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ABSTRACT
�e existence of sub-optimal funnels in combinatorial �tness land-
scapes has been linked to search di�culty. �e exact nature of these
structures - and how commonly they appear - is not yet fully un-
derstood. Improving our understanding of funnels could help with
designing e�ective diversi�cation mechanisms for a ‘smoothing’
e�ect, making optimisation easier. We model �tness landscapes as
local optima networks. �e relationship between communities of
local optima found by network clustering algorithms and funnels
is explored. Funnels are identi�ed using the notion of monotonic
sequences from the study of energy landscapes in theoretical chem-
istry. NK Landscapes and the �adratic Assignment Problem are
used as case studies. Our results show that communities are linked
to funnels, but they are not the same structures. �e analysis ex-
hibits relationships between these landscape structures and the
performance of trajectory-based metaheuristics such as Simulated
Annealing (SA) and Iterated Local Search (ILS). In particular, ILS
gets trapped in funnels, and modular communities of optima slow it
down. �e funnels contribute to lower success for SA. We show that
increasing the strength of ILS perturbation helps with avoidance of
the funnels and improves performance in multi-funnel landscapes.
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1 INTRODUCTION
Until recently, the travelling salesman problem and other combi-
natorial optimisation problems were believed to have a globally
convex ‘big valley’ �tness landscape structure [15], implying that
local optima are close to the global optimum and clustered together.
Under this view, many local optima may exist, but they are easy
to escape and the coarse-grained gradient easily leads to the the
global optimum. However, recent studies have revealed that some
combinatorial landscapes decompose into more than one valley or
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Figure 1: Schematic view of a double-funnel landscape, de-
picting a sub-optimal funnel (le�) and the optimal funnel
(right) in a minimisation problem.

funnel [8, 9, 15]. In the context of combinatorial optimisation, a
rigorous de�nition of ‘funnels’ is still lacking. �e intuition behind
this notion is captured by Figure 1 where two funnels are depicted
as two groups of local optima which are close in con�guration space
within a group, but well-separated between groups. In this study
we consider the de�nition from the study of energy landscapes
in theoretical chemistry [6], stating that a funnel is ‘a region of
con�guration space that can be described in terms of a set of down-
hill pathways that converge on a single low-energy structure or
a set of closely-related low-energy structures’. When a landscape
has at least one sub-optimal funnel, local search algorithms can be
trapped there and never reach the global optimum. Indeed, recent
research has conjectured that the existence of these structures in
a landscape are the cause of sub-optimal performance from com-
mon metaheuristics [8, 9, 15]. �e exact nature of multiple-funnel
�tness landscapes, and how commonly they occur, is not yet fully
understood.

We use the Local Optima Network (LON) model [18] to com-
press the connectivity of a full search space into a network, where
nodes are the local optima, and edges represent possible transitions
among basins with a given search operator. Techniques from the
�eld of complex networks can be applied to LONs to analyse the
landscape topology. We use two well-known families of combinato-
rial landscapes as test problems: NK Landscapes and the �adratic
Assignment Problem (QAP).

Applying two network community detection algorithms — the
‘Markov Clustering Algorithm’ and ‘Infomap’ — to the optima net-
works of these instances, we note that local optima are not always
uniformly distributed: we can identify regions of densely connected
sub-graphs, corroborating previous �ndings [5, 9]. We compare
these communities with landscape ‘funnels’ exposed using the no-
tion of monotonic sequences from the study of energy landscapes.
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A monotonic sequence [3] is a sequence of local minima where
the energy of minima is always decreasing. We use monotonic
sequences with LONs, for the �rst time in these two test functions,
to uncover their funnel structure. We found that funnels and com-
munities of optima are related, but they do not exactly match. �ese
two approaches expose landscape global features that can nega-
tively impact optimisation. To gain empirical insight into this, two
popular metaheuristics, Iterated Local Search (ILS) and Simulated
Annealing (SA), are applied to the studied instances. Our analysis
shows that both ILS and SA can get trapped in funnels. For ILS
a slightly stronger perturbation helps to avoid the funnels for a
signi�cantly improved rate of success. Flow-based communities of
optima do not noticeably a�ect success rate but if they are modular
(strongly-linked within their own community) they do cause ILS to
stagnate during search.

