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ABSTRACT

NETWORK-WIDE MONITORING AND DEBUGGING

Nofel Yaseen

Vincent Liu

Modern networks can encompass over 100,000 servers. Managing such an extensive

network with a diverse set of network policies has become more complicated with the

introduction of programmable hardwares and distributed network functions. Further-

more, service level agreements (SLAs) require operators to maintain high performance

and availability with low latencies. Therefore, it is crucial for operators to resolve

any issues in networks quickly. The problems can occur at any layer of stack: net-

work (load imbalance), data-plane (incorrect packet processing), control-plane (bugs

in configuration) and the coordination among them. Unfortunately, existing debug-

ging tools are not sufficient to monitor, analyze, or debug modern networks; either

they lack visibility in the network, require manual analysis, or cannot check for some

properties. These limitations arise from the outdated view of the networks, i.e., that

we can look at a single component in isolation.

In this thesis, we describe a new approach that looks at measuring, understanding,

and debugging the network across devices and time. We also target modern stateful

packet processing devices: programmable data-planes and distributed network func-

tions as these becoming increasingly common part of the network. Our key insight is

to leverage both in-network packet processing (to collect precise measurements) and

out-of-network processing (to coordinate measurements and scale analytics). The re-

sulting systems we design based on this approach can support testing and monitoring

at the data center scale, and can handle stateful data in the network. We automate

the collection and analysis of measurement data to save operator time and take a step
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towards self driving networks.
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CHAPTER 1

Introduction

Data centers like those of Google, Microsoft, Amazon, etc. underpin much of today’s

computing. Indeed, it is rare to find any modern application or service — from search

engines to driverless cars — that does not require some type of network connection.

The applications generate billions of requests every day to these data centers, where

they are processed by thousands of servers and network devices.

As the size of networks grows, programmable networks and distributed network func-

tions have emerged as key technologies to make networks more flexible. In pro-

grammable networks, operators write data plane code using domain-specific code like

P4 [39] and the compiler generates an efficient implementation for the target de-

vice. Whereas distributed network functions are implemented entirely in software,

distributed across a pool of servers, and replicate state for fault tolerance.

These technologies are opening doors to better support and scale data center appli-

cations, but they are also making the networks more complex. In such a large com-

plex network environment, problems are inevitable. Ideally, operators would have

self-driving networks that would be fully automated while using minimal resources

(CPU, bandwidth, memory, etc.). The network itself could monitor, detect, and de-

bug all problems immediately. These networks could also predict application resource

usage and network performance trends to avoid problems that could occur in the fu-

ture, schedule configuration, and request optimal capacity upgrades. However, such

self-driving networks are too far in the future.

Currently, operators need to think of many possibilities to troubleshoot network prob-
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lems. For example, there could be many reasons for a packet drop: load imbalance,

network congestion, misconfiguration (eg. incorrect forwarding rule) leading to black

holes, malfunction of devices (eg interface flapping), or a combination of them. These

problems lead to high job completion times, chronic stragglers, etc. Making prob-

lems worse, the data centers continue to grow in the number of processing units (a

large number of servers), high bandwidth usage (terabytes per data center), diverse

network policies (QoS, routing), and flexibility (programmable data planes, network

functions).

Operators collect measurements from various parts of the network but focus on a sin-

gle device or path in isolation as data lacks precision and/or coordination. Even within

network devices, operators tend to focus on either the data-plane or the control-plane.

New network devices have distributed and/or stateful properties that are not visible

in such isolation. Therefore, we need to approach monitoring so we can measure and

understand across devices and time; and we can check for properties that span differ-

ent layers. Hence, this thesis argues that, to better diagnose issues in modern

networks, operators should leverage both (1) in-network packet process-

ing to collect precise measurements and (2) out-of-network processing to

coordinate measurements and scale analytics.

In this chapter, we shall go through the network infrastructure, enumerate recent

trends, limitations and our contributions to network monitoring and debugging.

1.1. Network Infrastructure

Networks play a huge role in enabling smooth running of various applications. These

applications use networks to share resources, distribute computation, make backups,

etc. They have various requirements for example, there are bandwidth intensive (e.g.

Big Data), delay sensitive (e.g. Web Search) or even both (e.g. Video Streaming).

2



To efficiently scale the applications, operators need to design their networks carefully.

Network designing requires many decisions such as topology, switches, control plane

functionality, end-hosts role, etc.

Switches: For cost and compatibility reasons, large networks mostly use commodity

Ethernet switches that have limited resources [18]. These switches have a large port

capacity (32/64/128) and can process up to 40G/100G per port. For such fast packet

processing, switches use TCAM (Ternary Content Addressable Memory) to store

forwarding rules. When a packet arrives, a switch can lookup the forwarding rules

in parallel using TCAM in a single cycle to decide the action. Due to the memory

constraints and time constraints, commodity switches only allow few operations per

packet, e.g. forwarding rule, ACL, QoS, etc.

Control Plane: In commodity switches, the control plane resides alongside the data

plane. The forwarding rules are a function of control plane configuration, and path

information collected from protocols like OSPF that computes least-cost paths and

BGP that exchange routing and reachability information.

With the advent of OpenFlow, SDNs have gathered a lot of attention that decouples

the control plane from the forwarding engine. The control plane is moved to a logically

centralized controller. The controller is then responsible to install forwarding rules

in the data plane. However, a significant portion of switches still relies on the former

configuration-based approach.

End-hosts: End-hosts are the source and sink for most of the data traffic flowing

through the network. Traditionally, their influence on the network has been limited

by just having using congestion control protocol to manage the amount of data being

sent into the network. However, within data centers, operators use end-hosts for

monitoring traffic and managing forwarding rules as well.
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1.2. Trends in Modern Networks

Programmable Switches: One of the most recent innovations in network hardware

is programmable switches. Programmable switches use a language like P4 that has

packet processing abstractions, e.g. headers, parsers, control, tables, actions, and de-

parsers. In the latest version, P4 16, there are 6 programmable blocks: ingress parser,

ingress control, ingress deparser, egress parser, egress control, and egress deparser.

The control has match-action tables, counters, registers, and stateful ALUs. There

are also two platform-dependent blocks: the packet replication engine (PRE) that

is placed between the ingress/egress pipeline and the buffer queuing engine (BFE)

that is placed at the end of the egress pipeline. These are proprietary hardware

implementations and vary by each vendor.

In P4 switches, packet first arrives at the ingress pipeline and the ingress parser

transforms the bits into headers according to the programmed parser. After parsing,

packet is processed using ingress control before going to ingress deparser. Then

packets go to PRE, where vendor specific functions are present like clone, resubmit,

etc. After PRE, packet is processed by egress pipeline (similar to ingress) and finally

packet is transformed back into bit representation before sending to BFE that sends

out the packet to the next hop.

Network Functions: Networks Functions (NFs) are software implementations of

middleboxes (e.g., NATs, firewalls, and load balancers) that play a critical role in

modern networks. Operators deploy these on several clusters to handle the load at

the data center scale. Generally, each network administration deploys its own custom

implementations of NFs, but there is also some work in designing a reusable network

stack for NFs [92]. NFs can play a variety of roles in the network: scan a connection for

malicious behavior, serve content from a cache inside the network to reduce bandwidth

costs, or compress data to provide better performance on low-resource mobile devices.
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1.3. Problems and Contributions

This section provides discussion on the two problems addressed in this thesis. It

covers recent works in network monitoring and debugging, their limitations, outlines

the thesis contributions.

Problem 1: Existing methods of monitoring at device or path level metrics are in-

sufficient to measure and analyze network-wide behaviour.

There have been many recent solutions to collect and process data from various parts

of the network for diagnosis, but they don’t provide a holistic picture of the network

Path-level and device-level metrics form the foundation of today’s measurement tools.

Traditional tools like switch counter polling and packet sampling target individual

entities in the network. Comparison of measurements of different entities is difficult

beyond just averages and long-term behavior. Slightly better are path level metrics

like those gathered at the end host [196], through Explicit Congestion Notification

(ECN) [20], or In-band Network Telemetry (INT) [104]. These path-level metrics

provide similar data as counters and packet sampling, but on the level of entire

paths; measurements from different paths are, however, still only comparable at a

coarse granularity. Thus, when faced with questions about network-wide behavior,

operators are forced to approximate the answer using tangential, but more easily

collectible measurements.

Subsequently, identifying prevalent network-level patterns typically requires a signifi-

cant amount of manual effort and specialized analyses. Existing tools limit to capture

flow- and switch-level trends (e.g., heavy hitter analysis [194], network tomography

[77] or the vast array of network analytics suites on the market [1, 2, 3, 4, 5, 6, 79]).

For instance, to determine the presence of synchronized requests/responses, an op-

erator might need to instrument the start and stop times of all flows in the system,
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correct for the time drift of different machines, compute the cluster tendencies of

the data (e.g., with a Hopkins statistic or heuristic), and distinguish it from all-to-all

traffic by examining the sources and destinations of synchronized flows. To determine

whether this pattern is a particularly common one would require additional analyses.

Contributions. This thesis calls for a different approach in collecting and processing

measurement data. As the importance and size of networks grow, making the best out

of the underlying hardware has far reaching economic and environmental consequence.

Programmable switches allow the distribution of responsibilities of monitoring to data

plane and control plane. The data plane can perform extremely fine-grained in-band

processing of network traffic, but is fundamentally limited in the type of computation

and resources available. Augmenting the data plane is a control plane with the

opposite tradeoffs.

Towards this directions, this thesis presents Speedlight and tpprof, both of them to-

gether collect fine-grained network-wide data and analyze the data in real time to find

the most common traffic patterns. Speedlight is a fine-grained, accurate, and precise

measurement primitive that operates on the scale of an entire network. It captures a

set of local measurements, called network snapshot, that together provide a coherent

image of the entire network data plane at nearly a single point in time. Through

coordination, network snapshots are able to guarantee both causal consistency (i.e.,

that the measured values are coherent) and approximate synchronicity (i.e., that the

measurements were taken near-contemporaneously).

tpprof builds on the measurements from Speedlight to identify the most common

traffic patterns in the network. We introduce two abstractions, network states and

traffic pattern subsequences, that together enable network operators to easily describe

and reason about common traffic patterns. tpprof then uses domain-specific algo-

rithms to rank both networks states and sequences. Finally, there is a simple grammar
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for describing traffic patterns and introduce an algorithm that automatically identifies

approximate occurrences of known traffic patterns within network traces.

Problem 2: Existing tools are insufficient to test or verify the full-stack of deployed

latest stateful packet processors adequately.

As networks grow, operators are increasingly deploying new technologies like network

functions and programmable switches. They offer flexibility and computation in the

network, but also make the network more complex. They are an emerging bottleneck

to correctness and availability.

For network functions, existing work suggest using static verification to prove correct-

ness of distributed systems [81, 103, 125, 144, 178, 185, 188, 192]. While powerful, the

need to reason about every possible interleaving of inputs and control flows presents a

significant obstacle to the application of these techniques in today’s network functions.

Attempting to explore the full space of control flow paths often leads to state/path

explosion [103, 125, 178]. Runtime verification is alternate approach that only test

inputs and control flows that are seen in practice, thus improving scalability and en-

abling verification of actual deployments running over actual data. However, today’s

runtime verifiers cannot be applied as-is to deployed network functions. The challenge

(for network functions) is the need, at runtime, to: (1) reason about the coordination

between events issued at different locations, (2) efficiently aggregate global state after

each event, and (3) scale sub-linearly with the size of the original system.

To reduce bugs in programmable switches, recent work has suggested static verifica-

tion to prove the correctness of P4 programs [59, 119, 65]. For pure, stateless data

plane programs, static verification is often effective since there are no complex pointer-

based data structures or loops, making analysis both more accurate and tractable.

However, real forwarding behavior depends on many other components: the control

plane, match-action rules, the compiler translation, the switch state including regis-
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ters, and vendor specific hardware and compiler. There is parallel work that fuzz test

programmable switches that allows a developer to check the entire device. Prior fuzz

testing tools for P4 [140, 164, 163] generate input in software, and therefore severely

limit the number of test cases.

Contributions. This thesis takes steps to improve the runtime verification for net-

work functions and fuzz testing of programmable switches. We build on the key

insight to collect measurement data at line rate and use off-path CPUs for flexible

analysis and computation. We build Aragog and FP4 to target network functions

and programmable switches respectively.

Aragog is a scale-out, runtime verification tool for network functions that provides a

simple, but expressive language for describing violations of invariants, with a focus

on supporting network functions. Examples of network-centric language features that

are found in Aragog ’s Invariant Violation (IV) specifications, but that are uncom-

mon in other runtime verifiers are support for properties that are parametric over the

“location” of events, properties that reference stateful variables, the ability to exe-

cute partial matches over packet fields, and support for temporal predicates. Aragog

translates these IV specifications to a set of symbolic automata that can efficiently

verify the current global state of the system. In addition, to ensure that the system

can scale out to a near-unlimited number of machines.

FP4 , a greybox fuzz testing framework for P4-programmable network devices that

is both (a) full-stack and (b) line-rate. FP4 feeds semi-random packets to real

programmable switches to attempt to attempt to trigger violations of programmer-

specified assertions. The switches are purposely kept as faithful as possible to their

production deployments and run instrumented versions of their original P4 programs

and control planes
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1.4. Organization

In the remainder of the thesis, we will dive into each of the four systems that I built

to address the above problems. At the end there is related work and conclusion.
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CHAPTER 2

Synchronized Network Snapshots

2.1. Introduction

As networks continue to grow in size and bandwidth, a detailed understanding of their

overall behavior is increasingly difficult to come by. Consider the question: does my

network’s load balancing protocol balance the network’s load? A definitive answer to

this question (and others like it) is out of the scope of traditional measurement tools.

In order to answer it, we would need visibility into the fine-grained behavior of the

entire network. Instead, the target of traditional tools like switch counter polling and

packet sampling are individual entities in the network. Comparison of measurements

of different entities is difficult beyond just averages and long-term behavior. Slightly

better are path-level metrics like those gathered at the end host [196], through Ex-

plicit Congestion Notification (ECN) [20], or In-band Network Telemetry (INT) [104].

These path-level metrics provide similar data as counters and packet sampling, but

on the level of entire paths; measurements from different paths are, however, still only

comparable at a coarse granularity.

Thus, when faced with questions about network-wide behavior, operators are forced

to approximate the answer using tangential, but more easily collectible measurements.

In the case of load balancing, they might redefine the definition of balance to a purely

local metric (e.g., monitoring packet drops or buffer utilization for ‘high’ values) or

look only at average load. Similar workarounds exist for most questions an operator

might ask [196, 134, 16], but these approximations can be misleading, especially in

networks with bursty load and/or high capacity [193]. The design of network switches,
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architectures, and protocols depend on understanding network behavior both in detail

and at a network-wide scale.

This dissertation presents the design of a fine-grained, accurate, and precise mea-

surement primitive that operates on the scale of an entire network. The goal of our

primitive is the capture of a Synchronized Network Snapshot : a set of local measure-

ments that together provide a coherent image of the entire network data plane at

nearly a single point in time. Enabling our work is a recent trend toward highly pro-

grammable switch data and control planes. We leverage these tools to implement a

system, Speedlight, for taking synchronized network snapshots on Wedge100BF-series

switches. The implementation uses P4 and the code is open source.1

Compared to more traditional measurement primitives, synchronized network snap-

shots are a fundamentally distributed operation—one that involves tight coordination

of the control and data planes of multiple network devices. Through coordination,

network snapshots are able to guarantee both causal consistency (i.e., that the mea-

sured values are coherent) and approximate synchronicity (i.e., that the measurements

were taken near-contemporaneously). The primitive itself is agnostic to the type of

local measurement and supports the collection of any variable accessible from the data

plane: counters, packet samples, switch state, queue depth, etc. It is also amenable

to partial deployment.

At its core, our system is inspired by distributed snapshot protocols [45, 107]. In a

classical distributed snapshot, a snapshot initiator sends out a message that propa-

gates among a set of distributed nodes to cause them to (without stopping the system

or synchronizing clocks) take snapshots of their local state. The guarantee provided

by these protocols is that the snapshot creates a causally consistent partition of the

system’s events. For any event e that is ‘pre-snapshot’, any event that can be con-
1https://github.com/eniac/Speedlight
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strued as causing e is also pre-snapshot. In the context of networks, this might mean

that if a snapshot of queue depth captures a packet p in a queue q, that p will not

be counted as part of any other queue, and furthermore that the effects of every send

and receive that led to p being in that particular queue at that particular time are

also included in the snapshot. For that reason, distributed snapshots are an attractive

abstraction; however their application to high-speed networks carries a few challenges.

First, while traditional snapshots provide a set of measurements that could have hap-

pened simultaneously, one of their primary criticisms is that they do not provide any

guarantee of how close in time the measurements occurred. Second, snapshot pro-

tocols often make strong assumptions about the system, e.g., that nodes are single-

threaded and capable of arbitrary computation, and that they are connected via reli-

able FIFO channels. Real switches, on the other hand, are highly parallel, extremely

limited in their data plane processing capabilities, and exhibit non-FIFO behavior

(e.g., prioritization, packet re-circulation, etc.). It can be difficult to adapt certain

functionality to programmable data planes [168, 161], and distributed snapshots are

no exception.

The key insight of Speedlight is that modern switches are two-level devices. The

data plane can perform extremely fine-grained in-band processing of network traffic,

but is fundamentally limited in the type of computation and resources available.

Augmenting the data plane is a control plane with the opposite tradeoffs.

Speedlight therefore splits the responsibility of taking snapshots such that the data

and control planes each mitigate the weaknesses of the other. At a high level, we first

break the data plane of each switch into small, simple components that obey single-

threaded and FIFO assumptions. The snapshot implementation at each of these data

plane components is not fully featured, but provides two key properties: (1) it allows

for multiple simultaneous snapshot initiators in the style of [170], and (2) it guarantees
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consistency and correctness in all cases, regardless of data plane limitations. The

control plane CPU is then responsible for the global, PTP-coordinated initiation of

a snapshot at all data plane components, as well as the stitching together of results.

The end result of our system is that all of the individual measurements in a synchro-

nized network snapshot are not only consistent, they are guaranteed to occur almost

contemporaneously. Our current implementation guarantees a drift of at most 10s of

microseconds (less than a single RTT in most cases); drift can be decreased further us-

ing more advanced time synchronization techniques [110]. In addition to presenting a

detailed design and implementation, we demonstrate the primitive on real workloads.

To summarize, our work makes the following contributions:

• We present a Synchronized Network Snapshot algorithm for the collection of dis-

tributed state within the data plane of a network. Our design provides strong

guarantees regarding both the semantics of the measured values and their time-

liness.

• We then present the design and implementation of Speedlight, a practical real-

ization of the Synchronized Network Snapshot algorithm. Our prototype, built

for Wedge100BF-series switches, is able to achieve microsecond-level synchro-

nization of global network snapshots.

• Finally, we use our system to measure real workloads running on our testbed.

This measurement study demonstrates both feasibility and usefulness of our

approach.

2.2. Background and Motivation

Network measurement is a method through which we seek to understand network

behavior. This can be in the context of designing new protocols/architectures, eval-

uating existing ones, or diagnosing issues in live networks. Over the years, a wide
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range of network measurement tools and analyses have been created to assist in the

aforementioned tasks.

Measuring path-level properties. One common approach is the use of end-to-end

or flow/path-level measurement tools. Extremely flexible, these tools enable observers

to evaluate, from the network edge, the aggregate effect of the network in the context

of application-level measures like latency, throughput, and drop rate. An advantage

to this approach is that it accurately reflects the overall experience of application

traffic. They also often do not require additional network support, although there

are recent exceptions [104, 20]. Though effective for some use cases, edge vantage

points typically lack visibility into fine-grained network behavior and details of the

network’s structure [134].

Measuring devices. A much more fine-grained approach is to measure individual

network components directly. This typically takes the form of counters or packet

sampling/mirroring, but recent proposals have explored the use of more complex

metrics like flow-based queries, heavy-hitter analysis, and TCP-level statistics [134,

123, 175, 184]. Direct measurement is precise, and with sufficient device support,

quite expressive.

2.2.1. Whole-network Measurement

Path-level and device-level metrics form the foundation of today’s measurement tools.

Unfortunately, by themselves both approaches typically provide little to no guarantees

about the relationship between measurements, or the effect of clock drift and other

asynchronous behavior.

For bursty and/or high-capacity networks, even small amounts of unattended asyn-

chronicity can lead to large inaccuracies in measurement. As an illustrative example,

consider a datacenter network. A good NTP accuracy within a LAN is 1ms; in con-
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trast, typical datacenter RTTs are an order of magnitude lower, and there is evidence

that traffic bursts can be even shorter (O(10µs)) [193]. In effect, for any two measure-

ments of network behavior at different locations, their relationship is both tenuous

and difficult to bound. This inaccuracy will only grow as network speeds increase.

