
On the Complexity of Temporal Controllabilities for
Workflow Schemata

Carlo Combi
carlo.combi@univr.it

Roberto Posenato
roberto.posenato@univr.it

Department of Computer Science
University of Verona

strada le Grazie, 15 - 37134 Verona, Italy

ABSTRACT
Recently, different kinds of controllability have been proposed for
workflow schemata modeling real world processes made of tasks and
coordination activities. Temporal controllability is the capability of
executing a workflow for all possible durations of all tasks satisfying
all temporal constraints. Three different types of controllability are
possible – strong controllability, history-dependent controllability,
and weak controllability – and a general exponential-time algorithm
to determine the kind of controllability has been proposed. In this
paper we analyze the computational complexity of the temporal
controllability problem to verify the quality of proposed algorithms.
We show that the weak controllability problem is coNP-complete,
while strong controllability problem ∈ ΣP

2 and it is coNP-hard. Re-
garding the history-dependent controllability problem, we are able
to show that it is a PSPACE problem but further research is required
to determine its hardness characterization.

Keywords
temporal workflow analysis; computational complexity; controlla-
bility; temporal conceptual workflow design; temporal constraint
networks.

1. INTRODUCTION
Workflow management systems (WfMSs) allow organizations to

streamline, automate, and manage business processes that depend on
information systems and human resources [13]. In general, business
processes have different kinds of temporal restrictions such as a
limited duration of single tasks or activity deadlines w.r.t. either the
beginning of the workflow or a specific time point in the control
flow: to this regard, time violations lead to some form of exception
handling, thus increasing the complexity of business process man-
agement. Thus, a WfMS should manage the necessary information
about a process, its time restrictions, and its actual time require-
ments, both at design time and at run time. Focusing on the design
step, a workflow schema can be viewed as a graphical specifica-
tion of admitted coordinate execution of a set of tasks in order to
reach a given goal. Nodes represent tasks, generally executed by
external agents, and connectors, executed by the workflow engine to
coordinate the overall task execution. Edges represent the order of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

execution of nodes. Each node/edge has a temporal constraint con-
sisting of the range of admitted durations for its execution. Further
temporal constraints may be specified for non consecutive nodes.
Controllability is the capability of executing a workflow for all pos-
sible durations of all tasks and satisfying all temporal constraints.
Recently, three different kinds of controllability have been proposed
for workflow schemata [5]: i) strong controllability refers to the fact
that it is possible to derive a single duration range for each connec-
tor/edge ensuring the controllability of each possible execution of
the workflow schema; ii) history-dependent controllability refers to
the capability of deriving a duration range for each connector/edge
ensuring the controllability of each possible execution of the work-
flow schema but such range could depend on the specific set of tasks
preceding the considered connector/edge; iii) weak controllability
refers to the capability of deriving a duration range for each con-
nector/edge ensuring the controllability of each execution once it is
known which execution path has to be followed. Moreover, in [5], a
general exponential-time algorithm to determine the controllability
of a workflow schema is shown.

Since in [5] the authors do not deal with the computational com-
plexity of the controllability problem, in this paper we consider it
in order to verify the quality of proposed algorithms. This study
is important, even from an application point of view, because the
controllability checking has to be executed both at design time
and, more important, at run time repeatedly. Thus, a fine tuning
of algorithms can be reached only if we are aware of the problem
complexity.

2. RELATED WORK
Regarding the concept of controllability of workflow schemata,

two main research directions may be considered: i) the extension
of methodologies for business-process modeling and of workflow
management systems to consider different kinds of temporalities; ii)
in the AI-related area of temporal constraints, the studies about the
constraint satisfiability when some temporal constraints are related
to time distances between point-based events that are not under
control.

In [3], Combi et al. propose a temporal conceptual workflow
model that enhances the expressiveness of previous proposals in
representing temporal constraints, such as those related to tasks and
connectors. One innovative aspect of the proposal is the standardiza-
tion in expressing temporal constraints among tasks or connectors;
temporal constraints are expressed by ranges representing lower and
upper bound of the constraints. Furthermore, the authors propose
different kinds of temporal constraints consistency and exhibit some
algorithms to check the consistency of a workflow schema both at
design time and at run time.

In [2], Bettini et al. try to merge the research directions on tem-

60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217515128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

poral workflow models and on temporal constraint networks. The
authors introduce the concept of free schedule: a schedule is free
when it is possible to statically fix the start times of all tasks without
constraining their durations and satisfying all the given constraints,
before the beginning of the execution. A polynomial algorithm
(O(n4) where n is the number of nodes) is then provided to check
the existence of a free schedule.

