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Abstract. This paper presents the design, development and SIMULINK implementation of the 

lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool.  The 

simulated results compare well with the experimental data measured from the actual machine. 

Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-

loop implementation of the drive models in dSPACE real-time system. The main components 

of the HIL system are: the drive model simulation and input – output (I/O) modules for 

receiving the real controller outputs. The paper explains how the experimental data obtained 

from the data acquisition process using dSPACE real-time system can be used for the 

development of machine tool diagnosis and prognosis systems that facilitate the improvement 

of maintenance activities.  

 

 

1. Introduction  

Modern industry requires fast, accurate and productive CNC machine tools capable to generate 

workpieces with tight dimension, form, and surface finish tolerances. The cutting processes induce 

non-linear dynamic behaviour of these machines [1] therefore the classical pre-calibrated methods for 

error compensation cannot be used in these circumstances. Maj et al [2] described the close interaction 

between the dynamic behaviour of the mechanical structure, drives, and numerical control to 

reproduce correctly the characteristics of all components that can limit the machine performance. Then 

Yeung et al [3] presented the development of a virtual model of a CNC machine tool which requires 

realistic mathematical models for each CNC component and their logical interconnection. The Virtual 

CNC allowed the modular integration of trajectory planning and interpolation routines, mathematical 

models of ball screw and linear drives, friction, feedback sensors, amplifiers, D/A converters and 

flexible motion control laws. Also there has been significant progress made on modelling various 

trajectory generation algorithms [4], control laws [5], and physical components of the drives such as 

motors, amplifiers, ball-screw and linear drives with various friction characteristics [6, 7].  

  The University of Huddersfield has gained over the years an international reputation due to its 

extensive research work in the area of machine tool precision accuracy and control engineering. 

Precise models reflecting the dynamic behaviour of CNC machine tools for various running conditions 

were developed to ensure an optimal operation of feed drives within CNC machine tools. The lumped 

parameter models [8], the modular approach [9] and hybrid models with distributed load, explicit 

damping factors, backlash and friction [10, 11] aimed to represent the dynamic behaviour of the CNC 

machine tool feed drives when the ball-screw nut was travelling.  

    Also the Transmission Line Modelling (TLM) technique proved to be useful in replicating these 

complex interactions occurring when the nut is travelling. The TLM model of ball-screw system [12] 

included the moving nut, the distributed inertia of the screw, non-linearities (Coulomb friction, 
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backlash) [13], the simulation synchronisation of axial and torsional forces applied on the nut during 

its linear movement and the restraints applied by the bearings [14]. The main advantages of TLM 

technique [15, 16] are the high speed of processing and relatively simple procedures for continuous 

and discrete models making it suitable for real-time applications [17, 18].  

   Dougal [19] mentioned that traditional software-based simulation has the disadvantage of being 

unable to exactly replicate real time operational conditions. One way to bridge the gap between 

simulation and real conditions is hardware-in-the-loop (HIL) simulation. Several papers have been 

written outlining the basic fundamentals of HIL simulation [20]. 

    This paper presents the mathematical equations used to develop the mathematical model of the C-

axis drive from GEISS five-axis machine existing at the University of Huddersfield. This model is 

implemented in SIMULINK and the simulated results compare well with the experimental data 

measured from the actual machine so the proposed model is validated. Also the paper describes the 

steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive 

models dSPACE. The main components of the HIL system are: the drive model simulation (executes 

in real-time and simulates the dynamic characteristics of the drive) and input – output (I/O) modules 

for receiving the real controller outputs and responding with simulated signals from the drive model 

back to the controller with the intention to improve the quality of machine operation. 

   Current trends in mechanical engineering show the growing importance of costs for machine tool 

life cycles. The producers of machine tools need to pay more attention to their products‟ life cycle 

because the customers increasingly focus on machine tool reliability and costs. The present paper 

explains how the experimental data obtained from the data acquisition process using dSPACE real-

time system can be used for the development of a machine tool diagnosis and prognosis system that 

facilitates the improvement of maintenance activities. The health condition of the physical feed drive 

components can be constantly assessed by using the monitoring data measured by dSPACE to perform 

on-line system diagnostics and prognostics and estimation of the remaining useful life. 

