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ABSTRACT
Local optima networks (LONs) represent the landscape of optimi-

sation problems. In a LON, graph vertices represent local optima in

the search domain, their radii the basin sizes, and directed edges

between vertices the ability to transit from one basin to another

(with the edge width denoting how easy this is). Recently, a network

construction approach inspired by LONs has been proposed for

multi-objective problems which uses an undirected graph, repre-

senting mutually non-dominating solutions and neighbouring links,

but not basin sizes. In contrast, here we introduce two formulations

for multi/many-objective problems which are analogous to the tra-

ditional LON, using dominance-based hill-climbing to characterise

the search domain. Each vertex represents a set of locally optimal

solutions, with basins and ease of transition between them shown.

These LONs vary depending on whether a point-based (dominance

neutral optima) or set-based (Pareto local optima) representation is

used to define mode construction. We illustrate these alternative

formulations on some illustrative problems. We discuss some of the

underlying computational issues in constructing LONs in a multi-

objective as opposed to uni-objective problem domain, along with

the inherent issue of neutrality — as each a vertex in these graphs

almost invariably represents a set in our proposed constructs.
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1 INTRODUCTION
Local optima networks (LONs) have been developed and used to

visualise the landscape of uni-objective problems [12, 17], using

directed graphs with variable node size and colour to denote infor-

mation about the search landscape. Recent work inspired by LONs

has proposed a network representation formulti-objective problems

[10]. These Pareto local optimal solutions networks (PLOS-nets) use

undirected graphs. Each vertex representing a single local optima,

with edges connecting neighbouring solutions. In contrast with

PLOS-nets, we present here definitions of LONs for multi-objective

problems which employ directed graphs, convey information re-

garding basin sizes and which can incorporate the standard edge

definitions used in LONs. Due to the nature of multi-modality in

multi-objective problems, the vertices represent sets of solutions

rather than single solutions in our approach. As such, to the best

of the authors’ knowledge, this work presents the first full trans-

ference of the LON landscape visualisation methodology to the

multi-objective domain.

We present two formulations: one relying on a point-based hill-

climb and dominance to describe contiguous regions of neutrality

under this measure to define vertices, the other, relying on a set-

based search approach, which results in vertices composed of Pareto

local optima.

The paper proceeds as follows: Section 2 briefly describes local

optima networks, as developed in the uni-objective optimisation

domain; Section 3 describes the multi/many-objective optimisa-

tion problem, along with the different types of optima that inhabit

this landscape, and how they are identified; Section 4 describes

the PLOS-net of [10] before introducing our two new LON-based

approaches along with bi-objective examples; Section 5 provides

illustrations of the proposed LONs constructs on some larger many-

objective problems. The paper concludes with a discussion in Sec-

tion 6.

2 LOCAL OPTIMA NETWORKS
A LON is a network-based model that compresses the information

of the search space into a weighted oriented graph. The model

is adapted from the inherent networks of energy landscapes in

physical-chemistry and is used as a method to visualise and ap-

ply complex network analysis tools to combinatorial optimisation

problems [12, 17]. The vertices of a given landscape graph are the

local optima under its neighborhood operator. An edge between

two vertices can be defined in different ways. It was originally de-

fined in such a way to represent when two optima have adjacent
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Algorithm 1 Greedy (best) improvement hill-climbing

Require: xstar t ▷ Initial sample

1: xend := xstar t

2: converдed := false
3: while converдed = false do
4: better_f ound := false

5: for x′ ∈ N (xend ) do
6: if f (x) < f (xend ) then ▷ If neighbour is better

7: xend = x ▷ Replace with better neighbour

8: better_f ound := true
9: end if
10: end for
11: if better_f ound = true then
12: goto 4 ▷ Better neighbour found, so climb again

13: else
14: converдed := true ▷ No better neighbour found

15: end if
16: end while
17: return xend ▷ Return path start and end locations

Algorithm 2 First improvement hill-climbing

Require: xstar t ▷ Initial sample

1: xend := xstar t

2: converдed := false
3: while converдed = false do
4: Z := random_order(N (xend )) ▷ Random order neighbours

5: for z ∈ Z do ▷ For each randomly ordered neighbour

6: if f (z) < f (xend ) then ▷ If neighbour is better

7: xend = z ▷ Replace with better neighbour

8: goto 4 ▷ Better neighbour found, so climb again

9: end if
10: end for
11: converдed := true ▷ No better neighbour found

12: end while
13: return xend ▷ Return path start and end locations

basins (i.e. the transition probability between the basins of the two

optima). However, this definition was found to be computationally

expensive and produces a densely connected graph. An alterna-

tive definition of an edge was therefore proposed to represent the

probability of escaping from one local optimum to another after

applying controlled mutation followed by hill-climbing [18].