Free schedules resemble the concept of controllability, that has
been mainly investigated by Morris, Muscettola, and Vidal [16,
12], in the AI area of temporal constraint networks for planning.
Assuming that a temporal planner has to manage the likely un-
certainty about the duration of processes, Vidal et al. propose an
extension of the Simple Temporal Network, the Simple Temporal
Network With Uncertainty (STNU), where edges, i.e., constraints,
are divided in two classes: contingent links and requirement links.
Contingent links represent processes of uncertain duration, where
finish timepoints (i.e., STNU nodes) are decided by Nature within
the limits imposed by the bounds defined on the contingent links.
Requirement links represent all the other processes whose finish
timepoints are controlled by the agents that execute processes. In-
formally, Controllability refers to the capability of specifying all
the timepoints controlled by agents, satisfying all the requirement
and contingent links. In particular, dynamic controllability ensures
that it is possible to specify at run time the timepoints controlled
by agents only by knowing the duration of the already happened
contingent links, without preventing any possible duration of the
future contingent links [16]. Several algorithms have been pro-
posed to check the dynamic controllability of a constraint network
[12]; eventually, Morris showed that in the framework of STNU the
checking controllability algorithm is polynomial, i.e., O(n4), w.r.t.
the number of STNU nodes [11]. In [8, 9], Hunsberger highlights
some issues in the approach proposed by Morris and Muscettola
and proposes a stronger definition of dynamic execution strategies
that fixes these problems and puts the checking algorithm on a more
solid theoretical foundation.

In [15], Tsamardinos et al. address the challenge of conditional
planning developing the Conditional Temporal Problem (CTP) for-
malism, an extension of standard temporal constraint-satisfaction
processing models used in non-conditional temporal planning. In-
formally, a CTP is a temporal problem where some constraints hold
only when specific conditions are verified. Therefore, a CTP may
admit different executions (i.e., conditional plans). The framework
allows for the construction of conditional plans that are guaranteed to
satisfy complex temporal constraints, but it does not consider issues
related to the design of (structured) workflow schemata. Finally, the
authors propose a classification of CTP consistency (corresponding
to the controllability in STNU) with an analysis of the computational
complexity of checking different kinds of consistency.

3. THE WORKFLOW CONCEPTUAL
MODEL

In this paper we adopt the workflow conceptual model by Combi
et al. without considering temporal granularities [3, 4]: a structured
workflow is represented as a workflow schema, a digraph where
nodes correspond to activities and edges represent control flows
that define activity dependencies on the order of execution. In
the following we will briefly sketch the basic constructs of the
model. A workflow schema (graph) WG = (N,T,TS,TE ,C,F) is
a six-tuple such as: N = T ∪C is a finite set of activities (nodes),
T ⊆ N is a finite set of tasks, TS ∈ T is the Start node, TE ∈ T is
the End node, C ⊂ N is a finite set of connectors, and F ⊂ N×N
is the control flow relation (edges). Tasks, depicted as rounded

boxes, represent elementary work units that will be executed by
external agents. Each task has the mandatory attribute duration,
an unmodifiable temporal range specifying the allowed temporal
spans for its execution. Connectors, depicted as diamonds, represent
internal activities executed by the WfMS to achieve a correct and
coordinated execution of tasks. Each connector has the mandatory
attribute duration specifying the temporal spans allowed to the
WfMS for executing it. The value of a connector duration can
be modified at run time to guarantee the right coordination, and
the effective duration is decided by the WfMS . A connector is
either a split or a join. Split connectors split the incoming control
flow into two or more flows. The set of nodes that can start their
execution is given by the kind of split connector: Total, Alternative
or Conditional. Join connectors realize the complement operation of
Split: two or more incoming control flows are joined into outgoing
one. A join connector can be either And or Or. Every edge of the
graph has a temporal property, delay, to denote the allowed times
that can be spent by the WfMS for possibly delaying the enactment
of the second activity according to the given temporal constraints.
The model is structured, i.e., there are suitable correspondences and
proper nesting between splits and joins: for example, an Alternative
split must have a corresponding Or join and between these two
connectors there cannot be other splits without corresponding joins.
The Start TS node and the End TE one represent the start and the end
nodes of the workflow, respectively; they are graphically represented
by a circle with one ingoing/outgoing edge, respectively, without
any temporal attribute.

Allowed durations/delays are expressed by ranges like [MinD,
MaxD] where 0 ≤ MinD ≤ MaxD ≤ ∞. Besides the basic tempo-
ral constraints, it is possible to define several other kinds of tem-
poral constraints as the relative constraints, depicted as dashed
oriented edges. A relative constraint limits the time distance (dura-
tion) between the starting/ending instants of two non-consecutive
workflow activities expressed according to the following pattern:
〈IF〉[MinD,MaxD]〈IS〉, where (i) 〈IF〉 marks which instant of the
First activity to use (〈IF〉= S〈activity〉 | E〈activity〉 as the starting/
ending execution instant, respectively; the subscript can be omitted
if it is clear from the context.); (ii) 〈IS〉 marks the instant for the
Second activity in the same way; (iii) [MinD, MaxD] represents the
allowed range for the time distance between the two instants 〈IF〉
and 〈IS〉. It is assumed that −∞≤MinD≤MaxD≤ ∞.

