99,128 research outputs found

    Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations

    Get PDF
    Hybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective. To that end, the technical-economical potentials and challenges emerging from their use are identified and critically discussed. In addition, the current situation and future perspectives of hybrid machines from the point of view of process planning, monitoring, and inspection are analyzed. On the one hand, it is found that hybrid machines enable a more efficient use of the resources available, as well as the production of previously unattainable complex parts. On the other hand, it is concluded that there are still some technological challenges derived from the interaction of additive and subtractive processes to be overcome (e.g., process planning, decision planning, use of cutting fluids, and need for a post-processing) before a full implantation of hybrid machines is fulfilledSpecial thanks are addressed to the Industry and Competitiveness Spanish Ministry for the support on the DPI2016-79889-R INTEGRADDI project and to the PARADDISE project H2020-IND-CE-2016-17/H2020-FOF-2016 of the European Union's Horizon 2020 research and innovation program

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Reactive Atom Plasma (RAP) figuring machine for meter class optical surfaces

    Get PDF
    A new surface figuring machine called Helios 1200 is presented in this paper. It is designed for the figuring of meter sized optical surfaces with form accuracy correction capability better than 20 nm rms within a reduced number of iterations. Unlike other large figuring facilities using energy beams, Helios 1200 operates a plasma torch at atmospheric pressure, offers a high material removal rate, and a relatively low running cost. This facility is ideal to process large optical components, lightweight optics, silicon based and difficult to machine materials, aspheric, and free form surfaces. Also, the surfaces processed by the reactive atom plasma (RAP) are easy to fine polish through hand conventional sub-aperture polishing techniques. These unique combined features lead to a new capability for the fabrication of optical components opening up novel design possibilities for optical engineers. The key technical features of this large RAP machine are fast figuring capabilities, non-contact material removal tool, the use of a near Gaussian footprint energy beam, and a proven tool path strategy for the management of the heat transfer. Helios 1200 complies with the European machine safety standard and can be used with different types of reactive gases using either fluorine or chlorine compounds. In this paper, first the need for large optical component is discussed. Then, the RAP facility is described: radio frequency R.F generator, plasma torch, and 3 axis computer numerically controlled motion system. Both the machine design and the performance of the RAP tool is assessed under specific production conditions and in the context of meter class mirror and lens fabrication

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Nanosatellite fabrication and analysis

    Get PDF
    The advancements in technologies used in the aerospace industry have allowed universities to experiment with and develop small-scale satellites. Universities are taking advantage of the relatively low development costs of nanosatellite programs to give students experience in the field of spacecraft design. The purpose of Santa Clara University\u27s team, Nanosatellite Fabrication and Analysis, is to create a process to expedite the design, analysis, and fabrication phase of nanosatellite structures for students working on future satellite missions. The objective is to design four baseline nanosatellite structures to accommodate a range of potential missions where the designs are simple enough to be completely fabricated by students utilizing only the tools found in the Santa Clara University\u27s machine lab. Finite element analysis is conducted to ensure the designs meet NASA standards for natural frequency and that it can survive the forces it is subjected to during a launch. SatTherm, an easy to use thermal analysis tool for small spacecrafts, was used to conduct initial thermal simulations of the nanosatellite to determine the type of thermal components that will work for future missions. The success of team Nanosatellite Fabrication and Analysis proves that students can fabricate the structural frame of a nanosatellite using only the tools available in SCU\u27s machine lab
    • …
    corecore