383 research outputs found

    Simple Temporal Networks with Partially Shrinkable Uncertainty

    Get PDF
    The Simple Temporal Network with Uncertainty (STNU) model focuses on the representation and evaluation of temporal constraints on time-point variables (timepoints), of which some (i.e., contingent timepoints) cannot be assigned (i.e., executed by the system), but only be observed. Moreover, a temporal constraint is expressed as an admissible range of delays between two timepoints. Regarding the STNU model, it is interesting to determine whether it is possible to execute all the timepoints under the control of the system, while still satisfying all given constraints, no matter when the contingent timepoints happen within the given time ranges (controllability check). Existing approaches assume that the original contingent time range cannot be modified during execution. In real world, however, the allowed time range may change within certain boundaries, but cannot be completely shrunk. To represent such possibility more properly, we propose Simple Temporal Network with Partially Shrinkable Uncertainty (STNPSU) as an extension of STNU. In particular, STNPSUs allow representing a contingent range in a way that can be shrunk during run time as long as shrinking does not go beyond a given threshold. We further show that STNPSUs allow representing STNUs as a special case, while maintaining the same efficiency for both controllability checks and execution

    Simple Temporal Networks with Partially Shrinkable Uncertainty (Extended Version)

    Get PDF
    The Simple Temporal Network with Uncertainty (STNU) model focuses on the representation and evaluation of temporal constraints on time-point variables (timepoints), of which some (i.e., contingent timepoints) cannot be assigned (i.e., executed by the system), but only be observed. Moreover, a temporal constraint is expressed as an admissible range of delays between two timepoints. Regarding the STNU model, it is interesting to determine whether it is possible to execute all the timepoints under the control of the system, while still satisfying all given constraints, no matter when the contingent timepoints happen within the given time ranges (controllability check). Existing approaches assume that the original contingent time range cannot be modified during execution. In real world, however, the allowed time range may change within certain boundaries, but cannot be completely shrunk. To represent such possibility more properly, we propose Simple Temporal Network with Partially Shrinkable Uncertainty (STNPSU) as an extension of STNU. In particular, STNPSUs allow representing a contingent range in a way that can be shrunk during run time as long as shrinking does not go beyond a given threshold. We further show that STNPSUs allow representing STNUs as a special case, while maintaining the same efficiency for both controllability checks and execution

    Dynamic Controllability Made Simple

    Get PDF
    Simple Temporal Networks with Uncertainty (STNUs) are a well-studied model for representing temporal constraints, where some intervals (contingent links) have an unknown but bounded duration, discovered only during execution. An STNU is dynamically controllable (DC) if there exists a strategy to execute its time-points satisfying all the constraints, regardless of the actual duration of contingent links revealed during execution. In this work we present a new system of constraint propagation rules for STNUs, which is sound-and-complete for DC checking. Our system comprises just three rules which, differently from the ones proposed in all previous works, only generate unconditioned constraints. In particular, after applying our sound rules, the network remains an STNU in all respects. Moreover, our completeness proof is short and non-algorithmic, based on the explicit construction of a valid execution strategy. This is a substantial simplification of the theory which underlies all the polynomial-time algorithms for DC-checking. Our analysis also shows: (1) the existence of late execution strategies for STNUs, (2) the equivalence of several variants of the notion of DC, (3) the existence of a fast algorithm for real-time execution of STNUs, which runs in O(KN) total time in a network with K contingent links and N time points, considerably improving the previous O(N^3)-time bound

    The Mathematics of Dispatchability Revisited

    Get PDF
    Dispatchability is an important property for the efficient execution of temporal plans where the temporal constraints are represented as a Simple Temporal Network (STN). It has been shown that every STN may be reformulated as a dispatchable STN, and dispatchability ensures that the temporal constraints need only be satisfied locally during execution. Recently it has also been shown that Simple Temporal Networks with Uncertainty, augmented with wait edges, are Dynamically Controllable provided every projection is dispatchable. Thus, the dispatchability property has both theoretical and practical interest. One thing that hampers further work in this area is the underdeveloped theory. The existing definitions are expressed in terms of algorithms, and are less suitable for mathematical proofs. In this paper, we develop a new formal theory of dispatchability in terms of execution sequences. We exploit this to prove a characterization of dispatchability involving the structural properties of the STN graph. This facilitates the potential application of the theory to uncertainty reasoning

    A proposal for a global task planning architecture using the RoboEarth cloud based framework

    Get PDF
    As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans

    Correctness of services and their composition

    Get PDF
    We study correctness of services and their composition and investigate how the design of correct service compositions can be systematically supported. We thereby focus on the communication protocol of the service and approach these questions using formal methods and make contributions to three scenarios of SOC.Wir studieren die Korrektheit von Services und Servicekompositionen und untersuchen, wie der Entwurf von korrekten Servicekompositionen systematisch unterstĂĽtzt werden kann. Wir legen dabei den Fokus auf das Kommunikationsprotokoll der Services. Mithilfe von formalen Methoden tragen wir zu drei Szenarien von SOC bei

    On the Complexity of Temporal Controllabilities for Workflow Schemata

    Get PDF
    Recently, different kinds of "controllability" have been proposed for workflow schemata modeling real world processes made of tasks and coordination activities. Temporal controllability is the capability of executing a workflow for all possible durations of all tasks satisfying all temporal constraints. Three different types of controllability are possible -- strong controllability, history-dependent controllability, and weak controllability -- and a general exponential-time algorithm to determine the kind of controllability has been proposed. In this paper we analyze the computational complexity of the temporal controllability problem to verify the quality of proposed algorithms. We show that the weak controllability problem is \coNP-complete, while strong controllability problem is in \u3a3_2^P and it is coNP-hard. Regarding the history-dependent controllability problem, we are able to show that it is a PSPACE problem but further research is required to determine its hardness characterization

    Correctness of services and their composition

    Get PDF
    We study correctness of services and their composition and investigate how the design of correct service compositions can be systematically supported. We thereby focus on the communication protocol of the service and approach these questions using formal methods and make contributions to three scenarios of SOC.Wir studieren die Korrektheit von Services und Servicekompositionen und untersuchen, wie der Entwurf von korrekten Servicekompositionen systematisch unterstĂĽtzt werden kann. Wir legen dabei den Fokus auf das Kommunikationsprotokoll der Services. Mithilfe von formalen Methoden tragen wir zu drei Szenarien von SOC bei
    • …
    corecore