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Abstract: We present computer-assisted methods for analyzing stochastic models of gene reg-

ulatory networks. The main idea that underlies this equation-free analysis is the design and

execution of appropriately-initialized short bursts of stochastic simulations; the results of these

are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport

coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the

computation of an effective free energy Φ and of a state-dependent effective diffusion coeffi-

cient D that characterize an unavailable effective Fokker-Planck equation. Additionally we

illustrate the linking of equation-free techniques with continuation methods for performing a

form of stochastic “bifurcation analysis”; estimation of mean switching times in the case of a

bistable switch is also implemented in this equation-free context. The accuracy of our methods

is tested by direct comparison with long-time stochastic simulations. This type of equation-free

analysis appears to be a promising approach to computing features of the long-time, coarse-

grained behavior of certain classes of complex stochastic models of gene regulatory networks,

circumventing the need for long Monte Carlo simulations.

1 Introduction

Various ways to model gene-regulatory networks exist, ranging from logical (boolean),
to stochastic (Monte Carlo methods) or deterministic (ordinary differential equations)
models (for recent reviews see [35, 19, 21]). Each modeling approach has its advantages
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and disadvantages. One advantage of stochastic modeling is that it takes into account
fluctuations due to the inherently random nature of biochemical reactions. This intrinsic
noise gives rise to significant effects when either the molecular abundances of protein
or mRNA molecules are small or the kinetics of the transitions between the chemical
states of the promoter are slow [23, 21].

The established approach for stochastic modeling of spatially homogeneous chemical
systems was introduced by Gillespie [13]. The Gillespie Stochastic Simulation Algorithm
(SSA) is based on repeatedly answering two questions: when does the next chemical
reaction occur and what kind of reaction is it? Gillespie [13] derived a simple way to
answer these two questions that reduces the problem to a continuous-time discrete space
Markov process.

The SSA generates exact sample paths of the stochastic process and, for sufficiently
large networks, it is computationally more efficient than solving the chemical master
equation. However, the large size of naturally occurring gene regulatory networks makes
even the SSA computationally intensive and practically impossible to use for comput-
ing the long-time behavior of the network. Consequently, an important restriction of
stochastic computations for many networks of interest is that we can efficiently run
stochastic Gillespie-based simulators for short times only. It is therefore natural to look
for computational methods that use only short time simulations (and as few of these
as necessary) to compute the required information for the system. Such a computer-
assisted approach is presented in this paper.

Model reduction often provides a natural path to efficient simulation of a compli-
cated model. As in other branches of physical modeling, separation of time scales can
lead to successful model reduction in gene regulatory network modeling. Separation of
time scales is frequently present in this context because synthesis and degradation of
new proteins and transcripts usually occurs on a slower time scale than processes that
change the chemical state of proteins (e.g., multimerization, protein/DNA interactions,
phosphorylation). Theoretical methods for stochastic model reduction that take advan-
tage of separation of time scales are being developed (e.g. [23, 5, 17, 31]). Analytical
reduction techniques assume that fast variables are in quasi-steady state with respect to
the remaining slow variables. If the quasi-steady state distributions conditioned on the
slow variables can be determined, then they can be used to eliminate the fast variables.

Our approach is also based on (and takes advantage of) the separation of time
scales and the approximation (computationally, on the fly) of quasi-steady marginal
distributions (conditioned on the slow variables). The main feature of our approach, as
will become apparent through its description and illustration, is that we do not “first
reduce and then simulate the reduced model”; our methods come in the form of wrappers
around a black box dynamic simulator, and could equally well be applied to the most
detailed stochastic version of the network model or to its best explicit reduction already
available. In our approach, results about the long-term dynamic behavior of a stochastic
simulator do not come from long-term simulation; they come from the design, execution
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and processing of the results of “intelligently designed” short bursts of direct dynamic
simulation.

We believe it is useful to draw here an analogy with the study of nonlinear dynamics
in systems of ODEs. Long-term information in the form of detailed bifurcation diagrams
can be obtained from long dynamic integration; yet the same information is much more
systematically and economically obtained through different algorithms using the same
model: bifurcation, stability and continuation methods. It is this alternative to direct,
long-term stochastic simulation (whether with the full detailed network model or with
any good analytical reduction of it) that our approach makes available to the mod-
eler. Ours is a “design of computational experiments” approach; it is guided by model
reduction, but a reduced model is never explicitly obtained.

The remainder of the paper is organized as follows. In Section 2, we introduce the
genetic toggle switch as a simple model to illustrate our methods, and we specify the
main questions that one would like to answer with these techniques. In Section 3, we
present the general mathematical framework and main ideas of equation-free analysis
[24, 8, 12, 36, 16]. In Section 4, we present an analysis of a deterministic model of
the genetic toggle switch to provide insight into this system. We also introduce several
stochastic models of increasing complexity that are used to illustrate equation-free anal-
ysis. In Section 5, we compute the effective free energies and the associated stationary
distributions for the stochastic models described in Section 4. Equation-free bifurcation
analysis is then presented, and, in bistable cases, the mean first passage times for the
system to switch between apparent stable fixed points are computed. We end with a
discussion of the equation-free approach, its strengths, weaknesses, relations to other
current methods for the acceleration of SSA-type simulations (e.g. [23, 5, 17, 31, 1])
and its possible extensions in Section 6. In particular, we will discuss the applicability
of our methods to more complicated gene-regulatory networks.

2 Model Description

Our illustrative example is a two gene network in which each protein represses the
transcription of the other gene (mutual repression). This type of system has been
engineered in E. coli and is often referred to as a genetic toggle switch [9, 18]. The
advantage of this simple system is that it allows us to test the accuracy of equation-free
methods by direct comparisons with results from long-time stochastic simulations. In
Section 6, we discuss the applicability of our methods to more complex problems where
long direct stochastic simulation is impossible and the accuracy must be checked by on
line a posteriori error estimates.

A simple version of the genetic toggle switch is schematically drawn in Figure 1.
The system contains two proteins P1 and P2. The production of P1 (P2) depends on the
chemical state of the upstream operator O1 (O2). If O1 is empty then P1 is produced at
the rate γ1 and if O1 is occupied by a dimer of P2, then protein P1 is produced at a rate
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Figure 1: A schematic diagram of the genetic toggle switch.