Local optima networks have been applied to study the landscape

of several combinatorial optimisation problems, e.g. [2, 6, 13]. It has

also been applied to study the behaviour of different local search

methods. For example, in [14] LONs are applied to NK problem

examples with two different hill-climbing algorithms employed to

generate paths, and hence define the subsequent LONs generated.

These were (i) the greedy hill-climbing formulation used in ear-

lier work on LONs, which always selects the best move out of all

neighbours (detailed in Algorithm 1), and (ii) the next improve-

ment hill-climbing formulation which selects the first evaluated

of the neighbours (randomly ordered) that is better than the cur-

rent design (detailed in Algorithm 2). LONs generated using these

two different algorithms were designated b-LONs and f-LONs re-

spectively. The edges were calculated using the basin transition

definition. Calculating the f-LONs is obviously cheaper compared

to b-LONs where each move requires the evaluation of the entire

neighbourhood. The f-LONs were found to be more dense than

b-LONs with lower weighted self-loops indicating that it is easier

to escape an optimum using first-improvement hill-climber. The

shortest paths in f-LONswere found to be on average slightly longer

than the ones in b-LONs.

Most of the existing work on LONs were limited to relatively

small problem sizes due to the requirement of complete enumera-

tion of the search space to find all local optima and calculate the

edges between them. However, recently sampling methods have

been proposed to sample LONs efficiently [3] and in statistical

sound way as not to lose accuracy of the network metrics [19].

Other methods have been proposed to sample LONs from the ac-

tual runs of local search methods [7, 11].

The LON construction for uni-objective landscapes exhibiting

neutrality was investigated in [21] on neutral variants of NK land-

scapes. The study generated LONs using exact calculation and

thus was limited to enumerable problem sizes. The main issue they

found with neutrality is the definition of basins of attraction and

the transition between them. LONs were defined such that each

vertex represents a network of neutral neighbours, i.e. a plateau. An

edge between two vertices was defined as the transition probability

between their basins of attraction. In [19], they mention as future

work extending their sampling method to sample LONs of fitness

landscapes with significant neutrality.

3 MULTI-OBJECTIVE OPTIMISATION
In the general multi-objective optimisation case (two or three ob-

jectives) and the many-objective optimisation case (four or more

objectives) we seek to find the Pareto set of solutions — or, more

realistically, an estimate of it. Without loss of generality, we seek to

simultaneously minimise K objectives: fk (x), k = 1, . . . ,K , where
each objective depends upon a vector x = (x1, . . . ,xN ) of N design

or decision variables. These variables may be continuous, discrete,

or a combination of both. The variables may also be subject to

equality and inequality constraints. Such constraints define X : the

feasible design space.

When there is more than one objective to be minimised, solu-

tions may exist for which performance on one objective cannot

be improved without reducing performance on at least one other.

Such solutions are said to be Pareto optimal. The set of all Pareto
optimal solutions is said to form the Pareto set, whose image in

the objective space is known as the Pareto front. Identifying such
solutions relies on Pareto dominance. A decision vector x is said to

dominate another x′ iff

fk (x) ≤ fk (x
′) for all k = 1, . . . ,K and f(x) , f(x′). (1)

This is often simply denoted as x ≺ x′ rather than f(x) ≺ f(x′).
Formally, the Pareto set (the global Pareto optima, or GPO) can be

extracted from X using the nondom function:

nondom(X ) = {x ∈ X |�x′ ∈ X , x′ ≺ x}, (2)
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Algorithm 3 Pareto Local Search (PLS) of [15].