Even within a single router, synchronized information is not always available. Coun-

ters may be on different line cards and most counter polling mechanisms are not

optimized for polling more than one counter at a time. Without driver-level modifi-

cations, polling a single counter on a modern switch typically takes on the order of

1ms [193].

For the above reasons, measurements are not often compared directly. Instead, when

trying to examine network-wide behavior, most frameworks aggregate individual mea-

surements, typically using statistical analysis over relatively long time periods so as

to skirt the issue of unsynchronized clocks. Averaging and summation are particu-

larly common mechanisms. An observer can compare average utilization of multiple

components to determine how they differ over a given time span. They can also use

a total path-level drop count in combination with network tomography to pinpoint

lossy components. Network operators have become creative in their techniques to

obliquely measure the whole network; however, as we will see in the next section,

there are still fundamental limitations to existing tools.

2.2.2. A Case for Consistency

To illustrate the importance of consistent whole-network measurement, imagine we

have the simple network depicted in Figure 2.1. The network consists of two ingress

routers (a and b) connected to two egress routers (x and y) in an asymmetric fashion.

Even for this simple case, many critical questions about network behavior are difficult

to answer.
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(a) ‘Balanced’ Queues
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x y

(b) ‘Unbalanced’ Queues

Figure 2.1: Asynchronous measurements can be misleading. These diagrams show two
possible measurements of queue depth for x and y. In both cases, the network could be
perfectly balanced or arbitrarily unbalanced—the measurements fail to distinguish between
the two cases.

1. Is the network load balanced? We begin with the question asked in Section 2.1.

Imagine that an operator deploys a new load balancing protocol to a and b. How does

she evaluate its efficacy? How would she know if there was a performance bug in the

protocol? How does she quantify the room for improvement?

One possible solution is to sample the queue depth at x and y; however, on their

own, these samples do not answer the above questions. Particularly in the presence

of bursty traffic, asynchronous measurements can provide misleading results. For

instance, the balanced queue measurements shown in Figure 2.1a could be a result of

(a) a perfectly balanced network in which queue depths never differ, (b) an entirely

unbalanced network in which one queue is always empty, or (c) anything in between.

All of the above is still true if we observed unbalanced queues as in Figure 2.1b.

Common workarounds include averaging many samples (an approach that captures

biases and long-term effects, but is not general) or only analyzing relative performance

compared to a previous solution (an approach that is not always possible, and whose

utility is limited). Instead, a set of contemporaneous measurements would give a
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more meaningful view into the behavior of the network.

2. Where should we add capacity to the network? A related question is

where an operator should add capacity to the network, i.e., the process of network

provisioning. Today, they might examine tail utilization or drops over every link to

identify bottlenecks in the network. Asynchronous measurements are sufficient for

this, but fail to answer many followup questions. For instance, would adding a par-

allel path alleviate congestion or is a per-link capacity upgrade necessary? Balanced

load among existing paths would indicate the former, while localized hotspots would

indicate the latter. They provide similarly limited insight into whether alleviating

one bottleneck would lead to others. Again, contemporaneous measurements would

provide more insight into network behavior.

3. Is traffic synchronized? Synchronized measurements can also assist in application-

level debugging, especially in the case of TCP incast and related performance prob-

lems. Many of the same issues from the previous questions also apply here. Today,

detection of synchronized behavior is typically done either empirically (e.g., testing

if added jitter in TCP sends alleviates the problem), or obliquely (e.g., testing for

characteristics of incast like high flow count, TCP timeouts, and drops [134, 196]).

These workarounds are both inaccurate and only possible after performance has al-

ready been impacted. We argue that a whole-network measurement primitive is a

more natural and effective alternative.

4. What is the global forwarding state? Finally, a classic problem in networking

is the detection of bad forwarding state. Forwarding loops are the canonical example

of an undesirable network state that is difficult to detect, especially if the loops are

transient and/or flapping. This class of problems have taken a newfound importance

in the context of RDMA and RoCE. RoCE’s PFC mechanisms can cause network

deadlocks, not only when there are routing loops, but in many other cases as well [88].
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For a general method of verifying and diagnosing these issues, a consistent snapshot

is crucial—otherwise we can observe states that are impossible.

2.3. Overview

We seek to design a measurement primitive that captures a set of measurements

representing a meaningful view of the whole network as it appears at a single point

in time. We note that in pursuit of this goal, a truly simultaneous network-wide

snapshot is impossible without either freezing the network or using prohibitively ex-

pensive hardware like atomic clocks. Instead, our goal is a snapshot primitive with

the following two properties:

• Causal consistency: If a measurement in snapshot S includes the effect of event

e (e.g., a packet reception), S also includes the effects of every event that led to

e.

• Near synchronicity: The time difference between every pair of measurements in

the snapshot is guaranteed to be at most d, where d < RTT . Our prototype

guarantees d < 100µs, even for large networks.

Rather than capturing the true instantaneous behavior, i.e., what one would have

seen if we froze time to examine the network, causal consistency provides a record of

what could have happened. Augmented with a tight bound on the maximum jitter

of the snapshot, we argue that the combination of these two requirements preserves

most useful metrics.

Architecture. Our design for synchronized network snapshots involves three types of

entities: data-plane processing units of which each switch/router can have many,

control planes running at each device, and snapshot observers running on hosts

connected to the network. Our design allows for partial deployment (Section 2.9)

as well as a wide range of networking technologies and configurations. It is also
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agnostic to the measured data—any value accessible at line rate in the data plane can

be snapshotted. It is achieves all of this with minimal additional state and overhead.

Protocol. At the core of our design is a modified version of the Chandy-Lamport

snapshot algorithm. Originally created in the context of distributed systems, snap-

shots seek to capture the global state of a system without a common clock or shared

memory, and without affecting the operation of the system itself. What Chandy

and Lamport proposed was a protocol in which an initiator can trigger a cascade

of messages that, with causal consistency, partitions the system’s events into ‘pre-

snapshot’ and ‘post-snapshot’, then collects the state of every node and channel at

the boundary.

There are two key differences between our version and the original. First, while

most snapshot implementations begin with a single initiator, snapshots in our system

are initiated at all nodes simultaneously. Second, our design is necessarily bipartite.

Modern control planes, typically running on a general purpose CPU, can easily im-

plement a fully featured snapshot protocol, but in terms of consistency, they are no

better than a remote host. Recent proposals for programmable data planes, on the

other hand, more closely adhere to the assumptions of the Chandy-Lamport protocol,

but today’s ASICs have limited functionality/resources. By leveraging both, we seek

to mask each plane’s deficiencies with the other’s strengths—neither is sufficient on

its own.

Operation. A Synchronized Network Snapshot begins humbly: with a host acting as

a snapshot observer. The observer broadcasts a request to every device in the network

to take a snapshot of a given metric at a given time in the future. The control planes

running on every device then coordinate among themselves using a protocol like PTP

to achieve the synchronized, network-wide initiation of a data plane snapshot. The

data plane, where processing elements most closely adhere to the requirements of
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Figure 2.2: A conceptual model of a router in a network snapshot. At the lowest layer are
the ingress/egress processing units of individual ports. Connecting the ingress and egress
ports are unidirectional FIFO channels. Multiple channels may exist in the case of Class-
of-Service queues (two in the diagram, represented by solid red and dotted blue arrows).

Chandy-Lamport, implements the core of a multi-initiator snapshot protocol, while

the control plane fills in missing pieces of the protocol as necessary.

2.4. Network Snapshot Algorithm

Before we describe the detailed design of our system for Synchronized Network Snap-

shots, we first introduce the design of an idealized data plane snapshot algorithm. In

Sections 2.5 and 2.6, we describe how we adapt this algorithm to current hardware.

2.4.1. System Model

Abstractly, a network is a collection of switches and routers. Each switch or router

can be subdivided at many different levels. At the highest level, modern switches

will often contain one or more line cards, each line card being responsible for one or

more ports. The ports can be subdivided further into ingress and egress processing

units (see Figure 2.2), although in some designs, multiple logical processing units can

be implemented with a single physical unit. Regardless, the per-port, per-direction

processing unit forms the fundamental building block of packet processing: despite

aggressive amounts of parallelism, for a single port and single direction, processing is
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guaranteed to be linearizable.

Connecting the ports are unidirectional communication channels. Within the device,

the ingress processing unit of each port is logically connected to the egress processing

unit of every other port.2 These connections can potentially contain multiple sub-

channels when the switch is configured to prioritize certain traffic. In those cases,

individual classes of service (CoS) obey FIFO ordering, but the packets of different

service classes can be interleaved. Between devices are physical links that connect the

egress processing unit of one port to an ingress unit on a different network device.

In modern Ethernet, there is only one device sitting on either end of the channel. In

other types of networks or in partial deployment scenarios, a logical channel exists

between every connected egress and ingress.

2.4.2. Protocol

The original Chandy-Lamport algorithm relied on a few key assumptions: lineariz-

able nodes, simplex FIFO channels, no message drops, and bounded delay. When

considering a network of routers, few if any of these assumptions hold. Instead, our

network snapshot protocol operates over the network of per-port, per-direction pro-

cessing units connected by logical communication channels (either a physical link or

an internal, logical CoS queue). This formulation gives us a distributed system of

linearizable nodes connected by FIFO channels. To handle drops and delays, we take

inspiration from subsequent work (e.g., Li et. al. [114]) and classical network assump-

tions. While snapshot protocols exist for other, more relaxed system models, they

typically require massive storage requirements, delaying of messages, or they limit

the gathered state to packet/byte counts.

Figure 2.3 depicts our algorithm in pseudocode. Every processing unit keeps track of
2Some devices allow for more complex internal packet communication, e.g., recirculation. If configured,

those channels can be handled by adding additional logical channels to our model.
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• state: Local state to be snapshotted.
• snaps[] : Set of snapshotted state.
• sid : Current snapshot ID. Starts at 0.
− lastSeen[] : The last IDs seen from each upstream neighbors.

1 Function onReceiveCS(pkt):
2 if pkt.sid > sid then
3 /* New snapshot */
4 for i← sid + 1 to pkt.sid do
5 snaps[i]← state
6 sid← pkt.sid
7 else if pkt.sid < sid then
8 /* In-flight packet */
9 for i← pkt.sid + 1 to sid do

10 Update channel state of snaps[i] with pkt
11 lastSeen[pkt.sender]← pkt.sid
12 All snapshots up to min(lastSeen[*]) are complete
13 Update state and set pkt.sid← sid

14 Function onReceiveNoCS(pkt):
15 if pkt.sid > sid then
16 for i← sid + 1 to pkt.sid do
17 snaps[i]← state
18 sid← pkt.sid
19 All snapshots up to sid are complete
20 Update state and set pkt.sid← sid

Figure 2.3: Per-processing-unit pseudocode for our idealized network snapshot protocol
(w/ and w/o channel state). The match-action approximation and other details are
described in Section 2.5 and 2.6. Global state preceded by ‘−’ is only necessary for
channel state.

its current snapshot ID, s, initialized to 0. They also keep track of the local state that

is the target of the snapshot. Note that this requires snapshots of shared state (e.g.,

a switch-wide packet counter) be taken as a set of local snapshots or re-implemented

as local state.

Every packet carries a snapshot ID field, sp that indicates the epoch from which it

was sent (similar to [114]). ‘Piggybacking’ of markers on every packet ensures that

snapshot ID updates are resilient to packet loss. On receipt of a packet, processing

units compare the packet’s carried snapshot ID with their local ID. If sp > s, the

upstream neighbor has begun a new snapshot, and the current node should as well.

The local state is immediately saved and the local ID is updated (s← sp). If, on the
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other hand, sp < s, the packet was in-flight when the snapshot occurred, and should

therefore be included in the channel’s state.

The specifics of how channel state should be recorded is metric-dependent. For in-

stance, a network-wide packet count might require processing units to record the

number of packets in their queue, then add in-flight packets to the count as they

arrive. In other cases, the operator may not care about channel state at all (e.g.,

instantaneous queue depth measurements), and can omit this step. Either way, the

processing unit sets sp ← s before forwarding. When packets arrive with sp = s,

no actions are necessary. The above process ensures causal consistency of recorded

states.

Initiating a snapshot. Snapshots can be concurrently initiated at any number of

processing units by incrementing their local snapshot ID. The affected processing units

will tag all subsequent packets with the incremented ID. Assuming that the network

is strongly connected and there is regular traffic flowing along every channel, even a

single initiator will eventually cause all processing units to take the snapshot. When

those assumptions break down, re-initiations may be necessary to ensure liveness. We

discuss the details and practical challenges of snapshot initiation in Section 2.6.

Completing a snapshot. If channel state is not important to the measurement, a

processing unit is finished with its snapshot as soon as it records its state and updates

its local snapshot ID. Otherwise, it is finished when it sees that all of its upstream

neighbors have updated their ID. At that point, there is no possibility of receiving

additional in-flight packets (sp < s). To detect this, each processing unit stores an

array of the last seen ID from every upstream neighbor. Lines 11 and 12 in Figure 2.3

implement this process. With or without channel state, a network-wide snapshot s′

is complete when all nodes in the system are finished with snapshot s > s′. As with

snapshot initiation, we discuss the practical concerns of snapshot completion in real
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networks in Section 2.6.

Proof sketch. The proof of correctness for our algorithm mirrors that of prior work,

but we provide a brief sketch of the proof here. For each state-affecting event e

on node n, e ∈ PRE (‘pre-snapshot’) if it occurs before the local snapshot on n.

The algorithm is correct if, for all e ∈ PRE, if e′ happens causally before e, then

e′ ∈ PRE.

1. If e and e′ are on the same processing unit, the above is trivially true.

2. Otherwise, e ∈ PRE ⇒ e′ ∈ PRE by contradiction.

(a) Assume for snapshot i that e′ /∈ PRE is a send of packet p and e ∈ PRE

is the matching receive.

(b) Since e′ /∈ PRE, p must be carrying snapshot ID i.

(c) That is not possible since e ∈ PRE, thus there is a contradiction.

(d) Similar logic can be applied to other relationships between e and e′.

2.5. Data Plane Coordination

This section is the first of two that describes in detail the design of Speedlight. Speed-

light leverages the match-action stages and stateful memory found in emerging pro-

grammable ASICs such as the Barefoot Tofino [33]. Using these tools, each processing

unit can execute limited computation over packet headers/metadata using state in

the form of register arrays.

Though the ASICs are powerful, their limitations and other network-specific concerns

make the translation from the preceding snapshot algorithm to Speedlight difficult.

This section describes the design of Speedlight’s data plane while Section 2.6 describes

the control plane that complements it.
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2.5.1. Packet Headers

As mentioned in Section 2.4.2, network snapshots require additional header informa-

tion. Speedlight does not require host cooperation, so headers are added by the first

snapshot-enabled router, and removed before delivery to hosts. The required fields

are as follows. If channel state is not desired, items preceeded by a − may be omitted.

• Packet Type can take one of two values: initiation or data. Most traffic is

classified as data; initiation packets are special control messages that we describe

in Section 2.6.

• Snapshot ID is set at each hop to be the processing unit’s current snapshot

ID. Conceptually, it specifies the snapshot to which the send of the packet is a

member, and informs the current processing node whether the packet is part of

a new one, or in-flight from an old one.

− Channel ID uniquely identifies each upstream neighbor. If there are multi-

ple channels between neighbors, there should be an ID for each. Our reference

implementation assumes switched Ethernet and no packet re-submission, so for

ingress processing units, there is only one upstream neighbor (the external neigh-

bor), and for egress units, the number of upstream neighbors is bounded by the

number of ingress ports on the local router.

2.5.2. Stateful Variables

Some amount of inter-packet persistent state is also required in each processing unit.

These mirror the state in Figure 2.3.

• Counters store target local state of the snapshot. These are managed separately

from the snapshot protocol. This variable corresponds to state in Figure 2.3.

• Snapshot ID is an integer representing the node’s current snapshot ID. This
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value corresponds to sid.

• Snapshot Value[max snapshot id] stores the snapshoted state and, if neces-

sary, channel state. These must be encoded into a value that fits into available

register space. Equivalent to snaps.

− Last Seen[# of neighbors] tracks the last snapshot ID from each upstream

neighbor. See definition of Channel ID for a discussion of what constitutes an

upstream neighbor in our system. Corresponds to lastSeen.

2.5.3. Packet Processing Procedure

Figures 2.4 and 2.5 show the operation of ingress and egress processing units in

Speedlight. Both approximate the algorithm presented in Section 2.4 with a few

notable differences.

In both types of processing units, the first step is to read the target state and update

it. The update process is orthogonal to the snapshot logic, only intersecting if the

target state requires it (e.g., to ignore snapshot traffic). The next step is to examine

the snapshot header.

The core of the snapshot processing procedure is similar to the one described in

Section 2.4.2. The processing unit updates the neighbor’s last seen value and then

tests to see if the packet’s snapshot ID is less than, greater than, or equal to the

processing unit’s local ID. As mentioned in Section 2.4.2, in-flight packet handling is

metric-specific and configured by the network operator, and much of the algorithm

can be elided if channel state is not necessary.
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Differences from the idealized algorithm. The primary differences between

Speedlight’s data plane and the algorithm in Section 2.4.2 derive from hardware

limitations in high-speed programmable switches. One key limitation is that today’s

switches do not have the ability to loop through (at line rate) intermediate snapshot

IDs when the packet’s ID and the local ID differ by more than 1. Re-circulation loops

are not possible as they would violate FIFO ordering. Instead, our implementation

produces a complete and consistent snapshot iff the ID of all upstream neighbors and

the local processing unit differ by at most 1. The following section describes how we

detect and mitigate inconsistency.

Another is that the space of possible snapshot IDs and storage of the snapshot state

are tightly constrained. As such, Speedlight enables rollover of the snapshot ID to

0 after reaching the maximum ID. For this, we assume that no ID in the system is

ever ‘lapped’, i.e., that the maximum difference between any two snapshot IDs in

the system is (max snapshot id− 1). This can be enforced by the snapshot observers

out-of-band. This assumption allows us to rely on the contents of the Last Seen array

as a reference to detect if the packet’s ID and/or the local ID have rolled over.

Snapshot Notifications. We mask the above deficiencies using the control plane.

Supporting that process is a notification channel between the two planes. After any

update of either the local Snapshot ID or of any Last Seen array entry, the data plane

exports a notification to the CPU to assist in determining snapshot progress/com-

pleteness. For an upstream neighbor n, this notification includes the former value

of LastSeen[n] along with the former and new Snapshot ID. Depending on the case,

the former and new values may not be distinct. It will become clear in the following

section why we need all four values.
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2.6. Control Plane Coordination

Speedlight’s data plane is augmented with a control plane to form a two-tier, mutual-

istic system in which each is responsible for masking the limitations of the other. This

section examines some of the key scenarios in which the control plane is necessary.

Synchronized snapshot initiation. One of the primary responsibilities of Speed-

light’s control plane is to initiate snapshots in a timely fashion. At a high level, it does

this by (a) synchronizing clocks between the control planes of different network de-

vices, and then (b) executing a global, coordinated network snapshot initiation. Clock

synchronization is a well-studied field, and Speedlight leverages this existing work.

In our implementation, we use PTP, although the choice of protocol is orthogonal to

our design.

Coordinated snapshot initiation, (b), is executed using the synchronized time. A snap-

shot observer first schedules a snapshot i for a given time in the future by registering

the event with all device control planes. When the time comes, the control planes

broadcast a message to all local ingress processing units. The message includes a

snapshot header with snapshot ID set to i, the newly initiated snapshot. The ingress

unit will process this snapshot header much like a regular packet—initiating a new

snapshot if i is larger than the current snapshot ID. The control plane in this case

is treated as an additional neighbor for the last seen array, though this value is only

used for rollover detection and not to detect snapshot completion. After process-

ing is complete, the ingress processing unit forwards the initiation to the egress unit

of the same port, which drops the packet after processing. Unlike regular snapshot

header processing, the packet is not included in the update counter stage and is never

considered an in-flight packet.

Including control plane initiation, there are three ways by which a processing unit
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Figure 2.6: The three ways in which a processing unit can be induced to take a new snapshot.
The initiation can come from: (1) a neighboring device, (2) another processing unit within
the same device, or (3) from a control plane initiation message that, for every port, travels
CPU→ingress→egress.

can be induced to take a new snapshot. The three methods, illustrated in Figure 2.6,

cover normal snapshot-enabled packets from external (1) and internal (2) neighbors

that have already begun the snapshot, as well as the control plane initiation messages

(3). With these three initiation methods, Speedlight ensures a level of start-time

synchronization beyond what a similar counter polling framework could achieve (see

Section 2.8). That is in addition to the consistency provided by the snapshot protocol

itself.