To perform a workflow according to a given schema, a WfMS
has to assign tasks to agents and execute connectors/edges in the
order fixed by the control flow starting from the Start and observing
all temporal constraints. If the schema does not contain Split con-
nectors, then the flow is a simple path and, therefore, at each instant
only one activity is running (i.e., connector/task/edge execution).
If the schema contains Split connectors, then it is possible that in
some instants either multiple tasks are ran by external agents or the
WfMS has to execute multiple connectors/edges in parallel. More
formally, let ST and SC be the set of all starting instants of tasks and
connectors, respectively and ET , EC the similar set considering the
ending instants. We define a schedule of a schema as:

DEFINITION 1 (SCHEDULE). A schedule s of a workflow
schema is a mapping ST ∪ SC ∪EC → T (being T the time do-
main), i.e., the time assignment to the starting instant of tasks and
to the starting and ending instants of connectors.

In general, it is not possible to determine a full-defined schedule
of a schema in advance because it is possible that starting instant
of some activities may depend on the ending instants of the previ-
ously executed tasks. Therefore, it is important to determine if the
designed ranges of all activities and delays allow the WfMS to de-

61

termine a schedule at run time that satisfies all temporal constraints.
Hence, it is useful to consider the concept of range schedule:

DEFINITION 2 (RANGE SCHEDULE). A range schedule rs of
a workflow schema is a mapping ST ∪ SC ∪EC → T 2 that, given
a starting/ending instant x, return the range [l,u], where l,u ∈ T ,
such that for each value t in [l,u] there exists at least one schedule s
having s(x) = t.

If a workflow schema contains one or more Conditional or Alter-
native connectors, not all the cases (i.e., executions) perform exactly
the same set of tasks. Hence, workflow path (wf-path) denotes a
workflow subgraph in which all alternative or conditional connec-
tors have exactly one successor, i.e., a simple path representing one
possible execution of the workflow. A wf-path can be briefly repre-
sented by a string containing the task labels of the wf-path sorted
w.r.t. their execution order and separated by a dash if the order is
sequential or by a vertical bar if the order is parallel: e.g., the wf-
path T1-T2-T3 represents a wf-path where tasks are executed in the
sequential order T1, T2, T3 while T1-(T2|T3) represents a wf-path
where task T1 is executed before concurrent tasks T2 and T3. It is
worthy noting that the set WfP of all wf-paths of a workflow schema
may have an exponential cardinality w.r.t. the number of conditional
or alternative connectors present in the schema. As regards the rela-
tionship between schedules and wf-paths , since different wf-paths
may require different schedules, it is useful to define the following
concept:

DEFINITION 3 (EXECUTION STRATEGY). An execution strat-
egy St is a mapping St : WfP→ Rs, where Rs is the set of all possible
range schedules. For each p ∈WfP, it always returns a range sched-
ule St(p) such that it contains all the time values for each starting/
ending point belonging to schedules satisfying all the temporal
constraints of p.

Following wf-path , another important concept is that of prefix. A
prefix of an activity/edge y is defined as the set Py of all the wf-paths
that have the same successor for each alternative or conditional
connector that precedes y. An activity x precedes an activity y if
either it belongs to the predecessors of y or precedes an activity
of this set. The prefix of an activity/edge is useful to consider all
possible wf-paths that can be followed after the execution of the
considered activity/edge. Hereinafter a prefix of a given activity/
edge y is represented by the wf-path notation specifying the common
part that wf-paths of the prefix share.

4. THE CONTROLLABILITY OF WORK-
FLOW SCHEMATA

A workflow schema is controllable if the WfMS is able to perform
any wf-path satisfying all relative constraints, all delays, all con-
nector durations without setting (allowed) task durations involved
in the wf-path , i.e., if an execution strategy exists. The problem
of controllability checking arises when there is at least one relative
constraint that involves two or more tasks.

In [4, 5], the authors discussed how to check the controllability of
all patterns that can be present in sequential paths or in parallel ones
and, then, they extended the pattern analysis to workflow schemata.
Considering workflow schemata, they showed that there are different
kinds of controllabilities for a schema and, therefore, they proposed
a general algorithm to determine the kind of controllability of any
workflow schema without facing the issue of the computational
complexity of the problem. Here, we summarize the results before
introducing the complexity analysis.

Regarding pattern controllability, Fig. 1 and Fig. 2 depict com-
mon patterns in sequential paths and in parallel ones, respectively.

T1
[x1,y1]

T2
[x2,y2]

[u,v]

S[p,q]S

⊇
[p− y1,q− x1]

(a)

T1
[x1,y1]

T2
[x2,y2]

[u,v]

E[p,q]E

⊇
[p− x2,q− y2]

(b)

T1
[x1,y1]

T2
[x2,y2]

[u,v]
S[p,q]E

S[p′,q′]S

⊇
[p− x2− y1,q− y2− x1]

(c)

Figure 1: Three sequential patterns with a relative constraint.
Patterns are significant if 0≤ p≤ q. The relative constraint and
task ranges yield a range adjustment of the delay between the
two tasks. Hence, a pattern is controllable if the designed range
[u,v] contains the derived range w.r.t. task durations and rela-
tive constraint range. For example, pattern (a) is controllable
if [u,v] ⊇ [p− y1,q− x1]. In (c) the relative constraint S[p′,q′]S
(dotted) is induced by S[p,q]E and it is determined by applying
pattern (b).