Require: xstar t ▷ Initial sample

1: F := {xstar t } ▷ Initial set to process

2: XPLO := ∅ ▷ Set holding estimated PLO

3: while F , ∅ do ▷While still locations to process

4: x := random_draw(F )
5: W := ∅

6: for all x′ ∈ N(x) do
7: if � x′′ ∈W ∪ F ∪ XPLO | x′′ ⪯ x′ then
8: W :=W ∪ x′ ▷ Not dominated by current estimate

9: end if
10: end for
11: XPLO := {x′ | x′ ∈ XPLO : � x′′ ∈W | x′′ ≺ x′}
12: F := F \ {x} ∪W
13: F := {x′ | x′ ∈ F : � x′′ ∈W | x′′ ≺ x′}
14: end while
15: return XPLO ▷ Return path start location and end set

however in practice |X | is often too large to be exhaustively searched,

and optimisers seek to return an approximation to XGPO (the set

returned by nondom(X )), in terms of quality under f .
What does a fitness landscape mean in the context of multi- or

many-objective optimisation? Multi-objective optimisation is most

typically a set-based procedure. Even single parent single child (1+1)

methods like the popular PAES algorithm [9] rely onmaintaining an

archive of the approximated Pareto set, to reference for movement

decisions.WhenX is in the planewemay use dominance landscapes

[4] to visualise the local search landscape, however in higher design

dimensions it is natural to explore whether there is an appropriate

analogue of the uni-objective LON visualisation. To do this we need

to consider what the multi-objective equivalent to the point-based

hill-climbing used in LONs is.

3.1 Pareto local optima
We first consider the set-based local hill-climb described in Pareto

Local Search (PLS) [15]. This is detailed in Algorithm 3. Although

it starts with a single point in design space, it maintains a dy-

namic set to identify the Pareto local set of solutions (the Pareto

local optima) identified from hill-climbing from an initial point.

This set is comprised entirely of mutually non-dominating designs.

More formally, the Pareto local optimum (PLO) set XPLO ∈ X
with respect to the neighbour function N is composed such that

∀x ∈ XPLO � x′ ∈ N(XPLO )where x′ ≺ x (see e.g. [15, 20] for

further details).

Consider the simple problem illustrated in Figure 1, using the

von Neumann neighbourhood function in a box constrained plane.

Here there are two criteria evaluated on designs from the domain

X , which has 25 members in total. There are two distinct spatial

groupings of XPLO individuals, which are shown with red vertices.

The Pareto set (the global Pareto optima) are highlighted with blue

circles, and are a subset of the union of all PLO.

Figure 2 illustrates the process from an initial sample to conver-

gence using PLS on the problem from Figure 1. Outwardly using

PLS to characterise the landscape is an attractive approach, how-

ever, from a practical point of view (and as identified in [15]) it can
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Figure 1: Landscape illustration. Each vertex represents a so-
lution, with edges connecting neighbours underN . Cost un-
der two criteria denoted to the top right of a vertex. XPLO
members are coloured red. The global Pareto optima (GPO)
are circled in blue. Note in this example XGPO ,

⋃
i X

i
PLO .

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7

Figure 2: Landscape hill-climb illustration using PLS on the
problem shown in Figure 1, with repetitions t of the while
loop. The start point is denoted with a green node, the esti-
mate ofXPLO with red nodes, andN(XPLO ) \XPLO with grey
nodes.

be prohibitively expensive in large domains. This is because, where

a landscape is approximated with a fixed budget rather than com-

pletely enumerated, one may spend the entire budget on a single

hill-climb (and resultant local Pareto set enumeration), rather than

approximating the landscape over the broader domain. Effectively,

each XPLO behaves similarly to a plateau in the uni-objective fit-

ness landscape. However, this landscape feature is considerably

more expensive to identify and explore. In the uni-objective case,

a solution equal in fitness to one plateau member is equal in fit-

ness to all other members, but in the multi-objective case being
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Figure 3: Landscape illustration. Each vertex represents a so-
lution, with edges connecting neighbours underN . Cost un-
der two criteria denoted to the top right of a vertex. There
are three XPLO , whose members are coloured red. However,
depending on the start location two of the X i

PLO will be re-
turned as a single set from a hill-climb. The global Pareto
optima (GPO) are circled in blue.

mutually non-dominated with one local Pareto set member does not
ensure mutual non-domination with all other members of anX i

PLO .

