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Abstract

Silicon integrated phononics, dealing with the integration of phononic band gap

(PnBG) crystals, also referred to as the acoustic or elastic band gap crystals, into sil-

icon is an area of research originating within the last two decades and has important

implications for the study of basic physics as well as for the realization of a device

platform that may be utilized to build important and practical signal processing and

sensor devices and other structures in engineering applications. PnBG research appears

to display the potential for application in electronics to heat and noise control (e.g. in-

sulators), photonics for enhanced photon-phonon interaction and control, mechatronics

and reliability in micro-electro-mechanical system (MEMS) for anchor loss reduction

and vibration stabilization, energy harvesting, acoustics for impedance matching layers

and metamaterials, material science and nanotechnology, nano-acoustics (for example,

graphene based structures), nano-photonics (for example, to control the PnBG of ma-

terials utilized in tera-hertz lasers), communications for low power signal processing

elements and so forth. This thesis is focused on researching the realization of the rel-

atively new phenomenon of two-dimensional classical elastic wave PnBG phenomenon

to create novel MEMS technologies utilizing silicon processing techniques. Within the

thesis a new device architecture is proposed and referred to as the phononic band gap

quasi-crystal (PnBG QC) architecture. Numerical simulations report that behavior that

resembles PnBG behavior will only occur for limited combinations of PnBG QC feature

dimensions and silicon plate thicknesses. Utilizing novel geometries we have fabricated

practical silicon-plate PnBG QC MEMS devices that appear to be the first of their kind

in a silicon MEMS technology.

Current approaches to the micro-integration of PnBG crystals rely on exotic piezo-
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electric transduction, PnBG crystals etched into semi-infinite or finite-thickness slabs

through which surface or slab elastic waves travel and PnBG crystal truncation typically

by homogeneous mediums or piezoelectric transducers. The PnBG QC architecture

presented in this thesis is a solution that utilizes electrostatic transduction to provide

an alternative to the use of piezoelectric transduction thereby eliminating the need for

piezoelectric materials. Electrostatic actuation mitigates the use of piezoelectric trans-

ducers and provides action at a distance type forces so that PnBG QC edges may be

free standing for potentially reduced anchor loss. The PnBG QC architecture requires

only one material layer and utilizes free standing serrated edges along the truncation

boundary of the PnBG QC. While the literature presents the use of a rectangular PnBG

crystal truncation boundary, this thesis investigates the utilization of both circular and

square truncation boundary geometries. The literature does not appear to report meth-

ods to optimize the PnBG crystal truncation boundary, while this thesis develops a

tuning methodology for serrated edges and tethers to enable complete band gap for-

mation in the presence of the non-idealities of finite periodicity of the PnBG QC and

attachment of anchored tethers to the PnBG QC. The freestanding PnBG QC may im-

prove energy confinement for potentially reduced substrate mode loss, and potentially

improved in-plane energy confinement, compared with contemporary surface, and slab,

respectively, wave PnBG crystals. Air inclusions are utilized in the PnBG QC to provide

a high acoustic impedance contrast with a solid host material and potentially reduced

motional resistance (higher compliance than a solid inclusion).

The PnBG QC architecture represents a significantly new geometry and so an exten-

sive model is developed to characterize the performance starting with analytical models

of the lumped element electrical circuit and electrostatic transducers, and advancing to
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multi-physics finite element method models of mode shape, dynamic harmonic response,

and electromechanical coupling, then progressing to lumped element mechanical mod-

els of harmonic response, and semi-analytical structural and vibration models. Lastly,

the finite element method is utilized to perform a sensitivity analysis versus geomet-

rical parameters and characterize the mechanical scaling properties of the PnBG QC

architecture. The models verify the design methodology for yielding complete band gap

formation. Moreover, the models indicate that while the proposed PnBG QC architec-

ture resembles a distributed mechanical system, the PnBG QC architecture may yield

insight into unique design approaches for two-dimensional mechanically coupled lumped

element resonators by providing a relatively easy to utilize method to interconnect large

arrays of mass-spring resonator elements where the order of the PnBG QC based res-

onator array may be controlled relatively easily by adjusting the PnBG QC truncation

boundary location.

A set of PnBG QC devices that is representative of the proposed PnBG QC architec-

ture is fabricated in a multi-user silicon-on-insulator process. Reasonable experimental

verification of the electrostatically actuated PnBG QC architecture is obtained through

dynamic harmonic analysis and mode shape topography measurements obtained utiliz-

ing optical non-destructive laser-Doppler velocimetry. The measurements provide funda-

mental information regarding the novel electrostatic transduction mechanisms, effects of

damping and process non-idealities, and unique behavioral characteristics of the PnBG

QC architecture in the spatial and frequency vibration domain. This represents to the

best of our knowledge, for the first time, both the theory, design methodology and ex-

periment of an electrostatically actuated architecture for the integration of devices based

on two-dimensional PnBG crystal geometries into silicon and displays the potential to
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serve as a platform for the development of a new generation of silicon-integrated sensors

and signal processing elements and improved mechanical systems.

Furthermore, an investigation is presented into the applicability of the PnBG QC

architecture to the development of physical temperature sensors and advanced signal

processing elements. Experimental measurements at elevated temperatures created uti-

lizing an infrared radiation source indicate that one of the fabricated PnBG QC devices

displays a negative temperature coefficient and comparable temperature dependence to

a bulk resonator. The thermomechanical performance is also characterized utilizing a

finite element method model. Lastly, to investigate applicability to signal processing

elements and achieve a more complex mechanical frequency response, a modification

to the PnBG QC architecture is proposed by introducing defect states into a PnBG

QC to create intentionally induced vibration modes (also referred to as defect states)

within the band gap. These defect state vibrations modes are numerically illustrated to

be localized within the core of the PnBG QC and may illustrate potential mechanisms

for vibration stabilization and anchor loss reduction in mechanical systems, the engi-

neering of complex frequency characteristics for signal processing elements and general

mechanical system design.
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Chapter 1

Introduction

Phononic band gap (PnBG) phenomenon for classical elastic wave localization is a rel-

atively new area of study originating within the last two decades [1, 2, 3, 4]. PnBG

crystals, for classical elastic wave localization, are composite structures created through

the N-dimensional (N = 1, 2, 3, or 4, for up to three physical dimensions and one time di-

mension) periodic or aperiodic arrangement of inclusion media within a host medium of

contrasting characteristic acoustic impedance [5]. The energy carrying entities typically

of interest within a PnBG crystal have been elastic, acoustic, or phononic waves, and

more recently optical electromagnetic waves with respect to studies involving acousto-

optic interaction [6]. The solution of the elastic wave equation within unbounded PnBG

crystals results in an elastic band structure with characteristic bands of frequencies

where traveling waves are permitted, ranges of frequencies referred to as the phononic

band gap where all polarizations of elastic waves are attenuated, and frequencies cor-

responding to phononic band gap edges where standing waves may be permitted. This

behavior has important implications for the study of basic physics as well as for the

realization of important and practical signal processing element and sensor devices and
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other structures in engineering applications.

PnBG crystals may be formed through the repeated placement of one-, two- or three-

dimensional unit cells. As illustrated in Figure 1.1 for a two-dimensional space centered

cubic crystal lattice, a unit cell is comprised of a host medium into which an inclusion

medium is embedded. Each unit cell is centered at a lattice point of the space centered

cubic lattice and the distance between lattice points is the lattice constant, a. Each unit

cell is characterized by a fill factor, ff , which for one-, two- or three-dimensional PnBG

crystals is the ratio of inclusion length, area, or volume, to total unit cell length, area,

or volume:

ff1D =
inclusion length

unit cell length
(one− dimensional P nBG crystal),

ff2D =
inclusion area

unit cell area
(two− dimensional P nBG crystal), or

ff3D =
inclusion volume

unit cell volume
(three− dimensional P nBG crystal),

(1.1)

respectively. The host medium and inclusion medium differ in their acoustic impedance,

which is given by:

Z = ρc

=
√
ρE

(1.2)

where ρ is the material density, c is the acoustic or elastic wave velocity and E is Young’s

modulus. PnBG crystals may also be referred to as acoustic band gap, elastic band gap

or sonic band gap crystals.

The elastic band structure of a PnBG crystal is analogous to the electronic band

structure of semiconductors and the electromagnetic band structure of Photonic Band

Gap (PtBG) or electromagnetic band gap crystals. The electronic band structure of a
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semiconductor crystal is a consequence of the wave nature of the electrons present in

the periodically varying electric potential field that is produced by the periodic array of

atomic nuclei. The electromagnetic band structure of a PtBG crystal results from the

presence of electromagnetic waves in a periodic array of inclusions, whose dielectric con-

stant contrasts that of the host medium. The presence of elastic waves in the periodic

PnBG crystal results in the elastic band structure and phononic band gap formation

via Bragg and Mie resonance produced scattering of elastic waves off of the centers of

dissimilar characteristic acoustic impedance [7]. Figure 1.1 illustrates the Bragg condi-

tions between two of the crystal planes of a two-dimensional PnBG crystal in directions

denoted by ΓX and ΓM . Assuming isotropic host and inclusion materials, the Bragg

conditions may be analytically approximated for two Bragg planes of the square lattice

in Figure 1.1 as [7]:

fΓX =
cavg
2a

fΓM =
cavg

2
√

2a

(1.3)

where for circular inclusions:

cavg,circle inclusion = ff × ci + (1− ff) ch

ff =
πr2

a2
,

(1.4)

where r is the circular inclusion radius, ci is the elastic wave velocity of the isotropic

inclusion material and ch is the elastic wave velocity of the isotropic host material, and

a is the lattice constant. The ratio ff = πr2

a2
is the fill factor of a square unit cell that

contains a circular inclusion of radius r. For the case of a square unit cell that contains a

square inclusion, as shown in Figure 1.1, the average elastic wave velocity and fill factor
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Figure 1.1: A two-dimensional simple cubic phononic band gap crystal and its cor-
responding unit cell. Variables: a (lattice constant), Zh = ρhch (host characteristic
impedance), Zi = ρici (inclusion characteristic impedance), ρh (host density), ρi (inclu-
sion density), ct,h (host transverse velocity), cl,h (host longitudinal velocity), ct,i (inclu-
sion transverse velocity), cl,i (inclusion longitudinal).

would be:

cavg,square inclusion = ff × ci + (1− ff) ch

ff =
w2

a2

(1.5)

where w is width of the square inclusion.

The design parameters available to engineer the phononic band gap of PnBG crys-

tals include: (1) lattice type: SC (Simple Cubic), FCC (Face Centered Cubic), BCC

(Body Centered Cubic), HCP (Hexagonal Close Packed), super-lattices, a-periodic lat-

tices (e.g. random), quasi-crystal lattices (lattices of finite periodicity), and so on; (2)

acoustic impedance mismatch to control the reflection coefficient involved in Bragg and

Mie scattering; (3) tertiary composites to create local resonance [8]; (4) fill factor; (5)

composite topology (cermet versus network topology); (6) macro and micro features:

incorporation of sub-wavelength feature sizes; (7) inclusion geometry including the bulk

geometry (which may overall be a circle, square, fractal [9, 10], and so on) and inclu-
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sion boundary geometry (which may include finer features); (8) inclusion orientation;

(9) advanced architectures: cascading PnBG crystals, time varying inclusions [5], and

so on; (10) dimensionality: one- (Bragg grating), two-, and three-dimensional; (11)

PnBG crystal alloys: hetero-mass and hetero-geometry inclusions (combine more than

one material and inclusion type); (12) physical state of the host and inclusion: solid-

solid, solid-fluid, solid-vacuum, fluid-solid, fluid-fluid, and so on (material systems realiz-

able in silicon processes include semiconductor-air, semiconductor-metal, semiconductor-

vacuum, semiconductor-polymer, metal-metal, metal-polymer, metal-air, polymer-air,

and so on); (13) silicon-compatible materials: poly-silicon, single-crystal-silicon, silicon

dioxide, silicon-germanium, silicon carbide, silicon nitride, aluminum, tungsten, copper,

gold, polimide, organic materials, air, vacuum, and so forth. In addition, topology op-

timization [11] and genetic algorithms [12] provide methods to systematically engineer

PnBG crystals and often lead to non-obvious PnBG crystal geometries.

The required conditions for phononic band gap formation can be case specific and

may be assessed for each geometry and material system. However, guidelines to create

the conditions for phononic band gap formation are available, including the utilization

of hexagonal lattices [13]. In addition, it has been found that for some fluid-host fluid-

inclusion systems, phononic band gaps may favor (that is, are widest for) a host medium

with a high density and high velocity and an inclusion medium with a low density and

low velocity [14, 15]. For solid-host solid-inclusion systems, phononic band gaps may

favor a host medium with a low density and high velocity and an inclusion medium

with a high density and low velocity, with the ratio of longitudinal to transverse wave

velocity of host and inclusion near the
√

2 limit [15]. These guidelines both suggest the

utilization of a high contrast in material density between the host and inclusion but

further specify requirements on the material properties of both elastic wave velocity and
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material density. For the cermet topology (where host density is lower than inclusion

density), phononic band gaps may favor lower fill factors and occur for the widest range of

fill factors [14, 13]. For the network topology (where host density is higher than inclusion

density), phononic band gaps may occur at lower density contrasts but a narrower range

of fill factors [13]. In some cases, phononic band gaps may favor fill factors on the order

of 10% to 50% [14] and the cermet topology. The aforementioned guidelines may not all

hold in general and the optimal conditions for band gap formation may be case specific

and so should be assessed on a case by case basis utilizing parametric studies for each

geometry and material system.

1.1 Motivation

Differences between the nature of electromagnetic waves and elastic waves may lead

to different behavior between PtBG and PnBG crystals. Unlike electromagnetic waves,

which display transverse components in lossless mediums [16], elastic waves possess both

transverse and longitudinal field components and acoustic fields posses only longitudinal

field components [17]. In addition, for PtBG crystals each material is characterized by

one material property: electromagnetic wave velocity or equivalently the refractive in-

dex. In contrast, each material in a PnBG crystal is described by two material properties:

material density and wave velocity, thus providing more parameters in the band gap en-

gineering of PnBG crystals [15]. The material density term in the elastic wave equation

has no analog in electromagnetic wave equations [14]. Moreover, the longitudinal and

transverse components of an elastic wave have different wave velocities, thereby further

increasing the number of PnBG crystal design parameters. This increase in complexity

increases the difficulty in obtaining localization of elastic waves due to the increased

number of vibrational modes [18]. On the other hand the possibility of mixing solids
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with fluids in the same PnBG crystal where fluids support only the longitudinal compo-

nent of vibration and the transverse modes are rejected appears to lead to new behavior

[18, 10]. The existence of a longitudinal component of vibration and the mixing of fluids

and solids in the same crystal increases the diversity of PnBG crystal structures and may

potentially increase the diversity of phenomena that can be studied compared to PtBG

crystals. Moreover, acoustic and elastic waves behave differently from electromagnetic

waves at boundaries where there is a change in characteristic impedance [19, 20]. For

example, for the case of reflection from a free boundary, the longitudinal component

of an elastic wave undergoes a 180o phase inversion, while the transverse component

undergoes no phase inversion [17, 19]. This behavior at free boundaries contrasts that of

electromagnetic fields, and has the consequence that no closed form analytic expressions

may be developed to describe rectangular elastic waveguides that are bounded by free

boundaries [19, 20]. Acoustic and elastic waves are also more sensitive than electromag-

netic waves to changes in characteristic impedance [20]. In addition, acoustic and elastic

wave reflections at boundaries also display a higher level of n-refringence (where n- may

be bi-, tri-, and so on) for a given level of material anisotropy as compared to electro-

magnetic waves [17, 19]. Thus, for a given level of anisotropy, upon reflection from a

boundary, more reflected elastic waves may be produced than reflected electromagnetic

waves. In addition, the high acoustic impedance contrast between an air ambient and

a solid yields excellent energy confinement even within two-dimensional PnBG crystals

that are crafted out of a layer that is surrounded by an air ambient (since air displays

a relatively low density and so high characteristic acoustic impedance contrast with a

solid host), as may be the case for a PnBG crystal created in a planar fabrication pro-

cesses. In contrast, the index of refraction contrast between common host materials for

PtBG crystals and an air ambient (which displays a refractive index of approximately

one) may be relatively low [21] and so PtBG crystals may tend to be three-dimensional
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structures that are designed to localize energy in all three directions to compensate for

the low index of refraction contrast that may occur at the boundary between homoge-

neous optical materials and air. Hence, two-dimensional PnBG crystals may be crafted

in a simple planar fabrication process yet may still display lower loss due to leakage of

energy into the ambient as compared to a comparable two-dimensional PtBG crystal.

Thus, two-dimensional PnBG crystals are compatible with development in planar fabri-

cation processes. Additional differences between elastic and electromagnetic waves may

be found in [19, 20]. These differing governing physics suggests that only loose analogies

may exist between PnBG crystals and electromagnetic and PtBG crystals. These unique

elastic wave properties may lead to unique structures and functionalities for phonon con-

trol. The study of PnBG crystals thus appears to be unique. This may justify the study

of PnBG crystals to pursue the potential discovery of important physical phenomenon

and practical structures.

Numerous MEMS devices in which the vibrational mode wavelength is comparable to

the MEMS device size have recently been developed and employ electrostatic actuation

(as an alternative to piezoelectric actuation), including Lamé mode resonators [22], disc

resonators [23], lateral bulk acoustic wave resonators [24, 25], CMUT (Capacitive MEMS

Ultrasonic Transducer) transducers [26, 27, 28], elastic wave transmission lines [29] and

delay lines [30]. There has also been a recent effort toward coupling increasingly large

numbers of MEMS resonators in arrays [31]. PnBG crystals may leverage electrostatic

transduction techniques and provide significantly unique, elegant and insightful methods

of designing high frequency traveling and standing wave MEMS devices and coupled

resonators.

PnBG crystal theory provides a basis for designing coupled resonators following a cell

based approach, where relatively simple PnBG crystal cells may be combined to create
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more complex structures. This process somewhat mimics the cellular construction of

organisms in nature, where different cells provide different functionality and interact

to form a system that displays complex behavior. Similarly, different PnBG crystal

cells may perform specialized tasks, and these cells may be combined to perform more

complex functionality all within the mechanical energy domain.

Utilizing traditional methods to create mechanically coupled resonators may require

the cumbersome interconnection of numerous discrete mass-spring elements via more dis-

crete elements each of which in themselves may display complex geometries (for example,

crab leg, folded beam, ...). In contrast, PnBG crystal cells may provide a relatively sim-

ple geometrical basis that could be utilized to produce a distributed mechanical system

to form large arrays of resonator elements. The PnBG crystal displays complex behavior

where physical regions that effectively behave as a spring element at one frequency may

double as a mass element at another frequency, and vice versa, potentially leading to a

compact footprint, high element integration density and possibility of using relatively

large arrays of distributed mass-spring elements to achieve a high filter order (quality

factor).

The diversity of PnBG crystal behavior may enable multiple functionalities to be

integrated into a single chip (”System On Chip”) utilizing just a PnBG crystal as the

basis for all components. Multiple functionalities may be provided by simply introducing

defect states into PnBG crystals. Due to the scalability of the elastic wave equation,

PnBG effects scale linearly with device size, and display a potential for miniaturization,

saving silicon die real estate.

The study of practical PnBG crystal structures may also yield important insight into

the behavior of traditional MEMS at high frequency. For example, when the wavelength

of traveling or standing wave vibrational modes becomes comparable to the spacing of
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the periodic arrays of etch holes or dimples that are frequently incorporated into MEMS,

the periodic array of etch holes or dimples become a dominant design feature to account

for and could potentially be modeled as a PnBG crystal in which etch holes form the

inclusions. The phononic band gap effects that may be observed are illustrated by the

sample frequency response of a PnBG crystal in Figure 1.2 where regions of the spectrum

display strong attenuation or an absence of vibrational modes. These phononic band

gap effects may be leveraged or mitigated in MEMS device design.

λ ~ etch hole or dimple spacing

Traditional MEMS
Frequency Regime

Acoustic Band Gap 
Frequency Regime

Frequency [MHz]

Tr
an

sm
is

si
on

 
C

oe
ff

ic
ie

nt
s

Band 
Gap

Figure 1.2: Sample phononic band gap crystal transmission coefficients over a frequency
range extending from the operating frequencies of traditional MEMS devices, extend-
ing up to frequencies at which phononic band gap effects may become prevalent. The
transmission coefficients for the longitudinal (transverse) elastic wave components are
depicted by the solid (dotted) line. The frequency at which the operating wavelength,
λ, becomes comparable to the spacing of the periodically placed etched holes, in the
phononic band gap crystal, denotes the beginning of the phononic band gap frequency
regime.

Phononic band gap effects may have application to filters [32], resonators, elastic

wave cross talk reduction [33], vibration stabilization, support and anchor loss reduction

[34], waveguides, multiplexers, demultiplexers [35], sensors [36], distributed mechanical

system design, high-order resonators and so on. Hence, PnBG crystals may provide an

elegant paradigm for the design of new MEMS technologies.

Piezoelectric Surface Acoustic Wave (SAW) devices perform signal filtering by uti-
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lizing a piezoelectric material for the conversion of an electrical field into a mechanical

displacement field in a way that a filtering operation is performed [37]. In contrast,

a PnBG crystal may be utilized to perform signal processing purely in the mechanical

energy domain, after electrical to mechanical energy transduction has occurred, and

so a piezoelectric material is not necessitated. Thus, utilizing PnBG crystals there is

freedom to employ electrostatic transduction. Electrostatic transduction performs en-

ergy conversion while the frequency selective filtering operation is performed by the

PnBG crystal solely in the mechanical energy domain, though the frequency response

of the electrostatic transducer is also accounted for. Thus, an electrostatically actuated

PnBG crystal-based signal processing element may have reduced material requirements

(no need for exotic piezoelectric materials) and so may achieve higher compatibility

with fabrication processes such as CMOS and those based in silicon. Improved pro-

cess compatibility may assist with miniaturization through on-chip integration of PnBG

crystal-based signal processing and sensing facilities with electronics.

Lastly, while PnBG crystal theory appears to provide a unique approach to the

design of mechanical systems, the literature on traditional MEMS devices presents an

abundance of data on high frequency electrostatic transduction [26, 27, 28, 38, 39, 40,

41], high frequency MEMS [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], elastic wave device

support methods including low-loss quarter wave transformer and nodal tether supports

[22, 23, 24, 25], a variety of material systems (for example, silicon [42, 32], tungsten

[43], aluminium [44], nickel [4]), and so forth) that are known to be useful for creating

PnBG crystals and which are available in silicon processes to make the development of

an electrostatically actuated PnBG crystal architecture feasible and timely.
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1.2 Linguistic Stipulations

This thesis develops a new electrostatically actuated device architecture, which is as a

whole is referred to as the Phononic Band Gap Quasi-Crystal (PnBG QC) architecture.

The portion of the PnBG QC architecture that bares the geometry of a PnBG crystal,

that is periodicity in material properties with respect to position in space, will be referred

to as the Phononic Band Gap Quasi-Crystal (PnBG QC). The term quasi-crystal (or

QC) has be utilized since the PnBG QC may not display the infinite periodicity or

identical behavior of an ideal infinitely periodic PnBG crystal. The range of frequencies

over which the PnBG QC displays and absence of normal modes will be referred to as the

band gap. Models and experiments will be utilized to support that PnBG QCs displays

some of the behavior and frequency selectivity that is characteristic of PnBG crystals.

1.3 Objectives

This thesis develops the PnBG QC architecture by leveraging the theory of PnBG crys-

tals and electrostatic transduction to develop a potential platform for next generation

silicon-integrated sensors and signal processing elements [45] and improved MEMS and

mechanical systems. Traditional approaches are reviewed. Then the unique geometry of

the PnBG QC architecture is introduced. The proposed PnBG QC architecture must be

realizable in a single layer (for maximal compatibility with planar fabrication processes)

where the layer thickness is restricted by the fabrication process. The material and

geometrical properties are given. The proposed design methodologies are then detailed

for band gap engineering, PnBG crystal truncation, PnBG QC anchoring, PnBG QC

boundary and tether tuning for complete band gap formation and the implementation

of unique geometries of electrostatic transducers. The electrostatic transducers perform
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transduction of energy from the electrical energy domain to the mechanical energy do-

main to actuate the PnBG QC over a range of frequencies sufficient for experimental

investigation of the PnBG QC behavior. However, optimal transducer design is not the

subject of this thesis.

The proposed design methodologies are first supported via numerical, analytical and

semi-analytical models of the electrical, mechanical and electromechanical behavior of

the PnBG QC architecture. Then a set of PnBG QCs are fabricated in the Silicon-

On-Insulator Multi-User-MEMS-Process (SOIMUMPs) Silicon-On-Insulator (SOI) bulk

micromachining fabrication process to first demonstrate the feasibility of realizing the

PnBG QC architecture. Metrology is utilized to assess fabrication errors in the geomet-

rical properties of the fabricated PnBG QC devices. Extensive multi-mode experimental

characterization of the fabricated PnBG QC devices is performed in the frequency and

spatial domains utilizing a laser-Doppler interferometer for a set of devices with varying

geometrical properties. Extensive experimental measurements build reasonable evidence

that could be used to deduce that the fabricated PnBG QC devices display reasonable

agreement with the model.

To asses whether the observed behavior of the PnBG QC architecture is a function

of the specific geometrical properties of the PnBG QC architecture, several PnBG QCs

with varying geometrical properties are compared to search for predictable trends. In

addition, the behavior of the PnBG QCs are numerically and experimentally compared

with that of similar homogeneous bulk mode resonators which provide a reference behav-

ior. In this fashion, evidence is built that may be used to deduce whether the observed

characteristic behavior may be a specific property of the PnBG QC devices.

The final objective is to provide a reasonable level of insight into the application

of the proposed PnBG QC architecture to the improvement of MEMS and mechanical
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systems and construction of temperature sensors and signal processing elements. Ther-

momechanical numerical models and experiments at elevated temperature reveal the

temperature dependence of the PnBG QCs. Lastly, numerical models are developed to

determine how defect states may modify the PnBG QC behavior to create complex fre-

quency response characteristics that may have application to signal processing elements,

localization, vibration stabilization and reduced anchor loss in resonators.

1.4 Organization of the Thesis

The thesis is comprised of three main parts. First, Chapters 2 and 3 present a literature

review, background information and the proposition of the new electrostatically actu-

ated architecture for the integration of PnBG crystal-like structures into finite thickness

plates; this architecture is given the name PnBG QC architecture. Second, the PnBG

QC architecture model, fabrication and experimental characterization is presented in

Chapters 4, 5 and 6. Lastly, in Chapter 7, the potential applicability of the proposed

PnBG QCs is developed numerically and experimentally for physical temperature sen-

sors and numerically for signal processing elements, vibration stabilization, anchor loss

reduction and improved MEMS and mechanical systems. Contributions and future work

are given in Chapter 8.

Chapter 2 introduces the history of classical elastic wave PnBG crystal research from

the seminal discovery to the present micro-integration of PnBG crystals. Background

information on the science of periodic structures, numerical modeling of PnBG crystals

and relation between the proposed PnBG QC architecture and present day MEMS is

provided.

Chapter 3 describes the development of the proposed PnBG QC architecture, in-

14



cluding the design methodologies, electrostatic transducer geometry, crystal truncation

methodologies, and tether and PnBG QC edge tuning methodologies. The intent of the

architecture and design methodologies is to produce an electrostatically actuated PnBG

QC that displays two separate groups of modes, each of which display characteristic

mode shapes. The two groups of modes are separated by a wide range of frequencies

over which the PnBG QC displays no normal modes.

The focus of Chapter 4 is the development of an extensive analytical, numerical and

semi-analytical model of the PnBG QC architecture. The model includes the analytical

characterization of the electrical circuit and electrostatic forces in the transducer gap

and narrow band dynamic harmonic behavior, as well as numerical models of mechanical

normal mode shape and wideband dynamic harmonic response. Virtually no complete

analytical models are available in the literature to describe the specific PnBG QC archi-

tecture structure proposed here and the complete behavior of the PnBG QC architecture

is difficult to accurately describe with a single simple equation. Analytical and semi-

analytical structural and vibration models are developed as much as possible. Chapter

4 concludes with a numerical electromechanical multi-physics model of the proposed

PnBG QC architecture.

Chapter 5 discusses the fabrication of a set of the proposed PnBG QC devices in

the SOIMUMPs bulk micromachining process of the MEMSCAP Foundry [46]. The

fabricated set of PnBG QCs [47] have varying geometrical properties to allow for the

experimental investigation of trends in PnBG QC behavior versus geometry. Fabrication

errors in the PnBG QC devices are characterized utilizing a scanning electron microscope

and optical profilometer. Lastly, the fabricated chip is bond wired into a surface mount

package and a test fixture is designed to provide an electrical interface to the PnBG

QCs. The test fixture utilizes an in-house fabricated printed circuit board and surface
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mount technology.

Chapter 6 presents the experimental characterization of the PnBG QC devices. The

PnBG QC devices are actuated via their electrostatic transducers and the response of the

PnBG QC devices is measured utilizing a laser Doppler interferometer. The measurement

setup is presented. For several PnBG QC devices with varying geometries extensive

measurement results are given for the dynamic harmonic analysis over a frequency range

from 50 kHz to 20 MHz. The mode shape topography is measured over the top surface of

the PnBG QC devices. From the mode shape topography measurements, the measured

frequency versus finite element method mode number characteristic is constructed. A

homogeneous bulk mode resonator is characterized in a similar fashion and provides a

reference behavior against which the experimental behavior of the PnBG QC devices is

qualified. The experimental results are compared to the model of Chapter 4 and display

reasonable agreement.

Chapter 7 investigates the applicability of the PnBG QC architecture to physical

thermal sensors and signal processing element. A brief numerical thermomechanical

multi-physics model is given. One of the fabricated PnBG QC devices is then heated

utilizing an infrared radiation source, and the dynamic harmonic response is measured

about several normal modes within the 50 kHz to 20 MHz frequency range. The depen-

dence of the normal mode frequency and amplitude is observed versus temperature. The

dependence with respect to temperature of the PnBG QC is experimentally compared

with that of a homogeneous bulk mode resonator which provides a reference behavior.

Lastly, the potential applicability of the proposed PnBG QCs to the study of signal

processing elements, MEMS and mechanical systems is developed numerically. Defect

states are introduced into a PnBG QC to create a localized resonator within the core

of the PnBG QC. The localized resonator appears to be isolated in space and frequency
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from adjacent vibrations and may have application to vibration stabilization, anchor

loss reduction and MEMS and mechanical system design.

Chapter 8 lists the contributions of this thesis and elaborate suggestions for further

study. Contributions are listed in the areas of PnBG QC architecture design method-

ologies, modeling and theory of operation, fabrication and realization, experimental

demonstration of the proposed PnBG QC architecture and development of the applica-

bility of the proposed PnBG QC architecture to temperature sensors, signal processing

elements and the potential improvement of MEMS and mechanical systems.
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Chapter 2

Background on Multi-Dimensional

Phononic Band Gap Crystals for

Classical Elastic Wave Localization

This chapter first presents a literature review on the field of multi-dimensional PnBG

crystals, from the seminal work in the early 1990s to the present micro-integration

of PnBG crystals. Amidst the literature review, the PnBG QC architecture that is

presented in this thesis is placed into context relative to the body of related work. The

PnBG QC architecture will ultimately be realized utilizing MEMS technology. Hence,

the relationship is presented between the PnBG QC architecture and the field of Radio

Frequency Micro-Electro-Mechanical-System (RF MEMS). The numerical techniques

utilized to model PnBG crystals are then introduced. The PnBG QC architecture will

employ the geometry of a honeycomb crystal and relevant background information on

the crystallography of honeycomb PnBG crystals is presented as the last topic in this

chapter.
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2.1 Literature Review of Classical Elastic Wave Lo-

calization in Multi-Dimensional Phononic Band

Gap Crystals

In 1958, Anderson proposed the notion of wave localization for electronic systems [48].

Electron localization proved challenging due to electron-electron interactions, hence, in

the 1980s the research world refocused efforts toward photon localization [49, 50, 4].

For over a decade, interest remained on PtBG crystals. In 1992, two-dimensional PnBG

crystals for classical elastic wave localization began receiving attention in the literature

[2]. Both PtBG and PnBG crystals offered different properties from their electronic

analogues, and possess the advantage of localizing photons (quantized electromagnetic

waves) and phonons (quantized acoustic or elastic vibrations) utilizing relatively simple

structures. Just as PtBG crystals offered new properties and possibilities over and

above electronic systems, PnBG crystals display radically different properties from PtBG

crystals (in part due to the differing governing physics, as discussed in Section 1.1).

2.1.1 1992 to 1994: Seminal Theoretical Verification of Classi-

cal Elastic Wave Localization in Two- and

Three-Dimensional Phononic Band Gap Crystals

The seminal papers on two-dimensional PnBG crystal band structure for classical elastic

waves appear to have been presented by Sigalas (1992) [2] and Kushwaha (1993) [3].

To determine the optimal conditions for acoustic band gap formation, early theoretical

and experimental studies performed parametric studies of acoustic material systems

(solid/solid, solid/fluid, fluid/solid, and fluid/fluid systems, ...), lattice types (SC, HCP,
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and FCC, ...), fill factor, inclusion geometry (circular, cylindrical, spherical, square,

...), characteristic impedance contrasts and material composition (aluminium, mercury,

water, steel, air, ...) [2, 3, 4, 51, 13, 52, 53, 54, 55, 56, 57, 58, 59]. PnBG crystals were

designed to demonstrate low pass, band pass and band stop filter responses.

2.1.2 1993 to 2010: Advancements in the Theory Classical

Elastic Wave Phononic Band Gap Crystals

Localization and defect states were studied in 1993 [60]. Defect states were introduced

into PnBG crystals to create pass bands in the phononic band gaps (1998) [52], tunable

band gaps (2001) [61, 62], waveguides (2001) [63] (2004) [35], and multiplexers and

demultilexers (2004) [35].

Early on, many studies were of PnBG crystals that were infinite in dimension in

at least one physical direction. The first study of finite thickness structures appears

to be for bending wave plate PnBG crystals investigated in 1994 [13]. Rayleigh wave

attenuation by PnBG crystals in infinite half-space host materials was presented in 1999

[64]. The band structure of one-dimensional layered systems was presented in 1995 [65].

To validate theoretical calculations, macroscopic experiments were performed on bulk

wave (1998) [66, 67] (1999) [68] and surface wave (1999) [64, 51] structures using macro-

scopic two-dimensional PnBG crystal structures. Experimental results displayed reason-

able agreement with the corresponding theory and provided support for some phononic

band gap phenomenon.

Initial studies dealt with binary composites (PnBG crystals composed of two mate-

rials), for which phononic band gap formation and localization were largely based on

the mechanism of Bragg scattering. Liu proposed the use of tertiary composites (PnBG
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crystals composed of three materials), for which the inclusion is composed of two materi-

als, and illustrated the phenomenon of local resonance as a new mechanism for phononic

band gap formation in PnBG crystals (2000) [8]. Local resonance allows for the forma-

tion of band gaps at wavelengths that are much larger than the wavelengths at which

Bragg scattering operates. Local resonance was proposed to occur for fractal inclusion

based binary composites in (2005) [9].

Elastic wave tunneling through PnBG crystals (governed by Bragg scattering) at in-

gap frequencies and phonon focusing in tungsten-based PnBG crystals was examined in

2002 [43]. Topology optimization was first applied to systematically maximize acoustic

band gaps in 2003 [69]. In 2005, experimental data began to appear in the literature on

PnBG crystals integrated in microelectronic processes [36, 32].

After approximately 15 years of examination predominantly into bulk wave band

gaps in PnBG crystals, the number of publications on the topic of PnBG crystals crafted

out of finite thickness plates began to increase in 2006 (though the first study on plate

PnBG crystals appeared to be conducted far ahead of their time by Sigalas et. al. in

1994 [13]). The modeling of plate PnBG crystals represented a move toward the study

of more practically realizable structures in comparison to preceding studies of PnBG

crystals that displayed infinite size in at least one physical dimension. Free standing

plate PnBG crystals with semi-infinite periodicity were examined for exotic materials

in 2006-2007 [70, 71, 72, 73] and silicon in 2007 [42]. Non-freestanding PZT5A-Air and

AlN-Air plate PnBG crystals were examined in 2007 [74].

Most studies regarding inclusion geometry focused principally on regular shaped

geometries such as polygons. Fractal inclusion geometries were investigated in 2008 [10].

PnBG crystals with time varying material properties were studied in 2010 [5], adding

a fourth dimension (time) in which the material properties of PnBG crystals may vary
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periodically.

PnBG crystal research progressively developed sub-areas, including: (i) acoustic band

gaps (for bulk [2, 3], Rayleigh [32], and Lamb [42, 13, 11, 70, 71, 72, 73, 75] waves); (ii)

localization and defect states [13, 35], (iii) LRSMs (Locally Resonant Sonic Materials)

[8, 9], (iv) systematic phononic band gap design [12], (v) phonon focusing [43], and (vi)

micro-integration of PnBG devices (signal processing elements [32] and sensors [36]).

Innovative theoretical and experimental research opportunities abound in all six of these

research areas, and so there has been motivation to perform research on these topics.

2.1.3 2003 to 2008: Simultaneous Phononic-Photonic Band

Gap Crystals for Classical Electromagnetic and Elastic

Waves

In 2003, Russel [76] identified that Photonic Crystal Fiber (PCF) structures, which

display periodicity in mechanical material properties in two-dimensions, were single

structures that exhibited both a photonic and phononic band gap. The phonons in

the PCF were generated by light interactions. In 2005, Laude and Dainese also utilized

two-dimensional phononic crystals in PCFs for phonon control to suppress stimulated

Brillouin scattering and enhance acousto-optic interaction [77, 78]. In 2007, Delmar and

Barker patented an optical switch [79] by placing a PtBG crystal in the defect state of a

PnBG crystal which was used to localized phonons into the region of the PtBG crystal,

and through the photoelastic effect, the phonons would modify the refractive index of

the PtBG crystal, thereby perturbing the photonic band gap location so as to transmit

or reflect the optical signal. In 2008, Mohammadi theoretically illustrated simultaneous

photonic and phononic band gaps for silicon-plate PtBG and PnBG crystals of various
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lattice types [6, 80].

2.1.4 2005 to 2011: Micro-Integration of Classical Wave

Phononic Band Gap Crystals with Piezoelectric Trans-

ducers

From the seminal study in the early 1990s of classical elastic wave localization in two-

dimensional PnBG crystals, approximately a decade of theoretical work and macroscopic

experiments occurred. Microfabrication processes then became utilized to introduce

PnBG crystals into integrated devices that utilized piezoelectric transducers and the

architectures of traditional Surface Acoustic Wave (SAW) filters.

The first appearance in the literature of a SAW based PnBG crystal device was re-

ported in 2005 [32] utilizing the architecture illustrated in Figure 2.1(a). Acoustic waves

are actuated and sensed utilizing piezoelectric slanted finger interdigital transducers to

enable wide band actuation and sensing of SAWs, though the slanted fingers generate

elastic waves in multiple directions at different frequencies. The PnBG crystal is placed

into the SAW propagation path and experimentally demonstrated phononic band gap

effects, displayed 20 dB of loss and was prone to the loss of SAW energy into bulk modes

(the substrate, away from the surface). The PnBG crystal had a square lattice that

is constrained to a square area, was composed of a silicon host and air inclusions and

etched into the bulk of a substrate thereby approximating a PnBG crystal in a semi-

infinite half-space. The PnBG crystal is truncated on one pair of sides by piezoelectric

transducers and may appear to be truncated on the other pair of sides by a region of

homogeneous silicon. Also around 2005, nano-scale PnBG crystals were fabricated in

crystalline silicon; however, were experimentally characterized utilizing Brillouin light
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scattering [81] and so did not integrate elastic or acoustic wave transducers.