Fig. 1 shows two fundamental sequential patterns and the most fre-
quently derived one. Fig. 2 shows four basic parallel patterns, each
containing a relative constraint. Pattern (e) is the most interesting
one. Due to lack of space, we cannot report all the analysis made
in [4, 5]. Here we note only that: (i) if q < 0, then it is sufficient
to choose a suitable value in the range [x1−q,y1− p] (depending
on the T1 duration) as delay of the edge T1-A to control the pat-
tern, (ii) if p ≥ 0, it is sufficient to fix the delay of T1-A to be
[y1−q,x1− p] to have the controllability, (iii) if p < 0 and q ≥ 0,
it is not possible to set a single range to guarantee the controllabil-
ity but it is necessary to set a new constraint (the augmented wait
constraint) between the Start of T1 and A that is conditioned by the
End of T1 (ET 1). The augmented wait constraint has the special
label 〈[ET 1,ET 1− p], [y1−q,ET 1− p]〉 that means: A could occur
either when (1) “T1 has ended and within |p| time units” or when
(2) “y1−q time units have elapsed since the start of T1 and T1 has
not yet finished” (if A does not occur when condition (2) holds, the
following end of T1 will trigger condition (1)). Sometimes the wait
constraint can be simplified: if (y1−q) ≤ x1, then a lower bound
can be set because condition (2) is always verified before the end of
T1: so the constraint can be represented as [y1−q,ET 1− p]. Since
a wait constraint 〈[ET 1,ET 1− p], [y1− q,ET 1− p]〉 is meaningful
only at run time, in order to evaluate its effect on controllability it is
necessary consider its equivalent temporal range during controllabil-
ity check; it has been shown that the equivalent range is one of the
following: [y1−q,y1− p] if y1−q≤ x1, [x1,y1− p] otherwise.
Moreover, in [4, 5] the authors also discussed how to propagate
wait constraints to other links in the context of workflow patterns as
summarized in Fig. 2-(f)-(g) for the regression through a connector
and through a task, respectively.

In general, given a wf-path , the controllability analysis requires
checking the controllability of all temporal constraints (i.e., between
any pair of nodes). To determine all temporal constraints, it is
sufficient to transform the wf-path into the equivalent instance of
Simple Temporal Problem (STP) and apply an all-pairs shortest
path algorithm, as Floyd-Warshall [6]: if the original network has
all consistent constraints, the algorithm determines the minimal
satisfiable temporal constraint between any pair of nodes of the
network, otherwise it signals the inconsistency state. Hence, after
the constraints propagation on all possible pairs of nodes and a
further consistency check, there are four possible outcomes: (i) the
consistency check fails, (ii) the new constraint ranges are equal to

62

T1
[x1,y1]

A

S[p,q]A

A[u,v]E

[x1−q,y1− p]

Useful only for propagation

(d)

T1
[x1,y1]

A

S[u,v]A

A[p,q]E

q < 0→[u,v] = [x1−q,y1− p]

p≥ 0→[u,v] = [y1−q,x1− p]

p < 0∧q≥ 0→[u,v] = 〈[ET 1,ET 1−p], [y1−q,ET 1−p]〉
〈[ET 1,ET 1−p], [y1−q,ET 1−p]〉=[min{y1−q,ET 1},ET 1−p]

y1−q≤ x1→ 〈[ET 1,ET 1−p], [y1−q,ET 1−p]〉= [y1−q,ET 1−p]

(e)
T1

[x1,y1]

A B[x2,y2]

〈[ET 1,ET 1−p], [y1−q,ET 1−p]〉
let p′ = p+ x2 q′ = q+ y2

〈[ET 1,ET 1−p′], [y1−q′,ET 1−p′]〉 p′ ≤ 0

〈[not possible], [y1−q′,x1−p′]〉 otherwise

}
=S[u,v]A

(f)
T1

[x1,y1]

T2
[x2,y2]

〈[ET 1,ET 1−p], [y1−q,ET 1−p]〉
let p′ = p+ y2 q′ = q+ x2

〈[ET 1,ET 1−p′], [y1−q′,ET 1−p′]〉 p′ ≤ 0

〈[not possible], [y1−q′,x1−p′]〉 otherwise

}
=S[u,v]A

(g)

Figure 2: Four parallel patterns with a relative constraint. We
remember here that p ≤ q. The dotted edges are induced rel-
ative constraints by the composition of the given relative con-
straint and the T1 duration. For sake of simplicity, we put A in
the labels of relative constraints, as A could represent either a
starting or an ending instant of an activity. In (e) the designed
range [u,v] has to be set to one of derived ranges according to p
and q values. When p < 0∧q≥ 0 holds, the constraint between
the start of T1 and the event A becomes a wait constraint, that
can be turned to a simple range only at run time. In (f) and (g)
the relative constraints are wait constraints and they are propa-
gated through an edge/connector (f) and through a task (g).

the corresponding old ones, (iii) at least one task range has been
squeezed (the new range has a strictly tighter lower bound or upper
bound), and (iv) only non-task range(s) has (have) been squeezed.
In (i) and (iii) cases the wf-path is not controllable, in (ii) case the
controllability analysis is completed and the wf-path is called con-
trollable, and in (iv) case it is necessary to check the controllability
of new ranges and, then, to apply the all-pairs shortest path algo-
rithm again, in order to verify if the stable state has been reached.
The algorithm just described is a pseudo-polynomial one since the
time to reach the stable state could depend on some duration range
values. In [11], Morris describes an advanced polynomial-time al-
gorithm for the controllability of Simple Temporal Problem with
Uncertainty (STNU) that may be used to check the controllability
of a wf-path in a O(n4) time, where n is the order of the wf-path .

