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Abstract 

 
Firewalls provide the first line of defence of nearly 

all networked institutions today. However, Firewall 
ACLs could have inconsistencies, allowing traffic that 
should be denied or vice versa. In this paper, we 
analyze the inconsistency characterization problem as 
a separate problem of the diagnosis one, and propose 
formal definitions in order to characterize one-to-many 
inconsistencies. We identify the combinatorial part of 
the problem that generates exponential complexities in 
combined diagnosis and characterization algorithms 
proposed by other authors. Then we propose a 
decomposition of the combinatorial problem in several 
smaller combinatorial ones, which can effectively 
reduce the complexity of the problem. Finally, we 
propose an approximate heuristic and algorithms to 
solve the problem in worst case polynomial time. 
Although many algorithms have been proposed to 
address this problem, all of them are combinatorial. 
The presented algorithms are an heuristic way to solve 
the problem with polynomial complexity. There are no 
constraints on how rule field ranges are expressed.  
 

1. Introduction 
 

A firewall is a network element that controls the 
traversal of packets across different network segments. 
It is a mechanism to enforce an Access Control Policy, 
represented as an Access Control List (ACL). An ACL 
is in general a list of linearly ordered (total order) 
condition/action rules. The condition part of the rule is 
a set of condition attributes or selectors, where 
|condition|=k (k is the number of selectors). The 
condition set is typically composed of five elements, 
which correspond to five fields of a packet header [3]. 
In firewalls, the process of matching TCP/IP packets 

against rules is called filtering. A rule matches a packet 
when the values of each field of the header of a packet 
are subsets or equal to the values of its corresponding 
rule selector. The action part of the rule represents the 
action that should be taken when a packet matches a 
rule.. In firewalls, two actions are possible: allow or 
deny a packet. An example of a rule set is presented in 
Figure 1. Firewall ACLs are commonly named rule 
sets. 

Firewalls have to face many problems in modern 
networks [7]. One of the most important ones is rule set 
consistency. As can be seen from the example in Figure 
1, selectors of rules can partially or totally overlap (for 
example, the protocol selector). There is an 
inconsistency when two or more rules with different 
actions overlap. An inconsistent firewall ACL implies 
in general a design error, and indicates that the firewall 
is accepting traffic that should be denied or vice-versa. 
In this paper, detection is understood as the action of 
finding the rules that are inconsistent with other rules; 
identification is the action of finding the rules that 
cause all the inconsistencies among the detected 
inconsistent rules (the faulty rules), whose removal 
produces a consistent rule set; and characterization is 
understood as the action of naming the identified 
inconsistent rules among a pre-established taxonomy of 
faults. 

In this paper we analyze the inconsistency 
characterization problem in firewall rule sets, and 
extend the complete formal inconsistency 
characterization given by Al-Shaer et al. [10] in order 
to characterize inconsistencies resulting from the 
clustering of rules, resulting in a complete one-to-many 
characterization. In addition, we identify the 
combinatorial part of the problem that causes the 
combinatorial explosion in combined diagnosis and 
characterization algorithms proposed by other authors. 
Then we propose a decomposition of the combinatorial 



problem in several smaller combinatorial ones. This 
effectively reduces the complexity of the problem. The 
proposed characterization process and algorithms are 
built on a previous heuristic diagnosis process that is 
worst case O(n2) time complexity [8].  

The paper is structured as follows. In section 2 
related works are presented and differences with our 
proposal are emphasized. Section 3 presents the 
analysis of the characterization problem and identifies 
the combinatorial part of it. In section 4 the 
characterization process with algorithms are proposed, 
explaining how the problem can be reduced to several 
smaller combinatorial ones. We conclude in section 5. 
 