ǫ1 < γ1. Similarly, if O2 is empty then P2 is produced at the rate γ2 and if O2 is occupied
by a dimer of P1, then protein P2 is produced at a rate ǫ2 < γ2. Note that for simplicity,
transcription and translation are described by a single rate constant. The biochemical
reactions and rate constants that correspond to the processes shown in Figure 1 are

∅
γ1O1+ε1P2P2O1−→←−

δ1

P1 (2.1)

∅
γ2O2+ε2P1P1O2−→←−

δ2

P2 (2.2)

P1 + P1

k1−→←−
k
−1

P1P1 (2.3)

P2 + P2

k2−→←−
k
−2

P2P2 (2.4)

P2P2 +O1

ko1−→←−
k
−o1

P2P2O1 (2.5)

P1P1 +O2

ko2−→←−
k
−o2

P1P1O2 (2.6)
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where the overbars denote complexes. Equation (2.1) describes production and degra-
dation of protein P1, equation (2.2) describes production and degradation of protein
P2, equations (2.3) and (2.4) are dimerization reactions and equations (2.5) and (2.6)
represent the binding and dissociation of the dimer and DNA.

Single cell fluorescence measurements can be used to measure intercellular variability
in protein expression levels. Therefore it is important to have efficient methods for
computing the steady-state distribution of protein abundances from stochastic models
similar to the one defined by (2.1) – (2.6). For moderately complex systems using
long-time Monte Carlo simulations quickly becomes computationally prohibitive. We
will illustrate how equation-free analysis can overcome this difficulty by accelerating the
exploration of certain features of the long-term dynamics of the stochastic simulation.
For certain values of the model parameters, the genetic toggle switch is bistable. If the
system is described in terms of ordinary differential equations (ODEs) for the protein
concentrations, then standard bifurcation analysis (numerical continuation methods)
can be applied to determine the regions of parameter space in which bistability occurs.
Using the model described by (2.1) – (2.6) as an example, we show how to extend these
techniques to stochastic models. An important quantity that characterizes the dynamics
of bistable stochastic systems is the average time for spontaneous transitions between
stable steady states to occur. We will illustrate how this mean first passage time can be
computed by using only short-time simulations.

3 Equation-Free Analysis: Mathematical Framework

Let us suppose that we have a well-stirred mixture of chemically reacting species; our
main assumption is that the evolution of the system can be described in terms of a single,
slowly evolving random variable Q (the approach carries through for the case of a small
number of slow variables, but in this paper we will focus on the single slow variable
case). Q might be the concentration of one of the chemical species or some function of
the concentrations. Let R denote a vector of the other (fast, “slaved” system variables).
Our assumption implies that the evolution of the system can be approximately described
by the time-dependent probability density function f(q, t) for the slow variable Q that
evolves according to following effective Fokker-Planck equation [33]:

∂f

∂t
=

∂

∂q

(

∂

∂q
[D(q)f(q, t)]− V (q)f(q, t)

)

. (3.1)

If the effective drift V (q) and diffusion coefficient D(q) could be explicitly written down
as function of q, then (3.1) can be used to compute interesting properties of the system
(e. g., the steady state distribution). Note that in addition to the assumption of a
single slow variable, the validity of equation (3.1) requires sufficiently large molecular
abundances and sufficiently fast chemical kinetics for transitions in the chemical state
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of the operator [9, 23]. Assuming that (3.1) provides a good approximation, we make
use of the following formulas for the drift and diffusion coefficient [16, 20, 25, 37]

V (q) = lim
∆t→0

< Q(t +∆t)− q |Q(t) = q >

∆t
(3.2)

D(q) =
1

2
lim
∆t→0

< [Q(t +∆t)− q]2 |Q(t) = q >

∆t
. (3.3)

As described below, estimates of these two quantities can be found by using short-time
bursts of appropriately initialized stochastic simulations. The steady solution of (3.1) is
proportional to exp[−βΦ(q)], where the effective free energy Φ(q) is defined as

Φ(q)

kBT
≡ βΦ(q) = −

∫ q

0

V (q′)

D(q′)
dq′ + lnD(q) + constant. (3.4)

Consequently, computing the effective free energy and the steady state probability distri-
bution also can be accomplished without the need for long-time stochastic simulations.
A procedure for computationally estimating V (q) and D(q) is as follows:

(A) Given Q = q, approximate the conditional density P (r|Q = q) for the fast
variables R. Details of this preparatory step are given below.
(B) Use P (r|Q = q) from the step (A) to determine appropriate initial conditions
for the short simulations and run multiple realizations for time ∆t. Use the results
of these simulations and the definitions (3.2) and (3.3) to estimate the average
velocity V (q) and effective diffusion coefficient D(q).
(C) Repeat steps (A) and (B) for sufficiently many values of Q and then compute
Φ(q) using formula (3.4) and numerical quadrature.

A very important feature of this algorithm is that it is trivially parallelizable (different
realizations of short simulations starting at “the same q” as well a simulation realizations
starting at different q values can be run independently, on multiple processors).

In order to use the algorithm (A) – (C), we have to specify how the step (A) is
performed. There are several computational options to approximate the conditional
density P (r|Q = q). The simplest approximation is to estimate (through numerical
experiments) the conditional mean <R|Q = q> and approximate P (r|Q = q) as a Dirac
delta function δ(r− <R|Q = q>). Then the step (A) reads as follows:

(A1) Given Q = q, pick an initial guess for the conditional mean of R. Denote
the initial guess as <R(0)>. Run multiple realizations for a short time δt and
compute <R(δt)> . This procedure defines the mapping <R(0)>→<R(δt)> .
Find the steady state of this mapping using standard numerical methods. The
steady state is the required conditional average <R|Q = q> . Initialize R(0) as
<R|Q = q> in all realizations in part (B) of the algorithm.
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Another option is to approximate P (r|Q = q) as a distribution characterized by a few
parameters, e.g. as a Gaussian distribution with mean µ and variance σ. This can be
done as follows:

(A2) Given Q = q, pick initial guesses for the mean µ(0) and variance σ(0)
of the conditional distribution function P (r|Q = q). Use this distribution to
generate many realizations of R(0). Using these realizations as initial conditions,
run stochastic simulations for a short time δt and computeR(δt). Computing mean
and variance of R(δt), we obtain the mapping [µ(0),σ(0)]→ [µ(δt),σ(δt)]. Next
use standard numerical methods to find the steady state [µ,σ] of this mapping
and approximate P (r|Q = q) as a Gaussian distribution with mean µ and variance
σ.

The conditional density P (r|Q = q) can be also approximated by other basis func-
tions. It is straightforward to generalize (A1) or (A2) to such a case. The better the
approximation of P (r|Q = q) we have, the shorter the time step, δt, required in the
step (B) to achieve the same accuracy. So, a better approximation of P (r|Q = q) in
step (A) decreases the computational intensity of step (B). On the other hand, step
(A) is more computationally intensive if we want to obtain a better approximation of
P (r|Q = q). One possibility for generating a better approximation of P (r|Q = q) is to
use a “run-and-reset” procedure as was done in [8]. This is accomplished as follows.

(A3) Given Q = q, initialize the other variables R ≡ R(0) of the system. Run
stochastic simulations for the short time δt. Then reset the value of Q(δt) to its
original value q keeping R unchanged. Repeat this procedure for many time steps
and compute the conditional density P (r|Q = q) as a histogram of the recorded
values of R.

