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We investigate the effect of turning delays on the behaviour of groups of differential wheeled robots and
show that the group-level behaviour can be described by a transport equation with a suitably incorporated
delay. The results of our mathematical analysis are supported by numerical simulations and experiments
with E-Puck robots. The experimental quantity we compare with our revised model is the mean time
for robots to find the target area in an unknown environment. The transport equation with delay better
predicts the mean time to find the target than the standard transport equation without delay.

Keywords: velocity jump process; swarm robotics; transport equation with delay.

1. Introduction

Much theory has been developed for the coordination and control of distributed autonomous agents,
where collections of robots are acting in environments in which only short-range communication is
possible (Reif and Wang, 1999). By performing actions based on the presence or absence of signals,
algorithms have been created to achieve some greater group-level task; for instance, to reconnoitre an
area of interest whilst collecting data or maintaining formations (Desai et al., 2001). In this paper, we
will investigate an implementation of searching algorithms, similar to those used by flagellated bacteria,
in a robotic system.

Many flagellated bacteria such as Escherichia coli (E. coli) use a run-and-tumble searching strategy
in which movement consists of more-or-less straight runs interrupted by brief tumbles (Berg, 1983).
When their motors rotate counter-clockwise, the flagella form a bundle that propels the cell forward
with a roughly constant speed; when one or more flagellar motors rotate clockwise the bundle flies apart
and the cell ‘tumbles’ (Kim et al., 2003). Tumbles reorient the cell in a more-or-less uniformly random
direction (with a slight bias in the direction of the previous run) for the next run (Berg and Brown, 1972).
In the absence of signal gradients the random walk is unbiased, with a mean run time ∼1 s and a tumble
time ∼0.1 s. However, when exposed to an external signal gradient, the cell responds by increasing
(decreasing) the run length when moving towards (away from) a favourable direction, and therefore the
random walk is biased with a drift in that direction (Berg, 1975; Koshland, 1980). Similar behaviour
can be observed in swarms of animals avoiding predators and coordinating themselves within a group
(Couzin et al., 2002).

The behaviour of E. coli is often modelled as a velocity jump process where the time spent tumbling
is neglected as it is much smaller than the time spent running (Othmer et al., 1988; Erban and Oth-
mer, 2004). In such a velocity jump process, particles follow a given velocity u from a set of allowed
velocities V ⊂ R

d , d = 2, 3, for a finite time. The particle changes velocity probabilistically according
to a Poisson process with intensity λ, i.e. the mean run duration is 1/λ. A new velocity v is chosen

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
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MATHEMATICAL MODELLING OF TURNING DELAYS IN SWARM ROBOTICS 1455

according to the turning kernel T(v, u) : V × V → R. Formally, the turning kernel represents the proba-
bility of choosing v as the new velocity given that the old velocity was u. Therefore, it is necessary that∫

V T(v, u) dv = 1 and T � 0.
Denoting by p(t, x, v) the density of bacteria which are, at time t, at position x with velocity v, the

velocity jump process can be described by the transport equation (Othmer et al., 1988)

∂p

∂t
(t, x, v) + v · ∇xp(t, x, v) = −λp(t, x, v) + λ

∫
V

T(v, u)p(t, x, u) du. (1.1)

Assuming that λ and T are constant, one can show that the long-time behaviour of the density
�(t, x) = ∫

V p(t, x, v) dv is given by the diffusion equation (Hillen and Othmer, 2000). If λ depends
on an external signal (e.g. nutrient concentration), then the resulting velocity jump process is biased and
its long-time behaviour can be described by a drift–diffusion equation for � (Othmer and Hillen, 2002;
Erban and Othmer, 2005).

In this paper, we will study an experimental system based on E-Puck robots (Bonani and Mondada,
2004). We programme these differential wheeled robots to follow a run-and-tumble searching strategy
in order to find a given target set. In the first set of experiments, we concentrate on the simplest possible
scenario: an unbiased velocity jump process in two spatial dimensions with the fixed speed s ∈ R

+, the
constant mean run time λ−1 ∈ R

+ and the turning kernel which is independent of u

T(v, u) = δ(||v|| − s)

2πs
. (1.2)

A special feature of the E-Puck robots is that they can perform turns on the spot as in the classical
velocity jump process described by (1.1). In this paper, we will investigate in how far (1.1) presents
a good description of the behaviour of the robotic system and we will develop an extension of (1.1)
that results in a better match between experimental data and mathematical model. We then apply this
extended velocity jump theory to a biased random walk through the incorporation of signals into the
experimental set-up.

The paper is organized as follows: in Section 2, we introduce the experimental system as well as
the obtained data. These data are compared with the classical velocity jump theory. In Section 3, we
extend the velocity jump theory to include finite turning times for unbiased random walks and compare
it to our experimental data, showing a much improved match. This new theory is in Section 4 applied
to a situation with an external signal and therefore a biased random walk. We conclude our paper, in
Section 5, by discussing the implications of our results.

2. Velocity jump processes in experiments with robots

Equation (1.1) introduced the density behaviour of the general velocity jump process that we are aiming
to investigate using the experimental set-up described in Section 2.1. In particular, we will initially con-
centrate on a simple unbiased velocity jump process with the fixed speed s ∈ R

+, the mean run duration
λ−1 ∈ R

+ and the turning kernel (1.2). In Section 4, we will present situations, where the turning fre-
quency changes according to an external signal, as is indeed common in biological applications (Erban
and Othmer, 2005). This fixed-speed velocity jump process can be viewed as a starting point for consid-
ering more complex searching algorithms. We will demonstrate that by including a small modification
(the introduction of a delay to the turning kernel), we can alter this simple velocity jump process so that
it models the behaviour of the E-Puck robots.

 at U
niversity of B

ath, L
ibrary on A

ugust 11, 2016
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


1456 J. P. TAYLOR-KING ET AL.

We are interested in comparing the idealized velocity jump process, given in (1.1) and (1.2), to
robotic experiments. Due to a restriction in numbers of robots, one cannot feasibly talk about a ‘density’
of robots that could be compared with p(t, x, v) as given in (1.1). Therefore, our experiments concentrate
on the escape of robots from a given domain. We may interpret this as the target finding ability of the
E-Puck robots. Using these experiments, we can infer data both on the flux at the barrier and the exit
times and can compare those to numerical results of velocity jump processes in Sections 2.3 and 2.4.

