% of the time, as did
the clamp and the extraction/tightening process. In particular, we were able to tie knots in bundles
of 12 wires by manually aiding insertion into the slider. Insertion failures were primarily a result
of the wire bundle not penetrating deep enough into the hollow cylinder within the slider, causing
the wire to fall out of the slider very early in the process. Most of the time, only one or two of
the wires would fall out of the slider, and the remaining wires could be tied into a knot (trials that
resulted in this state were counted as failures). This could be improved by increasing the friction
between the slider and the beginning of the rail tubes, or by a mechanism to hold the slider until
the wires are fully inserted. More fine-tuning of the relative position of the slider with respect to
the guide tubes on the feeder would also help increase reliability.

Table 4.3 presents a list of the different techniques, as well as their relative success for string
and wire.

4.7 Curvature and friction in knot tubes

Friction is a major issue with our knot fixtures. Contrary to the typical case of surface area not
changing the amount of friction, friction increases with the amount of surface contact between wire
and the fixture. This occurs because the tube walls must serve to redirect force being applied to
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Table 4.3: Comparison of knot tying techniques

Technique
Results with

Wire String
Single-piece knot boxes Generally good results; hard to de-

sign correctly
Very unreliable; no more than 1 suc-
cess in 30 tries

Two-piece fixtures Insertion tricky due to edges; ex-
traction impossible

Insertion difficult; extraction impos-
sible

Four-piece fixtures Insertion difficult without actua-
tion; very easy extraction

Insertion difficult without actua-
tion; very easy extraction

Single-chamber air Unable to move wire with air OK; airflow can wedge string
against tube wall

Double-chamber air Unable to move wire with air OK; difficult to construct, difficult
to clear support material

Tubing with accelerators Unable to move wire with air OK; can move string over longer dis-
tance, but extraction is a problem

Modular air tubing Unable to move wire with air OK; plug enables longer string
travel; friction eventually a prob-
lem; no extraction

Track-based fixtures Excellent; easy to design; no prob-
lems with wire tip

OK, if string is constrained to not
leave tube

Figure 4.36: Normal forces on wire in an S-bend

the wire (Figure 4.36). If a given curve bends wire into a half-circle, there must be some normal
force being exerted on the wire, since the wire has some bending resistance. The amount of normal
force necessary does not change if the wire then enters a second half-circle that bends it back into
the original direction.

Based on the following analysis, and as expected by intuition, the curvature of the tube signif-
icantly affects the ability to both push and pull string and wire through a tube.

Let f(t) = (x(t), y(t)) be a 2D parametric function defining a tube boundary. In general, we will
use Bezier splines for this function, but any parametric function can be used. Now, let us assume
that we are pushing a string through the tube, such that the string is contacting this boundary.
To model this, we can view the string as a collection of rigid sticks connected by hinges, where
the hinges contact the tube boundary and are located at points xi = f(ti). Figure 4.37 shows a
short portion of such an approximation, indicated by the thick lines. Some (axial) input force is
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Figure 4.37: Spline approximation

applied to the first node, given by F1. Gravity and bending resistance are disregarded in this model.
Additionally, to simplify the friction equations, we assume that the string is currently sliding along
the tube at constant velocity (a = 0), allowing us to use kinetic friction with fk = µkn.

Figure 4.37 contains the free body diagram for hinge xi in this model. Applied forces are:

1. The normal force from the tube boundary (ni).

2. The sliding friction force (fi = µni).

3. The axial force being applied from the previous node (Fi)

4. The reaction force resulting from the axial force applied by xi to xi+1 (Fi+1).

The force balance is

∑
Fx = Fi cos θi − Fi+1 cos θi+1 − µni (4.1)

∑
Fy = −Fi sin θi − Fi+1 sin θi+1 + ni (4.2)