2 FITNESS LANDSCAPES AS NETWORKS
A�er some preliminary de�nitions, this section formalises the stan-
dard local optima network model. �erea�er, we describe our
proposal for adapting monotonic sequences to the context of LONs
and characterising funnel structures.

2.1 Preliminaries
A �tness landscape [17] is a triplet {S,V , f } where S is the set of
all possible solutions, V : S −→ 2 |S | , a neighbourhood structure,
is a function that assigns to every s ∈ S a set of neighbours V (s),
and f is a �tness (objective value) function such that f : S −→ R,
where the �tness value is a real number that can be viewed as the
heiдht of a given solution in the landscape.

Our study considers two combinatorial landscapes as discussed
in Section 4. �erefore, two solution representations are used:
binary strings (NK landscapes) and permutations (QAP). For each
case, the most basic neighbourhood structure is considered: the
single bit-�ip operation that changes a single bit in a given binary
string, and the pairwise exchange operation that exchanges any
two positions in a permutation. A best-improvement local search
(hill-climbing) algorithm is used to determine the local optima,
with the neighbourhoods mentioned above for each of the studied
representations.

2.2 Local Optima Networks
In order to describe the network model, we need to characterise
the nodes and edges.

Nodes. A local optimum, is a solution lo such that ∀s ∈ V (lo),
f (s) ≤ f (lo) (f (s) ≥ f (lo), when minimising). Let us denote by
h(s) the stochastic operator that associates each solution s to its
local optimum, i.e. the solution obtained a�er applying a best-
improvement hill-climbing algorithm until convergence. �e size
of the landscape is �nite, so we can denote the local optima by
lo1, lo2, . . . , lop . We denote the set of local optima by LO , which
corresponds to the set of nodes in the network.

Escape edges. �e escape edges are de�ned according to a dis-
tance functiond (minimal number of moves between two solutions),
and a positive integer D > 0. �ere is an edge ei j between loi and
loj if a solution s exists such that d(s, loi ) ≤ D and h(s) = loj . �e

weight wi j of this edge is wi j = |{s ∈ S | d(s, loi ) ≤ D and h(s) =
loj }|. �is weight can be normalised by the number of solutions,
|{s ∈ S | d(s, loi ) ≤ D}|, within reach at distance D.

Local optima network (LON). �e weighted local optima network
LON = (LO,E) is the graph where the nodes loi ∈ LO are the local
optima, and there is an edge ei j ∈ E, with weight wi j , between
two nodes loi and loj if wi j > 0. wi j may be di�erent than w ji .
�us, two weights are needed in general, and we have an oriented
transition graph.

2.3 Monotonic Sequences
Since we need to model monotonic sequences in order to char-
acterise funnels, we consider a graph with a reduced number of
edges. Given a LON, which is extracted a�er a full enumeration
of the local optima and basins in the instances studied, we kept
only the non-deteriorating escape edges. �at is, those edges ei j
that arrive at a local optimum loj from a local optimum loi with
worse (or equal) evaluation (i.e. f (loj ) ≥ f (loi ) when maximising
or f (loj ) ≤ f (loi ) when minimising). �e rest of the edges are
removed from the network. We, therefore, de�ne the following two
related LON models:

Monotonic Local Optima Network (MLON). �e directed (and
weighted) graph MLON = (LO,ME), where nodes loi ∈ LO are the
local optima, and ME ⊆ E is the set of edges ei j that depart from a
node worse in evaluation than the arriving node.

Monotonic Local Optima Network pruned by weight (MLON*).
Similar to the MLON model, with the di�erence that only the 50%
‘heaviest-weighted’ links between optima are retained. �at is,
there is an edge ei j ∈ ME, with weightwi j , between two optima loi
and loj ifwi j is greater than the median link weight in the network.
Recalling that the weight of a link is the probability of the escape
move, we select this model to gain insight into the more ‘likely’
path a stochastic local search algorithm might follow.