The approach (A3) attempts to compute the P (r|Q = q) effectively by successive sub-
stitution, without resorting to numerical algorithms of the Newton-Raphson type for
locating fixed points of mappings; we will return to this latter issue in the Discussion
section. In our illustrative computations in Section 5, we use step (A) in the form (A1)
or (A3) for the simple stochastic models described below. Both give good results for our
illustrative example. Since (A1) works for sufficiently long times δt, there is no need to
use (A2) or higher order approximations. For some stochastic simulations of our model
problem, we also use slightly modified versions of the methods (A1) or (A3) as will be
described in Section 5.

3.1 Bifurcations

In deterministic problems, we often summarize the parametric dependence of the long-
term dynamics in terms of bifurcation diagrams; for example, we may plot the steady

7



states of a deterministic set of ODEs as a function of a distinguished bifurcation param-
eter. Several excellent continuation methods have been developed, implemented and
made available for this purpose over the years, such as AUTO [6, 7].

Here we illustrate how these methods can be extended to stochastic models [24,
12, 37, 26, 27]. We assume, as above, that we have a stochastic problem that can be
effectively described by a single variable Q. Let γ be the bifurcation parameter. The
first two steps in the algorithm are as follows:

(A) Given Q = q and the value of the bifurcation parameter γ, compute the
conditional density P (r|Q = q) using step (A) of the previous algorithm.
(B) Using P (r|Q = q) from step (A) to determine the initial conditions, run
multiple stochastic simulations for a short time ∆t and compute the conditional
average <Q(∆t)|Q(0) = q>.

Steps A and B define the mapping (Q(0), γ)→<Q(∆t)>. We denote this mapping as F ,
i.e. F (Q, γ) =<Q(∆t)> . Our goal is to track the fixed points of F (i.e. F (Q, γ) = Q)
as the bifurcation parameter γ is varied. To do this, we first use a Newton-Raphson
algorithm to find two steady states (Q1, γ1) and (Q2, γ2) which are sufficiently close
to each other (note that one can estimate the derivative of F (Q, γ) numerically by
evaluating F (Q, γ) at different points). Then, in a parameter continuation context, we
choose a small parameter δ (which can be modified adaptively during the computation)
and find the next steady state using continuation. That is, the next values of Q and γ
are found by solving the following system of equations

{

Q− F (Q, γ) = 0,
(Q−Q2)(Q2 −Q1) + (γ − γ2)(γ2 − γ1)− δ = 0.

(3.5)

To find the solution of (3.5), we estimate the Jacobian numerically by evaluating F (Q, γ)
at several points and then use Newton-Raphson algorithm. When the number of vari-
ables starts becoming large, matrix-free methods of iterative numerical linear algebra
(such as Broyden, or Newton-Krylov GMRES [22]) can be used to solve for the fixed
point, as opposed to full numerical Jacobian estimation. The fixed points computed
this way provide, under certain conditions, good estimates of the critical points (min-
ima, saddles) of the effective potential Φ(q)) as a function of a model parameter γ; this
issue is discussed extensively in [26, 27, 3, 37], and we will return to it again in the
Discussion section.

3.2 First Passage Time

Suppose that we have a bistable stochastic system. That is, the effective free energy Φ(q)
has two local minima [14] - see Figure 2. Then an important quantity characterizing
the long-time system dynamics is the mean time for spontaneous transitions to occur
between the stable steady states. Let qm < qM denote the two stable steady states and
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Figure 2: Potential Φ(q) of the bistable system.

let qu be the unstable state (i.e. local maximum of Φ(q)). Then we define the first
passage time for transitions from qm to qM as 2τe where τe is the average time for the
system to reach the unstable steady state qu for the first time given that it starts at qm.
The factor of two occurs because once the system reaches the unstable steady state, half
the time it returns the original stable steady state qm and the other half of the time it
transitions to qM .

Algorithm (A) – (C) gives a procedure to estimate the effective potential Φ(q) by
running short simulations only. Once we have the effective potential, we can compute
τe as follows [14]

τe;p =

∫ qu

qm

exp

[

Φ(q)

kBT

]
∫ q

−∞

1

D(ξ)
exp

[

−Φ(ξ)
kBT

]

dξdq (3.6)

Equation (3.6) can be further simplified if the height of the potential barrier [Φ(qu) −
Φ(qm)] is large compared to the noise strength. In this case, the limit q in the second
integral can be replaced by qs, allowing the two integrals to be evaluated separately

τe;p ≈
∫ qu

qm

exp

[

Φ(q)

kBT

]

dq ×
∫ qu

−∞

1

D(q)
exp

[

−Φ(q)
kBT

]

dq.

The main contribution of the first integral stems from the region around qs, and the main
contribution from the second integral stems from the region around qm. Consequently,
we expand Φ(q) according to

Φ(q) ≈ Φ(qu)−
1

2
|Φ′′(qu)|(q − qu)

2, Φ(q) ≈ Φ(qm) +
1

2
Φ′′(qm)(q − qm)

2.
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for the first and the second integral, respectively [33]. When these expansions are used
in equation (3.2), the following result is obtained

τe;k ≈
4πkBT

[D(qu) +D(qm)]
√

Φ′′(qm)|Φ′′(qu)|
exp

[

Φ(qu)− Φ(qm)

kBT

]

(3.7)

which is the generalization of Kramers’ formula to the case of a state dependent diffusion
coefficient [33, 16]. Formulas (3.6) and (3.7) are both used in Section 5.2 to estimate τe.

4 Analysis of the Model Problem

In this section, we study the behavior of the model given by equations (2.1) – (2.6).
To provide insight into the problem, we start by analyzing the deterministic system. In
Sections 4.2 and 4.3, we introduce two stochastic models that are simplified versions
of the model defined by (2.1) – (2.6). We use these models because of the relative
ease in performing long-time stochastic simulations with them; this allows the results
from the equation-free analysis to be validated by direct comparisons with Monte Carlo
simulations. We will also verify that the equation-free methods can be applied to the
full model. As discussed below, for this case the long-time Monte Carlo simulations
become computationally very expensive.

