
Polynomial Heuristic Algorithms for Inconsistency Characterization in
Firewall Rule Sets

S. Pozo, R. Ceballos, R. M. Gasca, A. J. Varela-Vaca
Department of Computer Languages and Systems, ETS Ingeniería Informática,

University of Seville, Avda. Reina Mercedes S/N, 41012 Sevilla, Spain
{sergiopozo,ceball,gasca}@us.es

www.lsi.us.es/~quivir

Abstract

Firewalls provide the first line of defence of nearly

all networked institutions today. However, Firewall
ACLs could have inconsistencies, allowing traffic that
should be denied or vice versa. In this paper, we
analyze the inconsistency characterization problem as
a separate problem of the diagnosis one, and propose
formal definitions in order to characterize one-to-many
inconsistencies. We identify the combinatorial part of
the problem that generates exponential complexities in
combined diagnosis and characterization algorithms
proposed by other authors. Then we propose a
decomposition of the combinatorial problem in several
smaller combinatorial ones, which can effectively
reduce the complexity of the problem. Finally, we
propose an approximate heuristic and algorithms to
solve the problem in worst case polynomial time.
Although many algorithms have been proposed to
address this problem, all of them are combinatorial.
The presented algorithms are an heuristic way to solve
the problem with polynomial complexity. There are no
constraints on how rule field ranges are expressed.

1. Introduction

A firewall is a network element that controls the
traversal of packets across different network segments.
It is a mechanism to enforce an Access Control Policy,
represented as an Access Control List (ACL). An ACL
is in general a list of linearly ordered (total order)
condition/action rules. The condition part of the rule is
a set of condition attributes or selectors, where
|condition|=k (k is the number of selectors). The
condition set is typically composed of five elements,
which correspond to five fields of a packet header [3].
In firewalls, the process of matching TCP/IP packets

against rules is called filtering. A rule matches a packet
when the values of each field of the header of a packet
are subsets or equal to the values of its corresponding
rule selector. The action part of the rule represents the
action that should be taken when a packet matches a
rule.. In firewalls, two actions are possible: allow or
deny a packet. An example of a rule set is presented in
Figure 1. Firewall ACLs are commonly named rule
sets.

Firewalls have to face many problems in modern
networks [7]. One of the most important ones is rule set
consistency. As can be seen from the example in Figure
1, selectors of rules can partially or totally overlap (for
example, the protocol selector). There is an
inconsistency when two or more rules with different
actions overlap. An inconsistent firewall ACL implies
in general a design error, and indicates that the firewall
is accepting traffic that should be denied or vice-versa.
In this paper, detection is understood as the action of
finding the rules that are inconsistent with other rules;
identification is the action of finding the rules that
cause all the inconsistencies among the detected
inconsistent rules (the faulty rules), whose removal
produces a consistent rule set; and characterization is
understood as the action of naming the identified
inconsistent rules among a pre-established taxonomy of
faults.

In this paper we analyze the inconsistency
characterization problem in firewall rule sets, and
extend the complete formal inconsistency
characterization given by Al-Shaer et al. [10] in order
to characterize inconsistencies resulting from the
clustering of rules, resulting in a complete one-to-many
characterization. In addition, we identify the
combinatorial part of the problem that causes the
combinatorial explosion in combined diagnosis and
characterization algorithms proposed by other authors.
Then we propose a decomposition of the combinatorial

problem in several smaller combinatorial ones. This
effectively reduces the complexity of the problem. The
proposed characterization process and algorithms are
built on a previous heuristic diagnosis process that is
worst case O(n2) time complexity [8].

The paper is structured as follows. In section 2
related works are presented and differences with our
proposal are emphasized. Section 3 presents the
analysis of the characterization problem and identifies
the combinatorial part of it. In section 4 the
characterization process with algorithms are proposed,
explaining how the problem can be reduced to several
smaller combinatorial ones. We conclude in section 5.