Although the use of advanced data structures means the compu-

tational cost of comparison does not need to grow linearly with

the set size [5, 8], nevertheless, the computational cost of verifying

membership still grows with |X i
PLO |, and can become a significant

computational burden.

3.1.1 Inconsistency of landscape under Pareto local search, and
implications. Until now we have denoted the distinct PLO sets

returned by an initial location in PLS asX i
PLO . However, a property

not generally discussed in the literature regarding the PLO returned

from PLS is that in some cases both X i
PLO ∩X

j
PLO , ∅ and X i

PLO \

X
j
PLO , ∅ are true. The root cause of this that the PLO returned by

PLS can be disjoint. That is, one or more elements of the returned set

are not reachable by walking from other members of the returned

set, via neighbours in the same set. Also, depending on the initial

starting point for the PLS, two sets of PLOs returned by two different

start points can be intersecting but not equal.
The possibility of returning intersecting but not equal sets ef-

fectively means the landscape is not consistent when viewed from

different starting points in the design space, and interpreting the

resultant visualisation can become problematic. We cannot easily

make the cognitive transition from modes in uni-objective space

(single solutions) to modes in multi-objective space (sets of solu-

tions), as the PLS from a location may return a single mode, or

multiple disjoint modes, which may (partially) overlap with single

or multiple modes returned from the PLS from a different start-
ing point. A simple illustration of such a situation is provided in

Figures 3 and 4, which show a problem and the basins associated

with each (disjoint) PLO set induced by it using the von Neumann

neighbourhood.

A solution to this may initially appear to be splitting (via e.g.

path finding algorithms) each PLO set discovered by a PLS run

into its maximally sized disjoint subsets — that is those subsets

Disjoint PLO, and all locations which reach them

X i
PLO returned from PLS, and their basins

Figure 4: Top: Basins for each disjoint PLO set, illustration
from Figure 3 used. PLO sets highlighted in red, basin mem-
bers in green. Note that from some starting locations discon-
nected XPLO appear in the same set returned from PLS, but
from other starting locations only one disjoint subset is re-
turned. Bottom: The X i

PLO returned from PLS, with starting
locations indicated in green showing respective basins.

Figure 5: Exact basins for each X i
PLO set returned by PLS,

using problem illustrated in Figure 1. PLO sets highlighted
in red, respective basin in green. Note that from some start-
ing locations the PLO returned may include a subset of that
from another starting location, due to members being dom-
inated by a disjoint elements also discovered during search.

where all elements can be reached by neighbourhood walks, whose

union covers the PLO of the domain, and who do not intersect.

However, this will not in general be sufficient. Figure 5 shows the

basins of attraction for the problem illustrated in Figure 1, and the

corresponding X i
PLO returned using PLS. The PLO which are in

the same returned set from one starting point can have elements

rejected due to domination from PLS members from another start-

ing point, due to discovery of a disjoint PLO members during the

search. In this particular example the same pair of solutions appear

in three different X i
PLO . At the same time, only a subset of the

XPLO members appearing in the top right panel, also appear in the

two bottom panels.
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Algorithm 4 Pareto Hill-Climbing (PHC) approach of [20].

Require: xstar t ▷ Initial sample

1: xend := xstar t

2: steps := 0

3: converдed := false
4: while converдed = false do
5: Z := dominators(N(xend ), x) ▷ Get dominating

6: if Z = ∅ then
7: converдed := true ▷ No dominating neighbour found

8: else
9: xend = random_select(Z ) ▷ Move to dominator

10: steps := steps + 1
11: end if
12: end while
13: return (xend , steps) ▷ Return path details

As outlined above, generating meaningful LONs using PLO is

non-trivial. The set returned by PLS can intersect with that returned

from a PLS started from a different solution, and therefore a solution

may appear in multiple modes (in standard uni-objective LONs,

a solution may contribute weight to multiple basins but a modal

solution defines only one mode).

3.2 Dominance neutral optima
An alternative approach to define the landscape is to employ a point-
based local hill-climb to define a dominance-neutral neighbourhood

[4]. Previous work to take such an approach to multi-objective land-

scape analysis is the Pareto Hill-Climbing (PHC) approach of [20],

which randomly moves a design in the hill-climb to a dominating

neighbouring solution until no dominating neighbour was found.

This approach is detailed in Algorithm 4.