4.1 The Deterministic Model

To simplify the deterministic analysis, we make the assumption that equations (2.3) –
(2.6) are at quasi-equilibrium and derive deterministic rate equations for the protein
concentrations. Let x1 and x2 denote the average monomer concentrations of P1 and
P2, respectively, and let d1 and d2 denote the respective dimer concentrations. Also, let
o1 and o2 denote the probabilities that the operators O1 and O2 are not occupied. For
the dimerization process the assumption of quasi-equilibrium implies

d1 =
k1
k−1

x2
1, and d2 =

k2
k−2

x2
2. (4.1)

Similarly, the quasi-equilibrium assumption for the operators implies that

o1 =
k−o1

k−o1 + ko1d2
, and o2 =

k−o2

k−o2 + ko2d1
. (4.2)

The total concentration of P1 is given by y1 = x1 + 2d1. The total concentration y1
evolves according to the following ordinary differential equation

dy1
dt

= γ1o1 + ε1(1− o1)− δ1x1. (4.3)
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where δ is the degradation rate of the monomers, and it has been assumed that dimers
are protected from degradation. Substituting y1 = x1+2d1 = x1+2 k1

k
−1
x2
1 into (4.3), we

obtain
(

1 + 4
k1
k−1

x1

)

dx1

dt
= γ1o1 + ε1(1− o1)− δ1x1

Finally, using (4.1) – (4.2) produces

dx1

dt
=

1

1 + κ1x1

[

γ1
1

1 + ω1x
2
2

+ ε1
ω1x

2
2

1 + ω1x
2
2

− δ1x1

]

(4.4)

where the parameters κ1 and ω1 are defined as follows

κ1 = 4
k1
k−1

, and ω1 =
ko1
k−o1

k2
k−2

. (4.5)

Using similar reasoning an analogous equation for x2 can be derived.
For simplicity, we will present the symmetric case in which the rate constants for

processes involving P1 are identical to those involving P2. That is, we assume κ ≡
κ1 = κ2, γ ≡ γ1 = γ2, ω ≡ ω1 = ω2, and δ ≡ δ1 = δ2. Moreover, we assume that
the production rate is zero if an operator is occupied, i.e. ε1 = ε2 = 0. Making these
assumptions, (4.4) simplifies to

dx1

dt
=

1

1 + κx1

[

γ

1 + ωx2
2

− δx1

]

, (4.6)

and the equation for x2 is obtained by alternating the subscripts in the above equation.
Hence, the problem has been reduced to a system of two equations with four parameters.
Note that the value of κ does not influence the steady-state behavior of the system. In
this paper, we fix the values of δ and ω to be 0.00075 and 2× 10−6, respectively.

The steady states values of x1 as a function of γ are shown in Figure 3. In this
figure, solid lines denote stable steady states and dashed lines denote unstable steady
states. For γ < 1.06 there is a single steady state. At γ = 1.06 a pitchfork bifurcation
occurs, and for γ > 1.06, there exist three steady states. The steady state with x1 = x2

is unstable and the other two steady states are stable.
Due to separation of time scales, the long-term dynamics of this problem lie on a

lower-dimensional (here one-dimensional) slow manifold; this suggests that one may be
able to construct an effective one-dimensional dynamical system describing the long-
term evolution of the model on (near) this slow manifold. In constructing such a re-
duced model, an important question even in the simple deterministic case is the choice
of the right observable - the variable in terms of which the long-term dynamics will be
expressed. An extensive discussion of the choice of such a “right observable” for the
deterministic case can be found, for example, in [11]; as discussed there, even if we do
not know the exact slow variables, any set of variables that parametrizes the slow man-
ifold can be practically used to reduce the system in an equation-free context. For the
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Figure 3: The dependence of the steady state values of x1 on γ. The solid lines denote
stable fixed points and the dashed line corresponds to unstable fixed points. In this figure
and throughout the paper δ = 0.00075 and ω = 2× 10−6.

stochastic case, a good early illustration and discussion of manifold parametrization can
be found in [36]. Choosing the right observable is an important issue in the implemen-
tation of equation-free computations, and the subject of intense current research which
we will briefly comment on in Section 6.

In this paper, and for this example, our equation-free analysis assumes that the
problem can be described in terms of a single variable. Consequently, it becomes im-
portant to select a good observable that further simplifies the two-dimensional problem
to one dimension. A tempting (and obvious) choice for the one-dimensional observable
is the molecular abundance of P1 (or P2). We demonstrate below that using P1 in the
equation-free analysis produces good results. However, we also make use of the symmet-
ric variable defined as the difference in the protein abundances Q = P1 − P2. In terms
of the rate equations the symmetric variable is s = x1 − x2. The bifurcation diagram in
terms of s is shown in Figure 4. The symmetry of the diagram suggests that Q might
be a more natural observable than P1 (which also produces good results, as we will see
below).

4.2 Stochastic Model I

To start our investigations in the equation-free framework, we constructed a very simple
stochastic model of the system. We use this simple model to benchmark equation-free
computations, since the results can be tested against Monte-Carlo simulations easily.
Results for the full system are also presented below. The simple stochastic model consists
only of reactions for the synthesis and degradation of proteins P1 and P2, but the
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following effective rate constants are used

∅

1

1+κP1

γ

1+ωP2
2−→←−

δ
1+κP1

P1 (4.7)

∅

1

1+κP2

γ

1+ωP2
1−→←−

δ
1+κP2

P2 (4.8)

The above reactions are consistent with the deterministic model, but in general do not
preserve the noise structure of the full stochastic model.

To simulate the mechanism contained in model (4.7) – (4.8), we use the standard
Gillespie SSA [13]. The results for different values of the parameter γ are plotted in
Figure 5. For each γ we plot the time evolution P1 (left panel) and Q = P1 − P2 (right
panel). We see that for small γ, the solution fluctuates around the stable deterministic
steady state with relatively small noise amplitude. When γ = 1.06, the noise amplitude
has increased substantially, which is typical of stochastic systems near a “bifurcation”;
the word bifurcation is put here in quotes to denote that (in contrast to the deterministic
case) there is no isolated parameter value marking the onset of bistability - no clear
bifurcation point exists for the stochastic dynamics. Yet one can still claim that a clear
bifurcation point exists for the critical points of the potential Φ(q, γ) in the stochastic
model; furthermore, depending on the time horizon of our observation of a stochastic
simulation, one may still appear to see an apparent bifurcation point for its averaged
statistics (see the discussion in [16, 3]). If γ is increased further, then Q = 0 is no longer
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Figure 5: Stochastic Model I. Plots of P1 and Q = P1 − P2 as a function of time for
different values of γ. The parameter values used to produce these figures are δ = 0.00075,
ω = 2× 10−6, and κ = 2× 10−4.
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a stable steady state and the system clearly shows bistability. All plots are computed for
the same time interval [0, 15×106]. For γ = 1.25 the steady states are sufficiently stable
so that no transitions occurred in this time interval (data not shown). Therefore, for this
case, determining the steady state probability distribution from long-term Monte-Carlo
simulations would be very time consuming.