As we are assuming constant velocity, these equations sum to zero.
Given n nodes, this builds a system of 2n equations (Fx and Fy for each node) with 2n − 1

unknowns F2, . . . , Fn and n1, . . . , nn (F1 is known).
If we let Xi = ni

Fi
be the ratio of normal force to axial force, we can obtain an expression for

directly computing the normal force in units of axial force at any given node. This is done by
dividing Equations 4.1 and 4.2 by Fi, yielding

cos θi − Fi+1

Fi
cos θi+1 − µXi = 0

sin θi +
Fi+1

Fi
sin θi+1 −Xi = 0

We see that Fi+1

Fi
= cos θi−µXi

cos θi+1
, from which we can obtain

Xi =
sin θi + tan θi+1 cos θi

1 + µ tan θi+1
(4.3)
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Figure 4.38: Continuous formulation

Equation 4.3 is dependent only on the angles to the neighboring nodes of node i, suggesting
that it depends only on the curvature of the tube. As the resolution increases and we have more
nodes, the angles tend to 0, and as a result Xi → 0 as well. In order to get an expression for the
force ratio at a point on the tube regardless of resolution, we will construct a continous formulation
that expresses Xi in terms of the curvature, κ.

Figure 4.38 shows the basis for this formulation. We will consider a point x = f(t) on the tube,
which has curvature κ = 1

r , where r is the radius of curvature. We can locally approximate f by a
circle of radius r, as shown in the figure. We consider points before and after x, which are offset
from x by arcs defined by α. These points are a distance l from x, and the angle from horizontal
to these distances is given by θ. This angle will be used as both θi and θi+1 in Equation 4.3. First,
we must derive θ in terms of l and r.

We can apply the law of cosines to the triangle in the figure to obtain α: l2 = 2r2 − 2r2 cosα.
Since the triangle is an isosceles triangle, β = π−α

2 , and θ = pi
2 − β = α

2 .

θ =
1
2

cos−1 2r2 − l2

2r2

=
1
2

cos−1

(
1− l2

2r2

)

=
1
2

cos−1 Q

with Q = 1− l2

2r2 . With θ = θi = θi+1, Equation 4.3 simplifies to

Xi =
2 sin α

2

1 + µ tan α
2

(4.4)

Using the half-angle formulas tan θ
2 = 1−cos θ

sin θ and sin θ
2 = ±

√
1−cos θ

2 and the inverse formula

sin(cos−1 x) =
√

1− x2, we obtain
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Xi =
2
√

1−cos α
2

1 + µ1−cos α
sin α

=
2
√

1−Q
2

1 + µ 1−Q√
1−Q2

=
2
√

l2

4r2

1 + µ
l2

4r2q
l2

r2− l4

4r4

=
l
r

1 + µ
l
rq

1− l2

4r2

=
l
r

1 + µ l√
4r2−l2

If we take the limit liml→0
Xi
l , we get

lim
l→0

Xi

l
= lim

l→0

1
r

1 + µ l√
4r2−l2

(4.5)

=
1
r

= κ (4.6)

An obvious modification for reducing friction is to use a lubricant in the knot tube. We have
used a graphite-based lubricant, which sprays on in liquid form and then dries to form a graphite
film. Since this is dry, it does not leave residue on wire or string passing through the system.
However, apart from residue, there is no reason why a wet lubricant could not be used for tying
wire.

A more complex modification is the use of rollers, as discussed in Section 4.4.4. With rollers,
there is no longer an issue of cumulative friction on the string, as the rollers will always be static
with respect to the string. The friction has been transferred to the axles holding the rollers, and it
can be easily reduced with oiled bearings. Thus, this method shows the most promise for allowing
arbitrarily long fixtures; however, it is also the most complex.



Chapter 5

Lessons Learned

There are three main classes of flexible materials: curves, surfaces, and volumes. This thesis
explored some of the most important examples of two of these classes: string and wire, and cloth.
String and wire are major components in the space of flexible curves (rubber bands are another
possible variation). Cloth is an important example of a flexible surface (stretchable sheets, such as
rubber, and developable surfaces, like paper, form two other major classes of flexible surfaces).

In this section, I will discuss some observations made during this thesis, and some conclusions
that might inform future work.

5.1 Knot Tying

During our knot tying work, I learned that fixture design consisted of trade-offs between easy inser-
tion and easy extraction, and that string and wire require very different designs, with compressed
air being the most useful method for string insertion. I learned that little to no sensing is necessary
for knot tying, and that we need to take the thickness of string into account when designing fixtures.