2. Related Works

The closest works to ours are related with
consistency diagnosis in general network filters. In the
most recent work, Baboescu et al. [12] provides
algorithms to diagnose inconsistencies in router filters
that are 40 times faster than O(n2) ones for the general
case of k selectors per rule. Although its algorithmic
complexity is not given, it improves other previous
works [13, 14]. However, they preprocess the rule set
and convert selector ranges to prefixes, and then apply
the algorithms. This imposes the implicit assumption
that a range can only express a single interval, which is
true [8]. However, the range to prefix conversion
technique could need to split a range in several prefixes
[15] and thus the final number of rules could increase
over the original rule set. Thus, results are given over
the preprocessed rule set, which could be bigger and
different from the original one.

Other researchers have complemented the diagnosis
process with a characterization of the faults with an
established taxonomy [10]. As the following proposals
treat the problem as a whole and the characterization
algorithms are applied directly to the full rule set, the

resulting worst case time complexity will be
exponential in all cases (recall that characterization is
NP, as it is going to be explained bellow). One of the
most important advances was made by Al-Shaer et al.
[4], where authors define an inconsistency model for
firewall ACLs. They give a combined algorithm to
diagnose and characterize the inconsistencies between
pairs of rules. In addition, they use rule decorrelation
techniques [2] as a pre-process in order to decompose
the ACL in a new, bigger, one with no overlapping
rules. This new rule set is different from the initial one,
and the user is the responsible of mapping the rules of
this rule set to the original one. Their model and
corresponding algorithms can only diagnose and
characterize inconsistencies between pairs of rules.
Although the proposed characterization algorithm
proposed by Al-Shaer is polynomial, the decorrelation
pre-process imposes a worst case exponential time and
space complexity for the full process.

A modification to their algorithms was provided by
García-Alfaro et al. [5], where they integrate the
decorrelation and characterization algorithms of Al-
Shaer, and generate a decorrelated and consistent rule
set. Thus, due to the use of the same decorrelation
techniques, this proposal also has worst case
exponential complexity. The resulting ACL is also
bigger and different from the original one. However,
García-Alfaro et al. provide a characterization
technique with multiple rules.

Ordered Binary Decision Diagrams (OBDDs) have
been used in Fireman [9], where authors provide a
diagnosis and characterization technique with multiple
rules. A very important improvement over previous
proposals is that they do not need to decorrelate the
ACL, and thus, results are given over the original one.
Note that the complexity of OBDD algorithms depends
on the optimal ordering of its nodes, which is a NP-
Complete problem [6]. This results in a worst case

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action
R1 tcp 192.168.1.5 any *.*.*.* 80 deny
R2 tcp 192.168.1.* any *.*.*.* 80 allow
R3 tcp *.*.*.* any 172.0.1.10 80 allow
R4 tcp 192.168.1.* any 172.0.1.10 80 deny
R5 tcp 192.168.1.60 any *.*.*.* 21 deny
R6 tcp 192.168.1.* any *.*.*.* 21 allow
R7 tcp 192.168.1.* any 172.0.1.10 21 allow
R8 tcp *.*.*.* any *.*.*.* any deny
R9 udp 192.168.1.* any 172.0.1.10 53 allow

R10 udp *.*.*.* any 172.0.1.10 53 allow
R11 udp 192.168.2.* any 172.0.2.* any allow
R12 udp *.*.*.* any *.*.*.* any deny

Fig 1. Example rule set

O(2n) time complexity with the number of rules, as
other proposals.

The combination of diagnosis and characterization
in only one stage results in exponential algorithms that
are applied to a big problem (the full rule set).
Although optimal diagnosis and characterization are
worst-case combinatorial problems [8], diagnosis can
be used to split the characterization problem in several
smaller ones [8]. Then, optimal or heuristic algorithms
can be applied to these smaller problems.

The main difference of these works with ours is that,

previous to algorithm design, we have done an analysis
of the consistency diagnosis and characterization
problem in firewall rule sets. As a result, we proposed
to divide consistency management in two sequential
processes [8]: detection and identification (diagnosis)
of inconsistent rules, and characterization of the
diagnosis. We extend Al-Shaer inconsistency taxonomy
[10] to characterize inconsistencies resulting from the
clustering of rules, resulting in a complete one-to-many
characterization. The analysis of the characterization
problem enabled us to identify and isolate the
combinatorial parts of it and improve the algorithmic
complexity of the full process. An optimal
characterization algorithm must analyze all possible
solutions in order to find the optimal one. Since there is
a trade off between optimally solving the problem in
exponential time or using an approximation to the
optimum, we propose a polynomial heuristic and
algorithms that implement it that solve the
characterization problem in worst case polynomial
time.