2.4 Detecting Funnel Structures
To detect funnel structures we �rst identify the funnels’ ‘ends’ or
‘bo�oms’. To do so, we take advantage of the Monotonic Local
Optima Networks. MLONs are directed graphs without loops. In
a directed graph, one can distinguish the outdegree (number of
outgoing edges) from the indegree (number of incoming edges). In
graph theory, a source node is a node with indegree zero, while a
sink node is a node with outdegree zero. We consider the MLON
sinks as the funnel bo�oms.

Sinks. We thus de�ne the funnel sinks as the MLON nodes that
have at least one incoming edge but no outgoing edges. �erefore,
a sink is a reachable node, but with no possibility of escaping from
it to a be�er node. Notice that global optima are naturally sinks.

Once funnel sinks are detected, we can proceed to identify the
funnel basins. �is is done by �nding all nodes in the MLON graph
which are reachable from each funnel sink. Breadth-First-Search
is used for this purpose. �e set of unique nodes in the combined
paths to a given funnel sink corresponds to the funnel basin. �e
cardinality of this set corresponds to the funnel size. Notice that
the membership of a node to a funnel might be overlapping, that is,
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a node may belong to more than one funnel, in that there are paths
from that node to more than one funnel sink.

3 COMMUNITY DETECTION ALGORITHMS
Synthetic randomly generated networks generally show li�le struc-
ture in the sense that there are few or no recognisable sub-networks.
�at is, if one looks at a picture of the network it appears to be
rather homogeneous on a global scale. On the contrary, many real-
world networks, especially those arising from social interactions,
show the presence of clusters of nodes. �ese clusters are called
communities. It is di�cult, if not impossible, to give a precise and
unique mathematical de�nition of a community. An intuitive def-
inition is as follows: nodes belonging to a community are more
strongly associated with each other than they are with the rest of
the network. In other words, the intra-community connectivity
is higher than the inter-community connectivity. �is de�nition
is somewhat circular but in the last few years a multitude of al-
gorithms have been proposed for community detection [7]. �e
choice of algorithms to apply crucially depends on the objective of
the study. We selected two algorithms based on network �ow (In-
fomap and Markov clustering) as an alternative to more traditional
algorithms based on maximising modularity (density of links). �is
is because the former focuses on how the topology of the network
a�ects its dynamic behaviour [16], as opposed to the way the net-
work was established. We conjecture that using algorithms based
on �ow might be more fruitful for this particular domain: heuristic
search can be seen as a stochastic process �owing in local optima
networks. Moreover, �ow-based algorithms, speci�cally Markov
clustering, have been previously used for �nding communities in
LONs [5, 9].

InfoMap. �is algorithm looks for the partition of a graph from
which one can most succinctly describe a path through it. First
of all, every node in the network is assigned to its own cluster
[16]. �en, nodes are iteratively moved (in a random order) into
the neighbouring cluster which results in the largest decrease in
theoretical network path description length. �is continues until
there exists no move that could decrease it further. Following this,
the clusters from the previous step become nodes and the process
repeats as before. �is continues until the algorithm has converged
and we have the partition of the graph from which we can infer
a network path with the shortest description. Crucially, InfoMap
supports weighted and oriented networks; clusters are de�ned as
places where �ow is likely to circulate for long periods.

Markov Clustering (MCL) Algorithm. Works by mimicking the
�ow between nodes in a network [19]. �e aim is that �ow should
end up being thin between communities and heavy within them.
�is algorithm has two parameters: in�ation and expansion. Expan-
sion tries to replicate the dispersion of �ow over the network, and
in�ation simulates the opposite: heavier-weighted links in the net-
work get heavier, and lighter-weighted links get lighter, modelling
contraction, i.e. �ow circulating in densely-connected sub-graphs.
Di�erent in�ation se�ings can result in di�erent levels of coarseness
in the clusterings. Consequently, there can be di�culty discerning
which one is most indicative of the ‘true’ community structure [7].
In the present study, we use the default in�ation value of 2, in order

to avoid a too �nely-grained partitioning of the graph, while still
obtaining good modularity scores.