In 2006, SAW PnBG crystal structures were created utilizing multiple devices with

narrow band interdigital transducers tuned to different frequency regions to assemble

the frequency characteristics of a LiNbO3-Air PnBG crystal [82, 83].

Proposals and models of electrostatically actuated PnBG crystal architectures ap-

pear in 2006 [84] and 2008 [85]; however, the proposed electrostatically actuated PnBG

crystal do not appear to have been fabricated and so corresponding experimental data

is absent. In 2008, as a subset of this thesis work, a lumped element approximation of

an electrostatically actuated PnBG crystal was modeled and fabricated [86]; however,

experimental characterization was not published.

The next significant change in the architecture of micro-integrated PnBG crystals

occurred in 2007 and 2008 as PnBG crystals were fabricated in finite thickness slabs

[87, 88] and El-Kady and others introduced line defect states into PnBG crystals by

removing rows of inclusions to form a path through the PnBG crystal between the ac-

tuator and sensor transducer [89] utilizing an architecture illustrated in Figure 2.1(b).

Mohammadi presented slab PnBG crystal structures in 2008 [90] as illustrated in Fig-

ure 2.1(c). El-Kady utilized Aluminium-Nitride (AlN) piezoelectric transducers which

truncated the PnBG crystal in one direction, and the PnBG crystal is a square lattice,

silicon-dioxide host and tungsten inclusion (SiO2-W) material system and may be the

thinnest reported PnBG crystal. In contrast, Mohammadi utilized Zinc-Oxide (ZnO)

interdigital piezoelectric transducers which truncate the PnBG crystal in one direction,

along with a honeycomb PnBG crystal with a silicon-air (Si-Air) material system, and

the remaining two sides of the PnBG crystal appear to be truncated by a homogeneous

region [90]. The aforementioned PnBG crystals that have been fabricated within finite

thickness slabs display improved energy confinement in comparison to PnBG crystals
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that are etched into semi-infinite half-spaces. In 2007 and 2009, the cermet PnBG topol-

ogy appears to have been first employed [91], while the majority of devices still employ

the network topology.

Next, in 2009 and 2011 line defect states were utilized to create resonant cavities

in the center of piezoelectrically actuated and sensed slab PnBG crystals [92, 7] as il-

lustrated in Figure 2.1(d). This resonant cavity configuration of line defect states is

differentiated from the line defect state structures of El-Kady and others [89], which

utilized the line defect state to form a waveguide between the actuator and sensor trans-

ducer.

In 2011, the work of Kuo appears to have presented the first departure from the use of

circular inclusions and employed an X-shaped inclusion [93]. In 2011, the works of Ziaei

[7] and Kuo [93] increased the operating frequency of micro-integrated PnBG crystals by

an order of magnitude illustrating the scalability of the phenomenon to 1 to 2 GHz. In

2010 the potential of PnBG crystals for support loss reduction in resonator structures was

examined [34]. At least three application areas for PnBG crystal have then precipitated:

(i) sensors, (ii) signal processing elements and (iii) auxiliary structures (e.g. low loss

anchors) for the improvement of MEMS and mechanical systems. The applicability of

the PnBG QC architecture that is proposed in this thesis will be assessed with respect

to all three of the aforementioned application areas.

The evolution of the PnBG crystal architectures discussed here is summarized in

Figure 2.1. Table 2.1.4 summarizes significant works in the micro-integration of PnBG

crystals. The works are described in terms of (i) transducer type, (ii) material com-

position (which may provide insight into CMOS- or silicon-compatibility), (iii) type of

energy carrying wave or vibration, (iv) extent of the periodicity of the PnBG crystal,

(v) the ratio of lattice constant, a, to PnBG crystal thickness, t, (vi) the approximate
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frequency of the experimental phononic band gap, (vii) the PnBG crystal boundary

geometry, (viii) the PnBG crystal topology (network or cermet), (ix) the inclusion ge-

ometry, (x) the host structure geometry, (xi) the PnBG crystal boundary type, (xii) the

PnBG crystal support structure type and (xiii) PnBG crystal lattice type. As may be

seen in Table 2.1.4, the ratio d/a, of crystal thickness, d, to lattice constant, a, is utilized

to compare the ability of the PnBG crystal to be realized in thin layers.

Figure 2.1: Illustration of the evolution of micro-integrated phononic band gap crystals
from 2005 and leading up to the work presented in this thesis. In 2005-2006, phononic
band gap crystals were initially etched into the Surface Acoustic Wave (SAW) propaga-
tion path between the piezoelectric transducers of a SAW device. In 2007, piezoelectric
transducers were utilized to actuate and sense waves in a phononic band gap crystals
that were crafted out of relatively thin plates. In 2008, devices resembling those created
in 2005 were modified to reduce the thickness of the phononic band gap crystals. In
2009-2011, line defect states were introduced into the phononic band gap crystals. For
the phononic band gap crystal architecture presented in this work, piezoelectric trans-
ducers are abandoned in favor of electrostatic transducers and the phononic band gap
crystal-like structures are suspended from the substrate by utilizing tethers.

Lastly, in 2011, the primary work of this thesis presented what appears to be the first

theoretical and experimental demonstration of an electrostatically actuated architecture
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that is designed leveraging two-dimensional PnBG crystal theory, utilizing a silicon host

material, air inclusion and honeycomb PnBG crystal geometry [94]. This architecture is

referred to as the PnBG QC architecture and will be realized in this thesis as a Radio

Frequency Micro-Electro-Mechanical-System.

2.2 Phononic Band Gap Crystals as Radio Frequency

Micro-Electro-Mechanical-Systems

In 2011, to the best of the author’s knowledge, the primary work of this thesis pre-

sented in the literature the theory and experiments, for a MEMS implementation, of

the first electrostatically actuated and distributed mechanical architecture that employs

the geometry of a honeycomb PnBG crystal which has a silicon host and circular air

inclusions and appears to display the frequency selective characteristics associated with

PnBG crystals [94]. This architecture is referred to as the PnBG QC architecture.

The PnBG QC architecture is designed for implementation in a single layer planar

fabrication process and will be released so that the top and bottom surfaces of the PnBG

crystal are free standing. The PnBG QC does not display the infinitely periodic geometry

of an ideal PnBG crystal, which would not be physically realizable in a MEMS fabrication

process. Moreover, the geometry of the PnBG QC differs significantly from the micro-

integrated piezoelectrically actuated PnBG crystals that appear in the literature. This is

in-part due to the air gap that is employed in the electrostatic transducer. The presence

of the air gap results in the edges of the PnBG QC being free-standing. Hence, with

the exception of the tethers that attach the PnBG QC to the substrate, all surfaces

(top, bottom and edges) of the PnBG QC may be approximated by free boundaries. In

contrast, in the literature, the micro-integrated PnBG crystals appear to be bounded
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to square or rectangular areas and along two sides of this square or rectangular area

the piezoelectric transducers appear to be fabricated directly upon the solid medium

that acts as the host medium of the PnBG crystal; the two sides, along which the

piezoelectric transducers are located, truncate the PnBG crystal with a solid medium

(not a free-standing edge); the other two boundaries appear to be placed away from the

acoustic wave signal flow path or are truncated by a free-standing flat edge [32, 82, 87,

88, 89, 90, 90, 92, 7, 93, 34].

Hence, the PnBG QC architecture appears to be unique in the utilization of electro-

static transducers to actuate the PnBG QC and in the implementation of free boundaries

on all edges (except at the tether attachment points) of the PnBG crystal. Moreover, in

the plane of periodicity of the PnBG QC, both square and circular bounding geometries

are utilized to truncate the PnBG crystal (where as in the literature the bounding area

appears always to be square or rectangular [32, 82, 87, 88, 89, 90, 90, 92, 7, 93, 34]).

In addition, the geometry of the edges of the square or circular truncation boundary

of the PnBG QC are not flat (where as in the literature any potentially free standing

edges appear to utilize a flat edge [87]). In this thesis, the edges of the PnBG QC over

the square or circular truncation boundary are serrated (not flat), to mimic a periodic

boundary, as will be illustrated in Chapter 3, and to provide unconstrained motion of

the boundary and a methodology is developed to tune the edges and tethers to shift local

edge and tether resonant modes away from band gap frequencies and enable complete

band gap formation (the absence of normal modes over a wide range of frequencies). To

the best of the author’s knowledge, a detailed study does not appear in the literature for

different truncation boundary geometries for micro-integrated PnBG crystals, and so the

circular and square truncation boundary and boundary and tether tuning methodologies

studied in this thesis appear to be the first of their kind.
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The development of the PnBG QC architecture also appears to have a relation to the

design of two-dimensional coupled resonators. The PnBG QC architecture was initially

derived from the architecture of single-mode square extensional [95], Lamé mode [31]

and wine glass [96] resonators. These single-mode architectures provided an electrostat-

ically actuated electromechanical platform that would serve as the starting point for

the development of the PnBG QC architecture. The detailed development of the PnBG

QC architecture is contained in Chapter 3, and will be summarized here to show the

significant differences between the PnBG QC architecture and the architectures of single-

mode square extensional [95], Lamé mode [31] and wine glass [96] resonators. First, to

realize the PnBG QC, a periodic array of etch holes (which serve as the PnBG QC in-

clusions) is embedded into the homogeneous plate for both square and circular plate

geometries. This transforms the homogeneous plate into a periodic structure, meaning

that the material properties of the structure are a periodic function of position (not

homogeneous) within the structure. This periodic structure, referred to as the PnBG

QC, may be approximated as a two-dimensional array of distributed mass and spring

elements, where the distribution of mass and spring elements may be different at differ-

ent normal mode frequencies, and so represents a significant departure from the initial

single-mode resonator architecture. Moreover, the PnBG QC mode shapes, which will

be presented in Chapter 4, appear to display the properties of flexural mode resonators,

while single-mode square extensional [95], Lamé mode [31] and wine glass [96] resonators

are considered bulk mode resonators.

The multiple normal modes of the periodic PnBG QC need to be systematically

orchestrated in order to realize band gap behavior. Thus, the design methods for the

PnBG QC must consider multi-mode, as oppose to single-mode, behavior. For a careful

selection of inclusion (etch hole) radius and spacing, modal analysis (which will be
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presented in Chapter 4) of the PnBG QC will indicate that over some frequency ranges

the PnBG QC displays a complete absence of normal modes - these frequency ranges

are referred to as band gaps. The intentional overlap of the etch holes and the edges of

the host plate, result in the edges of the PnBG QC being serrated (not flat) unlike the

flat edges of single-mode square extensional [95], Lamé mode [31] and wine glass [96]

resonators, yet also unlike comb-drive transducer geometry [97]. For a given etch hole

(PnBG QC inclusion) radius and lattice constant, the PnBG QC truncating boundary

location has to be carefully chosen relative to the PnBG QC inclusion locations and so

cannot be relatively arbitrary as in the single-mode square extensional [95], Lamé mode

[31] and wine glass [96] resonators. Tuning methodologies are developed to carefully

select the PnBG QC truncation boundary location relative to the PnBG QC inclusions

so the PnBG QC structure displays a complete band gap. Lastly, the geometry of the

tethers is also tuned to ensure that the local resonant modes of the tethers do not occur

at band gap frequencies. This design methodology for the PnBG QC architecture is

contained in full in Chapter 3 and also represents a significant departure from single-

mode resonator design.

The development of the PnBG QC architecture will also be shown to yield frequency

selective properties that are significantly different from single-mode homogeneous square

extensional [95], Lamé mode [31] and wine glass [96] resonators, which will act as refer-

ence devices to which the behavior of the PnBG QC architecture is compared.

The PnBG QC architecture presented within this thesis may be geometrically classi-

fied as a two-dimensional array of coupled mass-spring resonators with distributed mass

and spring elements. Moreover, in Chapter 4, the set of modes below the band gap of the

PnBG QC, appear to display the behavior of a two-dimensional array of mechanically

coupled masses with 19, and 23, mass elements for PnBG QCs with circular, and square,
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truncation geometry, respectively; this may be of the largest two-dimensional arrays

of couple resonators realized in MEMS. Two-dimensional mechanically coupled arrays

of five mass elements to produce a band-pass frequency response are presented in [31].

One-dimensional mechanically coupled arrays of approximately 80 elements to produce

a band-pass frequency response are shown in [30]. Unlike the previously mentioned one-

[30, 98] and two-dimensional [31] mechanically coupled arrays which provide band-pass

characteristics, the low frequency end of the spectrum of the PnBG QC displays a low-

pass characteristic, which may be due to the internal mass elements of the PnBG QC not

being anchored to mechanical ground (see Appendix I and [86]). Overall the frequency

selective characteristics of the PnBG QCs are intended to resemble those of a band-stop

filter, where the low frequency pass band extends down to DC and is separated from the

high frequency pass band by a stop band (band gap), as in PnBG crystals. The order

of (number of mass-elements in) the proposed PnBG QC may be controlled relatively

easily by adjusting the PnBG crystal truncation boundary location. Thus, the PnBG

QC architecture may have application to the design of coupled mass-spring resonators.

Contemporary piezoelectric LAW, SAW, BAW and PnBG crystal architectures are

described by elastic wave mechanics and may be collectively referred to as microwave

acoustic devices [99]. The proposed PnBG QCs may potentially manipulate both elastic

traveling and standing waves in plates. Figure 2.2 organizes contemporary LAW, SAW

and BAW devices along side the proposed PnBG QC architecture. In SAW devices,

elastic traveling waves are present on the surface of the device. In BAW devices, elastic

standing waves are present within the bulk of the device. In LAW devices, the energy

carrier is a Lamb acoustic wave with elastic wave energy distributed throughout the

thickness of a plate. In this thesis, the PnBG QCs are studied under steady state time

harmonic conditions, in which vibrations appear to form standing waves. Next, methods
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for the numerical modeling of PnBG crystals are assessed comparatively.

Microwave Acoustic Devices

SAW 
MEMS

BAW 
MEMS

LAW
MEMS

Quartz 
Crystal 

(LF)

TFR 
(HF)

FBAR SMR

PnBG 
Crystal

PnBG 
Crystal

PnBG 
Crystal

LBAW

BAW 
MEMS

Standing WaveTraveling Wave

This 
Work:    

PnBG QC 

Traditional Traditional Traditional PnBG 
MEMS

Figure 2.2: Types of microwave acoustic devices. List of acronyms: SAW (Surface
Acoustic Wave), BAW (Bulk Acoustic Wave), LAW (Lamb Acoustic Wave), LF (Low
Frequency), TFR (Thin Film Resonator), LBAW (Lateral Bulk Acoustic Wave), HF
(High Frequency), PnBG (Phononic Band Gap), QC (Quasi-Crystal), FBAR (Film Bulk
Acoustic Resonator), SMR (Solidly Mounted Resonator).

2.3 Numerical Modeling of Phononic Band Gap Crys-

tals

To deduce the frequency response of a PnBG crystal, a number of numerical methods

may be utilized, including Finite-Difference Time-Domain (FDTD) [100, 101, 102], Plane

Wave Expansion (PWE) [15, 60, 32], Super Cell-Plane Wave Expansion (SC-PWE), Fi-

nite Element Method (FEM) [92], Frequency Domain-Finite Element Method (FD-FEM)

[103], Time Domain-Finite Element Method (TD-FEM) [104], Dynamic Finite Element
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Method (DFEM) [105], Multiple Scattering Technique (MST) [14], Variational Method

(VM) [67, 106], method of Hou [107], Wavelet Method (WM) [108] and the Lumped

Mass (LM) method [109, 110]. Table 2.2 summarizes the strengths and weaknesses of

these numerical methods.

PWE and SC-PWE are utilized to compute PnBG crystal band structure (as oppose

to transmission coefficients) and may not be applied to mixed material (fluid-solid and

solid-fluid) PnBG crystals due to the material density term in the denominator which

may approach zero for fluids or vacuum which display a low material density [15, 60].

MST [14], VM [67, 106], the method of Hou [107], and WM [108] were developed to han-

dle mixed material systems, for which PWE fails [14] [67]. MST may only be applied

to systems with cylindrical and spherical inclusion geometries [14]. The LM method

displays a low sensitivity to host to inclusion density contrast and high computational

efficiency relative to PWE and FDTD; however, may not be applied to mixed material

systems [109, 110]. The methods discussed thus far require a matrix inversion to ob-

tain the solution, and may not be applied to finite-sized practically realizable systems

[74, 107]. Moreover, the described methods do not provide time varying elastic or acous-

tic field propagation information, which may be utilized to generate the magnitude-phase

information of the PnBG crystal response. In addition, the described methods cannot

handle arbitrary time-domain source pulse shapes and source and detector configura-

tions.

Unlike the frequency domain methods, time domain formulations, such as TD-FEM

[104], DFEM and FDTD [14], provide the capacity to perform transient analysis on

physically-realizable finite-sized structures, of arbitrary material composition (includ-

ing mixed fluid-solid and solid-fluid material systems which display high density mis-

matches), geometry, time domain source pulse shape, source and detector geometry
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and time-varying inclusions. FDTD, like FEM, is utilized for solving partial differential

equations. In contrast to the PWE method, FEM and FDTD methods provides the

flexibility to simulate finite-sized physically realizable experimental structures [74].

FEM and finite-difference methods differ in their discretization of space. The dis-

cretization of space in FEM methods may be performed using relatively arbitrarily

shaped mesh elements (such as triangles, and so on) and so may accurately describe

structures that possess complex geometries. FDTD formulations typically utilize a

square mesh, which results in a staircase approximation of curved surfaces. FDTD

can include an arbitrary number of materials.

The FDTD method is a time-domain approach and involves discretizing the elastic

wave differential equation in both space and time [100]. Many boundary condition

formulations have been developed for the FDTD method and can be utilized to model

a multitude of physical devices. FDTD provides time varying elastic field propagation

information, at all points in the device, and is easily converted to the frequency domain

to compute both the transmission coefficients and the band structure [101, 102]. Due to

the interlacing of fields in space, FDTD is an explicit formulation (the field components

at any given time step are explicitly a function of field values at previous time steps and

neighboring points in space) and so no matrix inversion is needed to obtain the solution;

this is advantageous for large systems or in cases where a sparse matrix may not be

formulated. FDTD simulation codes are easily parallelized for computation on parallel

computing systems.

The FEM did not appear to become widely utilized in PnBG research until 2006

[71], when interest in finite-sized plate PnBG crystals increased. In contrast, FDTD

has been in widespread use in PnBG crystal research since at least 2000 [100], and

FDTD boundary condition formulations for the simulation of finite-sized plates have
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been available since at least 1997 [111].

2.3.1 Chosen Numerical Method

Many of the surfaces of the PnBG QC architecture, which is developed in this thesis,

are curved and the PnBG QCs are physically realizable and so finite in all dimensions,

bounded by both fixed and free boundaries and potentially surrounded by vacuum or

air. Thus, the ability, such as that provided by methods like PWE, to model an infinitely

periodic system is not required. As mentioned above, FEM accurately represents curved

surfaces and can model finite sized structures.

The experimental studies performed on the PnBG QC architecture will be dynamic

harmonic experiments and so a harmonic model is sufficient. Thus, the ability to model

arbitrary time domain pulse shapes (as provided by methods such as FDTD) is not

required. To obtain detailed understanding of the experimental behavior of the PnBG

QC architecture, the elastic wave field across the entire top surface of the PnBG QC will

be measured to determine the mode shape topography. Thus, for comparison with ex-

periment, the desired numerical method also requires modal analysis capability. Lastly,

transducer and applicability studies will require multi-physics (electromechanical and

thermomechanical) capability.

There are an abundance of third party FEM implementations, such as ANSYS R©

COMSOL R© and CoventorWare R©, which provide the needed capability to model curved

surfaces, fixed and free boundaries, mode shape and thermomechanical and electrome-

chanical multi-physics. For these reasons, FEM was the chosen numerical method for

modeling the PnBG QC architecture.

The primary crystal geometry that will be studied in association with the PnBG QC
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architecture is the honeycomb crystal geometry, which can be readily represented by

FEM meshes, and is described analytically in the next section.

2.4 Honeycomb Phononic Band Gap Crystallogra-

phy

Honeycomb PnBG crystals are formed from a hexagonal lattice (also referred to as an

equilateral triangular lattice) such as that displayed in Figure 2.3(a). The hexagonal

lattice is one of the five two-dimensional Bravais lattices [112]. The first Brillouin zone

and irreducible Brillouin zone of the hexagonal lattice are displayed in Figure 2.3(b). To

create a honeycomb crystal from a hexagonal lattice a diamond shaped unit cell with

two inclusions, as shown in Figure 2.3(c), is placed at each lattice point. The resultant

honeycomb crystal of Figure 2.3(d) is obtained.

The primitive vectors that are illustrated in Figure 2.3(a) of the two-dimensional

hexagonal lattice are given by [113]:

~a1 =
a

2
x̂+

√
3a

2
ŷ

~a2 = −a
2
x̂+

√
3a

2
ŷ,

(2.1)

where a is the lattice constant. The reciprocal lattice vectors of a three-dimensional

lattice are given by [112]:

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3

.

(2.2)
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Figure 2.3: Construction of the two-dimensional honeycomb crystal, with the (a) hexag-
onal (equilateral triangle) lattice, (b) the first Brillouin zone (hexagon with center Γ) and
irreducible Brillouin zone (right angle triangle with critical points Γ, K and M) of the
hexagonal lattice. The diamond shaped primitive cell in (c) is utilized in the formation
of the honeycomb crystal in (d). The primitive cell contains two circular inclusions that
have a radius r and spacing s. The Bragg planes of the hexagonal lattice are displayed
in (e).
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Inserting Equation 2.1 into Equation 2.2 with ~a3 = 0x̂+0ŷ+∞ẑ, the two-dimensional

hexagonal reciprocal lattice vectors may be computed as:

~b1 = 2π

(
1

a
x̂+

1√
3a
ŷ

)
~b2 = 2π

(
−1

a
x̂+

1√
3a
ŷ

)
.

(2.3)

The lattice constant, a, of the honeycomb crystal is related to the inclusion spacing,

s, and radius, r, by:

a = 2(2r + s)cos(30o). (2.4)

As displayed in Figure 2.3(e), the wavelength satisfying the Bragg condition between

the first Bragg planes of the hexagonal lattice is λ =
√

3a where a is the lattice constant

given by Equation 2.4. The first Bragg frequency of the honeycomb PnBG crystal may

then be:

fΓM =
cavg,hex,circle

λ
=
cavg,hex,circle√

3a
. (2.5)

where cavg,hex,circle is the average elastic wave velocity. Assuming isotropic host and

inclusion materials the average elastic wave velocity, cavg,hex,circle, of the honeycomb

lattice may be modeled as:

cavg,hex,circle = ff × ci + (1− ff) ch,

ff =
2πr2

A
,

A = |~a1 × ~a2| = a2sin(60o),

(2.6)
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where ff is the fill factor of the primitive cell, r is the inclusion radius, A is the area

of the hexagonal lattice primitive cell that is displayed in Figure 2.3, and ci, and ch, are

the inclusion, and host, elastic wave velocities, respectively.
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Chapter 3

Proposed Phononic Band Gap

Quasi-Crystal Architecture and

Design Methodology

As presented in Section 2.1.4, micro-integration of PnBG crystals as reported in the

literature utilizes exotic piezoelectric transduction, PnBG crystals that are etched into

semi-infinite or finite-thickness slabs that support surface or slab traveling waves, crys-

tal lattices between approximately six and 12 lattice constants in dimension, crystal

truncation by homogeneous mediums or piezoelectric transducers and don’t appear to

optimize the boundary region of the PnBG crystal.

This thesis reports, to the best of the author’s knowledge, for the first time, the the-

ory and experiment of a new architecture, referred to as the PnBG QC architecture [94].

In light of the work presented in the literature review of Chapter 2, the development of

the PnBG QC architecture in this thesis appears to present several studies that are the

first of their kind, including the development and utilization of (i) unique air gap electro-
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static transducer geometries for the wide band electrostatic actuation of standing waves,

including in-plane and out-of-plane modes, in the silicon PnBG QC resonator structure

that is based on the geometry of honeycomb PnBG crystals, (ii) free standing bound-

aries (except at tether attachment points) about the PnBG QC for potentially improved

energy confinement and reduced motional resistance, (iii) a serrated truncation bound-

ary on the PnBG QC to provide unconstrained motion of the truncation boundary and

assist with complete band gap formation, (iv) circular and square truncation boundary

geometries on PnBG QCs, (v) tethered support of PnBG crystal-like structures, (vi) a

tuning methodology for tethers and serrated edges to enable complete band gap (which

is an uninterrupted frequency range where no normal modes are permitted) formation

in the presence of the non-idealities of finite periodicity of the PnBG QC lattice and at-

tachment of anchored tethers to the PnBG QC, and (vii) the resultant provisioning for

the potential incorporation of electrostatic sensing of PnBG QC motion at the PnBG QC

boundaries. The development of the PnBG QC architecture may also yield insight into

anchor loss reduction, vibration stabilization and the unique design of two-dimensional

mechanically coupled resonators, providing a relatively elegant method to interconnect

large arrays of mass and spring elements. The geometry of the PnBG QC is amenable

to fabrication in a finite thickness layer of a planar fabrication process.

In block diagram form, the proposed PnBG QC architecture is comprised of three

main components, as depicted in Figure 3.1: the PnBG QC, tethers and anchors (sup-

port) and the electrostatic transducers.

Electrostatic transducers mitigate the use of exotic piezoelectric materials, improv-

ing silicon compatibility and provide action at a distance type forces so that edges of

the PnBG crystal are free standing for reduced anchor loss. The free standing PnBG

crystal may improve energy confinement for potentially reduced substrate mode loss,
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Electrical Energy DomainElectrical Energy Domain Mechanical Domain Energy

Sensor
Transducer

Actuator 
Transducer

Support

Unprocessed
Electrical

Signal

Processed
Electrical

Signal

PnBG
Crystal

(1) PnBG crystal phenomenon
(2) Application of  PnBG phenomenon to MEMS

(3) Electrostatic elastic wave generation in 
coupled resonator MEMS and PnBG QCs

(4) Mechanisms to support plate PnBG
crystals from a fixed boundary

Future work

(5) Truncation boundary design space

Figure 3.1: Block diagram of the subcomponents of phononic band gap quasi-crystal
(PnBG QC) architecture. Five areas for research contributions are denoted: (i) re-
search into phononic band gap crystal phenomenon, (ii) research into the integration
of phononic band gap crystals into MEMS, (iii) electrostatic transducer design for ac-
tuation of phononic band gap crystals, (iv) mechanisms to support phononic band gap
crystals from mechanically fixed boundaries, and (v) the study of a (square and circular)
truncation boundary design space. The sensing of vibrations and transduction back to
the electrical energy domain is left for future work.

and potentially improved in-plane energy confinement, compared with surface [32], and

slab [90], wave PnBG crystals, respectively. Air inclusions may be utilized to provide

a high acoustic impedance contrast with a solid host material and, in comparison with

solid inclusions, may reduce motional resistance (increase compliance).

The functional potion of this PnBG QC architecture requires only a single layer to

realize, one additional layer of metallization may be applied for bond wire and signal

conduction to electrodes. The requirement of a single layer provides flexibility over some

piezoelectric PnBG crystal architectures which in the cases where the PnBG crystal is

to have a material composition different from the piezoelectric material employ one

piezoelectric layer over and above the host layer in which the functional portion of the

PnBG crystal is fabricated.

44



The geometrical parameters and design methodologies of the PnBG QC architec-

ture were developed subject to equipment and fabrication process constraints. First,

the non-destructive Laser doppler optical diagnostic test equipment that is utilized for

experimental characterization of the fabricated devices has a frequency response that is

flat to within ±1dB over the range from 50 kHz to 20 MHz. Hence, the first constraint

on the geometry of the PnBG QCs is that the upper edge of the band gap, and behavior

of interest, lie below 20 MHz so that the behavior of interest lies within the measurable

range. Second, several PnBG QC devices were to be fabricated so that the effect of

varying geometry can be observed; however, only one chip could be fabricated due time

constraints, and so die area is constrained. PnBG QC devices need to be sized to fit

as many devices as possible within the maximum usable area of 4.3 mm by 4.3 mm of

the SOIMUMPs chip [114]. Lastly, the thickness of the single-crystal-silicon functional

layer in the SOIMUMPs fabrication process is optionally either 10µm or 25µm [115]; the

thickness of 25µm was chosen since the complete band gap formation was found to be

more difficult as the layer thickness becomes small relative to lattice constant (this will

be illustrated in the sensitivity analysis of Chapter 4). A few less restrictive SOIMUMPs

fabrication process constraints place size limits on the electrostatic transducer gap size,

inclusion spacing and anchor width and will be addressed within this chapter.

This chapter presents the geometry and design methodologies for the (i) PnBG QC

(Section 3.1), (ii) T-shaped tethers (Section 3.2) and (iii) electrostatic transducers (Sec-

tion 3.4). Geometrical design parameters are summarized in Section 3.3 for the PnBG

QC and Section 3.4 for the electrostatic transducers.
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3.1 Phononic Band Gap Quasi-Crystal Architecture

and Key Geometrical Parameters

The PnBG QC architecture employs the geometry of a two-dimensional honeycomb

PnBG crystal. The primitive cell contains two circular inclusions, of radius r, and

spacing s, and for compatibility with planar fabrication processes has a finite thickness

of t. A primitive cell is located at each hexagonal crystal lattice point as shown in Figure

3.2.

Figure 3.2: Geometrical parameters of a two-dimensional honeycomb phononic band
gap crystal with circular inclusions centered on the lattice points. The primitive cell
contains two circular inclusions, of radius, r, and spacing s, and for compatibility with
planar fabrication processes has a finite thickness of t. The primitive cell is located at
each lattice point to form the honeycomb crystal.

The two-dimensional honeycomb PnBG crystal is truncated by utilizing circular and

square truncating boundary geometries as shown in Figure 3.3. To achieve symmetry,

planes of mirror symmetry in the circle or square truncating boundary geometries should

align with planes of mirror symmetry in the honeycomb PnBG crystal. Two possible
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alignments that achieve symmetry and provide four equally spaced points to which

anchors may be attached to the host material region are displayed in Figure 3.3 for

circle and square truncating boundary geometries.

As illustrated in Figure 3.4 a T-shaped tether was implemented to suspend the PnBG

QC from the substrate. In comparison with straight tethers, T-shaped tethers have more

degrees of freedom in mechanical design, and for a given beam compliance may provide

a larger beam thickness. Since fabrication processes may have a minimum anchor size

rule, larger beam widths may be advantageous.

The tether and anchor geometry is chosen to yield a PnBG QC that has no defect

states in the band gap thereby enabling complete band gap formation. The choice of

tether size may be coupled to the sizing of circular, or square, truncation boundary

diameter, or width, respectively, and so these design choices are discussed together next

in Section 3.2.

3.2 Phononic Band Gap Crystal Lattice Truncation

and Tether Tuning Design Methodologies

Figure 3.4 contains geometrical objects that now have to be designed to yield the desired

band gap behavior. In order to choose the circular, or square, truncating geometry

boundary diameter, or width, respectively, and tether size, modal analysis is performed

on the PnBG QC utilizing fixed boundaries to model substrate anchor locations, which

are shown in Figure 3.4. The frequency range of the modal analysis is 0 to 20 MHz,

within which the band gap must be present for compatibility with Laser-doppler test

equipment. One result of the modal analysis is the mode frequency versus mode number

curve. The potential band gap location may be indicated in the mode frequency versus
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Figure 3.3: Phononic band gap crystal truncation for square and circular truncation
geometries at different truncation diameters. The truncation boundaries are chosen to
ensure that quadrants 1, 2, 3 and 4 display the same geometry.

mode number curve by either: (i) a complete absence of modes as shown in Figure

3.5(c), (ii) a few defect states within the band gap as shown in Figure 3.5(b) or (iii)
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a frequency range where the slope of the mode frequency versus mode number curve

displays inflection points as shown in Figure 3.5(a) - these characteristics all indicate a

decrease in the density of normal modes which could potentially be evidence of band

gap behavior. In the latter two cases, additional tuning of either the tethers, PnBG QC

boundary, or PnBG QC parameters, including crystal type and unit cell, may often need

to be performed to eliminate the normal modes, which are referred to as defect states,

from the in-gap frequencies.

Once the band gap location has been identified, the mode shapes of the defect state

modes are observed to determine which part of the PnBG QC has to be modified to

eliminate the defect state modes. Usually defect state modes display localized resonant

activity, the normal mode shapes of the structure may be examined to determine where

the localized resonant activity is occurring and these portions of the structure may be

tuned or removed to eliminate their local resonance thereby eliminating the defect state

modes. The appearance of defect state modes will be presented in Chapter 4.

Defect state modes whose primary vibrational activity is localized to edges of the

PnBG QC can potentially be eliminated by either (i) performing a sweep of the trun-

cation boundary (edge) location to eliminate defect state modes or (ii) cutting off local

features that are resonating on the edges of the PnBG QC or choosing a different PnBG

geometry. Defect states whose primary vibrational activity is localized to the tethers of

the PnBG QC may often be eliminated by tuning the tether geometry. For the PnBG

QCs presented in this thesis, the tethers were tuned so that defect states produced by

resonant modes that are localized to the tethers were shifted to frequencies above the

band gap (alternatively, tethers tuned to frequencies below the band gap may be more

compliant for lower motional resistance). The justification for tuning the tether reso-

nances to frequencies above band gap, as oppose to below the band gap, was chosen to
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Figure 3.5: Sample frequency versus mode number characteristics for three phononic
band gap quasi-crystals with differing truncation boundary locations: (a) a band gap
does not appear but inflection points may indicate a potential band gap that contains
defect states, (b) a few defect states appear within the band gap and (c) a band gap
appears and is an indication of a phononic band gap quasi-crystal that behaves as desired.
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produce more structurally rigid tethers at the expense of higher tether compliance. More

structurally rigid (larger w1 and w2 in Figure 3.4) tethers may also be more conducive

to meeting minimum anchor size requirements of a fabrication process.

The end result of the previously described truncation boundary location tuning, the

removal of features that may be producing localized edge resonances and tether tuning

is a PnBG QC that displays a complete band gap in the frequency versus mode number

characteristic, such as that shown in Figure 3.5(c).

It may be noted that a lattice is a discrete set of points in space, and while the

PnBG crystal truncation methods applied here do truncate the hexagonal lattice that

underlies a PnBG crystal, the truncation most importantly applies to the continuous

medium that forms the host of a PnBG crystal. The truncation of a lattice would have a

discrete set of truncation locations, while the truncation of the continuous host medium

has a theoretically infinite set of truncation locations. Thus, truncation of the PnBG

crystal host medium is a more complex problem than lattice truncation. The multitude

of possibilities for the truncation of the continuous host medium of a PnBG crystal have

to be diligently modeled and evaluated following the methodology described above to

find the truncation boundary that yields a complete band gap.

The design methodology presented here was discussed for the specific case of a PnBG

QC that is comprised of a two-dimensional honeycomb crystal with circular inclusions;

however, the methodology may be applicable to other crystals. An attempt was made

to apply the methodology presented here to PnBG crystals that have square lattices and

circular inclusions; however, in the given search time, a complete band gap could not be

found so further investigation is required. In some cases the PnBG crystal lattice and

geometry may have to be changed.

In addition to choosing a truncation boundary location to yield complete band gap
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formation, the choice of truncation boundary location must also result in a PnBG QC

to which four equally spaced tethers may be attached - this further restricts the choice

of truncation boundary location. As may be observed in Figure 3.3, some truncation

boundaries may result in the tether attachment points being located within the inclusion

medium, which if the inclusion is composed of air cannot serve as a physical attachment

point for the tether. Hence, at the desired tether attachment points on the truncation

boundary, the truncation boundary has to intersect the host medium, which for the

PnBG QC architecture presented here is comprised of a solid material to which the

tethers can be attached. In some cases, if an air inclusion is present at or near the

desired tether attachment point, this inclusion may be removed so long as the modal

analysis indicates that removing the inclusion does not interfere with complete band gap

formation.

Through the scalability of the elastic wave equation which governs the behavior of

the PnBG QCs, the PnBG crystal truncation and design methodology that has been

presented here should be scalable to different frequency regimes, by simply scaling the

size of the structure.

While the studies presented in this thesis could not find a flat edge geometry that

displayed no defect states, it may be possible that for PnBG QCs that are a relatively

large number of lattice constants in dimension (so that the PnBG QC dominates the

behavior of the device), or through very careful design, the defect states produced by

resonant modes that are localized to the edges of the PnBG QC may be mitigated or

made negligible without the use of a serrated edge. Other edge geometries may be

investigated, for example a hybrid of a flat and serrated edge. It may be noted that

one problem associated with the use of flat edges is that the flat edge couples adjacent

regions of the PnBG QC together so that they are not free to move out-of-phase or
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independently and thus significantly perturb the behavior of the PnBG QC. In contrast,

the serrated edge allows different regions on the edge of the PnBG QC to move relatively

independently, and mechanical coupling occurs primarily through the PnBG QC. Further

study of flat and other edge geometries may be performed for the PnBG QCs. The

behavior of flat edged PnBG QCs will be numerically illustrated in Section 4.2.3.

3.3 Geometrical Properties of the Proposed

Phononic Band Gap Quasi-Crystal

Architecture

Following the design methodology presented here, six PnBG QCs were produced that

have serrated edges and display a complete band gap: three for circular and three for

square truncation boundary geometries. A PnBG QC was also created utilizing a square

truncation boundary geometry and flat (not serrated) edges to act as reference that

illustrates the difficulty that arises in forming a complete band gap when utilizing flat

edges (as will be numerically illustrated in Section 4.2). Homogeneous circle and square

reference devices were also designed. The geometrical parameters of all these structures

are quantified in Tables 3.1 and 3.2.

As may be viewed in Tables 3.1 and 3.2, each structure has been assigned a name.

The three PnBG QCs that have serrated edges and square (circular) truncation boundary

geometries are named S1, S2 and S3 (C1, C2 and C3). The reference PnBG QC that has

flat edges and a square truncation boundary is named S4. The homogeneous reference

structures that have a square and circular boundaries are named Square and Circular

reference.
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Table 3.2: Geometrical parameters of the proposed phononic band gap quasi-crystals
and reference devices (continued). Units are in microns (µm) unless otherwise specified.

Device Circular Inclusion Radius, r Circular Inclusion Spacing, s 
Square -  - 

S1 45 2 
S2 45 3 
S3 45 4 
S4 45 2 

Circle - - 
C1 40  2 
C2 40 3 
C3 40 4 

 
 
 3.4 Embedded Electrostatic Transducer Design Con-

cept and Geometrical Parameters

In addition to choosing a truncation boundary location to yield complete band gap

formation and four equally spaced points to which the tethers may be attached, ideally,

the choice of truncation boundary location should also yield a PnBG QC that allows

for four identical transducers to interface with the PnBG QC so that forces that are

equal, or relatively comparable, in magnitude are imparted by all transducers (unless

the PnBG QC was designed to compensate for transducers that imparted forces with

relatively different magnitudes). If the transducers didn’t impart comparable forces, the

unbalanced forces may distort the excited normal mode shape which could potentially

make comparison difficult with models of the normal mode shape. Thus, the truncation

boundary location was chosen to result in a PnBG QC that displays some degree of

symmetry.

