387 research outputs found

    Five-Phase Bi-Harmonic PMSM Control under Voltage and Currents Limits

    Get PDF
    For a particular five-phase synchronous machine, this paper investigates the sensitivity of a vectorial control strategy on the required peak phase voltage whose value is fundamental for the choice of the DC bus voltage. The specificity of the machine is that the first and third harmonic components of the back electromotive force (back-emf) have the same amplitude. As a consequence, the torque can be produced by one of them or both with suitable currents. This degree of freedom is interesting for optimizing the efficiency and generating high transient torque. However, using two harmonics having the same amplitude leads to a necessity to analyze the constraints on the required phase machine voltage. Considering a Maximum Torque Per Ampere (MTPA) strategy, the paper examines the impact of some parameters such as the phase shift between currents and back-emfs or the ratio between the third and the first harmonic of current on the torque and maximum voltage value. Experimental tests with a limited DC bus voltage have been carried out and compared to the results obtained by a Finite Element Analysis

    New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives

    Get PDF
    Star-connected multiphase AC drives are being considered for electromovility applications such as electromechanical actuators (EMA), where high power density and fault tolerance is demanded. As for three-phase systems, common-mode voltage (CMV) is an issue for multiphase drives. CMV leads to shaft voltages between rotor and stator windings, generating bearing currents which accelerate bearing degradation and produce high electromagnetic interferences (EMI). CMV effects can be mitigated by using appropriate modulation techniques. Thus, this work proposes a new Hybrid PWM algorithm that effectively reduces CMV in five-phase AC electric drives, improving their reliability. All the mathematical background required to understand the proposal, i.e., vector transformations, vector sequences and calculation of analytical expressions for duty cycle determination are detailed. Additionally, practical details that simplify the implementation of the proposal in an FPGA are also included. This technique, HAZSL5M5-PWM, extends the linear range of the AZSL5M5-PWM modulation, providing a full linear range. Simulation results obtained in an accurate multiphase EMA model are provided, showing the validity of the proposed modulation approach.This work has been supported in part by the Government of the Basque Country within the fund for research groups of the Basque University system IT978-16 and in part by the Government of the Basque Country within the research program ELKARTEK as the project ENSOL (KK-2018/00040)

    General Torque Enhancement Approach for a Nine-Phase Surface PMSM with Built-in Fault Tolerance

    Get PDF
    The paper investigates maximum possible torque improvement in a two-pole surface permanent magnet synchronous machine (PMSM) with a reduced magnet span, which causes production of highly non-sinusoidal back-EMF. It contains a high third and fifth harmonics, which can be used for the torque enhancement, using stator current harmonic injection. Optimal magnet span is studied first and it is shown that with such a value the machine would be able to develop an insignificantly lower maximum torque than with the full magnet span. Next, field-oriented control (FOC) algorithm, which considers all non-fundamental EMF components lower than the machine phase number, is devised. Using maximum-torque per Ampere (MTPA) principles, optimal ratios between fundamental and all other injected components are calculated and then used in the drive control. The output torque can be in this way increased up to 45% with respect to the one obtainable with fundamental current only. Alternatively, for the same load torque, stator current RMS value can be reduced by 45%. Last but not least, a method for position sensor fault mitigation is introduced. It is based on the alternative use of a back-EMF harmonic for rotor position estimation, instead of the torque enhancement. Experimental verification is provided throughout for all the relevant aspects

    General Torque Enhancement Approach for a Nine-Phase Surface PMSM with Built-in Fault Tolerance

    Get PDF
    The paper investigates maximum possible torque improvement in a two-pole surface permanent magnet synchronous machine (PMSM) with a reduced magnet span, which causes production of highly non-sinusoidal back-EMF. It contains a high third and fifth harmonics, which can be used for the torque enhancement, using stator current harmonic injection. Optimal magnet span is studied first and it is shown that with such a value the machine would be able to develop an insignificantly lower maximum torque than with the full magnet span. Next, field-oriented control (FOC) algorithm, which considers all non-fundamental EMF components lower than the machine phase number, is devised. Using maximum-torque per Ampere (MTPA) principles, optimal ratios between fundamental and all other injected components are calculated and then used in the drive control. The output torque can be in this way increased up to 45% with respect to the one obtainable with fundamental current only. Alternatively, for the same load torque, stator current RMS value can be reduced by 45%. Last but not least, a method for position sensor fault mitigation is introduced. It is based on the alternative use of a back-EMF harmonic for rotor position estimation, instead of the torque enhancement. Experimental verification is provided throughout for all the relevant aspects