5.1.1 Insertion/extraction conflict

The knot tying problem can be broken down into three major phases: insertion, extraction, and
tightening. This thesis considers primarily the first two problems; we generally assume that if a
knot can be extracted from a fixture, we can tighten it by pulling the ends of the wire or string.
However, this is not the case for all knots. Some knots, such as the slipknot or sheepshank, require
additional grasp points at loops in order for the knot to tighten correctly. While we do not address
this issue, it was explored by Wakamatsu et al. [82]. They propose a method of finding regions of
the knot that require extra fingers for tightening, and give a way to identify tightenable sub-knots
that must be grasped.

The insertion and extraction phases of knot tying are typically in conflict. Designs that simplify
insertion cause problems for extraction (e.g., fully enclosed tubes), and designs for easy extraction
can make insertion very difficult (four-piece knot boxes). A truly robust system needs to combine
insertion and extraction techniques in a way that resolves this conflict. Techniques involving fully
enclosed tubes with removable walls (four-piece, rubber-covered slit, or retractable rollers) make
insertion simpler, in the sense that the string or wire will not follow an undesirable side path, while
still preserving easy extraction. However, these techniques may require better methods of providing
force to the string or wire for insertion. We can continue to increase the number of pieces, making
extraction progressively easier (with the limit of a dissolving fixture) at the expense of additional
actuation for all the pieces.
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Four-piece fixtures might require full actuation in order to be practical, but we believe that
with this modification, they provide the best possibility for a universal technique for all knots.

5.1.2 Different fixture designs for string and wire

String and wire behave very differently, and require different classes of fixtures for knot tying. Wire
can be pushed through long knot tubes, but poses additional difficulties due to memory effects and
potentially sharp tips. Wire is also more sensitive to changes in the shape of the curve that forms
the tube. Fixtures with slits take advantage of the lower flexibility of wire by depending on the
tendency of wire to follow the outside of a curved tube when pushed, and exiting through the slit
when pulled. With wire, it is possible to make the slit very large, to the point where the wire guide
is a half-open tube, which greatly simplifies extraction.

Not surprisingly, we found that it is very difficult to push string through a tube. String buckles
and becomes stuck very easily. We actuate string by using air, which simultaneously pushes and
pulls on the entire length of the string. As a result, we need to minimize possible incorrect paths
for air (and string), meaning that the slit needs to be very narrow, which can make extraction more
difficult.

In conclusion, I learned that we need to have different fixture designs for string and wire.

5.1.3 Compressed air

Using compressed air to actuate string has several advantages. Due to the high speed of the airflow
through the knot fixtures, string can be inserted very quickly, to the point where insertion looks
almost instantaneous. We can also use air to reduce the amount of contact between string and the
walls of the fixture. The double-chambered fixtures use rings of air jets to simultaneously apply air
from multiple directions, with the goal of keeping the string in the middle of the tube and away
from the walls. This could be extended further with even more air jets in the knot tube, similar to
the way an air hockey table uses a very large number of small air jets to reduce the friction between
the puck and the table surface.

Compressed air is the most promising approach that we have found for quickly pushing string
through fixtures.

5.1.4 Minimal sensing systems can be effective

We have developed many different fixtures for knot tying, and none of them require any sensing.
We have developed open-loop systems for tying using single-piece and track-based fixtures. We
believe that sensing is not necessary for the knot tying process. Sensing might assist in tasks such
as knowing when to clamp the end of the wire, or in aiding the insertion process, but it is not
required.

5.1.5 Lack of accurate simulation drives simple designs

Accurately simulating string or wire is very challenging, particularly for knot tying since it involves
self-collision, and even more so for knot fixtures. String in a fixture has a very high number of
contacts with the fixture, and buckles somewhat unpredictably. For air-actuated fixtures, simulation
would require incorporating a fluid dynamics engine, with an accurate model of the interaction of
different types of string with a complex airflow that contacts the entire string at the same time.
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Our fixtures were designed manually, and improved through multiple design-test iterations.
The lack of input from simulations led to relatively simple designs for smaller knots; future work
in accurate simulation would make more complex designs much easier.