2.1 Experimental set-up and procedure

To obtain the empirical data, an experimental system consisting of 16 E-Puck robots was used. E-Puck
robots are small differential wheeled robots with a programmable microchip (Bonani and Mondada,
2004). The diameter of each robot is ε = 75 mm with a height of 50 mm and weight of 200 g. Through-
out the experiments, the speed was chosen to be s = 5.8 × 10−2 m/s. The robots turn with an angular
velocity ω = 4.65/s. Full specifications along with a picture are given in Appendix A.

In the experiments, we use a rectangular arena Ω with walls on three of the four edges and an
opening to the target area T along the fourth edge.1 A diagram of the arena along with the notation
used can be seen in Fig. 1 and a photo is shown in Fig. A1(b) in Appendix A. When considering such
an arena, one has to distinguish between the size of the physical arena and the effective arena (shown
in blue in Fig. 1) that the robot centres can occupy. The effective arena used in the experiments has the
dimensions Lx = 1.183 m and Ly = 1.145 m = Lx − ε/2. The reflective (wall) boundary and the target
boundary will be denoted as ∂ΩR and ∂ΩT , respectively, and can be defined as

∂ΩT = Ω̄ ∩ T̄ , ∂ΩR = ∂Ω\∂ΩT . (2.1)

Throughout the remainder of the paper, we will also use nR (respectively, nT ) to denote the outwards
pointing normal on the reflective (respectively, target) boundary.

During the experiments, robots were initialized inside a removable square pen Ω0 of effective edge
length L0 = 0.305 m, shown in Figs 1 and A1(b) in Appendix A. A short period of free movement within
the pen before its removal allowed us to reliably release all robots into the full domain Ω at the same
time as well as randomizing their initial positions within the pen. We recorded the exit time for each of
the robots, when its geometric centre entered the target area T . Each repetition of the experiment was
continued for 300 s or until all 16 robots had left the arena.

The robots were programmed using C and a cross-compiling tool, with the firmware being trans-
ferred onto the robots via bluetooth. A pseudo-code of the algorithm implemented on the robots is
shown in Table 1. This algorithm represents a velocity jump process in the limit as Δt → 0 (Erban et al.,
2006), and gives a good approximation as long as λΔt 
 1. In the experiments, we used λ = 0.25 s−1

implying a mean run duration of 4 s and Δt = 0.1 s, resulting in λΔt = 2.5 × 10−2 
 1. Note that, s, ω

and λ can be changed on a software level on an E-Puck. For ω, we chose the maximum possible value,
whilst for s we chose a value below the physical maximum. Choosing a lower velocity means that we
mitigate the effects of acceleration and deceleration to the running speed since the robots cannot do this
instantaneously as the basic velocity jump model assumes. In a practical setting, one could interpret s
and ω as given characteristics of the system, whilst λ can be chosen in a way that accelerates the target
finding process for the given application with the choice of λ likely to represent a trade-off between
sampling an area and time spent reorienting.

1 We have Ω ∩ T = ∅, but Ω̄ ∩ T̄ |= ∅, i.e. Ω and T touch but do not overlap.
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MATHEMATICAL MODELLING OF TURNING DELAYS IN SWARM ROBOTICS 1457

Fig. 1. Schematic showing of the experimental set-up along with the notation used throughout this paper. Dotted border lines
correspond to the effective arena and bold lines to the actual arena. For further details, see the text.

Table 1 An algorithmic implementation of the velocity jump process

[1] Robot is started at position x(0) ∈ Ω0. Generate r1 ∈ [0, 1] uniformly at random, set t = 0 and

v(0) = s

(
cos 2πr1
sin 2πr1

)
.

[2] Position is updated according to x(t + Δt) = x(t) + Δt v(t).
[3] Generate r2 ∈ [0, 1] uniformly at random. If r2 < λΔt, then generate r3 ∈ [0, 1] uniformly at

random and set

v(t + Δt) = s

(
cos 2πr3
sin 2πr3

)
.

[4] Set t = t + Δt and continue with step [2].

In addition to the algorithm in Table 1, robots were also made to implement an obstacle-avoidance
strategy using the four proximity sensors placed at angles ±17.5◦ and ±47.5◦ from the centre axis in
the front part of the E-Puck. Reflective turns were carried out based on the signals received at these
sensors. As the robots are incapable of distinguishing between walls and other robots, those reflections
occur whether a robot collides with the wall ∂ΩR or another robot. As a consequence, we discuss the
importance of robot–robot collisions on the experimental results in the next section.

2.2 Relevance of collisions for low numbers of robots

For non-interacting particles which can change direction instantaneously, (1.1) accurately describes the
mesoscopic density through time. However, in our experiments the robots undergo reflective collisions
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1458 J. P. TAYLOR-KING ET AL.

(a) (b) (c)

Fig. 2. Comparison of individual-based simulations with (1.1). Each plot shows the resulting density at the final time of the
simulation, 20 s. (a) Individual-based simulation using 16 × 4 × 104 point particles. (b) Individual-based simulation, average
over 4 × 104 runs using 16 particles with hard-sphere interactions. (c) Numerical solution to (1.1) using a finite-volume method
with parameters given in the text.

when they come into close contact, rather than passing through or over each other. For a low num-
ber of particles, we used Monte Carlo simulations to demonstrate that collisions are not the domi-
nant behaviour and have little effect on the distribution of particles. In Fig. 2(a,b), we compare two
Monte Carlo simulations: (a) in which particles are allowed to pass through one another and (b) in
which collisions are modelled explicitly. In Fig. 2(c), we present the solution of (1.1). This compari-
son demonstrates that the mean density of the underlying process converges to the solution of transport
equation (1.1). The parameters employed in this model comparison are taken directly from the equiva-
lent robot experiment; (s, λ, ε) = (5.8 × 10−2 m/s, 0.250 s−1, 7.5 × 10−2 m). In Fig. 2(c), for the differ-
ential equation, we use a first-order numerical scheme with Δθ = π/20, Δx = Ly/200 and Δt = 10−2 s.