When a whole workflow schema is considered to check the con-
trollability, it is necessary to consider all the possible wf-paths
together because the controllability of each wf-path in isolation
does not guarantee the controllability of the overall schema [5]. It
has been shown that there are three kinds of controllability for a
workflow schema: strong, weak, and history-dependent controllabil-
ity. Strong Controllability (SC) refers to the fact that it is possible
to derive a single duration range for each connector/edge ensuring
the controllability of each wf-path of the workflow schema, i.e.,
the execution strategy St is such that, for every pair of wf-paths
p1 and p2, and starting/ending instant x executed in both wf-paths ,
[St(p1)](x) = [St(p2)](x). As regards the prefix concept, the dura-

tion range of each connector/edge is common to all the different
prefixes of the considered connector/edge and it guarantees the con-
trollability of all the wf-paths . Since SC requires the independence
of controllability from the past execution flow (i.e., prefix), allow-
ing a temporal range to depend on the past execution results in the
concept of History−Dependent Controllability (HDC). A workflow
schema is history-dependently controllable if each connector/edge
has (possibly) different duration ranges for different prefixes: for
each prefix, the given duration range is common to all the wf-paths
of that prefix. In other words, the execution strategy St guarantees
that, for any starting/ending instant x and for every pair of wf-paths
p1 and p2 belonging to x prefix, [St(p1)](x) = [St(p2)](x). In this
case the duration range of a connector/edge could depend on the
executed tasks (i.e., the history), but does not prevent the WfMS
to execute any possible future task. If the property of being able
to follow any possible future execution of the workflow schema is
not guaranteed, it could be that a workflow schema is composed by
several wf-paths controllable in isolation, i.e., an execution strategy
exists, but some controllable execution could be prevented at run
time: this property is called Weak Controllability (WeC).

Regarding the check of a workflow schema, in [5] a simple expo-
nential algorithm is proposed, controllabilityCheck(G), that deter-
mines whether a given workflow schema G is controllable, its kind
of controllability, and duration ranges for connectors/edges (duration
ranges of tasks must be leaved unchanged). We refer the reader to [5]
for the complete algorithm and its analysis. controllabilityCheck(G)
verifies that each single wf-path is controllable in isolation and then
verifies whether there is a single duration range for each connec-
tor/edge for all the wf-paths containing it. If it is the case, then the
workflow schema is strongly controllable and the derived ranges
have to be used and possibly refined at run time. Otherwise, the algo-
rithm verifies whether the workflow schema is history-dependently
controllable: it considers the (possibly several if there are parallel
flows) last Or-joins of the workflow schema. Or-joins are consid-
ered as they are responsible of varying the number of prefixes (i.e.,
histories) of all activities following them. Starting from the last
Or-joins, it verifies that for each connector/edge of each Or-join
prefix there is a suitable range not preventing any possible future
execution path. This range could be different according to the
considered connector/edge prefix and ranges related to different
prefixes could even be disjoint. If this check phase is positive, then
the workflow schema is history-dependently controllable, otherwise
it is weakly controllable. In the worst case, the time complexity
of controllabilityCheck(G) is O(|WfP|2 n3 MaxRange2), where n is
the order of the graph and MaxRange is the maximum integer value
present among the temporal durations/delays. It’s worth noting
that |WfP| ≤ 2c(a+1) j, where c is the total number of conditional
connectors, a = max{|outDegree(al)|} is the maximum among the
out degrees of the alternative connectors and j is the number of the
alternative connectors.

5. THE COMPLEXITY OF CONTROLLA-
BILITIES

In the previous section, after the introduction of the possible kinds
of controllability of a workflow schema, we mentioned the proposed
exponential time algorithm that, given a workflow schema as input,
determines whether the schema is controllable and, if it is, the final
temporal ranges to use at run time. In order to evaluate the quality
of the algorithm, in this section we investigate on the computational
complexity of the controllability problem.

First of all, we observe the following implication chain among
the three kinds of controllability: SC⇒ HDC⇒WeC. Considering

63

a workflow schema x, we define x to be coWeakly Controllable if at
least one of its wf-path is not controllable, coStrongly Controllable
if it is not Weakly Controllable or at least one connector/delay does
not admit a single temporal range for all the wf-paths .

5.1 Weak Controllability Case
There is no possibility other than checking the controllability of

each possible wf-path of a workflow schema separately to state if
the schema is weakly controllable. The proof is given as corollary
of the following theorem about coWeak Controllability (coWeC).

THEOREM 5.1. coWeC is NP-complete.