5.1.6 String thickness can be a major challenge in extraction

The two-piece fixture we built did not work well due to the fact that string is not infinitely thin. The
string interferes with separation of the two pieces, preventing extraction. If we take the thickness
of string or wire into account while designing a method by treating the string as a tube rather than
as a strand, this explicitly leads to more guaranteeable extraction. The four-piece fixture does this
well by relying on separation directions that are designed to avoid any contact between the fixture
and the string. Designs with this property will always have simple extraction that is not affected
by string thickness.

The thickness of string also plays a role in the success or failure of other extraction techniques.
Fixtures with slits need to have the slit width tuned to the string width to prevent the string from
prematurely entering the slit, particularly for air-powered fixtures. We found that a slit that is
slightly narrower than the diameter of the string works well for air-powered fixtures.

5.1.7 Precise tightening

As discussed earlier, precise positioning of a knot with single-piece fixtures is possible because the
knot must leave a single-piece fixture through a narrow tube. The knot cannot emerge until the
knot’s diameter is smaller than the tube’s diameter. By holding the leading end of the string at
the exit from the fixture, and by pulling the trailing end back through the fixture and the narrow
tube, we can reliably place the knot within 5 mm of the same position over multiple attempts.

From this, it is readily apparent that a funnel or short tube segment can be added to other
fixture designs to assist with precise tightening. We can only be certain that the knot is in a known
location on the string if we grasp the string or wire at the exit from the fixture, and have a known
distance d0 from this grasp point to the funnel. When we pull the trailing end back through the
funnel, the knot will always be a distance d0 from the grasped point of the string.

Distances shorter than d0 between the knot and the end of the string are possible if we allow
for some sensing. Once the knot is tightened, the string is pulled back through the funnel or tube,
and cut off once the desired length has been pulled. Distances longer than d0 are possible if we
push extra wire through the fixture prior to grasping; however, measuring this may be difficult for
string since there is less control over the insertion process (as compared to wire, where a motorized
feeding mechanism can insert a known amount of wire).

5.1.8 Tying around objects

The knots explored in this thesis do not involve tying string to rigid objects, but we can modify
our fixtures to incorporate rigid objects. For any knot diagram, a rigid body will be placed within
loops of the diagram. If we use the four-piece approach, these rigid body pieces can be incorporated
into the graph of the knot as shaft edges.

This adds several challenges to the design. The middle layers must now also account for the
rigid body shaft edges in addition to the string shaft edges when searching for occlusions, and
the top and bottom layers must be separable around the rigid body shaft edges (which turns the
four-piece fixtures into six-piece fixtures). We will need to search for occlusions in the top and
bottom layers as well to allow separation of those layers, although the separation direction need
not be the same as the middle layer.
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The shape of the rigid body affects whether or not this is possible. For some shapes, there may
not be a way to prevent occlusion, which will prevent separation. Also, since we need to lift the
top and bottom layers of the fixture away from the string before we can slide them sideways, the
rigid body must be shaped in a way that allows this lifting motion.

5.2 Cloth Folding

The most important lesson I learned from our cloth folding experiments is that cloth folding is
relatively easy, and that flattening cloth is much harder. Folding only requires a few fingers and
simple techniques, whereas flattening most likely requires a much more complex system.

5.2.1 Folding is easy, flattening is hard

As demonstrated with our T-shirt folding system, and Osawa’s hinged plate system [56], folding
cloth is relatively easy. With our T-shirt folding system, no regrasping is necessary, so it is only
necessary to locate the three key points at the beginning of the folding process. The hinged plate
system requires some careful repositioning during the process, but the sliding manipulation required
is relatively simple.

However, flattening clothing is a very difficult problem. The range of possible inputs is much
larger, since clothing can be in many possible configurations when it comes out of a dryer, with
inside-out clothing being one of the most difficult configurations. Given an article of clothing from
the dryer, we first need to recognize what type of clothing we have. Given the type, we can make a
guess as to the configuration based on vision or laser rangefinder data. Then, we need to somehow
manipulate the clothing into a flat configuration. It seems likely that many degrees of freedom
are necessary to accomplish this manipulation, and that there are no easy shortcuts or sensorless
methods.