2. Related Works 
 

The closest works to ours are related with 
consistency diagnosis in general network filters. In the 
most recent work, Baboescu et al. [12] provides 
algorithms to diagnose inconsistencies in router filters 
that are 40 times faster than O(n2) ones for the general 
case of k selectors per rule. Although its algorithmic 
complexity is not given, it improves other previous 
works [13, 14]. However, they preprocess the rule set 
and convert selector ranges to prefixes, and then apply 
the algorithms. This imposes the implicit assumption 
that a range can only express a single interval, which is 
true [8]. However, the range to prefix conversion 
technique could need to split a range in several prefixes 
[15] and thus the final number of rules could increase 
over the original rule set. Thus, results are given over 
the preprocessed rule set, which could be bigger and 
different from the original one. 

Other researchers have complemented the diagnosis 
process with a characterization of the faults with an 
established taxonomy [10]. As the following proposals 
treat the problem as a whole and the characterization 
algorithms are applied directly to the full rule set, the 

resulting worst case time complexity will be 
exponential in all cases (recall that characterization is 
NP, as it is going to be explained bellow). One of the 
most important advances was made by Al-Shaer et al. 
[4], where authors define an inconsistency model for 
firewall ACLs. They give a combined algorithm to 
diagnose and characterize the inconsistencies between 
pairs of rules. In addition, they use rule decorrelation 
techniques [2] as a pre-process in order to decompose 
the ACL in a new, bigger, one with no overlapping 
rules. This new rule set is different from the initial one, 
and the user is the responsible of mapping the rules of 
this rule set to the original one. Their model and 
corresponding algorithms can only diagnose and 
characterize inconsistencies between pairs of rules. 
Although the proposed characterization algorithm 
proposed by Al-Shaer is polynomial, the decorrelation 
pre-process imposes a worst case exponential time and 
space complexity for the full process. 

A modification to their algorithms was provided by 
García-Alfaro et al. [5], where they integrate the 
decorrelation and characterization algorithms of Al-
Shaer, and generate a decorrelated and consistent rule 
set. Thus, due to the use of the same decorrelation 
techniques, this proposal also has worst case 
exponential complexity. The resulting ACL is also 
bigger and different from the original one. However, 
García-Alfaro et al. provide a characterization 
technique with multiple rules. 

Ordered Binary Decision Diagrams (OBDDs) have 
been used in Fireman [9], where authors provide a 
diagnosis and characterization technique with multiple 
rules. A very important improvement over previous 
proposals is that they do not need to decorrelate the 
ACL, and thus, results are given over the original one. 
Note that the complexity of OBDD algorithms depends 
on the optimal ordering of its nodes, which is a NP-
Complete problem [6]. This results in a worst case 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 
R1 tcp 192.168.1.5 any *.*.*.* 80 deny 
R2 tcp 192.168.1.* any *.*.*.* 80 allow 
R3 tcp *.*.*.* any 172.0.1.10 80 allow 
R4 tcp 192.168.1.* any 172.0.1.10 80 deny 
R5 tcp 192.168.1.60 any *.*.*.* 21 deny 
R6 tcp 192.168.1.* any *.*.*.* 21 allow 
R7 tcp 192.168.1.* any 172.0.1.10 21 allow 
R8 tcp *.*.*.* any *.*.*.* any deny 
R9 udp 192.168.1.* any 172.0.1.10 53 allow 

R10 udp *.*.*.* any 172.0.1.10 53 allow 
R11 udp 192.168.2.* any 172.0.2.* any allow 
R12 udp *.*.*.* any *.*.*.* any deny 

 
Fig 1. Example rule set 

 



O(2n) time complexity with the number of rules, as 
other proposals. 

The combination of diagnosis and characterization 
in only one stage results in exponential algorithms that 
are applied to a big problem (the full rule set). 
Although optimal diagnosis and characterization are 
worst-case combinatorial problems [8], diagnosis can 
be used to split the characterization problem in several 
smaller ones [8]. Then, optimal or heuristic algorithms 
can be applied to these smaller problems. 