As may be observed in Figure 3.4, the circular truncated PnBG QC has four rela-
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tively similar transducers, whereas the square plate device displays similar transducers

on only diametrically opposite sides. Figure 3.4 illustrates that one pair of transducers

on the square truncated PnBG QC has closely spaced inclusions, while the other pair

of transducers has widely spaced inclusions. The circular truncated device thus helps

eliminate asymmetry in the transducer geometry and overlap areas. While differing elec-

trostatic transducer geometries and overlap areas may still result in equal magnitudes of

electrostatic force in a given (set of) direction(s), it may be more challenging for differing

geometries to produce the same magnitude of electrostatic force in all directions. For

the PnBG QC geometries presented in Figure 3.4, the greater degree of symmetry in the

geometry of the electrodes along the circular truncation boundary, relative to the square

truncation boundary, may assist in applying forces with more balanced magnitudes and

directions to the four edges of the PnBG QC.

To interface electrostatic transducers with the serrated edge of the PnBG QCs, the

transducer electrode is embedded into the PnBG QC as illustrated in Figure 3.4. The

overlap areas of the resultant electrostatic transducers are now analyzed. Figure 3.6

displays the overlap areas of the electrodes for the square truncated PnBG QCs. As may

be observed in Figure 3.6, for the square truncated PnBG QCs, the transducers with

widely spaced inclusions have smaller overlap areas than the transducers with closely

spaced inclusions.

Figure 3.7 provides a side by side comparison of the electrode areas of the circular

truncated PnBG QCs with the electrode areas of the electrodes with widely and closely

space inclusions of the square truncated PnBG QCs. Each PnBG QC is designed to lie

within approximately the same die area. Thus, per unit die area, it may be noted from

Figure 3.7 that the square truncated PnBG QCs display larger transducer overlap areas

as compared to the circular truncated PnBG QCs. It may also be observed that the
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Figure 3.6: Comparison of transducer electrode areas for the transducer electrodes with
widely and closely spaced inclusions for devices S1, S2 and S3.
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PnBG QCs display larger transducer electrode areas as compared to the homogeneous

Square and Circular reference devices, due to the increased surface area produced by

the serrated edge of the PnBG QC.

Table 3.3 quantitatively summarizes the overlap areas that have been displayed in

Figure 3.6 and 3.7. These overlap areas will be utilized in Section 4.1 to analytically

model the magnitude of the electrostatic forces that are generated by the transducers.
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Figure 3.7: Comparison of electrode areas of all device transducers. The total electrode
area is comprised of the electrode areas over electrode segments where the electrode gap
is 2µm and 3µm. The fraction of the total electrode area comprised by the electrode
segments electrode gap is 2 is shown in white and 3 is shown in black. As may be seen,
for S1, S2, S3, C1, C2 and C3 the majority of the electrode area occurs over the electrode
segments where the electrode gap is 3.
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Chapter 4

Electro-Mechanical Model of

Phononic Band Gap Quasi-Crystal

Architecture

The characteristics of the proposed PnBG QC architecture, including truncation of the

unique PnBG QC geometry by free boundaries and the attachment of the PnBG QC to

mechanically grounded tethers, introduce a unique set of boundary conditions on the

elastic wave equation. Crystal lattice truncation yields a quasi-crystal (as oppose to an

infinitely periodic crystal), which will be defined as a structure that displays periodicity

with respect to space in its material properties but that is a finite number of lattice

constants in physical dimension. In the finite quasi-crystal, the elastic band structure is

quantized. The finite dimension may cause some frequency characteristics to display a

low cut-off frequency, similar to the behavior of rectangular electromagnetic waveguides

[116]. The geometry of the supporting tethers in the PnBG QC is not a continuation

of the periodic mechanical structure of the PnBG QC. The tethers thus disrupt the
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periodicity in the mechanical properties of the PnBG QC, and so may be considered

a physical crystal defect state and thus are designed according to the methodology of

Chapter 3 to appropriately shift the vibrational response of the tethers to outside the

band gap frequency range. Due to the aforementioned features of the PnBG QC archi-

tecture, generic models of infinitely periodic PnBG crystals do not provide a complete

model of the proposed PnBG QC architecture. Thus, unique models of the PnBG QC

architecture are required.

The model in this chapter illustrates that the proposed PnBG QC architecture ap-

pears to display some of the characteristic behavior of a PnBG crystal. The model will

suggest that the shape of the modes above and below the band gap of the proposed

PnBG QC display different characteristic shapes, similar to how the acoustical and op-

tical branch modes of a PnBG crystal each display characteristic shapes. The unique

behavior of the PnBG QC architecture will be demonstrated, in part, by comparing the

model of the PnBG QC architecture with the model of homogeneous reference resonators

that have identical truncation diameter and tether geometry to first illustrate that the

PnBG QC architecture displays behavior that is different from homogeneous reference

resonators. Relative to the homogeneous reference resonators, the PnBG QC architec-

ture will be shown to provide a methodology to increase the density of normal modes

in certain frequency regions, and simultaneously be utilized to decrease the density of

modes (in theory to zero) in other frequency regions to provide a broadband absence

of normal modes modes, which is analogous to the characteristic behavior of a PnBG

crystal. In the frequency region of the band gap, the PnBG QC architecture may be

considered to be the antithesis of a resonator: the band gap frequency region of op-

eration displays an absence of resonant modes. While a homogeneous plate may have

frequency regimes were there is an absence of normal modes, the PnBG QC architecture
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provides one means to systematically design the location and width of the region where

normal modes are absent and for comparable geometries may yield a wider frequency

range where modes are absent.

The models will also help to differentiate between the behavior of a PnBG QC and

a plate with an arbitrary array of periodically placed etch holes. In theory, the band

gap of a PnBG crystal is caused by a carefully designed geometry which sets up the

conditions for phenomenon such as Bragg and Mie reflections to yield broadband con-

structive interference of elastic waves and thus a phononic band gap. Hence, a plate with

arbitrarily placed etch holes does not necessarily display a band gap. Furthermore, the

PnBG QC architecture design methodologies that were presented in Chapter 3, wherein

a honeycomb crystal geometry is created by placing etch holes into a finite thickness

plate, of unspecified material composition, which is truncated by free boundaries to a

low number of lattice constants then suspended by tethers to fixed boundaries, does not

necessarily yield a structure that displays the characteristics (namely a band gap) of an

ideal infinitely periodic PnBG crystal. The models of this chapter will support that the

design methodologies that were presented in Chapter 3 can produce PnBG QCs with

the non-obvious and desired band gap behavior for specific geometries.

The models will also illustrate what may be non-obvious behavior with respect to

the frequency versus mode number characteristic of the PnBG QCs, namely that (i)

at low frequencies the PnBG QCs displays similar characteristics to a homogeneous

plate, while (ii) at intermediate frequencies the PnBG QC behavior dramatically deviates

away from homogeneous plate behavior then (iii) at high frequencies the behavior of

the PnBG QC and homogeneous plate appear to converge. The model will contrast

the effects of circular and square truncation boundary geometry on the properties of

the band gap. Even if it may be argued that the approximate effect, on the band
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gap properties, of the unique structural characteristics of the PnBG QC architecture

may be qualitatively anticipated utilizing sufficient experience (that is, obvious to some

observers), the models presented here will provide evidence to numerically substantiate

and quantify the behavior of the PnBG QC architecture.

Section 4.1 presents the analytical model of the electrical integrated circuit formed by

the PnBG QCs. In Section 4.2 a numerical model is presented for the PnBG QC normal

mode frequency versus mode number, normal mode shape and multi-mode dynamic har-

monic response within the 0 to 20 MHz frequency range. An analytical lumped element

mass-spring model is utilized to model the dynamic harmonic response over a narrow

band of frequencies situated near select resonant modes. The characteristics of these me-

chanical models of the PnBG QC architecture are compared with analytical models of the

Bragg frequencies of PnBG crystals to identify similarities in behavior, between PnBG

QCs and ideal infinitely periodic PnBG crystals, versus geometrical parameters and unit

cell fill factor. The PnBG QC architecture is then analyzed as a two-dimensional net-

work of mass-spring elements where each mass element is granted six degrees of freedom

(DOF). Next, a structural analysis of sub-sections, of the PnBG QCs, that lie between

the virtual mechanical grounds within the numerical mode shape models is performed

to obtain semi-analytical flexural plate and beam models of the compliance and mass of

each sub-section. These compliance and mass values are utilized in a lumped element

vibration model. More complete periodic two-dimensional mass-spring network models

are proposed for further study. A numerical sensitivity analysis versus geometry and

material composition is also presented. Lastly, in Section 4.3, the mechanical and elec-

tric models are combined to model the coupled electromechanical behavior of the PnBG

QC architecture.

The mechanical models assume that the host, and inclusion, materials are comprised
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of isotropic single-crystal-silicon, and air, respectively. The PnBG QC is crafted out

of what may be considered to be a thin plate and the material properties of the thin

single-crystal-silicon films of the SOIMUMPs process may differ from the bulk material

properties of single-crystal-silicon. Hence, a review of devices from the SOIMUMPs

process was performed to determine the documented mechanical material properties

of the single-crystal-silicon layer utilized in SOIMUMPs and is summarized in Table

4.1. Table 4.1 indicates that the material density, ρ, poisson ratio, ν, and Young’s

modulus, E, of the thin single-crystal-silicon layer in SOIMUMPs may be bounded

between approximately 2330 kg/m3 and 2500 kg/m3, 0.064 to 0.29, and 170 GPa to 180

GPa, respectively. Table 4.1 lists the design values for the material density, Young’s

modulus, and poisson ratio, utilized (unless otherwise specific) in this thesis as 2300

kg/m3, 180 GPa, and 0.29, respectively.

Table 4.1: Literature review of the mechanical material properties, and design values,
for the single-crystal-silicon layer in the SOIMUMPs fabrication process [117] [118] [96].

 

  
 

 
Young’s Modulus, 

E (GPa) 
Poisson Ratio,  

υ 
Material Density, 

(kg/m3) 

Khine 180 0.29 2330 

Lee 168 0.064 2500 

This Work 180 0.29 2300 

 

4.1 Electrical Radio Frequency Integrated Circuit

Model

In this section the PnBG QCs are modeled as purely electrical devices and the electrical

circuit elements are extracted from the PnBG QC structures to generate an electrical

circuit model. The electrical circuit model will be utilized to quantify the electrical
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signal that is transferred from the signal generator to the electrostatic transducers. The

magnitude of the electrical signal on the electrostatic transducers will then be utilized to

model the electrostatic force generated between the electrodes of the electrostatic trans-

ducer. For a given electrical signal, this magnitude of the electrostatic force may later

be utilized to model the mechanical displacement of the PnBG QCs, and be compared

with numerical multi-physics model results.

4.1.1 Electrical Circuit Extraction from the Phononic Band

Gap Quasi-Crystal Structure

A schematic of the electrical circuit components overlayed upon a PnBG QC is displayed

in Figure 4.1 for the case of a square truncation boundary, while approximately the same

electrical circuit model may apply to PnBG QCs with circular truncation, though higher

order effects such as fringing of electrostatic fields, and so forth, may differ between the

square and circular truncation types.

The resistance, capacitance and inductance of the RG-58 coaxial cables and printed

circuit board interconnects, for RF and DC signals, are not accounted for in the elec-

trical circuit models of Figure 4.1. In practice, relatively large signals are utilized,

DC voltages on the order of 100 VDC and RF sinusoidal signals with an amplitude

of 10 V, and series resistive and inductive voltage drops along cables are observed to

be negligible. Electrical frequencies are relatively small and assist in limiting para-

sitic inductive impedances. Device and cable dimensions are small compared with the

electrical signal wavelength (for the maximum experimental frequency of 20 MHz the

λelectrical,min = co
fmax

= 299, 792, 458m/s/20MHz ≈ 15m) so distributed effects may be

negligible in the electrical system. The maximum electrical frequency of 20 MHz is

orders of magnitude below the maximum usable operating frequency of 50Ω BNC con-
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Figure 4.1: Extraction of the electrical circuit model from the approximate structure
of a square truncated phononic band gap quasi-crystal. The source circuit impedance,
bias tee circuit, and bond wire resistances are also illustrated. The resistance of package
leads, and printed circuit board copper traces is not denoted here.

nectors, so connector parasitics may be negligible. RG-58 coaxial cable lengths were

limited to one meter and may typically display an attenuation under 3 dB/m below 20

MHz. Where possible, unshielded wires that carry DC and ground voltages were twisted

around one another to mitigate ground loops and noise coupling by Faraday induction.

Utilizing the electrostatic transducer mid-gap overlap areas from Table 3.3 the trans-

ducer capacitance values, Ct, were modeled utilizing the equation for the capacitance of

a parallel plate capacitor:

C =
εoA

g
(4.1)

where εo = 8.854 × 10−12 F/m, A is the transducer capacitor overlap area, and g is

the capacitor gap. Equation 4.1 ignores fringe fields which may contribute additional

capacitance. For each structure the computed transducer capacitance values are listed
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Figure 4.2: Anchor pad substrate overlap capacitance geometry for (a) circular and
(b) square truncation geometry, where x1 = 50.001µm, x2 = 75.48µm. The anchor
pad is created from a 200µm × 200µm square pad. The region of this pad that has
not been removed to incorporate the tether and that lies over the substrate contributes
substrate capacitance. Fringe fields will be neglected. For the case of circular truncation,
y1 = x1cos(45o) = 35.356µm, Asub,1 = 200 × 200µm2 − (y1y1/2 + x2x2/2 + x2x2/2 +
x1x2) = 29904µm2. For the case of square truncation, y1 = x1cos(45o) = 35.356µm,
y2 = x2cos(45o) = 53.372µm, Asub,1 = 200× 200µm2 − (y1 + y2)2 = 32127µm2.

in Table 4.2.

The geometry of the PnBG QC anchor pads is displayed in Figure 4.2 where the

anchor pad substrate overlap area is approximately 29904µm2 for circular truncation and

32127µm2 for square truncation due to the differing shape of the trench. To compute

the approximate anchor pad capacitance these substrate overlap areas are utilized in

Equation 4.2 along with a dielectric comprised of the 1µm oxide (which is the insulator

layer of the SOI wafer) in series with a 25µm single-crystal-silicon layer and the computed

anchor pad capacitance values are listed in Table 4.3.

Using the computed capacitance values from Tables 4.2 and 4.3, the electrical circuit

displayed in Figure 4.1 was input into ADS R©2009 as shown in Figure 4.3. The results

of the AC analysis are depicted in Figure 4.4 and illustrate that for a source signal with
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a source impedance of 50Ω and internal 10 V amplitude the voltage at the electrostatic

transducer has an amplitude of approximately 9.985 V from approximately DC to 20

MHz. The voltage at the electrostatic transducer is small near DC due to the high

series impedance of the bias-Tee capacitor depicted in Figures 4.1 and 4.3. However,

the electrical circuit model of Figure 4.4 predicts what should be a sufficiently uniform

transfer of voltage to the electrostatic transducers over the frequency range above DC

and up to and including 20 MHz.

The aforementioned uniform transfer of voltage to the electrostatic transducers may

have been anticipated analytically since the signal source has an output impedance of

50Ω and is connected to the input of the PnBG QC which presents a load capacitor that

has a relatively small capacitance value on the order of approximately 50 fF to 100 fF

(as seen in Table 4.2) and so relatively large impedance. Figure 4.5 displays the AC

equivalent circuit of the circuit model in Figure 4.3. Utilizing the AC equivalent circuit

of Figure 4.5 and the component values from Figure 4.3, which include CBIAS = 1000pF ,

CTRANSDUCER = 78fF , CTRANSDUCER PAD = 200fF , the impedances associated with

the circuit capacitors may be expressed as:

ZBIAS = 1/(jωCBIAS)

ZTRANSDUCER = 1/(jω4CTRANSDUCER)

ZTRANSDUCER PAD = 1/(jω4CTRANSDUCER PAD)

(4.2)

where the four transducer capacitors, 4CTRANSDUCER, and transducer pad capacitors,

4CTRANSDUCER PAD, have been combined in parallel. Given the bias-tee AC blocking

impedance value, RBIAS = 100kΩ, from Figure 4.3, the input impedance denoted in
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Figure 4.3: Electrical circuit schematic from ADS R©2009. The average of the transducer
capacitance values from Table 4.2 is Ct,avg = 78fF and was utilized for the transducer
capacitance shown in the schematic, this represents an open circuit impedance at f =
0Hz (DC) to and Zt = 1

jωCt,avg
= 1

j2π×20MHz×78fF
= −j102kΩ at f = 20MHz, where

ω = 2πf is the angular frequency. The anchor pad, and transducer pad, capacitance
values from Table 4.3 are approximated as 100 fF (≡ Z = −j80kΩ@20 MHz), and 200
fF (≡ Z = −j40kΩ@20 MHz), respectively. Gold bond wire with a diameter of 0.001”
was utilized, for a resistivity, ρ, of 2.2× 10−8Ωm [120] the resistance of a 0.5 mm length
of bond wire of circular diameter is Rwire = Zwire = ρL

A
= 5.4mΩ, where Rwire is as

shown in Figure 4.1. The impedance of the gold bond wire is relatively small relative to
the source and capacitor impedances; bond wire impedance is approximated as zero in
the electrical circuit simulation.
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Figure 4.4: AC analysis of the electrical circuit extracted from the phononic band gap
quasi-crystal architecture structure from ADS R©2009 for the circuit schematic of Figure
4.3. Due to the high AC impedance of the electrostatic transducers, for a 10 VAC signal,
the magnitude of the voltage at the electrostatic transducer is approximately 9.985 VAC
in the frequency range of interested.

Figure 4.5: The AC equivalent circuit of the electrical circuit depicted in Figure 4.3. The
voltage VRF MEMS IN is the voltage that is applied across the electrostatic transducers.
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Figure 4.5 may then be computed as:

ZIN =
RBIAS(ZTRANSDUCER + ZTRANSDUCER PAD)

RBIAS + (ZTRANSDUCER + ZTRANSDUCER PAD)
(4.3)

by combining in parallel the bias-tee resistor, RBIAS, transducer capacitor impedance,

ZTRANSDUCER, and transducer pad impedance, ZTRANSDUCER PAD. For the source volt-

age amplitude, VRF = 10V , and source resistance, RSOURCE = 50Ω, in Figure 4.3, uti-

lizing the input impedance ZIN from Equation 4.3, and the voltage divider principle,

the transducer voltage, which is denoted as VRF MEMS IN in Figures 4.5 and 4.3, may

be expressed analytically as:

ZDIV IDER =
ZIN

ZIN +RSOURCE + ZBIAS

VRF MEMS IN = VRFZDIV IDER.

(4.4)

Utilizing Equations 4.2, 4.3 and 4.4, for a sample frequency of 10 MHz, or ω =

2π10× 106rad/s, ZBIAS = −j15.9155Ω, ZIN = 33456− j47184Ω, ZDIV IDER = 0.9993−

j0.0005Ω, which illustrates that the dominant impedance is the input impedance, ZIN ,

formed by the transducer capacitors and transducer pad capacitors, which displays an

impedance three to four orders of magnitude larger than the other impedances that

form the voltage divider in the AC equivalent circuit of Figure 4.5. The correspond-

ing magnitude of the transducer voltage, VRF MEMS IN , at 10 MHz is 9.993 V, which

is in reasonable agreement with the result of 9.985 V obtained from ADS R©2009 and

displayed in Figure 4.4. Due to the large impedance mismatch between the 50Ω source

impedance and ZIN , the voltage that appears on the transducer electrodes is effectively

approximately equal to the internal source voltage of the signal source. The result of

Equation 4.4 for the entire frequency range from approximately DC to 20 MHz is dis-
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Figure 4.6: Transducer electrode voltage computed from the AC equivalent circuit in
Figure 4.5 and Equation 4.4. Due to the high AC impedance of the electrostatic trans-
ducers, for a signal source with an amplitude of 10 V, the magnitude of the voltage
across the electrostatic transducer capacitor is approximately constant at 9.993 VAC in
the frequency range from approximately DC to 20 MHz.

played in Figure 4.6 and displays a trend that is in reasonable agreement with the result

from ADS R©2009 that is displayed in Figure 4.4.
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4.1.2 Analytical Model of Electrostatic Forces within the Ca-

pacitive Transducer Gap

Neglecting fringing and utilizing a parallel plate capacitor model (neglecting the effect

of the curvature of the transducer electrode plates), the attractive force between the

electrodes of the electrostatic transducer in vacuum for an applied voltage V is [97]:

F =
εoAV

2

2g2
(4.5)

where εo = 8.854 × 10−12F/m is the permittivity of free space, A is the transducer

overlap area, and g is the transducer gap. For a voltage, V , which is the sum of an

AC voltage, VRF , applied in series with a DC voltage, VDC , the resultant instantaneous

electrostatic force may be expressed as:

F =
εoA(VDC + VRF )2

2g2
. (4.6)

Utilizing Equation 4.6 and the crystal-side overlap areas listed in Table 3.3, the

approximate electrostatic forces within the transducers were computed and listed in

Table 4.4. As may be seen in Table 4.4, the electrostatic attractive force between the

plates of each transducer electrode is around 100µN . In addition, despite the asymmetry

between the transducers for a square truncation boundary, the electrostatic forces for

the different transducers are within 5µN of one another. Hence, the model suggests

that approximately balanced forces are applied to the four edges of each PnBG QC.

Moreover, as the inclusion spacing varies by a few microns between structures, the total

transducer force varies by less than 10µN , so the transducers of each device may generate

approximately the same electrostatic force.
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Lastly, though the serrated edges of the PnBG QCs increase the surface area of

the transducer electrodes, the generated electrostatic forces are less than those for the

flat electrode of the Square and Circular reference devices. The reduced electrostatic

force within the transducers along the serrated edges, occurs because in the regions of

high curvature (which comprise the majority of the serrated edge) the gap between the

serrated edges is 3µm while the flat electrodes have a gap of 2µm along their entire

length. Hence, the constraint of the SOIMUMPs fabrication rules, which suggest to

create a larger gap size between features of high radius of curvature (to avoid bridging),

mitigates the potential increase in electrostatic force that could have been produced by

the increase in electrode surface area of the serrated transducers. It may be recommended

to attempt to violate the suggested SOIMUMPs fabrication rules and decrease the gap

size between the features of high radius of curvature to the minimum feature size of 2µm,

in an attempt to yield a larger electrostatic force within the electrodes of the serrated

edge PnBG QCs.
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4.2 Phononic Band Gap Quasi-Crystal Mechanical

Model

In this section, the Finite Element Method (FEM) in ANSYS R© [121] is utilized (as

discussed in Section 2.3) to perform modal, dynamic harmonic and sensitivity analysis

on the PnBG QCs and reference devices that are listed in Tables 3.1 and 3.2. A FEM

mesh convergence study is contained in Appendix B. An analytical dynamic harmonic

analysis is also presented. Semi-analytical structural and lumped element vibration

models of PnBG QCs are then developed. Lastly, a more complete approach to lumped

element vibration modeling of the PnBG QCs is proposed.

4.2.1 Frequency Versus Mode Number Characteristic

Figures 4.7, and 4.8, illustrate the results of the FEM model for the mode frequency

versus mode number characteristic of the S1, S2 and S3, and C1, C2 and C3, PnBG

QCs that have square, and circular, truncation boundary geometries, respectively. The

geometrical parameters of these PnBG QCs are listed in Tables 3.1 and 3.2. The mode

frequency versus mode number characteristics display seven notable regions:

(I) near DC the mode frequency versus mode number characteristic of the PnBG

QCs approximately overlap with one another as well as with those of the homogeneous

Square and Circular reference structures,

(II) next occurs a range of frequencies where the mode number versus mode fre-

quency characteristic of the PnBG QCs deviate from those for the homogeneous Square

and Circular reference structures but where the mode number versus mode frequency

characteristics of the PnBG QCs still overlap,
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Figure 4.7: Finite element method model of mode frequency versus mode number for
phononic band gap quasi-crystals S1, S2 and S3, as well as the homogeneous square
plate. The upper mode numbers and frequencies of the behavioral zone boundaries are,
I: (n = 0, f = 0MHz), II: (n = 8, f = 0.616MHz), III: (n = 21, f = 2.036MHz), IV:
(n = 138), V: (n = 158, f = 16.88MHz), and VI: (n = 215, 27.32MHz). Band gap
frequencies are summarized in Table 4.5.
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Figure 4.8: Finite element method model of mode frequency versus mode number for
phononic band gap quasi-crystals C1, C2 and C3, as well as the homogeneous circular
plate. The upper mode numbers of the behavioral zone boundaries and their frequencies
are, I: (n = 0, f = 0MHz), II: (n = 7, f = 0.9835MHz), III: (n = 17, f = 2.5350MHz),
IV: (n = 114), V: (n = 139, f = 21.92MHz) and VI: (n = 150, f = 25.28MHz). Band
gap frequencies are summarized in Table 4.5.
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(III) a range of frequencies where the mode number versus mode frequency charac-

teristic of each PnBG QC is approximately linear and unique (different from that of the

other PnBG QCs),

(IV) a range of frequencies where no modes occur, this range begins at mode 138 for

the PnBG QCs with square truncation and mode 114 for the PnBG QCs with circular

truncation, and is referred to as the band gap,

(V) a range of frequencies starting at the top of the band gap, beginning at mode 139

for square truncation and mode 115 for circular truncation, where the frequency versus

mode number characteristic is approximately linear (with a positive slope) and unique

for each PnBG QC,

(VI) a frequency range, above the aforementioned frequency range, where the fre-

quency versus mode number characteristics increase in slope and approximately converge

towards one another, and lastly

(VII) a range where the frequency versus mode number characteristics of the PnBG

QCs decrease in slope and begin to converge with that of the homogeneous Square and

Circular reference structures.

Lastly, it may be observed that in the frequency versus mode number characteristics

of Figures 4.7 and 4.8, where the sub- and hyper-band gap branches extend into the

band gap, the tangent to these characteristics appears to have a positive slope. The

notable properties of the seven behavioral zones (I, II, III, IV, V, VI and VII), that

have been listed above, are illustrated in Figure 4.9. As seen in Figure 4.9, the mode

frequency versus mode number characteristics may be approximated as piecewise linear

utilizing linear segments each of which may have different slopes.

The set of modes that lie below (and above) the band gap will be referred to as sub-

band gap (and hyper-band gap) modes. The terms of sub-band gap, and hyper-band
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gap, branches have been coined here to refer to frequency regimes of the PnBG QCs

that may be analogous to the acoustical, and optical, branches, respectively, of infinitely

periodic PnBG crystals.

From Figures 4.7 and 4.8, the total width of behavioral zones I, and II, is approx-

imately 21, and 17, and so differ by four modes for square, and circular, truncation

boundary geometries, respectively. Figure 4.7, and Figure 4.8, also indicate that the

total number of sub-band gap modes, NSBGM , is 138, and 114, for square, and circular,

truncation boundary geometries, respectively. An analysis of the density of states of the

PnBG QCs may be found in Appendix C.

Figure 4.10 combines the PnBG QC mode frequency versus mode number character-

istics of Figure 4.7 for square truncation and Figure 4.8 for circular truncation geometry.

As may be seen in Figure 4.10, in comparison with circular truncation, the mode fre-

quency versus mode number characteristic for square truncation displays lower normal

mode and band gap frequencies, which may in part be due to the shorter lattice constant

of the circular truncated structures.

The effective material parameters, for example effective acoustic velocity, ceff , ef-

fective mass, meff , effective stiffness, keff , may vary between PnBG QCs due to the

differing geometrical parameters of lattice constant, inclusion spacing, inclusion radius

or truncation boundary geometry. Often resonant frequency displays a proportional

relationship with mass and inverse proportional relationship with stiffness, and so the

lower mode frequencies of the square, in comparison to circular, truncated PnBG QCs

may indicate that the square truncated PnBG QCs may have a lower associated global

effective stiffness or higher global effective mass. A lower stiffness and larger mass may

be expected for square truncation, as compared to circular truncation, due to the larger

inclusion radius which produces more slender regions (of potentially lower stiffness) in
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Figure 4.9: Illustration of the behavioral zones (not to scale) of the proposed phononic
band gap quasi-crystal architecture compared with a homogeneous plate: (I) low fre-
quency band gap homogeneous plate zone, (II) non-unique sub-band gap zone, (III)
unique sub-band gap zone, (IV) band gap zone, (V) unique hyper-band gap zone, (VI)
non-unique hyper-band gap zone and (VII) high frequency homogeneous plate zone.
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Figure 4.10: Finite Element Method model of the mode frequency versus mode number
characteristic for all (S1, S2, S3, C1, C2, C3) phononic band gap quasi-crystals.
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the areas of minimum inclusion spacing and more massive regions in the areas of max-

imum inclusion spacing (refer to Tables 3.1 and 3.2 for the geometrical parameters of

the square and circular truncated PnBG QCs).

In addition to the potentially differing effective material parameters between square

and circular PnBG QCs, the more distant truncation boundary geometry and anchor

locations of square, versus circular, PnBG QCs may also account for the lower mode

frequencies observed in Figure 4.10 for square, in comparison to circular, PnBG QCs. In

analogy with quantum wells [122] or fixed-fixed strings [122], if a relation that resembles

ceff = fλ (where ceff is effective velocity) governs the system, for a given set of effective

material parameters (ceff ) in the medium between the PnBG QC edges or anchors and

for a given mode shape, then an increased distance between PnBG QC edges or anchors

may correspond to an increased mode wavelength, λ, and thus lower frequency, f . If this

were the case, since the distance between the truncation boundaries and anchors is larger

for the square, in comparison with circular, truncated PnBG QCs presented in Tables 3.1

and 3.2, then, according to the analogy with quantum wells and fixed-fixed strings, for

comparable effective material parameters, square truncation may be expected to yield

a lower set of mode frequencies. The sensitivity analysis of Section 4.2.6 will illustrate

such a decrease in mode frequency versus truncation diameter.

If the PnBG QC truncation boundaries and anchors were allowed to approach in-

finity it may be expected that normal mode frequencies and band gap location should

depend primarily on the PnBG QC inclusion spacing and radius (as oppose to boundary

or anchor location). In contrast, for finite truncation boundaries and anchor locations,

PnBG QC normal mode frequency may be expected to depend on both the anchor loca-

tion, truncation boundary geometry as well as PnBG QC lattice constant and inclusion

spacing and radius.
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The FEM models of the band gap locations observed in Figure 4.10 are summarized

in Table 4.5. The homogeneous reference structures and S4 reference structure, which

has flat edges, did not display a band gap for any of the investigated geometries. Hence,

the FEM models appear to indicate that for the structures listed in Tables 3.1 and 3.2,

the implementation of the design methodologies of Chapter 3 and the use of serrated

edges in association with the PnBG QC geometry may be mandatory to produce a

structure that displays the band gap behavior of a PnBG crystal. This supports the

significance of the PnBG QC architecture.

As seen in Table 4.5, complete band gaps are observed to be centered at approx-

imately 12 MHz to 13 MHz for square truncation and approximately 15 MHz to 16

MHz for circular truncation. In addition, as the lattice constant is increased, the lower

band gap edge and band gap center frequency increase, while the upper band gap edge

frequency decreases and band gap width decreases. Thus, as the lattice constant is in-

creased, the lower band gap edge increases at a rate higher than the rate the upper band

gap edge decreases. Hence, the sub-band gap modes, in comparison to the hyper-band

gap modes, appear to be more sensitive to the variation of the lattice constant, a.

4.2.2 Comparison with the Analytical Bragg Frequencies

For an infinitely periodic honeycomb PnBG crystal, utilizing the primitive cell of Figure

3.2 with inclusion spacings s = [2, 3, 4]µm, a circular inclusion radius of r = 45µm,

corresponding lattice constants a = [159.349, 161.081, 162.813]µm and fill factors ff =

πr2

a2
= [0.579, 0.566, 0.554], in a silicon host and air inclusion system (see Appendix A for

the elastic wave velocities of silicon and air), the Bragg frequency may be approximated

analytically utilizing Equations 2.5 and 2.6 for the transverse elastic wave component
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as:

fΓM =
cavg,hex,circle,transverse√

3a
= [9.250, 9.435, 9.606]MHz (4.7)

where:

cavg,hex,circle,transverse = ff × ci,transverse + (1− ff) ch,transverse

= ff × 0m/s+ (1− ff) 5360m/s

= [2275.498, 2349.376, 2420.630]m/s

(4.8)

and for the longitudinal elastic wave component as:

fΓM =
cavg,hex,circle,longitudinal√

3a
= [16.147, 16.432, 16.690]MHz (4.9)

where:

cavg,hex,circle,longidudinal = ff × ci,longitudinal + (1− ff) ch,longitudinal

= ff × 300m/s+ (1− ff) 8950m/s

= [3972.212, 4091.437, 4206.428]m/s.

(4.10)

Hence, this analytical model suggests that the honeycomb silicon-air PnBG crystal, for

the primitive cell of Figure 3.2, would have a band gap within the range of approximately

9 MHz to 16 MHz. These band gap frequencies are in reasonable agreement with the

ranges of band gap locations predicted by the FEM models in Figure 4.10 and Table 4.5

of the PnBG QCs. The similarities between the band gap frequencies of this analytical

model of infinitely periodic honeycomb PnBG crystals and the FEM model of the PnBG

QCs may support the notion that the proposed PnBG QC architecture may adhere to,
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or approximate, some infinitely periodic PnBG crystal behavior.

As seen in Equations 4.7 and 4.9, the Bragg frequencies for both transverse, and

longitudinal, waves suggest that the phononic band gap location increases by 0.25 MHz

and 0.384 MHz, respectively, as the inclusion spacing, s, is scaled up from 2µm to

4µm for the infinitely periodic PnBG crystal, while Bragg frequencies may be expected

to decrease as the lattice constant is increased; however, because the fill factor is not

held constant, and is in fact decreasing as the lattice constant is being increased, the

average velocity, cavg, increases towards that of the silicon host material. Thus, for this

case, the model suggests that the Bragg frequencies may increase as the lattice constant

is increased. The FEM models of Figure 4.10 and Table 4.5 for the PnBG QCs also

suggest that the band gap location increases as the lattice constant increases. However,

the FEM models of PnBG QCs predict an increase in the frequency of the band gap of

2.196 MHz for the square truncated device and 2.930 MHz for the circular truncated

device. Hence, the FEM models of the PnBG QC predict more dramatic increases in

the band gap location as the inclusion spacing, s, is increased from 2µm to 4µm. If the

PnBG QC is adhering to PnBG crystal theory, the difference between the location and

sensitivity of the analytical Bragg frequencies of PnBG crystal theory and the band gap

frequencies of the FEM models of the PnBG QCs may in part be accounted for by the

geometrical differences between an infinitely periodic honeycomb PnBG crystal and the

proposed PnBG QC architecture, including the use of tethers to support the PnBG QC

which is created in a plate of finite thickness and truncated to finite periodicity by fixed

and stress-free boundaries, and utilization of the primitive cell of Figure 3.2 to produce

a honeycomb crystal from the hexagonal lattice (the analytical model of Equations 2.5

and 2.6 only generally account for the primitive cell geometry via the effective velocity).

To assess the potential sources of the differences between the aforementioned ana-
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lytical Bragg frequencies of infinitely periodic hexagonal lattice PnBG crystals and the

FEM model of the band gap location of the proposed PnBG QC architecture, a test was

performed by removing the fixed boundary conditions from the FEM model of the S2

PnBG QC, then performing a modal analysis. The maximum frequency of the sub-band

gap branch was observed to decrease by approximately 1% while the minimum frequency

of the hyper-band gap branch was observed to decrease by approximately 0.007%, in-

dicating that the band gap location is not strongly controlled by the fixed boundary

condition that is applied via the tether elements.

Alternatively, if the PnBG QC should reflect the behavior of the infinitely periodic

honeycomb PnBG crystal from which the PnBG QC is derived, the discrepancy between

the band gap location of the PnBG QC architecture and the analytical Bragg frequencies

of infinitely periodic honeycomb PnBG crystals may be assessed versus the stress-free

boundaries that truncate (to finite thickness and periodicity) the PnBG QC. To de-

velop an understanding of the sensitivity to the in-plane stress-free boundaries, studies

may be performed to gradually move the stress-free boundaries out to infinity (this is

performed for the in-plane stress-free truncation boundary in the sensitivity analysis of

Section 4.2.6 and is not observed to strongly control the band gap location), or to apply

periodic boundary conditions in place of the in-plane stress-free truncation boundaries,

or to apply artificial boundary conditions in place of the in-plane stress-free truncation

boundaries to observe how, for example, small but non-zero stress, and so forth, may

control PnBG QC band gap location.

To develop an understanding of the sensitivity of PnBG QC band gap to the out-

of-plane stress-free boundaries, plate thickness may be varied as in Section 4.2.6 where

it may be observed that for one truncation diameter both hyper- and sub-band gap

frequencies vary with plate thickness with hyper-band gap frequencies displaying the
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greater sensitivity. The finite plate thickness may then be a source of the discrepancy

between PnBG QC band gap location and the Bragg frequencies of the infinitely peri-

odic honeycomb PnBG crystal. Band gap sensitivity to plate thickness may be further

investigated for additional truncation boundary diameters.

Lastly, if the PnBG QC should reflect the behavior of the infinitely periodic honey-

comb PnBG crystal from which the PnBG QC is derived, the discrepancy between the

band gap location of the PnBG QC architecture and the analytical Bragg frequencies

of infinitely periodic honeycomb PnBG crystals may be assessed versus primitive cell

geometry. While the FEM model of the PnBG QC takes into account the specific geom-

etry of the primitive cell of Figure 3.2, the analytical Bragg equations do not, and so the

band gap sensitivity may be modeled versus primitive cell geometry utilizing the FEM

model. A complete study of the discrepancies between the behavior of the PnBG QCs

and corresponding infinitely periodic honeycomb PnBG crystal is left for future study.

4.2.3 Physical Shape of the Normal Modes

Two representative mode shapes are displayed for the S2 PnBG QC in Figure 4.11 and

Figure 4.12 and the C2 PnBG QC in Figure 4.13 and Figure 4.14. Independent of

the inclusion spacing, inclusion radius and truncation geometry, the mode shapes of

the modeled PnBG QC architecture display similar characteristic shapes at sub-band

gap (Figure 4.11 and Figure 4.13) and hyper-band gap (Figure 4.12 and Figure 4.14)

frequencies. In addition, independent of geometry, for the PnBG QCs studied here,

within the frequency range examined here, sub-band gap modes are always comprised of a

mixture of in-plane and out-of-plane modes, while hyper-band gap modes are purely out-

of-plane (with the exception of a few local tether resonant modes). These characteristic

mode shapes will be discussed in detail next in Section 4.2.4.
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The normal mode shape of a localized tether resonant mode of the S2 PnBG QC is

displayed in Figure 4.15(a). In the tether resonant mode of Figure 4.15(a), nodes appear

at each end of the tether. Approximating these two nodes with fixed boundaries, the

tether resonant mode of Figure 4.15(a) may be modeled as shown in Figure 4.15(b) with

a percentage error of -14.5347%.

Lastly, the effect of the flat edges of the S4 PnBG QC may be observed in Figure

4.16. The edge resonances observed in Figure 4.16 occur at in-gap frequencies and so

produce defect states within the band gap. Several variations on the geometry of the

flat edges were attempted unsuccessfully in order to eliminate the edge resonance defect

states while utilizing flat edges; the development of a flat edge that yields no defect state

is left for future study. The apparent difficulty of realizing a complete band gap while

utilizing flat edges highlights the significance of the implementation of the serrated edges

that are employed in the PnBG QC architecture.
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(a)

(b)

Figure 4.15: (a) The hyper-band gap mode 161 at 17.752MHz with the resonance of
the tether element. (b) Approximate finite element method model of the resonance of
the tethers utilizing fixed boundary conditions at the ends of the tethers indicates tether
resonance at 20.771MHz, which lies in the hyper-band gap frequency range as intended.
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4.2.4 Semi-Analytical Lumped Element Structural and Vibra-

tion Model

Figure 4.17 illustrates the patterns of vibration that occur versus mode number in the S2

PnBG QC; similar vibration patterns are observed in the S1, S3, C1, C2 and C3 PnBG

QCs. As may be observed in Figure 4.17, at sub-band gap frequencies the PnBG QC

displays both in-plane and out-of-plane modes, while at hyper-band gap frequencies the

PnBG QC displays primarily out-of-plane modes (with the exception of in-plane tether

resonances such as that illustrated in Figure 4.15).