4.3 Stochastic Model II

Stochastic Model I considers only two variables P1 and P2. Here, we introduce a stochas-
tic model that also takes into account the biochemical states of the operators, while
maintaining the assumption that the dimerization reactions (2.3) – (2.4) are at equilib-
rium. That is, we consider the four variables P1, P2, O1 and O2. The model is defined
in terms of the following reaction steps:

∅
γ

1+κP1
O1

−→←−
δ

1+κP1

P1 (4.9)

∅
γ

1+κP2
O2

−→←−
δ

1+κP2

P2 (4.10)

“O1 = 0”
K−→←−

KωP 2
2

“O1 = 1” (4.11)

“O2 = 0”
K−→←−

KωP 2
1

“O2 = 1” (4.12)

and contains an extra parameter, K ≡ k−o1 = k−o2. Note that “O1 = 0” means that the
operator O1 has a dimer of P2 bound to it and therefore is “off” and “O1 = 1” means
that the operator O1 is empty and therefore “on”. The same is true for O2. This implies
that the random variables O1 and O2 are binary, whereas the variables P1 and P2 can
take on any non-negative integer value. Stochastic Model I is recovered from Stochastic
Model II in the limit K →∞. We thus expect the models to produce similar results for
large values of K.

Again, we use the standard Gillespie SSA [13] to simulate model (4.9) – (4.12).
The results for different values of K for γ = 1.14 are plotted in Figure 6. Comparing
Figure 6 and corresponding panel from Figure 5, we can confirm that Stochastic Model
II produces the same behavior as Stochastic Model I for large K. However, in general,
different values of K can change the bifurcation structure of the system and affect the
first passage times between the two stable steady states of the bistable system [23].

Because Stochastic Models I and II do not explicitly take into account dimerization,
which in general is a fast process, they run much more efficiently than the full model
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Figure 6: Stochastic Model II. Plots of P1 and Q = P1 − P2 as a function of time for
different values of K and γ = 1.14. The other model parameter values are the same as
in Figure 5.
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given by (2.1) – (2.6). However, they do not in general preserve the noise structure of the
full system. In the next section we use all three models to highlight the computational
features (and potential benefits) of equation-free analysis.

5 Results of Equation-Free Analysis

In our approach, we want to study the stochastic models presented above using only
short bursts of appropriately initialized stochastic simulations; the goal is to design these
bursts, and process their results so as to determine long-time properties of the system
(e.g., steady-state distributions, bifurcations, mean first passage times) efficiently. We
use (and compare) the different algorithms discussed in Section 3.

5.1 The effective potential and steady state distribution

In this section, we use equation-free analysis to evaluate the effective potential (an
“effective free energy”) and the steady-state distribution for Stochastic Models I and II
and the full system. We start with Stochastic Model I. First, we will consider the slow
variable Q ≡ P1−P2 and the fast (slaved) variable R ≡ P1+P2. Initially the preparatory
step (A) of the algorithm presented in Section 3 was done using the method outlined in
(A1), i.e. we used the conditional mean <R|Q = q> to initialize the computations in
the step (B). A good approximation to this average can be found using the deterministic
equations, and this was the number used in our preliminary computations to initialize
the simulations in the step (B). That is, for a given Q, we initialized all realizations
in the step (B) with the same value of R. Then we chose ∆t equal to 100 time steps
of the Gillespie SSA. Note that this implies that the actual value of ∆t varies for each
realization and depends on the values of the rate constants. However, the computer
(CPU) time is the same for all the results presented for this case.

The equation-free results for the effective potential for different values of γ are given
in Figure 7. These results are in good agreement with the long-term stochastic sim-
ulations presented in Section 4.2. The potential has a single minimum γ < 1.06. As
γ is increased the potential broadens implying the system becomes “noisier”. When
γ > 1.06, the potential shows two local minima and the system is bistable.

Since we are using a very simple stochastic model, it is not computationally expensive
to compute the steady-state distributions directly by long time simulations. We use the
Gillespie SSA to generate 1011 time steps of the stochastic process and recorded the value
of Q at each time step. The resulting time series was binned to produce the steady-
state distribution of the system. Figure 8 presents a comparison of the two computed
steady state distributions. The results obtained by long-time simulations are shown as
blue histograms and the steady state distributions computed from the effective potential
C exp[−βΦ(Q)] are given by the red lines. We see that equation-free analysis gives very
good results.
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Figure 7: The effective free energy Φ for different values of γ computed by our procedure.
The other model parameter values are the same as in Figure 5.

In Section 3, we introduced three possible methods, (A1) – (A3), to perform the
preparatory step (A) (typically called the “lifting” step in the equation-free framework).
We have shown that approach (A1) produces good results for Stochastic Model 1. Since
(A1) works, there is no need to improve the results by considering (A2). Instead, we
discuss the (A3) approach. In this approach given Q = q we run the simulations for a
short time δt and record the value of R. Then we reset Q = q but leave R unchanged.
We repeat this procedure many times and compute the conditional density P (r|Q = q)
as a histogram of recorded values of R. In our simulations, we chose δt equal to one SSA
step. To compute the conditional density P (r|Q = q), we used 11 million SSA steps.
First we let the system run for a million time steps to remove the transient in R, and
then used remaining 10 million time steps to compute the conditional density. We used
200 million Gillespie time steps in part (B) of the algorithm. Consequently, step (A3)
did not significantly change the computational cost of the program.

The graphs of P (r|Q = q) for γ = 0.98 and γ = 1.14 are given in Figure 9. The
left panel in these figures shows P (r|Q = q) for five values of Q. The right panels
show P (r|Q = q) as a function of r and q. Next, we can use the computed conditional
density P (r|Q = q) to initialize R in the step (B). Doing this, produces results which
are virtually identical to results from Figure 8 (graphs not shown).

We now repeat the previous computations using the more complicated Stochastic
Model II. The results are shown in Figures 10 and 11. In Figure 10, we choose γ = 1.14
and compute the steady state distribution for Q for three values of K. The results
are compared with direct simulations of Stochastic Model II and with each other. The
results from Figure 10 can also be compared to the corresponding plot with γ = 1.14 in
Figure 8, which can be viewed as the limit K →∞. As can be seen, the results given by
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Figure 8: Comparison of steady state distributions obtained from the effective free ener-
gies shown in Figure 7 with histograms (blue) obtained by long time simulations.

Stochastic Model II for K = 10 are already in good agreement with the corresponding
results obtained by Stochastic Model I. Figure 11 shows similar results for γ = 1.20.
Again, we obtained accurate results using the equation-free method.

Up to now we have used the symmetric variable Q ≡ P1 − P2 as our observable.
However, we often do not have a priori knowledge of the slow variable, or, more generally,
of a good observable to parametrize the long-time system dynamics. To investigate the
sensitivity of our results to the choice of observable, we repeated the computations on
Stochastic Model I using P1 instead of Q. To use P1 as our observable, we modify
step (A1) so that we simply initialize P2 using P2 =

1
δ

γ

1+ωP 2
1

. The numerical results for

different values of γ are given in Figure 12. Again good agreement is seen between the
equation-free method and the Monte-Carlo simulations. Because P1 has both a slow
and a fast component, this result illustrates that equation-free methods can be used
even when the slow variable is unknown. An extensive discussion of this point in a
deterministic context can be found in [11]: one does not necessarily need the correct
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Figure 9: Conditional distribution P (r|Q = q) for Stochastic Model I. Pictures on the
left show P (r|Q = q) for selected values of q. Pictures on the right show P (r|Q = q) as
a function of r and q.

slow variable – one needs an observable that parametrizes the slow manifold, a quantity
in terms of which the slow manifold can be expressed as the graph of a function.