It was asserted in [20] that the solution returned by PHC would

be a member of an XPLO . However, this is not guaranteed, and

indeed we observe that regularly this is not the case when xstar t <⋃
i X

i
PLO . Figure 6 illustrates a simple counter example to the asser-

tion that PHC results in a member of XPLO , using the same data as

illustrated in Figure 1. Nevertheless, such a point-based rather than

set-based hill-climb is attractive from a practical point of view, as it

does not require exhaustive enumeration of a XPLO for a hill-climb

to complete, and is therefore practical in a landscape approximation

context (via sampling).

Using PHC results in dominance-neutral neighbourhoods (XDNO )

comprised of solutionswhere eachmember ismutually non-dominated

with immediate neighbouring members of the set, which we call

dominance neutral optima (DNO). However, it does not ensure

the set as a whole is comprised of mutually non-dominating solu-

tions. In theory, this may lead to the pathological situation where

XDNO = X (or a substantial portion of it). This may arise when

there aremany objectives, where the dominance measure is known

to be less discriminating [1]. To be clear, in terms of set relationships:⋃
i X

i
GPO ⊆

⋃
j X

j
PLO ⊆

⋃
m Xm

DNO ⊆ X .
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Figure 6: Example where PHC does not return a member of
an XPLO . Left panel shows xstar t in green, and xend in red
with the path in black (note how none of the neighbours
of xend dominate it). The right panel shows all dominance-
neutral optima under PHC coloured red.

⋃
j X

j
DNO is a su-

perset of
⋃
i X

i
PLO .

Figure 7: PLOS-nets corresponding to the problems illus-
trated in Figure 1 (left) and Figure 3 (right).

4 MULTI-OBJECTIVE OPTIMISATION
LANDSCAPES

We now describe existing work on representing multi-objective

optimisation landscapes as graph, before presenting two new ap-

proaches which embody many of the properties of LONs.

4.1 PLOS-nets
As mentioned in Section 1, PLOS-nets have recently been proposed

as the first attempt to formulate a LON-like graph visualisation

for multi-objective problems [10]. Although the term ‘Pareto local

optima’ is used to describe the solutions defining the vertices in

[10], they are actually defined in the work in terms of immediate

neighbourhood non-dominance, and thus are not PLO (as defined

in [15]). To avoid confusion, we will refer to the vertex solution

properties in PLOS-nets as dominance neutral optima rather than

Pareto local optima.

In PLOS-net construction, after the DNO are identified via enu-

meration of the domain, the graph vertices are used to represent

each DNO solution. Edges between vertices are formed if one solu-

tion is a mutually non-dominating neighbour of another, resulting

in an undirected graph. Figure 7 shows the PLOS-net graphs for the

problems illustrated in Figure 1 and Figure 3. In keeping with [10],

vertices are coloured according to their corresponding solution

quality under the Kth objective.
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Algorithm 5 PLON generation.

1: XPLO = ∅ ▷ Initial set of vertex sets

2: B = ∅ ▷ Initial map to basin size

3: C = ∅ ▷ Initial map to vertex colours

4: Esubset = ∅ ▷ Initial map of vertices to subsets

5: for ∀x ∈ X do
6: P := PLS(x) ▷ Get resulting PLO set, see Algorithm 3

7: if P , X i
PLO ∀X i

PLO ∈ XPLO then ▷ If new X i
PLO

8: XPLO := append(XPLO , P) ▷ Add to list of X i
PLO

9: BP := 1 ▷ Initialise basin count

10: else
11: BP := BP + 1 ▷ Increment basin count through map

12: end if
13: end for
14: for ∀X i

PLO ∈ XPLO do
15: CX i

PLO
:= count_GPO(X i

PLO ,XPLO ) ▷ Get number of GPO

16: for ∀X j
PLO ∈ XPLO do

17: if X j
PLO ⊂ X i

PLO then
18: Esubset

X i
PLO

:= append(Esubset
X i
PLO

,X
j
PLO ) ▷ Get covering

19: end if
20: end for
21: end for
22: E = get_edge_weights(XPLO ,N) ▷ Generate edges

23: return (XPLO ,B,C,E,E
subset )

4.2 Pareto local optima networks
Our first approach to transfer the LON to multi/many-objective

problems is to initially identify the unique X i
PLO returned by PLS,

which may include intersecting X i
PLO . We can then identify all

solutions which lead to each of these X i
PLO , and therefore identify

the basin sizes. There remains the issue that some X i
PLO may be

proper subsets of others, and therefore effectively their basin is

larger than merely those members whose PLS lead to them exactly.