The presented algorithms are capable of handling
full ranges in rule selectors without doing rule
decorrelation, range to prefix conversion, or any other
pre-process. Thus, results are given over the original,
unmodified, rule set. However, our process does not
cope with redundancies, because redundancy is not a
consistency problem (it does not change the semantics
of the rule set).

To the best of our knowledge, this is the first time
that the characterization problem has been divided in
several smaller ones, and a polynomial heuristic
algorithm has been proposed to solve it. It is also the
first time Al-Shaer’s formal definitions have been
extended to support a complete one-to-many
characterization. A Java tool called Fast Firewall ACL
AnalysiS Toolkit V2 (FFaaST V2) has been
implemented and is available upon request.

3. Analysis of the Inconsistency
Characterization Problem

Real life rule sets can be decomposed in two
different subsets of rules (Figure 2 presents an example
of some subsets of Figure 1 example). The first one is a
set of consistent rules (Definition 3.1). The other one is
formed by subsets of inconsistent rules, called ICIRs
[8], with bold rules as ICIR roots (Definition 3.2). We
shall now formalize a firewall ACL.
• Let RS be a firewall ACL consisting of n rules,

{ }1
, ...

n
RS R R=

• Let 5, ,R H Action H=< > ∈ℕ be a rule, where

{ },Action allow deny= is its action

• Let [],1 ,
j

R k j n k≤ ≤

{ }, _ , _ , _ , _protocol src ip src prt dst ip dst prt∈

 be a selector of a rule Rj
• Let ‘<’ and ‘>’ be operators which define the

priority of the rules, where Ri < Rj means that then
Ri has greater priority than Rj and its action will be
taken first, and vice versa

Definition 3.1. Inconsistency. Two rules

,
i j

R R RS∈ are inconsistent if and only if the

intersection of each of all of its selectors R[k] is not
empty, and they have different actions, independently
of their priorities. The inconsistency between two rules
expresses the possibility of an undesirable effect in the
semantics of the rule set. The semantics of the rule set
changes if an inconsistent rule is removed.

{ }

(, ,) 1 , ,

[] [] [] [],

, _ , _ , _ , _

,

i j i j

i jInconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠

⇔ ≠ ∅ ∧ ≠

∀ ∈

∩

Definition 3.2. Independent Cluster of

Inconsistent Rules, ICIR. An ICIR represents a
cluster or collection of inconsistent rules as a tree. The
root of the ICIR is the rule which has the greatest
number of inconsistencies with other rules of the same
cluster. By definition, the action of the ICIR root is the
opposite of the actions of all of its children. Children
rules are consistent between them.

Let { }
1
, ...

n
CV R R= be a set of rules, then

(,) (,)

, , (,)

i i

i j i j

ICIR root CV R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔ ∀ ∈ • ∧

∀ ∈ ≠ • ¬

Definition 3.3. Diagnosis Set, DS. It is the set of
rules that could be directly removed from the rule set in
order to get a consistent one. It is formed by the root of
all ICIRs.

{ }
{ }

1

1

, ...,

(), ..., ()

Let be the set of all ICIR of a given ,

then

m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS RS

=

=

Fig. 1. Decomposition of a rule set

Clustering rules is a necessary process in order to

obtain complete and correct results for one to many
characterization if there is a taxonomy of faults. There
exist cases where doing no clustering could return
incomplete and/or incorrect results. Figure 3(a)
presents a three rule example where Rz is shadowed by

x y
R R∪ . However, if no clustering is done,

characterization would return that Rz is a generalization
of Rx, and that {Ry, Rz} are correlated, which is not a
correct result. In addition, clustering of rules with the
same inconsistency is also very important in order to
abbreviate results with no loss of information. The
example of Figure 3(b) presents a generalization
inconsistency. In this example, Rz is a generalization of

x y
R R∪ . With no clustering, two generalization

inconsistencies would be returned, gaining no
information over the clusterized form.