In the Monte Carlo simulations, we initialize particles in the effective pen for 20 s where they
undergo hard-sphere collisions (Franz et al., 2014b). They are then released into the larger arena where
in one simulation they are point particles and in the other they undergo reflective collisions as hard-
spheres. Instead of removing particles at the target boundary as shown in Fig. 1 (as we do in the robot
experiments), this edge of the domain is closed so that all edges correspond to reflective boundary con-
ditions. For transport equation (1.1), we model the initial condition as a step function over the pen.
Formally, this initial condition can be written as

p(0, x, v) = χΩ0δ(||v|| − s)

L2
02πs

, (2.2)

where χΩ0 denotes the indicator function of the initial region Ω0. The corresponding boundary condition
is p(t, x, v) = p(t, x, v′) for x ∈ ∂ΩR where the reflected velocity v′ is defined as

v′ = v − 2(v · nΩ)nΩ , (2.3)

where nΩ is the outward pointing normal at the position x ∈ ∂Ω .
After 20 s, we record the density in each of the scenarios and present the results in Fig. 2. There is

minimal visible discrepancy between the Monte Carlo simulations presented in Fig. 2 for our choice of
parameter values. In order to compare the three simulations given in Fig. 2, we also employed a pairwise
Kolmogorov–Smirnov test (Peacock, 1983). A value (of the Kolmogorov–Smirnov metric) close to zero
denotes a good fit between the two simulations. It corresponds to the probability that one can reject
the hypothesis that the distributions are identical. When comparing the two Monte Carlo simulations, a

 at U
niversity of B

ath, L
ibrary on A

ugust 11, 2016
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/
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value of 2.37 × 10−2 was obtained; when comparing (1.1) with the hard-sphere Monte Carlo simulation,
a value of 5.65 × 10−2 was obtained; finally when comparing (1.1) with the point-particle Monte Carlo
simulation, a value of 3.40 × 10−2 was obtained. This supports the visual observation that all three
density distributions are all highly similar.

In the limit where N → ∞, for N being the number of robots, transport equation (1.1) can be altered
by the addition of a Boltzmann-like collision term (Harrisi, 1971; Cercignani, 1988). It can be shown
that the effects of collisions between robots are negligible for the presented study (Franz et al., 2014b).

2.3 Comparison between theory and experiments: loss of mass over time

In this and subsequent sections, we compare the results of 50 repetitions of the experiments described in
Section 2.1 with numerical results obtained by solving the corresponding mathematical equations. One
way of interpreting the experimental exit time data is by considering the expected mass remaining inside
the arena Ω at a given time. For the experimental data, this quantity is plotted as a solid (black) line
in Fig. 3(a). We compare this result to the variation of the remaining mass with time from a numerical
solution of (1.1) combined with the following boundary conditions:

p(t, x, v) = 0, x ∈ ∂ΩT , v · nT < 0,

p(t, x, v) = p(t, x, v′), x ∈ ∂ΩR,
(2.4)

where the reflected velocity v′ is defined by (2.3). As demonstrated in Section 2.2, such a comparison is
reasonable since collisions do not have a major impact in the parameter regime chosen here. The initial
condition for transport equation (1.1) is identical to the condition given in (2.2). The mass remaining in
the domain is then defined as

m(t) =
∫

Ω

∫
V

p(t, x, v) dx dv,

and is plotted as a dotted (red) line in Fig. 3(a). The initial mass is normalized to 1. An obvious observa-
tion from Fig. 3(a) is that the transport equation description does not match the experimental data well,
with the robots exiting the arena significantly slower than predicted. In this figure, we use a first-order
finite-volume method with Δθ = π/20, Δx = 1.183 m/200 and Δt = 10−3 s in order to solve transport
equation (1.1).

2.4 Comparison between theory and experiments: mean exit time problem

An alternative way to interpret the experimental data is to consider mean exit times. Throughout the
experiments, only 708 of the 800 (= 50 × 16) robots left the arena before tend = 300 s. The average exit
time of those 708 robots was 121.92 s. In order to be able to compare experimental exit times with the
mean exit time problems, it is necessary to estimate the mean exit time of all 800 robots. Using the
best exponential fit on the mass over time relation (cf. Fig. 3(a)), we can estimate the mean exit time of
the remaining 92 robots to be 424.69 s. The approximate mean exit time established in the experiments
is therefore 156.74 s; this value is plotted as the solid (black) line in Fig. 3(b). In order to be able to
compare this value to analytic results, one has to reformulate the transport equation (1.1) into a mean
exit time problem. Let us therefore define the mean exit time τ = τ(x0, v0) of a robot that starts at
position x0 ∈ Ω with velocity v0 ∈ V . This mean exit time satisfies the following equation:

v0 · ∇x0τ(x0, v0) − λτ(x0, v0) + λ

∫
V

T(u0, v0)τ (x0, u0) du0 = −1. (2.5)
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Fig. 3. (Colour available online.) Comparing the experimental results (solid black line) to solutions of (1.1), (3.2) and (3.3). (a)
The relative mass of the system over time. The dotted line (red) shows the numerical solution to (1.1) with boundary conditions
(2.4), the dashed line (blue) shows the numerical solution of the system of (3.2) and (3.3) with boundary conditions (3.4). (b)
The mean exit time averaged over all velocity directions vs the x-coordinate along the arena edge. The adsorbing boundary is at
x = 1.183 m. The dotted line (red) shows the mean exit time computed using (2.5) with boundary conditions (2.6), the dashed line
(blue) shows the mean exit time computed using (3.21) with boundary conditions (3.22). In order to allow direct comparison with
the experimental data, the shorter bold lines represent the average of theoretically derived exit times over the region Ω0, from
which the robots were released in the experimental scenario. For both plots parameters and numerical methods are described in
the text.

In Section 3, in which delays are modelled, a derivation is given for the mean exit time problem; setting
the delay term to zero allows one to see how (2.5) is derived. This so-called ‘backwards problem’
satisfies the following boundary conditions:

τ(x0, v0) = 0, x0 ∈ ∂ΩT , v0 · nT > 0,

τ(x0, v0) = τ(x0, v′
0), x0 ∈ ∂ΩR,

(2.6)

where v′
0 is again the reflected velocity with respect to v0 as defined in (2.3). Due to the arena shape, by

taking the spatial average in the y-direction

τx(x0, v0) = 1

Ly

∫ Ly/2

−Ly/2
τ(x0, y0, v0) dy0, (2.7)

one can further simplify the mean exit time problem. In the case where the turning kernel is given by
(1.2), one can obtain a problem with two parameters x0 and θ , where θ ∈ (−π , π ] is the angle defining
the velocity v0 by v0 = s(cos(θ), sin(θ)). For τx = τx(x0, θ)

s cos(θ)
∂τx

∂x0
− λτx + λ

2π

∫ π

−π

τx(x0, φ) dφ = −1,

τx(0, θ) = τx(0, π − θ),

τx(Lx, θ) = 0, θ ∈
[
−π

2
,
π

2

]
.