    Section two shows the results of the results of the analysis of the operation of actual CNC five-axis 

machine and the derivation of the mathematical equations describing the dynamic behaviour of 

machine. Section three describes the implementation of C-axis drive model in SIMULINK and the 

simulated results are compared with the measured data in section four. The next two sections present 

the steps of performing data acquisition using ControlDesk from dSPACE real-time system and the 

development of HIL implementation which will use the validated proposed drive model. Section seven 

describes the experimental data obtained from the data acquisition process using dSPACE real-time 

system can be used for the development of machine tool diagnosis and prognosis systems that 

facilitate the improvement of maintenance activities. 

 

2. Analysis of the operation of actual five axis Geiss CNC machine with Siemens 840D controller  

Siemens SINUMERIK 840D is an open architecture controller which provides diverse development 

tools for many applications. It is using the Multiple Protocol Interface (simple version of Profibus) to 

connect in a single network the processing components, such as the Human-Machine Interface and the 

Programmable Logic Controller. Figure 1 shows the five-axis machine existing at the University of 

Huddersfield which has been used for practical measurements. The controller Sinumerik 840D SL 

(Solution Line) has open architecture and the machine is equipped with the orthogonal trimming head 

and spindle. Both ends of the axes protrude which permit independent operation with two different 

tools. The spindle power is 6 kW, the tool is clamped in an ER 16 chuck and the spindle runs on 

sealed ceramic bearings which are lubricated for life. 

    In order to perform the data acquisition it is necessary to understand how and where data is 

processed and transmitted in this five-axis machine. It has direct drives so the servo motors are joined 

directly to the load with no transmission devices. These torque motors allow the dynamic direction 

changes for high velocities and have higher values for accuracy and lifetime in comparison to lead 

screw drives and linear motor drives. Standard servo controllers do not have added force inputs, they 



have two encoder inputs motor encoder for a velocity measurement and a second encoder for position 

measurement at the slider. Direct drives need just one encoder for position and velocity measurement. 

Modern versions are electrically equivalent to 3-phase brushless, synchronous motors with permanent 

magnet field excitation. The geometry of the motors is chosen to generate high torques (or forces) 

output rather than high efficiency.  The direct drive technology applies the power to the movement 

directly, without previous conversion of a mostly rotary movement. The copper losses and electrical 

time constants remain low, so these motors have a higher number of magnetic poles than a 

conventional servo motors. 

    The most significant selection condition is the accelerating ability of the drive. Direct drives, 

especially torque motors, have often been applied for 5-axis milling machines in the last few years in 

order to achieve dynamic orientation changes for high path velocities. While ball screw drives and 

linear motor-driven axes reach comparable dynamic feed axis performance, the torque motor can have 

clear advantages in dynamics, accuracy and lifetime, compared to gear axes. 

 

  
 

                                  a) actual five-axis machine                         b) rotational B and C axes 

Figure 1. Actual five-axis machine and the rotational B and C axes. 

   

 

Figure 2 shows the main elements of the C-axis drive: position setpoint generator; position 

controller; speed controller; current (direct torque) controller; 3-phase inverter; induction motor with 

rotary encoder which generates a feedback signal proportional with the rotor speed. The angular 

position is obtained by integrating the speed values.     

 
 

Figure 2. Block diagram representing C-axis drive. 

 

Zirn [21] shows that a pulse width modulated (PWM) voltage source inverter generates a circular 

rotating field in the stator (rotating field vector Φ). The permanent magnets on the rotor try to align the 

magnetic rotor axis with the stator field vector. The resulting rotor torque is given by 



 

M ≈ KM 
. 
I 

. 
sin β = KM(β) 

. 
I           (1) 

 

A permanent magnetic rotor tries to align with the iron teeth in a toothed stator. This position- 

dependent periodic torque, called reluctance or cogging torque, is used for stepping motors. For servo 

motors, it represents a disturbance and has to be compensated by suitable stator geometry or by lookup 

compensation tables in the power module. Residual reluctance torque has to be considered in the 

physical model as a periodic nonlinear function block. Some motor manufacturers give a detailed 

description of the cogging torque in their data sheets. In most cases, a maximum cogging torque is 

given as a percentage of the rated torque – this allows approximate consideration of the effect by 

means of a sinusoidal function. The input voltage U for the motor coil is limited to the intermediate 

voltage UZ: 