Encouraged by the success of our computational framework for the simple Stochastic
Models I and II considered above, we next investigated how well these methods would
work on the full system described by equations (2.1) – (2.6). We first performed long
time Monte Carlo simulations using BioNetS [1]. A two dimensional histogram for the
total protein numbers T1 = P1 + 2P1P1 and T2 = P2 + 2P2P2 is shown in Figure 13(a).
This simulation took over 500 total CPU hours and is the result of 800 runs distributed
over 18 CPUs (over a trillion Gillespie SSA steps). The black curve in Figure 13(b)
is the projection of the histogram onto the T1 axis. We next performed equation-free
computations for the system. As our single observable, Q, we used the total protein
number T1, because this is a quantity that can be measured using single cell fluorescent
techniques. We used a slightly modified version of step (A3) to compute the conditional

20



−1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

st
ea

dy
 s

ta
te

 d
is

tr
ib

ut
io

n

Q

γ=1.14K=10
K=1
K=0.1

−1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

st
ea

dy
 s

ta
te

 d
is

tr
ib

ut
io

n

Q

γ=1.14K=0.1

−1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

st
ea

dy
 s

ta
te

 d
is

tr
ib

ut
io

n

Q

γ=1.14K=1

−1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

st
ea

dy
 s

ta
te

 d
is

tr
ib

ut
io

n

Q

γ=1.14K=10

Figure 10: Comparison of steady state distributions from Stochastic Model II. The top
left panel are results from the equation-free analysis for K = 0.1, K = 1 and K = 10
and γ = 1.14. The remaining three panels compare these results (red lines) to the steady
state distribution computed from long-time Monte Carlo simulation (blue histograms).
The other model parameter values are the same as in Figure 5.

density P (r|T1 = t1). For a given value of T1, we set the rate constants for synthesis
and degradation of this protein equal to zero. We then ran the simulations for a time
of 1 × 105 to remove any transients. Next still keeping T1 fixed, 10000 samples of the
other variables were collected at evenly space intervals over a time period of 2 × 105

and used to generate the conditional density. A time step of ∆t = 15 was used in step
(B) of the algorithm. To compute the steady state distribution, polynomials were fit to
the average velocity and effective diffusion coefficient computed from the equation-free
analysis and then used to compute the effective free energy. The red curve shown in
Figure 13(b) is the result of the equation-free analysis. It took less than an hour of
CPU time. Very good agreement between the equation-free method and Monte Carlo
simulation is seen. Our investigations into these methods revealed that whereas the
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Figure 11: Stochastic Model II. Comparison of steady state distributions obtained by
equation-free analysis (red line) with histograms (blue) obtained by long time stochastic
simulations. In this figure γ = 1.2 and K = 0.1 in the left panel and K = 1 in the right.
The other model parameter values are the same as in Figure 5.

velocity, V (q), is robust to changes in ∆t, the effective diffusion coefficient, D(q), is
quite sensitive and needs to be treated with care. Also, because of the exponential in
the integral for the effective potential, small changes in the average velocity or effective
diffusion coefficient can have large effects on the steady state distribution. Therefore,
it is important to average over sufficiently many realizations to ensure convergence of
average velocity and effective diffusion coefficient. Better estimation techniques, such
as those developed by Äıt-Sahalia using maximum likelihood [2] should be incorporated
in the data processing step of the algorithms. Even with these caveats, the results
presented in this section demonstrate the feasibility and high potential of equation-free
methods for analyzing stochastic models of genetic networks.

5.2 First Passage Time

When γ is sufficiently large the system is bistable. An important characterization of
bistable systems is the average time for noise-induced transitions between the stable
states. Here we make use of the definition of the first passage time from Section 3.2. For
the results presented in this section we use Q = P1−P2 as our observable and Stochastic
Model I. The system is bistable for γ > 1.06. Let the deterministic stable steady states
of P1 be denoted as pm and pM with pm < pM . Because of the symmetry of our problem,
pm and pM are also the stable steady states of P2. Let the random variable Te be defined
as the first time when “P1 = P2” given the initial conditions P1 = pm and P2 = pM . In
terms of Q, this means that Te denotes the time to reach Q = 0 when the process starts
with Q equal to the negative steady state qm ≡ pm − pM . Let τe denote the average of
Te. Then, direct Monte Carlo simulations can be used to compute the value of τe. The
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Figure 12: Comparison of steady state distributions using the variable P1 as the observ-
able for various values of γ. The other model parameter values are the same as in Figure
5. Again, the red lines are the results of equation-free analysis and the blue histograms
are obtained by the long-time stochastic simulations.
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Figure 13: (a) The steady-state distribution for the total protein numbers computed from
long-time Monte Carlo simulations of the full model (2.1) – (2.6). (b) The projection
of the 2D distribution onto the T1 axis (black curve). The red curve is the result of the
equation-free analysis. The parameter values used to compute these figures are γ1 =
γ2 = 1.14, δ1 = δ2 = 7.5 × 104, ǫ1 = ǫ2 = 0, k1 = k2 = 5 × 10−4, k−1 = k−2 = 1,
ko1 = ko2 = 0.004 and k−o1 = k−02 = 0.1. These values are consistent with the parameter
values K = 0.1, δ = 7.5× 104 and ω = 2× 10−6 used in Stochastic Models I and II.

γ pm pM qm = pm − pM computed τe from simulations N
1.14 481.1 1038.6 -557.5 7.0× 105 ± 6.7× 103 10 000
1.20 425.8 1174.2 -748.4 1.6× 107 ± 1.6× 105 10 000
1.25 392.4 1274.3 -881.9 1.0× 109 ± 6.3× 107 250

Table 1: The mean first passage time computed from long-time stochastic simulations,
averaging over N transitions. The results are expressed in the form ([sample mean] ±
[sample variance]/

√
N).