(2.8)
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When initial direction cannot be specified, the mean exit time from a given x-position is given by

1

2π

∫ π

−π

τx(x0, θ) dθ ,

where τx is the solution of (2.8). This is plotted as the dotted (red) line in Fig. 3(b). The numerical
solution was performed using an upwind scheme in the x-direction with Δx = 1.1825 m/200 and an
angular discretization of Δθ = π/20. Additionally, we take the spatial average of the mean exit time
from the initial region Ω0 and plot this as the bold dashed line in Fig. 3(b). This line does not match
well with the corresponding average mean exit time found in the robot experiments. The numerical
solution of (2.8) predicted a mean exit time of 137.49 s, meaning an underestimation of 19.25 s or
12.3% compared with the experimental exit time of 156.74 s. In the following section, we will extend
the classical velocity jump theory to improve this match with the experimental data.

3. Modelling turning delays

In Section 2.2, we observed that collisions between robots do not play a major role in explaining the
discrepancy between the transport equation (1.1) and the experimental data presented in Sections 2.3
and 2.4. As well as assuming independently moving particles, the transport equation (1.1) is also pred-
icated on the assumption that the reorientation phase takes a negligible amount of time compared with
the running phase. Since this assumption is not satisfied in our robot experiments, this section extends
the original model through the inclusion of finite turning times.

3.1 Introduction of a resting state

Let us initially state two assumptions that apply to the robot experiment, but might not extend to velocity
jump processes in biological systems, like the run-and-tumble motion of E. Coli (Berg, 1983), which
has motivated the searching strategies implemented on robots:

(a) a new direction v′ ∈ V is chosen as soon as the particle enters the reorientation (‘tumble’) phase;

(b) the time it takes for a particle to reorient (‘tumble’) from velocity v ∈ V to v′ ∈ V is specified by
the function K(v′, v) : V × V �→ R

+.

Assumption (b) implies that the turning time is constant in time and equal for each particle and,
in particular, does not depend on the particle’s history. For the robots studied in this paper, we can
additionally assume that reorientation phase is equivalent to a directed rotation with a constant angular
velocity ω ∈ R

+. Therefore, the turning time depends only on the angle between the current velocity
v ∈ V and the new velocity v′ ∈ V and K takes the form

K(v′, v) = 1

ω
arccos

(
v · v′

||v|| ||v′||
)

. (3.1)

We now extend the classical model (1.1) through the introduction of a resting state r(t, x, v, η) that for-
mally defines the number of particles currently ‘tumbling’ (turning) towards their new chosen velocity
v and remaining turning time η. The density p(t, x, v) will now only denote the particles which are at
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time t in the run phase. The update of the extended system is given through

∂p

∂t
(t, x, v) + v · ∇xp(t, x, v) = −λp(t, x, v) + r(t, x, v, 0+), (3.2)

∂r

∂t
(t, x, v, η) − ∂r

∂η
(t, x, v, η) = λ

∫
V

p(t, x, u)T(v, u)δ(η − K(v, u))du. (3.3)

In (3.2), we can see that running particles will enter a tumble phase with rate λ and particles that have
finished the tumble signified through η = 0 will re-enter the run phase. Equation (3.3) represents the
linear relation between t and η and shows that particles enter the tumble phase depending on their
newly chosen velocity direction. In order to guarantee conservation of mass throughout the system, we
introduce the non-negativity condition for η through

r(t, x, v, η) = 0 for t > 0, x ∈ Ω , v ∈ V and η < 0.

Additionally, the boundary conditions for the system (3.2) and (3.3) are given through

p(t, x, v) = 0, x ∈ ∂ΩT , v · nT < 0,

p(t, x, v) = −r(t, x, v, 0+)/(v · nR), x ∈ ∂ΩR, v · nR < 0,

∂r

∂t
(t, x, v, η) − ∂r

∂η
(t, x, v, η) = δ(η − K(v, v′))(v′ · nR)p(t, x, v′), x ∈ ∂ΩR, v · nR < 0,

r(t, x, v, η) = 0, x ∈ ∂ΩR, v · nR > 0,

(3.4)

where v′ is the reflected velocity of v given by (2.3). In order to show that the system (3.2) and (3.3) is
actually consistent, we prove that mass in the system is conserved if no target is present.

Lemma 3.1 The total mass in system (3.2) and (3.3) with the boundary conditions given in (3.4) in the
case of reflective boundaries everywhere (∂ΩR = ∂Ω , ∂ΩT = ∅) given through

M (t) =
∫

Ω

∫
V

p(t, x, v) dv dx +
∫

Ω̄

∫
V

∫ ∞

0
r(t, x, v, η) dη dv dx

is conserved.

Proof. We define for every point x ∈ ∂ΩR the two subsets V+ and V− of V as follows:

V+(x) = {v ∈ V : v · nR > 0}, V−(x) = {v ∈ V : v · nR < 0}. (3.5)

Additionally, let us define

R(t, x, v) =
∫ ∞

0
r(t, x, v, η) dη.

Integrating (3.3) with respect to η ∈ [0, ∞), we obtain after reordering for x /∈ ∂Ω:

∂R

∂t
(t, x, v) = −r(t, x, v, 0+) + λ

∫
V

p(t, x, u)T(v, u) du.
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Hence, for every point x /∈ ∂Ω we obtain

∂

∂t
[p(t, x, v) + R(t, x, v)] = −λp(t, x, v) + λ

∫
V

p(t, x, u)T(v, u) du − v · ∇xp(t, x, v).

Integrating this with respect to x ∈ Ω and v ∈ V gives

∫
Ω

∫
V

∂

∂t
[p(t, x, v) + R(t, x, v)] dv dx = −

∫
Ω

∫
V

v · ∇xp(t, x, v) dv dx. (3.6)

Using the divergence theorem, we can evaluate the integral on the right-hand side to be

∫
Ω

∫
V

v · ∇xp dv dx =
∫

∂Ω

∫
V
(v · nR(x))p(t, x, v) dv dx

=
∫

∂Ω

∫
V+(x)

(v · nR)p(t, x, v) dv dx +
∫

∂Ω

∫
V−(x)

(v · nR)p(t, x, v) dv dx

=
∫

∂Ω

∫
V+(x)

(v · nR)p(t, x, v) dv dx −
∫

∂Ω

∫
V−(x)

r(t, x, v, 0+) dv dx,

where we have used the second boundary condition in (3.4) in the last step. Additionally, for x ∈ ∂Ω

and v ∈ V−(x), we obtain by integrating the third boundary condition in (3.4) with respect to η ∈ [0, ∞)

∂R

∂t
(t, x, v) = −r(t, x, v, 0+) + (v′ · nR)p(t, x, v′).