 
The main difference of these works with ours is that, 

previous to algorithm design, we have done an analysis 
of the consistency diagnosis and characterization 
problem in firewall rule sets. As a result, we proposed 
to divide consistency management in two sequential 
processes [8]: detection and identification (diagnosis) 
of inconsistent rules, and characterization of the 
diagnosis. We extend Al-Shaer inconsistency taxonomy 
[10] to characterize inconsistencies resulting from the 
clustering of rules, resulting in a complete one-to-many 
characterization. The analysis of the characterization 
problem enabled us to identify and isolate the 
combinatorial parts of it and improve the algorithmic 
complexity of the full process. An optimal 
characterization algorithm must analyze all possible 
solutions in order to find the optimal one. Since there is 
a trade off between optimally solving the problem in 
exponential time or using an approximation to the 
optimum, we propose a polynomial heuristic and 
algorithms that implement it that solve the 
characterization problem in worst case polynomial 
time. 

The presented algorithms are capable of handling 
full ranges in rule selectors without doing rule 
decorrelation, range to prefix conversion, or any other 
pre-process. Thus, results are given over the original, 
unmodified, rule set. However, our process does not 
cope with redundancies, because redundancy is not a 
consistency problem (it does not change the semantics 
of the rule set). 

To the best of our knowledge, this is the first time 
that the characterization problem has been divided in 
several smaller ones, and a polynomial heuristic 
algorithm has been proposed to solve it. It is also the 
first time Al-Shaer’s formal definitions have been 
extended to support a complete one-to-many 
characterization. A Java tool called Fast Firewall ACL 
AnalysiS Toolkit V2 (FFaaST V2) has been 
implemented and is available upon request. 

 

3. Analysis of the Inconsistency 
Characterization Problem 
 

Real life rule sets can be decomposed in two 
different subsets of rules (Figure 2 presents an example 
of some subsets of Figure 1 example). The first one is a 
set of consistent rules (Definition 3.1). The other one is 
formed by subsets of inconsistent rules, called ICIRs 
[8], with bold rules as ICIR roots (Definition 3.2). We 
shall now formalize a firewall ACL. 
• Let RS be a firewall ACL consisting of n rules, 

{ }1
, ...

n
RS R R=  

• Let 5, ,R H Action H=< > ∈ℕ  be a rule, where 

{ },Action allow deny=  is its action 

• Let [ ],1 ,
j

R k j n k≤ ≤  

{ }, _ , _ , _ , _protocol src ip src prt dst ip dst prt∈  

        be a selector of a rule Rj 
• Let ‘<’ and ‘>’ be operators which define the 

priority of the rules, where Ri < Rj means that then 
Ri has greater priority than Rj  and its action will be 
taken first, and vice versa 

 
Definition 3.1. Inconsistency. Two rules 

,
i j

R R RS∈  are inconsistent if and only if the 

intersection of each of all of its selectors R[k]  is not 
empty, and they have different actions, independently 
of their priorities. The inconsistency between two rules 
expresses the possibility of an undesirable effect in the 
semantics of the rule set. The semantics of the rule set 
changes if an inconsistent rule is removed. 

{ }

( , , ) 1 , ,

[ ] [ ] [ ] [ ],

, _ , _ , _ , _

,

i j i j

i jInconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠

⇔ ≠ ∅ ∧ ≠

∀ ∈

∩  

 
Definition 3.2. Independent Cluster of 

Inconsistent Rules, ICIR. An ICIR represents a 
cluster or collection of inconsistent rules as a tree. The 
root of the ICIR is the rule which has the greatest 
number of inconsistencies with other rules of the same 
cluster. By definition, the action of the ICIR root is the 
opposite of the actions of all of its children. Children 
rules are consistent between them.  

Let { }
1
, ...

n
CV R R= be a set of rules, then 

( , ) ( , )

, , ( , )

i i

i j i j

ICIR root CV R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔ ∀ ∈ • ∧

∀ ∈ ≠ • ¬
 

 



Definition 3.3. Diagnosis Set, DS. It is the set of 
rules that could be directly removed from the rule set in 
order to get a consistent one. It is formed by the root of 
all ICIRs. 