The flattening method that is most promising is picking up and shaking the cloth. If we pick
up cloth by an arbitrary set of points and shake it into a hanging configuration, we can examine
the resulting shape to determine some information about the cloth (such as classification and a
guess at configuration). Kaneko and Kakikura demonstrated that classification by examining the
silhouette of hanging cloth is possible [40]. With this information, we can put the cloth down, and
try to grasp a new set of points that is more likely to hang the cloth in a flat configuration that
can be used for folding. In this context, a flat configuration may mean one that has a fold present,
with the two sides of the fold hanging without any wrinkles.

5.2.2 Not many fingers are needed for successful folding

Given gravity and a table, very few fingers are needed to fold cloth. We have shown how to fold a
T-shirt using two fingers that grasp the shirt at three points, with the additional stipulation that the
two fingers remain a fixed distance apart. Pants and shorts can be folded similarly by grasping along
the waistline, with one finger at the center, and one bringing the two sides together. Rectangular
items such as towels and handkerchiefs are also easily foldable with two fingers, although they may
require that the fingers are a variable distance apart.

Since humans can fold clothing using two fingers, gravity, and a flat surface, it is likely that a
robot can accomplish all folding tasks with just two manipulators. Large items, such as sheets, are
an exception; humans find it difficult to fold such items by themselves, but two people (and four
fingers) suffice, suggesting that a pair of laundry folding robots would suffice.
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5.2.3 Components necessary for a laundry folding robot

From our results, we can make some informed conjectures on how a laundry folding robot would be
built. As just discussed, the flattening task is very difficult, and requires a more complex system
than the folding task. Sensing is necessary, as are multiple degrees of freedom.

An ideal robot would have a very thorough sensor system, probably combining machine vision
and a laser rangefinder for full color and 3D position information. Color vision is useful for seg-
menting cloth into multiple pieces, and for finding edges, while the rangefinder provides 3D data
that simplifies grasping. Sensitive grippers would also be useful, as they would be able to detect if
a piece of cloth has been successfully grasped, in addition to providing warnings if the cloth starts
slipping out of the grasp.

Although we have shown that one arm may be enough for some folding applications, two arms
would make the process simpler, and additional arms may unnecessarily complicate the system.
These two arms need to have 6 degrees of freedom, with a fairly large workspace (at least 5 feet
side to side) to be able to grasp and stretch larger items such as towels. Both arms need to be
capable of reaching most of the workspace, since many folds require bringing one side of the cloth
across to the other side.

The grippers need to be capable of grasping the cloth both securely (for folding) and loosely
(for hem following in flattening). They also may need to grasp multiple layers of cloth at once, as
when grasping the middle of a T-shirt in the two-finger, three-point method. However, they may
sometimes need to grasp just one layer, such as when turning clothing inside-out, or rotating a
T-shirt or pants leg.

This system does not need to be mobile, as a folding station immediately next to a dryer should
have enough reach to pick up clothes from the inside of the dryer. However, given that the system
described has very broad capabilities beyond laundry folding, it might make sense to build this into
a general-purpose mobile household robot, increasing the value of the system without increasing
the cost.

5.3 Cloth Grasping and Immobilization

Convex vertices are problematic for immobilization, since each convex vertex requires a finger in
order to be immobilized. Concave vertices add at most one third of a finger, which suggests that if
we are designing a particular shape of cloth for an application requiring immobilization, we should
attempt to minimize the number of convex vertices.
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Chapter 6

Future Work

We have only begun to understand the behavior of flexible materials. While we know how to
tie knots, we do not have a good way to simulate the process, or to analyze fixture types to
understand why some techniques work better than others. We also do not have a good way to
come up with fixtures for new knots, particularly for knots that are attached to objects (such as
hitches). Although we know exactly how to fully immobilize cloth, and have some understanding of
how to fold it, we do not know how to reliably flatten a piece of clothing. In both aspects, we need
to better connect theory and practice, and examine ways to add new capabilities such as sensing,
actuation, and modifications to the environment.