4 EMPIRICAL SETTING
4.1 Test Problems
Two well known combinatorial optimisation problems are consid-
ered as case studies. For both, we selected the largest possible
problem sizes that allow exhaustive enumeration and thus extrac-
tion of the optima networks.

NK landscapes. In the NK landscape model [11] ruggedness can
be adjusted by the parameter K , which induces the amount of
epistasis in the binary encoded solution of length N . �e number
of local optima increases almost exponentially with increasing K ,
inducing a rugged and increasingly random landscape. We studied
NK instances with N = 18 and K ∈ {2, 4}.

�e �adratic Assignment Problem (QAP). In the QAP a set of fa-
cilities with given �ows have to be assigned to a set of locations with
given distances in such a way that the sum of the product of �ows
and distances is minimised. A solution is encoded as a permutation
of the set {1, 2, ...,n}. �e structure of the �ow and distance matri-
ces characterises the class of instances. Our experiments are based
on two instance generators proposed in [12], originally devised
for the multi-objective QAP, but adapted for the single-objective
QAP and used for LON analysis in [5]. �e �rst generator produces
uniformly random instances where all �ows and distances are in-
tegers sampled from uniform distributions. �e second generator
produces �ow entries that are non-uniform random values. In this
case, clusters of points are placed in compact circular areas, and all
of these clusters are enclosed in a large circle. �ese instances have
the so-called “real-like” structure since they resemble the structure
of QAP problems found in practical applications. We consider both
uniform and real-like random instances of size 11.

4.2 Metaheuristics
In order to assess the relationship between heuristic search perfor-
mance and LON and MLON metrics, two standard trajectory-based
metaheuristics are considered. Namely, iterated local search and
simulated annealing. Our ILS implementation [10] uses a best im-
provement local search with the most basic neighbourhood struc-
ture in the improvement stage, a single bit-�ip (NK landscapes) or
pairwise exchange (QAP). �e perturbation stage uses 2 (regular)
or 3 (increased strength) bit-�ips for the NK landscapes (pairwise
exchanges for the QAP). A deterministic acceptance condition ac-
cepting non-deteriorating solutions is used.

�e simulated annealing implementation [10] uses the most basic
neighbourhoods for each landscape and considers a standard expo-
nential cooling scheme. �e initial temperature is set according to
the largest possible di�erence in �tness values. Table 1 summarises
the SA parameters.

For both algorithms, search terminates at the global optimum,
which is known a priori, or when reaching a pre-set limit of objec-
tive function evaluations FEmax . For NK landscapes this is 10% of
the size of the search space, FEmax = 0.1 × 220 = 26214, while for
QAP it is 2.5% of the search space size, FEmax = 0.025 × 11! ' 106.
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As performance measures, we consider the success rate, SR, mea-
sured as the proportion of runs (out of 1000) that a�ained the global
optimum. To measure the speed of optimisation, we considered the
time to success, TS , measured as the number of objective function
evaluations to reach the global optimum for the successful runs.

Table 1: SA parameters. MaxT is the maximum #iterations
at same temperature, between cooling steps.

Landscape Start Temp End Temp alpha MaxT

NK 1.4 0.0 0.8 262
QAP 14 426 950 0.0 0.8 10 000

5 RESULTS
5.1 Contrasting Funnels and Communities
Our study extracts the complete MLONs of the selected test prob-
lems. For each problem and class, 30 independent instances are
generated and analysed. For each instance, we extract the fun-
nel sinks, and compute the funnel memberships as discussed in
Section 2.4. Similarly, we apply the two community detection algo-
rithms to the original optima networks as discussed in Section 3. In
order to identify the communities’ most central nodes, we used the
PageRank centrality metric. PageRank ranks a node in a network
based on how many other nodes it has links to, and the quality of
the vertices to which it links. We calculated scores for each node in
the network, and cluster centres were identi�ed as the nodes with
the largest global PageRank value in their cluster [4].

Figure 2 shows the optima network of a selected NK Landscape
instance, represented as three partitions found by MLON (funnel),
Infomap and MCL (clusters), respectively. �e di�erent background
colours — and also node colour — represent membership to a group.
�e cluster or funnel centres have a thickened border, while the
global optimum is labelled G. Node size is proportional to the cen-
trality of that optimum.