    On the Modeling, Analysis and Development of PMSM: For Traction and Charging Application

    Get PDF
    Permanent magnet synchronous machines (PMSMs) are widely implemented commercially available traction motors owing to their high torque production capability and wide operating speed range. However, to achieve significant electric vehicle (EV) global market infiltration in the coming years, the technological gaps in the technical targets of the traction motor must be addressed towards further improvement of driving range per charge of the vehicle and reduced motor weight and cost. Thus, this thesis focuses on the design and development of a novel high speed traction PMSM with improved torque density, maximized efficiency, reduced torque ripple and increased driving range suitable for both traction and integrated charging applications. First, the required performance targets are determined using a drive cycle based vehicle dynamic model, existing literature and roadmaps for future EVs. An unconventional fractional–slot distributed winding configuration with a coil pitch of 2 is selected for analysis due to their short end–winding length, reduced winding losses and improved torque density. For the chosen baseline topology, a non–dominated sorting genetic algorithm based selection of optimal odd slot numbers is performed for higher torque production and reduced torque ripple. Further, for the selected odd slot–pole combination, a novel star–delta winding configuration is modeled and analyzed using winding function theory for higher torque density, reduced spatial harmonics, reduced torque ripple and machine losses. Thereafter, to analyze the motor performance with control and making critical decisions on inter–dependent design parameter variations for machine optimization, a parametric design approach using a novel coupled magnetic equivalent circuit model and thermal model incorporating current harmonics for fractional–slot wound PMSMs was developed and verified. The developed magnetic circuit model incorporates all machine non–linearities including effects of temperature and induced inverter harmonics as well as the space harmonics in the winding inductances of a fractional–slot winding configuration. Using the proposed model with a pareto ant colony optimization algorithm, an optimal rotor design is obtained to reduce the magnet utilization and obtain maximized torque density and extended operating range. Further, the developed machine structure is also analyzed and verified for integrated charging operation where the machine’s winding inductances are used as line inductors for charging the battery thereby eliminating the requirement of an on–board charger in the powertrain and hence resulting in reduced weight, cost and extended driving range. Finally, a scaled–down prototype of the proposed PMSM is developed and validated with experimental results in terms of machine inductances, torque ripple, torque–power–speed curves and efficiency maps over the operating speed range. Subsequently, understanding the capabilities and challenges of the developed scaled–down prototype, a full–scale design with commercial traction level ratings, will be developed and analyzed using finite element analysis. Further recommendations for design improvement, future work and analysis will also be summarized towards the end of the dissertation

    Online Adaptive Set of Virtual Voltage Vectors for Stator Current Regulation of a Six-Phase Induction Machine Using Finite State Model Predictive Controllers

    Get PDF
    (This article belongs to the Special Issue Electric Power Applications II) // "This article is an open access article distributed under the terms and conditions of the Creative Commons ttribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/"Virtual voltage vectors (VVV) have been used for the control of multi-phase induction machines, where different sub-spaces appear related to the torque production and losses generation. In the literature, several sets of VVV have been used, aiming at reducing harmonic content while maintaining a low computational burden. This paper proposes the use of different sets of VVV to regulate the stator current of multi-phase drives using finite-state model predictive controllers. In the proposal, only one set is active at each control period. This active set is obtained through a preliminary analysis using performance maps. As a result, a method is derived for the online selection using the current operating point. The selection is based on a simple computation from variables usually measured on variable-speed drives. Results are provided for a symmetrical six-phase IM, showing that the proposal improves the closed-loop performance of the multi-phase drive with a low computational cost

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Speed Finite Control Set Model Predictive Control of a PMSM fed by Matrix Converter

    Get PDF
    This paper presents a new speed Finite Control Set Model Predictive Control (FCS-MPC) algorithm which has been applied to a Permanent Magnet Synchronous Motor (PMSM) driven by a Matrix Converter (MC). This method replaces the classical cascaded control scheme with a single control law that controls the motor currents and speed. Additionally, unlike classical MC modulation methods, the method allows direct control of the MC input currents. The performance of the proposed work has been verified by simulation studies and experimental results

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali
    • …
    corecore