6.1 Exact number of fingers necessary for immobilization

In the cloth immobilization chapter, we discuss one class of polygons (pinwheels) that require
fingers at points other than the convex vertices. We conjecture that polygons with pinwheel-like
substructures are the only class of polygons that require extra fingers. (We are defining pinwheel-
like substructures to be areas of the polygon with cyclic visibility structures, as in Figure 2.13.)
Pinwheel-like substructures do not admit a support tree, as the visibility structure does not allow
for positively-spanned vertices without the addition of a cycle, which requires an extra finger. One
possible approach to proving this fact is to use some type of polygon decomposition, such as a
decomposition that incorporates support graphs. The components of such a decomposition might
be ears (regions containing a single convex vertex and a single non-positively-spanned graph vertex);
tubes (regions containing only concave vertices and part of an edge of a support graph, with no
graph vertices); and intersections (regions with either just concave vertices or no polygon vertices,
and positively-spanned graph vertices).

We also conjecture that to immobilize a simple polygon, there must be fingers at the convex
vertices, plus one finger per pinwheel-like substructure. If pinwheels are the only class of polygons
requiring extra fingers, this second conjecture is clearly true, as a pinwheel requires one extra finger
for immobilization (Theorem 2.10).

6.2 Gravity-assisted manipulation

Although we understand how to immobilize cloth with many fingers, we do not have a complete
understanding of immobilization in the presence of gravity, where we can rely on the force of gravity
to immobilize (or at least constrain) portions of the cloth. The basic analysis in Chapter 3 gives
us some ideas on how gravity affects cloth, but it provides no information on what happens in
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cases involving buckling, which may turn out to be useful for folding. For example, the three-point,
two-finger method demonstrated in this thesis initially puts the cloth in a highly buckled state
before using gravity to straighten it.

Once we know how to constrain cloth in various states using gravity, we need to know how to
transition between these states to accomplish folding or flattening tasks. An apparently obvious
motion may introduce extra undesirable folds, or it may cause existing folds to fall apart. If such
transitions involve regrasping, we need a way to transition in both directions between the hanging
and flat on a table states (assuming we only have two hands for manipulation).

Finally, we may not be able to predict the full state of cloth during a set of gravity-assisted
tasks. How much sensing is necessary, and when do we need it? If the cloth is fully flattened on a
table, can we fold it with no sensing, or is sensing necessary (or helpful) at an intermediate phase in
the process? For example, during the shaking phases of the three-point, two-finger method for shirt
folding, it is helpful to know when the shaking has correctly transitioned the shirt from buckled
to hanging, since unnecessary shaking risks dropping the shirt, and increases the time needed for
folding.

6.3 Cloth sensing

Some amount of sensing is essential for practical cloth manipulation (particularly flattening) due to
the unpredictability of cloth. At a minimum, a few IR sensors can be used to detect the presence
of cloth at key locations (such as within the jaws of a gripper). A camera would provide more
complete information, although processing the resulting images is very complex. RFID tags or a
motion capture system would be capable of providing information on a subset of points on cloth,
and it has the advantage of working in the presence of occlusion. A laser rangefinder would provide
complete position information for non-occluded regions, although such a system would be very
expensive. It is unclear which of these various methods is actually the most useful, although it
seems that the RFID method may be a good solution due to its low complexity and cost.

RFID tags have the advantage of being very low cost; one set that we looked at costs $1 per
tag. The tags are small 18 mm diameter buttons,and have a fairly limited range, which is beneficial
for location sensing. However, as with any RFID system, precision is still limited, with error on
the order of 1 to 2 inches.

We did some basic experiments with a Phidgets RFID reader, and determined that with the
reader within 0.25 inches of the tags, a single tag can be read with the center of the reader located
up to 2 inches away from the center of the tag. With the reader located 0.5 to 1 inch above the
tags, a single tag can be read up to 1.5 inches away.

More complex RFID systems have the ability to read multiple tags simultaneously; the Phidgets
reader will not report a tag present if multiple tags interfere with each other. However, we can use
this to our advantage. Tags can be spaced with their centers 1 inch apart, in which case the reader
will correctly identify the tags when it is centered directly over them at a height of 0.5 inches, with
no tag registering when the reader is between the tags.