{ }
{ }

1

1

, ...,

( ), ..., ( )

Let  be the set of all ICIR of a given ,

then 

m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS RS

=

=

 

 
Fig. 1. Decomposition of a rule set 

 
Clustering rules is a necessary process in order to 

obtain complete and correct results for one to many 
characterization if there is a taxonomy of faults. There 
exist cases where doing no clustering could return 
incomplete and/or incorrect results. Figure 3(a) 
presents a three rule example where Rz is shadowed by 

x y
R R∪ . However, if no clustering is done, 

characterization would return that Rz is a generalization 
of Rx, and that {Ry, Rz} are correlated, which is not a 
correct result. In addition, clustering of rules with the 
same inconsistency is also very important in order to 
abbreviate results with no loss of information. The 
example of Figure 3(b) presents a generalization 
inconsistency. In this example, Rz is a generalization of 

x y
R R∪ . With no clustering, two generalization 

inconsistencies would be returned, gaining no 
information over the clusterized form. 
 
3.1. Characterization taxonomy of one to many 
inconsistencies 

A complete one to one inconsistency 
characterization was given by Al-Shaer [10]. Our 
definitions extend Al-Shaer work in order to 
characterize the diagnosis of an arbitrary number of 
rules with the same action versus one other. Our 
approach is also complete (as it is an extension of Al-
Shaer work) based on the relationships that can be 
established between the selectors of rules: equality, 
subset and superset. To be as realistic as possible, it is 

considered that each selector is a set of elements whose 
content can be expressed using the common syntax of 
the most used firewall languages, which have been 
previously analyzed in [1]. The syntax analysis has 
been omitted due to space constraints, but the result is 
presented in Figure 3. This figure represents, for each 
of the five typical selectors, the common syntax 
supported by IPTables, Cisco PIX, Checkpoint FW-1, 
BSD PF, BSD IPFW and BSD IPFilter. Note that all 
selectors except protocol permit the representation of 
one element, a continuous range of elements, or a 
wildcard (representing all possible elements of the set). 
The content of each selector is also bounded by the 
constraints imposed by the corresponding field of the 
TCP/IP header. Note that, although expressing ranges 
is possible for all selectors, ranges must be continuous. 
IP address ranges are expressed in CIDR form. 

 
 

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [10 80]

x

y

z

R port allow

R port allow

R port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(a) 

{ } { }
{ } { }
{ } { }

: [10 39]

: [40 60]

: [0 65535]

x

y

z

R port allow

R port allow

R port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

 

(b) 
Fig. 2. Rule clustering examples 

 
Selector Common Syntax Comments 

Source and 
Destination IP Address 

- IP 
- Block* 
- Wildcard 

* A block is a 
continuous range 

expressed in CIDR 

Protocol 
- Number 
- Wildcard 

 

Source and 
Destination Ports 

- Number 
- Range: [p1,p2]* 
- Wildcard 

* The range must 
be continuous 

Fig. 3. Common syntax for most used 
firewall languages 

 
• Shadow. A rule Ry is shadowed by another rule Rx, 

with Rx>Ry, if all of its selectors to or supersets of 
the selectors of Ry, and Rx and Ry have different 
actions.  

 
 



{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•
 

Shadow 

{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•
 

Exact shadow 
 

This definition can be extended to support a 
cluster of rules with the same action in Rx or Ry 
(but not in both). If Rx is a cluster of rules and Ry 
is a rule, then Ry is shadowed by Rx. Similarly, if 
Rx is a rule, and Ry is a cluster, then Ry are 
shadowed by Rx. It is only possible to form a 
cluster of rules if they can form a continuous range 
in all of its selectors. Cluster forming is shown in 
next section. 