Detecting snapshot completion and inconsistency. In a classical distributed

snapshot, a node’s local state is valid as soon as it takes a local snapshot, and the

state of the channel is valid when it receives an up-to-date snapshot marker on that

channel. The global snapshot is complete when all such state is valid. In Speedlight,

the control plane is responsible for gathering state and detecting the completion

of snapshots. It is also responsible for detecting when snapshotted values become

inconsistent. This scenario only occurs when channel state is required, and is not

present in the original Chandy-Lamport algorithm. Rather, it is the direct result of

the hardware limitations described in Section 2.5.

Figure 2.7 shows how a Speedlight control plane processes snapshot notifications to

30



• lastRead[unit] : Latest finalized snapshot for each unit.
− ctrlSnapID[unit] : Controller’s view of units’ current IDs.
− ctrlLastSeen[unit][neighbor] : Controller’s view of the last seen array for each processing
unit.

1 Function OnNotifyCS(unit, currentID, neighbor, currentLS):
2 if currentID ̸= ctrlSnapID[unit] then
3 /* New snapshot ID */
4 done←min(ctrlLastSeen[unit][*])
5 for i← done + 1 to currentID do
6 Mark i as inconsistent
7 ctrlSnapID[unit]← currentID
8 if currentLS ̸= ctrlLastSeen[unit][neighbor] then
9 /* New last seen ID */

10 ctrlLastSeen[unit][neighbor]← currentLS
11 toRead←min(ctrlLastSeen[unit][*])
12 for i← lastRead[unit] + 1 to toRead do
13 if i is not inconsistent then
14 Read snapshot value for i from unit
15 lastRead[unit]← toRead

16 Function OnNotifyNoCS(unit, currentID):
17 if currentID ̸= lastRead[unit] then
18 validValue← Read value for currentID from unit
19 for i← currentID to lastRead[unit] + 1 do
20 value← Read snapshot value i from unit
21 If value is uninitialized use validValue, otherwise validValue← value
22 lastRead[unit]← currentID

Figure 2.7: Control plane detection of complete and inconsistent snapshots with and
without channel state. Note that min() must be rollback aware, but lastRead can be
used as a reference. Global state preceeded by ‘−’ are only necessary for channel state.

detect completion/inconsistency both with and without channel state.

1. w/ Channel State: Recall that in the common case, a processing unit is finished

with snapshot i when ∀u : lastSeen[u] ≥ i. Hardware limitations introduce an

extra requirement: that the snapshot ID advances by exactly 1 each time. For

example, if unit’s snapshot ID is 5 and it receives a message from the snap-

shot 2 epoch, ideally the data plane would increment associated channel state

for snapshots 3–5. Unfortunately, current ASICs cannot execute (at line rate)

the required instructions to keep those intermediate snapshot values consistent.

Speedlight marks them as inconsistent and handles notification drops conserva-

tively.
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2. w/o Channel State: The simpler case, a processing unit is done with a snapshot

as soon as it increments its ID, records its local state, and sends a notification

to the CPU. The snapshot ID can still skip forward; however, in this case, the

CPU can infer the proper snapshot value. See lines 19–21 in Figure 2.7. Note

that we must check for value initialization to account for notification drops.

All values are shipped to the snapshot observer, which assembles snapshots from all

the devices with which it registered the snapshot. The observer computes completion

and executes retries. If a device fails, it may timeout and be excluded from the global

snapshot.

Ensuring liveness. An extension of the above two responsibilities, the control plane

is also responsible for ensuring that snapshots are eventually initiated and completed

at every processing unit. There are two reasons why this may not happen without

assistance.

The first is packet drops of either the initiation message or update notifications. Es-

pecially for ingress processing units whose upstream neighbor is not snapshot enabled

(e.g., a unit connected to an end host), a dropped initiation means that the processing

unit will never advance its snapshot ID. Dropped notifications can also be problematic

as they may cause snapshots to be incorrectly marked as inconsistent. To address

both issues, Speedlight control planes will resend initiations for incomplete snapshots

after a timeout. This is safe as duplicate and outdated control plane initiations are

ignored by the data plane, and duplicate notifications are dropped at the control

plane. Speedlight’s control plane can also proactively poll the data plane registers to

help recover from simple cases of notification drops.

The second is a lack of traffic when channel state is required. As completion of

the snapshot is gated on receiving an up-to-date snapshot marker from all upstream
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neighbors, if there is no such traffic on which to piggyback, the snapshot may never

complete. This can happen due to traffic patterns, or it can be a natural consequence

of the routing configuration (e.g., when using spanning trees or up-down data center

routing). Speedlight has separate mechanisms for each situation. For a traffic-related

absence of packets, we can inject broadcasts into the network that force propagation

of snapshot IDs. For a lack of traffic due to network structure, operators can configure

the removal of non-utilized upstream neighbors from ctrlLastSeen consideration.

Node attachment. Finally, we discuss the process of adding new devices to the

network. For every snapshot, the snapshot observer keeps a list of all currently

active devices. When adding a new device, it must be registered with the snapshot

observer before it is included in the next snapshot. New devices will not start with

the current snapshot ID. Instead the control plane initializes all state (registers in

the data plane and tracking state at the control plane) to 0. As soon as traffic

arrives from neighboring devices, the snapshot will jump ahead to the current value,

if it is not 0. If it does jump ahead, the snapshot observer will ignore any spurious

snapshot completions as the device would not have been in its expected device set

when initiating the snapshot.

2.7. Implementation

We implemented a prototype of Speedlight with all of the data plane and control plane

functionality described in Sections 2.5 and 2.6 for Wedge 100BF-series switches [97].

Wedge 100BF switches are driven by the Barefoot Tofino, a commodity multi-Terabit

data plane ASIC that integrates recent designs for programmable line rate packet

parsing [69], match-action forwarding [40], and stateful processing [168].

2.7.1. Data Plane

The Speedlight data plane is a pipeline of P4 match-action tables that compiles to

the Tofino. We created multiple versions for different metrics, with and without
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Variant Packet + Wrap + Chnl.
Count Around State

Computational Resources
Stateless ALUs 17 19 24
Stateful ALUs 9 9 11

Control Flow Resources
Logical Table IDs 27 35 37
Conditional Table Gateways 15 19 19
Physical Stages 10 10 12

Memory Resources
SRAM 606 KB 671KB 770KB
TCAM 42 KB 59KB 244 KB

Table 2.1: Resource usage for the Speedlight data plane on the Tofino. Numbers are for a
snapshot of per-port packet counters and 64 ports.

wraparound and channel state support. Each implementation contains around 1000

lines of P4-14 code. Figures 2.4 and 2.5 show the logical ingress and egress match-

action pipelines, assuming a snapshot that requires channel state.

Table 2.1 summarizes the key resources required by our prototype, broken down by

the resources’ logical functionality. We make no guarantee of the optimality of our

prototype; the statistics represent a rough upper bound on the resource utilization

of Speedlight. Even so, the prototype occupies less than 25% of any given type of

dedicated resource—the remainder can be used for other data plane functionality.

As Table 2.1 shows, the prototype utilizes 10 to 12 physical processing stages in the

Tofino to satisfy sequential dependencies in its control flow. It does not prohibit

those stages from also implementing other ingress or egress data plane functions.

Anything independent of the snapshot logic, such as forwarding or access control, can

be compiled into the same stages and operate in parallel.

Speedlight fits well with other switch responsibilities. Its data plane is most expen-

sive in terms of stateful ALUs (sALU), used to implement operations on register

arrays, e.g., updating or initializing a snapshot. This is opposite of typical data plane
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functionality, which tends to apply mostly stateless operations to packet headers.

Resource requirements for Speedlight increase with the use of wraparound and channel

state, features that require more complex logic. Memory requirements also grow with

the number of ports in the snapshot, as the data plane must allocate larger register

arrays and tables to store and address the per-port statistics. The configuration

shown in Table 2.1 is for 64 port snapshots, the maximum number of ports that a

single processing engine in the Wedge100BF’s Tofino can support. A configuration

with wraparound and channel state for 14 port snapshots, as used for evaluation in

Section 2.8, requires 638KB of SRAM and 90 KB of TCAM.

2.7.2. Control Plane

We wrote the snapshot control plane in Python (∼2000 lines of code) and ran it on

the switch CPU, which has a PCIe-3.0 X4 link to the Tofino ASIC. The control plane

uses a compiler generated Thrift API to initialize tables, set up mirroring, and poll

register arrays. Time synchronization was done via ptp4l and phc2sys.

The snapshot control plane receives notifications from the Tofino using a raw socket

implemented by a kernel-level DMA packet driver. It listens for notifications, which

trigger its main event handler as depicted in Figure 2.7. There are alternatives to

this approach, e.g., a P4 digest stream, but we found that raw sockets made the

implementation straightforward and offered significantly better performance.

2.8. Evaluation

We evaluated Speedlight in a hardware testbed and used it to perform measurement

campaigns that study widely used distributed applications and protocols. Our testbed

consists of a Barefoot Wedge100BF-32X programmable switch with 128 25GbE ports

connected to six servers with Intel(R) Xeon(R) Silver 4110 CPUs via 25 GbE links.

We emulated a small leaf-spine topology in our testbed, as depicted in Figure 2.8.

35



Data

Control

Data

Control

Data

ControlControl

Data

Servers

Switch

Control Control

ControlControl

Figure 2.8: Depiction of our testbed topology.

We did this by splitting the 128 port switch into 4 fully isolated logical switches with

lower fan-outs.

As in a real deployment, the virtual switches were connected with 100GbE passive

copper links. At the data plane, all forwarding tables were replicated for each virtual

switch. At the control plane, we ran duplicate versions of the protocol. To emulate

clock drift between switch control planes, snapshots were initiated based on the local

system clock of four distinct PTP-synchronized servers. With the inclusion of network

latency, our synchronization numbers therefore represent an upper bound.

To load balance traffic along the multiple paths in our testbed, we implemented

two different algorithms alongside the snapshot logic in the switch data plane ASIC:

ECMP [87] and flowlet switching [99].

Workload. We used three distributed applications in our testbed. The first is

Hadoop running a Terasort [26] benchmark workload with 5B rows of data. Our

Hadoop instance ran version 2.9.0 with YARN [27] on 10 mappers and 8 reducers.

The second is Spark’s GraphX [29] running a PageRank [28] synthetic benchmark

workload with 100,000 vertices. Our Spark instance ran version of 2.2.1 with Yarn

on 5 servers. Finally, we implemented memcache [24], running an mc-crusher 50-key
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multi-get workload [57]. We populated the Hadoop and memcache instances with

data during a setup phase that was not measured.

Counters. We implemented a variety of performance counters including per-port

packet and byte counters along with queue depth measurements. However, in this

section we primarily focus on an exponentially-weighted moving average (EWMA) of

packet interarrival time. The EWMA counter was implemented in two phases due to

hardware limitations on register computation:

interarrival = pkt_timestamp - last_ts[port]

last_ts[port] = pkt_timestamp

if packet_count[port] is even:

temp_ewma[port] += interarrival

else:

temp_ewma[port] /= 2

ewma[port] /= temp_ewma[port]

Underlined variables are implemented with stateful registers. The EWMA updates

on every other packet with the average interarrival of the last two packets. As shown

in the code, our implementation is functionally equivalent to an EWMA with a decay

factor of .5.

2.8.1. Synchronization of Network Snapshots

We begin by evaluating the synchronization properties of Speedlight. For this, we

configured processing units to tag snapshot notifications with the current timestamp.

Recall that notifications are sent on any update of either the local snapshot ID or

the last seen array, i.e., on any progress in the algorithm. In the experiment, we

sent a command to each of the four virtual control planes in our testbed to schedule

a snapshot. At the scheduled time, they sent initiations to every processing unit

(ingress and egress) under their control as described in Section 2.6. Synchronization

37



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
D

F

Synchronization (us)

Switch State
Switch + Channel State
Polling

Figure 2.9: Synchronization of network-wide measurements using snapshots and traditional
polling.

of a snapshot ID is defined as the difference between the earliest and latest timestamps

on any notification with that ID.

Figure 2.9 shows a CDF of synchronization for three different approaches: (1) tradi-

tional counter polling, (2) Speedlight w/o channel state, and (3) Speedlight w/ chan-

nel state. In both configurations of Speedlight, median synchronization was ∼6.4µs.

The maximum synchronization delta we observed was 22µs w/o channel state, and

27µs w/ channel state, likely due to randomness in PTP, queuing, and scheduling.

These values are well-within a single RTT for most networks. As one might expect,

channel state synchronization has a longer tail as completion depends on all upstream

neighbors advancing to the current snapshot.

For comparison, we also measured the synchronization of a typical counter polling

framework where an observer polls the statistic for each port individually via a control

plane agent that reads and returns the value on-demand. For a full sequence of

network-wide measurements, the median difference between the first and last poll

was 2.6ms.
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Figure 2.10: Max. sustained snapshot rate before notification queue buildup. Results are
shown for a range of router port counts and assume no channel state.

2.8.2. Scalability of Speedlight

We also evaluate how Speedlight scales with the size and complexity of the network.

In particular, we ask two questions: (1) how does the scale of the network affect the

frequency with which Speedlight can take snapshots, and (2) how does the scale affect

the time synchronization of those snapshots. Storage scalability was briefly addressed

in Section 2.7.1.

Speedlight’s architecture lends itself well to scalability; control planes are responsible

for their own switch, and each processing unit has at most one external neighbor

regardless of how many routers are added to the network. Instead, the primary factor

in performance is number of ports per router.

Figure 2.10 shows the maximum sustained snapshot frequency versus router port

count. In the experiment, we initiated a series of snapshots on a single switch with

fixed interval. Snapshot frequencies that were too high eventually resulted in noti-

fication drops. The graphs plot the highest frequency without drops. Even for 64

ports (a full linecard), Speedlight can sustain over 70 snapshots per second. Note
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Figure 2.11: Average synchronization of Speedlight snapshots in larger network deployments.
The snapshot assumes 64-port routers and no channel state.

that the ASIC-CPU channel is more than sufficient; rather, the bottleneck is in our

unoptimized control plane processing latency. Thus, Speedlight supports bursts of

higher frequency snapshots given a sufficiently large socket receive buffer.

Network size primarily affects Speedlight’s synchronization. Figure 2.11 shows aver-

age whole-network synchronization for several large simulated networks. Our simula-

tion included PTP time drift, OpenNetworkLinux scheduling effects, and the latency

between initiation and data plane snapshot execution. Distributions for all of these

values were collected from our hardware testbed. While Speedlight’s multi-initiator

design limits time drift, additional routers and ports can make encountering tail effects

more likely; however, this effect is asymptotic and still stays under typical RTTs.

2.8.3. Use Case: Evaluating Load Balancing

We began this chapter with a running example of a question an operator might want

to ask about a network: how well is my load balancing protocol working? We demon-

strate Speedlight’s ability to answer this question by comparing the performance

characteristics of ECMP and Flowlet load balancing algorithms in the presence of

Hadoop, GraphX, and memcache. In theory, Flowlet forwarding should balance load
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Figure 2.12: Standard deviation of uplink load balancing in our leaf-spine topology. We
compared two approaches: flow-based ECMP and flowlet load balancing. We tested Hadoop,
GraphX, and memcache as well as polling versus snapshots. Note the difference in units on
the x-axis.

more fairly because it splits traffic at a finer granularity [99]. In practice, our under-

standing of the impact of flowlets on load balance is limited to average utilization,

drop rate, flow completion time, and other carefully crafted proxies for the property

in which we are actually interested.

In this experiment, we took a series of snapshots, and computed the standard de-

viation of the EWMA of packet interarrival times across uplink ports. To account

for workload deviations, uplinks were compared only to other uplinks on the same

switch. Figure 2.12 shows CDFs of the standard deviations for our Hadoop, GraphX,

and memcache workloads taken with both snapshots and traditional polling. The

three workloads showcase three different behaviors.

For Hadoop, polling shows little-to-no gain for flowets, when in reality flowlets improve

balance significantly. For GraphX, polling consistently underestimates the imbalance

in the network. Our Memcache workload is very evenly distributed, but exhibits the

opposite behavior—polling consistently overestimates the imbalance.

Together, these experiments illustrate an important point. For measures of whole-

network behavior, the issue is not just that polling might provide an incorrect view

of the network, but that it is difficult to place a bound on the inaccuracy.
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Figure 2.13: Pairwise correlation coefficients for egress ports while running GraphX. The
red boxes highlight port pairs on the same ECMP paths, which are expected to have high
positive correlations.

2.8.4. Use Case: Synchronized Traffic

The second use case we target is the detection of synchronized application traffic

patterns for understanding behavior or debugging performance issues. For this ex-

periment, we measured EWMA of packet rates at egress of all ports, in 100 snapshots

taken 1 second apart. We then calculated pairwise correlation between ports using

Spearman [51] tests.

Figure 2.13 shows the statistically significant (ρ < 0.1) correlation coefficients found

while running GraphX. With snapshots, the Spearman test found correlations for

43% more of the port pairs. To validate correctness, we analyzed the output for

evidence of two ground truths related to the application and network topology. First,

we expected to see no significant correlations between the port egressing to the master

server (server 0) and any other port because the master server did not participate in

the distributed computation. Second, we expected to find high correlations between

possible ECMP next-hops.
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With snapshots, the correlation coefficients matched both expected ground truths.

Polling, on the other hand, failed to identify the positive correlations between ECMP

ports. As shown by the red boxes in Figure 2.13, the correlations found with polling

were either statistically insignificant or, worse, statistically significant but negative.

Results were qualitatively similar for other applications and ρ values.

2.9. Discussion

Measuring Forwarding State. In Section 2.2.2, we remarked that it may be useful

to snapshot forwarding state. While ASIC data planes are not typically able to record

table entries directly, they can record version information. Specifically, the control

plane can ensure every FIB rule and version tags passing packets with a unique ID

that is then stored back into processing unit state. A snapshot of the state would

then give hints as to the entire network’s forwarding state.

Partial Deployment. Speedlight is amenable to partial deployment. In this case,

the snapshot would be of participating devices and the communication channels be-

tween them. For instance, in a data center, an operator might want for only ToR

switches or a particular cluster to be snapshot-enabled.

For snapshots without channel state, the only requirement is that the snapshot header

is appended and removed at the proper time. The simplest method is to append the

header whenever an ingress processing unit encounters a packet without one, and

configure the remaining hosts to ignore IP options in which the snapshot header is

contained. If that is not possible (e.g., due to security concerns with IP options), the

header should be removed at the last snapshot-enabled device in the packet’s path.

Causal consistency is maintained even when there are multiple paths between devices.

Snapshots with channel state are slightly more complex. In order to gather channel

state, devices must be able to reduce communication to FIFO channels. More specif-
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ically, devices must tag packets with the physical path they take between snapshot-

enabled devices. We note that in the case of data centers and snapshot-enabled ToRs,

this requires only minor modifications to the configuration of existing devices [155].

2.10. Summary

The technique described in this chapter, Synchronized Network Snapshots, and its re-

alization, Speedlight, provide unprecedented visibility into the behavior of the network

as a whole. Whether for evaluating a design, diagnosing an issue, or simply trying to

understand an existing network, these techniques help to answer critical questions.

We demonstrate that this approach is practical by implementing and deploying on a

testbed a working version of our system, then using it to collect interesting measure-

ments of real workloads.
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CHAPTER 3

tpprof: A Network Traffic Pattern

Profiler

3.1. Introduction

When designing, understanding, or optimizing a computer network, it is often useful

to identify common patterns in its usage over time. Often referred to as a network

traffic pattern, identifying the patterns in which the network spends most of its

time can result in useful insights:

• All-to-all traffic, which might manifest as uniform utilization of all paths between

a set of application nodes, might suggest the importance of bisection bandwidth

and guide future provisioning decisions.

• Chronic stragglers, where we expect all-to-all traffic but a significant amount of

time is spent with only a few flows active, might suggest the need for better

sharding and mitigation techniques.

• Elephant flow dominance, in which utilization is dominated by isolated path-

level hotspots, might guide future provisioning decisions.

• Finally, synchronized requests/responses, indicated by repeated bursts of cross-

network communication all originating at a single node, might motivate changes

in the application or network architecture.