The above results suggest that closely spaced tags actually improve precision, although it is
somewhat impractical to try to line the entire boundary of a piece of cloth with RFID tags. It
seems that even a limited set of tags at key points on the cloth would provide useful information.
An RFID reader can be mounted on a robot arm, which can sweep the reader back and forth over
a piece of cloth on a table. From this scan, it should be possible to approximate the locations of
the RFID tags on the table’s 2D surface, and to estimate the locations of the edges between them.
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6.4 Cloth flattening

As we have observed, flattening a piece of cloth is a much harder problem than folding it. It seems
very unlikely that there is a sensorless solution to this problem. It may be possible to pick up cloth
with no sensing if we make a few assumptions, such as assuming the cloth is in a container (e.g.,
a laundry hamper) at a known location. However, picking up cloth from an arbitrary point is not
useful for flattening or folding; at a minimum, the locations of a few points are needed.

Assuming we have some information about the locations of various points on the cloth, we can
attempt to flatten it using various methods. The most obvious attempt is to use a pick and place
approach to move key points (such as those needed for an immobilizing grasp) to their locations in
a flattened configuration. However, the problem of occlusion still remains. Even if we assume that
we can sense occluded points with a method such as RFID tags, we still cannot directly grasp an
occluded point. Moving just the top layer of cloth will not in fact move the correct point. We can
detect this by ensuring that the gripping mechanism only grasps one layer of cloth, and by sensing
if the RFID tag moves along with the gripper. If not, we know that an incorrect layer was moved,
and we can take steps to try to remove the occlusion, possibly by hanging the cloth.

A simpler approach is to somehow identify the type of cloth that needs to be flattened, and
to flatten it by hanging it from a few fingers. This again has the potential problem of occlusion
preventing grasping, in addition to the more complex issue of cloth classification. However, if we
have an idea of the shape of the cloth, it should be possible to compute grasps involving a few
fingers (ideally two, but some items like button-down dress shirts require more fingers) that will
flatten the shirt when it is suspended from the fingers.

One final approach that we briefly experimented with is flattening by spinning. For some types
of mostly convex cloth (such as T-shirts, handkerchiefs, or towels), a rotation center exists such
that a vector field radiating out from this rotation center flattens the cloth. If we spin the cloth
about this point, it will flatten. By combining spinning with an umbrella-like mechanism, it is
possible to flatten cloth, and to keep it in the flat configuration after the spinning is stopped.

6.5 Reliable grasping

How can we ensure that we can reliably grasp key points on a piece of cloth (realizing that high
precision is not always necessary for manipulation tasks)? In the cloth sensing section above, we
propose RFID tags as a possible sensing solution, but it is unclear if they will provide sufficient
precision for reliable grasping. In our cloth folding setup in Chapter 3, we solve the problem by
attaching magnets to the shirt at key points. Although very reliable, this is undesirable since
unfolding the shirt becomes more difficult when portions of it are stuck together with magnets.

6.6 Modifying cloth

Are there ways to modify clothing to make flattening and folding tasks easier? One modification
that we have already discussed is embedding RFID tags or magnets in the shirt to assist with
grasping points, but we can also consider more radical modifications. Inflating an air mattress in
a folded configuration causes the mattress to unfold itself, so if we do something similar and line
the entire edge of a piece of clothing with a small flexible air bladder, will the clothing move into a
flattened configuration if we inflate the air bladder? What if portions of the surface also have air
bladders?
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Are there other markers that we can consider? As mentioned in the related work section, Scholz
et al. use M-arrays to uniquely identify points on cloth [74]. It may not make sense to cover the
entire cloth with this pattern, but can we at least cover small regions? Can we incorporate low-level
radiation sources that are easily detectable while not harming humans?

Are there built-in sensors that can provide useful information? Would a miniature sensor net-
work be able to provide relative distance information, potentially allowing us to gather some infor-
mation about configuration? Can we combine light sensors with some other method of identifying
key points to only try to grasp points that are not occluded?

6.7 Simulation of string in fixtures

For knot tying, the most critical missing piece is a proper understanding of the behavior of string or
wire inside a tube. As discussed in the related work section, there has been significant work done on
general string simulation; however, there has been little on simulation within a complex environment
such as our knot fixtures. Building such a simulation would require a detailed understanding of
the frictional interactions between string and the fixture walls, as well as a better understanding of
buckling. With this information, it would become possible to automate the fixture design process
for different classes of materials. Additionally, good models of the airflow within air-based fixtures
would be useful for designing such fixtures; currently, we build them by hand, which likely introduces
problematic turbulent regions.

