554 research outputs found

    Multi-layer local optima networks for the analysis of advanced local search-based algorithms

    Full text link
    A Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular combinatorial optimization problem based on a specific neighborhood operator and a local search algorithm. Determining which and how landscape features affect the effectiveness of search algorithms is relevant for both predicting their performance and improving the design process. This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis. Constructing such models, extracting and analyzing their metrics are the preliminary steps into the direction of extending the study on single neighborhood operator heuristics to more sophisticated ones that use multiple operators. Therefore, in the present paper we investigate a twolayer LON obtained from instances of a combinatorial problem using bitflip and swap operators. First, we enumerate instances of NK-landscape model and use the hill climbing heuristic to build the corresponding LONs. Then, using LON metrics, we analyze how efficiently the search might be when combining both strategies. The experiments show promising results and demonstrate the ability of multi-layer LONs to provide useful information that could be used for in metaheuristics based on multiple operators such as Variable Neighborhood Search.Comment: Accepted in GECCO202

    A Study of NK Landscapes' Basins and Local Optima Networks

    Get PDF
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces (Doye, 2002). We use the well-known family of NKNK landscapes as an example. In our case the inherent network is the graph where the vertices are all the local maxima and edges mean basin adjacency between two maxima. We exhaustively extract such networks on representative small NK landscape instances, and show that they are 'small-worlds'. However, the maxima graphs are not random, since their clustering coefficients are much larger than those of corresponding random graphs. Furthermore, the degree distributions are close to exponential instead of Poissonian. We also describe the nature of the basins of attraction and their relationship with the local maxima network.Comment: best paper nominatio

    Complex-network analysis of combinatorial spaces: The NK landscape case

    Full text link
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces. We use the well-known family of NK landscapes as an example. In our case the inherent network is the graph whose vertices represent the local maxima in the landscape, and the edges account for the transition probabilities between their corresponding basins of attraction. We exhaustively extracted such networks on representative NK landscape instances, and performed a statistical characterization of their properties. We found that most of these network properties are related to the search difficulty on the underlying NK landscapes with varying values of K.Comment: arXiv admin note: substantial text overlap with arXiv:0810.3492, arXiv:0810.348

    PageRank centrality for performance prediction: the impact of the local optima network model

    Get PDF
    A local optima network (LON) compresses relevant features of fitness landscapes in a complex network, where nodes are local optima and edges represent transition probabilities between different basins of attraction. Previous work has found that the PageRank centrality of local optima can be used to predict the success rate and average fitness achieved by local search based metaheuristics. Results are available for LONs where edges describe either basin transition probabilities or escape edges. This paper studies the interplay between the type of LON edges and the ability of the PageRank centrality for the resulting LON to predict the performance of local search based metaheuristics. It finds that LONs are stochastic models of the search heuristic. Thus, to achieve an accurate prediction, the definition of the LON edges must properly reflect the type of diversification steps used in the metaheuristic. LONs with edges representing basin transition probabilities capture well the diversification mechanism of simulated annealing which sometimes also accepts worse solutions that allow the search process to pass between basins. In contrast, LONs with escape edges capture well the diversification step of iterated local search, which escapes from local optima by applying a larger perturbation step

    Visualising the Landscape of Multi-Objective Problems using Local Optima Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe codebase for this paper is available at https://github.com/fieldsend/mo_lonsLocal optima networks (LONs) represent the landscape of optimisation problems. In a LON, graph vertices represent local optima in the search domain, their radii the basin sizes, and directed edges between vertices the ability to transit from one basin to another (with the edge width denoting how easy this is). Recently, a network construction approach inspired by LONs has been proposed for multi-objective problems which uses an undirected graph, representing mutually non-dominating solutions and neighbouring links, but not basin sizes. In contrast, here we introduce two formulations for multi/many-objective problems which are analogous to the traditional LON, using dominance-based hill-climbing to characterise the search domain. Each vertex represents a set of locally optimal solutions, with basins and ease of transition between them shown. These LONs vary depending on whether a point-based (dominance neutral optima) or set-based (Pareto local optima) representation is used to define mode construction. We illustrate these alternative formulations on some illustrative problems.We discuss some of the underlying computational issues in constructing LONs in a multiobjective as opposed to uni-objective problem domain, along with the inherent issue of neutrality — as each a vertex in these graphs almost invariably represents a set in our proposed constructs.Engineering and Physical Sciences Research Council (EPSRC

    Comparing Communities of Optima with Funnels in Combinatorial Fitness Landscapes

    Get PDF
    The existence of sub-optimal funnels in combinatorial fitness landscapes has been linked to search difficulty. The exact nature of these structures — and how commonly they appear — is not yet fully understood. Improving our understanding of funnels could help with designing effective diversification mechanisms for a ‘smoothing’ effect, making optimisation easier. We model fitness landscapes as local optima networks. The relationship between communities of local optima found by network clustering algorithms and funnels is explored. Funnels are identified using the notion of monotonic sequences from the study of energy landscapes in theoretical chemistry. NK Landscapes and the Quadratic Assignment Problem are used as case studies. Our results show that communities are linked to funnels. The analysis exhibits relationships between these landscape structures and the performance of trajectory-based metaheuristics such as Simulated Annealing (SA) and Iterated Local Search (ILS). In particular, ILS gets trapped in funnels, and modular communities of optima slow it down. The funnels contribute to lower success for SA. We show that increasing the strength of ILS perturbation helps to ‘smooth’ the funnels and improves performance in multi-funnel landscapes.Authors listed as ECOM Trac

    A characterisation of S-box fitness landscapes in cryptography

    Full text link
    Substitution Boxes (S-boxes) are nonlinear objects often used in the design of cryptographic algorithms. The design of high quality S-boxes is an interesting problem that attracts a lot of attention. Many attempts have been made in recent years to use heuristics to design S-boxes, but the results were often far from the previously known best obtained ones. Unfortunately, most of the effort went into exploring different algorithms and fitness functions while little attention has been given to the understanding why this problem is so difficult for heuristics. In this paper, we conduct a fitness landscape analysis to better understand why this problem can be difficult. Among other, we find that almost each initial starting point has its own local optimum, even though the networks are highly interconnected
    corecore