�e groups of colour in Figure 2b and 2c suggest several distinct
clusters of optima. Conversely, the presence of a single colour in
Figure 2a indicates a single-funnel landscape. �erefore, this in-
stance should largely have a ‘big valley’ topology. If this is true,
the landscape would be easy to navigate through. Fi�ingly, ILS
and SA have success rates of 0.996 and 0.963 on this instance, re-
spectively. However, the ‘big valley’ might not be the complete
picture. �e separated clusters in 2b and 2c might imply that search
could circulate within certain areas. Note also that there is some
agreement between the two cluster algorithms. Homogeneity in
separate algorithms’ partitions can suggest the presence of ‘true’
community structure. Indeed, we provide evidence in Section 5.2
suggesting that modular clusters in our test landscapes slow down
ILS. �e instance in Figure 2 took more time to be solved than 75%
of the other K = 2 instances, most of which have similar rugged-
ness. One possible explanation for this is that the search began in a
sub-optimal cluster.

It appears there is a discrepancy between communities and fun-
nels — both in their nature and their e�ect. Section 5.2 reports a

statistical analysis of their empirical impact on metaheuristics. Ta-
ble 2 contrasts funnels with clusters of optima. Metrics are reported
(averaged over 30 instances) which show their structural di�erences.
Namely, their respective quantities in the landscapes are reported.
Recall that a sink is the end of a funnel; therefore the number of
sinks is also the number of funnels. A comparison of the two types
of central node was conducted. Sinks are the centres of funnels, and
optima with the highest centrality in their cluster are the centres. If
these are the same, funnels and optima clusters might be the same
structures. �e #match rows in Table 2 show how many of these
were indeed the same node. Many of them weren’t; therefore, the
distance values show the mean distance from a cluster centre to the
set of funnel sinks in the landscape. Distance here means binary
bit-�ips in the case of the NK Landscapes, and random swaps for
the QAP, described in Section 2.1. �ese have been normalised by
the maximum distance (18 for NK, 10 for the QAP).

Table 2 shows that there are more optima clusters than funnels,
comparing #clusters with the #sinks. �is holds across each land-
scape class. �erefore, the two structures seem inconsistent in
terms of size.

�e majority of funnel sinks were also Markov Cluster centres
(the relevant rows are in bold text). �e likelihood of this arising
by chance seems slim, in particular when considering the ‘uni-
form random’ QAP instances, which typically have over 1000 local
optima. �is suggests a connection between the centres of these
two landscape structures. When observing the distance values in
Table 2, note that for the K = 2 instances, the normalized mean
distance between any two nodes in the optima networks is 0.42.
�erefore, on average MCL non-sink centres seem much closer to
funnel bo�oms than to a given node in the network, being at a
mean distance of 0.28 and 0.22 from the sinks for the two MLON
models.

Overall, clusters of optima show signs of being related to land-
scape funnels, but they don’t appear to be the same. We conjecture
that network clustering algorithms used on optima networks might
not be a reliable way to characterise funnels — and therefore local
search success — in �tness landscapes. We next conduct a statistical
study to gain insight on how landscape features relate to each other,
and contribute to the behaviour of metaheuristics.

5.2 Impact on Search Performance
Figure 3 displays all pairwise associations between search perfor-
mance metrics and the considered landscape features. Pairs are
laid out in a matrix fashion, with sca�er plots on the lower part,
univariate density plots on the diagonal, and rank-correlation co-
e�cients on the upper part. In particular, the �rst two rows and
columns, ‘SR ils’ and ‘TS ils’, report on the success rate and the
runtime of successful runs of iterated local search; the following
two on the same metrics for simulated annealing.

