3,900 research outputs found

    Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation

    Get PDF
    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately-initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy and of a state-dependent effective diffusion coefficient that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.Comment: 33 pages, submitted to The Journal of Chemical Physic

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    Efficient Reactive Brownian Dynamics

    Full text link
    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and disassociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion, and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as Reaction-Diffusion Master Equation (RDME) algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction- and diffusion-limited irreversible association in three dimensions. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. We find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.Comment: To appear in J. Chem. Phy

    Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models

    Get PDF
    The diffusion of a reactant to a binding target plays a key role in many biological processes. The reaction radius at which the reactant and target may interact is often a small parameter relative to the diameter of the domain in which the reactant diffuses. We develop uniform in time asymptotic expansions in the reaction radius of the full solution to the corresponding diffusion equations for two separate reactant-target interaction mechanisms: the Doi or volume reactivity model and the Smoluchowski-Collins-Kimball partial-absorption surface reactivity model. In the former, the reactant and target react with a fixed probability per unit time when within a specified separation. In the latter, upon reaching a fixed separation, they probabilistically react or the reactant reflects away from the target. Expansions of the solution to each model are constructed by projecting out the contribution of the first eigenvalue and eigenfunction to the solution of the diffusion equation and then developing matched asymptotic expansions in Laplace-transform space. Our approach offers an equivalent, but alternative, method to the pseudopotential approach we previously employed [Isaacson and Newby, Phys. Rev. E 88, 012820 (2013)PLEEE81539-375510.1103/PhysRevE.88.012820] for the simpler Smoluchowski pure-absorption reaction mechanism. We find that the resulting asymptotic expansions of the diffusion equation solutions are identical with the exception of one parameter: the diffusion-limited reaction rates of the Doi and partial-absorption models. This demonstrates that for biological systems in which the reaction radius is a small parameter, properly calibrated Doi and partial-absorption models may be functionally equivalent

    Free energy reconstruction from steered dynamics without post-processing

    Full text link
    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-alpha. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.Comment: Accepted manuscript in Journal of Computational Physics, 7 figure

    A Comparison of Bimolecular Reaction Models for Stochastic Reaction Diffusion Systems

    Full text link
    Stochastic reaction-diffusion models have become an important tool in studying how both noise in the chemical reaction process and the spatial movement of molecules influences the behavior of biological systems. There are two primary spatially-continuous models that have been used in recent studies: the diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both models treat molecules as points undergoing Brownian motion. The former represents chemical reactions between two reactants through the use of reactive boundary conditions, with two molecules reacting instantly upon reaching a fixed separation (called the reaction-radius). The Doi model uses reaction potentials, whereby two molecules react with a fixed probability per unit time, λ\lambda, when separated by less than the reaction radius. In this work we study the rigorous relationship between the two models. For the special case of a protein diffusing to a fixed DNA binding site, we prove that the solution to the Doi model converges to the solution of the Smoluchowski model as λ\lambda \to \infty, with a rigorous O(λ1/2+ϵ)O(\lambda^{-1/2 + \epsilon}) error bound (for any fixed ϵ>0\epsilon > 0). We investigate by numerical simulation, for biologically relevant parameter values, the difference between the solutions and associated reaction time statistics of the two models. As the reaction-radius is decreased, for sufficiently large but fixed values of λ\lambda, these differences are found to increase like the inverse of the binding radius.Comment: 21 pages, 3 Figures, Fixed typo in titl

    Numerical methods and stochastic simulation algorithms for reaction-drift-diffusion systems

    Full text link
    In recent years, there has been increased awareness that stochasticity in chemical reactions and diffusion of molecules can have significant effects on the outcomes of intracellular processes, particularly given the low copy numbers of many proteins and mRNAs present in a cell. For such molecular species, the number and locations of molecules can provide a more accurate and detailed description than local concentration. In addition to diffusion, drift in the movements of molecules can play a key role in the dynamics of intracellular processes, and can often be modeled as arising from potential fields. Examples of sources of drift include active transport, variations in chemical potential, material heterogeneities in the cytoplasm, and local interactions with subcellular structures. This dissertation presents a new numerical method for simulating the stochastically varying numbers and locations of molecular species undergoing chemical reactions and drift-diffusion. The method combines elements of the First-Passage Kinetic Monte Carlo (FPKMC) method for reaction-diffusion systems and the Wang—Peskin—Elston lattice discretization of the Fokker—Planck equation that describes drift-diffusion processes in which the drift arises from potential fields. In the FPKMC method, each molecule is enclosed within a "protective domain," either by itself or with a small number of other molecules. To sample when a molecule leaves its protective domain or a reaction occurs, the original FPKMC method relies on analytic solutions of one- and two-body diffusion equations within the protective domains, and therefore cannot be used in situations with non-constant drift. To allow for such drift in our new method (hereafter Dynamic Lattice FPKMC or DL-FPKMC), each molecule undergoes a continuous-time random walk on a lattice within its protective domain, and the lattices change adaptively over time. One of the most commonly used spatial models for stochastic reaction-diffusion systems is the Smoluchowski diffusion-limited reaction (SDLR) model. The DL-FPKMC method generates convergent realizations of an extension of the SDLR model that includes drift from potentials. We present detailed numerical results demonstrating the convergence and accuracy of our method for various types of potentials (smooth, discontinuous, and constant). We also present several illustrative applications of DL-FPKMC, including examples motivated by cell biology

    Quasi-steady state reduction of molecular motor-based models of directed intermittent search

    Get PDF
    We present a quasi–steady state reduction of a linear reaction–hyperbolic master equation describing the directed intermittent search for a hidden target by a motor–driven particle moving on a one–dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile, non-search phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor–driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker–Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V , diffusivity D and target absorption rate λ of the random search. The quasi–steady state reduction determines V, D and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3–state model and show that our quasi–steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a “tug-of-war,” and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets

    Mathematical Modelling of Turning Delays in Swarm Robotics

    Get PDF
    We investigate the effect of turning delays on the behaviour of groups of differential wheeled robots and show that the group-level behaviour can be described by a transport equation with a suitably incorporated delay. The results of our mathematical analysis are supported by numerical simulations and experiments with e-puck robots. The experimental quantity we compare to our revised model is the mean time for robots to find the target area in an unknown environment. The transport equation with delay better predicts the mean time to find the target than the standard transport equation without delay.Comment: Submitted to the IMA Journal of Applied Mathematic
    corecore