results of such simulations for three different values of γ are presented in the Table 1.
As expected, the computational time needed to compute the mean first passage time
increases rapidly with γ. In Section 3.2, we introduced two formulas (3.6) and (3.7)
to compute τe. Both formulas make use of the effective free energy computed by the
equation-free algorithm. These potentials for γ = 1.14, γ = 1.20 and γ = 1.25 are given
in Figure 7. Consequently, we can compare the results obtained by the long simulations
with the results found from formulas (3.6) and (3.7) for τe;p and τe;k, respectively. The
results are shown in Table 2.
Not surprisingly, the results given by τe;p are better than results given by the Kramers’
approximation τe;k. However both methods produce results that are within a factor of
2 of the waiting times estimated from Monte Carlo simulations. As γ becomes large
the Monte Carlo simulations become computationally expensive. Therefore only 250
realizations were used to estimate the mean first passage time, and we expect that the
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γ τe from Table 1 τe;p given by (3.6) τe;k given by (3.7)
1.14 7.0× 105 6.1× 105 1.3× 106

1.20 1.6× 107 1.4× 107 2.6× 107

1.25 1.0× 109 6.7× 108 1.2× 109

Table 2: Comparison of the mean first passage time computed from equation-free analysis
with long-time stochastic simulations.

discrepancy between the Monte Carlo simulations and equation-free analysis for this case
is due to finite sampling errors. Initializing the simulation at conditions that are rarely
visited by the direct simulation itself constitutes a form of bias; this bias is designed to
give faster computational estimates of the effective potential and – through this – of the
first passage times. Clearly, this approach hinges on knowledge of a good observable,
and in principle does not depend strongly on the value of the parameter γ; therefore,
the larger the parameter γ the higher the computational speedup in the first passage
time estimation that will result. A quantitative study of this speedup is underway and
will be reported elsewhere; it does not lie within the scope of this paper. We stress,
however, that (as in molecular dynamics simulations) knowledge of a good observable
(a good “reaction coordinate”) is crucial for the success of the approach.

Note that formula τe;k requires estimates of the second derivative of the potential at
points qu and qm. To do this, we fit Φ(q) locally to a polynomial and used the derivatives
of the polynomial at the required points; once again, maximum likelihood techniques
(e.g. [2]) should be used for better results. The formula for τe;p, requires the evaluation
of an indefinite integral. The integral was approximated by considering only a finite
interval that neglected contributions from the region of sufficiently small q where the
potential Φ is very large.

5.3 Bifurcations

In this section, our goal is to run the simulations for short times only and compute a
form of “stochastic bifurcation diagram” using continuation methods, as an extension
of the deterministic bifurcation computations. We use Stochastic Model I and study
the dependence of the “steady states” on γ; the “steady states” we report are the
fixed points of the algorithm from Section 3.1 with the conditional density P (R|Q = q)
approximated by the Dirac delta function in (A) – (B), similar to the approach (A1)
from Section 3. Numerical results are given in Figure 14. For comparison we also plot
the steady states of the corresponding deterministic equation (compare with Figure 4).
The plot in Figure 14 was computed by initializing on different branches far from the
bifurcation point and continuing from these different initializations (our simple arclength
continuation algorithm did not include a “pitchfork detection” component).

The accuracy of the numerical results depend on several factors: the estimation tech-
nique for the Jacobian elements, the tolerance of the error for Newton-Raphson itera-
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Figure 14: A plot of the steady states obtained by equation-free analysis (3.5) (blue
circles). Also shown are the deterministic steady states from Figure 4 (red line).

tions, the number of realizations which are used to evaluate F , the time interval ∆t and
the steepness of the underlying potential Φ. As can be seen in Figure 14, stochasticity
along with all these numerical factors have slightly perturbed the pitchfork bifurcation;
this could be exacerbated by our choice of (symmetric or asymmetric) observable. It is
easy to follow any branch of steady states far from the bifurcation point. For obvious
reasons this becomes more complicated when we are close to the “bifurcation point” at
γ = 1.06. The main problem is that the potential becomes “flat” close to the bifurca-
tion point — see Figure 7. One way to improve the results is to adaptively change the
number of realizations in (B). That is, if the Newton-Raphson iterations of (3.5) do not
converge to a desired tolerance, then more realizations are added. Another approach is
to estimate directly a local polynomial model of the underlying diffusion process from
discrete SSA data using maximum likelihood tools, and then search for the bifurcations
of the critical points of the effective potential. Indeed, one can plot the zeroes of the
estimated drift, or – in the case of a state-dependent diffusion coefficient – one can cor-
rect them to report the maxima of the steady state distribution [25, 37]; both of these
are good candidate bifurcation diagrams for the stochastic case. When the potential is
steep and the equilibrium is “less noisy” it is not necessary to use many realizations; the
relation between computational effort (in terms of number of replicas, simulation time
horizon and estimation method) and resulting accuracy is, again, a subject of current
investigation beyond the scope of this paper.

Finally, the results using P1 instead of Q as the observable are shown in Figure 15.
In this case, the asymmetry of our observable, and the perturbation it causes on the
initialization process, make the perturbation of the pitchfork bifurcation stronger. Of
course, the results depend on the initialization procedure, our estimation technique, the
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Figure 15: Plot of the steady states obtained by using P1 as the observable (blue circles).
Again for comparison the deterministic case is shown as the red line.

error tolerance, the number of realizations, the length of time step ∆t as well as the
type of continuation algorithm we are using (here we used a very simple one, without
bifurcation detection, in order to demonstrate what is possible). Accurate bifurcation
detection depends on accurate Jacobians and even higher derivatives; estimating these
from dynamic (and noisy !) data is notoriously difficult. While conceptually we do
have the tools to “hone in” the more accurate detection of bifurcation points, careful
quantitative work is necessary to pin down the tradeoffs between computational effort,
model estimation accuracy and bifurcation point estimation accuracy.

6 Discussion

In this paper we discussed and illustrated the use of certain equation-free numerical tech-
niques that have the potential to accelerate the computer-assisted analysis of stochastic
models of regulatory networks. There is a clear current need for accelerating such simula-
tions: even for modestly complex regulatory networks, stochastic models rapidly become
computationally expensive. Computational acceleration is usually based on model re-
duction; theoretical methods for stochastic model reduction that take advantage of a
separation of time scales are the focus of intense current research [23, 5, 17, 31, 34]. As
we discussed in the introduction, many important gene regulatory networks do satisfy
this assumption of a separation of time scales because synthesis and degradation of new
proteins and transcripts usually occurs on a slower time scale than processes that change
the chemical state of proteins. Analytical model reduction techniques assume that the
fast variables are in quasi-steady state with respect to the slow variables, and use the
quasi-steady state distributions conditioned on the slow variables to eliminate the fast
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variables by averaging. These methods have been successfully applied to simple models,
but the theory is not as well established as the deterministic counterpart. Having an
explicit model lies often at the basis of such stochastic reduction methods.