While there are a number of existing tools that capture flow- and switch-level trends

(e.g., heavy hitter analysis [194], network tomography [77], or the vast array of net-
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Figure 3.1: tpprof’s visualizations for (b) common traffic patterns and (c) the TPS score
over time for a simple leaf-spine topology, (a). We describe these in more detail later, but
in (b) , states are heatmaps of common utilization patterns over the network in (a); darker
is hotter. Subsequences are common transition patterns between the aforementioned states.
These are ranked by their frequency of occurrence and their cumulative coverage of the
profiled run, respectively. The subsequence shows an all-to-all pattern: the network starts
unutilized (left state), becomes fully utilized (right state) for 10s of samples, then returns.
In (c), tpprof is tracking three different known traffic patterns. When the score of any of
them crosses the alerting threshold (twice in the figure), tpprof deduces that the pattern
has occurred in the network.

work analytics suites on the market [79, 1, 2, 3, 4, 5, 6]), identifying prevalent network -

level patterns typically requires a significant amount of manual effort and specialized
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analyses. To determine the presence of synchronized requests/responses, for instance,

an operator might need to instrument the start and stop times of all flows in the sys-

tem, correct for the time drift of different machines, compute the cluster tendencies of

the data (e.g., with a Hopkins statistic or heuristic), and distinguish it from all-to-all

traffic by examining the sources and destinations of synchronized flows. To determine

whether this pattern is a particularly common one would require additional analyses.

Our goal in this work is a tool for the automatic identification of the most prevalent

traffic patterns in a network. To that end, we present the design and implementation

of tpprof, a network traffic pattern profiler.

Similar to traditional application profilers like gprof [75] or Oprofile [50] that have

helped programmers understand and improve their software for decades, tpprof auto-

matically measures, extracts, and ranks common traffic patterns of individual applica-

tions within running networks. It also facilitates the monitoring of known patterns so

that, when specific patterns appear in the network, the operator is informed. It does

both of these things without modifying applications and without affecting existing

network traffic—the only changes we require are to switch monitoring configurations.

Examples of both of the above tools in action are shown in Figure 3.1.

Traffic patterns are, unfortunately, significantly more challenging to profile than ap-

plications. Traditional profilers benefit from well-defined building blocks (functions

or lines of code) connected by well-defined call graphs. In contrast, networks offer

little such structure: switch and link utilizations are noisy and measured in real values

(Bps); their evolution over time is even less constrained. In the end, two different

instances of something as simple as all-to-all traffic will never look exactly the same.

Thus, tpprof is built around two novel abstractions: (1) network states, which cap-

ture an approximate snapshot of a network’s device-level utilization and (2) traffic

pattern subsequences, which represent a finite-state automaton over a sequence of
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network states. As hinted above, subsequences serve as both output and input to

our system: output in the case of profiling an existing network, input in the case

of specifying a traffic pattern alert. In both cases, classification of network states

and sub-sequences is approximate and implemented through specialized clustering

techniques.

We implement and deploy tpprof to a small hardware testbed in order to monitor

and profile the traffic patterns of real distributed applications like memcache, Hadoop,

Spark, Giraph, and TensorFlow. We demonstrate that, using tpprof, we can find

meaningful patterns and issues in their behavior. Further, we demonstrate tpprof’s

utility on larger and more complex networks by profiling a trace taken from one of

Facebook’s frontend clusters. While our evaluation focuses on data center networks

(where interesting and impactful distributed applications are plentiful), tpprof and

its techniques generalize to arbitrary networks.

Specifically, this dissertation chapter makes the following contributions:

• Novel abstractions for describing common traffic patterns: We intro-

duce two abstractions, network states and traffic pattern subsequences, that

together enable network operators to easily describe and reason about common

traffic patterns. Network states capture similar configurations of approximate

utilization of a specific application or set of applications running in a network.

Subsequences are then strings of states with bounded repetition that summarize

traffic pattern changes over time.

• Domain-specific algorithms for clustering and ranking both network

states and subsequences: Through empirical analysis of a variety of applica-

tion traffic patterns, we identify and design algorithms that transform a network

trace into the building blocks of traffic patterns. Specifically, we demonstrate

through PCA and waypoint analysis of real application traffic that GMMs are
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well-suited to capturing first-order similarities between different network utiliza-

tion patterns. In the case of subsequences, we create a domain-specific clustering

algorithm that extracts sequences that are both common and that provide broad

coverage of the measured network traces.

• A language and mechanism for expressing and fuzzily matching known

traffic patterns in observed traces: Finally, to complement the above, we

develop a simple grammar for describing traffic patterns and introduce an al-

gorithm that automatically identifies approximate occurrences of known traffic

patterns within network traces. Our scoring engine outputs a confidence score

that can be used to generate alerts when known traffic patterns appear in ob-

served traces.

Taken together, tpprof is, to the best of our knowledge, the first profiling tool for

network-wide traffic patterns. Our implementation is in Python and the code is open

source.3

3.2. The Anatomy of a Traffic Pattern

We begin by introducing the definitions and abstractions on which tpprof is built.

First and foremost, we define the overall traffic pattern of a network as follows:

Network Traffic Pattern — A function f(x, t) that represents, for an entire network

N across a time span [t0, t1], the utilization of device x ∈ N at time t0 ≤ t ≤ t1.

We also define, for each application in the network:

Application-specific Traffic Pattern — fA(x, t), equivalent to the network traffic pat-

tern, but only accounting for a single application or set of applications, A.

For the purposes of our clustering and ranking algorithms, the distinction is unimpor-
3https://github.com/eniac/tpprof.
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tant; unless otherwise specified, we use ‘traffic pattern’ to refer to both. Instead, the

choice of whether to filter by application is entirely the user’s (with the mechanisms

in Section 3.4); Regardless, for a given network and overall workload, we note that the

traffic pattern of both the network and its constituent applications will typically ex-

hibit predictable and repeated characteristics given a sufficiently long measurement

period. These patterns can occur over short time spans of individual packets and

flows, or over longer time spans in the form of diurnal or weekday/weekend effects.

A contribution of this dissertation is the decomposition of traffic patterns into a more

convenient low-level primitive:

Network Sample — |N | real values that capture an approximate snapshot of f(x, t)

for all devices x ∈ N , at a particular time t, and averaged over the last t∆ seconds.

Network Sample Sequence — A chain of network samples that sample f(x, t) over

increments of t∆, where t∆ is bounded by the measurement granularity of the system.

Any traffic pattern can be described in these terms. For the network in Figure 3.1a,

the all-to-all pattern in Figure 3.1b is one example. Another is chronic stragglers,

which we can describe as a transition between two configurations, assuming a load

balanced network: (1) all switches at high utilization and (2) only l1, l2 and s1 at

high utilization; or the same but replacing s1 with s2.

We can perform a similar exercise for all of the many (possibly application-specific)

traffic patterns in the literature, e.g., rack-level hotspots in data centers [166, 78, 63,

121], synchronized behavior of distributed applications [48, 193, 24], and stragglers in

data-intensive applications [115, 49, 120]. We do the same for the link- and switch-

level traffic patterns that are the focus of most existing automated profiling tools [79,

1, 2, 3, 4, 5, 6].

While not necessarily the way these patterns were described originally, sequences of
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network samples provide a general primitive with which we can represent arbitrary

patterns.

3.3. tpprof Design Overview

Our goal in this work is the design and implementation of a profiler for network

and application-specific traffic patterns. Our system, tpprof, is intended to identify

traffic patterns, rank them in prevalence, and assist network operators in monitoring

for their recurrence. Like other profiling tools, tpprof is not intended to improve

networks directly; rather, its focus is on assisting users with designing, understanding,

and optimizing them.

On that note, we take inspiration from traditional sampling profilers like gprof [75],

Oprofile [50], and Valgrind [137]. These profilers take an unmodified application and

they periodically sample system state (e.g., stack traces) to produce a statistical pro-

file of the target application. Early instantiations solely sampled program counters;

over time, they expanded to capture trends in function utilization and call graph

traversal.

tpprof uses a similar approach to construct profiles of traffic patterns. To that

end, network samples and sequences of samples present an attractive substrate. In

principle, a sequence of network samples creates a statistical profile of an application’s

network utilization. Unfortunately, these samples are unlikely to ever repeat: small

differences in application processing time, workload, and background traffic can cause

substantive differences in traffic, as can slight noise in the sampling frequency of the

measurement framework. Extracting patterns from raw samples is challenging.

Core abstractions. To address this challenge, we introduce two additional abstrac-

tions:

Network State — A class of network samples defined by a single, n-device network
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Figure 3.2: The overall architecture of tpprof. tpprof polls, batches, and aggregates switch
counters from the network. These are fed into (1) a scoring engine that alerts on detection
of known patterns and (2) a profile generator that extracts common traffic patterns from
the gathered trace.

sample, S, and n variance values, v̄ such that S is a centroid of the multivariate

normal distribution with shape defined by v̄.

Network State Subsequences — A class of sequences of network states that allows for

bounded repetition of states. A state subsequence can be represented as a regular

expression or finite state automata of network states.

Multiple network samples can be mapped to a single network state and multiple

sample sequences can be mapped to a single state subsequence. These abstractions

are tolerant to noise by design: variations of link utilization from sample to sample

are smoothed by our method of extracting network states; variations in the evolution

of those samples over time are smoothed by our method of extracting subsequences.

The precise construction of both of the above elements is described in Sections 3.5.1

and 3.5.2.

Components. tpprof consists of three primary components:
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1. A configurable sampling framework that periodically samples the device-level

utilization of a specified application, set of applications, or the full network

(Section 3.4).

2. A profiling tool for the automatic extraction and visualization of the most com-

mon states and state subsequences in the captured data (Section 3.5).

3. An alerting system that scores incoming traces against a set of user-defined

patterns using a fuzzy string search in order to facilitate network automation

(Section 3.6).

Of the above, only (1) affects the network itself; (2) and (3) occur out-of-band. As

such, the overhead of tpprof is minimal: in the case of an non-application-specific

traffic pattern, little is required beyond an SNMP poller; application-specific patterns

only require simple iptables and switch configuration changes on top of that.

Our current implementation leverages programmable switches and a recently proposed

network-wide monitoring framework [183]. This provides slightly more control and

accuracy than an implementation based on top of traditional switches, but it is not

a strict requirement; we detail both approaches in Section 3.4.

Workflow. tpprof profiles production networks. A typical workflow thus proceeds

as follows. First, users specify three configuration parameters: the start time a, the

end time b, and the sampling interval i. The network can optionally be configured

to track certain applications separately. Regardless, a centralized service periodically

polls the byte counters of the entire network between time a and b, with interval i.

The centralized service will stream the data through a set of scoring algorithms that

quantify the prevalence of a set of target patterns in the measured trace. If the

score of the trace exceeds a threshold for a given pattern, an alert will be generated.

By default, the measurement data is not stored. This changes when users request
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a profile, i.e., a visualization, of common traffic patterns in the network. In this

case, raw network samples are stored for a specified profiling duration for clustering

and analysis. The resulting profile can be used to construct additional pattern alerts

or analyzed separately. The remainder of this chapter describes each of the three

components of tpprof in more detail.

3.4. Sampling Framework

tpprof’s sampling framework continually polls a custom set of switch counters to

capture traffic patterns. Most production networks already implement some form

of this—tpprof can piggyback on these existing polling suites. tpprof is, however,

parameterized by at least two configuration options.

• Application filters: To profile application-specific traffic patterns, users must

provide a proper filter for the traffic in question. In tpprof, this takes the

form of iptables rules. Any filter that can be expressed as an iptables rule

is allowed. Thus, multiple applications can be captured by a single filter and

different flows from the same application can be split into different filters by

port, packet type, etc. All traffic matching installed filters are marked with a

special set of bits, e.g., in the DSCP field of the packet header. We term the

value of these bits a filterid.

• Sampling interval: Users must also specify an interval, t∆, at which tpprof’s

sampling framework will poll all devices in the network. This interval is common

to the entire system, so the network and all application-specific traffic patterns

will be read at this rate. Though this is a user-defined value, we anticipate that

it should be set to the minimum value feasible for the target network without

incurring sample loss. We note that, because the raw data is discarded after

alert pattern matching, measurement data storage capacity is not a bottleneck

in tpprof.
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3.4.1. Counter Implementation and Sampling

Network devices in a tpprof-enabled network track a set of device-level application-

specific byte counters corresponding to the space of possible filterids. For every packet

traversing the switch, the counter associated with the specified filterid is incremented

by the size of the packet; all categories summed will give the cumulative byte counter

of the device. In this design, the network is never reconfigured; instead, users associate

applications to filterids directly through the iptables rules at every end host.

tpprof samples these counters at an interval of t∆ via a recently proposed measure-

ment primitive, Speedlight. For brevity, we omit the details of its operation and

refer interested readers to its non-channel-state variant [183, 182]. At a high level,

the primitive is that of a synchronized, causally consistent snapshot of network-wide

switch counters. Compared to SNMP and other naïve polling tools, Speedlight pro-

vides increased accuracy and low minimum sampling interval, both of which are useful

when profiling network traffic patterns.

Alternative implementations. We note that, at its core, the only requirement of

tpprof is for configurable counters and a method to periodically poll all such counters

in the network. There are other implementations that satisfy this requirement.

For instance, most modern switches typically include support for configurable ACL

entries with per-entry counters. This approach has the advantage that it can be

implemented without end host cooperation.

Class of Service (CoS) counters are similarly promising. Note that, if application-

specific tracking is not required, periodic SNMP polling is sufficient.

3.4.2. Batching and Aggregation

While it is possible to directly transmit polled counter results to a centralized pro-

filing service, the scale of measurement data collected by tpprof necessitates careful
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handling. In particular, there are two issues we must address: decreasing overhead

and handling sample loss.

For the first, to decrease the number of messages and the overhead per sample, tpprof

agents running on each network device assemble results locally before shipping batches

of size B in the following format:

sampleBatch: {

switch: <SWITCH_ID>,

indexes: [i : <SAMPLE_ID> for i from 0 to B],

app1_bytes: [i : <BYTE_COUNT> for i from 0 to B],

...

appM_bytes: [i : <BYTE_COUNT> for i from 0 to B]}

indexes[k] and *_bytes[k] should correspond to a single network sample. Gaps

in the samples, e.g., from failures or measurement packet drops, will manifest as

gaps in the indexes array. In these cases, tpprof attempts to interpolate values by

taking the difference between byte counters before and after any gap and averaging

the difference over the length of the gap. If the device has rebooted or if it stays

down for too long, we will treat the device as ‘failed’ during the missing measurement

intervals. ‘Failed’ devices are excluded from profiling and treated as wildcards during

alerting. Note that reboots are also excluded from interpolation as we do not know

how much traffic was sent before the counter was reset.

Storing data for profiling. While tpprof does not store raw counter values in the

common case, raw values are necessary for generating profiles. Profiles are, therefore,

executed on-demand using the API:

start_profile(start, end, filter_id)

The duration of collection should be long enough to capture a representative slice
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of behavior. In general, longer is better, but this may be subject to limitations of

sample storage space and the user’s timeline. filter_id = −1 indicates the sum of

all application-specific counters.

3.5. The tpprof Profiling Tool

We first discuss how tpprof extracts and ranks traffic patterns before delving into

the scoring and alerting system in Section 3.6.

To that end, the output of the previous subsection (3.4.2) is a network sample se-

quence, i.e., a sequence of n-device samples of network utilization. Using that, the

output of the tpprof profiler is a ranked list of network states and a ranked list

of state subsequences, as sketched by Figure 3.1b and demonstrated in Section 3.7.

tpprof achieves this using a pair of domain-specific clustering techniques that are

designed to capture first-order patterns in network traffic.

The first challenge in identifying meaningful traffic patterns is the inherent noise

present in a trace of network samples. Small variations in workload, TCP effects,

background traffic, or any number of other factors mean that, most likely, no two

network samples will look exactly alike.

To de-noise the data, tpprof summarizes network samples into a small number of

distinct network states. We can naturally frame this as a clustering problem, where

the points to be clustered are the n-element vectors representing network samples.

Clustering has been used to great effect in a number of fields, from image segmentation

to recommendation systems and anomaly detection; each of these has its own set of

challenges and associated clustering algorithms.

Network state extraction is no different in that regard. In this work, we leverage em-

pirical analysis of a variety of applications and traces to identify and design algorithms

suited to the domain. Applications observed include Hadoop, Giraph, TensorFlow,
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Spark, Memcache, and a trace from a production Facebook frontend cluster (see

Section 3.7 for their details).

Dimensionality reduction. Before delving into tpprof’s clustering algorithm, we

note that, in general, networks present a particular challenge to clustering because

of their high device counts. Profiling the ToRs of a 48-rack data center cluster, for

instance, might result in a 48-feature input vector, which prior work has indicated

might be too many dimensions for typical distance metrics [37].

The general solution to this well known ‘curse of dimensionality’ [35] is transforming

the data into a lower-dimensional space before clustering. The simplest approach

is to cluster on only a subset of features. While this works in other domains, it is

not well suited for our problem because the load on every device may be important.

Instead, tpprof preprocesses data with Principle Component Analysis (PCA) [66],

which derives a small set of features that are an orthogonal linear transformation of

the original features. Said differently, PCA removes redundancies in the original data

by creating a new set of independent features that explain most of the variability in

the original data.

PCA is most effective when features are strongly correlated, and there is good reason

to believe that this is true in our domain. Recent work [49] shows that network

usage is highly correlated, driven by the data-parallelism in distributed systems [83,

187]. Analysis of the Facebook traffic trace verifies this: each ToR had strong and

statistically significant correlations (r > .7, p < .001) with an average of 3.25 other

ToRs. The applications we profiled showed similar results.

Figure 3.3 measures the effect of PCA on that data, gauged by plotting the number

of PCA dimensions (i.e., features) versus explained variance. All other traces we

obtained showed similar results. A value of 1 means that a PCA transformation to
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Figure 3.3: Covariance explained by different numbers of PCA dimensions. Dataset is a
trace of utilization over 48 ToR switches in a Facebook frontend cluster.

K dimensions preserved all the information contained in the original data with 48

dimensions. Even for this large and complex trace, one dimension already explains

over 80% of the variance and two dimensions explain ∼85%. Striking a balance

between clustering efficacy and explained variance, tpprof projects all data into 2D

by default. This can be adjusted depending on the data.

3.5.1. Network States

Gaussian Mixture Models (GMMs) for sample classification. tpprof clusters

around typical network variations through its use of GMMs. To demonstrate this

effect, we consider the 2D PCA projections described above and visualized, for our

set of profiled applications and traces, in Figure 3.4. To help interpret points in the

PCA space, we also plot network load at 4 extreme waypoints along the convex hull

of each trace. We observe two general cluster shapes in the projected data: ‘rays’ and

‘clouds’.

• Rays, like the ones prominent in Figures 3.4a and 3.4c, are typically associated

with rising or falling utilization on a set of highly correlated nodes. We can see

this effect most clearly in Figure 3.4c through the relationship between D, ♢,
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Figure 3.4: Network samples projected into a 2-dimensional PCA space. Cluster centers are
marked with x’s. Shaped-markers map points in the space to sample vectors [l1, l2, s1, s2]
(see Figure 3.1a) or, for the Facebook trace, average utilization.
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and 2. Compare their utilizations with that of #.

• Clouds, like the ones in Figures 3.4b and 3.4g, typically characterize samples

that are similar in configuration, but separated by noise that offsets points by a

small amount in all directions of the PCA space. These clouds can be more or

less dense, depending on the coherence of the pattern. The memcache variants,

for instance, exhibit strong all-to-all behavior, which manifests as dense clouds

to the right of the PCA plots.

Synchronized behavior and noise around a specific configuration capture most of the

key behavior in our empirical tests. For these two types of clusters, GMMs are known

to perform well. GMMs model a cluster as a multivariate Gaussian with independent

parameters for each dimension of the data. This independence provides the flexibility

for clusters to fit both types of clusters with arbitrary densities. We fit GMMs to

the data using the expectation-maximization algorithm from Scikit-learn [146], which

finds clusters that are each defined by a centroid sample and a vector of per-feature

variances.

Automated detection of cluster count. GMMs are defined in terms of a fixed

number of clusters, K. tpprof selects K automatically by using a Bayesian Infor-

mation Criteria (BIC) score. Informally, a better (lower) BIC score means that a

specific clustering, if used as a generative function, is more likely to produce the

observed data.

We note, however, that BIC scores tend to improve as K increases, but a high number

of clusters can overfit the data. To overcome this issue, we select a K value at

which the benefit gained by adding an extra cluster starts to diminish. Finding

such “elbows”, or points of maximum curvature, is a common problem in machine

learning and systems research. We use the Kneedle method [159], a simple but general
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(h) Facebook cluster

Figure 3.5: Selecting the number of clusters with Bayesian Information Criteria (BIC) and
the elbow heuristic.
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algorithm based on the intuition that the point of maximum curvature in a convex and

decreasing curve is its local minima when rotated θ degrees counter-clockwise about

(xmin, ymin) through the line formed by the points (xmin, ymin) and (xmax, ymax).

Specifically, we plot the BIC score versus K and draw a line segment connecting

the points for K = 2 and a configured maximum of K = 10, which we set based on

the typical working set capacity of humans. The optimal value of K is given by the

point furthest from that line. Figure 3.5 shows the results of this analysis for the

applications and traces introduced above.