• Generalization. It is the inverse of shadow respect 
to the priority. A rule Ry is a generalization of Rx, 
with Rx>Ry, if all of the selectors of Rx are subsets 
of the selectors of Ry, and both rules have different 
actions. Rx is usually considered an exception and 
not an error. Again, clusters can be formed. 

{ }

( )

[ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Generalization R

k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊃ ∧ ≠

∈

•
 

 
• Correlation. Two rules Rx and Ry are correlated if 

they have different actions, and selectors of Rx 
intersect with the corresponding selectors of Ry, 
but Rx and Ry do not have a shadow, exact shadow 
or generalization relation. Correlation is 
independent of rule priority. This definition can 
also be extended to clusters of rules. 

{ }

( )

[ ] [ ] [ ] [ ]

( [ ] [ ]) ( [ ] [ ])

, _ , _ , _ , _

,
x y x y

x y x y

x y x y

R R RS Correlation R R

k R k R k R Action R Action

R k R k R k R k

k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔

∀ • ∧ ≠ ∧

¬ ⊆ ∧ ¬ ⊃

∈

∩
 

 
• Redundancy. A rule Rx is redundant to another rule 

Ry, with Rx>Ry, if all of its selectors are subsets or 
equal to the selectors of Rx, they have the same 
action, and if there is no rule between Rx and Ry 
which is correlated or subset of Rx. Redundancy of 

Ry respect to Rx is symmetrical. Redundancy is not 
really an inconsistency, since if all redundant rules 
are removed, the semantic of the rule set does not 
change. 

 

{ }

( )

[ ] [ ] [ ] [ ]

( ) ( )

, _ , _ , _ , _

,

,

,

x y x y x

x y x y

z x z y

x z z

R R RS R R Redundant R

k R k R k R Action R Action

R RS R R R

Correlation R R Generalization R

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊆ ∧ =

¬∃ ∈ > > •

∨

∈

•
∧

 

{ }

( )

[ ] [ ] [ ] [ ]

[ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x y x

x y

R R RS R R Redundant R

k R k R k k R k R k

R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔

∀ • ⊂ ∨ ∀ • = ∧

=

∈

•

 

 

4. Inconsistency Characterization Process 
 
The characterization process explained in this 

section takes as input the inconsistency diagnosis as 
ICIRs [8]. The proposed characterization process is 
divided in two sequential stages. First, the children of 
each ICIR are grouped in different clusters. Second, 
clusters of each ICIR are characterized against its ICIR 
root. 

In the diagnosis process, the rule set of Figure 1 is 
transformed into several ICIRs. The characterization 
process is also divided in two sequential stages. At the 
first stage, children of each ICIR are joined in different 
clusters. At the second stage, each of these clusters are 
characterized against the ICIR root. 

 

R2 R3

R4

R9

R12

R10 R11

R8

R3R2 R6 R7

ICIR 1 ICIR 2

R5

R6R7

ICIR 3

R1

R3R2

ICIR 4 ICIR 5

Figure 4. Uncharacterized diagnoses (result of 
the consistency based diagnosis process) 



4.1. Stage 1. Cluster construction (rule join) 
 

At the first stage, for each ICIR, children are joined 
in different clusters in order to abbreviate the returned 
characterization for that conflicting rule (ICIR root). 
These clusters are formed by rules that are subsets, 
supersets, equal, or form a continuous space for all 
selectors. The clusters represent the rules that share the 
same inconsistency with their ICIR root. 

By definition, characterization depends on rule 
priority since the characterization is based on set 
operations. Rules that come before or after root 
generate different kinds of inconsistencies with it. For 
example, if root is shadowed by a cluster of rules that 
precede it, then rules that go after root cannot 
participate in the same inconsistency since, by 
definition, rules that cause a shadowing inconsistency 
must precede root.  For this reason, rules that generate 
a generalization conflict must be in another cluster. 
However, it could be possible that root causes a 
shadowing inconsistency with a cluster of rules that go 
after it. In this case, we say that the rules in the cluster 
are shadowed by root. The same is applicable for 
generalization, as it is the inverse of shadow respect to 
rule priorities. 