Integrating this with respect to x ∈ ∂Ω and v ∈ V and using the last boundary condition in (3.4), we
obtain

∫
∂Ω

∫
V

∂R

∂t
dv dx =

∫
∂Ω

∫
V−(x)

∂R

∂t
dv dx

= −
∫

∂Ω

∫
V−(x)

r(t, x, v, 0+) dv dx +
∫

∂Ω

∫
V−(x)

(v′ · nR)p(t, x, v′) dv dx

= −
∫

∂Ω

∫
V−(x)

r(t, x, v, 0+) dv dx +
∫

∂Ω

∫
V+(x)

(v · nR)p(t, x, v) dv dx. (3.7)

Summing up the results from (3.6) and (3.7), we obtain dM/dt = 0 and hence the total mass M (t) in the
system is conserved. �

3.2 Transport equation with turning delays

We eliminate the resting state from system (3.2) and (3.3) and derive the generalization of the transport
equation (1.1) to a transport equation with a suitably incorporated delay. This can be done by solving
(3.3) for r using the method of characteristics, which results in

r(t, x, v, 0) = r(0, x, v, t) + λ

∫
V

T(v, u)p(t − K(v, u), x, u)H(t − K(v, u))du, (3.8)
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1464 J. P. TAYLOR-KING ET AL.

where H is the Heaviside step function. Let us assume that K(v, u) is given by (3.1). Then
K(v, u) � π/ω. Considering times t > π/ω, we have r(0, x, v, t) = 0. We can now substitute (3.8) into
(3.2) to obtain

∂p

∂t
(t, x, v) + v · ∇xp(t, x, v) = −λp(t, x, v) + λ

∫
V

T(v, u)p(t − K(v, u), x, u) du, (3.9)

for t > π/ω. Note that (3.9) only considers particles in the running phase and hence does not strictly
conserve mass. The boundary conditions for transport equation (3.9) are

p(t, x, v) = 0, x ∈ ∂ΩT , v · nT < 0,

p(t, x, v) = p(t − K(v, v′), x, v′), x ∈ ∂ΩR, v · nR < 0.
(3.10)

3.3 Equation for mean exit time

Equation (3.9) can be rewritten as Mp = 0, where the operator M is given by

Mp = −∂p

∂t
− v · ∇xp − λp + λ

∫
V

T(v, u)p(t − K(v, u), x, u)du. (3.11)

For a forward problem specified by Mp = 0, coupled with initial and boundary conditions, the backward
problem is given by the adjoint operator M∗q = 0, with final condition and adjoint boundary conditions
(Lewins, 1965). The adjoint operator is given by:

〈Mp, q〉 = 〈p,M∗q〉 where 〈p, q〉 =
∫ ∞

−∞

∫
Ω

∫
V

p(t, x, v)q(t, x, v) dv dx dt.

Using integration by parts and the divergence theorem, we see

〈Mp, q〉 =
∫ ∞

−∞

∫
Ω

∫
V

(
−∂p

∂t
− v · ∇xp − λp + λ

∫
V

T(v, u)p(t − K(v, u), x, u)du
)

q dv dx dt

=
∫ ∞

−∞

∫
Ω

∫
V

p

(
∂q

∂t
+ v · ∇xq − λq + λ

∫
V

T(u, v)q(t + K(u, v), x, u)du
)

dv dx dt

+
∫ ∞

−∞

∫
V

∫
∂Ω

p(t, x, v)q(t, x, v)[v · n] dSx dv dt, (3.12)

where we used the boundary conditions

lim
t→∞ p(t, x, v) = lim

t→−∞ q(t, x, v) = 0. (3.13)

We will also assume the following boundary conditions:

q(t, x, v) = 0, x ∈ ∂ΩT , v · nT > 0,

q(t, x, v) = q(t + K(v′, v), x, v′), x ∈ ∂ΩR, v · nR > 0.
(3.14)

Then the last term in (3.12) is equal to zero as it is shown in Appendix B. Using (3.12–3.14) and the
variable set (t0, x0, v0) to indicate starting times and positions, we can write the backwards equation
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M∗q = 0 in the following form:

− ∂q

∂t0
(t0, x0, v0) − v0 · ∇x0 q(t0, x0, v0) = −λq(t0, x0, v0) + λ

∫
V

T(u0, v0)q(t0 + K(u0, v0), x0, u0)du0.

(3.15)

More precisely, we should write q(t0, x0, v0) ≡ p(t, x, v | t0, x0, v0), i.e. q gives the probability that the
particle is at the position x with velocity v at time t given that its initial position and velocity at time
t0 were x0 and v0, respectively. Let ρ ≡ ρ(t, x0, v0) be the probability that the particle is in Ω at time t
given that the initial position and velocity is given as x0 and v0, respectively. Then

ρ(t, x0, v0) =
∫

Ω

∫
V

p(t, x, v | 0, x0, v0) dv dx =
∫

Ω

∫
V

p(0, x, v | − t, x0, v0) dv dx.

Substituting t0 = −t into (3.15) and using the Taylor expansion, we obtain

∂ρ

∂t
(t, x0, v0) − v0 · ∇x0ρ(t, x0, v0) = −λρ(t, x0, v0) + λ

∫
V

T(u0, v0)ρ(t − K(u0, v0), x0, u0) du0

= −λρ(t, x0, v0) + λ

∫
V

T(u0, v0)ρ(t, x0, u0) du0

− λ

∫
V

T(u0, v0)K(u0, v0)
∂ρ

∂t
(t, x0, u0) du0 + · · · . (3.16)

The probability of a single particle leaving Ω in time interval [t, t + dt) is ρ(t, x0, v0) −
ρ(t + dt, x0, v0) ≈ −∂ρ/∂t(t, x0, v0) dt. Consequently, the expected exit time is given by

τ(x0, v0) = −
∫ ∞

0
t
∂ρ

∂t
(t, x0, v0) dt =

∫ ∞

0
ρ(t, x0, v0) dt,

where we use the fact that ρ(t, x0, v0) → 0 as t → ∞. Integrating (3.16) over time, we obtain

v0 · ∇x0τ(x0, v0) − λτ(x0, v0) + λ

∫
V

T(u0, v0)τ (x0, u0)du0

= −
(

1 + λ

∫
V

T(u0, v0)K(u0, v0)du0

)
, (3.17)

where we neglected the higher order terms. By Taylor-expanding the boundary terms from (3.10) and
integrating in time, we obtain the following boundary conditions:

τ(x0, v0) = 0, x0 ∈ ∂ΩT , v0 · nT > 0,

τ(x0, v′
0) = τ(x0, v0) − K(v′

0, v0), x0 ∈ ∂ΩR, v0 · nR > 0,
(3.18)

where the reflected velocity v′
0 is given by (2.3), i.e. v′

0 = v0 − 2(v0 · nR)nR.