3.1. Characterization taxonomy of one to many
inconsistencies

A complete one to one inconsistency
characterization was given by Al-Shaer [10]. Our
definitions extend Al-Shaer work in order to
characterize the diagnosis of an arbitrary number of
rules with the same action versus one other. Our
approach is also complete (as it is an extension of Al-
Shaer work) based on the relationships that can be
established between the selectors of rules: equality,
subset and superset. To be as realistic as possible, it is

considered that each selector is a set of elements whose
content can be expressed using the common syntax of
the most used firewall languages, which have been
previously analyzed in [1]. The syntax analysis has
been omitted due to space constraints, but the result is
presented in Figure 3. This figure represents, for each
of the five typical selectors, the common syntax
supported by IPTables, Cisco PIX, Checkpoint FW-1,
BSD PF, BSD IPFW and BSD IPFilter. Note that all
selectors except protocol permit the representation of
one element, a continuous range of elements, or a
wildcard (representing all possible elements of the set).
The content of each selector is also bounded by the
constraints imposed by the corresponding field of the
TCP/IP header. Note that, although expressing ranges
is possible for all selectors, ranges must be continuous.
IP address ranges are expressed in CIDR form.

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [10 80]

x

y

z

R port allow

R port allow

R port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(a)

{ } { }
{ } { }
{ } { }

: [10 39]

: [40 60]

: [0 65535]

x

y

z

R port allow

R port allow

R port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(b)
Fig. 2. Rule clustering examples

Selector Common Syntax Comments

Source and
Destination IP Address

- IP
- Block*
- Wildcard

* A block is a
continuous range

expressed in CIDR

Protocol
- Number
- Wildcard

Source and
Destination Ports

- Number
- Range: [p1,p2]*
- Wildcard

* The range must
be continuous

Fig. 3. Common syntax for most used
firewall languages

• Shadow. A rule Ry is shadowed by another rule Rx,

with Rx>Ry, if all of its selectors to or supersets of
the selectors of Ry, and Rx and Ry have different
actions.

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

Shadow

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

Exact shadow

This definition can be extended to support a
cluster of rules with the same action in Rx or Ry
(but not in both). If Rx is a cluster of rules and Ry
is a rule, then Ry is shadowed by Rx. Similarly, if
Rx is a rule, and Ry is a cluster, then Ry are
shadowed by Rx. It is only possible to form a
cluster of rules if they can form a continuous range
in all of its selectors. Cluster forming is shown in
next section.

• Generalization. It is the inverse of shadow respect
to the priority. A rule Ry is a generalization of Rx,
with Rx>Ry, if all of the selectors of Rx are subsets
of the selectors of Ry, and both rules have different
actions. Rx is usually considered an exception and
not an error. Again, clusters can be formed.

{ }

()

[] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Generalization R

k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊃ ∧ ≠

∈

•

• Correlation. Two rules Rx and Ry are correlated if

they have different actions, and selectors of Rx
intersect with the corresponding selectors of Ry,
but Rx and Ry do not have a shadow, exact shadow
or generalization relation. Correlation is
independent of rule priority. This definition can
also be extended to clusters of rules.

{ }

()

[] [] [] []

([] []) ([] [])

, _ , _ , _ , _

,
x y x y

x y x y

x y x y

R R RS Correlation R R

k R k R k R Action R Action

R k R k R k R k

k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔

∀ • ∧ ≠ ∧

¬ ⊆ ∧ ¬ ⊃

∈

∩

• Redundancy. A rule Rx is redundant to another rule

Ry, with Rx>Ry, if all of its selectors are subsets or
equal to the selectors of Rx, they have the same
action, and if there is no rule between Rx and Ry
which is correlated or subset of Rx. Redundancy of

Ry respect to Rx is symmetrical. Redundancy is not
really an inconsistency, since if all redundant rules
are removed, the semantic of the rule set does not
change.