PROOF. It is sufficient to show the two following properties: 1)
coWeC is in NP and 2) a NP-complete problem is polynomial-time
reducible to it.
1) coWeC ∈ NP: as previously discussed, it is possible to check the
controllability of a wf-path in time O(n4) using the Morris algo-
rithm [11]. Hence, given a workflow schema and one of its wf-paths
as certificate it is possible to verify in polynomial time if the wf-path
is not controllable and, therefore, to state that coWeC ∈ NP.
2) SUBSETSUM≺m coWeC: given a set of integers I and an inte-
ger s, the SUBSETSUM problem requires to verify if a non-empty
subset I′ ⊆ I exists such that the sum of its elements is equal to s.
SUBSETSUM is NP-complete [7].
To show a polynomial-time many-to-one reduction ≺m between
SUBSETSUM and coWeC, it is sufficient to set up a polynomial-
time function f between the set of instances of SUBSETSUM and
the set of instances of coWeC such that each instance x is a positive
instance of SUBSETSUM if and only if f (x) is a positive instance of
coWeC [7]. One possible ≺m between SUBSETSUM and coWeC is
the following. Given the set I = i1, i2, . . . , in and the integer s, set up
a schema with n sequential Choice blocks, each of them associated
to an element of I, as depicted in Fig. 3. Each Choice blocks is
made by a Conditional split connector, a task on true branch and the
closing Or join connector. Considering the jth Choice block, the
task on the true branch adds the associated element i j to a global
variable S spending i j time units exactly. Each Conditional split
randomly choices which branch to follow. After the last Choice
block, there is another Conditional split where the equality between
the global variable S and the input parameter s is tested. If the S
value is equal to s, the task Ts is executed, otherwise nothing occurs.
Ts is useful only as milestone to set up the relative constraint with
range [1,s−1] from Start. For sake of simplicity and without loss of
generality, all connectors and delays have temporal range [0,0] unit.
If the instance of SUBSETSUM is positive, then any wf-path exe-
cuting Ts (surely, at least one exists) is not controllable because the
time required to calculate S is s and the relative constraint requires
to start Ts within (s− 1) time units after Start. On the opposite
direction, given an instance of the schema, if one wf-path is not
controllable, then it contains the true branch of the last Conditional
split. Hence, the corresponding SUBSETSUM instance is positive.

It is simple to verify that the construction of the workflow schema
can be done in linear order time w.r.t. the size of the SUBSETSUM
instance.

COROLLARY 5.2. WeC problem is coNP-complete.

5.2 Strong Controllability Case
The SC definition requires that, for each connector/delay, the

duration range has to be common to all wf-paths .

THEOREM 5.3. Strong Controllability ∈ ΣP
2 .

PROOF. SC problem cannot be in coNP because it would mean
that coStrong Controllability ∈ NP and this is impossible (unless

NP= coNP) since coStrong Controllability (coSC) would require
to solve WeC, already shown to be coNP-complete. Let us consider
the computational class ΣP

2 = NPNP. It can be described as the
class of languages L s.t. L = {x | ∃y1∀y2 such that (x,y1,y2) ∈ R},
where R is a polynomially balanced, polynomial-time decidable re-
lation and x,y1,y2 are strings. A relation R⊆ (Σ∗)3 is polynomially
balanced if, whenever (x,y1,y2) ∈ R, it holds that |y1|, |y2| ≤ |x|k
for some k [14].

Given a workflow schema, let us fix a total order among tasks
and another total order among connectors/delays. Then, let y1
be the string built considering the temporal ranges of connectors/
ranges allowing also empty ranges: in more details, let y1i be the
temporal range of i-th connector/delay or the empty string. Let y2
be the similar string built considering the temporal ranges of tasks;
note that it is possible that some values of y2 does not correspond
to any wf-path because some combinations of temporal ranges
and empty strings could be meaningless w.r.t. the given workflow
schema. Setting x to be the string representation of the workflow
schema, if a string y2 corresponds to a wf-path of x, then, using
Morris algorithm [11], it is possible to verify in polynomial time
if a string y1 represents a set of temporal ranges that guarantees
the controllability of wf-path y2 in x. In other words, it is possible
to build a polynomially balanced relation R(x,y1,y2) decidable in
polynomial time. A string y2 does not correspond to a wf-path when
either one or more task temporal ranges are missing or there are too
much temporal ranges (and therefore y2 corresponds to a mix of
two or more wf-paths). Since the length of a wf-path is equal to the
order of the schema graph at most and all wf-paths start from Start,
checking the correctness of a given y2 can be done in linear order
time.

To our knowledge, SC seems not to be ΣP
2 -complete. We are

investigating on the possibility that coSC belongs to AM(2), the
class of problems decided by a 2-rounds interactive proof with
public coins [1]. So far, we show that SC is coNP-hard.

THEOREM 5.4. SC is coNP-hard.

PROOF. Given a boolean expression φ with n variables in nor-
mal conjunctive form, the VALIDITY problem asks if φ is always
true. VALIDITY is coNP-complete [14]. To prove the theorem, it is
sufficient to show VALIDITY ≺m Strong Controllability and ≺m is
computable in polynomial time.