3.5.2. Network State Subsequences

Network state subsequences extend network states to capture temporal patterns in

traffic. Like states, subsequences require compression of the full sequence of samples

taken during the profiling run into a small set of representative patterns. Unlike

states, existing sequence-based clustering algorithms are a poor fit for network traffic

patterns.

To see why identifying and ranking network state subsequences is challenging, consider

a strawman solution: take all possible subsequences of the trace and count their

frequencies, e.g., the trace ABC would result in the following subsequences {A ×

1, B × 1, C × 1, AB × 1, BC × 1, ABC × 1}.

Challenge 1: (a) A5 = AAAAA versus (b) A5B . . . AAB . . . AAB

Intuitively, the interesting bit of sequence (a) is that there is a long run of A’s.

The strawman solution will instead output that the most common subsequence

and frequency is the single state A× 5, followed by AA× 4, etc. With the naïve

approach, short subsequences will always take priority; in fact, we can prove that

subsequences will never beat their member states. On the other hand, sequence

(b) demonstrates a case where it might be useful to be able to observe the shorter

subsequences. In this case, greedily setting aside the A5 would miss the third
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param stateSequence[# samples in the trace] : Full sequence of network states.
param minFreq: The minimum number of subsequence occurrences before it is counted
as a ‘common’ subsequence.

1 Function getSubSequences:
2 for targetLength : len(stateSequence) to 2 do
3 maxStart← len(stateSequence)− targetLength
4 for start : 0 to maxStart do
5 end← start + targetLength

/* Skip taken ranges */
6 if [start,end] contained in takenRanges then
7 continue

/* Add if it meets minFreq */
8 subseq← log10Merge(stateSequence[start:end])
9 if (# subseq observations) ≥ minFreq then

10 Add (start, end) to takenRanges after loop
11 Increment subseqs[subseq]
12 else
13 Hold subseq until the threshold is reached
14 subsequenceCoverage← computeCoverage(subseqs)
15 totalCoverage← computeTotalCoverage(subseqs)
16 return subseqs, subsequenceCoverage, and totalCoverage

Figure 3.6: Pseudocode for finding common subsequences in a sequence of network
states.

occurrence of AAB, which is arguably the more important pattern.

Challenge 2: XA39Y . . .XA40Y . . .XA41Y

The strawman solution also performs poorly with similar, but not identical ranges.

While it may find here that there are long strings of As, or even that X is typically

followed by As, or that Y is typically preceded by As, it will fail to find that As

are typically sandwiched between X and Y . Variance in duration is common

in networks, where measurement timing, available capacity, and workload size

changes frequently.

Challenge 3: (AB)3(CDEFGHIJKLMNOPQRSTUV XY Z)2

Finally, we note that frequency itself is not an ideal metric. Consider the above

trace. The longer trace is much rarer and more interesting, but a pure frequency

analysis will rank AB higher in importance.
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tpprof’s subsequence extraction (outlined in Figure 3.6) addresses these challenges

through a series of rules, which we describe below. Line numbers reference Figure 3.6.

Only consider subsequences of length 2+ [Line 2]. While knowing the most

frequent single states is useful, the goal of extraction is to capture patterns in traffic.

We, therefore, prune subsequences of length 1 from consideration and list the relative

frequency of single states separately.

Ignore strict subsequences [Lines 6–7]. To better summarize cases like Chal-

lenge 1(a), we exclude any subsequence that is wholly contained within another sub-

sequence. We implement this efficiently using two data structures: (1) takenRanges,

a list of existing subsequences sorted by start, and (2) a heap-based index of the

currently overlapping subsequences, sorted by end (not shown).

Frequency threshold before a subsequence is counted [Lines 9–13]. The

above rule, applied directly, might produce a single subsequence encompassing the

entire trace. To account for this, we set a minimum frequency threshold, minFreq,

before which the subsequence is not counted. We note that a lower value of minFreq

promotes the inclusion of longer but sparser subsequences, while a higher value fa-

vors many, shorter subsequences. tpprof automatically tunes this value using the

hyperopt library to optimize for ‘total coverage’, a metric we describe at the end of

this section.

Log10 repetition frequencies [Line 8]. To handle cases like that of Challenge 2,

common in network traces, we compress repetitive states into the nearest power of

10. Doing so ignores small differences in duration while still retaining the length’s

rough magnitude.

Coverage rather than frequency [Lines 14–15]. As evidenced in Challenge 3,
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differences in the length of subsequences and the ability of subsequences to overlap

diminish the utility of frequency as a way to reason about the relative importance

of different subsequences. Instead, we propose coverage as a metric for ranking sub-

sequences and for hyperparameter-tuning minFreq. Coverage measures, for either a

single subsequence or the union of all subsequences, the cumulative fraction of states

in the stateSequence that are included in at least one subsequence.

We encourage the reader to step through several short examples of network state

sequences to see why the above rules produce intuitive results.

3.5.3. Example Visualization: memcached

To tie the above discussion together and showcase the utility of tpprof, we present

to the reader several real profiles produced by the tpprof tool suite. See Section 3.7

for a description of the hardware testbed used in these tests.

As a baseline, we first look at a memcache workload generated using the memaslap [7]

benchmarking utility, running in isolation. Each machine in the testbed was config-

ured as a memcache server with 64B keys and 1024B values. Gets and sets were

randomly generated from two machines—one in each rack—with a ratio of 9:1. In

this simple test, the two memcache clients, every 6 s, will simultaneously begin per-

forming 290k get/set operations.We profiled this behavior, collecting a total of 7000

network samples at a 50ms interval.

Visualization structure. Figure 3.7a shows the tpprof profile for this run. Like

Figure 3.1b, heatmaps of network state are at the top of the figure and the most

common network state subsequences are below. Each heatmap shows the centroid of

the sample clusters it represents. We add to this the state’s % time (the amount of

time the network spends in the state) as well as its stability (the probability that the

network, once in the state, will stay there); states are sorted by % time.
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(a) memcache – Baseline
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(c) memcache – Straggler
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(d) Cross-traffic during Figure 3.7c

Figure 3.7: tpprof profiles of memcache in three different environments (Figure 3.7a– 3.7c),
plus a profile of cross-traffic (Figure 3.7d) active during Figure 3.7c.

For subsequences, we include the top three by coverage; more can be generated on

demand. Subsequences are depicted with a series of points (representing states) con-

nected by arrows (denoting transitions between states). The points align horizontally

with the states they represent. Solid points accompanied with an O(x) label indicate

an x–10x repetition of that state. The number on the left of each subsequence is the

percentage of the trace that it covers. Note that coverage can add to more than 100%
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due to overlapping subsequences.

Observations. We can observe several characteristics in Figure 3.7a. First, we can

see that there are three states in which the network spends its time. In the one that

accounts for more than half the trace, the network is unutilized. The other two show

different states of even leaf and even spine utilization, indicating that the network is

relatively balanced when it is being used. Note that the leaves of the network are

consistently hotter than the spines due to rack-internal communication.

As expected of the workload, the subsequences of the profile show a trace composed of

on-off periods of all-to-all traffic. We can also deduce from the duration of repetitions

that the on and off periods both last on the order of seconds. Further, we can infer

that the network takes time to ramp up/down from full utilization. This is inferred

from the presence of the (L-to-R) 3rd state and the absence of direct transitions

between states 1 and 2. Ramp ups seem to be an order of magnitude faster than

ramp downs.

tpprof’s observations can inform network and application changes. For example, if

an operator were to see a similar profile in practice, she could conclude that load

balancing is not an issue. Instead, a more promising approach would be to either

desynchronize traffic to spread out utilization over time or augment the leaf switches

with additional capacity.

Case Study #1: Detecting Load Imbalance

tpprof can also help to detect acute problems in networks. As a case study, we

artificially introduced an ECMP misconfiguration [196] into the network. Specifically,

we configured one of the ToR switches to only use the left spine; otherwise, the

workload is identical to Figure 3.7a. Figure 3.7b shows the output of our tpprof’s

Python-based visualizer. An operator comparing this profile to that of the baseline
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would be able to see the new and stark differences between the two spines in all states

with load and conclude that ECMP was not doing its job. While imbalance can also

be due to elephant flows and hash collisions, the fact that this happens consistently

and always with the same spine points to a structural issue.

Case Study #2: Debugging a Noisy Neighbor

As another case study, we use tpprof to debug an apparent straggler in the system.

In this experiment, we add a heavy background flow between two hosts connected to

the lower-left leaf, l1. Figure 3.7c shows the profile in question. From this profile, an

operator can observe that, in 5–10% of samples, there is a slight bias toward l1 while

the other leaf is largely un-utilized. These samples are summarized in the right two

network states. If the operator is expecting an even all-to-all pattern like the one

in Figure 3.7a, these states would lead her to suspect that a task in the system is

straggling.

tpprof’s ability to profile concurrent applications independently can also help to

diagnose this issue. In particular, she can view the profile of non-memcache traffic

present during the same profiling period. In this case, tpprof would provide her with

Figure 3.7d, which clearly shows a competing flow or set of flows within l1.

3.6. Traffic Pattern Scoring

The tpprof components described in prior sections allow users to profile their net-

works and find prominent traffic patterns. In many cases, after finding certain pat-

terns, users are likely to want to know if (or when) they occur in the future. The

tpprof traffic pattern scoring engine solves this problem. The key challenge is de-

signing both a language that makes it simple for users to specify pattern signatures

and also an algorithm efficient enough to detect those patterns in realtime.

Traffic pattern signatures. A traffic pattern signature describes the approximate
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⟨signature⟩ ::= { (⟨target state set⟩) ; ⟨target sequence⟩ }
⟨target state set⟩ ::= ⟨target state⟩ , ⟨target state set⟩

⟨target state⟩ ::= ⃗utilization

⟨target sequence (P)⟩ ::= ⟨target state⟩ | ∼⟨P⟩
| ⟨P⟩∧⟨P⟩ | ⟨P⟩∨⟨P⟩
| ⟨P⟩∗ | ⟨P⟩{ min repetitions , max repetitions}

Figure 3.8: Definition of a traffic pattern signature.

Target state set S1 S2 S3

Target pattern (P) (S1)* (S3) (S1)

S1 S3 S1 accept 
state

start 
state

Figure 3.9: An example traffic pattern signature that detects a synchronized all-to-all burst.

spatial and temporal characteristics of a traffic pattern. It is defined by the grammar

in Figure 3.8 and has two components.

• A set of target network states describe the approximate samples that are likely

to be observed during the traffic pattern. These can be generated from prior

profiling runs or manually specified.

• A target subsequence, written as a regular expression, that estimates how the

network transitions between the target states during the pattern.

As an example, Figure 3.9 illustrates a signature to detect a synchronized all-to-all

burst of traffic in our example topology. The target states in the signature are: S1,

0% utilization on all links; S2, 50% utilization on all links; and S3, 100% utilization

on all links. The signature’s target subsequence is, thus, one in which the network
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Figure 3.10: Matching and scoring a sample trace against the all-all signature in Figure 3.9.

is in S1 before transitioning to S3 (i.e., high, all-to-all utilization) and immediately

going back to S1, signaling a quick end to the all-to-all utilization.

Scoring signatures. tpprof’s Traffic Pattern Score (TPS) algorithm quantifies a

signature’s prominence in a network sample sequence by finding and scoring sub-

sequences that are similar to it. This amounts to a streaming fuzzy string search.

Figure 3.10 illustrates the scoring algorithm for the all-to-all signature in Figure 3.9,

while Figure 3.11 provides psuedocode of our streaming implementation. There are

three steps.

1. State matching: The TPS algorithm first maps each incoming sample to the most

similar target state, transforming the stream of samples into an intermediate

stream.

2. Pattern matching: It then scans the intermediate stream for the target sub-

sequence using a finite automata [90]. A match occurs when the automaton
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1 signature← (targetStates, regexp)
2 Function TPSGrep(signature, sampleStream):
3 Initialize matchStream
4 compile_patterns(matchStream)
5 scoreBuf←[]
6 offset← 0
7 for each (sample, timestamp) in trafficPattern do
8 /* Identify most similar target state.*/
9 stateSymbol← nearestNeighbor(sample,targetStates)

10 similarity← |netState− sample|
11 /* Track scores for up to BUF_LIM of the last samples. */
12 scoreBuf.append(score)
13 if len(scoreBuf)>BUF_LIM then
14 scoreBuf.pop()
15 offset← offset + 1
16 /*Invoke HyperScan to update stream. */
17 (begin, end) = scan(matchStream, stateSymbol)
18 /*If a match occurred, calculate and emit a score. */
19 if end ̸= NULL then
20 emit sum(scoreBuf[begin-offset:end-offset]

Figure 3.11: The streaming TPS algorithm.

reaches an accept state, at which point it is executed in reverse to identify the

start point of the longest matching subsequence.

3. Match scoring: A match indicates that the exact target subsequence has been

found in the intermediate stream; however, how this relates to the underlying

sample stream is unclear. Thus, the final step is to score match strength by cal-

culating the average similarity between the two streams during the subsequence.

Writing signatures. There are two sources for signatures. First, they can be auto-

matically generated by the profiler, from the network state subsequences it identifies.

This allows the TPS algorithm to automatically identify future reoccurrences of events

identified with the tpprof profiler.

Second, users can manually write signatures that characterize the most important

attributes of a traffic pattern. Since TPSes use a fuzzy algorithm, patterns do not

need to be exact. Instead, they can be defined programmatically. With the three
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Pattern Signature State Definitions

Short all-all S∗
1S2{1, 10}S1 {S1}=N:0.0,{Ss}=N:0.5

Long all-all S∗
1S2{10, 100}S1 {S1}=N:0.0,{Ss}=N:0.5

Hotspots (S1|S2|S3|S4){10, 100} {S1, ..., S4}={(x:1.0, -x:0.0)
for x ∈ N}

Imbalance S∗
1 |S∗

2 {S1, S2}={(x:1.0, -x:0.0)
for x ∈ (s1, s2)}

Stragglers (S1|S2|S3)
∗S3 {S1,S2,S3}={(l1:v, -l1:0.0)

for v ∈ (0.1,0.01,0.0)}

Table 3.1: Traffic pattern signatures for a leaf-spine network N with spines (s1, s2) and
leaves (l1, l2).

primitives described below, users can express simple but powerful signatures.

• State definition, e.g., (x:v, y:u), which defines a state with switch x having

utilization v and switch y having utilization u.

• Set assignment, e.g., X:v. This sets every switch x ∈ X to utilization value v.

• Iteration (over sets or switches) e.g., {(x:v) for x ∈ X}, which defines a set

of states: one state for each switch in X, defining that switch to utilization value

v.

Table 3.1 lists five example signatures written with these primitives. We evaluate

them later in Section 3.7.3.

3.7. Implementation and Evaluation

tpprof is implemented in Python/C++ as a standalone service that aggregates sam-

ples, profiles them, and scores them for the presence of known traffic patterns, as

described in the previous sections. Each of the profiles shown in this section is a real

output of tpprof, generated programmatically using Python and Matplotlib 3.1.1.

The requisite counters and polling/batching components that run on each device are

implemented in P4 and Python, respectively. Traffic Pattern Scoring is implemented

in C++ using hyperscan [90].
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Hardware testbed. To verify the utility of tpprof and its outputs, we used it to

profile and score the traffic patterns of real applications running on a small hardware

testbed consisting of a Barefoot Wedge100BF-32X programmable switch connected

to six servers with Intel(R) Xeon(R) Silver 4110 CPUs via 25GbE links. The testbed

is configured to emulate a small leaf-spine cluster like the one in Figure 3.1a. To

implement this network, we split the Wedge100BF switch into 4 fully isolated logical

switches. Each logical switch runs ECMP to balance load across paths.

Application workloads. On our hardware tested, we profile four popular networked

applications, in addition to the memcache evaluation in Section 3.5.3:

1. Hadoop running a TeraSort [26] benchmark workload with 5B rows of data.

Our Hadoop instance ran version 2.9.0 with YARN [27] on 10 mappers and 8

reducers spread across the 5 servers (and 1 master).

2. Spark’s GraphX [29] running a connected components benchmark workload with

1.24M vertices. We ran Spark 2.2.1 with Yarn on 5 servers (and 1 master).

3. Giraph [25] running a PageRank synthetic benchmark workload with 120,000

vertices and 3,000 edges on each vertex. We used 23 workers in total across our

6 servers.

4. TensorFlow running the AlexNet [106] image processing model with 1 server

managing parameters and 5 workers. We used ILSVRC 2012 data for training.

Unless otherwise specified, these applications were run in the presence of background

TCP traffic derived from a well-known trace of a large cluster running data mining

jobs [21]. Profiles are of the target application only.

Large-scale trace. To augment our small testbed, we also profile packet traces of

48 Top-of-Rack switches from three of Facebook’s production clusters: a frontend
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Figure 3.12: Profiles of more complex applications running with realistic background traffic.

cluster, a database cluster, and a Hadoop cluster. As the datasets are sampled by

a factor of 30,000, we divide the timestamps by 30,000 to obtain an approximate

representation of a full trace. Note that multiplying traffic by 30,000 would have

given a more accurate distribution, but resulted in artificially stable patterns.

3.7.1. Profiling More Complex Applications

To evaluate how tpprof’s algorithms deal with more complex applications, we profile

each of the application workloads we introduced earlier in this section. These appli-

cations all ran in the presence of background traffic, but we only show profiles of the

application-specific traffic.
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From the resulting profiles in Figure 3.12, we can see that, for the most part, the

network was only lightly utilized during these tests. In Hadoop and Spark, for in-

stance, the network spent > 96% of the time unutilized, indicating that our particular

testbed tends to be CPU-bound. Giraph is the notable exception, spending about

equal time utilized and not.

The states reveal some interesting behavior of the applications. For Hadoop and

TensorFlow, we see heavy skew in spine utilization, but not to a consistent spine.

This likely indicates the presence of a few large flows that dominate the network and

sidestep ECMP’s flow-level balancing. We also see in these two workloads a slight

bias toward the lower-left switch. This is due to task placement: for Hadoop, that

switch is home to the controller and name server; for TensorFlow, it holds both the

chief worker and the parameter server.

3.7.2. Profiling Large Production Networks

tpprof is able to profile more complex networks as well. To demonstrate this, we run

tpprof’s profiler over large-scale traces of the combined traffic for three production

Facebook clusters and show the output in Figure 3.13. We separate the states and

subsequences for readability.
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Figure 3.13: tpprof profile of three 48-rack Facebook clusters. Figures include both (1) a collection of states (A–D) organized as
a 1× 48 heatmap, and (2) a list of the most common state subsequences. Letters map between the two representations.
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Figure 3.13a shows the profile for the frontend cluster. As in the original paper

describing this trace (Figure 5 of [154]), we can observe a clear split between the

average utilization of cache, multifeed, and web servers. States A–C show memcache

at full utilization, webservers at low utilization, and varying levels of multifeed traffic.

Diverging from the original paper, we find an additional network state (occurring

3.8% of the time) in which the multifeed server utilizations spike. The stability of

this state indicates that this may manifest as small, but intense and correlated bursts.

Subsequences further show frequent transitions between states A and B, with state

C representing a short-lived relative lull in multifeed traffic.

Figure 3.13b and Figure 3.13c show the profiles of a database and Hadoop cluster,

respectively. Notably, the database cluster is very uniform and stable across the trace,

indicating a steady workload and good load balancing properties. The Hadoop profile

is also notable in that it diverges substantially from the averaged results in Figure 5 of

the original paper, which showed balanced utilization across racks. While the traffic

is balanced across longer timescales, our results match more closely with their more

granular findings of on-off periods and significant variance at medium timescales.

3.7.3. Efficacy of the TPS Module

We showcase Traffic Pattern Scores by demonstrating how they can help answer an

important question: is my network performing poorly due to load imbalance or strag-

glers? For this, we use the straggler and network imbalance signatures from Table 3.1

to diagnose issues in the memcache deployment from Section 3.5.3. We run the de-

ployment in baseline, noisy neighbor, and ECMP misconfiguration scenarios. We

then generate labeled network sample traces by manually identifying the precise time

windows during which each undesired behavior occurred. Finally, we run tpprof on

each of the traces and compare signature scores against ground truth scores calculated

from sample labels.
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Figure 3.14: Signature scores for memcache in a baseline configuration, with noisy neighbors,
and with an ECMP misconfiguration.

Signature Accuracy Precision Recall

Straggler 0.943 0.867 0.720
Imbalance 0.936 1.000 0.868

Table 3.2: Classification performance of signatures in the memcached testbed.

Figure 3.14 plots the rolling average of ground truth and signature scores in each of

the three scenarios. The signature scores are highly correlated with the ground truth.