-UZ ≤ U ≤ UZ           (2) 

 

   This effect is considered by the saturation block in the physical model. Due to pulse width 

modulation, the input voltage U follows the command value Uset with a certain delay. This delay is 

taken into consideration in the physical model by a dead time Tdead of one pulse period (worst-case 

estimation):  

 

Tdead = 1/fPWM           (3) 

 

The rotor movement generates the back-EMF voltage Ui induced in the coil:  

Ui ≈ KS 
. 
sin β 

.
dϕ/dt = KS(β) 

. 
dϕ/dt      (4) 

   The current I follows the input voltage U with a delay due to coil inductance (1
st
-order transfer 

function with Tel=L/R). Typical time constants for servo motors are in the range of 10 to 20 ms, i.e. 

voltage input alone is too slow for dynamic position control. In addition, fast motor movements 

disturb the current given by the input voltage. The current controller in the power module has to 

ensure fast current generation with delays of less than 1 ms. If the input command value for the power 

module is a torque (Mset) instead of a current (Iset), the input has to be scaled:  

 

Iset = Mset/KM(β)           (5) 

   Direct-driven rotary axes can achieve higher control performance, more accuracy, longer lifetime 

and greater reliability than gear drives. One of the advantages of rotary direct drives is the possibility 

of exceeding the speed range for special application combinations. The standard maximum speed is 

limited in accordance with the following relation: 

           (6) 

where Uz is the intermediate voltage and Ks is the torque constant. If maximum torque is required in 

the complete speed range, small torque constants in combination with high motor currents are 

required; this increases the drive costs and current converter volume significantly. Field-weakening is 

an interesting alternative if higher speeds have to be reached with reduced torque requirements.   

Therefore the commutation angle yields: 

M ≈ KM 
. 
I 

. 
sin β = KM(β) 

. 
I           (7) 

 

   It has to be set to smaller values (β<90°) to decrease both the back-EMF constant KS and the torque 

constant KM so this is the “field-weakening range”. Although the field of the permanent rotor magnets 

is not “weakened”, the smaller commutation angle results in the same effect: The motor can achieve 

higher velocities, but requires more current to produce torque. Typically, the current converter starts 

the field-weakening operation at maximum speed ωMmax according to:  



           (8) 

where the motor can achieve the maximum torque. The potential torque, depending on motor 

parameters and velocity, is given by: 

           (9) 

   If a certain torque has to be produced for a speed higher than ωMmax, the commutation angle has to be 

reduced until the torque constant is reached 

       (10) 

   Equation (10) represents the simplified algorithm implemented in most standard current converters 

for achieving higher velocities by field-weakening. These mathematical equations describing the 

dynamic behaviour of the induction machine have been implemented into the SIMULINK model.  

 

3. Implementation of C-axis drive model in SIMULINK 

Accurate identification of the feed drives dynamics is an important step in designing a high 

performance CNC machine which is a mechatronic system (consisting of mechanical and electronic 

components and software). Figure 3 shows the SIMULINK implementation of the C-axis drive model. 

The input signals for „Position Controller‟ block are nominal angular position and actual position from 

the motor. This block generates the nominal speed (SP) which is fed to „Speed Controller‟ block 

together with actual motor speed (N) from the rotary encoder and the magnetic compensation constant 

(MagC). The „Speed Controller‟ produces the values for flux and torque which is included in DTC 

(Direct Torque Controller) together with three-phase voltage V_abc and current I_abc. DTC block 

generates the command signals for the thyristors gates from the „Three-phase inverter‟. The induction 

machine receives the electrical energy from the three-phase power supply, diode rectifier, braking 

chopper and PWM inverter. The block „Voltage Current Conversion‟ transforms the torque values into 

electrical current values. The „Induction Machine‟ block produces the values for the rotor angular 

position, armature currents, rotor speed.      

 

 
Figure 3. SIMULINK model implementation of the C-axis drive model. 

 



The speed controller is based on a PI regulator which generates a torque set point applied to the 

direct torque controller. DTC estimates the motor flux components and the electromagnetic torque. 

The SIMULINK implementation uses the blocks from SimPowerSystems library. The power supply 

adjusts the AC input voltage to the intermediate circuit voltage. One intermediate circuit supplies 

several axis power modules, which makes possible the storage of braking energy and energy exchange 

between different axis operations. Braking chopper is used to absorb the energy produced by a motor 

deceleration. A, B, C are the three phase terminals of the drive.  