Figures 4.7 and 4.8 indicate that the total width of behavioral zones I and II for

square and circular truncated devices are 2.036 MHz and 2.535 MHz, respectively, which

are the location of the inflection points at the upper boundary of behavioral zone II.

At such inflection points, the effective wavelength may be computed for elastic waves

within a homogeneous medium comprised of an average elastic wave velocity equal to

that of the PnBG QC primitive cell. These effective wavelengths may then be compared

to the feature sizes of the PnBG QC to deduce if there may be a physically insightful

relation between effective wavelength within the various behavioral zones and the size

of the structure. For the square truncated S1, S2, S3 PnBG QCs (utilizing the material

properties for silicon and air from Appendix A and Equation 2.6 for cavg) the effective

wavelengths for transverse and longitudinal waves at the upper edge of behavioral zone

II (f = 2.036MHz) and the ratio of this effective wavelength to the truncation diameter,
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Figure 4.17: Vibration patterns of the S2 phononic band gap quasi-crystal versus mode
number. The mode numbers, n, of the boundaries of each behavioral zones are noted.
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d = 650µm, is typically:

Transverse

cavg,transverse,typical = 2324.346 m/s

λ = cavg,transverse,typical/f = 1141.6235 µm

λ/d = 1.756

(4.11)

Longitudinal

cavg,longitudinal,typical = 4051.043 m/s

λ = cavg,longitudinal,typical/f = 1989.707 µm

λ/d = 3.061

(4.12)

and for the circular truncated C1, C2, C3 PnBG QCs with d = 575µm is typically (the

upper edge of behavioral zone II occurs at f = 2.535MHz):

Transverse

cavg,transverse,typical = 2348.501 m/s

λ = cavg,transverse,typical/f = 926.431 µm

λ/d = 1.6112

(4.13)

Longitudinal

cavg,longitudinal,typical = 4090.026 m/s

λ = cavg,longitudinal,typical/f = 1613.422 µm

λ/d = 2.806.

(4.14)

The upper boundary of behavioral zone II then occurs when wavelength is approxi-
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mately 1.5× (for the average transverse elastic wave velocity) to 3× (for the average

longitudinal elastic wave velocity) the PnBG QC truncation diameter. If the edge of the

behavioral zone II boundary is dependent on the ratio of effective wavelength to trunca-

tion diameter, then the frequency of the behavioral zone II boundary may be reduced to

low frequencies by increasing the PnBG QC truncation diameter; such a trend appears

to be observed in the sensitivity analysis of Section 4.2.6 and Figure 4.36, however, may

be present due to other mechanisms and may be investigated further.

As frequency increases to 20 MHz above behavioral zone II, for both square and

circular truncated PnBG QCs, the effective wavelength for typical average transverse,

cavg,transverse,typical, and longitudinal, cavg,longitudinal,typical, elastic wave velocities reduces

to approximately 115µm and 200µm, respectively. For these transverse, and longitu-

dinal, effective wavelengths, the ratio of plate truncation diameter, d, to wavelength is

approximately 5, and 3, respectively. Hence, at the maximum operating frequency the

minimum effective wavelength is approximately 3 to 5 times smaller than the PnBG

QC truncation diameters; at higher frequencies the PnBG QC may start to display

distributed system [116] behavior.

Mass-Spring Network Approximation

While at high frequencies the PnBG QC may begin to display distributed system

behavior, the vibration patterns in Figure 4.17 and the modal analysis presented in

Section 4.2.3 indicate that at a given frequency specific physical regions of the PnBG

QC appear to predominantly behave either approximately as a mass element or a spring

element. For sub-band gap modes, the host regions between the closet spacing of the

inclusion holes often appear to approximately behave as spring elements, while the host

regions between the most distant spacing of the inclusion holes often appear to approx-

imately behave as mass elements. The converse behavior appears for the out-of-plane
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Figure 4.18: Approximation of a lumped element mass-spring network model of the
phononic band gap quasi-crystal architecture illustrated for square truncation. Sub-band
gap modes appear to display vibration patterns where the large masses, denoted by the
grey filled circles in the mass-spring network on the left, behave as a mass element. The
the mass, and number, of these large masses is denoted as mlarge, and Nlarge masses = 23,
respectively. Hyper-band gap modes appear to display vibration patterns where the
small masses, denoted by the black dots in the mass-spring network on the right, behave
as a mass element. The mass, and number, of these small masses will be denoted as
msmall and Nsmall masses = 88, respectively.

hyper-band gap modes. The PnBG QC may then potentially be approximated as a

mass-spring network, where the distribution of the mass and spring elements may be

different for sub-band gap and hyper-band gap modes. One approximation of the distri-

bution of mass and spring elements for sub-band gap and hyper-band gap modes may

be as shown in Figure 4.18.

Number of Sub-Band Gap Modes

The number of normal modes of a mass-spring system is equal to the total degrees

of freedom (DOF) of the system. Behavioral zone III of the sub-band gap branch (see

Figure 4.9) is comprised of in-plane and out-of-plane modes (see Figure 4.17) at which the
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PnBG QC behaves approximately as a mass-spring network with the masses and springs,

of the sub-band gap mass-spring network of Figure 4.18, translating away from their

equilibrium positions in the x̂, ŷ, ẑ-directions (which requires 3 DOF) or rotating about

virtual mechanical nodes either in-plane or out-of-plane (which requires 3 rotational

DOF). The total number of DOFs per mass element for sub-band gap modes then

appears to be six, as illustrated in Figure 4.19, which is the maximum DOFs for a

rigid body in three dimensions (dimensionality = 3, DOFmax = dimensionality ×

(dimensionality + 1)/2 = 6). According to this model, the square (S1, S2, S3), and

circular (C1, C2, C3), truncated PnBG QCs may be approximated to be comprised of

23, and 19, large masses (see Figure 4.18), respectively. The total DOF for the sub-band

gap modes for square and circular truncated PnBG crystals may then be approximated

to be 6DOF/mass element×23masses = 138, and 6DOF/mass element×14masses =

114, respectively, which displays the observed trend that NSBGM,square > NSBGM,circle.

The FEM model of Figure 4.10 also predicts NSBGM,square = 138 and NSBGM,circle =

114, hence the analytical model corresponds precisely to the FEM model and may be

formalized as:

NSBGM = DOFmax ×Nlarge masses

=
dimensionality × (dimensionality + 1)

2
Nlarge masses

(4.15)

where Nlarge masses is the number of large masses in the sub-band gap mass-spring

network of Figure 4.18, DOFmax = dimensionality × (dimensionality + 1)/2 and in

three-dimensional space dimensionality = 3. Hence, for 3-dimensional space NSBGM =

6Nlarge masses. Figure I.4 indicates that for a mass-spring network comprised of 17 large

and and 16 small masses, the number of sub-band gap modes is equal to the number of

large masses, 17. Hence, the PnBG QC architecture proposed in the body of this thesis
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displays behavior similar to the discretized diatomic phononic band gap quasi-crystals

of Appendix I and [86].

Number of Hyper-Band Gap Modes

Due to the relatively short effective wavelength of the vibrations (quantified to be

approximately 115 µm to 200 µm in Section 4.2.4 which is approximately 3 to 5 times

smaller than the truncation width of the square and circular PnBG QCs) of the hyper-

band gap modes and the intricacy of the mode shapes, it is more difficult to count the

number of mass elements for a mass-spring network model of the hyper-band gap modes

as compared to the mass-spring network model of sub-band gap modes. According to

the approximation of Figure 4.18, one approximate value for the number of small mass

elements in the square truncated PnBG QCs mass-spring network model for hyper-band

gap modes may be Nsmall masses = 88. Figure 4.20 illustrates that the physical region of

the PnBG QC that is approximated by the small lumped element mass, msmall, appears

to display one translational DOF in the ẑ-direction and potentially some rotational

degrees of freedom. From Figure 4.18 it is not clear how many rotational degrees of

freedom each lumped element mass, msmall, displays or about which axis the rotation

occurs, so these potential rotational DOFs will not be accounted for in the following

approximation. Recognizing that this model may not be accounting form some rotational

DOFs of the hyper-band gap mass elements, the approximate number of hyper-band gap

normal modes may be lower bounded by utilizing one DOF per mass element, msmall:

NHBGM = 1DOF ×Nsmall masses

= 1×Nsmall masses

= Nsmall masses.

(4.16)

where Nsmall masses is the number of small mass elements in the hyper-band gap mass-
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(a) (b)

(c) (d)

Figure 4.20: Close up of the finite element method models of the phononic band gap
quasi-crystal modes for the hyper-band gap branch in the physical region that is approx-
imated by the lumped mass element, msmall, of the hyper-band gap mass-spring model
of Figure 4.18. The physical region that is approximated by the lumped mass element,
msmall, appears to display a translational degree of freedom in the ẑ-direction (as may
be seen in (a) and the corresponding close up in (b) for mode 149, 15.852 MHz, of the S2
phononic band-gap quasi-crystal) and a vibration pattern that may indicate rotational
degrees of freedom (as may be seen in (c) and the corresponding close up in (d) for mode
140, 14.553 MHz, of the S2 phononic band-gap quasi-crystal).
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spring network of Figure 4.18, which contains 88 small masses so NHBGM = 88 modes.

From Figure 4.7, the number of modes in behavioral zones V and VI of the square trun-

cated devices is approximately 75, which is in reasonable agreement with the analytical

model of NHBGM = 88. The discrepancies between the analytical model of Equation

4.16 and the FEM model of Figure 4.7 may in-part be accounted for by the uncertainty

in the number of hyper-band gap masses, Nsmall masses, that should be included in Figure

4.18, which displays just one approximation of the number of hyper-band gap masses,

Nsmall masses. There is also uncertainty in the number of DOF that each hyper-band gap

mass, msmall, should have in the hyper-band gap mass-spring network of Figure 4.18.

That said, if each hyper-band gap mass, msmall masses, was granted one more DOF, the

number of hyper-band gap masses, NHBGM , would be twice that predicted by Equation

4.16 leading to a larger discrepancy with the FEM model of Figure 4.7. Lastly, there is

also uncertainty in how to define the extent of the hyper-band gap branch in the FEM

model of Figure 4.7. If the extent of the hyper-band gap branch is larger than behavioral

zones V and VI of Figure 4.7, which contain 75 modes, then the number of modes in the

hyper-band gap branch should be greater than 75 and there may potentially be a closer

match with the analytical model of 88 hyper-band gap modes given by Equation 4.16.

Further investigation is required.

Slope of Frequency versus Mode Number Characteristic

The FEM model suggests that the sub-band gap branch is approximately linear, as

described in Figure 4.17, with a slope equal to the rise in frequency divided by a run

equal to the number of sub-band gap modes. The run of the sub-band gap branch is

precisely equal to the number of sub-band gap modes given by Equation 4.15. If the

location of the band gap in Figures 4.7 and 4.8 may be deduced utilizing PnBG theory,

the rise of the sub-band gap branch would be approximately equal to the first Bragg
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frequency of the hexagonal lattice and so the slope of the sub-band gap branch of the

PnBG QC architecture would then be analytically approximated as:

mSBG =
rise

run

=
fΓM

NSBGM

=

cavg,transverse√
3a

6Nlumped masses

=
cavg,transverse

6
√

3aNlumped masses

.

(4.17)

where fΓM is given by Equation 2.5 and NSBGM is given by Equation 4.15. Equation

4.17 approximates the slope of the frequency versus mode number curve and may then

be utilized to provide the following approximation of the relation between frequency and

mode number:

fsub−bandgap(n) = mSBG × n+ foffset n ∈ [1, 2, 3...NSBGM ] (4.18)

where foffset is a frequency offset that may account for a potentially non-zero f -intercept

in the frequency versus mode number characteristic. From the frequency versus mode

number characteristics of Figures 4.7 and 4.8 the absolute value of foffset appears to be

very close to zero, relative to the extent of the frequency range examined, and will be

approximated as such, foffset ≈ 0. Substituting Equation 4.17 into Equation 4.18, with

foffset = 0, yields:

fsub−bandgap(n) =
ncavg,transverse

6
√

3aNlumped masses

n ∈ [1, 2, 3...NSBGM ], (4.19)

where it may be observed that the frequency versus mode number characteristic in-
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creases in slope with material velocity, cavg,transverse, and decreases in slope with the

lattice constant, a, and number of lumped mass elements, Nlumped masses; this behavior

is consistent with that predicted by the numerical sensitivity analysis of Section 4.2.6.

The analytical model of Equation 4.19 suggests that the frequency versus mode number

characteristic of the sub-band gap branch of the PnBG QC architecture appears to be

analytically approximated without accounting for, or including, the tether structures in

the analysis. This may indicate that the tether design methodology described in Sec-

tion 3.2 yields a tether that displays a relatively low order effect on the location of the

sub-band gap frequency versus mode number characteristic of the PnBG QCs and this

may be an indication of a well designed tether element.

Linear Shape of the Frequency versus Mode Number Characteristic

For a mass-spring network, the frequency of each mode of the system may be obtained

by solving the Eigenvalue problem utilizing a computer program as described in [86].

The frequency versus mode number characteristic may then be generated by assigning

the mode number n = 1 to the first mode frequency and enumerating higher modes up to

the total DOF of the mass-spring network as has been done for the discretized diatomic

mass-spring PnBG QC of Figure I.4 of Appendix I. Following this procedure, in Figure

I.4, the frequency versus mode number characteristics of the discretized diatomic mass-

spring PnBG QC, which has 33 mass elements (Nmasses = 33) with each mass element

given one DOF (let DOF = 1), has been generated and contains a total of 33 modes

(Nmodes = DOF ×Nmasses = 33). The frequency versus mode number characteristic of

Figure I.4 may be approximated as piecewise linear by lines of differing slope for the sub-

and hyper-band gap branches. In addition, mass-spring approximations of continuous

systems have been illustrated to display linear frequency versus mode number relations

where mode frequencies are integer multiples of the fundamental frequency [123]. Hence,
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linear mode frequency versus mode number characteristics may often be observed for

mass-spring systems.

Some of the properties of the frequency versus mode number characteristic observed

in the FEM model (for example, Figure 4.10) of the proposed PnBG QC architecture

have been approximated relatively accurately (for example, for the number of sub-band

gap modes given by Equation 4.15) based on analytical models of the lumped element

mass-spring network of Figure 4.18. The PnBG QC architecture may then also be ex-

pected to display an approximately linear frequency versus mode number characteristic.

The analytical frequency versus mode number characteristic of the PnBG QC may be

compared with those of strings and boxes which have simple analytical relations between

frequency and mode number [122]:

f(n) =
nc

2L
(string or open− ended tube)

f(l,m, n) =
c

2

√(
l

Lx

)2

+

(
m

Ly

)2

+

(
n

Lz

)2

(rectangular box)

fsub−bandgap(n) =
ncavg,transverse

6
√

3aNlumped masses

(P nBG QC from Equation 4.19).

(4.20)

where l, m and n are mode numbers, c is the speed of sound, L is the length of the

string, and Lx, Ly, and Lz are the dimensions of the box in the x̂, ŷ, and ẑ-directions,

respectively. The frequency versus mode number characteristic given by Equation 4.19

for the PnBG QC and the similar relations given in Equation 4.20 for strings and boxes,

are all proportional to elastic wave velocity and inversely proportional to the physical

dimensions of the structure. The relations are also approximately linear as a result of the

wavelength of higher order modes being multiples of the fundamental mode wavelength,

which is controlled by the finite physical geometry between fixed boundaries.
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Differences Between Sub- and Hyper-Band Gap Branches

Figure 4.10 indicates that the hyper-band gap branch displays a higher slope than the

sub-band gap branch. Structurally speaking, the hyper-band gap modes bend the PnBG

QC in the out-of-plane direction in which the thickness is 25µm, while many sub-band

gap modes bend in the in-plane direction by flexing the relatively thin 2µm to 4µm wide

regions between the inclusions. Spring stiffness tends to be proportional to the thickness

in the dimension of bending. In addition, the hyper-band gap modes operate at smaller

wavelengths and the length of the portion of the PnBG QC that behaves as the spring

may be smaller in the hyper-band gap mass-spring network than in the sub-band gap

mass spring network of Figure 4.18. Spring stiffness tends to be inversely proportional

to spring length.

Lastly, the mass element, msmall, in the mass-spring network model (Figure 4.18) of

hyper-band gap modes may display a smaller mass than the mass element, mlarge, in the

mass-spring network of sub-band gap modes. This may be the result because the mass

element of the hyper-band gap modes, msmall, is approximated by the region of the host

that lies between the closest spacing of the inclusions, as shown in Figure 4.21, while

the mass element of the sub-band gap modes, mlarge is approximated by the region of

the host that lies between the most distant spacing of the inclusions, as shown in Figure

4.21.

The aforementioned differences between the stiffness, and mass, of the sub- and

hyper-band gap spring, and mass elements, respectively, of Figure 4.18 may relate to

the differences between the slope of the sub- and hyper-band gap branches and requires

further study. Next, structural analysis is utilized to investigate the quantity of the

aforementioned stiffness and mass.
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Semi-Analytical Structural Analysis

To construct a physical model, the physical regions that lie between nodes in the

PnBG QC mode shapes will be analyzed to form a semi-analytical model of their struc-

tural properties of mass and stiffness. These mass and stiffness values will then be

utilized in a lumped element model of mode frequency. Scale factors will be applied

to match the semi-analytical model to the FEM model of mode frequency to provide

physical insight into what may be the effective mass and stiffness associated with the

modes of the PnBG QCs.

Sub-Band Gap Mass, mlarge

First, the mass element of the sub-band gap mass-spring network of Figure 4.18 may

be approximated as shown in Figure 4.21(a) and for the S2 PnBG QC may be computed

to have a mass of:

Ahex =
1

2
× 6× h× b,

Vhex = Ahex × t,

mlarge = Vhex × ρSi = 0.46491µg,

(4.21)

where r = 45µm, s = 3µm, c = r + s, b = 2h × tan(30o) = 2h
√

3/3µm, and t = 25µm

and ρSi = 2300/m3 was taken from Table 4.1. The aforementioned value for the sub-

band gap mass, mlarge, has been listed in Table 4.6 for sub-band gap modes 62 and

87.

Sub-Band Gap Spring Stiffness for Mode 87

The mass element, mlarge, appears to behave approximately as a rigid body, since the

displacement field is uniform across the body as denoted by the uniform red coloration

across this region in Figure 4.22(a). If this region behaves as a rigid body it may be
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(a) (b)

Figure 4.21: Dimensions of the physical region of the phononic band gap quasi-crystal
that behaves as the dominant structural mass element for the (a) sub-band gap, mlarge,
and hyper-band gap, msmall, masses in the mass-spring networks of Figure 4.18. The
inclusion radius, r, inclusion spacing, s and dimensions h = r + s, b = 2h× tan(30o) =
2h
√

3/3, and l = a− 2h× cos(30o) are as shown.

lumped into a single point surrounded by four side flexure springs and a spring on either

end as illustrated in Figure 4.22(c). The stiffness of the four side flexures of Figure

4.22(c) may be computed utilizing the equation for a fixed-fixed flexure from [124]:

kflexures,mode 87 = 4E × t
(

s

lSBG

)3

(4.22)

where l = aS2 − 2h/cos(30o) is as shown in Figure 4.21, lSBG = l
2

is denoted in Figure

4.22, aS2 = 161.081µm is the lattice constant of the S2 PnBG QC, h = r+s as in Figure

4.21 and r and s are given in Table 3.2 for the S2 PnBG QC, t = 25µm as described in

Figure 3.4 and listed in Table 3.1.

The end springs, kend, in Figure 4.22 that are strained in the ŷ-direction of motion
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Figure 4.22: Dimensions of the physical regions of the phononic band gap quasi-crystal
that approximate the lumped element springs, which are denoted above as kSBG, of
the sub-band gap mass-spring network of Figure 4.18. Virtual mechanical grounds are
applied around the structure at the approximate locations of the anti-nodes displayed by
the translational modes in Figure 4.20. The length of the spring elements is l/2 where l
is given in Figure 4.21.
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may be computed to have a spring constant of:

kend,mode 87 =
E × A
lSBG

, (4.23)

where A = t × s is the cross-sectional area of the PnBG QC in the region of minimum

inclusion spacing. The total stiffness may be the parallel combination of kflexures,mode 87

and two end springs kend,mode 87:

ktotal,mode 87 = kflexures,mode 87 + 2kend,mode 87, (4.24)

and for the S2 PnBG QC has the value of ktotal,mode 87 = 1.1057MN/m as listed in Table

4.6 for the model of sub-band gap mode 87.

Sub-Band Gap Spring Stiffness for Mode 62

Similarly, for mode 62 of the S2 PnBG QC with 1DOF in the ẑ-direction, as shown

in Figure 4.23, the fixed-fixed flexure model may be utilized to compute the stiffness of

the four flexures in the ẑ-direction kflexures [124]:

kflexures,mode 62 = 4E × s
(

t

lSBG

)3

(4.25)

where l = aS2 − 2h/cos(30o) is as shown in Figure 4.21, lSBG = l
2

is denoted in Figure

4.23, aS2 = 161.081µm is the lattice constant of the S2 PnBG QC, h = r+s as in Figure

4.21 and r and s are given in Table 3.2 for the S2 PnBG QC, t = 25µm as described in

Figure 3.4 and listed in Table 3.1.

The springs, kend, in Figure 4.23 that are strained in the ẑ-direction of motion are

essentially half of the fixed-fixed flexure, and so may be computed to have a spring
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Figure 4.23: Dimensions of the physical regions of the phononic band gap quasi-crystal
that approximate the lumped element springs, which are denoted above as kSBG, of
the sub-bandgap mass-spring network of Figure 4.18. Virtual mechanical grounds are
applied around the structure at the approximate locations of the anti-nodes displayed by
the translational modes in Figure 4.20. The length of the spring elements is l/2 where l
is given in Figure 4.21.
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constant of equal to half of kflexures,mode 62:

kend,mode 62 =
1

2
kflexures,mode 62 (4.26)

where kflexures,mode 62 is given by Equation 4.25. The total stiffness is given by the

parallel combination of kflexures,mode 62 and kend,mode 62:

ktotal,mode 62 = kflexures,mode 62 + kend,mode 62|(kend,mode 62= 1
2
kflexures,mode 62), (4.27)

and for the S2 PnBG QC has the value of ktotal,mode 62 = 3.1957MN/m which has been

listed in Table 4.6 for sub-band gap mode 62.

Hyper-Band Gap Mass, msmall

Next, the mass of the lumped element mass, msmall, of the hyper-band gap mass-

spring network of Figure 4.18, may be approximated to have the dimensions shown in

Figure 4.21(b) and for the S2 PnBG QC may be computed to have a mass of:

Vhbg mass = l × s× t,

msmall = Vhbg mass × ρSi = 8.778ng,

(4.28)

where s = 3µm is the hole spacing of the S2 PnBG QC, t = 25µm, l = a − 2 ×

h/cos(30o) = 50.230µm, a = 161.081µm is the lattice constant of the S2 PnBG QC and

h is as shown in Figure 4.21(b). It may be noted that mlarge = 0.465µg is approximately

two orders of magnitude larger than msmall = 8.778ng, which may in-part account for

the higher resonant frequencies of the hyper-band gap modes, since resonant frequency

tends to increase with decreasing mass. The effective mass of the beam model may

be upper bounded by Equation 4.28, since the inertia of the portion of the beam mass
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nearer to the virtual mechanical grounds in Figure 4.21 may have less of an impact on

the vibration of the beam. The computed mass of msmall is listed in Table 4.6 for the

model mass of hyper-band gap mode 149.

Hyper-Band Gap Spring Stiffness

It may be observed that the physical region of the mode shape in Figure 4.20 that

represents msmall (of Figure 4.21) is located between two nodes. If these nodes may be

approximated as virtual mechanical grounds, then the physical region that represents

msmall may be approximated as a fixed-fixed beam as shown in Figure 4.24. The com-

puted stiffness of a fixed-fixed beam for a force concentrated at the center of the beam

is given in [125], and using the same values as used in Equation 4.28 for msmall, yields

the following stiffness for the hyper-band gap beam model:

khbg =
192× E × I

l3
= 1.065MN/m,

I =
s× t3

12
= 3906.25µm4,

(4.29)

where E = 180GPa is Young’s modulus for single-crystal-silicon from Table 4.1, l =

a− 2× h/cos(30o) is the length of the beam (see Figure 4.21), I is the second moment

of inertia for a beam with a rectangular cross section, s is the width of the beam and t

is the thickness of the beam in the direction of deflection as shown in Figure 4.24. The

stiffness khbg has been listed in Table 4.6 for the model of stiffness for hyper-band gap

mode 149.

The stiffness given by Equation 4.29 has been computed for a force that is assumed

to be located in the middle of the beam where the stiffness (compliance) is the minimum

(maximum). Moreover, near the virtual mechanical grounds the PnBG QC in Figure

4.24(a) is wider than the beam width s in the beam model of Figure 4.24(b); the ad-
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(a) (b)

Figure 4.24: The nodes shown in (a) at each end of the physical region of the phononic
band gap quasi-crystal (from Figure 4.20)(b) that is approximated by the msmall element
of Figure 4.21 are approximated here as virtual mechanical grounds. In this fashion, the
msmall element could be approximated as a beam that is bounded by virtual mechanical
grounds as shown in (b).
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ditional thickness near the virtual mechanical grounds will increase the stiffness above

that of given by Equation 4.29. Hence, the value of the stiffness given by Equation 4.29

is a lower bound on the spring stiffness of hyper-band gap mode 149 of Figure 4.24.

Semi-Analytical Vibration Analysis

Within Appendix D the mass and stiffness values that have been computed in the

preceding semi-analytical structural analysis and that are summarized in Table 4.6 are

substituted into the analytical model of the resonant frequency of the first order harmonic

oscillator shown in Figure 4.25. To assist in evaluating the semi-analytical structural

models and the virtual mechanical ground methodology that was utilized to reduce

the complexity of the complete PnBG QC model down to relatively simple beam and

flexural plate models, fitting parameters are applied in Appendix D to fit the first order

harmonic oscillator resonant frequencies to the corresponding resonant frequencies of

the FEM model of the complete PnBG QC in Figure 4.10. The first order harmonic

oscillator, fitted resonant frequencies and fitting values are summarized in Table 4.6. As

an alternative to the first order harmonic oscillator model, an Eigenvalue approach to

model the vibration of tether mode 161 is also presented in Appendix D and summarized

in Table 4.6.

Discussion of Semi-Analytical Structural and Vibration Analysis

Despite the large percentage error in Table 4.6 (see Section D.2 for sources of error),

the semi-analytical structural and vibration analysis appear to yield insight into the

behavior of the PnBG QC architecture. For example, the insensitivity of the hyper-

band gap branch to changes in in-plane geometry may be accounted for in the semi-

analytical model of Equation 4.29 by the linear dependence of beam stiffness on the beam

dimension in the in-plane direction and third order dependence of beam stiffness on the

beam dimension in the out-of-plane direction. In contrast, the semi-analytical model
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Figure 4.25: The first order harmonic oscillator model is comprised of a mass, which
moves with one degree of freedom, that is connected to a fixed boundary via a spring.

suggests that the stiffness of sub-band gap modes displays a third order dependence

on in-plane geometry and linear dependence on out-of-plane geometry, which is always

held constant. This increased sensitivity of the spring stiffness for in-plane sub-band

gap modes, as compared to out-of-plane hyper-band gap modes, may in-part explain

why the sub-band gap branch, which includes many in-plane modes, may be observed

in Figure 4.10 to be more sensitive than hyper-band gap modes to changes in in-plane

geometry (such as, inclusion spacing, s). Both sub- and hyper-band gap mass elements

would display a first order dependence to scaling in either a single in-plane or single

out-of-plane dimension.

It may be noted in Table 4.6 that even after fitting the semi-analytical model for

hyper-band gap mode 149 to the FEM model, the effective spring stiffness for mode 149

is still less than that for sub-band gap modes 62 and 87. However, both before and after

fitting, the semi-analytical model does successfully predict that sub-band gap modes 62

and 87 should display lower resonant frequencies than hyper-band gap mode 149. This

result occurs in-part due to the semi-analytical model of the sub-band gap mass, mlarge,

being approximately two orders of magnitude larger than the hyper-band gap mass,
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msmall. Hence, any potentially large inaccuracy in predicting the spring constant of sub-

band gap and hyper-band gap modes may be overshadowed by the potentially dominant

variation between the mass that is estimated by the semi-analytical models for the sub-,

and hyper-band gap, mass elements (of Figure 4.18), mlarge, and msmall, respectively.

While these results may be attributed to the sources of error discussed in Section D.2,

alternatively, this trend may be reflective of the significant difference between sub- and

hyper-band gap mode shapes, which indicate that the PnBG QC reconfigures the region

of the PnBG QC that behaves as the mass and spring element. Each sub-band gap

mass, mlarge, appears to be attached to six springs, while each hyper-band gap mass,

msmall, appears to be attached to only two springs. The difference between the sub-band

gap and hyper-band gap mode frequencies may then not be due to a simple increase in

stiffness and decrease in mass, but may rather be due to this reconfiguration of the mass

and spring elements in a way that the mass element becomes significantly smaller for

hyper-band gap modes, while the spring constant of hyper-band gap modes may not

necessarily be significantly larger. Given the high percentage error listed in Table 4.6

for the semi-analytical model, sources of error in Section D.2, given that the choice of

fitting parameters (discussed in Section D.1) for mass and spring constant do not follow

a rigorous method and given that the lumped element approximations presented here

do not represent the complete PnBG QC structure, these observed trends are difficult to

substantiate. The semi-analytical structural and vibration analysis have primarily been

presented here for further consideration and to provide an insightful link between the

FEM model to the physical parameters of the PnBG QC structure.

A complete explanation of the behavior of the PnBG QC architecture that is observed

in the FEM model of Figure 4.10 may require a model that is more complete than the

semi-analytical model presented here. More complete analytical modeling approaches
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are discussed next.

Proposed Improvement to the Mass-Spring Network Model:

Periodic Mass-Spring Network

Each lumped element model presented in Figure 4.18 for the sub- and hyper-band

gap modes is comprised of mass elements that have the same mass. The sub-, and hyper-

band gap, mass-spring networks in Figure 4.18 would have to be analyzed separately to

deduce the structural and vibration properties of the sub-, and hyper-band gap, branch,

respectively. To create a single lumped element model that accounts for the period-

icity in the mechanical properties of the honeycomb PnBG QC architecture, and may

simultaneously predict the behavior of both the sub- and hyper-band gap branches, a

mass-spring network that consists of mass elements of contrasting mass may be suitable.

Such a mass-spring network may resemble the hybrid of the sub- and hyper-band

gap mass-spring networks of Figure 4.18. A conceptualization of such a hybrid network

is illustrated in Figure 4.26. Figures 4.19 and 4.20 may indicate that to more accurately

characterize the vibration modes of the PnBG QC architecture, each mass element may

be assigned more than one DOF. Methods to analyze multi-degree-of-freedom systems

are described in [126] and left for future work. CoventorWare R© Architect may also assist

with the analysis of multi-degree-of-freedom systems. Lastly, reduced order techniques,

such as those described in [127], may be utilized by applying Taylor series expansions to

differential equations and neglecting high order non-linearities to produce a small signal

linear model.

A more easily analyzed hybrid mass-spring network may utilize a mass-spring net-

work that is only a subset of the masses and springs within a network such as Figure

4.26. In theory, the smallest subset of a PnBG crystal that should represent the behavior

of the entire crystal, and that should display unique behavior at each mode frequency,
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Figure 4.26: Conceptualization one possibility for a hybrid lumped element mass-spring
network model of the phononic band gap quasi-crystal architecture with square trunca-
tion boundaries. The mass-spring networks of Figure 4.18 have been overlayed in a way
the stiffness of mass elements and mass of spring elements are accounted for.
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is the unit cell. To model the PnBG QC utilizing just a unit cell may require the use of

a periodic boundary condition [110], which may increase the complexity of the model.

Without utilizing a periodic boundary condition, it may be possible that sufficient ac-

curacy may be obtained by utilizing a lumped element model over a subset of the PnBG

QC where each mode displays a unique vibration pattern. This lumped element model

may contain more than one lumped-element mass and spring in each coordinate direc-

tion, each mass may be assigned greater than or equal to 1DOF and different masses

may have a different number of DOFs.

The simplified model may neglect features such as the stress-free boundary conditions

at the free edges of the PnBG QC architecture or the fixed boundary conditions at the

anchored tethers. The absence of such features in the simplified model may assist in

determining the importance of these features to the model. It may be observed that

one dominant subset of the PnBG QC architecture, for example the periodic structure,

may account for the majority of the properties (such as the band gap or piecewise linear

frequency versus mode number characteristic) of the PnBG QC, while the tethers may

for example display a lower order effect.

Simplified FEM models may be utilized to expedite the process of lumped-element

model simplification by numerically determining which subsets of the PnBG QC struc-

ture are most important to include in the lumped element model. For example, by

removing the tethers from the FEM model, then performing a modal analysis on the

simplified structure, the sensitivity of the frequency versus mode number characteristic

to the removed component can be rapidly assessed. After simplification, if negligible

changes in the FEM model results are observed, then the removed subsets, may not be

as important to include in the lumped element model.

Lastly, if a periodic mass-spring network, which contains mass elements of contrasting
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mass, similar to that of Figure 4.26, may be needed to form a more accurate lumped

element model of the PnBG QC architecture, this may highlight that the proposed

PnBG QC architecture is different from a homogeneous plate, for which a complete

lumped element mass-spring model may contain only identical masses [126].
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4.2.5 Dynamics Model over Wide and Narrow Frequency Band

A dynamics model examines the relation between the forces and motion of a system. This

section presents an analytical linear (small displacement) first order dynamics model that

may be utilized to model the dynamics of the PnBG QC architecture over a narrow band

of frequencies within the vicinity of each normal mode. Also presented is a FEM multi-

mode dynamic numerical model of the PnBG QCs over the wide band of frequencies

from approximately 0 Hz to 20 MHz.

Analytical Narrow Band Linear (Small Displacement) Dynamics Model

The equation of motion for the 1DOF mass-spring harmonic oscillator system shown in

Figure 4.25 is:

meff
∂2x

∂t2
+ γ

∂x

∂t
+ keffx = F (t) (4.30)

where meff is the effective mass, γ is the damping coefficient and keff is the effective

spring constant. The forcing function, F (t), and displacement, x(t) are assumed to be

time harmonic, x(t) = Xejωt and F (t) = Fejωt with amplitude X is and F , respectively,

where ω = 2πf is the angular frequency and f is the temporal frequency. Reverse

substitution of x(t) and F (t) into Equation 4.30 yields the displacement amplitude

versus angular frequency:

|X| = F/keff√
(1− ω2

ω2
o
)2 + ( ω

ωoQmech
)2

(4.31)

where ωo =
√
keff/meff is the normal mode frequency, and Qmech = ωomeff/γ is the

mechanical quality factor.
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For comparison with measured values, the displacement amplitude is often con-

verted to a log scale. Utilizing Equations 6.1 and 6.2, the displacement amplitude,

|X|, may be expressed on the log scale as |X|(dBm) = 10log10( [|X|/Kvib/
√

2]2

50Ω
)+30dBm =

20log10(|X|) + Xoffset. As shown in Equation 6.1, Kvib = 50nm/V is the conversion

factor that the Laser doppler vibrometer applies to convert between voltage and dis-

placement amplitude. Thus, Xoffset = 10log10(1/(100K2
vib)) + 30dBm = 156.021dBm

accounts for conversion factors introduced by measurement equipment prior to displaying

the value that corresponds to the measured displacement amplitude, |X|. The harmonic

oscillator model of Figure 4.31 then has three fitting parameters: Qmech, F/keff and ωo.

Figure 4.27 illustrates the effect of the fitting parameters, as well as Xoffset, on Equation

4.31: the mechanical quality factor, Qmech provides control of the shape and peak level,

F/keff and Xoffset provide control over the vertical level, while ωo provides control of

the horizontal position.

The fitting parameters may be determined by fitting Equation 4.31 to experimentally

measured data. For Lamé and square extensional mode resonators, the mechanical

quality factor parameter under specific configurations has be shown to be representative

of the electrical quality factor [95]. Given a forcing function amplitude, F , effective

mechanical parameters may be computed:

keff =
F

(F/keff )
,

meff =
F

(F/keff )ω2
o

,

γ =
F

(F/keff )ωoQ
,

(4.32)

where it should be noted that (F/keff ) is a single parameter obtained by fitting the

model to measured data.
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Figure 4.27: The first order harmonic oscillator model of Equation 4.31 versus the three
fitting parameters as well as the conversion factor Xoffset.
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Wide Band Dynamics Model in the Finite Element Method

As shown in Figure 4.28 for the S2 PnBG QC, a total harmonic force of 1µN is applied

normal to each transducer electrode on the PnBG QC. For the observation point depicted

in Figure 4.28, the harmonic response over a frequency range from 0 Hz to 20 MHz

is displayed in Figure 4.29 and Figure 4.30. The observation point is located on the

transducer where electrical sensing may potentially be implemented for future work.

The behavioral zone boundaries that are shown in Figure 4.7 are overlayed on Figure

4.29 where it may be observed that the x̂− and ŷ− components of the displacement

vector at the observation point display relatively small amplitude in zones I, II, V and

VI and increased amplitude in zone III. The in-plane vibrational activity thus displays

low and high cut-off frequencies.

In contrast, the ẑ−component of the displacement vector, which is the experimen-

tally measured component, at the observation point displays resonant activity in zones

I, II, III, IV and VI. This provides the first indication of how the band gap location

may experimentally be measured, since the test equipment described in Chapter 6 can

measure the ẑ−component of the displacement vector amplitude and the model suggests

that the spectrum of the ẑ−component of the displacement vector contains the char-

acteristic band gap signature: a lack of resonant peaks at band gap frequencies, while

displaying resonant peaks at sub- and hyper-band gap branch frequencies.

The amplitude of the x̂− and ŷ−component of the displacement vector at hyper-

band gap frequency zones V and VI is relatively small due to the FEM model result

that many hyper-band gap modes are primarily composed of out-of-plane (ẑ−direction)

vibration patterns as illustrated in Figure 4.17. While the harmonic response predicts a

non-zero harmonic amplitude within the band gap zone IV, there is no resonant activity

due to the absence of normal modes at band gap frequencies.
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The Bode plot displayed in Figure 4.30 for the ẑ−component of the displacement

vector at the observation point lacks phase changes at in-gap frequencies while 180o phase

changes are observed at each normal mode frequency. For the 1µN force amplitude the

amplitude of the components of the displacement vectors are observed in Figure 4.30 to

lie below 1nm.