We address this here by additionally highlighting directed edges

where a mode completely contains the solutions defining another.

We now describe the construction of LONs using PLS and PHC,

which we call Pareto LONs (or PLONS). In PLONs the vertices

represent the X i
PLO returned from PLS. Their other properties are

as follows:

(1) vertices are coloured proportional to the number of GPO

they contain;

(2) the vertex radii are proportional to basin size;

(3) there is a directed edge between vertexA and vertex B if it is

possible to move from A to B using a transition to the other

(illustrated using escape edges [18] here), with the width of

the edge denoting the number of neighbours of the source

X i
PLO which lead to this transition;

(4) highlighted edges denote if the destination is a subset of the

source.

An algorithm outlining the generation of a PLON is provided

in Algorithm 5. Example PLONs are provided in Figure 8 for the

problems illustrated in Figure 1 and Figure 3.

Figure 8: PLONs corresponding to the problems illustrated
in Figure 1 (left) and Figure 3 (right). Edges in red denote
where the XPLO of the destination node is a subset of the
XPLO of the source node.

Algorithm 6 DNON generation.

1: D = ∅ ▷ Initial set of dominance neutral locations

2: XDNO = ∅ ▷ Initial set of vertex sets

3: B = ∅ ▷ Initial map to basin size

4: C = ∅ ▷ Initial map to vertex colours

5: Esubset = ∅ ▷ Initial map of vertices to subsets

6: for ∀x ∈ X do
7: Y := PHC(x) ▷ Get list of all locations resulting from PHC

8: for each y ∈ Y do
9: if y ∈ D then
10: By := By + 1
11: else
12: D = D ∪ {y}
13: By := 1

14: end if
15: end for
16: end for
17: (XDNO ,B) := agglomerate(D,B) ▷ Get walkable components

18: C := get_number_of_GPO_per_vertex(XDNO )

19: E = get_edge_weights(XDNO ,N) ▷ Generate edges

20: return (XDNO ,B,C,E)

4.3 Dominance-neutral optima networks
Using PHC, and XDNO , we may construct Dominance-Neutral

Optima Networks (DNONs) with the following properties:

(1) vertices are coloured by the number of GPO containedwithin

the corresponding X i
DNO ;

(2) the vertices represent the unique disjoint subsets of the

X i
DNO , constructed by walking across solutions returned by

PHC;

(3) the vertex radii are proportional to basin size (the proportion

of walks from each solution in X where PHC leads to a

member of the X i
DNO represented by the vertex);

(4) there is an edge between two verticesA and B if it is possible

to move from one vertex to the other, with the width of the

edge denoting how easy this is.

An algorithm outlining the generation of a DNON is provided in

Algorithm 6. Example DNONs are provided in Figure 9 for the

problems illustrated in Figure 1 and Figure 3.
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Figure 9: DNONs corresponding to the problems illustrated
in Figure 1 (left) and Figure 3 (right).

f1 f2 f3

f4 f5 Optima

Figure 10: Fitness landscapes under the five different rela-
tively smooth objective functions. Bottom right panel high-
lights the GPO, PLO and DNO sets.

f1 f2 f3

f4 f5 Optima

Figure 11: Fitness landscapes under the five different rela-
tively rugged objective functions. Bottom right panel high-
lights the GPO, PLO and DNO sets.

5 MANY-OBJECTIVE ILLUSTRATION
Our previous illustrations have been on small (|X | = 25) bi-objective

problems. We now illustrate the PLOS-net, PLON, and DNON on

two larger (|X | = 1600) five-objective (i.e. many-objective) prob-

lems, one comprised of relatively smooth functions, and the other

composed of relatively rugged functions. To aid visualisation and

Figure 12: PLOS-net (top-left), DNON (top-right) and PLON
(bottom) for the problem illustrated in Figure 10.