    Figure 4 shows the simulated angular position produced by the block „Induction machine‟ from the 

SIMULINK implementation (see Figure 3). A triangular signal was applied as a demand to the 

„Position Controller‟ block and the model simulates the rotor angular position. The values for the 

demand signal were chosen in accordance with the measured experimental data from the actual five-

axis machine.  

 
Figure 4. Simulated results obtained using SIMULINK model. 

 

4. Comparison between simulated and measured results 

The servo trace built-in function of the SINUMERIK 840D SL controller is used to measure the data 

from the actual five-axis machine. Manual commands are applied to achieve rapid traverse movements 

of the C-axis. Output signals are provided via rotary encoder mounted on the motor. The approach 

behaviour at various speeds has been checked using the HMI Advanced servo trace software. Servo 

trace provides a graphically assisted analysis of the time response of position controller and drive data 

and offers functions for recording and graphically illustrating the temporal characteristics of values for 

servo signals, e.g. actual position value, following error etc. 

The measured values for the angular position of the actual servomotor are presented on Figure 5.  

 
Figure 5. Measured rotor angular position using ServoTrace tool. 



The simulated results (Figure 4) compare well with the measured data from the controller of the 

actual machine (Figure 5). This represents the first step in developing a full model of the five-axis 

machine including the horizontal, vertical and rotary axes drives.  

 

5. Data acquisition using ControlDesk 

It is intended to use the developed model into hardware-in-the-loop (HIL) implementation using 

dSPACE real-time system existing at the University of Huddersfield.   

Real time implementation of drive models includes five main steps [18]: 

1. construct the block diagram in SIMULINK and run the model 

2. perform signal conditioning for the RTI implementation 

3. use RTI for automatic implementation of SIMULINK model on dSPACE hardware 

4. generate C code for the RTI implementation using Real Time Workshop (RTW) within MATLAB 

environment 

5. develop GUI within ControlDesk 

 

   There are few Data Acquisition Instruments that keep track of continuous and binary variables: the 

plotter, XYPlot, LogicAnalyzer, and PloterArray instruments. A time trace capture collects data on the 

simulation platform and is the source of the data signals displayed in plotter instruments. The 

following topics explain how to use the Data Acquisitions Instruments.  

    The CapureSetting instrument allows you to set data capture parameters for the different services 

specified in the model. Each tab in the Capture Settings Window corresponds to a service. The tab is 

labelled platform type – the name of the system description file – service number. For each service 

defined in the program, capture start/stop and all capture conditions (in particular trigger conditions) 

can be controlled individually. The settings of each captureSettings instrument may be applied to any 

data acquisition instrument. This lets you specify different sets of data capture parameters and apply 

these sets to several data acquisition instruments. 

   The Capture Settings Window is used to control the captured data in ControlDesk. This contains one 

or more pages: the CaptureSettings instruments. It allows setting data capture parameters for different 

variables specified in the model. It‟s possible to save the data as a MAT, CSV or IDF file.  

    The simulator variables connected to data acquisition instruments can be identified by the icon 

displayed in the first column (Connected). The connected variables will always be used for data 

capture. Invalid data connections (source or target of the data connection is removed) are displayed in 

red. The Capture Settings window with the corresponding service is displayed and each button 

corresponds to a service that is specified in the loaded application or SIMULINK simulation. 

Trigger property page allows specifying the settings of the trigger signal, (e.g. the delay, rising or 

falling edge, and the trigger level). Data capturing starts immediately after the animation starts, if the 

checkbox auto start is selected. Otherwise, in the capture Settings Window click start/stop to manage 

data capturing manually. 

   One procedure for data acquisition using ControlDesk from dSPACE system was developed for 

three-axis CNC machine tool [17, 18]. A similar approach will be applied when the measured data 

from five-axis machine will be included in dSPACE system in the future.   

 

6. Development of HIL implementation 

HIL (hardware-in-the-loop) simulation is a technique that combines real and virtual components into 

an operational configuration to allow simulation and test of dynamic behavior of complex systems 

under varied conditions.  