The relatively low amplitude of vibration observed in zones I and II for the x̂− and

ŷ− components, which are the components of the displacement vector which occur in

the plane of periodicity of the PnBG QC, displayed in Figure 4.29, resembles the low

frequency cut-off that is observed for discretized PnBG QCs in Figure I.3 of Appendix

I and [86]. The locations of the low frequency cut-off in Figure 4.29 for the x̂− and

ŷ−components of the displacement vector approximately coincide with the frequency in

behavioral zone III where the PnBG QCs start to display rotational modes, which are

illustrated in Figure 4.17. Hence, the different behavioral zones appear to correspond

to frequency regions where specific vibrational patterns occur in the mode shapes of

the PnBG QC and the behavioral zone boundaries may be identified in the harmonic

response of the PnBG QC.
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Observation Point Force Vector 

Figure 4.28: Point of observation for the harmonic response analysis conducted in this
section on the S2 phononic band gap quasi-crystal. The harmonic response analysis is
generated utilizing ANSYS R© [121] with 2000 solution intervals and the mode superpo-
sition solution method. The finite element method mesh is comprised of 23188 nodes
and 3362 elements.
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(a) Mode Superposition Harmonic Analysis 

 
(b) Full Harmonic Analysis 

Figure 4.29: Harmonic response of the S2 phononic band gap quasi-crystal. The obser-
vation point is shown in Figure 4.28. Behavioral zones are labeled.
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(a) Mode Superposition Harmonic Analysis 

 
(b) Full Harmonic Analysis 

Figure 4.30: Bode plot of the S2 phononic band gap quasi-crystal. The observation
point is shown in Figure 4.28. Behavioral zones are labeled.
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4.2.6 Sensitivity Analysis

The lumped element semi-analytical analysis of Section 4.2.4 discussed the sensitivity of

the PnBG QC architecture to certain geometrical parameters such as lattice constant,

a, and inclusion spacing, s. This section presents an exhaustive numerical sensitivity

analysis with respect to geometrical parameters and material properties. This sensitiv-

ity analysis will serve to provide additional physical insight into the operation of the

PnBG QC architecture as well as insight regarding how the PnBG QCs may respond to

fabrication process variations. It will be observed in the FEM model of this section that

hyper-band gap modes are more sensitive, relative to sub-band gap modes, to variations

in material properties and geometrical parameters.

Material Properties

A sensitivity analysis for the S2 PnBG QC is presented here versus the material prop-

erties of Poisson ratio, ν, Young’s modulus, E, and mass density, ρ, which are varied

about the a nominal value of ν = 0.29, E = 180GPa and ρ = 2.330kg/m3, respectively.

To investigate the worst case scenario, the material parameters are varied over a range

that exceeds the range that may occur due to process variations in practice. The Poisson

ratio is physically bounded between -1 and 0.5 and was varied from 0.09 to 0.49 and

results are shown in Figure 4.31. Young’s modulus is swept from 100 GPa to 260 GPa,

results are displayed in Figure 4.32. The material density is varied from 1530kg/m3 to

3130kg/m3 with results shown in Figure 4.33.

As may be observed in Figure 4.32, increasing Young’s modulus, E, increases the

stiffness of the PnBG QC and increases the band gap center frequency. From Figure

4.31, increasing the material density, ρ, appears to cause the mass of the PnBG crystal

to increase and the band gap center frequency to decrease. Figure 4.33 appears to
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indicate that relative to hyper-band gap modes, sub-band gap modes appear less sensitive

to variations in the Poisson ratio. Even for the extreme material property variations

observed here, the band gap does not close and remains within the frequency range of 0

to 20 MHz which is measurable by the vibrometer.

Circular Inclusion Spacing and Radius and Truncation Geometry

Figure 4.34 displays the FEM model of band gap extent for square (solid line) and

circular (dotted line) truncation geometries, where the inclusion spacing, s, is varied

from 2µm to 4µm, and the inclusion radius, r, is varied from 30µm, to 60µm. The

square and circular truncation geometry diameters are d = 650µm and d = 575µm,

respectively. Plate thickness, t, is 25µm is held constant. Complete band gaps are

observed within 5 to 30 MHz. Band gap center frequency and extent increase as circular

inclusion radius and spacing decrease. The results illustrate that for wide variations in

geometrical parameters, the band gap does not close and remains within the frequency

range of 0 to 20 MHz which is measurable by the vibrometer.

Plate Thickness

PnBG QC plate thickness, t, was varied from 15 to 35 about the nominal single-crystal-

silicon layer thickness of 25. Fabrication process tolerances for the single-crystal-silicon

layer thickness are ±1 and so the range of thicknesses, t, examined here exceeds the

worst case scenario that may occur due to process variations. As observed in Figure

4.35, the band gap is observed to close when plate thickness was reduced to 10; however,

the band gap appears to remain open for the small thickness variations that may be

produced by fabrication tolerances. As thickness is varied, the maximum sub-band gap

mode frequency varies by approximately 2 MHz while the lower hyper-band gap mode
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Figure 4.31: Sensitivity analysis of the S2 phononic band gap quasi-crystal versus ma-
terial density, ρ. The finite element mesh contains 23,188 elements and 3,362 nodes.
The geometrical parameters of the S2 phononic band gap quasi-crystal are contained in
Table 3.1 and Table 3.2.
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Figure 4.32: Sensitivity analysis of the S2 phononic band gap quasi-crystal versus
Young’s modulus, E. The finite element mesh contains 23,188 elements and 3,362 nodes.
The geometrical parameters of the S2 phononic band gap quasi-crystal are contained in
Table 3.1 and Table 3.2.
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Figure 4.33: Sensitivity analysis of the S2 phononic band gap quasi-crystal versus Pois-
son ratio, ν. The finite element mesh contains 23,188 elements and 3,362 nodes. The
geometrical parameters of the S2 phononic band gap quasi-crystal are contained in Table
3.1 and Table 3.2.
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frequency varies by more than 6 MHz. Thus, relative to sub-band gap modes, hyper-

band gap modes may be observed to be more sensitive to variations in thickness, t. This

may be expected as the majority of hyper-band gap modes are out-of-plane modes whose

out-of-plane compliance and thus frequency appear to be strongly dependent on plate

thickness, t, in the out-of-plane direction (as discussed in Section 4.2.4).

Truncation Diameter

The truncation boundary diameter, d, was varied and results are displayed in Figure

4.37. As truncation diameter, d, increases the number of sub-band gap modes may

be observed to increase approximately according to Equation 4.15 since the number of

sub-band gap masses increases with d, while the band gap frequencies appear to remain

approximately constant. Hence, the average density of sub-band gap modes, ρSBGM,avg,

increases as the truncation diameter, d, increases. Figure 4.38 displays the density of

states (DOS, refer to Appendix C for a definition) for each truncation diameter. It may

be observed that up to a truncation diameter of d = 880µm the average DOS increases

for sub-band gap modes. However, the average DOS decreases for a truncation diameter

of d = 950µm which may be due to a change in the shape of the frequency versus mode

number characteristic as the truncation diameter approaches larger values.
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Figure 4.35: Sensitivity analysis of the S2 phononic band gap quasi-crystal (see Tables
3.1 and 3.2 for geometrical parameters) versus plate thickness, t. The finite element
meshes contains approximately 30,000 elements.
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Figure 4.36: Solid models for the sensitivity analysis of the S2 phononic band gap quasi-
crystal versus truncation diameter, d.
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Figure 4.37: Sensitivity analysis of the S2 phononic band gap quasi-crystal versus trun-
cation diameter, d (see solid models of Figure 4.36). The approximate band gap center
frequency is denoted as ≈ fo,BG. The number and average density of sub-band gap
modes are denoted as NSBGM and ρSBGM,avg = NSBGM/11MHz.
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Figure 4.38: Sensitivity analysis of the S2 phononic band gap quasi-crystal density of
states (DOS) versus truncation diameter, d. The phononic band gap quasi-crystal solid
models are depicted in Figure 4.36. The average DOS in each branch is indicated by
the thick vertical dotted line in the plot of DOSnormalized. The DOS is not computed
within band gap frequencies (though some phononic band gap quasi-crystals display
defect states and so could display a non-zero DOS at in-gap frequencies).
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4.3 Electromechanical Coupling of Electrical and

Phononic Band Gap Quasi-Crystal Model

Utilizing the MemMechTM solver in CoventorWare R© 2010, a coupled electrostatic-

mechanical analysis is performed to determine the static displacement of the S2 PnBG

QC for a static transducer voltage. The intent to is quantify the ability of the elec-

trostatic transducers to couple energy, between the electrical and mechanical energy

domains, via a static electromechanical coupling coefficient. The static electromechani-

cal coupling coefficient may, for low electrical signal frequencies, provide insight into the

required electrical signal that is needed to generate a displacement that lies within the

range that is measurable by the vibrometer test equipment (which is discussed within

Section 6.1). The MemElectroTM solver in CoventorWare R© 2010 is then utilized to

quantify the capacitance and electrostatic forces generated by the electrostatic trans-

ducers, which will be shown to display reasonable agreement with the analytical models

of Section 4.1. Lastly, the utility of a coupled electrostatic-mechanical transient anal-

ysis is discussed to model the potential frequency dependency of the electromechanical

coupling coefficient.

An FEM model was chosen in favor of an analytical or semi-analytical approach

for determining the electromechanical coupling coefficient in part due to the uncer-

tainty indicated by the relatively large error observed in Section 4.2.4 for one semi-

analytical approach. Moreover, as shown in Section 4.2.4, when the PnBG QC is mod-

eled as a lumped element system, the mass elements appear to display six DOF, which

may lead to a prohibitively complex analytical or semi-analytical model. A coupled

electrostatic-mechanical and electrostatic FEM model can be readily implemented uti-

lizing CoventorWare R© 2010, while the ANSYS R© Multi-Physics FEM implementation
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could potentially also be utilized.

Within CoventorWare R© 2010 the Young’s modulus, Poisson ratio, and material den-

sity of the SOI layer out of which the PnBG QCs are fabricated are E = 169GPa,

ν = 0.290, and ρ = 0.0025kg/m3, respectively. For the SOI layer, the electrical con-

ductivity is 2mS/µm2 and dielectric constant is ε = 11.9. The medium surrounding the

SOI layer and within the electrostatic transducer gap is assigned a dielectric constant of

unity.

Within CoventorWare R© 2010 a FEM mesh was created for the S2 PnBG QC utilizing

tetrahedron shaped elements, the order of the elements is parabolic, element size is

12.5µm and the resultant FEM mesh has 46,253 elements. The MemMechTM solver

was utilized to perform a static analysis to determine the magnitude of the mechanical

displacement of the PnBG QC for a DC voltage of 100 V, which is the typical DC

bias voltage utilized during experiments. The static analysis provides the mechanical

displacement at the equilibrium which occurs when the external electrostatic forces,

encapsulated in the vector F , acting on each node in the FEM mesh are in balance with

the internally generated forces, Ku, at each node in the FEM mesh resulting in a net

force of zero [128]:

Fnet = Finternal − Fexternal

= k~u− Fexternal

= 0

(4.33)

where k is a square matrix containing the stiffness of each element in the FEM mesh

and ~u is a vector containing the displacements at each node in the FEM mesh [128].

The result of the static analysis is contained in Figure 4.39. The FEM model indicates a

maximum displacement magnitude in the x̂, ŷ, and ẑ-directions of 22.810nm, 35.057nm,
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and 1.361nm, respectively, and a maximum total displacement magnitude of 35.474nm.

These values lie within the measurable range of ±75nm [129] (as discussed within Section

6.1) for the vibrometer that will be utilized to experimentally characterize the out-of-

plane (ẑ) component of the PnBG QC device displacement amplitude. These values also

indicate that for the S2 PnBG QC, for a 100 V DC bias voltage, the electromechanical

coupling coefficient between the four electrostatic transducers and the point at which

the maximum ẑ-direction amplitude of 1.361nm occurs is Kelec−mech(uz,max, 100V DC) =

1.361m/100V = 13.61pm/V .

With respect to the S2 PnBG QC, for the electrode with widely spaced inclusions,

the MemElectroTM solver was utilized to determine the capacitance to be 91.134fF ,

which is in reasonable agreement with the capacitance of 89.178pF from the analytical

model in Table 4.2. For the same electrode, MemElecroTM indicates the attractive force

applied to the PnBG QC side of the electrostatic transducer in the x̂-direction (see Fig-

ure 4.39) to be 109.641µN which is in reasonable agreement with the attractive force of

110.779µN from the analytical model of Table 4.2. Similarly, MemElecroTM indicates

the electrostatic forces in the direction parallel to the length of the transducer (the ŷ in

Figure 4.39) and out-of plane direction (ẑ-direction in Figure 4.39) to be approximately

1.526µN , and 0.090µN , respectively. Hence, MemMechTM indicates the electrostatic

force is orders of magnitude larger in the x̂-direction than in the ŷ-direction and four

orders of magnitude larger in the x̂-direction than in the ẑ-direction. Thus, the FEM

model suggests that as desired for this electrode, despite the non-planar geometry of the

transducer electrodes with widely spaced inclusions, the dominant electrostatic force is

the force in the x̂-direction (perpendicular to the edge of the PnBG QC), which is also

the assumed direction of the force in the dynamic harmonic model of Section 4.2.5. This

analysis may be applied to the transducer with closely spaced inclusions on the square
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truncated PnBG QCs to determine whether the transducers with widely spaced and

closely spaced inclusions impart electrostatic forces with relatively comparable magni-

tudes. A similar analysis may be performed for the circular truncated PnBG QCs.

As mentioned above, the preceding static analysis assumes that sufficient time has

elapsed to allow the PnBG QC and transducers to settle into an equilibrium position

where external and internal forces balance. When the external forces (in this case, the

electrostatic forces generated by the transducers) vary with respect to time such that

mechanical equilibrium does not occur before the transducer force changes, the motion of

the PnBG QC should be studied utilizing a transient analysis. In the transient analysis,

the inertia (m∂2u
∂t2

) and internal damping of the PnBG QC are included in the equation

of motion [130]:

Fnet = m
∂2u

∂t2
+ Finternal − Fexternal

Fnet = m
∂2~u

∂t2
+ γ

∂~u

∂t
+ k~u− Fexternal

= 0

(4.34)

where m, γ, k, t, ~u represent mass, damping coefficients, stiffness, time, and displace-

ment, respectively [130]. Under transient conditions, the electrostatic transducer forces

interact with the adjacent edges of the PnBG QC, which after some time delay will in

turn be mechanically coupled to the regions internal to the PnBG QC, and so forth.

The coupling between the electrostatic force and displacement of the PnBG QC will be

a function of the time and the position at which the displacement is being observed

within the PnBG QC. The transient analysis may provide data regarding the potential

dependency of the electromechanical coupling coefficient on frequency, DC bias voltage,

inertia and damping within the PnBG QC. Non-linear effects associated with the elec-

trostatic forces generated by the transducers, which resemble parallel plate capacitors
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[97], may also be observable.

The PnBG QCs will be experimentally characterized over a frequency range from 5

kHz to 20 MHz. At frequencies near 20 MHz, the PnBG QCs may have the greatest

tendency to display distributed mechanical system behavior (see Section 4.2.4) for which

a transient analysis may become necessary. If the predicted displacement is relatively

small, the noise floor of the vibrometer and noise bandwidth of the spectrum analyzer

may also be may also be considered in order to predict whether a measurable time

harmonic displacement amplitude may be produced. Alternatively, time varying effects

may provide a higher force, due to a higher rate of flux change, and potentially higher

displacement than the static analysis predicts. Transient and noise floor analysis may

be further investigated.

Prior to the development of the PnBG QC architecture proposed within the body of

this thesis, a prototype PnBG QC was fabricated to develop insight into the electrostatic

actuation of PnBG QCs and models and measurements are presented in Section J.1 of

Appendix J.

155



Chapter 5

Fabrication of Phononic Band Gap

Quasi-Crystal Architecture in a 25

µm Silicon on Insulator Process and

Test Fixture Assembly

The PnBG QCs are fabricated in the three layer SOIMUMPs Silicon on Insulator (SOI)

bulk micromachining process, which utilizes a 25µm thick single-crystal-silicon (also

referred to as monocrystalline silicon) layer named Silicon, 1µm oxide layer named Oxide,

metal layer named Metal and a 400µm substrate. A cross section of the three layers

is depicted in Figure 5.1. With the exception of the Metal layer, the SOIMUMPs

layers already exist on SOI wafers. The Metal layer is used for electrical contacts.

The SOIMUMPs process first dopes, patterns and etches the silicon layer through to

the oxide layer [115]. The substrate can be backside etched through to the oxide layer

to release structures [115]. A shadow-masked metal process provides the course Metal
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Figure 5.1: Cross sectional view showing three layers of the SOIMUMPs process [115].

features [115].

The top surface of the single-crystal-silicon layer is the (100) plane [131]. The 〈110〉

single-crystal-silicon-cubic crystal crystallographic axes align with the x̂- and ŷ-axis

of the PnBG QC mask layout. The material properties of single-crystal-silicon are

anisotropic. Young’s modulus, E, and the Poisson ratio, ν⊥, are maximum in 〈110〉

directions and minimum in 〈100〉, 〈010〉 and 〈001〉 directions. The Poisson ratio, ν‖, is

minimum in 〈110〉 directions and maximum in 〈100〉, 〈010〉 and 〈001〉 directions. Hence,

the Young’s modulus, E, and poisson ratio, ν⊥, display their maximum value in both

the x̂- and ŷ-directions of the PnBG QC mask layout. The aforementioned anisotropy

of single-crystal-silicon has the effect of extending the size of the first Brillouin zone of

the PnBG QC as described in Figure 5.2.

For traveling wave devices, the traveling wave should be directed in a minimum

dispersion (velocity) direction, which is the direction for which δc
δΘ

= 0, where c is the

anisotropic elastic wave velocity, since waves otherwise would naturally tend to redirect

themselves into the lowest velocity direction [37]. The minimum dispersion directions

for single-crystal-silicon include the [100] and [010] directions [132]. The [100] and [010]

directions on the single-crystal-silicon layer in SOIMUMPs are oriented at 45o to the

x̂- and ŷ axes of the mask set [131]. Since the PnBG QC architecture is utilized in

a standing wave configuration, elastic waves are not launched in, or sensed from, a

particular direction and so the minimum dispersion direction may be acknowledged for
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Figure 5.2: Mapping of the first Brillouin zone of the phononic band gap quasi-crystal
architecture given the top surface is the (100) plane of single-crystal-silicon (SCS). (a)
View of the SCS unit cell looking down at the (100) plane with crystallographic axes
and x̂- and ŷ-directions of the device layout. (b) Stylized illustration of the variation of
Young’s modulus, E, and poisson ratio, ν, versus direction within the SCS unit cell [132].
The hexagonal shape of the first Brillouin zone of the hexagonal lattice overlayed on the
square (c) and circular (d) truncated architecture. The first irreducible Brillouin zone for
an isotropic host material would be a wedge that is one-twelfth of the first Brillouin zone
shown in (c) and (d). (e) The first irreducible Brillouin zone of the phononic band gap
quasi-crystal architecture after accounting for the anisotropy of the SCS host material.
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future implementations where traveling waves may be employed as the energy carrier

within the PnBG QC architecture.

In circuit design, often the response of a circuit can be designed to depend on the ratio

of two device parameters, in which case if there is a systematic process error in either of

these device parameters the ratio of these parameters will still remain approximately the

same, and so the device response is desensitized to systematic process errors. In contrast,

the PnBG QC architecture may be based on the absolute value of device dimensions,

as oppose to a ratio of device dimensions. Thus, the PnBG QC architecture may be

sensitive to process variations.

To account for the potential deviations between the model of Chapter 4 and experi-

mental results of Chapter 6, the process errors that are present in the fabricated PnBG

QCs should be characterized. This chapter introduces the justification for the utilization

of the SOIMUMPs process, characterization of process errors in the fabricated PnBG

QCs and the test fixturing of the chips that were fabricated utilizing the SOIMUMPs

process.

5.1 SOIMUMPs Bulk Micromachining Fabrication

Process

In this section, the primary motivation for choosing the SOIMUMPs process is provided

and process design rule considerations and violations are presented. Due to the relatively

unique structure of the PnBG QCs, there was uncertainty in whether the PnBG QC

architecture would fabricate accurately.

Some of the features of the PnBG QCs that were carefully considered before fabrica-

tion follow. The PnBG QC architecture contains electrostatic transducer gaps between
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surfaces that have multiple radii of curvature and need to be evaluated in the presence

of photomask pixelation which may yield larger fabrication uncertainty between sur-

faces that have a smaller radii of curvature [115]. The PnBG QC is several hundreds of

microns in span, free standing, and comprised of relatively large regions that are inter-

connected by regions that have dimensions equal to the minimum feature size, so may

appear relatively fragile. In addition, the tether geometry has to be tuned to ensure

that no tether resonant defect states lie within the band gap while the tethers also meet

the minimum anchor width requirements.

Moreover, to realize the PnBG QC architecture requires a process that has a relatively

high aspect ratio, which can be quantified as a low ratio of minimum feature size, smin,

to plate thickness, t, or low smin/t. In Chapter 4, the PnBG QC model indicated that to

achieve the designed band gap location requires careful control over the plate thickness

and inclusion (etch hole) spacing. As may be viewed in Table 3.1, the models of the PnBG

QC architecture fix the layer thickness at the design value of 25µm and in Table 3.2 the

minimum, and maximum inclusion (etch hole) spacing are 2µm, and 4µm, respectively.

Hence, for the devices listed in Table 3.1, the required minimum smin/t is 2/25 or 0.08,

while the maximum smax/t is 4/25 or 0.16. Hence, the PnBG QC architecture may not

be realizable in an arbitrary fabrication process.

Table 5.1 list a few fabrication processes that are provided through CMC [114], and

at the time were readily available to users at the University of Waterloo, along with

their smin/t ratios. As may be viewed in Table 5.1, the SOIMUMPs process with a

single-crystal-silicon layer thickness of 25µm is the only process listed here that provides

the required minimum smin/t ratio of 0.08 needed for implementation of the PnBG QCs

that were designed in Chapter 4. Thus, there was motivation to fabricate the PnBG

QCs utilizing the SOIMUMPs process.
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In addition, the SOIMUMPs process was also chosen for the natural properties,

such as reduced substrate losses and parasitic capacitances, that SOI processes display.

The single-crystal-silicon of the SOIMUMPs process may provide lower acoustic losses

than polysilicon. The trench feature of the SOIMUMPs process provides a mechanism

to eliminate loss due to air flow damping beneath the PnBG QCs. The SOIMUMPs

process is low cost for users at the University of Waterloo and high yield. Lastly, the

elastic properties of the structural layers in SOIMUMPs have been well characterized

[133] and provide a starting point for development.

Table 5.1: Available process options for the fabrication of the phononic band gap
quasi-crystals. SOIMUMPs provides a single-crystal-silicon layer. PolyMUMPs provides
polysilicon layers. The SOIMUMPs process with the 25µm thick single-crystal-silicon
layer was chosen in-part since it appears to be the only process that provides a smin/t
ratio that is low enough to realize the phononic band gap quasi-crystal architecture.

Process Layer Thickness, t [µm] 
(Layer Name) Minimum Feature Size, smin [µm] Ratio of smin/t 

SOIMUMPs 25 (SOI) 2 0.08 
SOIMUMPs 10 (SOI) 2 0.20 
PolyMUMPs 1.5 (POLY1) 2 1.33 
PolyMUMPs 2 (POLY2) 2 1.00 
 

 

 

Micragem 10 2 0.20 
 

5.1.1 Intentional Process Design Rule Considerations and Vi-

olations

Many of the design rules of the SOIMUMPs process were followed to assist with success-

ful fabrication. For example, due to photomask pixelation [115], in the relatively high

curvature gaps of the electrostatic transducer, the suggested 3µm spacing was utilized

instead of the minimum 2µm spacing, while for relatively low curvature gaps the 2µm

spacing was utilized. Hence, SOIMUMPs was deemed suitable for fabrication of the

unique electrostatic transducer geometry of the PnBG QC architecture.
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In addition, the minimum anchor width for the SOI layer is 10µm. The tethers

which were designed to display local resonance at hyper-band gap frequencies were fur-

ther increased in width to approximately satisfy the minimum anchor size requirement

by making the drawn width of the T-shaped anchors that contact the anchor pad ap-

proximately 9.899µm.

To obtain sufficient in-gap attenuation, a two-dimensional PnBG crystal should be

a minimum of five lattice constants in length and width [11]. For the case of the PnBG

QC architecture proposed here, with an average lattice constant of 161µm, a fabrication

process is needed with the capability to produce a free-standing structure that is approx-

imately 161µm × 5 = 805µm in dimension, which may be satisfied by the SOIMUMPs

process which provides an unlimited maximum feature length for structures that have a

width greater than 6µm.

The maximum feature length of the gold metal layer (named Metal) utilized in the

SOIMUMPs process is 5000µm, which exceeds the maximum size of the proposed PnBG

QC devices and so is more than suitable for fabricating the PnBG QC devices.

The photomasks utilized in the SOIMUMPs process have a resolution of 0.25µm

and the SOIMUMPs design handbook suggests that features and spaces that are non-

orthogonal should be drawn with a size or spacing of 3µm instead of the minimum

2µm [115]. Since the inclusions in the PnBG QC proposed here are circular and so

non-orthogonal features, the SOIMUMPs design handbook appears to suggest to utilize

a minimum spacing of 3µm between inclusions. This suggested practice was avoided

for the PnBG QC with a 2µm inclusion (etch hole) spacing and it was found that the

SOIMUMPs process can successfully fabricate this structure. PnBG QCs with a 3µm

and 4µm inclusion (etch hole) spacing were also sent for fabrication, these structure

don’t appear to conflict with the SOIMUMPs design rules. The PnBG QC architecture
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may also potentially be fabricated in other high aspect ratio processes, such as the

MicragemTM[134] SOI process.

5.2 Wafer Level Characterization of Fabricated

Phononic Band Gap Quasi-Crystals

The PnBG QCs that were fabricated were characterized utilizing Scanning Electron Mi-

croscopy (SEM) and surface metrology characterization utilizing an optical profilometer.

5.2.1 Scanning Electron Microscopy Characterization

Utilizing the Hitachi S-3000N scanning electron microscope depicted in Figure 5.3, scan-

ning electron micrograph images were obtained for the PnBG QC and reference devices,

described in Table 3.1, which were fabricated utilizing SOIMUMPs [47]. Figures 5.4

and 5.5 depict the S1 and C1 PnBG QCs, respectively. Additional SEM images of the

fabricated PnBG QC and reference devices may be viewed in Appendix E.

The SEM images of Figures 5.4 and 5.5 and Appendix E indicate an overall successful

fabrication of the proposed PnBG QCs utilizing SOIMUMPs. Visual inspection of the

SEM images suggest the electrostatic transducer gaps are present without any bridging

of the electrodes and so the use of 3µm gap sizes in areas of high curvature appears

to be successful. The 3µm gap sizes in the gaps of high curvature may potentially

be reduced to 2µm. The S1 and C1 PnBG QCs, that have an inclusion (etch hole)

spacing equal to the minimum feature size, are intact. Anchored tethers appear to

be in tact and the PnBG QCs appear to be free-standing. Further inspection of the

fabricated devices was performed utilizing an optical profilometer, which allows for more
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Figure 5.3: Hitachi S-3000N scanning electron microscope utilized to characterize the
phononic band gap quasi-crystal and reference devices described in Table 3.1 fabricated
in the SOIMUMPs [47].
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Figure 5.4: Scanning electron micrograph of the S1 phononic band gap quasi-crystal (see
Table 3.1 and 3.2 for drawn dimensions).
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Figure 5.5: Scanning electron micrograph of the C1 phononic band gap quasi-crystal
(see Table 3.1 and 3.2 for drawn dimensions).
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quantitative characterization of the fabricated dimensions.
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5.2.2 Surface Metrology Utilizing Optical Profilometer

The Wyko NT1100 optical profilometer, which utilizes optical phase-shifting and white

light vertical scanning interferometry, provides sub-nanometer resolution in the vertical

direction [135] and is depicted in Figure 5.6. Figure 5.7 displays a sample profilometer

measurement of the physical region of the PnBG QC that lies between the most dis-

tant spacing of the inclusions and was represented by mlarge in Chapter 4. Additional

profilometer measurements may be found in Appendix F.

Three significant fabrication errors were observed: (i) the trench location appears

over etched by approximately 30µm, and 20µm, for the circular, and square, truncated

devices, respectively, (ii) the 3µm gaps appear to be dramatically larger than drawn;

however, the profilometer measurement accuracy is uncertain near edges and (iii) around

curved features there appears to be a groove (as may be viewed in Figure 5.7 and Figure

F.3) on top of the Silicon layer (see Figure 5.7) which may reduce the thickness of the

Silicon layer in the region between inclusions. The semi-analytical model of Chapter 4

suggested that the hyper-band gap modes may display a third order dependence on the

thickness of the Silicon layer in the region between inclusions. Hence, the aforementioned

groove may be a significant source of error between the model and the measurement for

hyper-band gap modes.

The profilometer measurements may be utilized to confirm that several device dimen-

sions fabricated within the tolerances specified in the SOIMUMPs design hand book in

[115] and the deflection at the center of the PnBG QC may be utilized to quantify the

residual stress in the single-crystal-silicon layer. Due to the large error in the fabricated

trench location, profilometer measurements were utilized to obtain physical dimensions

for the model of transducer pad substrate overlap area, Asub,2, given in Table 4.3.

The optical profiler measurements may display increased error when measuring the
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Figure 5.6: Wyko NT1100 optical profilometer that was utilized to characterize the
surface of the fabrication devices.
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Figure 5.7: Profilometer 3D view of a portion of the host region of the S2 phononic band
gap quasi-crystal.
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distance between two closely spaced edges (possibly due to how the light is reflected

at the edges and within the gap). This would yield low accuracy in measurement of

gap size. A profiler such as the Veeco Dektak 8 stylus profiler [135] may potentially be

utilized to perform more accurate measurements of the transducer gap size.

The profilometer images further support that the PnBG QC architecture can be fab-

ricated with reasonable accuracy utilizing SOIMUMPs. The profilometer measurements

may be post-processed further to extract additional fabricated physical dimensions and

built in stress data; physical dimensions may then be substituted for the drawn dimen-

sions in the model to obtain a more accurate model of the fabricated PnBG QCs.
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5.3 Test Fixture Electrical Circuit Construction and

Assembly Utilizing Surface Mount Printed Cir-

cuit Board Technology

Table 5.2 lists the components utilized to fabricate and assemble the test fixture depicted

in Figure 5.8. This test fixture is designed to carry electrical Radio Frequency (RF) and

DC signals to a maximum of eight out of the nine devices on the SOIMUMPs chip;

which of the nine devices are electrically connected to the test fixture is determined by

how the chip is bond-wired to the package. The bond-wire diagram for the SOIMUMPs

chip tested for this thesis is shown in Figure 5.10, where it may be observed that signal

and ground are connected to the eight devices on the perimeter of the SOIMUMPs

chip. To apply signal to all four transducers of each device, the four transducer pads

are bond stitched together as in Figure 5.10. The SOIMUMPs chip is electrically and

mechanically bonded to a surface mount package which is left open to allow for optical

access to the top surface of the SOIMUMPs chip. The Radio Frequency (RF) signal is

delivered in-phase, via a bias-tee on the printed circuit board, to the four electrostatic

transducers of each device. Two motorized stages, described in Table 5.2, set orthogonal

to each other, allow for the motion of the text fixture to be automated in the x̂- and

ŷ-directions.
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Figure 5.8: Assembled test fixture for the testing of the SOIMUMPs chip that contains
the phononic band gap quasi-crystal devices.
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Figure 5.9: Layout of the printed circuit board designed for the text fixture that is shown
in Figure 5.8.
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Figure 5.10: Bond wire diagram for the packaging of the SOIMUMPs chip.
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Chapter 6

Experimental Measurement of

Micro-Electro-Mechanical-System

Implementation of Phononic Band

Gap Quasi-Crystal Architecture

The six PnBG QC devices and three reference devices listed in Table 3.1 were fabricated

utilizing SOIMUMPs and characterized utilizing a scanning electron microscope and

optical profilometer as discussed in Chapter 5. The characterization results presented in

Chapter 5 and Appendices E and F provide qualitative and quantitative information that

indicates that the six PnBG QC devices and three reference devices could be fabricated

with reasonable accuracy by utilizing the SOIMUMPs process.

This chapter presents measurement results of the dynamic harmonic response and

mode shapes for the S1, S2 and C2 PnBG QC devices as well as the Square homogeneous

plate reference device, for which the geometrical parameters are illustrated in Figure 3.4
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and quantified in Tables 3.1 and 3.2. The large amount of time required (discussed in

Section 6.1) to perform spectrum and mode shape measurements did not permit the

measurement of the S3, C1 and C3 PnBG QCs or the Circle homogeneous plate and

S4 reference devices. The measurement results provide reasonable support for several

of the trends that were observed in the model of Chapter 4 for band gap location and

mode shape behavior versus the parameters of PnBG QC truncation geometry (square

versus circular) and inclusion spacing, as well as band gap location versus DC bias

voltage and the electromechanical coupling coefficient of the electrostatic transducers.

Comparison of the measurements of the S1, S2 and C2 PnBG QC devices with the

Square reference device illustrate where the behavior of the PnBG QC devices diverges

from that of the Square reference. Where measurement results deviate from the model,

data is established for model and device refinement.

6.1 Measurement Setup

The S1, S2 and C2 PnBG QC devices and Square reference device are characterized in

the frequency and spatial domains utilizing an optical laser-Doppler vibrometer as illus-

trated in the experimental setup of Figure 6.1. Each device is mechanically excited via

the electrostatic transducers that are integrated into each device. The measurement of

the mechanical response utilizing the optical laser-Doppler vibrometer provides a rela-

tively non-invasive measurement. The vibrometer is manufactured by Polytec [136] and

comprised of the Polytec OFV-551 fibre vibrometer, OFV-5000 vibrometer controller,

and DD-330 displacement decoder and is displayed in Figure 6.2. The DD-300 displace-

ment decoder has a measurement range of ±75nm, -3 dB bandpass frequency range

from 30 kHz to 24 MHz, noise-limited resolution of < 0.02pm/
√
Hz at 100% reflectivity,

scaling factor of 50nm/V (for a load resistance of 50Ω) which may be utilized to convert
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SOIMUMPs 
chip Motorized X-Y Stage

1

Test Fixture

Function Generator
Agilent 33220A

DC Power Supply
Agilent E3631A

DC Power Supply
Agilent E3631A

Spectrum Analyzer
Agilent E7403A

Polytec OFV-5000 Modular 
Vibrometer Controller

Polytec OFV-551 Fiber-
Optic Interferometer

He-Ne laser 
beam@633 nm

Microscope

Optical FiberFibre optic cable

VDC

VRF

Personal Computer
(Windows XP)

GPIB

GPIB

Serial
Serial

Figure 6.1: Block diagram of experimental setup. The devices rest on a motorized
stage. The vibrometer laser is directed upon the upper surface of the phononic band
gap quasi-crystal. Each instrument interfaces with the personal computer.

between voltage and displacement, output swing of ±1.5V (for a load resistance of 50Ω)

and output impedance of 50Ω [129]. The frequency response of the vibrometer is flat to

within ±1dB over the frequency range from 40 kHz to 20 MHz. On the surface of the

device under test, the laser spot size that comes from the vibrometer is focused by the

microscope objective lens to a diameter of approximately 10µm.

The output of the vibrometer is a voltage with amplitude, Vvib, which is proportional

to the measured displacement and may be expressed utilizing the vibrometer scaling

factor, Kvib = 50nm/V as:

Vvib =
dvib
Kvib

Kvib = 50 nm/V

(6.1)

where dvib is the amplitude of the displacement measured by the vibrometer.
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objective lens
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Figure 6.2: Physical setup of the experimental equipment.
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The spectrum analyzer (which presents a 50 Ω load) was utilized to measure the

vibrometer output voltage. The measurement of the spectrum analyzer is expressed

in the units of power, decibel-milliwatt (dBm). The conversion between the power

measured by the spectrum analyzer and the vibrometer output voltage amplitude is:

P = 10log10

(
Prms

)
+ 30 (dBm)

Prms =
V 2
rms

50Ω
(root mean square watts)

Vrms = Vvib/
√

2

(6.2)

where the RMS voltage, Vrms, has been computed assuming the vibrometer signal is

sinusoidal. Combining Equations 6.1 and 6.2 yields conversion equations between the

power measured by the spectrum analyzer and the vibrometer output displacement

amplitude:

P = 10log10

(
(Vvib/

√
2)2

50Ω

)
+ 30 (dBm)

Vvib =
√

2
√

50Ω× 10(P−30)/10 (amplitude in volts)

dvib = Kvib

√
2
√

50Ω× 10(P−30)/10 (amplitude in meters).

(6.3)

These equations will be applied in Section 6.2.5 to produce measured displacement ampli-

tude data that may be utilized to characterize the electromechanical coupling coefficient

of the electrostatic transducers.

As shown in Figure 6.1 an Agilent 33220A function generator is utilized to create the

sinusoidal electrical signal, VRF , that is applied to the device under test via a bias-tee

and transferred in-phase to all four transducers of the device as illustrated in Figure 6.3.

The Agilent E7403A EMC analyzer is utilized to measure the spectrum of the electrical

signal, Vvib, which is output from the Polytec vibrometer controller.
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Two Agilent E3631A DC variable power supplies are wired in series to provide a DC

voltage that is variable between 0 and 100 VDC, as shown in Figure 6.1. The use of a

DC offset, VDC , that is greater than or equal to the peak to peak value of VRF is typically

employed to ensure that frequency doubling, due to zero crossings and transducer voltage

polarity changes, does not occur. This is achieved by forcing the polarity of the total

voltage VRF + VDC to always be positive, VRF + VDC > 0|VRF,pp≤VDC
, given that VRF is a

sinusoidal voltage with zero DC offset and VDC is a positive DC voltage. In this fashion,

Equation 4.6 would predict that the electrostatic force is a minimum, and maximum,

when VRF is at the minimum, and maximum, respectively.

The test fixture and SOIMUMPs chip described in Chapter 5 rest upon two mo-

torized linear translation stages which are oriented orthogonal to one another and so

provide position control in the x̂- and ŷ-directions. The vibrometer laser is incident

upon the upper surface of the SOIMUMPs chip. Control of the laser spot location on

the SOIMUMPs chip is automated utilizing the motorized stages. The spectrum ana-

lyzer, function generator, DC power supplies interface with the personal computer via

a General Purpose Interface Bus (GPIB). The motorized stages and fiber optic inter-

ferometer interface with the personal computer via serial ports. The personal computer

allows control of all instruments to be automated via MATLAB R©.

The experimental setup of Figure 6.1 is schematically illustrated in Figure 6.3 and

provides automated measurement of the (1) spectrum (displacement amplitude in the

ẑ-direction versus frequency) of each device and (2) mode shape displacement in the

ẑ-direction. The personal computer enables automation of the measurement of the spec-

trum via control of the DC voltage, VDC , and frequency of the RF voltage, VRF . Each

spectrum measurement is typically performed over a bandwidth of 5kHz to 20MHz,

for a frequency spacing of 1 kHz, and a sense resolution bandwidth of 1Hz and takes
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approximately 12 hours. For more detailed spectrum measurements with a lower noise

floor, the frequency spacing, and sense resolution bandwidth, may be reduced to as low

as 10Hz, and 0.1Hz, respectively. The personal computer enables automated measure-

ment of the mode shape displacement in the ẑ-direction for a fixed DC voltage, VDC , and

fixed RF voltage, VRF , through use of the motorized stage to automate control of the

vibrometer laser spot location versus position on the device. Each mode shape measure-

ment is performed over an area of approximately 800µm×800µm, for a spatial sampling

period of 5µm, and sense resolution bandwidth of 0.1Hz and takes approximately 40

hours.