{ }

()

[] [] [] []

() ()

, _ , _ , _ , _

,

,

,

x y x y x

x y x y

z x z y

x z z

R R RS R R Redundant R

k R k R k R Action R Action

R RS R R R

Correlation R R Generalization R

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊆ ∧ =

¬∃ ∈ > > •

∨

∈

•
∧

{ }

()

[] [] [] []

[] []

, _ , _ , _ , _

,
x y x y y

y x y x

x y

R R RS R R Redundant R

k R k R k k R k R k

R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊂ ∨ ∀ • = ∧

=

∈

•

4. Inconsistency Characterization Process

The characterization process explained in this

section takes as input the inconsistency diagnosis as
ICIRs [8]. The proposed characterization process is
divided in two sequential stages. First, the children of
each ICIR are grouped in different clusters. Second,
clusters of each ICIR are characterized against its ICIR
root.

In the diagnosis process, the rule set of Figure 1 is
transformed into several ICIRs. The characterization
process is also divided in two sequential stages. At the
first stage, children of each ICIR are joined in different
clusters. At the second stage, each of these clusters are
characterized against the ICIR root.

R2 R3

R4

R9

R12

R10 R11

R8

R3R2 R6 R7

ICIR 1 ICIR 2

R5

R6R7

ICIR 3

R1

R3R2

ICIR 4 ICIR 5

Figure 4. Uncharacterized diagnoses (result of
the consistency based diagnosis process)

4.1. Stage 1. Cluster construction (rule join)

At the first stage, for each ICIR, children are joined
in different clusters in order to abbreviate the returned
characterization for that conflicting rule (ICIR root).
These clusters are formed by rules that are subsets,
supersets, equal, or form a continuous space for all
selectors. The clusters represent the rules that share the
same inconsistency with their ICIR root.

By definition, characterization depends on rule
priority since the characterization is based on set
operations. Rules that come before or after root
generate different kinds of inconsistencies with it. For
example, if root is shadowed by a cluster of rules that
precede it, then rules that go after root cannot
participate in the same inconsistency since, by
definition, rules that cause a shadowing inconsistency
must precede root. For this reason, rules that generate
a generalization conflict must be in another cluster.
However, it could be possible that root causes a
shadowing inconsistency with a cluster of rules that go
after it. In this case, we say that the rules in the cluster
are shadowed by root. The same is applicable for
generalization, as it is the inverse of shadow respect to
rule priorities.

In conclusion, due to the priority dependency of
characterization definitions, it is possible to simplify
the problem even more, dividing ICIR rules in two
lists: rules that come before and rules that go after root.
Then, clustering is done independently for each of
these two lists. Division process is in O(c) with the
number of children.

Before presenting rule joining algorithm, it is
necessary an analysis of the conditions under which
joining of rules can be done.

4.1.1. Firewall language syntax. In general, clustering
is possible if all rule selectors permit multiple values,
ranges and/or wildcards in their syntax. Fortunately,
firewall languages support ranges and/or wildcards in
all selectors, but only continuous ranges (Figure 3).
This enables the clustering of rules for all selectors.

4.1.2. ICIR Structure. In addition, an ICIR must
comply with:
1. It must have at least two children. In other case,

there are no rules to be joined.
2. At least one selector of ICIR root must be a range of

values or a wildcard. The joined rules in a cluster
must form a continuous range (with or without

Algorithm 1. Initialization Algorithm 2. Cluster construction
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22

23

24

25

26

Func initialization(in Rule: root, List of Rule: children)

Alg

 if root.DstPort().isRangeOrWildcard() AND

 children.size()>1 {

 sortAscendingByDestinationPort(children)

 if root.Priority()>children.last().Priority() OR

 root.Priority()<children.first().Priority() {

 clusterize(root, children)

 }

 else {

 List before = Rules with priority > root

 List after = Rules with priority < root

 clusterize(root, before)

 clusterize(root, after)

 }

 else {

 doPairwiseCharacterization(root, children)

 }

End Alg

Func doPairwiseCharacterization(in Rule: root, List of

Rule: children)