Figure 13: PLOS-net (top-left), DNON (top-right) and PLON
(bottom) for the problem illustrated in Figure 11.

understanding, we again use a problem where the search domain is

in the plane. The images of these domains under the five different

objective functions of the two problems are shown in Figures 10

and 11. The bottom right panel of each of these figures colours each

cell (solution) by type. White are GPO, light grey are PLO (as are all

black cells) and dark grey are DNO (as are all light grey and white

cells). None of the black cells act as attractors under any optima

category.
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Figure 14: DNON basin size versus number of DNO (left) and
DNON basin size versus number of GPO (right) using the
problem illustrated in Figure 11.
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Figure 15: PLON basin size versus number of PLO (left) and
PLON basin size versus number of GPO (right) using the
problem illustrated in Figure 11.

In the smooth landscape with only a fewminima under each indi-

vidual objective, there are twoX i
PLO in the PLON, one of which is a

subset of the other, and three X
j
DNO in the DNON, with the global

Pareto optima split amongst two of them (see Figure 12). There is a

marked contrast in the LONs generated for the rugged landscape.

Again there are only three X
j
DNO using the DNON, although the

basin sizes are different than for the first problem (the PLOS-net

has correspondingly three maximal subgraph components). In con-

trast, there are 93X i
PLO under the PLON representation — although

nearly three-quarters of these are subsets of others (see Figure 13).

The GPO are distributed amongst all vertices in both the DNON

and PLON for this problem.

Figure 14 shows the distribution of basin size versus number

of DNO in a vertex, and basin size versus the number of GPO in

a vertex for the DNON on the rugged problem (correspondingly

the number of vertices in each component of the PLOS-net). As

can be seen, the distributions between the two subplots are fairly

consistent, and the positive trend obvious (albeit on a small number

of points). Figure 15 shows the distribution of basin size versus

number of PLO in a vertex, and basin size versus the number of GPO

in a vertex for the PLON on the rugged problem. In this particular

instance there is a poor correlation between basin size and number

of PLO or number of GPO (with a Spearman’s ρ of −0.31 and −0.17

respectively) — however, once basins which lead to vertices which

are supersets of other vertices are taken into consideration we

find the scatter plots in Figure 16, with a Spearman’s ρ of −0.65

and −0.25 for the correlation between the augmented basin size
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Figure 16: Augmented PLON basin size versus number of
PLO (left) and augmented PLON basin size versus number
of GPO (right) using the problem illustrated in Figure 11.

and PLO and GPO respectively, highlighting the difficulty of this

particular problem.

As mentioned in Section 4.3, it is well-known that dominance

becomes much less discriminatory as the number of objectives

increases, making the landscape look largely neutral under local

dominance comparisons. This is likely the root cause of the small

number of vertices in the DNON representation, and PLOS-net com-

ponents, though we have yet to undertake a rigourous examination

of DNON properties as the number of objectives increases.

6 DISCUSSION
We have presented two new approaches for visualising multi/many-

objective landscapes using the LON framework.

The first, the PLON exploits Pareto local search to build the

LON and define the set memberships of each mode, mimicking the

set-based nature of typical multi-objective search. Its construction

is however relatively costly, and the inherent nature of the X i
PLO

means there are two different forms of edges between vertices

which require representation in the single graph. We note that

alternatives could be to employ a graph pair representation, or

employing a partitioned graph visualisation, akin to that used in

e.g. [16] for funnels to denote this.

The second, the DNON uses point-based local search, with so-

lutions requiring agglomeration after the individual Pareto hill-

climbs have all completed to obtain the vertices. Nevertheless, its

computational cost is much lower than the PLON, and the sets of so-

lutions determining the vertices do not intersect. As such, it is more

amenable to use in a estimation (sampling-based) context. It may

also be effectively paired with the PLOS-net visualisation, to gain

additional information as to how the separate DNO components

are formed.

Although our illustrations are on problems with neighbourhoods

on a grid, this was merely to aid visualisation and explanation. Both

PLONs and DNONsmay be applied generally to any multi-objective

problem where a neighbourhood function is available for solutions,

and we look forward to developing generic and efficient genera-

tors for this (building on our previous work developing efficient

packages in the uni-objective domain [3]).

Matlab code to regenerate the examples and visualisations in

this paper is available at https://github.com/fieldsend.

https://github.com/fieldsend
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