6.2 Experimental Results

This section presents the results for the measurement of the dynamic harmonic response

(Section 6.2.1) and mode shape topography (Section 6.2.2) of the S1, S2, C2 PnBG QCs

and Square homogeneous plate reference device. The results of the dynamic harmonic

response and mode shape topography measurements are post-processed to create the

frequency versus FEM mode number characteristic in Section 6.2.3. Within Sections

6.2.4 and 6.2.5, the dynamic harmonic response measurements are post-processed into

the displacement amplitude versus frequency characteristic to provide physical data

regarding the electromechanical coupling coefficient of the electrostatic transducers on

the S2 PnBG QC. Lastly, the measurement results are discussed in Section 6.3.

6.2.1 Dynamic Harmonic Analysis

Measurement of the dynamic harmonic response, also referred to here as the vibrom-

eter spectrum, was performed at room temperature and pressure at the University of

183



Figure 6.3: Experimental setup and device schematic. RF and DC signals are applied to
four transducers. The phononic band gap quasi-crystal or reference device is grounded
via the anchor. The device rests on a motorized stage. The vibrometer laser is directed
upon the upper surface of the phononic band gap quasi-crystal or reference device.

184



Waterloo, Ontario, Canada. Figure 6.4 displays the measured vibrometer spectrum for

the S1 and S2 PnBG QC devices along side the measured vibrometer spectrum of the

Square homogeneous reference plate device. In Figure 6.4 the measured vibrometer spec-

trum is presented at a single point where both sub- and hyper-band gap modes display

anti-nodes so that both the sub- and hyper-band gap resonances can be observed in a

single spectrum; measurement points are denoted in the insets of Figure 6.4. As may

be observed in Figure 6.4, the vibrometer spectrums of the S1 and S2 PnBG QCs do

not appear to display resonant peaks (above the noise floor) within the frequency range

from approximately 10 MHz to 13 MHz. Figure G.2 of Appendix G contains additional

measurements of the vibrometer spectrum at different points on the surface of the S2

PnBG QC. The spectrum at none of the measured points, on the PnBG QCs, display

resonant peaks within the approximate frequency range of 10 MHz to 13 MHz. The

reason for performing the harmonic analysis at several points on the surface of the S2

PnBG QC was to ensure that the observed absence of resonant peaks in the 10 to 13 MHz

regime was not due to the laser spot being located at the a vibrational node. Hence,

several points were measured, no points display resonant peaks in the approximate 10

MHz to 13 MHz frequency regime, and additional points may be measured to provide

additional support for the potential absence of normal mode resonances and band gap

location in this frequency range (additional points were not measured due to the large

12 hour measurement time).

The frequency ranges where the normal mode resonances are not observable may

also in part be due to the displacement amplitude being below the experimental noise

floor. However, identifying frequency regions where the (i) amplitude of vibration is not

observable and which (ii) lie between frequency regions were the amplitude of vibration

is observable and considerably larger, may still provide experimental evidence of physical
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band gap behavior.

The absence of observable resonant peaks and corresponding normal modes for the

S1 and S2 PnBG QC devices over the frequency range from 10 MHz to 13 MHz may po-

tentially be experimental evidence that the PnBG QC devices display the characteristic

band gap behavior of a PnBG crystal for the ẑ-component of displacement. Figure G.1

of Appendix G displays additional harmonic analysis measurements at different points

on the Square homogeneous plate reference device and resonant peaks are present over

the entire measured frequency range (there is not a single frequency range of notably

large extent where resonant peaks are not observed). This contrasting behavior between

the S1 and S2 PnBG QCs and the Square reference device appears to indicate that the

behavior of the S1 and S2 PnBG QC devices deviates significantly from that of a Square

homogeneous plate.

As may be observed in Figure 6.4, the amplitude of the vibrometer spectrum of the

S1 and S2 PnBG QCs and the Square reference device decrease as frequency increases.

This decrease in amplitude with frequency may in part be due to damping. Additionally,

the electrostatic transducers generate electrostatic forces that may have the strongest

component of the force in the in-plane (x̂-ŷ) directions (according to the model of Section

4.3) while many modes display largely out-of-plane (ẑ-direction) motion, in particular

at high frequency, and the transducer coupling coefficient may decrease as frequency

increases. A third justification for the amplitude decrease with frequency may be ac-

counted for in that, in the presence of damping, for a given force, higher frequency modes

display a lower amplitude than lower frequency modes [137]. This concept may be un-

derstood in that higher frequency modes have a shorter wavelength and so more physical

bends per unit length in the mode shape. To produce equal vibration amplitude in a

higher frequency (shorter wavelength) and lower frequency (longer wavelength) mode
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Laser spot 

Laser spot 

Laser spot 

Figure 6.4: Comparison of the spectrum of Square homogeneous plate reference device
and the S1 and S2 phononic band gap quasi-crystals. The spectrum is measured by the
spectrum analyzer, using the measurement setup shown in Figure 6.1, as the power of
the signal coming from the vibrometer controller and expressed in the units of dBm.
The laser spot location is denoted in the figure and is held the same for the S1 and S2
phononic band gap quasi-crystals.

shape, would then require a larger stress gradient and larger force to provide the energy

needed to create the higher stress field with the same overall displacement amplitude. It

should also be noted that the potential frequency dependence of the electrostatic force
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amplitude has not been de-embedded from these measurements.

To develop an approximation of the mechanical quality factor of the normal modes

of the PnBG QC device, the first-order harmonic oscillator model that was presented in

Section 4.2.5 is fit to several of the normal mode resonant peaks in the harmonic response

displayed in Figure 6.4 for the S2 PnBG QC. Results of the fit for both sub-band gap

and hyper-band gap modes are displayed in Figures 6.5, 6.6 and 6.7. The harmonic

oscillator model is fit to both normal mode peaks that are relatively distant from one

another as well as to closely grouped pairs of normal modes. If the shape of the normal

mode peak is asymmetrical relative to the shape of the harmonic oscillator model, then

the harmonic oscillator model is fit twice to the experimental normal mode peak, once

for each skirt of the experimental normal peak. The set of fitting parameters that were

utilized to fit the model to the measured data are displayed in the inset of Figures 6.5,

6.6 and 6.7 and listed in Table 6.1.

As may be observed in Figures 6.5, 6.6 and 6.7, the first order harmonic oscillator

model of Section 4.2.5 fits relatively well to the measured normal mode peaks for modes

1, 42, 73, 105, and the sub-band gap mode at 9.016 MHz. In particular, the fit of the

first order harmonic oscillator model to modes 1 and 73 and the mode at 9.016 MHz

matches reasonably well to both skirts of the measured normal mode peaks in Figure 6.5.

The measured normal mode peaks of modes 42 and 105 in Figures 6.5 and 6.6 display

asymmetry relative to the shape of the first order harmonic oscillator model and so a

given fit of the first order harmonic oscillator model fits closer to one skirt of the normal

mode peak than the other. For the pairs of closely space normal modes in Figure 6.6

the superposition of two first order harmonic oscillator models is fit to the two measured

peaks with reasonable accuracy close in to each of the two peaks and reduced accuracy

near the outer skirts of the two peaks. The first order harmonic oscillator model displays
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lower accuracy for the hyper-band gap modes at 14.487 MHz and 17.69 MHz, this may

in part be due to the reduced signal to noise ratio which is provided by the reduced

amplitude of displacement at higher frequencies and an associated potential increase in

measurement error. From Table 6.1, the observed quality factors that result from this

fitting of the first order harmonic oscillator model to the measured harmonic response

are observed to lie within the range of 180 to 4000.

Utilizing Equation 4.32 normalized to the forcing function amplitude, F , along with

the fitting parameters in Table 6.1, the normalized effective mechanical parameters,

keff/F , meff/F and γ/F were computed and listed in Table 6.1. As may be viewed in

Table 6.1, under this fit, the normalized effective spring constant, keff/F , varies over

four orders of magnitude and tracks the large variations in the measured peak amplitude

versus frequency. In contrast, the normalized effective mass, meff/F , depends on the

product of measured peak amplitude and the square of angular resonant frequency, and

varies by less than one order of magnitude for the fitting parameters and modes in

Table 6.1, indicating that the variations in amplitude and square of angular frequency

may offset one another. Lastly, the normalized damping coefficient, γ/F , depends on

the product of the measured peak amplitude, resonant frequency and quality factor

and for the fitting parameters in Table 6.1 appears to increase by approximately one

order of magnitude between the low and high frequency modes. It is important to note

that the normalized effective mechanical parameters, keff/F , meff/F and γ/F , were

normalized to the forcing function amplitude, F , which may display its own frequency

dependence. One approach to remove the normalization and obtain keff , meff and γ

may require investigation of the forcing amplitude, F . Alternatively, if the physical

bounds on keff , meff and γ may be obtained, it may be possible to utilize the data in

Table 6.1 to estimate the forcing function amplitude, F . A possible relation between the
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forcing function amplitude, F , of the harmonic oscillator model of Figure 4.25, which

was applied in Figures 6.5, 6.6 and 6.7 to the spectrum of the out-of-plane motion of

the S2 PnBG QC, and the in-plane electrostatic forces generated by the electrostatic

transducers may be investigated further.
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Figure 6.5: First order harmonic oscillator model fitted to experiment for sub-band gap
modes 1, 42 and 73 of the S2 phononic band gap quasi-crystal device. For mode 1, the
fit was performed within a normalized bandwidth (∆f/fo) of 0.3 while other modes were
fitted within a normalized bandwidth of 0.005.
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Figure 6.6: First order harmonic oscillator model fitted to experiment for sub-band gap
modes 91, 105 and 115 of the S2 phononic band gap quasi-crystal device. The fit was
performed within a normalized bandwidth (∆f/fo) of 0.005.
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Figure 6.7: First order harmonic oscillator model fitted to experiment for the sub-band
gap resonance at 9.016 MHz, hyper-band gap resonance at 14.487 MHz and mode 173 of
S2 phononic band gap quasi-crystal device. The fit was performed within a normalized
bandwidth (∆f/fo) of 0.005.
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6.2.2 Mode Shape Topography

In order to assess the accuracy of the FEM model of the physical shape of PnBG QC

normal modes presented in Section 4.2.3, the normal mode shape displacement in the

ẑ-direction is measured with respect to position. Reasonable agreement between the

node and anti-node topography of the fourteen FEM model and measured mode shapes

in Figure 6.8 illustrate confirmation of the characteristic out-of-plane sub- and hyper-

band gap mode shapes for the S2 PnBG QC. Time permitted for the measurement of

eight sub-band gap modes of the C2 PnBG QC, which are displayed along with the

corresponding FEM model mode shape in Figure 6.9. For comparison, fifteen FEM

model and measured mode for the Square reference are displayed in Figure 6.10.

By comparing the PnBG QC mode shapes of Figures 6.8 and 6.9 with those of the

Square reference in Figure 6.10, the influence of the PnBG QC geometry is apparent on

the confinement of vibrations within the periodically shaped host region of the PnBG

QC. Mode shape measurements for the S1 PnBG QC may be found in Appendix H.

Distortion with respect to position in measured mode shape may be accounted for in

part by stepper motor error, anchor loss, damping, material anisotropy and fabrication

error. Deviation between the modeled and measured mode shape may also potentially

be created if a non-linearity in the PnBG QC architecture excites creates a harmonic in

a way that the harmonic frequency corresponds with an adjacent mode frequency. In

this way, a single excitation frequency may excite two modes, which may distort one

another, leading to deviation between the measured and modeled mode shape. Even

at low power levels, where the forces may be limited such that the device operates in

the regime of the linear Hook’s law and the linear region of the PnBG QC, a potential

source of non-linearity may be in the conversion between voltage and electrostatic force

[97] in the electrostatic transducer which may behave as a parallel plate capacitor.
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Figure 6.8: Measured normal mode surface topography for the S2 phononic band gap
quasi-crystal versus the ANSYS R© finite element method model. Sub-band gap modes
are: (n=1 , 82.475 kHz), (n=15, 934.925 kHz), (n=21, 1.857500 MHz), (n=42, 2.863400
MHz), (n=48, 3.090175 MHz), (n=57, 3.918900 MHz), (n=73, 4.899325 MHz), (n=91,
6.216875 MHz), (n=105, 7.110550 MHz), (n=115, 7.933175 MHz), and (n=134, 9.254000
MHz). Hyper-band gap modes are: (148, 14.486350 MHz), (n=173, 17.694050 MHz) and
(177, 19.903000 MHz).
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Figure 6.9: Measured normal mode surface topography for the C2 phononic band gap
quasi-crystal versus the ANSYS R© finite element method model. Sub-band gap modes
are: (n=13, 1.344000 MHz), (n=15, 1.712000 MHz), (n=20, 2.567000 MHz), (n=48,
4.675000 MHz), (n=56, 5.700000 MHz), (n=63, 6.673000 MHz), (unidentifiable mode I,
7.415000 MHz) and (unidentifiable mode II, 9.385000 MHz).
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Figure 6.10: Measured normal mode surface topography for the homogeneous square
plate phononic band gap quasi-crystal versus the ANSYS R© finite element method model.
Modes shapes are: (n = 1, 119.998 kHz), (n = 9, 767.993 kHz), (n = 15, 1.599986 MHz),
(n = 20, 2.864977 MHz), (n = 27, 4.463965 MHz), (n = 35, 5.305959 MHz), (n = 43,
6.626948 MHz), (n = 48, 7.343942 MHz), (n = 53, 8.099935 MHz), (n = 64, 9.246926
MHz), (n = 129, 18.266852 MHz), (unidentifiable square plate mode I, 12435900 Hz),
(unidentifiable square plate mode II, 13525892 Hz), (unidentifiable square plate mode
III, 14988881 Hz) and (unidentifiable square plate mode IC, 19428842 Hz).
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6.2.3 Frequency Versus Mode Number Characteristic

The measured frequencies of the FEM model mode shapes are combined with the FEM

model mode number for square and circular truncated PnBG QC in Figures 6.11 and

6.12. Reasonable support for an approximately piecewise linear relation between mode

frequency and number may be observed in Figures 6.11, and 6.12, for the S1 and S2, and

C2, PnBG QC devices, respectively. A linear projection of the measured normal mode

points for the C2 PnBG QC in Figure 6.12 may provide insight into the experimental

band gap location.

Measured and model results for S1, S2 and C2 PnBG QC devices and Square ref-

erence device are superimposed in Figure 6.13. The measurements provide reasonable

experimental support for the trend that band gap location increases as geometry is var-

ied from the S1 to the S2 to the C2 PnBG QC device. In addition, all frequency versus

mode number characteristics originate at approximately the same point and diverge from

one another as mode number and frequency increase. This experimentally supports the

presence of the behavioral zones observed in the model of Section 4.2.1. For the square

Reference device, the modes that were observed to be present in the harmonic response

(of Figure 6.4) between approximately 12 MHz and 18 MHz could not be identified and

so are not plotted in Figure 6.13. In Figure 6.13, the absence of modes between approx-

imately 10 MHz and 13 MHz for the S1 and S2 PnBG QC devices reflects the result

that no normal mode resonances were observed in the measured spectrum (of Figure

6.4) within this frequency region and may provide support for the experimental band

gap location. The error between the model and measured mode frequency increases as

frequency increases.
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Figure 6.11: Measured frequencies of finite element method model mode numbers for
the S1 and S2 phononic band gap quasi-crystals. The finite element method model is
denoted the by ’x’ while measurement points are denoted by the squares. Time did not
permit measurement of the S3 phononic band gap quasi-crystal.
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Figure 6.12: Measured frequencies of finite element method model mode numbers for
the circular truncated phononic band gap crystals. The finite element method model is
denoted the by ’x’ while measurement points are denoted by the squares. Time did not
permit measurement of the C1, C3, nor hyper-band gap modes of the C2 phononic band
gap quasi-crystals.
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6.2.4 Electrostatic Spring Softening

For an increased DC bias voltage, resonant frequency may be expected to decrease due

to electrostatic spring softening [97]. For one measurement point, the spectrum of the

S2 PnBG QC versus DC voltage is displayed in Figure 6.14 and closeups are displayed

in Figures 6.15 and 6.16. At this measurement point, the resonant peak and band gap

location presented in Figure 6.14 display no observable (less than 50 Hz) change as DC

bias voltage is varied. This may possibly be attributed to the application of balanced

voltages to the relatively similar transducers of the S2 PnBG QC device and possible

generation of relatively balanced electrostatic forces that may oppose one another to

counteract potential spring softening and stabilize band gap location with respect to DC

bias voltage. The sensitivity of spring softening to electrode configuration of discussed

next.

Relative to the case where only one electrostatic transducer is acting to displace the

body of the PnBG QC in a given direction and reduce the electrostatic gap in a way

that leads to pull-in and spring softening, the utilization of the four balanced electrode

configuration, presented in Section 3.4, may change the pull-in voltage and affect spring

softening. To justify this, assume that the fixed (anchored) electrode of the electrostatic

transducer is anchored in a way that the fixed electrode undergoes zero displacement

(note that, as discussed Section J.2 of Appendix J, the fixed electrode moves considerably

and this should be accounted for in a complete analysis). Next observe that in the

PnBG QC architecture, approximately equal but opposite (balanced) forces are present

on diametrically oppose transducers. These balanced forces may counteract one another

in a way that the center of the PnBG QC displays no net displacement and so acts as a

virtual mechanical ground or fixed boundary (as was observed in the electromechanical

model presented in Section 4.3) which may counter act pull-in. Pull-in would then have

203



to occur by stretching the PnBG QC pseudo-extensionally from all four edges until the

stress on the edges would produce enough strain that the electrostatic transducer gap

would be reduced enough to increase the electrostatic force to exceed the restoring force

of the edges. In contrast, if a single transducer acted upon the PnBG QC, pull-in may

occur via a different mechanism and so may occur at a different voltage. Hence, pull-

in and spring softening may be a function of the transducer electrode configuration.

The observed insensitivity of the PnBG QC to DC bias may then in part be a feature

of the balanced transducer configuration. In addition, electrostatic spring softening is

larger near pull-in [97]. The bias voltage may be too far from the pull-in voltage to

allow spring softening to be observable. Numerical and experimental characterizations

of pull-in voltage and spring softening versus electrode configuration may be investigated

further.

Alternatively, the absence of observable spring softening may potentially be due

to the measurement of the out-of-plane component of vibration that was presented in

Figure 6.14. Spring softening may be more observable in the in-plane (which is the

plane in which the model of Section 4.3 suggests that the dominant component of the

electrostatic force is generated) component of vibration.

Moreover, the PnBG QC is a relatively complex structure that is subject to electro-

static forces that are applied primarily to the edges of the PnBG QC in four different

directions. These complexities may potentially result in electrostatic spring softening

being a function of position within the PnBG QC. Hence, spring softening may poten-

tially be more observable at positions other than the point measured in Figure 6.14. For

example, it may be possible that spring softening is more observable in the vicinity of

the electrostatic transducers, near the edges of the PnBG QCs, and less observable near

the center of the PnBG QC. The potential position sensitivity of electrostatic spring
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softening in the PnBG QC may be investigated further.
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6.2.5 Electro-Mechanical Coupling

The measured vibrometer spectra of the S1, S2, C2 PnBG QCs and Square reference

device have been presented in the units of power, or dBm, versus frequency. In this

section, Equation 6.3 is utilized to convert the units of the vibrometer spectrum from

power to the displacement amplitude in meters. This conversion will reveal the me-

chanical displacement amplitudes in the ẑ-direction that are physically generated by the

electrostatic transducers.

The spectrum for the S2 PnBG QC that was displayed in Figure 6.4 has been con-

verted from the units of power to amplitude in meters and is displayed in Figure 6.17.

The displacement amplitudes in the ẑ-direction at sub-, and hyper-, band gap frequen-

cies may be observed to vary from approximately 10nm to 10−4nm, and 10−2nm to

10−4nm, respectively. The DD-300 displacement decoder has a measurement range of

±75nm and a non-linear error of approximately 2% at displacement amplitudes of 5 nm,

0% at displacement amplitudes of 50 nm and 7% at displacement amplitudes of 75 nm

[129]. The measured displacement amplitudes of the spectrum at very low frequencies

(approximately 50 kHz to 500 kHz) where the displacement amplitude is between 2 nm

and 10 nm may then have an error of 2%. Above approximately 500 kHz the displace-

ment amplitude is less than 1 nm which is below the documented range of the non-linear

error curve of the vibrometer and so the measured amplitudes may contain an unknown

percentage error.

Let F be some electrostatic force, generated by the electrostatic transducers, pro-

duced by a voltage, VRF , and acting within the x, y-plane on the PnBG QC. Let the

displacement amplitude in the ẑ-direction, at a position ~r = (xi, yi) on the top sur-

face of the PnBG QC, for an arbitrary frequency, f , be uz(xi, yi, f). During measure-

ments, the amplitude of the RF voltage was fixed at VRF = 10Vpp for all frequencies.
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The electromechanical coupling coefficient between the voltage, VRF , and displacement

amplitude uz(xi, yi), versus frequency, f , may be expressed as Kelec−mech(xi, yi, f) =

uz(xi, yi, f)/VRF .

For the maximum, and minimum, observed displacement amplitudes of approxi-

mately 10nm, and 10−4nm, in Figure 6.17, the maximum, and minimum, dynamic

coupling coefficient to the point (x1, y1) measured in Figure 6.17 (denoted by the laser

spot location in Figure 6.4 for the S2 PnBG QC) are:

Kelec−mech,max(x1, y1, f1) = uz(x1, y1, f1)/VRF

= 10nm/10Vpp

= 1nm/Vpp,

(6.4)

and

Kelec−mech,min(x1, y1, f2) = uz(x1, y1, f2)/VRF

= 10−4nm/10Vpp

= 10fm/Vpp,

(6.5)

respectively. Unlike the static coupling coefficient of the model in Section 4.3, the

aforementioned coupling coefficients include the experimental dynamics of the PnBG

QC devices.
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6.3 Discussion of Experimental Results

The measurements of PnBG QCs and reference devices presented in this chapter display

reasonable agreement with the dynamic harmonic, mode shape and frequency versus

mode shape models that were presented in Chapter 4. The dynamic harmonic spectrum

of the PnBG QCs displays a range of frequencies within which there appears be an

absence of resonant peaks in the ẑ-component of displacement at several points on the

surface of the PnBG QCs. The PnBG QC mode shapes, display characteristic shapes

at sub- and hyper-band gap frequencies. The piecewise linear shape of the FEM model

mode number versus frequency was also experimentally supported. Further identification

of the experimental band gap location requires measurement of in-plane modes and a

higher signal to noise ratio to measure potential defect state modes that may exist

at the frequencies where the experimental band gap appears to exist. Lastly, though

the electrostatic transducers were modeled to generate primarily in-plane forces (see

Section 4.3), the electrostatic transducers were observed to successfully excite the out-

of-plane modes of the PnBG QCs with a measurable displacement amplitude, which is

also consistent with the model behavior (of Section 4.2.5).

The dynamic harmonic analysis measurements presented in this chapter were not

de-embedded from the potential frequency dependence of the excitation circuitry or

electrostatic force; while the electrical models of Chapter 4 indicate a relatively uniform

excitation voltage should be presented with respect to frequency on each electrostatic

transducer, electrostatic force may still vary with frequency. The Square reference de-

vice, which was excited utilizing the same measurement circuit as the PnBG QCs, was

observed to be successfully excited at frequencies from 50 kHz to 20 MHz. Though the

unique transducer geometry of the PnBG QCs may present an input impedance that is

slightly different from the Square reference device or have slightly different electrostatic
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forces, the successful actuation of the Square reference suggests that the PnBG QCs

could potentially also have received electrostatic actuation over the 50 kHz to 20 MHz

range. The observed absence of modes in the frequency response of the S1, S2 and C2

PnBG QCs for wide frequency ranges may then be due to an absence of mechanical res-

onant modes within these frequency ranges, as oppose to poor electrostatic excitation.

Non-ideal experimental behavior of the electrostatic transducers is presented in Section

J.2 of Appendix J; the potential impact of this non-ideal behavior may be investigated

further.

To measure the potential frequency dependence of the electrical excitation circuitry,

the node that interfaces the electrical excitation circuit with the electrostatic trans-

ducer may be probed utilizing a high input impedance probe and frequency could be

swept from 50 kHz to 20 MHz to characterize the potential frequency dependence in

the transference of the electrical signal from the function generator to the electrostatic

transducer. Once the electrical signal that is physically applied to the transducer has

been measured, the amplitude of the dynamic harmonic analysis (spectrum) measure-

ments can be adjusted to de-embedded any amplitude variations that may be produced

by the electrical excitation circuit. The result will be a spectrum that contains only

the amplitude variations, with respect to frequency, that are produced by the frequency

dependence of the electrostatic force and mechanical frequency selectivity of the PnBG

QC or reference devices.

Dynamic harmonic and mode shape measurements provide data concerning the dis-

crepancies between the model and fabricated devices. These discrepancies may be pro-

duced by damping, anchor loss, electrical or mechanical parasitic elements, fabrication

process errors, errors in the material properties utilized in the models, non-linearities

that weren’t accounted for in the model, and so forth, and may be characterized versus
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frequency or on a mode by mode basis.

Model refinement was not presented in this thesis in part because a sufficient level

of agreement between the measurements and model was observed to meet the objective

of the thesis. As mentioned, accurate model refinement would require the investigation

of the actual source of the discrepancy between the model and the fabricated device. A

more rapid approach to model refinement may be to attempt to utilize effective material

parameters to account for all discrepancies, and fit the model to the measured data

utilizing these effective material parameters. These effective material parameters would

attempt to account for all discrepancies, however, may not in all cases enable a fit of the

model to the measurement, for example, an effective material parameter may not always

be able to account for a structural difference. In some cases, multiple model refinements

may be required in parallel. For example, a simple set of diagnostic test structures

may be utilized to investigate the physical material properties, while scanning electron

micrograph and profilometer measurements such as those of Section 5.2 may be utilized

to quantify error in the geometry of the models.

A material property characterization was not performed due to the large area of the

PnBG QCs and the corresponding lack of available die space for a set of diagnostic test

structures. In addition, a reasonable amount of material property data for SOIMUMPs

was found in the literature (see Table 4.1) to provide sufficient data, for a first iteration

design, into the expected range of material properties in SOIMUMPs. Lastly, the results

of the sensitivity analysis of Section 4.2.6 illustrated a relatively low sensitivity of the

band gap location to the ranges of material property variations that occur in practice.

Material property characterization may be investigated further.
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Chapter 7

Applicability of the Phononic Band

Gap Quasi-Crystal Architecture to

Temperature Sensors and Vibration

Stabilization in

Micro-Electro-Mechanical-Systems

Within this chapter the applicability of the PnBG QC architecture to physical tem-

perature sensors and localized or vibration stabilized resonators is developed. First,

the temperature dependence of the band gap is investigated utilizing thermomechanical

models and measurement of PnBG QC mode frequency versus temperature. Second, the

utility of the PnBG QC architecture to create increasingly complex frequency selective

characteristics, vibration stabilized or localized resonators, reduced anchor loss and po-

tentially improved mechanical systems is developed through the introduction of defect
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states into the PnBG QC architecture.

7.1 Temperature Dependence of Band Gap

The temperature dependence of the normal mode frequencies of the S1 PnBG QC was

investigated numerically and experimentally. The experimental temperature dependence

of the Square reference device was characterized under similar conditions to provide a

reference for comparison with the temperature dependence of the S1 PnBG QC device.

7.1.1 Thermomechanical Model

The FEM implementation in ANSYS R© WorkbenchTM 11.0 was utilized to perform a

steady state thermal analysis which was used as the initial condition for a steady state

structural analysis, which yields the internal stress generated by a temperature change.

The stress field generated at a temperature of 60oC is displayed in Figure 7.1 and was

utilized as the initial condition for a modal analysis to determine the effect of temperature

on the frequencies of the normal modes. The thermal expansion coefficient of single-

crystal-silicon was set to 2.6× 10−6 1
oC

[139].

The result of the modal analysis for the S1 PnBG QC at room temperature, 23oC,

and 60oC is presented in Figure 7.2. The FEM model indicates that above behavioral

zone II (see Figure 4.7 for the location of behavioral zone II) the sub-band gap resonant

frequencies decrease (negative temperature coefficient) while hyper-band gap resonant

frequencies increase (positive temperature coefficient). For the temperatures and normal

mode frequencies studied here some sub-band gap normal mode frequencies, as compared

to hyper-band gap frequencies, tend to display a larger change in frequency.
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(a)

(b)

Figure 7.1: Finite element method thermomechanical model of the S1 phononic band
gap quasi-crystal. The figure displays, for a temperature of 60oC, (a) the maximum
stress and (b) the deformation.
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Figure 7.2: Finite element method model of the variation of normal mode frequency and
band gap extent, versus temperature, for the S1 phononic band gap quasi-crystal. Above
behavioral zone II (see Figure 4.7 for the location of behavioral zone II) the sub-band gap
resonant frequencies dramatically decrease while hyper-band gap resonant frequencies
increase.
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7.1.2 Experimental Results

Dynamic harmonic analysis experiments were conducted at elevated temperatures on

the S1 PnBG QC. The experimental setup is illustrated in the schematic of Figure 7.3.

The physical experimental setup is photographed in Figure 7.4. The infrared radiation

source is a 500 W halogen lamp. The tip of the thermal couple is placed approximately

5mm away from the device under test. In this configuration the maximum temperature

that can be generated at the tip of the thermal couple (the approximate location of the

device under test) is 65oC. The junction where the thermal couple is plugged into the

readout circuit is placed behind thermal shielding and remains at room temperature to

provide a cold junction.

The device under test moves during thermal expansion and during the experiment

the motorized stages were utilized to manually adjust the position of the device under

test to ensure the laser spot remained on the same position on the surface of each device.

This allowed for the vibration amplitude to be compared at different temperatures, since

any amplitude variations will be primarily due to temperature variations as oppose to

due to a change in the position of the device.

For each temperature measurement, thermal steady state was considered to occur

when the device stopped moving relative to the laser spot (indicating a relatively stable

position in the x̂ − ŷ-plane) and objective lens (that is, when the view of the device

through the microscope stops going out of focus, indicating a relatively stable position in

the ẑ-direction). These steady state conditions were observed to occur in approximately

1 hour.

Measurement results are displayed in Figure 7.5 and indicate that as temperature

increases from 24oC to 60oC the center frequency of the measured modes decreases

for both the S1 PnBG QC and the Square reference device. This measured reduction
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Thermal Couple 
Readout Circuit

Thermal Couple

Motorized 
Stages

Test Fixture 
and Device 
Under Test

Objective 
Lens

Infrared 
Radiation 

Source

Thermal 
Shield

Figure 7.4: Physical setup of the dynamic harmonic analysis experiments. The figure
depicts the infrared radiation source (a 500 W halogen lamp), thermal shield, thermal
couple, test fixture and device under test, motorized stage, microscope objective lens and
thermal couple readout circuit. The remaining equipment in the system is displayed in
Figure 6.2.
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in the hyper-band gap mode frequency contrasts the modeled increase in hyper-band

gap mode frequency near the band gap edge. This discrepancy may in-part be due to

the substrate not being included in the FEM model. In the experiment there may be

thermally induced variations in the substrate to which the PnBG QC is anchored, so in

the experiment the anchors of the PnBG QC may not be held at fixed locations. If the

substrate were to thermally expand, the anchors may diverge from one another so as to

counter act any tensile stress that may be created due to thermal expansion of the PnBG

QC. Such an alleviation of tensile stress may provide a mechanism for the experimental

measurements to deviate from the FEM model.

An increase in tensile stress may be expected to increase normal mode frequency,

while a decrease in Young’s modulus due to softening of the material at elevated tem-

perature may reduced normal mode frequency. In the model of Figure 7.2, some modes

appear to increase in frequency while other modes appear to decrease in frequency as

temperature is increased; this indicates that structural properties of the PnBG QC may

also control wether normal mode frequency increases or decreases with temperature.

Due to the elaborate thermomechanical behavior of the PnBG QC, and the unknown

variations in the thermal expansion of the substrate, further investigation may be per-

formed to conclude what is responsible for the reduced normal mode frequency observed

in experiments.

The amplitude, frequency and temperature values for the S1 PnBG QC and Square

reference devices are compared in Table 7.1. The trend in the presented experimental

results is that normal mode frequency and amplitude decrease at the elevated temper-

ature. Experimental band gap frequency may then also reduce with respect to tem-

perature (display a negative temperature coefficient) for the S1 PnBG QC; however, to

accurately deduce whether band gap location displays a positive or negative temperature
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coefficient, measurement of the center frequency of the normal mode peaks that upper

and lower bound the band gap would need to be performed versus temperature. It may

also be observed in Table 7.1 that the percentage change in the normal mode frequencies

appears to increase with frequency. The percentage change in the normal mode frequen-

cies in Table 7.1 do not appear to indicate that there is a dramatic difference between

the temperature dependence of the S1 PnBG QC and the Square reference device.
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7.2 Vibration Stabilized Resonator within

a Phononic Band Gap Quasi-Crystal

Last, the applicability of the PnBG QC architecture to signal processing elements is

developed numerically by interrupting the periodicity of the C1 PnBG QC, this inter-

ruption will be referred to as a defect state. The defect state is comprised of a circular

inclusion (of the same 40µm diameter as the other inclusions) placed in host region at

the center of the C1 PnBG QC. Modal analysis was performed following the method-

ology detailed in Section 4.2.3. The shape of modes 58, and 120, of the defected C1

PnBG QC are displayed in Figures 7.6, and 7.7, respectively, where the circular defect

state that was introduced into the middle of the PnBG QC may be observed. Modes 58,

and 120, are modes of the sub-band gap, and hyper-band gap, branches, respectively,

and display the characteristic mode shapes, and vibration patterns, that were observed

in the corresponding branches of the original PnBG QCs discussed in Section 4.2.3, and

displayed in Figure 4.17, respectively.

As may be observed in Figure 7.8, the new feature observed in the model of the

defected C1 PnBG QC is the presence of normal modes that lie within the frequency

range of the band gap (referred to as in-gap frequencies) of the original C1 PnBG QC,

which was presented in Chapter 3. The normal modes that are present at in-gap fre-

quencies are also referred to as defect states, six of which may be observed in Figure 7.8.

The FEM model of the mode shape of one of these defect states is illustrated in Figure

7.9, where it may be observed that the deformation of the mode shape primarily occurs

in the vicinity of the defect state that was introduced in the center of the C1 PnBG

QC. The magnitude of the displacement field in the region surrounding the defect state

inclusion is relatively small. The vibrations of the defect state may then be considered
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Figure 7.8: Finite element method model of the frequency versus mode number char-
acteristic of the defected C1 phononic band gap quasi-crystal structure that is depicted
in Figure 7.6. Within the band gap, normal modes, referred to as defect states, may be
observed.

to be localized within the PnBG QC. Further investigation may determine if vibrations,

at in-gap frequencies, originating from the substrate or electrostatic transducers may

be strongly attenuated before reaching the defect state, so as to make the defect state

immune to, or protected from, substrate vibrations and transducer forces that may be

present at band gap frequencies. This property may also have applicability to anchor

loss reduction in that the region surrounding the localized resonator (defect state) may

inhibit the propagation, or loss of, vibrations away from from the defect state.

Some defect state modes observed in Figure 7.8 for the defected C1 PnBG QC are
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also relatively distant from adjacent modes in frequency, due to the presence of the defect

state within the band gap region where there is a relatively low density of normal modes

with respect to frequency. As a result of the frequency separation, the defect state modes

may display improved immunity to interference from vibrations at adjacent frequencies.

In addition, the isolation of defect state modes in frequency provides narrow band-pass

filter functionality, while the sub-band gap branch may be developed to provide relatively

wide-band low pass filter functionality. Thus, the defect states are useful for creating a

more complex frequency selective response.

The defect state introduced here may be considered to be a point defect that is

isolated at the center of the defected C1 PnBG QC. This point defect state may be

moved to a different position in the C1 PnBG QC. Following the theory in [57], line

defects may also be introduced into the PnBG QC architecture presented in Chapter 3.

Line defects may create a localized waveguide through the PnBG QC. In this way, for

example, vibrations at line defect state frequencies may be permitted to transfer from

one edge of the PnBG QC to the other.

The properties that have been illustrated here for the defected C1 PnBG QC may be

further investigated to develop their applicability to vibration stabilization, anchor loss

reduction, signal processing element construction and auxiliary functions in MEMS and

mechanical systems.
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Chapter 8

Conclusions

A new architecture, referred to as the PnBG QC architecture, was developed for the

integration of PnBG crystal-like structures into silicon processes, methodologies were

developed to provide PnBG crystal-like behavior and electrostatic actuating transducers

were leveraged. The presented methodologies may be scaled to additional frequency

regimes and were investigated for micron-sized structures. Preliminary operation of the

proposed PnBG QC architecture was illustrated experimentally for PnBG QC devices

fabricated in the SOIMUMPs process. Experimental evidence of band gap behavior

(absence of normal modes) was observed for several PnBG QC devices in the 10 to 13

MHz frequency regime. Comparison with reference models and devices supports that the

observed band gap behavior is a specific property of the PnBG QC geometry. Reasonable

agreement between models and experiments provides some confirmation that the crystal

truncation, and edge and tether tuning design methodologies provide the desired band

gap operation. The applicability to physical temperature sensors of the PnBG QC

architecture was investigated numerically and experimentally and the tested PnBG QC

structure displayed a percentage change in normal mode frequency versus temperature
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that was comparable to the reference structure, with a higher percentage change in

normal mode frequency observed for higher order modes. The PnBG QC architecture

was also demonstrated to have applicability to the development of localized resonators

and potentially vibration stabilization and anchor loss reduction.

8.1 Contributions

This thesis developed the design methodologies, numerical and analytical model, real-

ization and experimental characterization of a new device architecture, referred to as the

PnBG QC architecture, by leveraging the science of PnBG crystals coupled with MEMS

modeling and fabrication technologies. The applicability of the PnBG QC architecture

was investigated numerically and experimentally for temperature sensors and numeri-

cally for signal processing element construction. The main contributions of this research

may be grouped into five areas which are summarized below.

1. Development of the Phononic Band Gap Quasi-Crystal Architecture

and Design Methodologies: The development of the PnBG QC architecture in this

thesis appears to present several studies that are the first of their kind, including (i) the

development of the novel PnBG QC architecture which was shown to be compatible with

SOI multiuser bulk micromachining MEMS fabrication technologies, (ii) the utilization

of free standing serrated edges along the truncation boundary of the PnBG QC, (iii)

boundary tuning to provide a mechanism to eliminate edge effect defect states and

enable complete band gap formation, (iii) the implementation of electrostatic (as oppose

to piezoelectric) transduction for actuation of PnBG crystal-like structures and novel

electrostatic transducer geometries, (iv) the utilization of circular and square crystal

truncation boundary geometries, as well as (v) the development of a tuning methodology
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for tethers to enable complete band gap formation in the presence of the non-idealities

of finite periodicity of the PnBG QC lattice and attachment of anchored tethers to the

PnBG QC. The PnBG QC architecture was developed to ensure compatibility with local

experimental characterization equipment which required the band gap behavior to lie

within the 0 to 20 MHz frequency range.

The unique crystal truncation and anchor tuning methodology systematically re-

moves edge effect defect states and shifts tether defect states to hyper-band gap branch

frequencies. Band gap behavior is achieved with PnBG QCs that are approximately six

lattice constants in dimension. Electrostatic transducers mitigate the need for piezoelec-

tric materials thereby improving silicon-compatibility and provide action at a distance

type forces so that the edges of the PnBG QC may be free standing for reduced anchor

loss. The primary energy carrying waves in the PnBG QCs appear to be standing waves,

in contrast to traditional traveling waves that are generated in piezoelectrically actuated

PnBG crystals. The circular truncation boundary geometry was shown to provide more

symmetrical electrostatic transducer electrodes than square truncation.