3.4 Comparison between the transport equation theory with delays and experimental results

Let us now compare the extended theory developed in Sections 3.1–3.3 to the experimental data using
the same approach as in Sections 2.3 and 2.4. For the case of the arena given in Fig. 1, we write
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Ω = (0, Lx) × (−Ly/2, Ly/2) and T = (Lx, ∞) × (−Ly/2, Ly/2) and we simplify (3.17) by integrating
over the y-direction to obtain an average value for τ for our position along the x-axis. Let us define this
average:

τx(x0, θ) = 1

Ly

∫ Ly/2

−Ly/2
τ(x0, y0, v0)dy0. (3.19)

By writing v0 = (v(x)
0 , v(y)

0 ), integrating (3.17) and using (3.18), we obtain the following equation for τx:

v(x)
0

∂τx

∂x0
− |v(y)

0 |K(v′
0, v0)

Ly
− λτx + λ

∫
V

T(u0, v0)τx(x0, u0)du0 = −
(

1 + λ

∫
V

T(u0, v0)K(u0, v0)du0

)
.

(3.20)

In the case where T is the unbiased, fixed speed, 2D turning kernel given by (1.2) and using (3.1), we
have v0 = (v(x)

0 , v(y)
0 ) = s(cos θ , sin θ) and we can evaluate the second integral term in (3.20) explicitly

to be ∫
V

T(u0, v0)K(u0, v0) du0 =
∫ θ+π

θ−π

1

2π

1

ω
|θ − θ∗|dθ∗ = π

2ω
.

Then (3.20) can be rewritten as follows:

s cos(θ)
∂τx

∂x0
− λτx + λ

2π

∫ π

−π

τx(x0, φ)dφ = −
(

1 + πλ

2ω
− 2sA(θ)

Lyω

)
, (3.21)

where A(θ) is defined by

A(θ) =
⎧⎨
⎩

−(π + θ) sin(θ) for θ ∈ (−π , −π/2],
θ sin(θ) for θ ∈ [−π/2, π/2],
(π − θ) sin(θ) for θ ∈ [π/2, π ].

Interestingly, the contribution of free turning on the right-hand side of (3.21) is given as πλ/(2ω), which
can be explained using a simple averaging argument, because every tumble takes an average time of
π/(2ω).

The boundary conditions (3.18) simplify to

τx(Lx, θ) = 0, θ ∈ (−π/2, π/2),

τx(0, θ) = τx(0, π − θ) − π − 2|θ |
ω

, θ ∈ (−π/2, π/2).
(3.22)

The numerical solution of (3.21) and (3.22) can be further simplified by considering the symmetry in
angle τx(x0, θ) = τx(x0, −θ), i.e. it is sufficient to solve (3.21) where (x0, θ) are restricted to the domain
(0, Lx) × (0, π) with boundary conditions (3.22).

3.4.1 Comparison between theory and experiments: loss of mass over time. In this section, we show
that the transport theory with delays better explains the experimental data with robots by considering the
loss of mass over time, as we did in Section 2.3. In Fig. 3(a), we plot the mass remaining in the system
against time. The solid (black) line represents the experimental data, whilst the results of the classical

 at U
niversity of B

ath, L
ibrary on A

ugust 11, 2016
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


MATHEMATICAL MODELLING OF TURNING DELAYS IN SWARM ROBOTICS 1467

theory are shown as dotted (red) line. The dashed (blue) line shows a numerical solution of system (3.2)
and (3.3) that incorporates the finite reorientation time into the analysis. The numerical solution was
achieved using a first-order finite-volume method paired with an upwind scheme for (3.3). For (3.2),
we used Δx = 1.183 m/200, Δt = 10−3 s and Δθ = π/20. For (3.3), we used the same Δt = 10−3 s
and a discretization of Δη = 3.38 × 10−2 s corresponding to the time it takes to turn from one velocity
direction to the next. Figure 3(a) demonstrates that the inclusion of turning delays provides an improved
match to the experimental data.

3.4.2 Comparison between theory and experiments: mean exit time problem. The mean exit time
problem from Section 2.4 can also be better modelled by the transport equation theory with suitable
incorporated delays as is demonstrated in Fig. 3(b). The solid (black) line represents again the experi-
mental data, whilst the classical results are shown as dotted (red) lines. The numerical solution of (3.21)
with the boundary conditions (3.22) is shown as the dashed (blue) line. This numerical solution was
obtained using the same method as in Section 2.4 and we again plot the average over the initial pen
as a bold dashed line. The bold dashed line indicates a predicted mean exit time of 152.43 s compared
with the experimental value 156.74 s, an error of approximately 2.7% or 4.31 s. This represents a strong
improvement to the discrepancy of 12.3% seen for the model that neglected the turning events (dotted
red line) and goes to show that turning times are indeed non-negligible and can be built into our model
in a consistent manner.

4. Incorporation of a signal gradient

In this section, we are aiming to formulate velocity jump models that incorporate changing turning
frequencies λ. In particular, we are interested in turning frequencies that depend on the current velocity
of the robot as well as its position in the domain, i.e. λ = λ(x, v). The general velocity jump model for
this case can be formulated as (cf. (1.1))

∂p

∂t
+ v · ∇xp = −λ(x, v)p +

∫
V

λ(x, u)T(v, u)p(t, x, u) du, (4.1)

with the boundary conditions given in (2.4). Similarly, we can formulate this system by incorporating
the resting period (cf. (3.2) and (3.3))

∂p

∂t
+ v · ∇xp = −λ(x, v)p(t, x, v) + r(t, x, v, 0+),

∂r

∂t
− ∂r

∂η
=

∫
V

λ(x, u)p(t, x, u)T(v, u)δ(η − K(v, u)) du,
(4.2)

with boundary conditions (3.4). The system (4.2) can again be formulated in the form of a delay differ-
ential equation (cf. (3.9))

∂p

∂t
+ v · ∇xp = −λ(x, v)p +

∫
V

λ(x, u)T(v, u)p(t − K(v, u), x, u) du, (4.3)
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where boundary conditions take the form (3.10). Similarly to the derivation in Section 3.3, one can
derive the backwards problem, with the mean first passage time equation taking the form (cf. (2.5))

v0 · ∇x0τ − λ(x0, v0)τ + λ(x0, v0)

∫
V

T(u, v0)τ (x0, u) du = −(1 + λ(x0, v0)

∫
V

T(u, v0)K(u, v0) du),

(4.4)

with boundary conditions given in (2.6).