In conclusion, due to the priority dependency of 
characterization definitions, it is possible to simplify 
the problem even more, dividing ICIR rules in two 
lists: rules that come before and rules that go after root. 
Then, clustering is done independently for each of 
these two lists. Division process is in O(c) with the 
number of children. 

Before presenting rule joining algorithm, it is 
necessary an analysis of the conditions under which 
joining of rules can be done. 
 
4.1.1. Firewall language syntax. In general, clustering 
is possible if all rule selectors permit multiple values, 
ranges and/or wildcards in their syntax. Fortunately, 
firewall languages support ranges and/or wildcards in 
all selectors, but only continuous ranges (Figure 3). 
This enables the clustering of rules for all selectors. 
 
4.1.2. ICIR Structure. In addition, an ICIR must 
comply with: 
1. It must have at least two children. In other case, 

there are no rules to be joined. 
2. At least one selector of ICIR root must be a range of 

values or a wildcard. The joined rules in a cluster 
must form a continuous range (with or without 

Algorithm 1. Initialization Algorithm 2. Cluster construction 
1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

16 16 

17 17 

18 18 

19 19 

20 20 

21 21 

22  

23  

24  

25  

26 

Func initialization(in Rule: root, List of Rule: children) 

Alg 

    if root.DstPort().isRangeOrWildcard() AND  

        children.size()>1 { 

            sortAscendingByDestinationPort(children) 

            if root.Priority()>children.last().Priority() OR 

                root.Priority()<children.first().Priority() { 

                    clusterize(root, children) 

            } 

            else { 

                List before = Rules with priority > root 

                List after = Rules with priority < root 

                clusterize(root, before) 

                clusterize(root, after) 

            } 

    else { 

        doPairwiseCharacterization(root, children) 

    } 

End Alg 

 

 

Func doPairwiseCharacterization(in Rule: root, List of 

Rule: children) 

Alg 

    for each i=1..children.size() 

        doClassification(root, children.get(i)) 

End Alg  

Func clusterize(in Rule: root, List of Rule: children) 

Var 

    Rule cluster 

Alg 

    cluster = children.first() 

    for each i=2..children.size() { 

        if isClusterizable(cluster, children.get(i) AND  

            i<children.size()) { 

                cluster.joinWith(children.get(i)) 

        } 

        else if isClusterizable(cluster, children.get(i) AND  

                   i==children.size()) { 

                       cluster.joinWith(children.get(i)) 

                       doClassification(root, cluster) 

        } 

        else { // Not clusterizable 

            doClassification(root, cluster) 

            // re-initializes for a new cluster 

            cluster=children.get(i)  

        } 

    } 

End Alg 

 



overlapping) and must be subset, superset or equal 
the corresponding root selector. 

3. For root selectors that do not have multiple values, 
rules in the cluster must have the same value as root, 
or at least one of them must be a wildcard. 

 
4.1.3. Polynomial heuristic. Traditionally, the 
diagnosis and characterization of firewall rule sets have 
been solved in only one stage, resulting in a worst case 
O(2n) time complexity process with the number of rules 
in the rule set. Separating diagnosis from 
characterization has produced the effect of dividing the 
combinatorial part of the problem in several much 
smaller ones, which effectively reduces the 
computational complexity. Since ICIRs represent 
independent clusters of inconsistencies, they can also 
be characterized independently, effectively reducing 
the problem complexity: the combinatorial problem 
have been reduced from the entire rule set to several 
smaller ICIRs. However, there is still a trade off 
between optimally solving the problem in exponential 
time, or using an approximation to the optimum. In 
order to show the feasibility of this approach, in this 
paper we propose a worst case polynomial heuristic. 
The heuristic is used when clustering ICIR children. It 
only takes into account one selector for rule clustering, 
and does not try to check all possible unions between 
all selectors. To be restrictive, a selector with a narrow 
domain should be chosen, because it generally 
guarantees a good approximation to the optimum. In 
real rule sets, one of the selectors with the narrower 
domains is destination port. Although this entirely 
depends on the particular rule set, destination port is 
usually expressed as a unique value in the vast majority 
of real rule sets. Other heuristics could be considered. 