In the equation-free approach many of the same elements (separation of time scales,
approximation of conditional quasi-steady distributions) also underpin computational
efficiency; but the basic premise is that the model is available in the form of a “black
box” simulation code. We do not try to first reduce, and then simulate the reduced
surrogate; we try to design the smallest number of “intelligent” short computational
experiments with the full stochastic model to find the quantities of interest, whether
these are steady state probability distributions, their maxima, or transition rates in
the bistable case. In that sense, the approaches we described here do not hinge upon
the “inner”, detailed simulator as being a Gillespie SSA one - the methods are equally
applicable to any “inner” simulator, stochastic or deterministic, as long as the main
assumption of a low-dimensional effective stochastic model is a good one for the long-
term system dynamics. Indeed, if another reduction method can be used to produce
a good approximate dynamic simulator, our algorithms can be “wrapped” around this
surrogate simulator rather than the full model for further acceleration.

Another important point has to do with the type of computation we are interested in
- do we want to accelerate the direct simulation of the model, or do we want to accelerate
the computation of certain features of its long-term dynamics (e.g. of the maxima of the
steady state distribution)? These latter quantities can be also obtained from long-term
direct simulation, but one of the points that we want to stress is that we can link direct
simulation to different numerical algorithms (such as contraction mappings, and con-
tinuation methods) to obtain these quantities, often faster than with direct simulation
alone. In the same way that bifurcation diagrams for dynamical systems are usually
not computed through direct ODE integration, but through bifurcation algorithms, the
parametric dependence of the long-term dynamics of stochastic models does not have to
be computed through long-time direct simulation only. This “alternative” acceleration,
not through accelerating the direct simulation itself, but through linking it to different
numerical algorithms, lies at the basis of the equation-free framework.

Having said this, we briefly mention that equation-free methods for accelerating the
direct simulation itself also exist. Coarse projective integration which uses short bursts
of direct simulation to estimate time derivatives of evolving probability densities, and
then passes them to standard numerical integration algorithms, has been successfully
used in many contexts [24, 8, 10, 12] Coarse projective integration has a strong relation
to the direct simulation acceleration methods in [15]; it has not been discussed in this
paper, because we chose to focus on very long-term features of the network dynamics;
it might interest the reader that the method can be used to also integrate backward in
time, and solve “effective boundary value problems” to find “coarse” limit cycles [32].

In the equation-free methods for analyzing stochastic models of gene regulation that
we discussed in this paper, we have tried to circumvent the difficulties encountered by

28



direct simulation (in this case SSA) through the design of short bursts of appropriately
initialized computational experiments with the full simulator. In a sense, we “resign
ourselves” to the fact that the direct simulator is expensive; we ask what is the shortest
amount of running of this expensive direct simulator in order to obtain the quantities
we are interested in. The “design of experiment” protocols are templated on tradi-
tional continuum numerical methods, like the fixed point and continuation algorithms
to compute bifurcation points, or quadrature to estimate Kramers’ formula. The only
difference is that the quantities (residuals, actions of Jacobians, values of the integrand)
that are required for numerical computation are not given by a closed formula, but
rather through direct numerical simulation of the full model and estimation. We reit-
erate once more that these techniques can be wrapped around the full direct simulator,
or our best available reduction of it, without change.

Knowing appropriate coarse-grained observables (the variables in terms of which the
unavailable effective model would be written) is an important feature of the algorithms.
Extensive experience with the problem, intuition, or analytical work may often suggest
such observables; we did take advantage of such knowledge in this paper. We did
already demonstrate an important point: more than one observables are capable of
doing a good job as the parameterizing variables in an equation-free context; one does
not need to know the exact slow variables. This issue is discussed extensively for the
deterministic context in [11]. It is, however, important to note that algorithms for the
detection of low-dimensionality in high-dimensional data can be vital in suggesting such
observables from simulations. Principal Component Analysis is an established linear
method for the detection of appropriate lower-order observables from simulation data;
numerically estimated eigenmodes of the problem may also provide good observables
(see the discussion in [36] about estimating gaps between eigenvalues, and using them
to decide whether we should include more observables as independent variables). There
are, however, some important developments in this area: the recent use of harmonic
analysis (geometric diffusion) on graphs constructed from high-dimensional data shows
great promise in detecting good observables (reaction coordinates) for complex, high
dimensional systems [30, 4, 29]. This “variable-free” approach can be naturally linked
to equation-free computation (one designs computational experiments both to detect
the appropriate observables and to do computations with them) [30]; we are currently
working on demonstrating this link for gene regulatory network modeling.

It is clear that, in certain cases, an equation-free computational approach is expected
to have advantages over direct simulation. For steep potentials and low noise, for exam-
ple, the way equation-free computation uses a good observable to bias the simulation
will sample the effective potential and give a good estimate of the transition rates much
faster than direct simulation. Also, parametric analysis methods should be able to ex-
plore parametric transitions faster and more systematically than direct simulation, in
analogy with the use of bifurcation techniques rather than direct simulation in deter-
ministic dynamical systems (e.g. by writing augmented algorithms that converge on
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marginally stable or unstable solutions). The complexity of the computation depends
crucially on the dimensionality of the unavailable reduced model, and not so crucially on
the dimensionality of the detailed, full model. We are currently working on the quan-
tification of these computational benefits; this work is complicated by the fact that –
lacking explicit formulas from which to obtain derivative information – errors must be
computed on-line, through a posteriori estimates.

This brings us to a final, yet vital issue: estimation. Given the noisy nature of the
data, estimating the numerical quantities of interest lies at the heart of the accuracy (and
thus the viability) of the computation. For our gene networks, these quantities included
the effective potential Φ(q) and the effective diffusion coefficient D(q). Preliminary in-
vestigations revealed that the effective diffusion coefficient, D(q), is quite sensitive to the
time step ∆t and needs to be treated with care. Also, small changes in the average ve-
locity or effective diffusion coefficient can have relatively large effects on the steady state
distribution. Even though some computations are “embarrassingly parallel” (one short,
fine scale realization per processor, running independently) variance reduction becomes
an important feature (see, e.g. [28]). Maximum likelihood estimation techniques (e.g.
[2]) take the place of simple formulas such as (3.2) and (3.3); one can envision certain
hypothesis testing computations (is our model locally well-approximated by a diffusion
process ?) becoming part of the overall computational scheme. Until these elements,
and their computational cost, are analyzed and tested, there will be no firm guarantees
for the computational efficiency of equation-free methods. Yet, even with these caveats,
as we computationally demonstrated in this paper, we believe that the equation-free
framework provides a promising new approach to gene regulatory network modeling, al-
ternative to long-direct simulation. It links directly with powerful and tested traditional
continuum numerical algorithms (such as numerical integration, fixed point algorithms,
matrix-free iterative linear algebra) and with system theory techniques like filtering and
estimation. These techniques are, in some sense “off the shelf” and do not need to be
redeveloped. In our opinion, it is the linking of equation-free techniques with novel data
reduction/clustering techniques (such as the use of the graph Laplacian to detect good
reaction coordinates [30]) that hold the most promise in the computational study of
complicated stochastic systems in general, and of gene regulatory networks and their
models in particular.
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