In terms of success rate alone, NK landscapes with K = 2 are
empirically easier to solve to optimality than NK landscapes with
with K = 4 for both metaheuristics. On QAP instances though,
SA is more successful with uniform-random instances than with
real-like ones. �e opposite is true for ILS. We conjecture that this
di�erent behaviour might be due to the fact that, in QAP random
instances, �tness di�erences between neighbouring solutions are
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G

(a) MLON (funnel) partition

G

(b) Infomap (community) partition

G

(c) MCL (community) partition

Figure 2: A representative LON for an NK landscape with N = 18, K = 2, visualised according to the three di�erent partitions
methods. Colours identify di�erent clusters, and node size is proportional to PageRank centrality. �e global optimum is
labelled with ‘G’, and cluster centres show a thickened border. Half of the ‘lightest’ links are pruned o� for visual clarity.

NK QAP

MLON MLON* MLON MLON*

K = 2 K = 4 K = 2 K = 4 RL UR RL UR

#optima 42.9727.66 220.6339.10 42.9727.66 220.6339.10 74.8351.24 1241.17433 74.8351.24 1241.17433
#sinks 1.570.73 3.431.07 2.871.38 8.001.76 1.070.25 1.870.78 1.130.35 2.531.17
MCL
#clusters 7.304.84 28.436.64 7.304.84 28.436.64 5.934.85 63.6731.87 5.934.85 63.6731.87
#match 1.470.68 3.301.15 2.601.28 7.331.65 1.000.37 1.800.85 1.070.50 2.431.19
‖distance ‖ 0.280.09 0.400.03 0.220.07 0.350.04 0.490.23 0.770.02 0.480.22 0.760.31
Infomap
#clusters 5.472.21 19.372.76 5.472.21 19.372.76 2.831.18 54.3314.94 2.831.18 54.3314.94
#match 1.170.59 2.671.21 2.001.08 5.401.16 0.870.43 1.700.65 0.870.48 2.171.12
‖distance‖ 0.290.11 0.410.03 0.230.00 0.350.03 0.250.26 0.760.02 0.250.25 0.760.02

Table 2: Contrasting funnels with clusters of optima. Distances are normalised by the maximum possible distance between
two solutions, 18 for NK and 10 for QAP. RL are the ‘real-like’ and UR are the ‘uniform-random’ QAP instances. Values are
averages of 30 instances with standard deviations shown as subscripts.

comparatively lower than in real-like instances, which could make it
easier for SA to traverse the landscape despite its higher ruggedness.
In fact, the runtime distribution of SA runs on QAP instances is
highly bimodal, with most of the successful runs terminating close
to the FEmax budget in the case of random instances.

In most cases, there is a strong negative correlation between the
number of funnels and the success rate. We can see this looking
down from the ‘funnels’ columns, and checking against the success
rate for ILS and SA. Overall, the association between the number
of optima and success rate is lower than for funnel quantity. �is
suggests the ruggedness of a landscape cannot wholly predict its

challenges. �e ‘Q mcl’ entries in the matrices denote the corre-
lation between the modularity (strength) of community structure
with performance. �e crossover between these columns and the
‘TS’ runtime rows shows a weak positive association, in particular
with ILS. Features inter-correlations are also displayed.

As we notice, the number of funnels and the number of com-
munities are both associated with the number of local optima. �e
number of local optima, in turn, has an impact on performance and
thus acts as a potential confounder. �erefore, if we want to assess
the relationship between heuristic performance and the landscape
global structure, we need to control for the number of local optima.
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Figure 3: correlationmatrices of performancemetrics and landscape features (see facet titles). Lower triangle: pairwise scatter
plots. Diagonal: density plots. Upper triangle: pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

A classical way to achieve this is to include the confounder variable
in a multiple regression analysis. However, if we want to draw gen-
eralisable inferences by grouping all the problem instances under
study, the regression model needs to consider that our observations
are not independent, but clustered according to the studied problem
classes [1].

�erefore, we turn to hierarchical models to explain the observed
performance variance by using the number of optima, the number
of funnels, the number of communities, and their modularity scores
as common predictors across all problem instances (�xed e�ects).
Moreover, the models include random e�ects that are conditional
to the problem type and class. More precisely, let us denote by yi jk
the performance (success rate or runtime) observed on instance i
from problem j (NK or QAP) of class k (K = 2, K = 4, real-like or
uniform-random). We can write the linear model:

yi jk = β0 +
p∑
c=1

βcxci jk + α j + α jk + ϵi jk , ϵi jk ∼ N(0,σ 2)

where xci jk is the value of predictor c (e.g., number of local optima,
number of funnels, etc.) of instance i from problem j of class k , βc
is its corresponding �xed e�ect on search performance, α j and α jk
are the random e�ects conditional on problem j and problem class
k , which represent random deviations from the common intercept
β0, and �nally ϵi jk are the model residuals.