Then, for each ICIR, their children are clusterized in 
several groups by destination port forming a continuous 
range. This task can be done in linear time if children 
are ordered by destination port. The first cluster is 
formed with the first children. Then the next children 
should be added only if its destination port selector can 
form a continuous range with the cluster, and if the rest 
of selectors are equal, subset, superset or wildcard. If it 
cannot be joined, then the cluster is closed and a new 
one is formed with that child and the process begins 
again until there are no more children. 

Note that although characterization definitions are 
complete, the algorithms are not, since they are an 
approximation. 
 
 
4.1.4. Cluster construction algorithm. The first part 
of the process checks ICIR root structure and prepare 
children for clustering (Algorithm 1). Then, it identifies 
the rules that can be united with others in each ICIR 
(Algorithm 2). 

Algorithm 1 takes as input the ICIR root and 
children, and first checks if the ICIR has a valid 
structure for clustering, as explained in a previous 
subsection. Then it sorts children by destination port in 
ascending order, as a preparation for the heuristic. 
Then, the algorithm checks if root is the last or first 
rule or is in between. If root is in between it divides 
children in two lists: rules that come before and rules 
that go after root, as also was explained before. 

Finally, if clustering is possible, it calls Algorithm 2, 
and if not, it calls directly the inconsistency 
characterization (Algorithm 3). All operations of 
Algorithm 1 run in constant time except 
sortAscending(), which is in O(clogc) where c is the 
number of children, list copy operations and 
doPairWiseCharacterization() which are in O(c). By 
the sum rule, time complexity of this algorithm is in 
worst case O(clogc) with the number of children. These 
algorithms must be run for each ICIR. 

Algorithm 2 also takes as input ICIR root and 
children. This algorithm implement the heuristic as it 
has been described in the previous section. All 
operations inside the loop run in constant time and the 
loop is run for each child, c. Algorithm 3 is in O(c). 
 
4.2. Stage 2. Inconsistency characterization 
 

As clusterization has been done in the first stage of 
the process, the inconsistency characterization results a 
very easy task. Characterization follows directly the 
extended definitions proposed in an earlier section. 
Algorithm 3 takes as input ICIR root and the clusters of 
that ICIR. Then, it checks each type of inconsistency 
using the equality, subset and superset operations. Note 
that characterization is different depending on the 
relative priority of the ICIR root (if it is the first or last 
rule). All operations of Algorithm 3 run in constant 
time. Result is returned as a text string. 



The combined worst case complexity of the three 
algorithms using the proposed heuristic is, by the sum 
rule, the maximum of the complexities of the three 
algorithms, T(c) = O(clogc)+O(c)+k = O(clogc). 
These algorithms must be run for each ICIR and thus, 
the final time complexity is in O(h*clogc), where h is 
the cardinality of the Diagnosis Set (or the number of 
ICIRs) and c is the number of children of each ICIR. 
Note that the combinatorial part of the inconsistency 
characterization problem is only the clusterization 
(where the heuristic has been used), and not the 
characterization itself. 
 