    HIL simulations have given the engineers the ability to simulate a variety of scenarios that may be 

too difficult, time consuming or expensive to do on a machine prototype. This advanced testing 

capability has proven to significantly improve the quality of the released software. Our verification 

test process follows the System Engineering V. An HIL system can have several components within it. 

The main part is the plant model simulation, which executes in real-time and simulates the dynamic 



characteristics of the plant. I/O modules are used to receive the controller outputs and respond with 

simulated signals from the plant back to the controller. 

    Modeling provides the ability to begin simulating control behavior while hardware prototypes are 

still unavailable. In addition, models from previous designs may be reused to further reduce the effort 

necessary to produce a model. If prototype or existing hardware is available, the modeling effort may 

be complemented by using real-world input/output data to produce models with system identification 

techniques. 

     The “Real Time Interface” is used to interface with the SIMULINK environment. In addition, the 

dSPACE adds patented user interface tools for viewing and controlling data in the SIMULINK 

environment. Users of the SIMULINK software can use dSPACE to perform offline simulations on a 

desktop or download the dynamic model to a real-time system for rapid control prototyping or HIL 

testing. 

     Because software simulations cannot account for all of the unique behaviors of an actual dynamic 

environment, a hardware prototype is developed to aid in the testing of the control algorithm in real 

time. This rapid control prototyping is the next, main stage of the control design V diagram. Real-

Time Workshop® generates and executes stand-alone C code for developing and testing algorithms 

modeled in SIMULINK and Embedded MATLAB code. The controller design is tested in a real-time 

environment and connected to the real or simulated plant. This step provides excellent verification and 

validation feedback on the fidelity of the modeling effort and the resulting control design early in the 

design flow. Further refinements to the controller and hardware designs and requirements can be made 

prior to finishing the design of the production systems. Following this stage, the controller is 

implemented on target hardware that is dSPACE DS1005 or it can be some custom hardware.  

     In HIL testing, the designer can simulate real-time behavior and characteristics of the final system 

to verify the production system controller without the need for the physical hardware or operational 

environment. As seen in the figure, the control code is running on the target controller hardware while 

the plant is simulated in real time on a test computer. ControlDesk handles every facet of the HIL 

usage process, from providing customizable user interfaces, to managing the model execution and all 

hardware configurations, to providing extensions to the HIL environment. 

      During this testing phase, it is important to test the complete functionality of the controller. While 

you can connect the target hardware with the actual plant, testing against a simulated plant such as an 

engine offers several advantages. An HIL tester is far more cost-efficient and easier to reproduce than 

a physical engine. The simulated engine also can simulate a variety of operating conditions or even 

fault conditions, such as engine stall, that would be difficult, costly, and/or dangerous with the actual 

plant. In order to get the real time information from the NC control side, the interface must be able to 

access the data from Siemens SINUMERIK 840D during the operation, collect the necessary 

information and pass it in real time to dSPACE 1005 DSP board. After the desired model 

configuration is built for the dSPACE target hardware, and tested successfully, the experiments are 

saved and are run directly using ControlDesk without repeating the model building process. 

 

7. Using dSPACE real-time data for the development of machine tool diagnosis and prognosis 

systems  

Feed-drives are directly implicated into the machining process. The accuracy, reliability and 

availability of the machine-tools depend on mechatronic devices that drive the tools. Generally, the 

direct drive motor faults and the drive chain faults are due to wear, heating, ageing. The usual 

condition monitoring system of a CNC machine-tool is limited particularly to the machine-tool 

auxiliary component. Data about the machine auxiliary component failures or malfunctions monitoring 

is insufficient to make the machine-tool more accurate, more available and more reliable and to 

produce good quality work-pieces. 

   The effectiveness of a condition-monitoring system relies on two elements - sensors and the signal 

processing with simplification methods required to extract usable information. If the monitoring of the 

feed-drive is running during the machining process, changes into some parameter values could be due 



to changes in the cutting process. So, the monitoring of the feed-drive is only considered while there is 

no machining process. Monitoring systems should make a distinction between normal operational state 

and abnormal states so model does not include any cutting data and its suggested to use it only during 

the rapid commands between cutting cycles. 