4.1 Experiments with a signal gradient

In order to compare these generalized velocity jump models to experimental results, we introduce an
external signal into the robot experiments presented in Section 2.1. The signal is incorporated in the
form of a colour gradient that can be measured by the light sensors on the bottom of the E-Puck robots.
The colour gradient is layed out in such a way that it changes along the x-axis in Fig. 1 with the darker
end closer to the target area. The reaction of the robots to this colour gradient is implemented using the
internal variable z and a changing turning frequency λ(z) that are updated according to

dz

dt
= S − z

ta
,

λ = λ0 + λ0(1 − α(S − z)),

(4.5)

where S ∈ [0, 1] represents the measured signal with increasing values of S indicating a darker colour in
the gradient. The way the turning frequency is changed is motivated by models of bacterial chemotaxis
(Erban and Othmer, 2004).

According to results from Erban and Othmer (2005), a macroscopic density formulation for the
robotic system is given through the hyperbolic chemotaxis equation

1

λ0

∂2n

∂t2
+ ∂n

∂t
= s2

2λ0
Δn − ∇ ·

(
n

αλ0s2ta
2λ0(1 + λ0ta)

∇S

)
, (4.6)

where S : Ω �→ R indicates the colour gradient and n(t, x) describes the concentration of robots in Ω .
Equation (4.6) can be approximated by the velocity jump process (4.1) with the form for the turning
frequency given by

λ(x, v) = λ0 − γ v · ∇S(x), γ = αtaλ0

1 + λ0ta
. (4.7)

Because the gradient of the colour signal S was chosen to be parallel to the x-axis in the experimental
setting, we can again simplify the formulation of the exit time problem (4.4) by averaging along the
y-axis. The resulting equation takes the form

s cos θ
∂τ̄

∂x
+ 2s sin θ

Lyω
min(θ , π − θ) − λ(x, θ)τ̄ + λ(x, θ)

π

∫ π

0
τ̄ (x, θ∗) dθ∗ = −1 − λ(x, θ)

π

2ω
, (4.8)
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Fig. 4. (Colour available online) Comparison between velocity jump process and experimental data for experiment including
colour gradient. (a) Mean mass in system over time. Solid line (black): experimental data; dotted line (red): numerical solution
of (4.1); dashed line (blue): numerical solution of (4.2). Turning frequency λ(x, v) as given in (4.7). (b) Mean exit time averaged
over all velocities. Solid line (black): experimental data; dotted line (red): numerical solution of (4.8) for ω = ∞; bold dotted line
(red): average of dotted line over Ω0; dashed line (blue): numerical solution of (4.8) for ω = 4.65 rad s−1; bold dashed line (blue):
average of dashed line over Ω0. Turning frequency λ(x, θ) as given in (4.9). For both plots parameters and numerical methods are
given in the text.

where λ(x, θ) is given through

λ(x, θ) = λ0 − γ s cos θ
∂S(x)

∂x
. (4.9)

Because the colour changes linearly along the x-axis, we approximate the signal S(x) by a linear func-
tion. The values at the end-points were taken directly from robot measurements and hence, S(x) takes
the form

S(x) = 0.23 + 0.39
x

Lx
,

∂S

∂x
≈ 0.33 m−1. (4.10)

We will use this linear form of S(x) for all comparisons between experimental data and the derived
models.

4.2 Comparison between models and experimental results

We now want to compare the experimental data to the generalized velocity jump models presented
in (4.1–4.9). The numerical solutions were achieved using the same methods and parameters as in
Section 2.3 and the results can be seen in Fig. 4. The parameter values used for the robots are λ0 =
0.25 s−1, α = 8, ta = 10 s and s = 5.8 × 10−2 m/s. The experimental procedure was equivalent to the
one presented in Section 2, i.e. we repeated the experiment 50 times with 16 robots, each time waiting
until all of the 16 robots have left the arena.

In Fig. 4(a), we plot the mass left in the system over time. The solid (black) line represents the
percentage of robots still in the arena at that point in time. The dotted (red) line is a numerical solution
of the velocity jump (4.1) with the corresponding boundary conditions (2.4). The dashed (blue) line is a
numerical solution of the velocity jump system with resting state given in (4.2) and boundary conditions
as in (3.4).

In Fig. 4(b), we plot the mean exit time in dependence of position along the x-axis. The horizontal
solid (black) line again indicates the experimentally measured exit time of 78.77 s. The dotted (red) line
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1470 J. P. TAYLOR-KING ET AL.

shows a numerical solution of (4.8) with instant turning, i.e. ω = ∞. The dashed (blue) line shows a
numerical solution of (4.8) with ω = 4.65 rad s−1. For both of these solutions, the boundary conditions
are given in (2.6). The bold horizontal lines again indicate the average over the initial pen Ω0.

In both plots in Fig. 4, we see that the models including finite turning delays (represented through
the dashed (blue) lines) give an improved match compared with the models without this delay. The
numerically estimated exit time for the model with instant turning (ω = ∞) is 65.59 s (error of 16.7%
compared with experimental data); with finite turning times it is 71.76 s (error of 8.9%). The remaining
difference between the models and the experimental data can be explained by noisy measurement of
the signal S(x) as well as the fact that we used linear approximation (4.10) averaged over all robots to
obtain the numerical results. We can conclude from this brief study of robot experiments including a
colour gradient signal that this signal indeed improves the target finding capacity of the robots and that
the models developed in Section 3 can be generalized to incorporate turning frequencies that change
according to external signals.