4.3. Example 
 

Algorithms take as input the ICIRs presented in 
Figure 4 in no particular order. Suppose that Algorithm 
1 receives ICIR1 as input. As destination port of R8 is 
a wildcard, children are ordered by destination port. 
Then, as root is the rule with less priority of the ICIR, 
the algorithm directly calls clusterize() (Algorithm 2). 
Algorithm 2 receives the ICIR root and ordered 
children. It creates the first cluster with the first child 
(R6). Then it tries to join the next child, R7, to the 
cluster and, as it complies to the restrictions (R2 and 
R7 destination ports are equal), it joins it. It repeats the 
check with R2 and, as R2 destination port is not a 
subset, superset, wildcard or can form a continuous 
range with the cluster destination port (21), then the 

cluster is closed and characterization is called. Then, a 
second cluster is created with R2. Algorithm tries the 
join of R3 with the cluster (currently formed only by 
R2), and it joins it (R2 and R3 destination ports are 
equal). Since there are no more children, the second 
cluster is closed and characterization is called. For both 
clusters {R6,R7} and {R2,R3} the characterization 
algorithm returns that R8 is a generalization of both of 
them, since all their selectors are subsets of R8. 

The process applied to the other ICIRs is similar 
and can be easily followed. Optimal solution is 7 
inconsistencies, but the proposed algorithms returns 10: 
• ICIR1. Rule R8 is a generalization of {R2,R3} and 

of {R6,R7} 
• ICIR2. Rule R12 is a generalization of {R9,R10} and 

of {R11} 
• ICIR3. R6 is a generalization of R5, and R7 is in 

correlation with R5 
• ICIR4. R2 is a generalization of R1, and R3 is in 

correlation with R1 
• ICIR5. R2 and R3 are shadow of R4 
 

5. Conclusions and Future Works 
 

In this paper, we have analyzed the inconsistency 
characterization problem in firewall rule sets. We have 
proposed complete and formal inconsistency 
characterization definitions for clusters of rules (a one-
to-many characterization). 

The analysis of the characterization problem 
enabled us to identify and isolate the combinatorial part 
of it. Since there is a trade off between optimally 
solving the problem in exponential time or using an 
approximation to the optimum, we have proposed a 
polynomial heuristic and algorithms that solve the 
characterization problem in worst case polynomial 
time. Algorithms are capable of handling full ranges in 
rule selectors without doing rule decorrelation, range to 
prefix conversion, or any other pre-process. Results are 
given over the original, unmodified, rule set. 

Anyway, we showed that the combinatorial 
problems to be solved are very small due to the 
decomposition made in the diagnosis process, which 
has effectively reduced a worst case O(2n) problem in 
several O(2c) ones, with n>>c. For that reason we 
expect that an optimal characterization algorithm is 
going to improve the other reviewed algorithms. A Java 
tool called Fast Firewall ACL AnalysiS Toolkit V2 
(FFaaST V2) with the full diagnosis process is 
available upon request. No performance analysis has 
been done due to the fact that, to the best of our 
knowledge, this is the first approximated solution to 

Algorithm 3. Inconsistency Characterization 
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Func doClassification(in Rule: root, Rule: cluster; out 

String: conflictType) 

Alg 

    if (cluster == root) 

        conflictType = “Root is exactly shadowed by union” 

   else if (root.getPriority()>cluster.getLastRulePriority()){  

        else if (superset(cluster, root)) 

            conflictType = “Root is shadowed by cluster” 

        else if (subset(cluster, root)) 

            conflictType = “Root is generalization of cluster” 

        else 

            conflictType = “Root and cluster are correlated” 

    } 

    else { // Root is first rule 

        if (superset(cluster, root) 

            conflictType = “Cluster is generalization of root” 

        else if (subset(cluster, root) 

            conflictType = “Cluster is shadowed by root” 

        else 

            conflictType = “Root and cluster are correlated” 

    } 

    return conflictType 

End Alg 

 



this problem. A comparison with an optimal one does 
not make sense from the performance point of view. 

However, our approach has some limitations that 
give us opportunities for improvement in future works. 
The most important one is the design of optimal 
algorithms, and compare its performance with the 
reviewed algorithms. In addition, since the diagnosis 
process does not cope with redundancies, the 
characterization algorithms cannot characterize it. The 
support of redundancy is another goal. 
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