The general idea is, given an expression φ with boolean variable
x1,x2, . . . ,xn, to build a workflow graph where the values of vari-
ables xi are chosen by a sequence of n consecutive tasks, then the
value of φ is evaluated and, finally, according to the φ value, the
flow is divided into two branches: a strongly controllable branch
(true branch) and a not strongly controllable one (false branch) as
depicted in Fig. 4.

In more details, we assume that all variables are initially set to
false. Each Choice block ci is associated to variable xi. The Choice
connector chooses the branch to execute randomly and its execution
can last 0 or 1 time unit. The true branch of ci contains a task that
sets the value of xi to true and lasts one time unit exactly. For sake
of simplicity and without loss of generality, all other connectors and
delays have temporal range [0,0] unit. After the last Choice block,
there is a Conditional connector to evaluate φ . If φ results to be true,
then task Tok is executed, otherwise task Tko is executed. Then, the
workflow ends. The only relative constraint is between Start and
End and it requires that the execution time has to be in the range
[n,2n] time units.

If the VALIDITY instance is positive, then each possible wf-path
contains the true branch of φ? connector. Setting the duration of

64

C1
[0,0]

T1
[i1, i1]

o1
[0,0]

C2
[0,0]

T2
[i2, i2]

o2
[0,0]

Cn
[0,0]

Tn
[in, in]

on
[0,0]

S==s?
[0,0]

Ts
[0,s]

os
[0,0]

true [0,0]

false [0,0]

[0,0]

[0,0]

true [0,0]

false [0,0]

[0,0] true [0,0]

false [0,0]

[0,0]

[0,0]

true [0,0]

false [0,0]

[0,0]

[0,0]

S[0,s-1]S

First Choice Block Second Choice Block

Figure 3: The workflow schema corresponding to an instance of SUBSETSUM.

C1
[0,1]

T1
[1,1]

o1
[0,0]

C2
[0,1]

T2
[1,1]

o2
[0,0]

Cn
[0,1]

Tn
[1,1]

on
[0,0]

φ?
[0,0]

Tok
[0,0]

Tko
[0,0]

φ?
[0,0]

true [0,0]

false [0,0]

[0,0]

[0,0]

true [0,0]

false [0,0]

[0,0] true [0,0]

false [0,0]

[0,0]

[0,0]

true [0,0] false [2n+1,3n]

[0,0] [0,0]

[0,0]

S[n,2n]S

First Choice Block Second Choice Block

Figure 4: The workflow schema corresponding to an instance
of VALIDITY.
all conditional connectors of choice blocks to one time unit, the
duration of each possible wf-path is between n and 2n time units
satisfying the intertask constraint and the SC condition. Hence,
the schema is Strongly Controllable. If the VALIDITY instance is
negative, then at least one wf-path executes the false branch of φ?
connector spending at least 2n+1 time units only for the execution
of the branch. Since the upper bound of the overall relative constraint
is 2n, the wf-path is not controllable for any duration of conditional
connectors, so the schema is not Strongly Controllable.

It is simple to show that the schema construction can be done in
polynomial time.

5.3 History-Dependent Controllability Case
The History−Dependent Controllability definition requires to de-

termine, for each connector/delay, possible different temporal ranges,
one for each prefix of the given connector/delay, such that the con-
trollability of all wf-paths of the associated prefixes is guaranteed.

HDC problem cannot be in coNP class for the
same reason explained for SC: it would mean that
coHistory−Dependent Controllability (coHDC) ∈ NP and this is
impossible (unless NP = coNP) since coHDC could require to
solve WeC, already shown to be coNP-complete.

Let us start with the simplified situation where the workflow
schema does not contain any Total connector (i.e., no parallel flows).
In a similar way as done for SC analysis, here we describe the HDC
property representing the dependency of ranges w.r.t. the executed
prefix in explicit form. Since a schema has different wf-paths (i.e.,
prefixes) only if it contains Or split or Conditional connectors (here-
inafter, split), let us fix an order for all splits w.r.t. the distance
from the Start. The first (and only one) split is at level 0 and it
has only one prefix. Hence, the temporal ranges for the split and
delays before it have to be the same for all wf-paths because there
is only one prefix. After the first split, the number of prefixes in-
creases and, therefore, it is possible to consider the specific prefix

1

1

. . .

. . .

2

. . .

. . .

3

. . .

. . .