The PnBG QC architecture described here displays the geometry and behavior of a

two-dimensional distributed (as oppose to discrete) mechanical system of mechanically

coupled resonators designed utilizing PnBG crystal geometry to realize the band stop

frequency selectivity that is characteristic of a PnBG crystal. In contrast, typically

coupled resonator MEMS couple together discrete mass-spring resonator elements to

approximate bandpass filter functions [30, 98]. The order of (number of mass-elements

in) the proposed PnBG QC may be controlled relatively easily by adjusting the PnBG

crystal truncation boundary location. The PnBG QC architecture may have application

to the design of coupled mass-spring resonators.

2. Numerical and Analytical Model and Theory of Operation: The unique
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geometry of the proposed PnBG QC architecture, namely truncation of the PnBG crystal

by free boundaries and the attachment of the PnBG QC to mechanically grounded teth-

ers, introduces a unique set of boundary conditions on the elastic wave equation. Thus,

generic models of infinitely periodic PnBG crystals do not provide a complete model of

the proposed PnBG QC architecture and unique models of the PnBG QC architecture

were developed. Electrical, mechanical, and coupled electromechanical models were pre-

sented. Numerical models employ the FEM and analytical and semi-analytical models

were also developed.

The mechanical model illustrated that the proposed PnBG QC architecture appears

to display some of the characteristic behavior of a PnBG crystal. Namely, the shape

of the modes above and below the band gap of the proposed PnBG QC display differ-

ent characteristic shapes, similar to differing mode shapes of the acoustical and optical

branch modes of a PnBG crystal. The model differentiated between the behavior of a

PnBG QC and a plate with an arbitrary array of periodically placed etch holes. The

model illustrated that a plate with periodically spaced etch holes does not necessarily

display a band gap. The model also characterized the non-obvious outcome that careful

choice of inclusion geometry and the implementation of the proposed PnBG QC archi-

tecture design methodologies yields a structure that displays the band gap characteristic

of an ideal infinitely periodic PnBG crystal. Lastly, comparison with the model of homo-

geneous plate resonators and flat edged PnBG QC structures of comparable geometry

illustrated that the modal and band gap characteristics of the PnBG QC architecture

are specific to the serrated edge PnBG QC and not just generic properties of comparable

devices. The PnBG QC architecture provides a methodology to increase the density of

normal modes in sub- and hyper-band gap branch frequency regions, and simultaneously

decrease the density of modes (to zero) in band gap frequency regions to provide a broad-
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band absence of normal modes modes, which is analogous to the characteristic behavior

of a PnBG crystal. The wide band harmonic analysis implemented with the FEM model

indicated that the harmonic spectrum of the ẑ-component of displacement does display

an abundance of normal mode peaks over sub- and hyper-band gap branches and an

absence of normal mode peaks at band gap frequencies, this was identified to provide

a means for identifying the band gap activity by measuring the out-of-plane harmonic

spectrum of PnBG QC devices.

The mechanical model also illustrated the unique properties, and behavioral zones,

in the frequency versus mode number characteristic of the PnBG QCs: (i) at low fre-

quencies the PnBG QCs displays similar characteristics to a homogeneous plate, while

(ii) at intermediate frequencies the PnBG QC behavior dramatically deviates away from

homogeneous plate behavior, then (iii) at high frequencies the behavior of the PnBG QC

and homogeneous plate appear to converge. The boundaries of these behavioral zones

are often denoted by modes in which tether resonance occurs. This may indicate that

the tethers perturb the behavior of the PnBG QC and may in part be responsible for,

and may be utilized to mitigate or control, the division of the frequency versus mode

number characteristic into different behavioral zones. The model contrasted the effect

of circular and square truncation boundary geometry on the properties of the band gap.

The FEM models appear to have indicated that for the structures studied in this

thesis, the implementation of the design methodologies of Chapter 3 and use of serrated

edges in association with the PnBG QC geometry is mandatory to produce a structure

that displays the band gap behavior of a PnBG crystal. This supports the significance

of the PnBG QC architecture.

Comparison of numerical models of PnBG QC band gap location with the analytical

models of the Bragg frequencies of infinitely periodic honeycomb PnBG crystals indi-
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cated relatively comparable band gap locations and trends in band gap location versus

geometry. The similarities between the PnBG QC band gap model and the analyti-

cal Bragg frequency model of infinitely periodic PnBG crystals may support the notion

that the proposed PnBG QC architecture may adhere to some infinitely periodic PnBG

crystal theory.

Utilizing the FEM model, multiple sensitivity analysis were performed on the S2

PnBG QC. Band gap location was observed to change by less than 1% when the fixed

boundary conditions, which are attached to the tethers, are removed indicating a rela-

tively low sensitivity. A complete band gap remains present for extreme variations about

the nominal material density, Young’s modulus and Poisson ratio, with the hyper-band

gap branch displays a higher sensitivity to material property variations than the sub-

band gap branch. For a given inclusion radius, band gap width was observed to decrease

as hole spacing decreased. For a given inclusion radius, band gap width was observed to

increase as inclusion radius decreased. Band gap width was observed to be sensitive to

plate thickness, and for low plate thicknesses the band gap was observed to close. Hence

the band gap occurs for only specific combinations of PnBG QC geometry. Lastly, band

gap location was observed to be relatively insensitive to truncation diameter; however,

the number of sub-band gap modes was observed to be sensitive to truncation diameter.

The electrical model produced insight into the operation of the unique electrostatic

transducer geometries. Square truncation was shown to produce more asymmetrical

transducer geometries relative to circular truncation, namely for square truncation the

transducers with widely spaced inclusions have smaller overlap areas than the trans-

ducers with closely spaced inclusions. However, the electrical model indicated that the

asymmetries in the electrostatic force, which depends on transducer gap size as well as

surface area, were less than 5µN or 5% of the total force. Hence, despite being gener-
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ated by transducer electrodes that have asymmetrical geometry, approximately balanced

forces are applied to the four edges of square truncated PnBG QCs. By symmetry, the

electrical model predicted that balanced forces would be generated by the electrostatic

transducers of circular truncated PnBG QCs. Per unit die area, square truncation yields

larger transducer overlap areas and larger electrostatic forces than circular truncation.

Due to the serrated edges, the PnBG QCs display larger transducer electrode overlap ar-

eas than the corresponding flat transducers of the Square and Circular reference devices;

however, the flat transducers of the Square and Circular reference devices display larger

electrostatic forces due to having a smaller gap size. The electrical model indicated

that the test fixture circuit will apply a relatively uniform voltage to the electrostatic

transducers from approximately DC to 20 MHz. For a uniform electrostatic force, the

time harmonic models indicate mechanical actuation of in-plane and out-of-plane modes

from approximately DC to 20 MHz suggesting that the novel electrostatic transducer

geometries would produce the desired wide band excitation of the PnBG QCs.

The semi-analytical models identified that at a given frequency specific physical

regions of the PnBG QC appear to predominantly behave either approximately as a

mass element or a spring element. Each mass element appeared to display six degrees of

freedom. The PnBG QCs were then approximated as mass-spring systems. From these

observations, a semi-analytical model of the number of sub-band gap modes was derived.

Analogies to analytical models of mass-spring systems and infinitely periodic PnBG

crystals were utilized to explain the slope and piecewise linear frequency versus mode

number characteristics of the PnBG QCs. Next, the concept of virtual mechanical ground

was applied to reduce the complexity of the FEM model down to a subset that could

be approximated as a mass-spring system with a single mass. Semi-analytical flexural

plate and beam models of these simplified mass-spring systems were developed to predict
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their structural properties of stiffness and mass, from which a lumped element vibration

model was developed, for select normal modes of the PnBG QCs. The percentage error is

approximately ±100% between the semi-analytical flexural plate and beam models and

the numerical FEM model. It was observed from the large error in the semi-analytical

virtual mechanical ground mass-spring models of the sub- and hyper-band gap branch

modes, that improved analytical or semi-analytical models are needed. A more complete

model may employ a periodic mass-spring network; this observation may support the

notion that the PnBG QCs are fundamentally mechanically periodic structures.

Lastly, the mechanical and electric models were combined to model the coupled elec-

tromechanical behavior of the PnBG QC architecture. A steady state electromechanical

model illustrated the shape of the PnBG QCs deformation that is produced by the elec-

trostatic transducers and indicated the magnitude of displacement under a static voltage.

The electromechanical FEM model displayed reasonable agreement with the analytical

model for the magnitude of the capacitance and electrostatic force and indicated that

the dominant component of the force generated by each electrostatic transducer is as

desired in the in-plane direction orthogonal to the length of the transducer. Lastly, the

free-standing portion of the fixed electrode of the electrostatic transducer was observed

to undergo considerable deformation suggesting that an improved fixed electrode may

be developed.

3. Realization: Due to the relatively unique structure of the PnBG QCs, there

was uncertainty in whether the PnBG QC architecture would fabricate accurately. The

sensitivity analysis of the FEM models indicated that complete band gaps would only

form for specific ratios of feature size to plate thickness and SOIMUMPs with a 25µm

thick single-crystal-silicon layer was found to achieve the required ratio of minimum

feature size to plate thickness. In addition, with relatively few design rule violations,
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SOIMUMPs was hypothesized to enable the realization of the unique electrostatic trans-

ducer electrode geometry (comprised of surfaces of multiple radii of curvature) and re-

alization of anchors that support the relatively large PnBG QC which is free standing

and comprised of relatively massive regions interconnected by slender regions. Scanning

electron microscope images and optical profilometer images provided reasonable evi-

dence for the successful demonstration of the realization of the PnBG QC architecture

utilizing SOIMUMPs with a 25µm thick single-crystal-silicon layer. The gap between

the electrodes of the electrostatic transducers, upon visual inspection of the SEM im-

ages, appear to have been fabricated larger than the drawn value of 3µm in the areas of

high radius of curvature, and may be reduced to 2µm in future designs to yield higher

electrostatic force. Profilometer measurements indicate that around curved features, on

the top of the Silicon layer, there appears to be a groove which may reduce the thickness

of the Silicon layer between inclusions. The models indicate that the hyper-band gap

branch may be strongly dependent (third order dependence) on the geometry between

the inclusions and so the aforementioned groove may be the source of significant error

between the model and measurements of hyper-band gap modes.

4. Experimental Characterization: The results of the vibrometer measurement

of the harmonic spectrum for the out-of-plane component (ẑ-component) of the S1 and S2

PnBG QCs provides reasonable experimental support that the S1 and S2 PnBG QCs may

display band gap behavior from approximately 10 MHz to 13 MHz. This experimental

result was reasonably anticipated by the FEM model. The appearance of a band gap

(a single frequency region, of significant width, where normal mode resonances were not

observable) in the spectrum of the aforementioned PnBG QCs was not observed to be

present in the spectrum of the Square reference device. The behavior of the S1 and S2

PnBG QC devices was thus shown to differ significantly from that of a homogeneous
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plate.

An approximation of the mechanical quality factor of the PnBG QC device nor-

mal mode resonances was obtained by fitting a first-order harmonic oscillator model to

several of the normal mode resonant peaks in the measured harmonic response of the

S2 PnBG QC. Quality factor was observed to vary from 180 to 4000. The fit of the

first order harmonic oscillator model to the measured normal mode peaks appeared to

provide an approximate experimental means to measure the mass of the S2 PnBG QC

device, potentially material density and hence perform material property characteriza-

tion. Approximations of the effective spring stiffness and damping coefficient were also

obtained.

Reasonable agreement between the node and anti-node topography of the fourteen

FEM model and measured mode shapes illustrated confirmation of the characteristic

out-of-plane sub- and hyper-band gap mode shapes for the S1 and S2 PnBG QC and sub-

band gap mode shapes for the C2 PnBG QC. Some of the experimentally measured mode

shapes were absent from the FEM model and may be produced by error in fabrication,

FEM model, measurement or electrostatic actuation. By comparing the PnBG QC mode

shapes with those of the Square homogeneous plate reference devices, the influence of

the PnBG QC geometry on the mode shape was apparent due to the confinement of

vibrations within the periodically shaped host region of the PnBG QC.

The experimentally assembled frequency versus mode number characteristic pro-

vides reasonable support for an approximately piecewise linear relation between mode

frequency and number. The measured frequency versus mode number characteristic

provides reasonable support for the observed behavioral zones and the observations that

band gap location increases as geometry is varied from the S1 to the S2 to the C2

PnBG QC devices (that is, as the inclusion spacing increases for a fixed inclusion ra-
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dius and truncation geometry) and the frequency versus mode number characteristics

diverge from the origin and one another as frequency increases then converge at higher

frequencies.

The harmonic analysis versus DC bias voltage indicate a negligible (less than 50 Hz)

change in band gap location versus DC bias voltages from 0 to 100 VDC. As a result, the

application of balanced voltage to the relatively similar transducers of the S2 PnBG QC

device may assist in stabilizing the band gap location with respect to DC bias voltage.

The measured displacement amplitudes in the ẑ-direction for the sub-band gap ap-

pear to range from approximately 10nm to 10−4nm and for the hyper-band gap range

from approximately 10−2nm to 10−4nm. For the S2 PnBG QC, the maximum and min-

imum dynamic electromechanical coupling coefficients for the electrostatic transducers,

with a 100 V DC bias voltage, and peak-to-peak RF voltage of 10 V, for one mea-

surement point were observed to be 1nm/Vpp and 10fm/Vpp. The unique electrostatic

transducers successfully excite the out-of-plane modes of the PnBG QCs with a measur-

able displacement amplitude.

5. Applicability: Next, the performance of the PnBG QC architecture was inves-

tigated for application to physical temperature sensors, localized resonators, vibration

stabilization, anchor loss reduction and auxiliary applications in MEMS and mechanical

systems.

First, the temperature dependence of the band gap was investigated utilizing numeri-

cal FEM thermomechanical models and measurement of the dynamic harmonic response,

versus temperature, for the S1 PnBG QC device. The FEM model indicated that sub-

band gap resonant frequencies decrease (negative temperature coefficient) while some

hyper-band gap resonant frequencies increase (positive temperature coefficient). For the

temperatures and frequencies modeled here, the models indicate that sub-band gap fre-
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quencies, as compared to hyper-band gap frequencies, would tend to display a higher

percentage change in normal mode frequency for a given temperature change.

Dynamic harmonic analysis experiments were conducted at elevated temperatures

on the S1 PnBG QC. Measurement results indicated that as temperature increased from

24oC to 60oC the center frequency and amplitude of the measured modes decrease

for both the S1 PnBG QC and the Square reference device. The measured reduction

in the hyper-band gap mode frequency contrasts the modeled increase in hyper-band

gap mode frequency. Experimentally, band gap frequency may then also reduce with

respect to temperature (display a negative temperature coefficient) for the S1 PnBG QC

and requires further investigation. Experimentally the percentage change of the normal

mode center frequencies appears to increase with frequency, which contrasts the FEM

model. In the experiment, thermally induced variations in the substrate (anchors) may

in-part account for the observed discrepancies between measurement and model, which

has a fixed anchor locations. The experimentally observed percentage change in the

normal mode frequencies do not indicate that there is a dramatic difference between the

temperature coefficient of the S1 PnBG QC and the Square reference device.

Second, the utility of the PnBG QC architecture to create increasingly complex

frequency selective characteristics, vibration stabilized or localized resonators, reduced

anchor loss and potentially improved mechanical systems was developed through the

introduction of defect states into the PnBG QC architecture. The mode shape of the

defect state appears to be localized within the center of the PnBG QC and this be-

havior may have application to vibration stabilization and anchor loss reduction. Some

defect state modes are also relatively distant from adjacent modes in frequency and so

the defect state modes may display improved immunity to interference from vibrations

at adjacent frequencies. In addition, the isolation of defect state modes in frequency
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provides narrow band-pass filter functionality, while the sub-band gap branch may be

developed to provide relatively wide band low pass filter functionality. Thus, the defect

states are useful for creating a more complex frequency selective response.

The experimental data supports the development of new knowledge into the integra-

tion of phononic band gap phenomenon in silicon-based MEMS utilizing a novel electro-

static transduction mechanism utilized to excite PnBG QC devices. With approximately

130 modes in the sub-band gap branches, the PnBG QC architecture may be one of the

most multi-mode two-dimensional MEMS coupled-mass resonator created. The PnBG

QC architecture presented here may provide insight into the design of two-dimensional

mechanically coupled resonators by providing a relatively easy method to interconnect

large arrays of mass-spring resonator elements.

Lastly, many of the phenomenon studied here may be scalable to additional frequency

regimes. For example, if the PnBG QC architecture presented here were scaled from a

25µm thick layer to a 2µm thick layer (a scale factor of 25/2 = 12.5), which is obtainable

utilizing a surface micromachining fabrication process, by the scalability of the elastic

wave equation, the band gap location may scale from approximately 13 MHz to 162.5

MHz (∵ 13MHz × 12.5 = 162.5MHz).

8.2 Future Research

The measured data provides reasonable experimental support for the modeled behavior

of the PnBG QC architecture, and the investigation into the applicability of the PnBG

QC architecture to sensors and signal processing elements supports several applications.

Future work may then be fruitful and is discussed here.

Phononic Band Gap Quasi-Crystal Development: The PnBG QC architecture
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may be adapted to other material systems, inclusion geometry, defect states (move

the position of point defects, introduce a line defect, and so forth), crystal truncation

geometry (diamond, and so forth), fill factors, tether types and geometry and crystal

lattices. This may further enable the realization of increasingly complex functionalities.

It may be possible that for PnBG QCs that are a relatively large numbers of lattice

constants in dimension, or through very careful design, the edge effect defect states

may be mitigated without the use of a serrated or periodic edge. Hence, additional

PnBG crystal truncation mechanisms may continue to be examined. A more elaborate

investigation of tether tuning may be performed, tethers may be tuned to sub-band gap

branch frequencies (as oppose to hyper-band gap frequencies, as investigated here) for

increased compliance, and other tether geometries may be utilized. The utilization of

(111) silicon for the fabrication of PnBG QCs may mitigate the effects of the silicon

anisotropy since the Young’s modulus, Poisson ratio and shear modulus are isotropic

on (111) silicon [140]. Tension control and the effects of residual and in-plane stress on

the behavior of the PnBG QC may be investigated. Laser trimming may potentially be

employed to tune and create defect states in the fabricated PnBG QC so as to obtain

additional experimental data from the fabricated devices.

Decreasing the ratio of lattice constant to plate thickness for the PnBG QC architec-

ture will increase the stiffness in the out-of-plane direction and shift both the out-of-plane

sub- and hyper-band gap modes to higher frequencies. This may potentially create a

sub-band gap branch that displays only in-plane modes. If this is possible, it may then

be feasible to further develop the geometry of the PnBG QCs to create two branches of

in-plane modes: one branch of in-plane modes that, for example, mimic the acoustical

branch modes of a PnBG crystal and one branch of in-plane modes that, for example,

mimic the optical branch of a PnBG crystal. Each of the two branches of in-plane modes

245



would have to display distinct mode shapes (vibration patterns) so that they occur in

separate frequencies ranges. The in-plane sub-band gap vibration patterns presented in

this thesis may provide insight into how to achieve two branches of in-plane modes that

display distinct mode shapes, since for example, distinct in-plane mode shapes comprised

of purely rotational, mixed rotational-translational, and purely translational vibration

patters were observed. Through careful scaling of the PnBG QC geometry, two branches

of distinct in-plane mode shapes may be designed to occur in frequency ranges that are

separated from one another by a range of frequencies where normal modes are absent

to produce band gap phenomenon with purely in-plane modes. Such a development of

band gap behavior for branches consisting of purely in-plane modes may assist energy

transmission and retrieval to and from the PnBG QC at branch mode frequencies since

the electrostatic transducers of the PnBG QC architecture appear to operate primar-

ily on in-plane motion. Alternatively, transducers that are optimized for out-of-plane

motion may be developed to leverage out-of-plane vibrations modes.

Anchor Optimization: A complete study of an anchor design space may be per-

formed. The PnBG QCs may be supported at their center or at a single edge for reduced

anchor loses. Though the current set of anchors appear to be tuned to mitigate defect

state creation, the current tethers do not reflect the periodicity of the PnBG QC and

may have been observed in the vibration pattern analysis of Figure 4.17 to resonate at

the boundaries of the behavioral zone and thus perturb the behavior of the PnBG QC

away from ideal behavior. Other tether geometries, such as tethers that are a natural

extension of the PnBG QC geometry, may be investigated for the control or mitigation

of behavioral zone boundaries. For example, a slender portion of the host region of the

PnBG QC may form a tether while a larger portion of the host region of the PnBG QC

may be directly anchored to the substrate.
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Electrostatic Transducer Development: It may be recommended to reduce the

3µm gap between the regions of high curvature in the electrodes of the electrostatic

transducer to 2µm to increase the magnitude of the electrostatic force. Self-aligned elec-

trode techniques may also be applied to produce a smaller electrostatic transducer gap.

The geometry of the fixed electrode may be optimized to place its mechanical resonant

modes away from the frequency regions where actuation is desired to occur; this may

improve transducer efficiency and thereby improve accuracy in the measurement of the

band gap location by ensuring that the electrostatic transducer behaves more uniformly

(does not resonate) at all frequencies of interest. The electrical signal that is applied to

the transducers should be measured so that any frequency selectivity in the electrical

excitation circuit can be de-embedded from measurements. The capacitance of the elec-

trostatic transducer may be more accurately modeled to account for the curvature of the

electrodes and fringe fields. Matching networks may be implemented to optimize power

transfer to the electrostatic transducers. An electrical read-out circuit may be developed

to electrically sense the motion of the PnBG QC via the electrostatic transducers. The

existing transducers may be reconfigured, for example, not all four transducers need

to be shorted together, to more efficiently excite other modes, for example using dif-

ferential signals. Phased array transducers may be developed to more efficiently excite

the higher order modes of the PnBG QC. Through a modification of the PnBG QC

architecture, capacitive MEMS ultrasonic traveling wave transducers or piezoresistive

transducers may be utilized. The PnBG QC may also be placed in a feedback loop to

assist in the excitation of the PnBG QC.

Measurement: Mechanical measurement of the in-plane modes of the PnBG QC

may be performed by developing an optical or electrical measurement system. Thermal

measurements may be improved through the development of an apparatus that can be
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utilized to guard the (electrical and optical) components of the test fixture and mea-

surement system from the thermal source. Such an apparatus may take the form of a

thermal chamber that has a window through which optical characterization may be per-

formed, a more localized heat source, lenses that direct the infrared radiation directly

at the device or additional thermal shields (for example, a cylindrical thermal shield

around the objective lens of a microscope). The PnBG QC may be characterized at

higher temperatures to test the behavior in harsh environments and potential plastic

deformation that may ensue. Higher temperature solder may be needed to perform high

temperature measurements. Optical mode shape topology measurement may be per-

formed at elevated temperatures (this may require a thermal chamber with an optical

window, for laser access, to maintain a constant temperature over long periods of time

since the present mode shape topology measurements take approximately 40 hours per

mode). A network analyzer or lock-in amplifier may be utilized to increase the rate

at which measurements may be obtained. The use of a network analyzer would also

enable phase information to be measured, so that the relative phase of different physical

regions within each normal mode shape may be obtained. An infrared thermometer,

or thermal couple on the surface of the test fixture, may be implemented to track the

temperature of the PnBG QC more accurately during temperature measurements. To

decrease measurement time, instead of performing harmonic analysis, a chirped pulse

may be utilized to excite the PnBG QCs so that more frequency information may poten-

tially be obtained in a single measurement. Characterization may be performed for the

reference device with flat edges and other PnBG QCs that were not able to be measured

due to time constraints. The capacitance of the electrostatic transducers, including the

feed-through capacitance of a device, may be measured to quantify their physical capac-

itance and assist in modeling. S-parameters measurement of the PnBG QC devices may

assist in the characterization of the electrical circuit and electrical parasitic elements.

248



The harmonic spectrum of the fixed electrode may be measured to experimentally de-

termine the non-ideal behavior of the fixed electrode. To accurately deduce whether the

band gap frequencies of the PnBG QC devices have positive or negative temperature

coefficients, measurement of the center frequency of the normal mode peaks that upper

and lower bound the band gap may be performed versus temperature. Loss mechanisms

such as thermoelastic and Akhiezer dissipation may be investigated as a part of the de-

termination of whether the PnBG QC may be utilized for anchor loss reduction. Raman

spectroscopy may assist in the characterization of loss. Damping and anchor losses may

also be experimentally investigated utilizing optical techniques.

Modeling: The temperature, mode shape topography (spatial domain) and time

and frequency domain (dynamic harmonic analysis) measurement data may be utilized

to refine the electrical, thermal and mechanical material property data utilized in mod-

els. The electrical resistance of the PnBG QC can be modeled and measured (possibly

in CoventorWare R© MemHenryTM ) and incorporated into the electrical models. The

electrical circuit model of the PnBG QC can be developed further. Models should be

developed to account for the anisotropy of silicon. PnBG crystals that have a compara-

ble crystal structure to the PnBG QCs may be investigated. Periodic two-dimensional

mass-spring network and thermomechanical models should be refined. The thesis con-

tained a sensitivity analysis for the square truncated PnBG QCs, a similar sensitivity

analysis may be performed for circularly truncated PnBG QCs. A transient analysis

model should be developed to build insight into the time and frequency dependence of

the electromechanical coupling coefficient on transducer voltage, electrostatic force, and

inertia and damping within the PnBG QC. An electromechanical model of the output-

current generation capability of the electrostatic transducers may be developed. The

mechanism that controls the polarity of the temperature coefficient of the PnBG QC
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may be modeled further.

Nanoacoustics: Through the scalability of the elastic wave equation, the PnBG QC

architecture presented here may be scaled to nanometer dimensions to provide phonon

control at hyper-sonic frequencies. The PnBG QC architecture may have applicability

in nano-electro-mechanical-systems and high quality factor and high linearity graphine

may be a suitable material.

Discretized Phononics: The presented continuous elastic wave PnBG QC archi-

tecture appears to be a distributed mechanical system and may be discretized into an

array of mechanically coupled lumped element resonators.

Simultaneous Photonic-Phononic Integrated Circuits: The PnBG QC archi-

tecture presented here may be compatible with integration into planar photonic inte-

grated circuits to assist in enhanced photon-phonon control and interaction.

Applicability: The applicability of the PnBG QC architecture may be further in-

vestigated for physical, chemical and bio-sensors, vibration stabilization, anchor loss

reduction, sensor and signal processing element construction, coupled mass-spring res-

onator arrays, energy harvesters and the design of distributed mechanical systems in

general. The vibration stabilized local resonator design that was presented in Chapter

7 may be developed and fabricated.
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Appendix A

Mechanical Properties of Materials

The mechanical material properties and elastic wave velocities for air and the [100]

direction in silicon are listed in Table A.1.

Table A.1: Mechanical material properties for air and the [100] direction in silicon. The
velocity of the longitudinal, and transverse, components of the elastic wave are denoted
as, cl, and ct, respectively.

Material Density cl ct
Name [g/cm3] [cm/s] [cm/s]
Air 0.001225 30000 0
Silicon 2.33 895000 536000
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Appendix B

Finite Element Method Mesh

Convergence Study for Phononic

Band Gap Quasi-Crystal Model

The modal analysis extraction method in ANSYS R© utilizes the Block Lanczos calcula-

tion of eigenvectors and the FEM meshes utilize SOLID186 elements (unless otherwise

specified) [141]. A convergence study was performed for the S1 PnBG QC since it dis-

plays the minimum feature size of 2um (the minimum inclusion spacing), and so may

be represented by the finest mesh, to develop insight into the degree of mesh refinement

that should be utilized to represent the PnBG QCs. The FEM mesh was refined three

times as quantified in Table B.1 and illustrated in Figure B.1. These FEM meshes dis-

play one element across the features of minimum feature size and an increasing number

of elements in the ẑ-direction.

The mesh refinement study indicates the band gap location, mode frequencies and

the overall shape of the frequency versus mode number characteristic display relatively
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small variations as the mesh is varied between the three FEM meshes of Table B.1 and

Figure B.1. Close inspection indicates that two adjacent modes that have very similar

frequencies may swap mode numbers as the mesh is refined; however, the mode shape of

both modes would typically be present for each mesh and the presence of the band gap

and the overall shape of the frequency versus mode number characteristic would remain

relatively constant as the mesh is varied.

Since the PnBG QCs are comprised of regions that are relatively large in comparison

to the dimensions of the region between the inclusions, a mesh refinement which imple-

ments smaller (larger) element sizes in the regions of smaller (larger) feature size may

be more computationally efficient and accurate. Such a mesh refinement was performed

in ANSYS R© utilizing SOLID187 elements and implemented meshes with two, three and

four (for which the corresponding mesh is referred to as mesh 4) elements, across the

region of minimum inclusion spacing. Mesh 4 is shown in Figure B.3.

As shown in Figure B.2, the frequency versus mode number characteristic computed

utilizing mesh 4 (displayed in Figure B.3), which implements four elements across the

region of minimum inclusion spacing, is relatively consistent with the result obtained for

the unrefined mesh 3 (displayed in Figure B.1), which implements one element across

the region of minimum inclusion spacing. Often course meshes yield sufficient accuracy

for the overall mode shape and relative mechanical displacements (as long as absolute

values are not required) [138] and in some cases perhaps mode frequency. In addition,

according to Section 4.2.4, the minimum effective wavelength, λ, may be on the order

of approximately 1000µm; thus, even mesh 1, with an element size of 2µm, provides

approximately 500 elements (sample points) per wavelength, which is more than the

Nyquist sampling theorem requires. Calculations of mechanical stress or absolute value

of displacement may tend to display a higher sensitivity to mesh density [138]. The ab-
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Mesh 1: mesh generated for an ANSYS® element size parameter of 12.5 um. 

 

Mesh 2: mesh generated for an ANSYS® element size parameter of 10.25 μm. 

 

Mesh 3: mesh generated for an ANSYS® element size parameter of 8.25 um. 

Figure B.1: Image of the meshes utilized in the finite element method method conver-
gence study.
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solute value of mode frequency, mechanical stress and the absolute value of displacement

may be primarily relevant to future work, while the current work is primarily interest in

overall trends and relative behavior. Figure B.4 displays a closeup of the region where

the frequency versus mode number characteristic of the S1 PnBG QC displays the great-

est sensitivity to the mesh; it may be observed that mesh 3 and the refined mesh 4

display comparable results, however, as described in Figure B.4, the duration of time

required to obtain this result utilizing mesh 4 was more than 10 times the duration of

time required utilizing mesh 3.
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Figure B.2: Frequency versus mode number characteristic, for the S1 phononic band gap
quasi-crystal, generated utilizing modal analysis in ANYSYS R© and the finite element
meshes, of Table B.1 and Figure B.1 and Figure B.3, which were utilized to perform
a convergence study. The convergence study indicates that the band gap location and
overall shape of the mode frequency versus mode number characteristic is relatively in-
sensitive to the mesh utilized in the convergence study, since all four frequency versus
mode number characteristics lie approximately on top of one another. One region, dis-
played in detail in Figure B.4, of the frequency versus of the mode number characteristic
displays an increased sensitivity to the mesh; this region appears to be within the vicinity
of where in-plane tether resonances are observed to occur on the boundary of behavioral
zones V and VI as illustrated in Figure 4.17 and may indicate that the tether resonant
modes, or nearby modes, are relatively sensitive to the mesh.
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Figure B.4: Closeup of the region of Figure B.2 where the frequency versus mode number
characteristic of the S1 phononic band gap quasi-crystal displays the highest sensitivity
to the finite element method mesh.
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Appendix C

Density of States Calculation for

Phononic Band Gap

Quasi-Crystals

A Density of States (DOS) calculation provides information regarding the frequency

spacing of the modes of a PnBG QC. A higher DOS implies more closely spaced modes.

For application to the frequency versus mode number characteristics presented in this

thesis, the DOS will be defined as:

DOSnormalized ,
1

∆f
∆n

, (C.1)

where ∆f is frequency difference between adjacent normal modes and ∆n the difference

between the mode numbers of the corresponding modes of the frequency versus mode

number characteristic. In the vicinity of adjacent degenerate modes (adjacent modes that

260



have the same frequency) the DOS is infinity. When the modes are evenly distributed,

and there are not too many closely spaced modes, the average DOS of two structures

may be compared; however, when a structure displays a few modes that are more closely

spaced than the majority of modes, the average DOS can misleadingly become large. At

band gap frequencies the DOS is not defined.

The DOS is computed for each of the S1, S2 and S3 PnBG QCs and plotted in Figure

C.1. It may be observed that there is no significant change in DOS between the square

truncated PnBG QCs; however, the average DOS of sub-band gap branches appears to

be consistently larger than the average DOS of hyper-band gap branches.
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Figure C.1: Comparison of the frequency versus mode number characteristics and corre-
sponding density of states calculated for the square truncated PnBG QCs. The average
density of states over each branch is indicate by the thick vertical dotted line that is
superimposed upon the plot of DOSnormalized.
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Appendix D

Semi-Analytic Vibration Model

Calculations

The mass and stiffness values computed by the semi-analytical structural analysis per-

formed in Section 4.2.4 and summarized in Table 4.6 for the S2 PnBG QC will now be

substituted into the analytical model of the resonant frequency of the first order har-

monic oscillator shown in Figure 4.25. To resultant resonant frequencies are fitted to

the corresponding resonant frequencies of the FEM model for the complete PnBG QC.

The resonant frequencies and fitting values are summarized in Table 4.6.

Sub-Band Gap Modes 62 and 87

The resonant frequency of the 1DOF models displayed in Figures 4.22, and 4.23,

for the sub-band gap modes 62, and 87, respectively, for the S2 PnBG QC may be ap-

proximated utilizing the model for the resonant frequency of the 1DOF lumped element

harmonic oscillator shown in Figure 4.25:
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fo,SBG,mode 62 =
1

2π

√
ktotal,mode 62

mlarge

= 0.417MHz (D.1)

fo,SBG,mode 87 =
1

2π

√
ktotal,mode 87

mlarge

= 0.245MHz. (D.2)

These resonant frequency values may be fit to the FEM model frequencies for mode 62,

and 87, of 4.637 MHz, and 6.219 MHz, utilizing the fitting parameters shown in Table

4.6. As seen in Table 4.6, the percentage error between the 1DOF lumped element

mass-spring harmonic oscillator model and the FEM model for modes 62, and 87, are

-91%, and -96%, respectively.

Before fitting, the total stiffness, k, for mode 62 is larger than that for mode 87, while

the effective mass is the same for both modes and so the first order harmonic oscillator

model inaccurately predicts the resonant frequency to be larger for mode 62 than for

mode 87. As may be seen in Table 4.6, after fitting occurs the total spring constants for

modes 62 and 87 do increase as frequency increases for a given mass, as may be expected

for the first order harmonic oscillator model.

Hyper-Band Gap Mode 149

The resonant frequency of the 1DOF beam model shown in Figure 4.24 for the hyper-

band gap mode 149 of the S2 PnBG QC may be approximated utilizing the model for the

resonant frequency of the 1DOF lumped element harmonic oscillator shown in Figure

4.25:
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fo,HBG,mode 149 =
1

2π

√
kHBG
msmall

= 1.753MHz. (D.3)

Equation D.3 indicates that the resonant frequency predicted by the beam model would

be 1.753 MHz, which lies below the minimum hyper-band gap frequency of 14.346 MHz

from Table 4.5. However, as mentioned in the structural analysis of Section 4.2.4, the

hyper-band gap mass, msmall, of Figure 4.18 is an upper bound on the effective mass,

and the spring constant khbg is a lower bound on the effective spring constant. Equation

D.3 for the resonant frequency of mode 149 of the S2 PnBG QC may be fit the to the

FEM model (Figure 4.24) frequency of 15.852 MHz utilizing the fitting parameters in

Table 4.6. As seen in Table 4.6, the percentage error between the FEM model and 1DOF

lumped element mass-spring harmonic oscillator model for mode 149 is -88.939%.

If instead of computing an effective spring constant to fit the fixed-fixed beam model

of Figure 4.24 and Equation D.3 to the FEM model frequency of 15.852 MHz for mode

149 of the S2 PnBG QC, alternatively, the fit may be performed by scaling the beam

length, l in Figure 4.21 and Figure 4.24 to an effective length of leff = 0.368l (or 37%

of the original length) for the same effective mass, meff = 2
3
msmall.

Hyper-Band Gap Tether Mode 161

The preceding vibration models utilized semi-analytical models of mass and stiffness

in a lumped element 1DOF harmonic oscillator model to compute the resonant frequency

the S2 PnBG QC modes. For the tether mode 161 of Figure 4.15, an alternative approach

may be to directly compute resonant frequency by solving the Eigenvalue problem for

the fundamental mode of a uniform hinged-hinged beam [142]:
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fo,TETHER,mode 161 =
π

2

√
EI

ml41
= 44.5591MHz,

I =
t× w3

1

12
,

(D.4)

where w1 = 9.9µm, l1 = 60.1µm, and t = 25µm are as denoted in Figure 3.4 and Table

3.1. The analytical model of Equation D.4 may be fit to the FEM model of the tether

resonant frequency of 17.752MHz using the fitting parameters listed in Table 4.6. The

Eigenvalue approach for mode 161 displays an error of 151.022%.

If the semi-analytical models of mass and stiffness were utilized in the lumped element

1DOF harmonic oscillator model shown in Figure 4.25 and fit to the FEM model of the

tether mode 161 the percentage error would have been -97.268%. The semi-analytical

structural analysis predicts an overly soft spring stiffness, while the Eigenvalue approach

of Equation D.4 predicts an overly stiff spring stiffness. The analytical model parameters

and fitted parameters for tether mode 161 computed utilizing the Eigenvalue and lumped

element approaches are summarized in Table 4.6.

The Eigenvalue approach of Equation D.4 utilizes a hinged boundary while the 1DOF

lumped element model of Figure 4.25 utilizes a fixed boundary condition, so there may

not be equal grounds for comparison of the Eigenvalue and lumped-element models

presented here. The Eigenvalue approach described in [142] along with a fixed boundary

may be studied further.
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D.1 Discussion of the Fitting Parameters

The results of the semi-analytical structural and vibration model and fitting parameters

are summarized in Table 4.6. As may be viewed in Table 4.6, for the sub-band gap modes

62 and 87 the effective mass is not scaled during the fitting of the semi-analytical model

to the FEM model. The reason for not scaling these sub-band gap mass values may

be observed in Figures 4.22 and 4.23 where the physical region of the mode shape that

represents the hexagonal mass element may be observed to display an approximately

uniform displacement fields. Hence, it may be reasonable to assume that this hexagonal

mass element may be approximated as a rigid body mass element for which the entire

inertia of the mass element is concentrated at a single point the vibration model. Under

these conditions, the effective mass may be very similar to the actual mass of the mass

element and so no scale factor was applied to scale the mass of this mass element for

modes 62 and 87.

In contrast, for the hyper-band gap modes 149 and 161, a scale factor of 2/3 was

chosen to scale the mass of the beam models. The reason for doing so may be observed in

Figure 4.24 where the mass of the beam is distributed over the entire length of the beam,

with the portion of the mass near the ends of the beam undergoing less displacement

than the portion of the mass near the center of the beam. Hence, it may be reasonable

to assume that to have the same inertia a lumped mass located at the center of the

beam should have a mass less than the physical mass of the entire beam. Typically a

scale factor of 0.24 is applied to compute the effective mass of rectangular cantilevers

[143]; thus, the scaling factor of 2/3 that was applied to the mass of hyper-band gap

modes 149 and 161 may be considered well within an order of magnitude of the scaling

factors typically used for rectangular cantilever structures. That said, during fitting,

the individual scaling factors that were applied to the mass and spring stiffness in Table
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4.6 are immediately divided by one another to produce just one scaling factor; the two

scaling factors that were applied to mass and spring stiffness have been presented here

just to illustrate a possible factorization of this one scaling factor.

