4,871 research outputs found

    Electromagnetic modes of Maxwell fisheye lens

    Full text link
    We provide an analysis of the radial structure of TE and TM modes of the Maxwell fisheye lens, by means of Maxwell equations as applied to the fisheye case. Choosing a lens of size R = 1 cm, we plot some of the modes in the infrared range.Comment: 2+6 pages in Latex, 3 figures to be found in the published referenc

    The Geometry and Usage of the Supplementary Fisheye Lenses in Smartphones

    Get PDF
    Nowadays, mobile phones are more than a device that can only satisfy the communication need between people. Since fisheye lenses integrated with mobile phones are lightweight and easy to use, they are advantageous. In addition to this advantage, it is experimented whether fisheye lens and mobile phone combination can be used in a photogrammetric way, and if so, what will be the result. Fisheye lens equipment used with mobile phones was tested in this study. For this, standard calibration of ‘Olloclip 3 in one’ fisheye lens used with iPhone 4S mobile phone and ‘Nikon FC‐E9’ fisheye lens used with Nikon Coolpix8700 are compared based on equidistant model. This experimental study shows that Olloclip 3 in one fisheye lens developed for mobile phones has at least the similar characteristics with classic fisheye lenses. The dimensions of fisheye lenses used with smart phones are getting smaller and the prices are reducing. Moreover, as verified in this study, the accuracy of fisheye lenses used in smartphones is better than conventional fisheye lenses. The use of smartphones with fisheye lenses will give the possibility of practical applications to ordinary users in the near future

    Focusing: coming to the point in metamaterials

    Full text link
    The point of the paper is to show some limitations of geometrical optics in the analysis of subwavelength focusing. We analyze the resolution of the image of a line source radiating in the Maxwell fisheye and the Veselago-Pendry slab lens. The former optical medium is deduced from the stereographic projection of a virtual sphere and displays a heterogeneous refractive index n(r) which is proportional to the inverse of 1+r^2. The latter is described by a homogeneous, but negative, refractive index. It has been suggested that the fisheye makes a perfect lens without negative refraction [Leonhardt, Philbin arxiv:0805.4778v2]. However, we point out that the definition of super-resolution in such a heterogeneous medium should be computed with respect to the wavelength in a homogenized medium, and it is perhaps more adequate to talk about a conjugate image rather than a perfect image (the former does not necessarily contains the evanescent components of the source). We numerically find that both the Maxwell fisheye and a thick silver slab lens lead to a resolution close to lambda/3 in transverse magnetic polarization (electric field pointing orthogonal to the plane). We note a shift of the image plane in the latter lens. We also observe that two sources lead to multiple secondary images in the former lens, as confirmed from light rays travelling along geodesics of the virtual sphere. We further observe resolutions ranging from lambda/2 to nearly lambda/4 for magnetic dipoles of varying orientations of dipole moments within the fisheye in transverse electric polarization (magnetic field pointing orthogonal to the plane). Finally, we analyse the Eaton lens for which the source and its image are either located within a unit disc of air, or within a corona 1<r<2 with refractive index n(r)=2/r1n(r)=\sqrt{2/r-1}. In both cases, the image resolution is about lambda/2.Comment: Version 2: 22 pages, 11 figures. More figures added, additional cases discussed. Misprints corrected. Keywords: Maxwell fisheye, Eaton lens; Non-Euclidean geometry; Stereographic projection; Transformation optics; Metamaterials; Perfect lens. The last version appears at J. Modern Opt. 57 (2010), no. 7, 511-52

    Dual-fisheye lens stitching for 360-degree imaging

    Full text link
    Dual-fisheye lens cameras have been increasingly used for 360-degree immersive imaging. However, the limited overlapping field of views and misalignment between the two lenses give rise to visible discontinuities in the stitching boundaries. This paper introduces a novel method for dual-fisheye camera stitching that adaptively minimizes the discontinuities in the overlapping regions to generate full spherical 360-degree images. Results show that this approach can produce good quality stitched images for Samsung Gear 360 -- a dual-fisheye camera, even with hard-to-stitch objects in the stitching borders.Comment: ICASSP 17 preprint, Proc. of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, March 201

    Parameterized Synthetic Image Data Set for Fisheye Lens

    Full text link
    Based on different projection geometry, a fisheye image can be presented as a parameterized non-rectilinear image. Deep neural networks(DNN) is one of the solutions to extract parameters for fisheye image feature description. However, a large number of images are required for training a reasonable prediction model for DNN. In this paper, we propose to extend the scale of the training dataset using parameterized synthetic images. It effectively boosts the diversity of images and avoids the data scale limitation. To simulate different viewing angles and distances, we adopt controllable parameterized projection processes on transformation. The reliability of the proposed method is proved by testing images captured by our fisheye camera. The synthetic dataset is the first dataset that is able to extend to a big scale labeled fisheye image dataset. It is accessible via: http://www2.leuphana.de/misl/fisheye-data-set/.Comment: 2018 5th International Conference on Information Science and Control Engineerin

    EXPERIMENTAL ASSESSMENT OF TECHNIQUES FOR FISHEYE CAMERA CALIBRATION

    Get PDF
    Fisheye lens cameras enable to increase the Field of View (FOV), and consequently they have been largely used in several applications like robotics. The use of this type of cameras in close-range Photogrammetry for high accuracy applications, requires rigorous calibration. The main aim of this work is to present the calibration results of a Fuji Finepix S3PRO camera with Samyang 8mm fisheye lens using rigorous mathematical models. Mathematical models based on Perspective, Stereo-graphic, Equi-distant, Orthogonal and Equi-solid-angle projections were implemented and used in the experiments. The fisheye lenses are generally designed following one of the last four models, and Bower-Samyang 8mm lens is based on Stereo-graphic projection. These models were used in combination with symmetric radial, decentering and affinity distortion models. Experiments were performed to verify which set of IOPs (Interior Orientation Parameters) presented better results to describe the camera inner geometry. Collinearity mathematical model, which is based on perspective projection, presented the less accurate results, which was expected because fisheye lenses are not designed following the perspective projection. Stereo-graphic, Equi-distant, Orthogonal and Equi-solid-angle projections presented similar results even considering that Bower-Samyang fisheye lens was built based on Stereo-graphic projection. The experimental results also demonstrated a small correlation between IOPs and EOPs (Exterior Orientation Parameters) for Bower-Samyang lens

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    360-degree Video Stitching for Dual-fisheye Lens Cameras Based On Rigid Moving Least Squares

    Full text link
    Dual-fisheye lens cameras are becoming popular for 360-degree video capture, especially for User-generated content (UGC), since they are affordable and portable. Images generated by the dual-fisheye cameras have limited overlap and hence require non-conventional stitching techniques to produce high-quality 360x180-degree panoramas. This paper introduces a novel method to align these images using interpolation grids based on rigid moving least squares. Furthermore, jitter is the critical issue arising when one applies the image-based stitching algorithms to video. It stems from the unconstrained movement of stitching boundary from one frame to another. Therefore, we also propose a new algorithm to maintain the temporal coherence of stitching boundary to provide jitter-free 360-degree videos. Results show that the method proposed in this paper can produce higher quality stitched images and videos than prior work.Comment: Preprint versio
    corecore