   Different functions or activities like scheduling, maintenance, adaptive controls, diagnosis requires 

reliable information about the machine state and about its main components. The drive models which 

present original (not current state of the machine) have been used to analyse the dynamic behaviour of 

the machining system for in-process monitoring and control of dynamic stability. The analysis 

provided a great help for taking decisions and corresponding actions: stopping operation or changing 

operation, setting up, maintenance (i.e. reliable information reduces the risk of stopping operation due 

to false fault detection).  

     Jędrzejewski and Kwaśny [22] diagnosed a variety of drive conditions and diagnostic signals with 

an expert system and neural networks. They developed one drive self-diagnosing system consisting in 

on-line temperature- and power-based monitoring supplemented by detailed off-line diagnostics 

backed by artificial intelligence tools and knowledge bases and invoked in need only. The detailed 

diagnostics is based on power and acoustic noise measurements and involves data base propagation, a 

customized diagnosing algorithm, a mechanism of automatic inferring using fuzzy logic procedures 

and simulation of the inferring mechanism by a neural network. . 

    The failure of critical components in industrial systems may have negative consequences on the 

availability, the productivity, the security and the environment. To avoid such situations, the health 

condition of the physical system, and particularly of its critical components, can be constantly assessed 

by using the monitoring data to perform on-line system diagnostics and prognostics. Tobon-Mejia et al 

[23] used Bayesian networks for machine tool wear diagnostic and prognostic. In the metal cutting 

process, tool condition is the most crucial and determining factor to machine tool automation. 

Abnormal tool condition in a machining operation can be divided into three major types: tool 

breakage, tool wear, and tool-workpiece chatter. The assessment of machine health condition and 

estimation of remaining useful life (RUL) had been performed in two phases: off-line phase (raw data 

provided by the sensors are processed to extract reliable features) and on-line phase (constructed 

models are exploited to identify the tool's current health state, predict its RUL and the associated 

confidence bounds).  

    Modern monitoring systems employ smart actuators instead of traditional drives (spindles and feed-

drives) so data processing abilities are used to implement monitoring and control tasks [24]. The data 

processing abilities of smart actuators are also exploited in order to create a new decision level where 

the machine reacts to disturbances that the monitoring tasks detect. The cooperation between the 

computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables smart drives 

to carry out functions for accommodating or adapting to the disturbances.  

   The data measured with the dSPACE real-time systems will be used for real-time/online machine 

fault detection and prognostic monitoring and critical machinery facility maintenance. More study will 

be performed regarding the methodologies for real-time machine fault detection, lifetime prediction 

and optimal control to reduce faults especially for high-speed machining processes where the 

deformations of cutters, machine tools, and workpieces are caused by cutting force, thermal effect and 

chatter vibration. In high-speed machining, the combination of high quality and novel cutters with 

high-speed spindles and velocity/acceleration motion bases allows the tool to traverse the part path in 

minimal time and enables machining of hard and brittle materials with a high precision finish that is 

impossible to achieve by conventional machining. Optimum performance of these complex processes 

relies on the availability of the data about process conditions for process monitoring and feedback to 

the process controller. Also this task demands in-process reliable sensing systems coupled with robust 

signal processing techniques to extract useful information from a machining process.  

 

 

 



8. Conclusions 

This paper presents the development of the lumped parameter model of C-axis drive for five-axis CNC 

machine existing at the University of Huddersfield. The analysis of the operation of actual CNC five-

axis machine is presented and the derivation of the mathematical equations describing the dynamic 

behaviour of machine is explained. The model is implemented in SIMULINK using 

SimPowerSystems toolbox. The simulated angular rotor position compare well with the experimental 

data measured from the actual machine so the proposed model is validated. Also the paper describes 

the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive 

models in dSPACE. The main components of the HIL system are: the drive model simulation 

(executes in real-time and simulates the dynamic characteristics of the drive) and input – output (I/O) 

modules for receiving the real controller outputs and responding with simulated signals from the drive 

model back to the controller with the intention to improve the quality of machine operation. Also the 

paper explains how the experimental data obtained from the data acquisition process using dSPACE 

real-time system can be used for the development of machine tool diagnosis and prognosis systems 

that facilitate the improvement of maintenance activities.  

   Further research will be done to develop a full model of the five-axis machine including the 

horizontal, vertical and rotary axes drives which will be included in HIL implementation using 

dSPACE real-time system. This will represent an important contribution to the condition monitoring 

techniques which could be used to improve the five-axis machine performance.   
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