D.2 Sources of Error

As may be viewed in Table 4.6 the semi-analytical model of resonant frequency displays

percentage errors ranging from approximately -100% to 150%. This section provides

possible sources of error.

Error may be attributed to the initial choice of geometrical parameters utilized in

the semi-analytical model. The initial geometrical parameters were the geometrical pa-

rameters, such as inclusion spacing, s, and lattice constant, a, of the S2 PnBG QC. As

described within the semi-analytical structural analysis of Section 4.2.4, the geometrical

parameters of the S2 PnBG QC did not, in most cases, accurately represent the ge-

ometry of the simplified beams and flexural plate geometries. Rather, the geometrical

parameters of the S2 PnBG QC provided a relatively unbiased initial geometry. As a

result, it was expected that scaling factors would have to be applied to the initial geo-

metrical parameters of Table 4.6. This methodology of choosing the initial geometrical

parameters for the semi-analytical model in a way that is clearly based on the existing

geometrical parameters of the PnBG QC was chosen in favor of an alternative approach

where the initial geometrical parameters could have been chosen in a way that would

introduce immediate scaling and fitting of the semi-analytical model parameters so as

to produce expected results prior to the application of fitting parameters.

The percentage error in Table 4.6 between the semi-analytical vibration model and

FEM model is relatively large independent of whether the one degree of freedom lumped
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element harmonic oscillator or Eigenvalue approach to vibration modeling is utilized.

The percentage error is 150% even for tether mode 161 where the geometry of the beam

model approximation is very comparable to the FEM model. Thus, in the absence of

other sources or error, the error in the beam model may not be due to a poor choice

of beam geometry, and may be attributed an in accurate analytical model. That said,

other sources of error may be present; for example, the Eigenvalue approach utilizes a

hinged boundary condition approximation of what in Figure 4.15 may more accurately

be described as a fixed, pinned, or elastic boundary.

Error also arises in the semi-analytical model since different modes, that have differ-

ent mode frequencies in the FEM model, may in one subset of the FEM model display

the same local vibration pattern and so possibly the same lumped element approxima-

tion, which would result in the same semi-analytical resonant frequency for modes that

have different frequencies. A more accurate semi-analytical model should describe a

subset of the PnBG QC that displays a unique vibration pattern for each mode.

Lastly, as the inclusion spacing, s, is reduced, hyper-band gap spring stiffness may be

expected to decrease which may in turn be expected to reduce hyper-band gap resonant

frequencies; however, some frequency regions of the hyper-band gap branches in Figure

4.10 may be observed to increase in frequency as inclusion spacing, s, is reduced. To

account for such complex behavior may require a more complex analytical model, for

example, that accounts for more than one DOF. For instance, Figure 4.20 illustrates that

the physical region of the PnBG QC that is approximated by the small lumped element

mass, msmall, of the hyper-band gap mass-spring network of Figure 4.18 appears to

display one translational DOF in the ẑ-direction and potentially some rotational degrees

of freedom so may be more accurately modeled utilizing more than one DOF. Due to

the many sources of error discussed within this section, the trends in the semi-analytical

269



structural and vibration model are primarily presented here for further development.
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Appendix E

Library of Scanning Electron

Micrograph Images of the

Fabricated Phononic Band Gap

Quasi-Crystal Devices

This appendix presents scanning electron micrograph images of the remaining devices,

that were not presented in the body of the thesis, on the IMOWTRF2 chip, which was

fabricated in SOIMUMPs [47]. The Square, S1 PnBG QC, S4 PnBG QC, S3 PnBG QC,

Circular, C1 PnBG QC and C3 PnBG QC devices are displayed.
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Figure E.1: Scanning electron micrograph of the Square homogeneous plate.

Figure E.2: Scanning electron micrograph of the S1 phononic band gap quasi-crystal.
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Figure E.3: Scanning electron micrograph of the S4 phononic band gap quasi-crystal.

Figure E.4: Scanning electron micrograph of the S3 phononic band gap quasi-crystal.
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Figure E.5: Scanning electron micrograph of the Circular homogeneous plate.

Figure E.6: Scanning electron micrograph of the C2 phononic band gap quasi-crystal.
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Figure E.7: Scanning electron micrograph of the C3 phononic band gap quasi-crystal.
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Appendix F

Library of Surface Metrology

Measurements of the Fabricated

Phononic Band Gap Quasi-Crystal

Devices

This appendix presents surface metrology measurements, taken utilizing the profilometer

shown in Figure 5.6, of the S2 PnBG QC. A 3D view of the tether region is displayed

in Figure F.1 and tether widths were measured in Figure F.2 to be greater than 10µm;

however, profilometer measurements may display relatively large error near the edges of

a device. The profilometer measurement of the entire S2 PnBG QC device is displayed

in Figure F.3, where the groove that was discussed in Section 5.2.2 may be observed to

be present across the surface of the S2 PnBG QC.
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Figure F.1: 3D view of the profilometer measurement of the tether of the S2 phononic
band gap quasi-crystal device.

Figure F.2: Profilometer measurement of the tether widths of the S2 phononic band gap
quasi-crystal device.
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Appendix G

Library of Harmonic Analysis of the

Fabricated Phononic Band Gap

Quasi-Crystal Devices

This appendix contains harmonic analysis measurements for the Square reference and

S2 PnBG QC devices on the IMOWTRF2 chip which was fabricated in SOIMUMPs [47].

Each harmonic measurement is taken over a 5 kHz to 20 MHz frequency range utilizing

the spectrum analyzer (shown in Figure 6.2) set to a 1 Hz sense resolution bandwidth.

It is notable that the vibrometer spectrum for Point 3 in Figure G.2 does not appear

to display resonant peaks above 13 MHz; this may in part be due to the laser spot

being located on or near the node location that was observed in Section 4.2.3 in this

physical region for the majority of the hyper-band gap mode shapes that are present in

this frequency region.
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Figure G.1: Spectrum of the homogeneous Square reference device taken at the points
denoted by the white spot in each inset.
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Figure G.2: Spectrum of the S2 phononic band gap quasi-crystal device taken at the
points denoted by the white spot in each inset.
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Appendix H

Library of Mode Shape Topology

Measurements of the Fabricated

Phononic Band Gap Quasi-Crystal

Devices

This appendix contains mode shape topography measurements for the S1 PnBG QC

on the IMOWTRF2 chip which was fabricated in SOIMUMPs [47]. Each mode shape

measurement takes approximately 40 hours utilizing the spectrum analyzer (shown in

Figure 6.2) set to a 0.1 Hz sense resolution bandwidth.
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Figure H.1: Measured normal mode surface topography for the S1 phononic band gap
quasi-crystal. Sub-Bandgap modes are: (n=1, 720.00 kHz), (n=18, 1.168350 MHz),
(n=51, 2.938000 MHz), (n=71, 4.067200 MHz), (n=83, 4.929200 MHz), (n=97, 5.966350
MHz), (n=105, 7.019700 MHz), (n=127, 8.327800 MHz) and (n=138, 9.184400 MHz).
Hyper-Bandgap modes are: (n=140, 13.270550 MHz), (n=147, 16.157050 MHz), (n=177,
19.606400 MHz), (n=188, 17.281250 MHz) and (unknown hyper-bandgap I, 17.281250
MHz).
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Appendix I

Discretized Phononic Band Gap

Quasi-Crystals

This appendix utilizes the analytical model presented in [86] to design mass-spring net-

works according to PnBG crystal theory. A discretized PnBG QC will be defined as a

periodic mass-spring network that is truncated to a finite periodicity. Discretized PnBG

QCs approximate the frequency selectivity of PnBG crystals (see Chapter 1). The be-

havior of the discretized PnBG QC will be compared with that of infinitely periodic

mass-spring networks. Section I.1 presents the dispersion curve of infinitely periodic

mass-spring networks, while Section I.2 presents the spectrum and frequency versus

mode number characteristic for a discretized PnBG QC.

I.1 Infinitely Periodic Mass-Spring Networks

An Infinitely Periodic Mass-Spring (IPMS) network is displayed in Figure I.1(a). Em-

ploying the analytical model presented in [86] (noting that in [86], the expression below
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Equation 9 should read Ci = 2Cc + Cs −mnω
2), the dispersion curve of the IMPS may

be computed for various conditions as displayed in Figure I.2. It may be noted in Figure

I.2 that only the IPMSs that have contrasting mass elements, m1 6= m2, display a band

gap between the Longitudinal Acoustical (LA) and Longitudinal Optical (LO) branches.

Further analysis is presented in [86].

Cs 
us=0 

Cc m1 m2 m1 m2 
Cc Cc Cc 

Cs 
vs=0 

Cs 
us+1=0 

Cs 
vs+1=0 

Cs 
u1=0 

F 
Cc m1 mN 

Cc 

Cs 
u2=0 

Cs 
uN=0 

m2 

(a) (b) 

Figure I.1: (a) Infinitely periodic mass-spring network with displacement of large masses,
m1, denoted as us, and displacement of small masses, m2, denoted as vs. (b) Truncated
periodic mass-spring network comprised of N masses, with time harmonic force, and
displacement, amplitudes of F , and un, respectively. Coupling and suspension spring
constants are denoted as Cc and Cs. Each mass element is anchored to mechanical
ground via a suspension spring. [86]

I.2 Discretized Phononic Band Gap Quasi-Crystal

Mass-Spring Networks

An truncated periodic mass-spring network, or discretized PnBG QC, is displayed in

Figure I.1(b). Employing the analytical model presented in [86], Figure I.3 displays the

harmonic response result for a 33-mass discretized PnBG QC, which has the parame-

ters listed in Table I.1. The band gap location in the harmonic response of Figure I.3

approximates the equivalent IPMS band gap location which is denoted by fL and fH .

The frequency versus mode number characteristic of the 33-mass discretized PnBG QC
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Figure I.2: Dispersion relations for diatomic (m1 6= m2) and monatomic (m1 = m2)
IPMS networks. Longitudinal Acoustical (LA) and Longitudinal Optical (LO) branches
are displayed over the first Brillouin zone for Cs 6= 0 and Cs = 0. K is the wave vector
in the longitudinal direction. The lattice constant is a = 1 m. This figure represents a
correction to that presented in [86].

Table I.1: Geometrical parameters of the 33-mass discretized phononic band gap quasi-
crystal.

Large mass m 32 ng 1 
Small mass m 12 ng 2 
Suspension spring constant C 70 N/m s 
Coupling spring constant C 10 N/m c 

 
 
 

 
 
 
 
 
 

 

is displayed in Figure I.4.
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Figure I.3: Time harmonic amplitude versus frequency for each mass in a 33-mass
discretized phononic band gap quasi-crystal.

Figure I.4: Frequency versus mode number characteristic of a 33-mass discretized
phononic band gap quasi-crystal. The slope of a line that passes through the branch
below the band gap is slightly larger than the slope of a line that passes through the
branch above the band gap.
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Appendix J

Measurement of the Transducers of

the Phononic Band Gap

Quasi-Crystal Architecture

Section J.1 of this appendix presents harmonic analysis measurements of an electro-

statically actuated prototype PnBG QC, which was fabricated prior to the development

of the PnBG QC architecture that was presented in the body of this thesis, and was

utilized to demonstrate wide band actuation up to approximately 8 MHz, with a mea-

surable amplitude. This provided preliminary data for the electrostatic actuation of

PnBG QCs. Section J.2 of this appendix presents dynamic harmonic measurements of

the fixed transducer electrodes of the S2 PnBG QC.
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J.1 Preliminary Investigation of Electrostatic Actu-

ation of Phononic Band Gap Quasi-Crystals

To test the ability of electrostatic transducers to actuate PnBG QCs, a prototype PnBG

QC design that is comprised of a honeycomb crystal that is approximately nine lattice

constants square in dimension, suspended by straight tethers and bounded by flat edges

was designed and fabricated. A SEM image of the prototype PnBG QC is depicted in

Figure J.1.

The PnBG QC prototype was modeled utilizing the FEM implementation in ANSYS R©

[121] utilizing a mesh with 204,427 nodes, 34,470 elements and the approximate simula-

tion time for modes within a 0 to 100 MHz frequency range was 1.5 days.

The FEM model results are displayed in Figure J.2 and suggests band gap activity

from approximately f1 = 63.435 MHz to f2 = 87.183 MHz. Evidence of band gap

activity is also displayed in Figure J.3, in the FEM model of mode shape, obtained

utilizing CoventorWare R© , in the form of reduced vibrational amplitude within the

center region of the prototype PnBG QC for modes above approximately 60 MHz and

below approximately 90 MHz. The FEM model of mode shape in Figure J.3 suggests

that complete band gap formation does not occur due to the presence of in-gap defect

states that are composed parasitic edge or anchor resonances.

Mode shape measurements, of the prototype PnBG QC of Figure J.1, are displayed

in Figure J.4 which indicates that electrostatic actuation occurs up to 8.204 MHz; higher

frequency modes may also be measurable. The prototype PnBG QC is less compliant

than the PnBG QCs presented in the body of this thesis. The actuation of the prototype

PnBG QC may then provide some support that electrostatic actuation may be applied to

the more compliant PnBG QCs that are developed within the body of this thesis (though
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Figure J.1: Scanning electron microscope image of the prototype phononic band gap
quasi-crystal device, which was utilized to investigate the electrostatic actuation of
phononic band gap quasi-crystal devices.

it should be noted that the prototype PnBG QC has a different transducer geometry,

which rigidly anchors to the substrate a larger portion of the fixed transducer).

This section developed insight into electrostatic actuation of PnBG QCs and the

understanding that the flat edges and anchors of the prototype PnBG QC in Figure

J.1 produce in-gap defect states. This data was utilized to develop the PnBG QC

architecture that is presented in the body of this thesis.
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Figure J.2: FEM model of the mode number versus frequency characteristic of the
prototype phononic band gap quasi-crystal shown in Figure J.1.
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30MHz
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50MHz
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50MHz

90MHz

Homogeneous Reference

Prototype PnBG QC

Figure J.3: Comparison of mode shapes of a homogeneous plate versus the prototype
phononic band gap quasi-crystal over the frequency range from 0 to 100 MHz at a
frequency spacing of 10 MHz. The homogeneous plate appears to have vibrational
activity at most modes whereas PnBG crystal appears to display an approximately 20
MHz frequency span over which modes occur largely due to edge vibrations while the
center of of the prototype phononic band gap quasi-crystal is relatively stationary.
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Figure J.4: Mode shapes actuated utilizing the electrostatic transducers on the prototype
of the phononic band gap quasi-crystal that is depicted in Figure J.1.
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J.2 Harmonic Analysis Measurements of the Fixed

Electrode of the Electrostatic Transducers

Harmonic analysis measurements at three points on the fixed electrode of the S2 PnBG

QC are displayed in Figure J.5 juxtaposed with a harmonic analysis measurement taken

at a point in the interior region of the S2 PnBG QC. As may be viewed in Figure J.5,

the fixed electrode of the S2 PnBG QC displays resonant activity over the 50 kHz to 20

MHz range and so does not behave as an ideal fixed electrode.

In Figure J.5, it may be observed that the resonant peaks are more sparsely spaced

in the harmonic analysis measurements taken at points 1, 2 and 3 on the fixed electrode

than at the point on the S2 PnBG QC. Thus, the spectrum of the fixed electrode and

S2 PnBG QC display unique traits. The particular harmonic analysis measurement

taken at point 3 on the fixed electrode displays a notable absence of normal modes from

approximately 9 MHz to 12 MHz, while the harmonic analysis measurements at points

1 and 2 appear to display some resonant peaks within the 9 MHz to 12 MHz frequency

regime. The aforementioned absence of normal modes within the 9 MHz to 12 MHz

frequency regime occurs only within the spectrum taken at one point and so may not

represent band gap like phenomenon; however, may be further investigated.

The non-ideal behavior, discussed in this section, of the fixed electrode may be further

investigated for its potential effect on the actuation of PnBG QCs.
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Laser spot 

Laser spot 

Laser spot 

Laser spot 

Figure J.5: Harmonic measurements at three points, denoted by the white laser spot in
each inset, on the fixed electrode of the S2 phononic band gap quasi-crystal juxtaposed
beside a harmonic measurement taken in the interior of the S2 phononic band gap quasi-
crystal.

295



References

[1] M. M. Sigalas and E. Economou, Solid State Communications, vol. 86, no. 141,

1993.

[2] M. Sigalas and E. Economou, Journal of Sound and Vibration, vol. 158, p. 377,

1992.

[3] M. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett.,

vol. 71, no. 13, p. 2022, Sep. 1993.

[4] M. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani,

“Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B.,

vol. 49, p. 2313, 1994.

[5] D. W. Wright, “Time-varying phononic crystals,” Ph.D. dissertation, University

of Tonrto, Toronto, 2010.

[6] S. Mohammadi et al., “Large simultaneous band gaps for photonic and phononic

crystal slabs,” Conference on Lasers and Electro-Optics/Quantum Electronics and

Laser Science Conference and Photonic Applications Systems Technologies, 2008.

[7] M. Ziaei-Moayyed et al., “Silicon carbide phononic crystal cavities for microme-

296



chanical resonators,” Proceedings of the 24th International Conference on Micro-

Electro Mechanical Systems, Cancun Mexico, p. 13771381, 2011.

[8] Z. Liu et al., “Locally resonant sonic materials,” Science, pp. 1734–1736, 2000.

[9] P. Sheng and C. T. Chan, “Classical wave localization and spectral gap materials,”

Zeitschrift Fur Kristallographie, vol. 220, pp. 9–10, 2005.

[10] R. Norris, J. Hamel, and P. Nadeau, “Theoretical study of phononic band gap

crystals with fractal inclusions,” Journal of Applied Physics, vol. 103, no. 10, pp.

104 908–104 908–7, Mar. 2008.

[11] S. Halkjaer et al., “Maximizing band gaps in plate structures,” Struct Multidisc

Optim, pp. 263–275, Jul. 2006.

[12] G. Gazonas et al., “Genetic algorithm optimization of phononic bandgap struc-

tures,” International journal of solids and structures, pp. 5851–5866, Jan. 2006.

[13] M. M. Sigalas and E. N. Economou, “Elastic waves in plates with periodically

placed inclusions,” Journal of Applied Physics, vol. 75, no. 6, pp. 2845–2850, Mar.

1994.

[14] M. Kafesaki and E. Economou, “Multiple-scattering theory for three-dimensional

periodic acoustic composites,” Physical review B, p. 993, Nov. 1999.

[15] M. Sigalas and E. Economou, “Band structure of elastic waves in two-dimensional

systems,” Solid state communications, pp. 141–143, Feb. 1993.

[16] F. Ulaby, Fundamentals of Applied Electromagnetics. Upper Saddle River, NJ:

Prentice Hall, 2001.

297



[17] B. A. Auld, Acoustic Fields and Waves in Solids, Volume I. Malabar, FL: Krieger

Publishing Company, 1973.

[18] M. M. Sigalas et al., “Importance of coupling between longitudinal and transverse

components for the creation of acoustic band gaps: The aluminum in mercury

case,” Applied Physics Letters, no. 16, pp. 2307–2309, Apr. 2000.

[19] B. A. Auld, Acoustic Fields and Waves in Solids, Volume II. Malabar, FL: Krieger

Publishing Company, 1973.

[20] G. Kino, Acoustic waves : devices, imaging, and analog signal processing. Prentice

Hall, 1987.

[21] B. E. Teich et al., Fundamentals of Photonics. John Wiley and Sons, Inc., 1991.

[22] M. Palaniapan and L. Khine, “Micromechanical resonator with ultra-high quality

factor,” Electronic Letters, Sep. 2007.

[23] D. Weinstein, “Dielectrically transduced single-ended to differential mems filter,”

in 2006 IEEE International Solid-State Circuits Conference, Feb. 2006.

[24] T. Mattila et al., “A 12 mhz micromechanical bulk acoustic mode oscillator,”

Sensors and actuators A, pp. 1–9, Jun. 2002.

[25] S. Bhave and R. Howe, “Silicon nitride-on-silicon bar resonator using lateral elec-

trostatic transducers,” in The 13th International Conference on Solid-State Sen-

sors, Actuators and Microsystems, 2005, pp. 2139–2142.

[26] G. G. Yaralioglu et al., “Lamb wave devices using capacitive micromachined ul-

trasonic transducers,” Applied Physics Letters, vol. 78, no. 1, 2001.

298



[27] M. Badi, “Capacitive micromachined ultrasonic Lamb wave transducers,” Ph.D.

dissertation, Stanford University, Stanford, 2004.

[28] O. Oralkan et al., “Capacitive micromachined ultrasonic transducers: Next-

generation arrays for acoustic imaging?” IEEE Transactions on ultrasonics, fer-

roelectrics, and frequency control, vol. 49, no. 11, pp. 1596–1610, Nov. 2002.

[29] A. Alastalo, “Analysis of a mems transmission line,” IEEE Transactions on Mi-

crowave Theory and Techniques, pp. 1977–1981, Aug. 2003.

[30] A. Alastalo et al., “Microelectromechanical delay lines with slow signal propaga-

tion,” J. Micromech.. Microeng., pp. 1854–1860, Aug. 2006.

[31] S. Bhave et al., “Fully-differential poly-sic lame mode resonator and checkerboard

filter,” Proceedings of the 18th IEEE International Conference on Micro Electro

Mechanical Systems, 2005.

[32] T.-T. Wu et al., “Frequency band-gap measurement of two-dimensional air-silicon

phononic crystals using layered slanted finger interdigital tranducers,” Journal of

Applied Physics, vol. 97, no. 094916, 2005.

[33] B. Bayram, “Acoustic crosstalk reduction method for cmut arrays,” 2006 IEEE

Ultrasonics Symposium.

[34] S. Mohammadi et al., “Support loss suppression in micromechanical resonators by

the use of phononic band gap structures,” Proceedings of SPIE, Feb. 2010.

[35] Y. Pennec et al., “Tunable filtering and demultiplexing in phononic crystals with

hollow cylinders,” Physical Review E, vol. 69, pp. 1–6, Apr. 2004.

299



[36] Y. Zheng, “Biosensors on surface acoustic wave phononic band gap structures,”

NNIN REU Site: Microelectronics Research Center, Georgia Institute of Technol-

ogy, p. 156, 2004.

[37] S. Datta, Surface Acoustic Wave Devices. Englewood Cliffs, NJ: Prentice Hall,

1986.

[38] A. Trusov and A. Shkel, “Capacitive detection in resonant mems with arbitrary

amplitude of motion,” Journal of micromechanics and microengineering, pp. 1583–

1592, Jul. 2007.

[39] W. Johnson and L. Warne, “Electrophysics of micromechanical comb actuators,”

Journal of microelectromechanical systems, pp. 49–59, Mar. 1995.

[40] T. Hirano et al., “Design, fabrication, and operation of submicron gap comb-drive

microactuators,” Journal of microelectromechanical systems, vol. 1, no. 1, pp. 52–

59, Mar. 1992.

[41] Y. Sun et al., “A bulk microfabricated multi-axis capacitive cellular force sensor

using transverse comb drives,” J. Micromech. Microeng., pp. 832–840, Oct. 2002.

[42] S. Mohammadi et al., “Complete phononic bandgaps and bandgap maps in two-

dimensional silicon phononic crystal plates,” IEEE Electronics letters, Aug. 2007.

[43] Y. Suxia, “Ultrasonic properties of phononic crystals,” Ph.D. dissertation, Hong

Kong Univ. of Science and Technology, Hong Kong, 2002.

[44] J. Sun and T. Wu, “The study of acoustic band gaps in 2-D air/aluminum and

steel/epoxy phononic structure,” Key Engineering Materials, vol. 270-273, pp.

1127–1134, 2004.

300



[45] J. Hamel and R. Norris, “Acoustic band gap filters: The next generation of micro-

electro-mechanical filters for on-chip silicon radio frequency applications,” Proceed-

ings of the 20th Canadian Conference on Electrical and Computer Engineering,

2007.

[46] (2007) MEMSCAP - The Power of a Small World. [Online]. Available:

http://www.memscap.com

[47] MEMSCAP foundry, “SOIMUMPs run 31.”

[48] P. Sheng and C. T. Chan, “Classical wave localization and spectral gap materials,”

Zeitschrift Fur Kristallographie, vol. 220, pp. 9–10, 2005.

[49] S. John, Phys. Rev. Lett., vol. 58, p. 2486, 1987.

[50] E. Yablonovitch, Phys. Rev. Lett., vol. 58, p. 2059, 1987.

[51] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, C. Lopez, J. Sanchez-Dehesa,

and J. Llinares, “Two-dimensional elastic bandgap crystal to attenuate surface

waves,” Journal of Lightwave Technology, vol. 17, p. 2196, 1999.

[52] M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid

cylinders,” Journal of Applied Physics, vol. 84, no. 6, 1998.

[53] C. Goffaux and J. Vigneron, “Theoretical study of a tunable phononic band gap

system,” Phys. Rev. B, vol. 64, p. 2001, 2001.

[54] M. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic compos-

ites,” Appl. Phys. Lett., vol. 64, p. 1085, 1994.

301



[55] J. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa,

F. Meseguer, J. Llinares, and F. Galvez, “Sound attenuation by a two-dimensional

array of rigid cylinders,” Phys. Rev. Lett., vol. 80, p. 5325, 1998.

[56] D. Bria, B. Djafari-Rouhani, A. Bousfia, E. E. Boudouti, and A. Nougaoui, “Ab-

solute acoustic band gap in coupled multilayer structures,” Europhysics Letter,

vol. 55, p. 841, 2001.

[57] A. Khelif, P. Deymier, B. Djafari-Rouhani, J. Vasseur, and L. Dobrzynski, “Two-

dimensional phononic crystal with tunable narrow pass band: application to a

waveguide with selective frequency,” J. Appl. Phys., vol. 94, p. 1308, 2003.

[58] M. Kafesaki, M. Sigalas, and N. Garcia, “Frequency modulation in the transmit-

tivity of wave guides in elastic-wave band-gap materials,” Phys. Rev. Lett., vol. 85,

p. 4044, 2000.

[59] I. Psarobas and M. Sigalas, “Elastic band gaps in a fcc lattice of mercury spheres

in aluminum,” Phys. Rev. B, vol. 66, pp. 052 302–1, 2002.

[60] C. M. Soukoulis, Localization and Propagation of Classical Waves in Random and

Periodic Structures. New York: Plenum, 1993.

[61] C. Goffaux and J. Vigneron, “Theoretical study of a tunable phononic band gap

system,” Physical Review B, vol. 64, no. 075118, 2001.

[62] X. Li et al., “Large acoustic band gaps created by rotating square rods in two-

dimensional periodic composites,” Journal of Physics D: Applied Physics, vol. 36,

pp. L15–L17, Dec. 2003.

[63] C. Soukoulis, Photonic Crystals and Light Localization in the 21st Century.

Netherlands: Kluwer Academic Publishers, 2001, pp. 69–82.

302



[64] F. Meseguer and M. Holgado, “Rayleigh-wave attenuation by a semi-infinite two

dimensional elastic-band-gap crystal,” Physical Review B, vol. 59, no. 19, May

1999-I.

[65] R. James et al., “Sonic bands, bandgaps, and defect states in layered structures-

theory and experiment,” Journal of the Acoustical Society of America, vol. 97,

no. 4, pp. 2041–2047, Apr. 1995.

[66] F. M. de Espinosa, E. Jimenez, and M. Torres, “Ultrasonic band gap in a periodic

two-dimensional composite,” Physical Review Letters, vol. 80, no. 6, pp. 1208–

1211, Feb. 1998.

[67] J. Snchez-Prez et al., “Sound attenuation by a two-dimensional array of rigid

cylinders,” Physical reivew letters, pp. 5325–5328, Jun. 1998.

[68] C. Rubio et al., “The existence of full gaps and deaf bands in two-dimensional

sonic crystals,” Journal of Lightwave Technology, vol. 17, no. 11, Nov. 1999.

[69] O. Sigmund and J. Jensen, “Systematic design of photonic band-gap materials and

structures by topology optimization,” Phil. Trans. R. Soc. Lond. A, pp. 1001–1019,

Mar. 2003.

[70] A. Khelif et al., “Complete band gaps in two-dimensional phononic crystal slabs,”

Physical Review E, 2006.

[71] J. Hsu and T. Wu, “Efficient formulation for band-structure calculations of two-

dimensional phononic-crystal plates,” Physical Review B, Oct. 2006.

[72] ——, “Lamb waves in binary locally resonant phononic plates with two-

dimensional lattices,” Applied physics letters, May 2007.

303



[73] R. Sainidou and N. Stefanou, “Guided and quasiguided elastic waves in phononic

crystal slabs,” Physpical Review B, May 2006.

[74] J. Vasseur et al., “Experimental and theoretical evidence for the existence of ab-

solute acoustic band gaps in two-dimensional solid phononic crystals,” Physical

reivew letters, pp. 3012–3015, Apr. 2001.

[75] J. Vasseur, “Waveguiding in supported phononic crystal plates,” Journal of

physics: conference series.

[76] P. Russell et al., “Sonic band gaps in pcf preforms: enhancing the interaction of

sound and light,” OPTICS EXPRESS, p. 25552560, 2003.

[77] V. Laude et al., “Phononic bandgap guidance of acoustic modes in photonic crystal

fibers,” Physical Review B, p. 14, 2005.

[78] P. Dainese et al., “Raman-like light scattering from acoustic phonons in photonic

crystal fiber,” OPTICS EXPRESS, p. 41414150, 2006.

[79] D. Barker and W. Owens, “Us patent 7292740 - apparatus and method for con-

trolling transmission through a photonic band gap crystal,” Patent, 2007.

[80] M. Bernal, Ferroelectric crystals for photonic applications. Springer, 2009.

[81] T. Gorishnyy et al., “Hypersonic phononic crystals,” Physical review letters, p.

115501, Mar. 2005.

[82] S. Benchabane et al., “Evidence for complete surface wave band gap in a piezo-

electric phononic crystal,” Physical Review E, 2006.

[83] A. Khelif et al., “Ultrasonic and hypersonic phononic crystals,” Proc. of SPIE,

vol. 6901, pp. 1–10, 2008.

304



[84] R. Norris, “Two-dimensional phononic crystal simulation and analysis,” Master’s

thesis, University of Waterloo, Waterloo, 2006.

[85] W. Yang, , and L. Chen, “The tunable acoustic band gaps of two-dimensional

phononic crystals with a dielectric elastomer cylindrical actuator,” Smart Materi-

als and Structures, no. 1, pp. 1–6, Feb. 2008.

[86] R. C. Norris, P. Nieva, and J. S. Hamel, “Analytical analysis of a discrete mems

diatomic mass-spring phononic band gap crystal for vibration stabilization appli-

cations,” Proceedings of IEEE Sensors 2008, 2008.

[87] R. Olsson et al., “Micromachined bulk wave acoustic bandgap devices,” Proceed-

ings of the The 14th International Conference on Solid-State Sensors, Actuators

and Microsystems, Lyon, France, pp. 317–321, Jun. 2007.

[88] I. El-Kady et al., “Phononic band-gap crystals for radio frequency communica-

tions,” Applied Physics Letters, no. 23, pp. 1–3, Jun. 2008.

[89] R. Olsson et al., “Microfabricated vhf acoustic crystals and waveguides,” Sensors

and Actuators A: Physical, p. 8793, 2008.

[90] S. Mohammadi et al., “Evidence of large high frequency complete phononic band

gaps in silicon phononic crystal plates,” Applied Physics Letters, no. 22, pp. 1–3,

Jun. 2008.

[91] N. Kuo et al., “Microscale inverse acoustic band gap structure in aluminum ni-

tride,” Applied Physics Letters, pp. 1–3, 2009.

[92] S. Mohammadi et al., “High-q micromechanical resonators in a two-dimensional

phononic crystal slab,” Applied Physics Letters, no. 5, Feb. 2009.

305



[93] N. Kuo and G. Piazza, “1 ghz phononic band gap structure in air/aluminum nitride

for symmetric lamb waves,” Proceedings of the 24th International Conference on

Micro-Electro Mechanical Systems, Cancun Mexico, p. 740743, 2011.

[94] R. C. Norris, J. S. Hamel, and P. N. Nieva, “Silicon-itegrated phononic bandgap

ccrystal platform for sensors and signal processing elements: Theory and experi-

ment,” Proceedings of IEEE MEMS 2011, 2011.

[95] O. Holmgren et al., “Analysis of vibration modes in a micromechanical square-

plate resonator,” J. Micromech. Microeng., vol. 19, no. 1, pp. 1–11, Dec. 2009.

[96] J. Lee and A. Seshia, “5.4-mhz single-crystal silicon wine glass mode disk resonator

with quality factor of 2 million,” Sensors and Actuators A: Physical, vol. 156, no. 1,

pp. 28–35, Nov. 2009.

[97] S. Senturia, Microsystem Design. Norwell, Massachusetts: Kluwer Academic

Publishers, 2001.

[98] K. Wang and C. Nguyen, “High-order medium frequency micromechanical elec-

tronic filters,” J. of Microelectromechanical Systems, 1999.

[99] R. Weigel et al., “Microwave acoustic materials, devices, and applications,” IEEE

Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 738–749,

Mar. 2002.

[100] M. Sigalas and N. Garcia, “Theoretical study of three dimensional elastic band

gaps with the finite-difference time-domain method,” Journal of Applied Physics,

vol. 87, no. 6, pp. 3122–3125, Mar. 2000.

[101] Y. Tanaka et al., “Band structure of acoustic waves in phononic lattices: Two-

306



dimensional composites with large acoustic mismatch,” Physical review B, pp.

7387–7392, Sep. 2000.

[102] Y. Cao et al., “Finite difference time domain for band-structure calculations of

two-dimensional phononic crystals,” Solid state communications, pp. 539–543, Sep.

2004.

[103] W. Axmann and P. Kuchment, “An efficient finite element method for computing

spectra of photonic and acoustic band-gap materials,” Journal of Computational

Physics, pp. 468–481, 1999.

[104] S. Zhang and J. C. J. Hua, “Experimental and theoretical evidence for the exis-

tence of broad forbidden gaps in the three-component composite,” Chinese Physics

Letters, pp. 1303–1305, Mar. 2003.

[105] Y. Liu and L. Gao, “Explicit dynamic finite element method for band-structure

calculations of 2d phononic crystals,” Solid state communications, pp. 89–93, Aug.

2007.

[106] C. Goffaux and J. Sanchez-Dehesa, “Two-dimensional phononic crystals studied

using a variational method: Application to lattices of locally resonant materials,”

Physical review B, Apr. 2003.

[107] Z. Hou et al., “Singularity of the bloch theorem in the fluid/solid phononic crystal,”

Physical review B, Jan. 2006.

[108] Z. Yan and Y. Wang, “Wavelet-based method for calculating elastic band gaps of

two-dimensional phononic crystals,” Physical review B, Dec. 2006.

[109] G. Wang et al., “Lumped-mass method for the study of band structure in two-

dimensional phononic crystals,” Physical review B, May 2004.

307



[110] J. Jensen, “Phononic band gaps and vibrations in one- and two-dimensional mass-

spring structures,” J. of Sound and Vib., vol. 266, no. 5, pp. 1053–1078, Oct.

2003.

[111] T. Ohminato and B. Chouet, “A free-surface boundary condition for including 3D

topography in the finite-difference method,” Bulletin of the seismological society

of america, pp. 494–515, Apr. 1997.

[112] C. Kittel, Introduction to Solid State Physics. New York, London, Sydney: John

Wiley Sons, Inc., 1966.

[113] R. Wei et al., “Phononic band structure in a two-dimensional hybrid triangular

graphite lattice,” Physica B, vol. 404, p. 37953798, Jun. 2009.

[114] CMC. (2011, May) Canadian microelectronics corporation. [Online]. Available:

http://www.cmc.ca

[115] K. Miller et al., SOIMUMPs Design Handbook, rev. 4.0. MEMSCAP, 2004.

[116] D. Pozar, Microwave engineering. John Wiley Sons, Inc., 1998.

[117] L. Khine, “12.9mhz lame-mode differential soi bulk resonators,” TRANSDUCERS

EUROSENSORS 2007, pp. 1753–1756, 2007.

[118] L. Khine and M. Palaniapan, “High-q bulk-mode soi square resonators with

straight-beam anchors,” Journal of Micromechanics and Microengineering, vol. 19,

no. 1, 2009.

[119] S. Rojas et al., “Properties of silicon dioxide films prepared by low-pressure chem-

ical vapor deposition from tetraethylorthosilicate,” Journal of Vacuum Science

Technology B: Microelectronics and Nanometer Structures, vol. 8, no. 6, pp. 1177–

1184, Nov. 1990.

308



[120] G. Rebeiz, RF MEMS THEORY, DESIGN AND TECHNOLOGY. Hoboken,

NJ: Wiley, 2003, pp. 327–328.

[121] ANSYS R©, “Release 11.0.”

[122] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Extended. Hobo-

ken, NJ: Wiley, 2005.

[123] L. Meirovitch, Elements of vibration analysis. New York, NY: McGraw-Hill, Inc,

1986.

[124] G. Rebeiz, RF MEMS THEORY, DESIGN AND TECHNOLOGY. Hoboken,

NJ: Wiley, 2003, pp. 30–31.

[125] W. Thomson, Vibration Theory and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, Inc., 1965, p. 25.

[126] L. Meirovitch, Elements of vibration analysis. New York: McGraw-Hill Inc., 1986.

[127] T. Rossing and N. Fletcher, Principles of vibration and sound, Second Edition.

New York, New York: Springer, 2004.

[128] Coventor, Inc., CoventorWare Analyzer Version 2010 Reference MEMS and Mi-

crosystm Design. www.coventor.com: CoventorWare, 2010.

[129] Polytec Vibrometer Controller OFV-5000. Polytec Inc., 1998.

[130] Coventor, Inc., CoventorWare Analyzer Version 2010 Reference MEMS and Mi-

crosystm Design. www.coventor.com: CoventorWare, 2010.

[131] D. Miller et al., “Characteristics of a commercially available silicon-on-insulator

mems material,” Sensors and Actuators A, Apr. 2007.

309



[132] Ioffe physico-technical institute. (2008, Mar.) Mechanical properties, elas-

tic constnants, lattive vibrations of silicon (si). [Online]. Available:

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/mechanic.html

[133] W. Sharpe et al., “Measurements of young’s modulus, poisson’s ratio, and tensile

strength of polysilicon,” IEEE, pp. 424–429, 1997.

[134] Micragem. (2011, May) Micralyne. [Online]. Available:

http://www.micralyne.com/micragem/

[135] (2011, May) Veeco. [Online]. Available: http://www.veeco.com/

[136] Polytec. (2011, May) Polytec. [Online]. Available: http://www.polytec.com/us/

[137] W. Thomson, Vibration Theory and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, Inc., 1965.

[138] Coventor, Inc., CoventorWare R© ANALYZER version 2010 reference MEMS and

microsystems design. Coventor, Inc., 2010.

[139] G. Rebeiz, RF MEMS THEORY, DESIGN AND TECHNOLOGY. Hoboken,

NJ: Wiley, 2003, p. 475.

[140] J. Kim, D. Cho, and R. Muller, “Why is (111) si a better mechanical material for

mems?” Transducers 2001, Munich, Germany, pp. 662–665, Jun. 2001.

[141] ANSYS, Inc., Release 11.0 Documentation for ANSYS Workbench. ANSYS, Inc.,

2011.

[142] L. Meirovitch, Elements of vibration analysis. New York: McGraw-Hill Inc., 1986,

p. 225.

310



[143] P. G. Datskos et al., “Nanocantilever signal transduction by electron transfer,”

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 2, no. 3/4,

pp. 369–373, Feb. 2002.

311


