266 research outputs found

    Firewall Rule Set Inconsistency Characterization by Clustering

    Get PDF
    Firewall ACLs could have inconsistencies, allowing traffic that should be denied or vice-versa. In this paper, we analyze the inconsistency characterization problem as a separate problem of the diagnosis one, and propose definitions to characterize one-to-many inconsistencies. We identify the combinatorial part of the problem that causes exponential complexity in combined diagnosis and characterization algorithms proposed by other researchers. The problem is divided in several smaller combinatorial ones, which effectively reduces its complexity. Finally, we propose a heuristic to solve the problem in worst case polynomial time as a proof of concept

    Polynomial Heuristic Algorithms for Inconsistency Characterization in Firewall Rule Sets

    Get PDF
    Firewalls provide the first line of defence of nearly all networked institutions today. However, Firewall ACLs could have inconsistencies, allowing traffic that should be denied or vice versa. In this paper, we analyze the inconsistency characterization problem as a separate problem of the diagnosis one, and propose formal definitions in order to characterize one-to-many inconsistencies. We identify the combinatorial part of the problem that generates exponential complexities in combined diagnosis and characterization algorithms proposed by other authors. Then we propose a decomposition of the combinatorial problem in several smaller combinatorial ones, which can effectively reduce the complexity of the problem. Finally, we propose an approximate heuristic and algorithms to solve the problem in worst case polynomial time. Although many algorithms have been proposed to address this problem, all of them are combinatorial. The presented algorithms are an heuristic way to solve the problem with polynomial complexity. There are no constraints on how rule field ranges are expressed.Ministerio de Educación y Ciencia DPI2006-15476-C02-0

    Polynomial Heuristic Algorithms for Inconsistency Characterization in Firewall Rule Sets

    Full text link
    Firewalls provide the first line of defence of nearly all networked institutions today. However, Firewall ACLs could have inconsistencies, allowing traffic that should be denied or vice versa. In this paper, we analyze the inconsistency characterization problem as a separate problem of the diagnosis one, and propose formal definitions in order to characterize one-to-many inconsistencies. We identify the combinatorial part of the problem that generates exponential complexities in combined diagnosis and characterization algorithms proposed by other authors. Then we propose a decomposition of the combinatorial problem in several smaller combinatorial ones, which can effectively reduce the complexity of the problem. Finally, we propose an approximate heuristic and algorithms to solve the problem in worst case polynomial time. Although many algorithms have been proposed to address this problem, all of them are combinatorial. The presented algorithms are an heuristic way to solve the problem with polynomial complexity. There are no constraints on how rule field ranges are expressed

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Attribute Weighted Fuzzy Interpolative Reasoning

    Get PDF

    Network-Wide Monitoring And Debugging

    Get PDF
    Modern networks can encompass over 100,000 servers. Managing such an extensive network with a diverse set of network policies has become more complicated with the introduction of programmable hardwares and distributed network functions. Furthermore, service level agreements (SLAs) require operators to maintain high performance and availability with low latencies. Therefore, it is crucial for operators to resolve any issues in networks quickly. The problems can occur at any layer of stack: network (load imbalance), data-plane (incorrect packet processing), control-plane (bugs in configuration) and the coordination among them. Unfortunately, existing debugging tools are not sufficient to monitor, analyze, or debug modern networks; either they lack visibility in the network, require manual analysis, or cannot check for some properties. These limitations arise from the outdated view of the networks, i.e., that we can look at a single component in isolation. In this thesis, we describe a new approach that looks at measuring, understanding, and debugging the network across devices and time. We also target modern stateful packet processing devices: programmable data-planes and distributed network functions as these becoming increasingly common part of the network. Our key insight is to leverage both in-network packet processing (to collect precise measurements) and out-of-network processing (to coordinate measurements and scale analytics). The resulting systems we design based on this approach can support testing and monitoring at the data center scale, and can handle stateful data in the network. We automate the collection and analysis of measurement data to save operator time and take a step towards self driving networks

    Guidelines for the analysis of student web usage in support of primary educational objectives

    Get PDF
    The Internet and World Wide Web provides huge amounts of information to individuals with access to it. Information is an important driving factor of education and higher education has experienced massive adoption rates of information and communication technologies, and accessing the Web is not an uncommon practice within a higher educational institution. The Web provides numerous benefits and many students rely on the Web for information, communication and technical support. However, the immense amount of information available on the Web has brought about some negative side effects associated with abundant information. Whether the Web is a positive influence on students’ academic well-being within higher education is a difficult question to answer. To understand how the Web is used by students within a higher education institution is not an easy task. However, there are ways to understand the Web usage behaviour of students. Using established methods for gathering useful information from data produced by an institution, Web usage behaviours of students within a higher education institution could be analysed and presented. This dissertation presents guidance for analysing Web traffic within a higher educational institution in order to gain insight into the Web usage behaviours of students. This insight can provide educators with valuable information to bolster their decision-making capacity towards achieving their educational goals

    Process Flow Features as a Host-based Event Knowledge Representation

    Get PDF
    The detection of malware is of great importance but even non-malicious software can be used for malicious purposes. Monitoring processes and their associated information can characterize normal behavior and help identify malicious processes or malicious use of normal process by measuring deviations from the learned baseline. This exploratory research describes a novel host feature generation process that calculates statistics of an executing process during a window of time called a process flow. Process flows are calculated from key process data structures extracted from computer memory using virtual machine introspection. Each flow cluster generated using k-means of the flow features represents a behavior where the members of the cluster all exhibit similar behavior. Testing explores associations between behavior and process flows that in the future may be useful for detecting unauthorized behavior or behavioral trends on a host. Analysis of two data collections demonstrate that this novel way of thinking of process behavior as process flows can produce baseline models in the form of clusters that do represent specific behaviors

    Pattern Discovery in Time-Ordered Data

    Full text link

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition
    corecore