6.8 New separable fixtures

There are a few potentially interesting separable fixture ideas based on four-piece fixtures. First,
given a four-piece fixture, we can force all tubes in the top layer to be horizontal, and all tubes
in the bottom layer to be vertical (or vice versa). Any change from horizontal to vertical would
require a shaft edge between the two layers. This is possible for any knot, as it is trivial to convert
a standard orthogonal graph to this variation. However, this adds a significant number of bends to
the fixture, with no clear benefits.

Second, we can convert a four-piece fixture into a three-piece fixture by joining the top and
bottom layers into a U-shaped piece, with the join oriented such that both pieces of the middle
layer can slide out without interfering with the knot. Extraction and tightening then takes place in
the space left by the middle layer. While less elegant than the four-piece version, this has the benefit
of slightly reducing the amount of actuation needed to take the fixture apart without introducing
any new complications.

6.9 Adding more actuation to knot fixtures

There is also room to make the existing fixtures more practical by adding a greater amount of
actuation. Cilia-like manipulators or drive rollers along the entire length of a knot tube would
essentially remove the friction issue. Since all points on the string will be moving at the same
speed, the string will never start to drag against any sharp curves. Although implementing such a
system would be a major engineering project, it should enable arbitrarily complex knot shapes of
any length. The algorithm for creating four-piece knot boxes may not currently produce practical
fixtures, but with a fully actuated tube, four-piece fixtures could easily serve as a standard, easy
to design fixture type.
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A simpler method of improving actuation in fixtures is to pull string through a fixture by
attaching it to a guide string that is already placed within the fixture’s knot tube. This guide string
would be long enough that it can be pulled back an equal distance after an insertion, allowing the
same guide string to be used repeatedly. This method would only work well in fixtures that do not
have many sharp bends, as the friction involved might make it impossible to pull the guide string.

An air-based fixture that is more sensor-based with finer control over air supply should provide
better results than the air-based fixtures described in the case studies. Such a system could be
modular, as in Section 4.5.7, with a symmetrical ring (and pressure vents) in each segment. A low
volume of air can be sent into each segment constantly to try to keep the string away from the walls,
with a significantly higher volume of air at a few segments immediately behind a plug attached
to the end of the string to assist in moving the plug along. This requires building a complex air
control system, along with sensing to determine where the plug is currently located.

Although hard to model and design, one could imagine a system that consists of just air nozzles,
with no fixture. A careful arrangement of air nozzles with complex controls should make it possible
to tie a knot in mid-air by using highly directed air flows as “fingers”. Such a system would require
a very extensive understanding of string dynamics, and would likely be very material-specific.

6.10 The future

Is it practical to build a system designed just for laundry folding? Or should such a system be
part of a mobile household robot? For large-scale operations, such as towel folding at a hotel,
or shirt folding at a shirt factory, it might make sense to have a system dedicated to folding one
particular item very quickly and very reliably. However, for home use, we believe that it the average
homeowner will not want to buy multiple expensive robot gadgets for different tasks, and instead
will want one robot that can vacuum, fold laundry, cook, and so on. This robot may not be as
efficient at these tasks as a set of individually tailored robots (in particular, it will have to make do
with a generic set of manipulators and sensors), but the versatility will be a major selling point.
Given such a system, how can we program it to handle a pile of laundry fresh from the dryer? We
need to handle inside-out clothing, multiple different types of clothing, and a huge variety of colors
(not to mention static cling).

The ideas discussed in this thesis are applicable at different scales, particularly towards the
smaller side. Our immobilization proofs are valid even at the micro scale, and can be applied to
lattices of nanotubes, for example. Although there are additional issues such as stiction, knot tying
fixtures should work at the micro scale as well. These concepts could lead to new ways of building
self-assembling systems, where fixtures attach and shape lattices into desired configurations. Small-
scale knot tying seems particularly useful for this purpose. One potentially interesting application
might be permanent velcro, where two panels covered in tiny rods are brought together through a
middle layer consisting of square knot fixtures, tying the rods on the two panels together. Dissolving
the fixture layer would yield a very solid and permanent bond between the two velcro-like layers.
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