Table 3 reports the results of model ��ing [2], namely coe�-
cients estimation for the �xed e�ects and variance estimation of
the random e�ects, for both algorithms and performance metrics.
Note that, in order to be�er approach normality of residuals, the
arcsin-squareroot transformation has been applied to success rate,
whereas runtime has been logtransformed. In order to allow for

a direct comparison of e�ect sizes, predictor variables have been
rescaled to zero mean and unitary variance. �at is, each esti-
mated coe�cient β̂c can be interpreted as the e�ect a change in one
standard deviation of the related predictor xc would have on the
transformed outcome y, all other predictors being held constant.
�e β̂0 coe�cient represents the expected outcome when all pre-
dictors are at their mean value, conditionally on the random e�ects.
�e conditional R2 gives the proportion of variance explained by the
whole regression model. �e marginal R2 is the ratio of variance
that is explained by the �xed e�ects [13].

Local optima networks with escape edges provide a view of the
landscape that is consistent with iterated local search dynamics.
�erefore, we expect LON features to explain the ILS performance
variance be�er than that for SA. �is shows in higher marginal R2,
in particular concerning success rate. Notably for ILS, it is only
the number of funnels that has a signi�cant impact on success
across all considered problem instances, when controlling for other
factors such as the number of local optima or their clustering into
communities. �at is, all things being equal, for ILS the number of
funnels is all that ma�ers for success; the higher their number, the
lower the success rate. A similar inference can be made regarding
the success rate of SA: the number of funnels is the predictor with
the strongest conditional impact on SR. However, in this case, the
part of variance explained by the �xed e�ects is comparatively
much lower, and so are the e�ect sizes.

Regarding runtime, SA data �ts very poorly the model and we
can not draw any sound conclusion. Instead, it is interesting to
notice that the more modular is the clustering of local optima, the
longer it takes for ILS to �nd the global optimum. Furthermore, the
signi�cant negative association between ILS runtime and number



Communities of Optima vs. Funnels in Combinatorial Landscapes GECCO ’17, July 15–19, 2017, Berlin, Germany

Table 3: Conditional impact of landscape features on the expected success rate and runtime of ILS and SA in a linear mixed-
model with random e�ects for problem and problem class. Model coe�cients estimates (and standard deviations) are reported.

Iterated Local Search Simulated Annealing

Success Rate Time to Succeed Success Rate Time to Succeed

(Intercept β̂0) 1.158 (0.063)∗∗∗ 3.713 (0.373)∗∗∗ 1.184 (0.088)∗∗∗ 4.528 (0.826)∗∗∗

#optima β̂1 −0.039 (0.085) 0.197 (0.127) 0.050 (0.079) −0.025 (0.025)
#funnels β̂2 −0.350 (0.029)∗∗∗ −0.138 (0.041)∗∗∗ −0.086 (0.025)∗∗∗ 0.001 (0.008)
#communities β̂3 0.078 (0.067) 0.034 (0.095) −0.104 (0.059) 0.019 (0.018)
modularity β̂4 −0.034 (0.025) 0.160 (0.035)∗∗∗ −0.059 (0.021)∗∗ −0.013 (0.006)∗

R2 marginal/conditional 0.672/0.751 0.168/0.813 0.278/0.624 0.000139/0.998
Var α jk : class:problem (Intercept) 0.014 0.044 0.030 0.055
Var α j : problem (Intercept) 0.000 0.254 0.000 1.338
Var εi jk : Residual 0.046 0.087 0.033 0.003
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

of funnels can be explained by the fact that we are considering the
runtime of successful runs only, that is, those that happen to start
in the funnel containing the global optimum.