Table 3.2 lists the classification performance. Both signatures have high accuracy and

precision, with slightly lower recall—a desirable tradeoff in an alerting system. We

note that tpprof’s per-scenario precision and recall are 100%: no signature’s score is

high in the baseline scenario; only the straggler signature’s score is high in the noisy

neighbor scenario; and only the imbalance signature’s score is high in the ECMP

misconfiguration scenario.
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Filter count 0 128 256 512 1024
CPU Util (%) 0.44 0.65 0.84 1.18 1.77

Table 3.3: tpprof’s iptables CPU utilization.
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Figure 3.15: Signature vs CPU Load

3.7.4. Overhead and Performance of tpprof

Finally, tpprof is designed for efficiency and minimal overhead. Only two compo-

nents in the sampling framework can potentially impact traffic: sample collection and

iptables tagging.

Analytically, snapshots of all ports on a 128 port switch at a 50ms interval generate

only 0.1 Mb/s of measurement data. As Table 3.3 shows, the iptables rules used to

construct application-specific profiles also have low overhead.

In addition to measuring overhead, we also benchmark the Hyperscan [90]-based TPS

scoring engine, which operates online in parallel with the network. Specifically, we

measure average CPU load while operating on the Facebook trace. Figure 3.15 shows

single-core CPU load. It increases linearly with the number of signatures, but even in

this large network with 100 signatures and a 50 ms sampling frequency, average load

for real-time processing is only around 10%.
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3.8. Discussion

Other metrics. While we focus on utilization in this chapter, we note that tpprof

easily extends to any metric collectible from the network. These include simple ex-

tensions like packet counts to more advanced metrics like buffer depth and high-water

marks. As these metrics are generally correlated with utilization, we anticipate that

tpprof’s techniques will extend intrinsically, but we leave an exploration of these

extensions to future work.

Canned reactions. We also note that the ability of tpprof’s scoring engine to distin-

guish different traffic patterns presents an attractive substrate for building network-

level reactions to different traffic patterns. This can also work in reverse: tpprof

can identify common patterns for which operators should pre-compute reactions. We

leave an investigation of this class of applications to future work as well.

3.9. Summary

We present tpprof, a network traffic pattern profiler. Just as tools like gprof made

it easy for programmers to design, understand, and optimize their programs, tpprof

does the same for profiling the utilization of large networks. tpprof leverages recent

advancements in programmable networks and network-wide measurement to capture

packet-accurate snapshots of utilization over time. On top of that, tpprof builds

user-centric profiling, visualization, and automation tools. tpprof is agnostic to the

application set running over the network and can profile networks in situ, making it

an ideal fit for multi-tenant or transit networks. We profile several classic applications

in order to demonstrate its utility.
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CHAPTER 4

Aragog : Scalable Runtime Verification

of Shardable Networked Systems

4.1. Introduction

An emerging bottleneck to correctness and availability in modern cloud systems are

the various network functions (e.g., firewalls, NATs, and load balancers) that interpose

on the majority of application requests flowing to, from, and between servers in the

cloud. Over time, these network functions (NFs) have become increasingly complex.

Today, many of these functions are full-fledged distributed systems whose correctness

depends on the coordination of multiple devices as well as on stored state and system

timing.

Configuration errors and software bugs in these components can have an outsized

impact on SLAs [11] not only because of the complexity of these systems, but also

because they are on the critical path of most application requests. For instance,

a production NAT gateway we verify in this work manages (replicated) states for

millions of flows and errors in this system can lead to black holes, broken connectivity,

forwarding loops, and more. Public incident reports from providers show multiple

outages due to errors like these [74, 11].

To improve availability, recent proposals suggest using static verification to prove the

correctness of these systems [192, 188, 125, 103, 178, 144, 185, 81]. While powerful, the

need to reason about every possible interleaving of inputs and control flows presents a

significant obstacle to the application of these techniques in today’s network functions.
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Attempting to explore the full space of control flow paths often leads to state/path

explosion [125, 103, 178]. Mitigations to this problem, broadly speaking, can be

categorized in a few ways. The first is to require the use of special programming

languages or other types of programmer interaction [189, 81]. The second is to use

model checking techniques to more efficiently explore all possible system behaviors.

Finally, many systems—to reduce the state space they must verify and to make

verification more tractable—limit the set of verifiable behaviors, e.g., to those that

are unordered [144], abstract [22], or restricted to a single machine [192, 188].

While effective in many cases, each of these approaches also comes with significant

drawbacks. With the first, programmers are saddled with a substantial burden that

can overwhelm the development of the system. With the second, model checking

still typically relies on hand-written models of functionality, which may be difficult

to provide for a rapidly evolving or complex system. Finally, limiting the scope

of verification fails to extend to the increasingly complex services found in modern

networks—services that arguably need verification the most.

An alternative approach to static verification is runtime verification of distributed

systems. In runtime verification, a tool extracts information about the current state

of a running system (testbed, canary, or production) to verify that invariants hold

throughout execution [136, 54, 151, 126, 58, 127, 122, 177]. Compared to static veri-

fication, runtime verifiers only test inputs and control flows that are seen in practice,

thus improving scalability and enabling verification of actual deployments running

over actual data. In return, they sacrifice a principled exploration of the system’s

behavior and the ability to catch bugs early. We argue that these tradeoffs are a

better fit for our operators’ requirements.

We find today’s runtime verifiers cannot be applied as-is to deployed network func-

tions. The challenge (for network functions) is the need, at runtime, to: (1) reason
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about the coordination between events issued at different locations, (2) efficiently

aggregate global state after each event, and (3) scale sub-linearly with the size of the

original system—after all, a verifier that requires the same amount of resources as the

system itself is untenable for most production environments.

In this dissertation, we present the design of a scale-out, runtime verification tool for

network functions called Aragog that overcomes the above challenges. Aragog provides

a simple, but expressive language for describing violations of invariants, with a focus

on supporting network functions. Examples of network-centric language features that

are found in Aragog ’s Invariant Violation (IV) specifications, but that are uncommon

in other runtime verifiers are support for properties that are parametric over the

“location” of events, properties that reference stateful variables, the ability to execute

partial matches over packet fields, and support for temporal predicates.

Aragog translates these IV specifications to a set of symbolic automata that can effi-

ciently verify the current global state of the system. In addition, to ensure that the

system can scale out to a near-unlimited number of machines, Aragog implements the

core of these checks on top of production stream processing systems [9, 10]. To effi-

ciently coordinate between distributed verifiers, Aragog relies on hardware-supported

time synchronization protocols like PTP. Finally, to minimize the overhead of the

verification system, Aragog leverages observations that network events/invariants are

typically:

Flow- or connection-based: For most network functions, correctness is defined on

a per-flow or per-connection basis. From the IV specification, Aragog derives sharding

keys that allow it to distribute the verification task across independent workers. These

shards also expose boundaries on which we can gracefully scale down to a sampled

subset of the input.

Partially suppressible Rather than aggregate all events in the system to a logically
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centralized verifier, most network events have limited windows of relevance depending

on the state of the system, e.g., only if the connection has recently been closed. Aragog

includes an optimization scheme to suppress such messages before they ever leave the

NF instance.

Aragog does not guarantee perfect accuracy under asynchrony—to do so would re-

quire atomicity guarantees in the critical path of the network functions. Aragog

instead handles these situations speculatively and notifies users after-the-fact4 about

transient inconsistency (§4.7.3). Despite this, Aragog identified at least four bugs in

an early (limited) deployment of a real distributed network function: Azure’s new

NAT gateway (NATGW). These bugs were detected within ∼100ms of occurrence.

Compare this to the hours our operators typically spend searching for similar bugs.

To summarize, our work makes the following contributions:

• We present a case study of the needs of a large modern network function from

Microsoft’s Azure. The system exhibits several interesting characteristics and

suggests key requirements for verifier design.

• We synthesize ideas from timed regular expressions, symbolic automata, and

parametric verification. To the best of our knowledge, ours is the first to demon-

strate a concrete need and method for combining these concepts.

• We introduce the design and implementation of Aragog , a system for at-scale

runtime verification. When needed, Aragog can also run on traces (offline)

and therefore complement static verification to find implementation bugs in

distributed networked systems. Among other innovations, Aragog includes a

novel method for computing location-dependent suppression of network events.
4This reporting happens in under 1 s. This delay is on the same order as other alerting systems used in

our production networks.
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Figure 4.1: The architecture of our NATGW. The bolded blue arrows show the sequence
of communication to handle the SYN packet of an incoming flow: it is sent to a random
packet worker, which forwards it to the flow decider in charge of that flow. The flow decider
chooses a target server and replicates the mapping to other deciders, then installs it in the
original packet worker. The three dashed red arrows trace the allocation of the mapping for
the reverse flow.

• We introduce a collection of Aragog invariant violations for a set of distributed

network functions, and we evaluate Aragog on NATGW and a distributed fire-

wall.

4.2. Motivation: A Cloud-scale NAT Gateway

Our work is grounded in experience with Azure’s large-scale NF that we call NATGW.

NATGW is a cloud-scale NAT gateway that balances incoming requests over available

servers and supports almost all external traffic.

Like many other NFs of similar scale [145, 62], NATGW is implemented entirely in

software, is distributed across a pool of servers, and replicates state for fault tolerance.

Routers use ECMP-based anycast to randomly direct packets to NATGW workers,

which then rewrite the destination IP and port to point at a target server. A similar

translation occurs for packets in the reverse direction (from the server to the client).

Figure 4.1 depicts the NATGW architecture. It is composed of two types of nodes:
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packet workers and flow deciders. Packet workers process every packet passing through

the NATGW, parsing its header, looking up the target server, and rewriting the packet

header to point to that target. The mapping of a flow to a target server is decided

with the help of a sharded set of flow deciders. The deciders cache and replicate these

mappings to other deciders to ensure availability.

Flow allocation When a packet worker receives the first packet of a new flow, it

uses a hash of the 5-tuple to identify the “primary” flow decider that owns the flow

and forwards the packet to that decider. The primary then:

1. Decides the target server to which to send the new flow and installs the mapping

in the local flow cache.

2. Sends the reverse mapping to the flow decider that “owns” the other end of the

flow. Together, these two mappings cover translation for both incoming and

outgoing traffic.

3. With its counterpart primary, greedily copies the mappings to the cache of other

flow deciders in a manner akin to chain replication: decider i will try to copy to

deciders (i+ 1) mod N and (i+ 2) mod N , where N is the number of deciders.

If one is down, it switches to (i+ 3) mod N .

4. Installs the mapping into the originating packet worker.

After the above flow allocation, the packet worker can process all subsequent packets

of the flow without coordination with any other node. If the packet worker fails, any-

cast redirects the packet to another worker; the new worker will send the packet to the

primary flow decider, fetching the existing mapping. If the flow decider fails, packet

workers will query the next deciders in the sequence until they find the mapping.

Flow mapping timeouts All components time out their flow mappings to ensure
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stale entries are eventually removed.

To ensure NATGW maintains mappings for active flows, packet workers periodically

send a keepalive message to the primary decider. The primary forwards the keepalive

to all replicas, refreshing the timeout on every instance of the mapping in the system.

In parallel, the primary forwards the keepalive to the primary in charge of the reverse

mapping.

Eventual consistency This NATGW design exhibits some interesting properties.

One of them is a choice to allow for temporary inconsistency in the presence of node

failures in order to satisfy certain practical and performance constraints.

For example, consider three replicas of a flow mapping RP , RP+1, and RP+2, where

RP is the primary. To delete the mapping, RP would send a delete request to both of

the other nodes. Now imagine the message to RP+1 is dropped. Rather than waiting

for RP+1, the others will go ahead and delete f . If, later, RP fails, packet workers

will contact RP+1 for the mapping, which will return a stale/inconsistent result until

a timeout or periodic sync eliminates the inconsistency.

There are known mitigations to the above behavior (e.g., querying a quorum on

every packet or initiating a view change algorithm on RP ’s failure); however, these

come with significant performance costs. Instead, the NATGW is an example of a

deployed architecture that chooses eventual consistency after careful consideration of

its drawbacks and alternative solutions. Our work is motivated by our operators’

experience with such behaviors.

4.3. Design Goals

Our runtime verifier targets the following design goals:

Practicality Network functions are complex; written in a variety of languages; and
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frequently rely on external libraries, drivers, and other components. NATGW, for

example, is built using libraries like DPDK and interacts with an ecosystem of net-

working hardware and configurations. The intricacies of the systems, the richness of

their dependencies, and the rapid evolution of all the associated components mean

the system is not easily modeled or accurately simplified. Instead, verification should

be of the end-to-end system, in situ.

In the same vein, Aragog should not place undue burden on developers, e.g., by requir-

ing engineers to perform non-trivial proof writing (as mandated by many deductive

reasoning techniques). NATGW has over 40 thousand lines of code—Aragog should

avoid incurring a proportional overhead.

Expressiveness Prior work has observed a gap between state-of-the-art verification

tools and the requirements of modern networks [136]. In particular, it is challenging

to specify invariants related to: (1) parametric variables over values like locations

or identifiers, (2) coordination between network devices, and (3) timing of events.

Moreover, since the number of devices (e.g., flow deciders) may vary over time as the

system scales out, it is useful to express properties in a way that does not require

explicitly naming components. Aragog should provide syntax and semantic support

for these behaviors.

Scalability Just as a single machine cannot handle all traffic entering a large network,

it also cannot be expected to verify the correctness of the entire network. Rather, the

verifier should scale out to arbitrary size and require fewer resources than the origi-

nal system. Therefore, Aragog should attempt to minimize the number of messages

exported from each NF, e.g., by exporting events (resulting from the execution of the

NF) rather than packets (the inputs to the NF).

Graceful degradation of accuracy As we describe in Section 4.7.3, perfect preci-
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sion and recall is impossible in an asynchronous system without substantial overhead.

Instead, Aragog ’s correctness goal is in the same spirit as NATGW’s: perfect recall

under the assumption of ‘partial synchrony’ [61] and notifications of potential false

positives/negatives after-the-fact. Our operators find this is sufficient for most cases.

Near-real-time alerts Diagnosing bugs manually can take hours of operator time

and the network could worsen the longer the bug persists: Aragog should raise alerts

within seconds of observing the offending sequences of events.

4.4. Aragog ’s Architecture

We present the design and implementation of a practical, expressive, and scalable

verifier for large and complex NF deployments. Our system, Aragog , is a combina-

tion of a language for specifying invariant violations and a scale-out runtime system.

Aragog takes a grey-box approach, requiring small changes to the underlying source

code in order to export events of interest to the verifier. Thus, Aragog verifies by:

Specifying invariant violations over user-defined events To provide operators

with sufficient expressiveness to check network-level events, Aragog comes equipped

with a new language for specifying invariant violations that is based on writing sym-

bolic regular expressions over a global trace of events (and their locations) in the

system. Aragog ’s language includes a notion of parameterized “variables” that al-

lows violations to be described in a way that holds for any combination of variable

instantiations subject to constraints.

Checking for invariant violations NF developers export any relevant events to

Aragog . To scale up checking of the event stream, Aragog does two things. The first is

to automatically analyze and split verification into local and global components. The

local level resides at the NF instances themselves, where Aragog infers (only using the

state of the local instance) whether it can safely suppress the event before exporting
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Figure 4.2: The architecture of Aragog . NF instances generate and feed events into a set of
local state machines. The NF instances use these state machines to determine if they can
hide unnecessary messages before exporting the rest to the global verifier. These messages
pass through a Kafka cluster and are streamed to a set of Flink-based verification engines.

it to the global Aragog verifier. The second is to leverage the fact that most network

invariants are defined across related flows rather than globally—for instance, on the

granularity of a 5-tuple. As a result, events can be automatically sharded across a

cluster of scale-out stream processing workers using Kafka [105] and Flink [44].

Note that, because the invariants are defined and checked only across related flows,

we only need to know the correct ordering for events pertaining to those flows: event

timestamps that use the sub-microsecond-scale synchronization of PTP suffices for

our needs. For many production networks, these types of event exports are already

common.

Overview Figure 4.2 shows Aragog ’s design. Users describe a set of invariant viola-

tions that identify classes of incorrect behavior. Aragog translates these to a set of

symbolic automata and then splits the automata into local and global components.

It then deploys these to NF instances and global verifiers.

At runtime, NF instances stream events into the pipeline. The local Aragog agent
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1 { "fields" : [
2 {"eventType" : 16},
3 {"nodeType" : 8},
4 {"sourceIPv4or6" : 8},
5 {"sourceIPv4or6==4" : [ {"srcIP" : 32} ],
6 "sourceIPv4or6==6" : [ {"srcIP" : 128} ]},
7 ...
8 ],
9 "constants" : {

10 "NAT_ALLOCATION" : 1, // eventTypes
11 "FLOWCACHE_CONSENSUS" : 769,
12 "PACKET_WORKER" : 0, // nodeTypes
13 ...
14 }}

Figure 4.3: A snippet of the NATGW JSON event schema.

filters, maps, and shards events The message brokers aggregate and compact those

streams The global verifiers determine, for the shard, whether a violation occurred.

Kafka and Flink will automatically allocate resources and load balance requests to

ensure scalability.

4.5. Specification Language

Users define both events and policies over the events using two types of specifications

that are inputs to Aragog : event definitions and Invariant Violation (IV) specifica-

tions. While both of these require the user to have some knowledge of the inner

workings of the NF to specify how it can fail, our network operators determined that

event-based violations struck a reasonable balance between precision and ease-of-use.

4.5.1. Event Definitions

Users specify the format of the event messages that arrive at the local verifier. Aragog

expects these messages to be in the form of packed arrays of raw binary data whose

format is defined with a JSON configuration file. For example, Figure 4.3 shows a

selected subset of the definition for NATGW event messages. ‘fields’ contains the

ordered list of expected fields in the message. Each field is defined by a JSON dictio-

nary specifying the field’s name and its length in bits—for instance, the first 16 bits
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1 FILTER((eventType == FLOWCACHE_PRIMARY_ADD
2 || eventType == FLOWCACHE_REMOVE_ENTRY)
3 && workerType == FD)
4 GROUPBY(srcIP, dstIP, srcPort, dstPort, proto)
5 MATCH
6 (eventType == FLOWCACHE_PRIMARY_ADD) @ $X
7 ((eventType == FLOWCACHE_REMOVE_ENTRY) @ NOT $X)*
8 (eventType == FLOWCACHE_PRIMARY_ADD) @ NOT $X

Figure 4.4: An example IV specification that ensures at most one primary is ever active for
a given flow.

of the event message is an eventType.

Conditionals In addition to specifying the length of each field and their ordering,

Aragog allows users to implement simple conditional parsing logic. The example

event definition shows one such use where srcIP can be either IPv4 or IPv6. In the

configuration shown, event messages include a 8-bit field that specifies the IP version

number. Depending on the value of that version number, the next field is either a

32-bit or 128-bit srcIP field. These branches can define entire sub-headers and can

contain nested conditionals.

Named constants Aragog also allows users to define named constants representing

integer values represented in decimal, hexadecimal, or binary notation. We show four

such constants in Figure 4.3: two for values of the eventType field and one for the

nodeType field. These are intended for use in IV specifications to make them more

readable.

4.5.2. Invariant-Violation (IV) Specifications

Aragog parses incoming event messages and checks them against a set of user-defined

policies that describe sequences of events that violate the invariants of the system.

Operators specify these policies using Aragog ’s domain-specific language, which we

detail in this subsection.
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Figure 4.4 shows an example specification for our NATGW. The policy only pertains

to a subset of events (lines 1–3), and Aragog verifies it on a per-5-tuple basis (line

4). A violation occurs when some node $X adds a primary mapping (line 6) and

then a different node (NOT $X) adds the same mapping (line 8) without $X removing

it. The full grammar for IV specifications is shown in Figure 4.5. Briefly, an IV

specification consists of (1) a collection of event transformations followed by (2) a

regex-like expression over the generated events.

4.5.3. Transformations

Aragog allows users to define a set of policy-specific transformations. In addition to

enabling greater flexibility and expressiveness, Aragog also uses these transformations

to perform an initial filtering and aggregation as well as to identify valid sharding

strategies. Aragog currently supports three transformations: GROUPBY, FILTER, and MAP.

Operators can use GROUPBY to indicate which events need to be considered together

and which can be considered separately. For example, when an operator wishes to

guarantee at most one primary is active (Figure 4.4) for each flow, the GROUPBY is used

to classify events into unique flows. Aragog uses this transformation to both simplify

policy logic and to assist in the sharding of verification.

Operators can also use the FILTER transformation to indicate which events should be

considered at all and which should be ignored. In the above example, we only care

about flow deciders—specifically when they add a flow as a primary and when they

delete the flow mapping from the cache; we can filter events of any other type or from

any other type of node. FILTERs are critical for reducing the number of events handled

by the verification framework.