Figure 5: A workflow schema with splits in parallel flows.

in order to determine duration ranges for all delays following the
split until the next split. More formally, let us recursively denote
by pi,i+1,...,k i = 0, . . . ,k−1 is the sequence of tasks from one split
of level k−1 to one of level k, according to the given (meaningful)
piece of flow pi,i+1,...,k−1; p0,1 is a task sequence from the first split
to a split at level 1; pk−1,k is a task sequence from the k−1th split
to End, viewed as the only split at level k; note that the number
k of levels is less than the number n of nodes. Moreover, let us
recursively denote by xi,i+1 the sequence of delays/join durations
following a split at level i and before the following (w.r.t. the flow)
split at level i+1; xi,i+1 contains also the range of the split at level
i+ 1. xS,0 is the sequence of delays between Start and the first
split including also the duration of the split. If a wf-path does not
contain splits of level greater than j (j < k), then p j, j+1,...,k and
x j, j+1, . . . ,xk−1,k are empty. According to this notation, HDC may
be expressed as

∃xS,0∀p0,1∃x0,1∀p0,1,2 . . .∃xk−2,k−1∀p0,1,...,k∃xk−1,k

R(xS,0,x0,1, . . . ,xk−1,k,p0,1,...,k)

where R(xS,0,x0,1, . . . ,xk−1,k,p0,1,...,k) is the polynomial-time
checkable predicate representing the controllability of the wf-
path p0,1,...,k when the delays and connectors ranges are
x0,x0,1, . . . ,xk−1,k. Given a schema with n nodes, the problem
belongs to class Σ

p
n . In general, the problem is in PSPACE.

The description of the HDC property is more difficult when the
schema contains parallel flows with alternative flows inside. Indeed,
the order of execution of splits on different parallel flows cannot
be fixed in general and, therefore, requiring HDC for any possible
execution order of splits could result in a too strict condition w.r.t.
the effective possible executions. For example, as depicted in Fig. 5,
the possible execution orders for splits are: either 1 2 3 or 2

1 3 or 2 3 1. In principle, any of these orders is acceptable
and could depend on the previous execution history. Thus, at design
time we need to verify HDC considering all these orders but, in this
way, we could specify constraints more strict than those required
by the schema. Even in this case, the above logical characterization
need to be extensively revised to guarantee that all the possible
schemata are captured.

6. DISCUSSION AND CONCLUSIONS
In this paper we discussed the computational complexity of con-

trollability problem of workflow schemata; in particular, we con-

65

sidered the three different kinds of controllability and we showed
that WeC problem is coNP-complete, while SC problem ∈ ΣP

2 and
it is coNP-hard. We are investigating on the possibility that coSC
belongs to the class AM(2): it would mean that SC cannot be ΣP

2 -
complete unless the polynomial hierarchy collapses to the third
level (PH = ΣP

3). Regarding the history-dependent controllabil-
ity problem, we showed that it is a PSPACE problem and we are
investigating about its hardness characterization.

Even with incomplete complexity characterization, we are able to
say that the computational complexity of algorithms proposed in [5]
cannot be lowered significantly: thus, in the domain of workflow
systems, ad-hoc (approximate) algorithms need to be studied for
both design time and run time controllability checking.

7. REFERENCES
[1] S. Arora and B. Barak. Computational complexity: a modern

approach. Cambridge Univ. Press, 2009.
[2] C. Bettini, X. S. Wang, and S. Jajodia. Temporal reasoning in

workflow systems. Dist. & Paral. Data., 11(3):269–306, 2002.
[3] C. Combi, M. Gozzi, J. M. Juárez, B. Oliboni, and G. Pozzi.

Conceptual modeling of temporal clinical workflows. In
TIME, pages 70–81. IEEE, 2007.

[4] C. Combi and R. Posenato. Controllability in temporal
conceptual workflow schemata. In U. Dayal, J. Eder,
J. Koehler, and H. A. Reijers, editors, BPM, volume 5701 of
LNCS, pages 64–79. Springer, 2009.

[5] C. Combi and R. Posenato. Towards temporal controllabilities
for workflow schemata. In Markey and Wijsen [10], pages
129–136.

[6] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artif. Intell., 49(1-3):61–95, 1991.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, 1979.

[8] L. Hunsberger. Fixing the semantics for dynamic
controllability and providing a more practical characterization
of dynamic execution strategies. In C. Lutz and J.-F. Raskin,
editors, TIME, pages 155–162. IEEE, 2009.

[9] L. Hunsberger. A fast incremental algorithm for managing the
execution of dynamically controllable temporal networks. In
Markey and Wijsen [10], pages 121–128.

[10] N. Markey and J. Wijsen, editors. TIME 2010 - 17th Int. Symp.
on Temporal Repres. and Reas., Paris. IEEE, 2010.

[11] P. Morris. A structural characterization of temporal dynamic
controllability. In F. Benhamou, editor, CP, volume 4204 of
LNCS, pages 375–389. Springer, 2006.

[12] P. H. Morris and N. Muscettola. Temporal dynamic
controllability revisited. In M. M. Veloso and
S. Kambhampati, editors, AAAI, pages 1193–1198. AAAI
Press, 2005.

[13] Object Management Group (OMG). Business process
definition metamodel (bpdm), Beta 1. http://www.omg.org,
2007.

[14] C. M. Papadimitriou. Computational complexity. Addison,
1994.

[15] I. Tsamardinos, T. Vidal, and M. E. Pollack. CTP: A new
constraint-based formalism for conditional, temporal planning.
Constraints, 8:365–388, 2003.

[16] T. Vidal and H. Fargier. Handling contingency in temporal
constraint networks: from consistency to controllabilities. J.
Exp. Theor. AI, 11(1):23–45, 1999.

66