5.3 An Observational Study
Section 5.2 suggests that the strength of communities of optima
can slow down ILS. Whether the number of clusters has an impact
remains unaddressed. Consider the landscapes of a pair of instances
which have comparable global topologies with the exception of
community structure. Table 4 shows the features of pairs of such
instances. �ere is a set of two for each of our four landscape classes
(NK: N = 18 andK ∈ {2, 4}, QAP: ‘real-like’ and ‘random-uniform’).
Each set of two rows is a pair intended for comparison with one
another. �ey were selected because they have similar numbers
of local optima and the same number of funnels. �erefore, any
di�erence in search performance could possibly be due to their
di�erent cluster structure.

Table 4: instances pairs with di�erent community structure

class #optima #funnels #mcl #infomap time

N18K2 18 1 1 2 661
N18K2 18 1 1 6 1988

N18K4 223 5 28 20 60 412
N18K4 254 5 41 22 130 244

QAPrl 162 1 3 9 6150
QAPrl 166 1 8 9 15 535

QAPu 993 2 33 57 2 084 508
QAPu 947 2 30 40 462 243

�e time entries within the pairs in Table 4 — when viewed
alongside the #mcl and #infomap entries — show that the instances
with more optima clusters (the quantity shown in bold text) took

longer to solve. �is raises the question of whether community
detection algorithms can uncover or estimate how many individual
search space areas there are where stochastic �ow could stagnate.
Clearly, we cannot conclude anything statistically sound from these
pairs, but they are interesting nonetheless.

5.4 Escaping from Funnels
Increasing the strength of ILS perturbation has been found to reduce
the number of funnels and increase the success rate in a study
of LONs for the travelling salesman problem [14]. We therefore,
conducted experiments to assess whether searching on multi-funnel
NK and QAP landscapes bene�ts from a stronger ILS perturbation.

Figure 4 shows ILS success rate with two perturbation strengths
plo�ed against the number of local optima. Each dot represents
an instance, both NK and QAP instances are grouped for a total
of 120 dots in each plot. �e perturbation strengths correspond to
2 and 3 moves, respectively (bit �ips for NK, pairwise exchanges
for QAP). �e number of funnels in an instance is indicated by the
dot colour and shape, as seen in the legend. On all single-funnel
instances, the success rate is close to 100% (pale green diamonds),
despite the variable number of local optima (ranging from 8 to 2003)
in the single funnel instances. �is suggests that the number of
local optima is not a reliable predictor of search di�culty. Indeed,
instances with a similar number of optima show a wide range of
success rates. ILS can get trapped on instances with more than one
funnel, with the lowest success rates observed for instances with 3
funnels or more. An increase in the perturbation strength from 2
to 3 basic moves (Figure 4 (right)), shows an increased success rate
on the multi-funnel instances. �is suggests that an increased or
variable perturbation strength might be favourable when solving
complex optimisation problems.

6 CONCLUSIONS
We have conducted an empirical study on two benchmark com-
binatorial problems to examine the similarity between clusters
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Figure 4: ILS success rates vs. number of local optima for all the studied instances and perturbation strengths: 2-moves (Le�),
and 3-moves (Right). �e number of funnels in an instance is indicated by the dot colour and shape, as seen in the legend.

of optima and landscape funnels, and their respective impact on
search. �e results suggest that �ow-based clusters of optima are
not funnels and that the presence of multiple funnels in �tness
landscapes contributes to lower success for common metaheuris-
tics. Clusters of optima do not appear to impact success; however,
if they are modular they seem to slow down optimisation for ILS.
We argue that optima communities and funnels are related and
hypothesize that there is scope for using monotonic sequences and
cluster algorithms as landscape analysis tools for exposing search
‘traps’ in other types of landscapes. Clustering algorithms could
possibly be used to estimate the runtime of a search — perhaps from
quite a small sample of optima — because they identify areas where
�ow circulates. Our results imply that the number of local optima
is not always a reliable indicator of search di�culty; their global
distribution seems more important. Our next steps are to use this
knowledge to construct a method for predicting funnel structure
in combinatorial landscapes, such that a full enumeration of the
search space is not required, as is the case with funnel detection
using the local optima network model.
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