Finally, operators can use the MAP transformation to generate entirely new fields based

on mathematical expressions over existing fields of the event message.
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⟨IVspec⟩ ::= ⟨transformations⟩ ‘MATCH’ ⟨events⟩

⟨transformations⟩ ::= ⟨transformations⟩ ⟨transformations⟩
| ‘GROUPBY’ ‘(’ ⟨fields⟩ ‘)’
| ‘FILTER’ ‘(’ ⟨filter_matches⟩ ‘)’
| ‘MAP’ ‘(’ ⟨field_expression⟩ ‘,’ ⟨field_name⟩ ‘)’

⟨fields⟩ ::= ⟨field_name⟩ [‘,’ ⟨fields⟩]
| ‘LOCATION’ [‘,’ ⟨fields⟩]

⟨filter_matches⟩ ::= ‘(’ ⟨filter_matches⟩ ‘)’
| ⟨filter_matches⟩ ‘||’ ⟨filter_matches⟩
| ⟨filter_matches⟩ ‘&&’ ⟨filter_matches⟩
| ⟨filter_match⟩

⟨filter_match⟩ ::= ⟨field_name⟩ ⟨compare_op⟩ ⟨field_name⟩
| ⟨field_name⟩ ⟨compare_op⟩ ⟨value⟩

⟨events⟩ ::= ‘.’ ‘@’ ⟨location_spec⟩
| [‘!’] ‘(’ ⟨event_match⟩ ‘)’ ‘@’ ⟨location_spec⟩
| ‘(’ ⟨events⟩ ‘)’
| ⟨events⟩ ⟨events⟩
| ⟨events⟩ ⟨regex_op⟩
| ‘SHUFFLE’ ‘(’ ⟨events_list⟩ ‘)’
| ‘CHOICE’ ‘(’ ⟨events_list⟩ ‘)’

⟨events_list⟩ ::= ⟨events⟩ [‘,’ ⟨events_list⟩]

⟨location_spec⟩ ::= ‘ANY’
| ⟨loc_matches⟩

⟨loc_matches⟩ ::= [‘NOT’] ‘$’⟨loc_name⟩ [‘,’ ⟨loc_matches⟩ ]

⟨event_match⟩ ::= ⟨field_match⟩ [‘,’ ⟨event_match⟩]

⟨field_match⟩ ::= ⟨terminal⟩ ⟨compare_op⟩ ⟨terminal⟩

⟨terminal⟩ ::= ⟨field_name⟩
| ⟨value⟩
| ‘$’⟨variable_name⟩
| ‘TIME’

Figure 4.5: Grammar for Aragog ’s IV specification language. Tokens ending in ‘_name’
are identifiers that must begin with a letter; the ‘compare_op’ token refers to the class of
operators ‘==’, ‘ !=’, ‘<’, etc; ‘value’ indicates a constant number; and ‘field_expression’ is
a mathematical expression over fields.

4.5.4. Event Expressions

Users define invariant violations over the transformed event streams by specifying

sequences of events that result in a violation of a particular policy. Users specify these

sequences with a regular-expression-like language, which describes patterns over pre-
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defined elements. In Aragog ’s case, the elements take the form of a set of matching

operations over the fields of the event message; the example in Figure 4.4 shows

matches on one such field, the eventType. A match can occur at any point in the

stream of events and triggers on every occurrence of the match, not just the first. For

example, if events A → B → A form a violation and (at runtime) we observe the

sequence CABABAC, Aragog will alert twice.

As in other regular languages, users can list the sequence of expected elements and

use operators like ‘*’, ‘+’, and ‘?’ to signify repetitions. Users can also leverage the

functions CHOICE and SHUFFLE. In CHOICE, an occurrence of any one of the contained

expressions matches. In SHUFFLE, the contained events can arrive in any order, but

must all arrive.

Event expressions come after the set of transformations and must appear after a MATCH

statement.

Locations In distributed NFs, an important feature is that correct behavior is defined

not only on the events and their order, but on where the events occurred. Therefore,

every event match is accompanied by a location specifiers. This is useful for specifying

matches, but it is also important for determining how we might partition evaluation

of the IV specification across both local and global verifiers (see Section 4.6). In both

cases, the goal is to determine whether each pair of events are expected to occur at

the same or at different NF instances.

Consider again the example in Figure 4.4. The example contains a single named

location, $X, corresponding to the original primary node for the current flow. One

way to use this named location is to specify that another event in the sequence must

also occur at $X. Another, demonstrated in lines 7&8, is to specify that the event

occurs at a location distinct from $X. Note that the syntax does not constrain the

96



1 FILTER(eventType == INIT || eventType == DROP)
2 GROUPBY(LOCATION)
3 MATCH
4 (eventType == INIT, srcIp == $S, dstIp == $D, srcPort == $P, dstPort == $Q) @ ANY
5 (. @ ANY)*
6 (eventType == DROP, srcIp == $D, dstIp == $S, srcPort == $Q, dstPort == $P) @ ANY

Figure 4.6: An example specification that checks that a stateful firewall does not drop reverse
traffic for an open connection.

relationship between the locations of the events of lines 7&8.

Every event can reference one or more named locations, or it alternatively use the

location ANY, which indicates no special semantic meaning of the location of the event.

In the case of multiple locations, users specify multiple predicates (one per location).

For example, to ensure three events with distinct locations: one could specify ev1 at

($X, NOT $Y); ev2 at (NOT $X, $Y); and ev3 at (NOT $X, NOT $Y).

One possible method of implementing locations is to enumerate all possible locations

in the system and expand the event expression accordingly. While this would allow

the usage of more traditional state-machine evaluation techniques, it would also lead

to an unacceptably inefficient implementation. Further, any change in membership

would require us to fully recompile and re-install all IV specifications across the

system. Instead, Aragog lazily tracks all potential candidates for location variables

at runtime using a multi-leveled tree data structure, which we describe in detail in

Section 4.6.

Variables Aragog generalizes the state tracking afforded to locations in order to track

other types of state in the IV specification. Examples of non-location stateful prop-

erties include the IP/port NAT mappings of the NATGW and connection tracking in

a firewall. An example of the latter is shown in Figure 4.6, which verifies that if an

outbound flow from source IP $S and destination IP $D is properly initialized, then

packets in the reverse direction are also allowed.
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1 MAP(srcIP < dstIP ? srcIP : dstIP, IP1)
2 MAP(srcIP < dstIP ? dstIP : srcIP, IP2)
3 MAP(srcIP < dstIP ? srcPort : dstPort, port1)
4 MAP(srcIP < dstIP ? dstPort : srcPort, port2)
5 FILTER(flag == FIN || flag == ACK || flag == FIN_ACK)
6 GROUPBY(IP1, IP2, port1, port2)
7 MATCH
8 (flag == FIN) @ $X
9 SHUFFLE(

10 (flag == FIN, TIME == $s) @ $Y,
11 (flag == ACK, TIME == $t) @ $Y)
12 (flag == SYN, TIME - min($s, $t) <= 30000) @ $X

Figure 4.7: An example of a timing violation specification that checks the behavior of TCP’s
TIME-WAIT state [89]. The SYN must not arrive by a deadline. This specification assumes
that only packet sends are captured.

1 FILTER(flag == FIN || flag == FIN_ACK)
2 GROUPBY(IP1, IP2, port1, port2)
3 (eventType == FIN, TIME == $t) @ ANY
4 ((eventType != FIN_ACK, TIME - $t <= 30000) @ ANY)*
5 (TIME - $t > 30000) @ ANY

Figure 4.8: An example of a timing-related IV specification that checks timely arrival of a
FIN_ACK after a FIN. The FIN_ACK must arrive by a deadline.

As these variables do not indicate or impose restrictions on the location of the event,

we do not use them for the partitioning procedure of Section 4.6.

Timing Timeouts and deadlines are also common in NFs. To specify them, users

can use parameterized variables in conjunction with a builtin TIME field to compare

the time between multiple events. For example, Figure 4.7 defines a violation of the

TIME-WAIT semantics of a TCP flow in which SYN packets should not be sent within

30 s of a passive closer’s FIN/ACK. The same SYN packet 31 s after the FIN/ACK

would not be a violation. On the other end of the spectrum, Figure 4.8 defines a

violation where a FIN-ACK does not arrive in time (within 30 s of the FIN). Any

intervening FIN-ACK will mean that the violation does not match.
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4.6. State Machine Generation

Aragog checks for invariant violations efficiently by translating each of the IV specifi-

cations into a state machine. In contrast to traditional finite-state automata, Aragog

requires a combination of complex features, e.g., timing, arithmetic, field/location

variables, and regular expression-event patterns.

Aragog , thus, generates its state machines in three stages. First, it creates a sym-

bolic non-deterministic finite automaton (SFA) [52] whose alphabet is based around

a theory of arithmetic and boolean algebra, and whose predicates can include the

placeholder variables described in the previous section. Second, it determinizes the

SFA to a deterministic symbolic finite automaton (DSFA) to reduce runtime overhead

of state machine execution. Finally, it constructs localized versions of the DSFA that

can be used to infer the global state of the system from only locally observed events.

4.6.1. Constructing the SFA

We first convert all predicates on events into boolean logic with equalities/inequalities

by taking the conjunction of all event field matches and the location specifier. For

example, we transform an event match (A==B, C==D) @ NOT $X to the predicate

(A==B ∧ C==D ∧ ρ!=$X), where ρ is the placeholder for the event’s location, which

we determinize at runtime. A ‘!’ modifier on the event would negate this predicate.

Aragog performs an additional check on the sequence of generated predicates to facil-

itate efficient variable checking (Section 4.7.2). Specifically, it checks via reachability

analysis that all uses of variables in either an arithmetic expression or non-equality

comparison (<, ≤, >, and ≥) strictly follow after their introduction via an equality

comparison.

With the resulting predicates, Aragog constructs the SFA by creating a start state,

S, with a self-loop for any event (TRUE). This self-loop ensures the pattern will match
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S 1 2

ET==ADD
∧ ρ==$X

TRUE
ET==ADD
∧ ρ!=$X

ET==REMOVE
∧ ρ!=$X

Figure 4.9: SFA for Figure 4.4 with some field names and constants abbreviated as well. ρ
indicates location.

{S} {S, 1} {S, 2}

ET==ADD
∧ ρ==$X

ET!=ADD
∨ ρ!=$X

ET==ADD
∧ ρ!=$X

ET==REMOVE
∧ ρ==$X

(ET==REMOVE
∧ ρ!=$X) ∨
(ET==ADD
∧ ρ==$X)

ET==ADD
∧ ρ==$X

ET!=ADD ∨ ρ!=$X

Figure 4.10: DSFA for the SFA in Figure 4.4. Colored, dashed edges represent suppressible
transitions.

starting from anywhere in the event trace. From the initial state S, Aragog recursively

builds out the state machine using Thompson’s construction [176], treating CHOICE as

a choice operator, and expanding SHUFFLE to all permutations. Figure 4.9 shows a

(minimized) SFA for the example violation specification from Figure 4.4. We mark

the final state in the SFA as the accepting state, which indicates a violation when

reached.

The specified transitions may not cover the complete space of possible events. All

events that do not match any transition out of the current state will never lead to a

match.

Aragog next determinizes the SFA: it generates an efficiently executable DSFA from

the SFA using standard symbolic automata techniques [52]. The result is a state
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machine where all transitions are unambiguous and exhaustive. Figure 4.10 shows

the DSFA for the example. Each state in the DSFA stores the correesponding set of

SFA states the machine is in at that given point in time.

4.6.2. Local State Machines

Conceptually, the DSFA provides an efficient method for checking whether a stream

of events leads to an invariant violation. In principle, we could simply funnel all

events to a central verifier, which would then apply the relevant DSFA transition and

report a violations upon reaching an accepting state. Unfortunately, doing so would

require the verifier to process all unfiltered events in the system. Instead, we further

improve Aragog ’s scalability by generating a localized version of the state machine

that is executed on the same machine as the NF before sending the event to the global

verifier.

4.6.3. Suppressible Transitions

The local state machine needs to identify events that will not impact the detection (or

lack of detection) of a user-specified violation whether or not it is sent to the global

verifier. Our key observation is that there are transitions in the global DSFA that do

not affect the end result of the state machine. We term these transitions suppressible

transitions. More formally:

Definition 1. An event stream s is either empty s = ϵ or it consists of an event

followed by another stream s = e · s′.

Definition 2. q e−→ q′ indicates that, from state q, event e transitions to state q′. We

lift this to event streams inductively as q
ϵ−→ q, and q

e·s−→ q′′ iff q
e−→ q′ and q′

s−→ q′′ .

Definition 3. Transition t is suppressible if for any event e matching t from state q,

then (1) q
e−→ q′ means q′ is not an accepting state, and (2) for any event stream s,

and accepting state qa then q
e·s−→ qa iff q

s−→ qa.

101



In the running example DSFA in Figure 4.10, the three dashed transitions are sup-

pressible given the above definition. The two self-loops are clearly suppressible (sat-

isfy Definition 3) since an event processed by such a loop will not change the global

state—(not) observing the event has no effect, and the loops do not occur on accepting

states. Perhaps less obvious is that the bottom-most edge is also suppressible since,

from either state {S} or {S, 2}, one needs to see the same two events to get back

to the accepting state {S, 2}. For example, an ADD event at $X followed by another

at NOT $X will take either state {S} or {S, 2} back to {S, 2}. We never mark tran-

sitions with time constraints as suppressible—we assume the timing of an otherwise

irrelevant event might still be significant.

4.6.4. Local State Machine Construction

Aragog uses local knowledge to determine whether an event will be processed by

a suppressible transition. Since each local component is unaware of what might be

happening at other components, it must conservatively account for all possibilities. To

determine (locally) whether an event is suppressible, we create a local state machine

for every location variable in every IV specification such that each machine assumes it

is playing the role of that location (e.g., one machine for “I might be $X in a violation”

and another for “I might be $Y in a violation”). In the example from Figure 4.10, there

is only a single local state machine: the one for $X.

The first step in creating a local state machine, L, is to model the uncertainty other

locations may introduce (Figure 4.11). The algorithm takes the global state machine

G, the location variable V (e.g., $X), and a predicate F corresponding to the user-

defined FILTER statements. It returns a new localized DSFA.

The algorithm considers each transition T in G where T has predicate P, and checks

whether the formula (F∧P) ̸⇒ (ρ = V) is satisfiable (line 6). If it is, then there exists

a potential event that makes it through the filter F and uses transition T but which
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input: Global DSFA G, variable V, filter F
output: Local DSFA L

1 Function CreateLocalDFA(G, V, F):
2 L← CopyStates(G)
3 for S← States(G) do
4 for T← Transition(G,S) do
5 P← Predicate(G, T)
6 if SAT((F ∧ P) ̸⇒ (ρ = V )) then
7 AddTransition(L,TargetState(T), ε)
8 P’← Simplify(P, ρ == V)
9 AddTransition(L,TargetState(T),P’)

10 return Determinize(L)

Figure 4.11: Create a local state machine for a variable

takes place at a location other than V. To model the fact that other NF instances

might send events that use this transition, the algorithm adds to L an epsilon (ϵ)

transition (line 7). An ϵ transition is one which the local SFA can take immediately

and unconditionally. It accounts for the possibility of concurrent execution of other

NF instances to represent that the global state could be in either state (the one before

or the one after the ϵ transition).

In either case, the algorithm then adds a local transition to L by simplifying the

existing transition predicate (P) to account for the fact that the location is known

(line 9). It does so by partially evaluating the predicate with the assumption that

ρ==V (line 8). In Figure 4.10, for example, the transition (ET==REMOVE ∧ ρ == $X)

is simplified to ET==REMOVE.

Figure 4.12 shows the local SFA for location $X and its determinized (DSFA) form.

By executing the DSFA in Figure 4.12 locally, an NF instance can learn some partial

information about the state of the overall system. For example, after seeing an ADD

event, the NF instance recognizes that (if it is $X) the global state machine can be in

any state: {S}, {S, 1}, or {S, 2}. However, after locally processing a REMOVE event,

the local machine now knows it must be in state {S} once more.
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{S} {S, 1} {S, 2}

ET==ADDET!=ADD, ε FALSE, ε

ET==REMOVE

ET==ADD, ε

ET==ADD

ET!=ADD, ε

{{S}} {{S}, {S, 1}, {S, 2}}

ET==ADDET!=ADD

ET==REMOVE

ET!=REMOVE

Figure 4.12: Local machine for $X from Figure 4.10. SFA is shown on top and its equivalent
DSFA is shown below. Colored, dashed edges indicate locally suppressible transitions.

input: Global DSFA G, filter F
output: Local state Θ = ⟨{L1, . . . , Lk}, NC⟩

1 Function Localize(G, F):
2 NC← false,LS← ∅
3 for V← Variables(G) do
4 L← CreateLocalDFA(G, V, F)
5 for S← States(L) do
6 for T← Transitions(L,S) do
7 suppress← true
8 P← Predicate(L,T)
9 for S’← GlobalStates(L,S) do

10 for T’← Transitions(G,S’) do
11 if CanSuppress(G,T’) then
12 continue
13 P’← Predicate(G,T’)
14 if SAT(P ∧ (ρ = V) ∧ P’) then
15 suppress← false
16 if suppress then
17 MarkSuppressed(L,T)
18 LS← LS ∪ {L}
19 for S’← States(G) do
20 for T’← Transitions(G,S’) do
21 if CanSuppress(G,T’) then
22 continue
23 NC← NC ∨ Simplify(Predicate(G, T’), ρ == Fresh())
24 return ⟨LS, NC⟩

Figure 4.13: Construct local state machines
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4.6.5. Suppressing Events Locally

The local machine can hide events when it can prove they would otherwise be pro-

cessed by suppressible transitions in the global machine. Algorithm in Figure 4.13 is

used to create all the data structures needed to suppress events locally. It takes the

global state machine G as input along with the user-defined filters F and produces, as

output, a collection of local state machines (Li) as well as a negated condition (NC),

explained below.

The algorithm works by iterating over every location or variable in the IV specification

(line 3) and calling CreateLocalDFA to build the local state machine (line 4). It then

walks over each local transition (T) and attempts to mark the transition as locally

suppressible. To do so, it looks up all the possible global states corresponding to

this local state (line 9) and checks whether the local transition can process an event

that is also processed by, and is not suppressible for, some global transition T′ from

one of these states (line 14). If not, then all events that trigger T must be part of a

suppressible transition in the global DSFA, so the event is suppressed.

In Figure 4.12, events matching ET!=ADD in state {{S}} are suppressible: for each

global state in the set ({S}), this event must be processed by a suppressible global

transition.

Negated condition The final part of the algorithm (lines 19 to 23) computes a

“negated condition.” This condition captures the case where the local NF may not

correspond to any named location in the IV specification, e.g., the NF instance is not

$X, but it still may observe a relevant event as NOT $X. We observe, in such a case, the

current machine can not possibly know anything about the global automaton state

since the other NF instances that also are not $X may be sending events that match

NOT $X transitions. The fix is simple: the algorithm computes the disjunction of all
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the transition predicates in the global state machine subject to the knowledge that

the location ρ does not match any variable (line 23).

In the running example, the algorithm computes: (ET==ADD ∧ Z==$X) ∨ (ET==ADD ∧

Z!=$X) ∨ (ET==REMOVE ∧ Z==$X), where Z is a fresh variable that is guaranteed to

not match any location in the predicate. The above condition simplifies to ET==ADD.

This means that the local machine must send any FLOWCACHE_PRIMARY_ADD events

to the global verifier regardless of its local state.

Note that non-location variables may introduce some uncertainty at the local verifier,

which may not be sure what other NF instances have observed for their value. To

address this, Aragog first tries to generate a predicate that accounts for any possi-

ble variable assignment by enumerating all possible assignments from their ==/! =

expressions, replacing their occurrences in the negated condition, and computing the

disjunction of the resulting predicates. If any variables or arithmetic operations re-

main in the disjunction, Aragog will simply not suppress any events, which is always

safe.

4.7. Runtime System

We next describe the Aragog runtime.

4.7.1. Workflow Overview

We begin with the common case: NF instances synchronized via PTP send events—

at runtime—to a co-located local agent via traditional IPC mechanisms. This local

agent applies transformations, computes supressions using local state machines, and

then sends any non-suppressible events to the global verifier via a set of Kafka brokers.
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Time

Time

ADD@FD1
q0 → q1

REMOVE@FD3
q0 → q0

REMOVE@FD2
q0 → q0

REMOVE@FD1
q1 → q0

ADD@FD2
q0 → q1

REMOVE@FD1
q0 → q0

ADD@FD1
q0 → q1

ADD@FD3
q0 → q1Local:

Global:

∗

{S}

FD1 ∗

{S, 1} {S}

∗

{S}

FD2 ∗

{S, 1} {S}

FD2 FD1 ∗

{S, 2} {S, 1} {S}

FD1 FD3 ∗

{S, 2} {S, 1} {S}

no events

violation! violation!