Alg

 for each i=1..children.size()

 doClassification(root, children.get(i))

End Alg

Func clusterize(in Rule: root, List of Rule: children)

Var

 Rule cluster

Alg

 cluster = children.first()

 for each i=2..children.size() {

 if isClusterizable(cluster, children.get(i) AND

 i<children.size()) {

 cluster.joinWith(children.get(i))

 }

 else if isClusterizable(cluster, children.get(i) AND

 i==children.size()) {

 cluster.joinWith(children.get(i))

 doClassification(root, cluster)

 }

 else { // Not clusterizable

 doClassification(root, cluster)

 // re-initializes for a new cluster

 cluster=children.get(i)

 }

 }

End Alg

overlapping) and must be subset, superset or equal
the corresponding root selector.

3. For root selectors that do not have multiple values,
rules in the cluster must have the same value as root,
or at least one of them must be a wildcard.

4.1.3. Polynomial heuristic. Traditionally, the
diagnosis and characterization of firewall rule sets have
been solved in only one stage, resulting in a worst case
O(2n) time complexity process with the number of rules
in the rule set. Separating diagnosis from
characterization has produced the effect of dividing the
combinatorial part of the problem in several much
smaller ones, which effectively reduces the
computational complexity. Since ICIRs represent
independent clusters of inconsistencies, they can also
be characterized independently, effectively reducing
the problem complexity: the combinatorial problem
have been reduced from the entire rule set to several
smaller ICIRs. However, there is still a trade off
between optimally solving the problem in exponential
time, or using an approximation to the optimum. In
order to show the feasibility of this approach, in this
paper we propose a worst case polynomial heuristic.
The heuristic is used when clustering ICIR children. It
only takes into account one selector for rule clustering,
and does not try to check all possible unions between
all selectors. To be restrictive, a selector with a narrow
domain should be chosen, because it generally
guarantees a good approximation to the optimum. In
real rule sets, one of the selectors with the narrower
domains is destination port. Although this entirely
depends on the particular rule set, destination port is
usually expressed as a unique value in the vast majority
of real rule sets. Other heuristics could be considered.

Then, for each ICIR, their children are clusterized in
several groups by destination port forming a continuous
range. This task can be done in linear time if children
are ordered by destination port. The first cluster is
formed with the first children. Then the next children
should be added only if its destination port selector can
form a continuous range with the cluster, and if the rest
of selectors are equal, subset, superset or wildcard. If it
cannot be joined, then the cluster is closed and a new
one is formed with that child and the process begins
again until there are no more children.

Note that although characterization definitions are
complete, the algorithms are not, since they are an
approximation.

4.1.4. Cluster construction algorithm. The first part
of the process checks ICIR root structure and prepare
children for clustering (Algorithm 1). Then, it identifies
the rules that can be united with others in each ICIR
(Algorithm 2).

Algorithm 1 takes as input the ICIR root and
children, and first checks if the ICIR has a valid
structure for clustering, as explained in a previous
subsection. Then it sorts children by destination port in
ascending order, as a preparation for the heuristic.
Then, the algorithm checks if root is the last or first
rule or is in between. If root is in between it divides
children in two lists: rules that come before and rules
that go after root, as also was explained before.

Finally, if clustering is possible, it calls Algorithm 2,
and if not, it calls directly the inconsistency
characterization (Algorithm 3). All operations of
Algorithm 1 run in constant time except
sortAscending(), which is in O(clogc) where c is the
number of children, list copy operations and
doPairWiseCharacterization() which are in O(c). By
the sum rule, time complexity of this algorithm is in
worst case O(clogc) with the number of children. These
algorithms must be run for each ICIR.

Algorithm 2 also takes as input ICIR root and
children. This algorithm implement the heuristic as it
has been described in the previous section. All
operations inside the loop run in constant time and the
loop is run for each child, c. Algorithm 3 is in O(c).