5. Discussion

In this paper, we have studied an implementation of a run-and-tumble searching strategy in a robotic
system. The algorithm implemented by the robots is motivated by a biological system—behaviour of
the flagellated bacterium E. coli. Bio-inspired algorithms are relatively common in swarm robotics.
Algorithms based on behaviour of social insects have been implemented previously in the literature,
see, for example, Garnier et al. (2005), Krieger et al. (2000), Webb (2000) and Fong et al. (2003). One
of the challenges of bio-inspired algorithms is that robots do not have the same sensors as animals.
For example, E. coli bias their movement according to extracellular chemical systems. In biological
models, chemical signals often evolve according to the solution of reaction–diffusion partial differen-
tial equations (Franz and Erban, 2012; Franz et al., 2014a). Therefore, an implementation of the full
run-and-tumble chemotactic model in the robotic system requires either special sensors for detecting
chemical signals, e.g. robots for odour detecting (Russell, 2001), or replacing chemical signals by suit-
able caricatures of them, e.g. using glowing floor for E-Puck robots (Mayet et al., 2010).

The main goal of this paper is to study how the mathematical theory developed for E. coli applies
to the robotic system based on E-Puck robots. Thus, we do not focus on technological challenges con-
nected with sensing changing chemical signals or their analogues (Russell, 2001; Mayet et al., 2010),
we do, however, incorporate a constant signal in order to show that the developed theory works for unbi-
ased as well as biased velocity jump processes. If the collisions between particles (robots or bacteria)
and reorientation times can be neglected, then this velocity jump process is described by the transport
equation (1.1) or (4.1) (in the biased case) and the long-time behaviour is given by a drift–diffusion
equation (Hillen and Othmer, 2000). In Section 2.2, we show that collisions between robots are negli-
gible in our experimental set-up. However, we still observe quantitative differences between the results
based on the transport equation (1.1) and robotic experiments.

In Section 3, we identify turning delays as the main mechanism contributing to differences between
the mathematical theory developed for E. coli and the results of experiments with E-Puck robots. We
introduce the resting state in (3.2) and (3.3) and then derive the transport equation with delay (3.9). Our
delay term is different from models of tumbling of E. coli, because the underlying physical process is
different. Tumbling times of E. coli are exponentially distributed, i.e. they can be explicitly included
in mathematical models by using transport equations which take into account probabilistic changes
to and from the resting (tumbling) state (Erban and Othmer, 2004). In the case of robots, the turning
time depends linearly on the turning angle. The selection of new direction is effectively instant and the
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main contributing factor to turning delays is the finite turning speed of robots. In Section 4, we apply
the developed theory to an experiment incorporating an external signal and show that similar transport
equations can be developed for this situation.

We have studied a relatively simple searching algorithm motivated by E. Coli behaviour, but the
transport equations and velocity jump processes naturally appear in modelling of other biological
systems, such as modelling chemotaxis of amoeboid cells (Erban and Othmer, 2007) or swarming
behaviour as seen in various fish, birds and insects (Carrillo et al., 2009; Erban and Haskovec, 2012).
We conclude that the same delay terms as in (3.9) would be applicable whenever we implement these
models in E-Puck robots. From a mathematical point of view, it is also interesting to consider coupling
of (3.9) with changing extracellular signals, because signal transduction also has its own delay which
can be modelled using velocity jump models with internal dynamics (Erban and Othmer, 2004; Xue
and Othmer, 2009; Franz et al., 2014a). Considering higher densities of robots, the transport equation
formalism needs to be further adapted to incorporate the effects of robot–robot interactions. We have
recently investigated this problem and reported our results in Franz et al. (2014b).
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Appendix A. Robot specifications

A photo of a collection of E-Puck robots and the arena are given in Fig. A1. Full details of the E-Puck
specifications are:

i. Diameter: 75 mm. Height: 50 mm. Weight: 200g.

ii. Speed throughout experiments: 5.8 × 10−2 m s−1 (max speed: 0.13 m s−1).
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(a) (b)

Fig. A1. (a) Collection of E-Puck robots. (b) Photo showing the arena built for the experiments, removable pen and edges made
from cut down medium density fibre.

iii. Turning speed throughout experiments: 4.65 rad s−1.

iv. Processor: dsPIC 30 CPU @ 30 MHz (15 MIPS) (PIC Microcontroller).

v. RAM: 8 KB. Memory: 144 KB Flash.

vi. Autonomy: 2 h moving. Two-step motors. 3D accelerometers.

vii. Eight infrared proximity and light (TCRT1000).

viii. Colour camera, 640 × 480.

ix. Eight LEDs on outer ring, one body LED and one front LED.

x. Three microphones, forming a triangle allowing the determination of the direction of audio
cues.

xi. One loudspeaker.

Appendix B. Derivation of adjoint boundary condition (3.14)

Using (2.1) and (3.5), the last term in (3.12) can be rewritten as follows:

∫ ∞

−∞

∫
V

∫
∂Ω

p(t, x, v)q(t, x, v)[v · n] dSx dv dt

=
∫ ∞

−∞

∫
∂ΩR∪∂ΩT

∫
V+

{
p(t, x, v)q(t, x, v) − p(t, x, v′)q(t, x, v′)

}
[v · n] dv dSx dt,
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where v′ is given by (2.3). Separating the above integral into the cases of ∂ΩR and ∂ΩT , and using the
boundary condition (3.10), we have

∫ ∞

−∞

∫
V

∫
∂Ω

p(t, x, v)q(t, x, v)[v · n] dSx dv dt

=
∫ ∞

−∞

∫
∂ΩR

∫
V+

{p(t, x, v)q(t, x, v) − p(t − K(v′, v), x, v)q(t, x, v′)}[v · n] dv dSx dt

−
∫ ∞

−∞

∫
∂ΩT

∫
V+

{p(t, x, v′)q(t, x, v′)}[v · n] dv dSx dt.

We shift the time variable in the first term on the right-hand side to deduce
∫ ∞

−∞

∫
V

∫
∂Ω

p(t, x, v)q(t, x, v)[v · n] dSx dv dt

=
∫ ∞

−∞

∫
∂ΩR

∫
V+

p(t, x, v){q(t, x, v) − q(t + K(v′, v), x, v′)}[v · n] dv dSx dt

−
∫ ∞

−∞

∫
∂ΩT

∫
V+

{p(t, x, v′)q(t, x, v′)}[v · n] dv dSx dt.

The first term on the right-hand side is zero because q(t + K(v′, v), x, v′) = q(t, x, v) in (3.14). The
second term vanishes when q(t, x, v′) = 0. Thus, we conclude that the last term in (3.12) is equal to zero
when q satisfies the boundary conditions (3.14).  at U
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