4.2. Stage 2. Inconsistency characterization

As clusterization has been done in the first stage of
the process, the inconsistency characterization results a
very easy task. Characterization follows directly the
extended definitions proposed in an earlier section.
Algorithm 3 takes as input ICIR root and the clusters of
that ICIR. Then, it checks each type of inconsistency
using the equality, subset and superset operations. Note
that characterization is different depending on the
relative priority of the ICIR root (if it is the first or last
rule). All operations of Algorithm 3 run in constant
time. Result is returned as a text string.

The combined worst case complexity of the three
algorithms using the proposed heuristic is, by the sum
rule, the maximum of the complexities of the three
algorithms, T(c) = O(clogc)+O(c)+k = O(clogc).
These algorithms must be run for each ICIR and thus,
the final time complexity is in O(h*clogc), where h is
the cardinality of the Diagnosis Set (or the number of
ICIRs) and c is the number of children of each ICIR.
Note that the combinatorial part of the inconsistency
characterization problem is only the clusterization
(where the heuristic has been used), and not the
characterization itself.

4.3. Example

Algorithms take as input the ICIRs presented in
Figure 4 in no particular order. Suppose that Algorithm
1 receives ICIR1 as input. As destination port of R8 is
a wildcard, children are ordered by destination port.
Then, as root is the rule with less priority of the ICIR,
the algorithm directly calls clusterize() (Algorithm 2).
Algorithm 2 receives the ICIR root and ordered
children. It creates the first cluster with the first child
(R6). Then it tries to join the next child, R7, to the
cluster and, as it complies to the restrictions (R2 and
R7 destination ports are equal), it joins it. It repeats the
check with R2 and, as R2 destination port is not a
subset, superset, wildcard or can form a continuous
range with the cluster destination port (21), then the

cluster is closed and characterization is called. Then, a
second cluster is created with R2. Algorithm tries the
join of R3 with the cluster (currently formed only by
R2), and it joins it (R2 and R3 destination ports are
equal). Since there are no more children, the second
cluster is closed and characterization is called. For both
clusters {R6,R7} and {R2,R3} the characterization
algorithm returns that R8 is a generalization of both of
them, since all their selectors are subsets of R8.

The process applied to the other ICIRs is similar
and can be easily followed. Optimal solution is 7
inconsistencies, but the proposed algorithms returns 10:
• ICIR1. Rule R8 is a generalization of {R2,R3} and

of {R6,R7}
• ICIR2. Rule R12 is a generalization of {R9,R10} and

of {R11}
• ICIR3. R6 is a generalization of R5, and R7 is in

correlation with R5
• ICIR4. R2 is a generalization of R1, and R3 is in

correlation with R1
• ICIR5. R2 and R3 are shadow of R4

5. Conclusions and Future Works

In this paper, we have analyzed the inconsistency
characterization problem in firewall rule sets. We have
proposed complete and formal inconsistency
characterization definitions for clusters of rules (a one-
to-many characterization).

The analysis of the characterization problem
enabled us to identify and isolate the combinatorial part
of it. Since there is a trade off between optimally
solving the problem in exponential time or using an
approximation to the optimum, we have proposed a
polynomial heuristic and algorithms that solve the
characterization problem in worst case polynomial
time. Algorithms are capable of handling full ranges in
rule selectors without doing rule decorrelation, range to
prefix conversion, or any other pre-process. Results are
given over the original, unmodified, rule set.

Anyway, we showed that the combinatorial
problems to be solved are very small due to the
decomposition made in the diagnosis process, which
has effectively reduced a worst case O(2n) problem in
several O(2c) ones, with n>>c. For that reason we
expect that an optimal characterization algorithm is
going to improve the other reviewed algorithms. A Java
tool called Fast Firewall ACL AnalysiS Toolkit V2
(FFaaST V2) with the full diagnosis process is
available upon request. No performance analysis has
been done due to the fact that, to the best of our
knowledge, this is the first approximated solution to

Algorithm 3. Inconsistency Characterization
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Func doClassification(in Rule: root, Rule: cluster; out

String: conflictType)

Alg

 if (cluster == root)

 conflictType = “Root is exactly shadowed by union”

 else if (root.getPriority()>cluster.getLastRulePriority()){

 else if (superset(cluster, root))

 conflictType = “Root is shadowed by cluster”

 else if (subset(cluster, root))

 conflictType = “Root is generalization of cluster”

 else

 conflictType = “Root and cluster are correlated”

 }

 else { // Root is first rule

 if (superset(cluster, root)

 conflictType = “Cluster is generalization of root”

 else if (subset(cluster, root)

 conflictType = “Cluster is shadowed by root”

 else

 conflictType = “Root and cluster are correlated”

 }

 return conflictType

End Alg

this problem. A comparison with an optimal one does
not make sense from the performance point of view.

However, our approach has some limitations that
give us opportunities for improvement in future works.
The most important one is the design of optimal
algorithms, and compare its performance with the
reviewed algorithms. In addition, since the diagnosis
process does not cope with redundancies, the
characterization algorithms cannot characterize it. The
support of redundancy is another goal.

6. References

[1] S. Pozo, R. Ceballos, R.M. Gasca. "AFPL, An Abstract
Language Model for Firewall ACLs". 8th International
Conference on Computational Science and Its Applications
(ICCSA). Perugia, Italy. Springer-Verlag, 2008.

[2] S. Luis, M. Condell. "Security policy protocol." IETF
Internet Draft IPSPSPP-01, 2002.

[3] David E. Taylor. Survey and taxonomy of packet
classification techniques. ACM Computing Surveys, Vol. 37,
No. 3, 2005. Pages 238 – 275.

[4] E. Al-Shaer, Hazem H. Hamed. Modeling and
Management of Firewall Policies". IEEE eTransactions on
Network and Service Management (eTNSM) Vol.1, No.1,
2004.

[5] J. García-Alfaro, N. Boulahia-Cuppens, F. Cuppens,
Complete Analysis of Configuration Rules to Guarantee
Reliable Network Security Policies, Springer-Verlag
International Journal of Information Security (Online) (2007)
1615-5262.

[6] B. Bollig, I. Wegener. “Improving the Variable Ordering
of OBDDs is NP-Complete”. IEEE Transactions on
Computers, Vol.45 No.9, September 1996.

[7] A. Wool. A quantitative study of firewall configuration
errors. IEEE Computer, 37(6):62-67, 2004.

[8] S. Pozo, R. Ceballos, R.M. Gasca. "Improving
Computational Complexity of the Inconsistency
Characterization Problem in Firewall Rule Sets".
International Conference on Security and Cryptography
(SECRYPT). Porto, Portugal. INSTICC Press, 2008.

[9] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, P.
Mohapatra. FIREMAN: A Toolkit for FIREwall Modelling
and ANalysis. IEEE Symposium on Security and Privacy
(S&P’06). Oakland, CA, USA. May 2006.

[10] H. Hamed, E. Al-Shaer. "Taxonomy of Conflicts in
Network Security Policies." IEEE Communications
Magazine Vol.44, No.3, 2006.

[11] E. Al-Shaer, H. Hamed. “TR04-11. Design and
Implementation of Firewall Policy Advisor Tool”.
Multimedia Networking Research Laboratory. School of
Computer Science, DePaul University, USA.

[12] F. Baboescu, G. Varguese. “Fast and Scalable Conflict
Detection for Packet Classifiers.” Elsevier Computers
Networks (42-6) (2003) 717-735.

[13] B. Hari, S. Suri, G. Parulkar. “Detecting and Resolving
Packet Filter Conflicts.” Proceedings of IEEE INFOCOM,
March 2000.

[14] D. Eppstein, S. Muthukrishnan. “Internet Packet Filter
Management and Rectangle Geometry.” Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2001.

[15] V. Srinivasan, G. Varguese, S. Suri, M. Waldvogel.
“Fast and Scalable Layer Four Switching.” Proceedings of
the ACM SIGCOMM conference on Applications,
Technologies, Architectures and Protocols for Computer
Communication, Vancouver, British Columbia, Canada,
ACM Press, 1998.

Acknowledgements
This work has been partially funded by Spanish
Ministry of Science and Education project under grant
DPI2006-15476-C02-01, and by FEDER (under ERDF
Program). Many thanks to the anonymous reviewers for
their useful comments.