Figure 4.14: Distributed execution for the example from Figure 4.4 on an example sequence of events for N flow deciders. Time
progresses from left to right. Local events are shown along the bottom line with the local state of the flow decider. We use q0 =
{{S}} and q1 = {{S}, {S, 1}, {S, 2}}. The global verifier’s state is shown at the top. Red, dashed edges indicate suppressed events.
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Filtering, mapping, and grouping After ingesting the stream of PTP-timestamped

events, local Aragog agents co-located with the NF first apply any applicable transformations—

FILTER, MAP or GROUPBY—to the raw stream. As each IV specification can have a different

set of transformations, this may require Aragog to duplicate the incoming stream of

raw events ( it tries to avoid doing so when possible). The end result is a set of keyed

event streams: one stream for each combination of policy and GROUPBY key.

Computing suppression The next step, also performed locally, is to determine

whether events in each keyed stream are suppressible. Aragog passes the events

through the localized state machines — one for each location referenced in each IV

specification. For a given event and IV, Aragog suppresses the event when (1) all

localized instances of the IV specification would take a suppressible transition when

fed the current event and (2) the event does not satisfy the negated condition. If

either constraint is false, Aragog sends the event to a Kafka queue for the given keyed

event stream.

As a concrete example, Figure 4.14 shows processing of a series of events with the

specification in Figure 4.4 and with the same GROUPBY key. The first event is an ADD

event at flow decider FD1. After seeing this event, FD1 will transition locally from state

q0 ({S}) to state q1 ({{S}, {S, 1}, {S, 2}}). Since this transition is not suppressible,

the event is sent to the verifier. The next event is a REMOVE event that takes place at

FD3. This particular transition is suppressible and the negated condition (ET==ADD)

is not satisfied, thus, the event is suppressed.

This suppression can substantially reduce the number of events received by the global

verifier. For example, with three replicas (including the primary), a correct execution

of Figure 4.4 Aragog would receive—after suppression—just 2 out of 4 events (the

add and remove at the primary but not the 2 suppressed removes at nodes other than

$X).
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Global state machines Pulling from Kafka is a cluster of Flink instances running

the global versions of the IV state machines. Both the Kafka and Flink instances are

automatically provisioned, checkpointed, assigned GROUPBY keys, and load balanced to

worker nodes. As Flink does not guarantee that events from different NF instances

will arrive in order, Aragog temporarily stores and reorders events in the Flink workers

with an efficient priority queue before passing them to the associated state machine.

One challenge is how long to wait for delayed events. One approach is to maintain a

list of all NF instances along with the timestamp of the last event they sent to this

partition and only process time t when we have seen events from all instances up to

t+latency. Unfortunately, most NF instances do not interact with most flows/policies

and sending ‘null’ events to advance the timestamps of every partition would be costly.

Instead, Aragog relies on the assumption of a maximum latency tmax and handles

violations of this assumption with the techniques in Section 4.7.3.

Aragog will hold each event for tmax time before running it through the global DSFA.

While processing events for a given IV specification, the verifiers will track all of the

possible states in which the associated state machine could be, as well as all potential

values of the IV specification’s variables (see Section 4.7.2 for details). If any of the

possible states is a ‘final’ state in the IV’s DSFA, Aragog will raise an alert.

Consistent sampling If scaling is still challenging despite sharding the verifier,

filtering relevant events, and suppressing events locally, Aragog provides a final mech-

anism that lets users trade performance for completeness by sampling a consistent

set of events with consistent hashing based on the GROUPBY key (e.g., a 5-tuple for

NATGW). In this way, each group is itself complete though false negatives remain

possible when violations occur for keys that are not sampled.
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4.7.2. (Location) Variable Tracking

Aragog tracks all possible instantiations of variables (location or otherwise) at runtime

using a multi-level tree data structure (shown at the top of Figure 4.14). Intuitively,

the tree captures the state the global automaton would be in for every possible in-

stantiation, with the leaves of the tree as the state and the interior nodes as variable

assignments. Every variable is assigned a single level of the tree.

Let the number of variables (location or otherwise) for an IV specification be n.

When the system starts, the DSFA is in the start state, {S}, for all possible variable

assignments. This is represented as a degenerate tree with height n+ 1 and a single

leaf pointing at the start state {S}. The interior nodes are all set to ∗, indicating no

constraints on the n variables. For every incoming event, we advance the DSFA using

the state and variable assignments of every leaf. Whenever a predicate is encountered

that references a variable, Vi, if Vi = ∗ is an ancestor of the current leaf we split

execution into a case where Vi satisfies the predicate and a case where it does not.

The (n− i)-height subtree under Vi = ∗ may need to be cloned.

In the example of Figure 4.14, there is only one variable ($X) and, thus, only two

levels in the tree. The system starts in the degenerate case where $X = ∗. After the

first ADD event arrives at the verifier from FD1, we fork the tree to separate out the

old case and a new case for $X=FD1. When $X is FD1, the verifier takes the transition

(ET == ADD ∧ ρ == $X) to state {S, 1}: the current location ρ is FD1, and $X is

also FD1. Otherwise if $X!=FD1, it takes the self-loop transition to remain in {S}.

For the next event from FD1 (REMOVE), there is no new case to fork, and applying

the transition to both cases in the tree leads to both being in state {S} once more.

Therefore, the states are collapsed together back to ∗. This process continues until

the second to last event where a violation is detected for the case where $X = FD2 due

to a duplicate add at FD1. The final event (ADD at FD3) leads to a second violation,
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where now $X = FD1, and is subsequently caught by the implementation.

4.7.3. Fault Tolerance

Failures and message drops/delays can cause Aragog to become desynchronized from

the ground-truth state of the system. Even so, Aragog is able to guarantee both

precision and recall of typical network violations under the assumption of ‘partial

synchrony’ [61], i.e., that there exists a time, ts, after which there is some upper

bound on message delivery time.

• Recall: Under a partial synchrony assumption, Aragog ’s practice of creating a

self loop in the initial state of the SFA means all violations whose trace begins

after ts are accurately modelled in the state machine and detected.

• Precision: Aragog ’s precision guarantees are less complete, but still hold in

practice. Specifically, we observe that all of the IV specifications we studied

contained some property where flow state would eventually be dropped in reac-

tion to a REMOVE_ENTRY or TCP FIN/RST event; such transitions are common in

networked systems and ensure that any desynchronized state machine instances

will eventually transition back to the initial state.

In addition to the above, Flink provides guarantees that successfully pulled events are

processed by the state machine exactly once. End-to-end guarantees of exactly once

delivery between Flink and Kafka are also possible, but would incur the overhead of

atomic exporting of NF events, transactions, and rollbacks. Instead, Aragog chooses

to rely on partial synchrony and to alert users after the fact when false positives may

have occurred. This can happen when an event arrives with a timestamp earlier than

the last processed event, two events arrive from an NF instance with a gap in their

sequence numbers, or an NF instance (and its local agent) fail. Upon restarting, the

agent can immediately resume exporting events, but the local state machine may be

out of sync. In this case, it can temporarily export all events (which is always safe)
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until it can synchronize with the global verifier to rebuild the local state machines

from the global verifier’s state.

4.8. Implementation

We have implemented Aragog with more than 6,500 lines of Java 8 code, packaged

with Maven v3.6 and more than 2,000 lines of C++ code. The implementation

consists of two major components: the compiler and runtime system. It can be found

at: https://github.com/microsoft/aragog.

The compiler takes as inputs an event format specification as described in Section 4.5.1

along with a set of IV specifications in the format of Section 4.5.2. For each IV

specification, it generates the global state machine, the resulting local state ma-

chines, information about suppressible events, and a slew of other metadata about

variables, filters, and partitioning. The lexer and parser use the ANTLR v4.7 [8]

parser generator, and the SFA construction and determinization use the open-source

symbolicautomata library [13], but with the addition of a custom Z3-based [14] the-

ory of Boolean Algebra designed to support our IV specification language.

We built the runtime system on top of Apache Flink [9] and Kafka [10]. These frame-

works are designed for scalable and robust stream processing and provide, intrinsically,

fault-tolerant and stateful processing, exactly-once semantics, load balancing, flexi-

ble membership, checkpointing, etc. The local agents, implemented in C++, ingest

events directly, then filter, map, and suppress events as necessary before sending them

to Kafka. The global verifiers, implemented in Java using Apache Flink, pull from

Kafka into a timestamp-based priority queue from which events are dequeued after

waiting for a maximum delay; violations are logged to disk. We place the verifiers off

of the critical path to avoid any impact on production traffic.
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Network Function Invariant Description LoC States Transitions

NAT Gateway

nat_decider_open: After a PW goes into closed state, at
least one replica also goes into closed state.

14 4 10

nat_consensus: All TCP flows are open only after con-
sensus.

5 2 4

nat_open_to: Open flows are timed out after 4 minutes
of inactivity.

5 4 12

nat_primary_single: There is a single primary per flow. 10 3 7
nat_primary_to: The NATGW does not start an idle
timeout for active flows.

13 6 18

nat_same_consensus: After TCP flow U is terminated,
the next flow for U achieves consensus.

12 5 15

nat_syn_to: Flows with a TCP handshake in progress
timeout after 5 seconds of inactivity.

5 4 12

nat_udp_same_consensus: If UDP flow U times out, the
next flow for U achieves consensus.

12 6 17

Firewall [12]
fw_consistency: all Firewall instances should block sus-
picious IPs after a block rule is added.

6 4 12

fw_client_init: Ensure a flow can only be open after a
client initiates it.

4 2 4

fw_syn_first: Data packets are only allowed after a SYN
is sent.

4 2 4

DHCP dhcp_reuse: Leased addresses are not re-used until expi-
ration or release.

6 4 12

dhcp_overlap: Leases should not overlap between DHCP
servers.

6 3 7

Table 4.1: List of example invariants that Aragog can implement for several common network
functions and systems.

4.9. Evaluation

We evaluate Aragog in CloudLab [152] with a number of network functions and along

a number of dimensions.

The deployed NAT gateway (Section 4.2) We use two event traces captured

from two different builds of the NAT gateway to evaluate Aragog . The builds capture

the introduction of a set of bugs that arose from the change of an interface between

two internal components, with V1 from before the change and V2 from after. The

traces are both for 7 flow deciders over a 30 minute interval, but they export a dif-

ferent number of packets (V1: 23.7M; V2: 9.0M) owing to changes in the protocol.

The production deployment of NATGW does not yet support fine-grained clock syn-
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chronization, but our operators plan to add it in the system’s next version. Instead,

we capture the event traces and correct for time drift using a set of known synchro-

nization points within the event stream. In total, there are eight IV specifications for

NATGW (see Table 4.1).

A distributed firewall We also execute a collection of micro-benchmarks using

an open-source, stateful, and distributed firewall implementation built on iptables,

conntrackd, and keepalived [12]). On the firewall, we check various invariant vio-

lations, some of which were derived from [19]. The list of specific invariant violations

we check are listed in Table 4.1.

We deploy this firewall on a topology with four clients, four internal hosts on a single

LAN, and four firewall nodes interposing between the two groups. The firewalls are

configured as two high-availability groups with one primary and one hot standby each.

Each primary-standby group shares a virtual IP with the VRRP protocol. We base

the traffic between external hosts and internal servers on the traces provided in [21].

DHCP To show the flexibility of Aragog and its language, we also give examples

of DHCP invariant violations in Table 4.1. With our current implementation, the

operator needs to write just 6 lines to express the invariant violations. Each of the

state machines uses a small number of states and transitions.

Evaluation metrics We evaluate Aragog along a number of key dimensions: lines

of code, throughput, latency, and CPU overhead. In addition, our micro-benchmarks

show Aragog ’s ability to scale as the number of nodes in the NF deployment increase

by demonstrating the benefits of our event suppression scheme. Finally, we find

Aragog is able to identify bugs in production systems. In particular, we were able

to identify four bugs in the NAT gateway which were confirmed by our operators.

Similarly, in the firewall, Aragog was able to find a series of injected configuration

114



Invariant Violation Version 1 Version 2

nat_decider_open 0 0
nat_consensus 0 0
nat_open_to 1 45019
nat_primary_single 0 0
nat_primary_to 1 29964
nat_same_consensus 536 259
nat_syn_to 0 2697
nat_udp_same_consensus 0 0

Table 4.2: Violations found in traces for NATGW versions. Note that V1’s trace contains
more events than V2’s, which may account for the difference in nat_same_consensus viola-
tions.

errors over real traffic traces.

4.9.1. Bugs Identified by Aragog

NATGW Bugs Running the traces through Aragog , we discovered violations of

nat_open_to, nat_primary_to, nat_same_consensus, nat_syn_to, all of which were

confirmed as caused by bugs by the NATGW team. Table 4.2 shows the absolute

number of violations observed for each.

nat_open_to was by far the most frequent violator in V2. Discussions with our

operators revealed that in V2, this violation (and that of nat_syn_to) were due to

related bugs in the code: it had taken operators over an hour to identify the issues

while Aragog identified it in under a minute. Although nat_open_to also had a

violation in V1, further examination revealed that the violation in V1 was due to

an expected consequence of eventual consistency—specifically one of the replicas was

getting update messages from the packet worker but the primary did not and therefore

started a timeout for the flow. This led us to start checking for nat_primary_to.

Also prominent in both systems were violations of nat_same_consensus. This vio-

lation occurred because the flow was not closed or removed properly from one of the

replicas. The operators suspected this could be an issue, but never had a method

to test that hypothesis. Aragog confirmed the problem and helped the developers to

115



formulate the test setup to reproduce the issue.

Bugs in the distributed firewall rules For the firewall, we manually injected bugs

in the firewall configuration to test Aragog ’s ability to identify this category of errors.

The injected issues, for instance, always allowed external traffic from a particular

address range into the internal network, violating fw_client_init. Aragog found all

of them.

4.9.2. Throughput of Aragog

Aragog ’s global verifier keeps track of the set of possible states for each IV specification

and the possible values for each variable/location. Thus, Aragog ’s throughput is

directly correlated with the number of IVs checked (Figure 4.15). To evaluate this

scaling, we run the V1/2 traces through all the 8 NATGW IV specifications using

a single Task Slot on the global verifier (running on an Intel(R) Xeon(R) E5-2450

processor CPU @ 2.10GHz machine). We upload the entire trace on Apache Kafka

after local processing to measure the maximum throughput a single task slot of Apache

Flink of the global verifier can process. In Figure 4.15 we randomly select n among

the NATGW invariant violations and see the performance. As each type of invariant

violation exhibits different resource requirements, we see more variance when the

number of type of invariant violations selected is low.

With a single task slot, our optimizations allow Aragog to scale and process over

500,000 events per second for a single invariant violation type (over 30,000 for 8).

Adding more task slots does not improve the performance as our implementation is

parallel in nature and a single task slot is already using multiples core in a single

machine.

Aragog scales linearly as we add more machines to the global verifier (Figure 4.16).

Scaling with multiple machines avoids the bottleneck of CPU and I/O.
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Figure 4.15: The throughput in events/second for an executor of Aragog on the trace.
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Figure 4.16: Throughput of multiple Aragog verification server checking all 8 types invariant
violations

4.9.3. Overhead of Aragog

To measure the memory and CPU overhead of Aragog , we study its behavior while

verifying the distributed firewall. In Figures 4.17, 4.18 and 4.19, data is divided into

separate groups. ‘Primary’ represents the verifier running at the primary firewall.

‘Backup’ represents the verifier running at the hot-standby firewall. ‘Manager’ and

‘executor’ represent the Apache Flink job manager and executors, respectively. The
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Figure 4.17: CPU utilization by Aragog ’s local component. The graph shows CPU utilization
of the local verifier at both the primary and backup firewall.
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Figure 4.18: Memory utilization of verifier in MBytes.

global verifier runs on the executors.

We see that in Figures 4.17 and 4.18, the overhead of the local verifiers is low. This is

important as the local components are co-located with the production NF instances.

To that end, the CPU utilization of the local verifier increases linearly with the number

of flow events per second. We also observe the CPU and memory usage for the local

verifier is higher at the primaries as they tend to generate more events. Memory at
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Process/Location Resource Spearman correlation

job manager CPU 0.14700
job manager memory −0.59379

executor CPU 0.78481
executor memory −0.38373

primary CPU 0.88916
primary memory −0.18253

backup CPU 0.93618
backup memory 0.24768

Table 4.3: Spearman Correlation between number of events/s and resource utilization at
different locations of verifier while running the firewall.
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Figure 4.19: CPU utilization by Aragog ’s global component. ‘Manager’ and ‘executor’ refer
to the Flink node designations.

the local components is much less correlated (Table 4.3), partly due to Aragog ’s small

memory footprint (Figure 4.18).

The global verifier has higher CPU (Figure 4.19) and memory (Figure 4.18) than

local verifiers as the global verifier is implemented in Java using Apache Flink. We

have set the maximum memory of job manager to 1GB and executor to 2GB. In our

graphs, we are plotting active memory in Java’s heap for the global verifier rather

than used memory to avoid including memory waiting to be cleaned up by the Java

GC.
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Figure 4.20: Latency (alert time – packet time) for detecting a violation in the distributed
firewall.

Version Generated After Filter After Suppression

V1 189M 92.9M (49.1%) 70.2M (37.1%)
V2 72.2M 36.7M (50.8%) 28.0M (38.8%)

Table 4.4: Total number of generated events, events processed after filtering, and events
processed after filtering and suppression for the NAT gateway with all 8 IV specifications.

Figure 4.20 shows the CDF of Aragog ’s time to detection for violations in the dis-

tributed firewall function. The time to detection is low: in the median it takes

roughly 70ms from the time the event was executed (the violation occurred) at the

NF instance until Aragog raises an alert.

4.9.4. Efficacy of Suppression

Each optimization in Aragog improves scalability by reducing the number of events

sent to the global verifier (reducing the network overhead and the number of events

processed at the global verifier). Filters remove the need to send events that are not

pertinent and reduce the number of events sent to the verifier by up to 61% for the

NATGW (Table 4.4). Suppressible events can further reduce this number (by up to

an additional 12% in our experiments).
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4.10. Discussion

Aragog is a lightweight verification framework for verifying distributed network func-

tions. To scale to large systems with minimal overhead, Aragog leverages a two-tiered

setup with local monitors at each NF instance sending events to (and hiding events

from) a collection of sharded global verifiers. While Aragog can verify any distributed

system, its scalability will depend on whether the invariant violations of interest can

utilize its sharding and suppression optimization effectively.

Finally, as Aragog is the first to verify distributed network functions at scale (and

at runtime), there are a number of aspects where follow up work may be needed.

Included in this set are explorations of other time synchronization protocols, e.g., [68]

or some other lightweight and precise event ordering mechanisms. Also for future work

are innovations in atomic event export and transactions over streams in Aragog .

4.11. Summary

Aragog is a lightweight verification framework for verifying distributed network func-

tions. To scale to large systems with minimal overhead, Aragog leverages a two-tiered

setup with local monitors at each NF instance sending events to (and hiding events

from) a collection of sharded global verifiers. While Aragog can verify any distributed

system, its scalability will depend on whether the invariant violations of interest can

utilize its sharding and suppression optimization effectively.

Finally, as Aragog is the first to verify distributed network functions at scale (and

at runtime), there are a number of aspects where follow up work may be needed.

Included in this set are explorations of other time synchronization protocols, e.g., [68]

or some other lightweight and precise event ordering mechanisms. Also for future work

are innovations in atomic event export and transactions over streams in Aragog .
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CHAPTER 5

FP4: Fuzz Testing for P4

5.1. Introduction

Computer networks have evolved to include more flexible platforms in which data

plane functionality can be defined by programmers using domain-specific languages

like P4 that describe devices’ data plane processing. These devices are opening doors

to better support applications [158, 94] and to improve network management [84].

Although the increased programmability offers great benefits, it also brings the in-

creased risk of introducing new bugs that are difficult to catch, either in the data

plane, control plane, language compiler, ASIC implementation, or any combination

of the above.

Bugs may arise as a result of anything from simple programmer typos to divergent

interpretations of the P4 specification [56]. They can even include behavior that spans

multiple packets because switches can store and recall state in registers, trigger control

plane transitions, and reconfigure match-action rules as a result of incoming packets.

Combined, all of these factors increase the complexity of bugs in switches [119, 59].

To reduce bugs, recent work has suggested static verification to prove the correctness

of P4 programs [59, 119, 65]. For pure, stateless data plane programs, static ver-

ification is often effective since there are no complex pointer-based data structures

or loops, making analysis both more accurate and tractable. However, real forward-

ing behavior depends on many other components: the control plane; the exact past,

present and future match rules; the compiler translation; the switch state including

registers; and specifics of the hardware implementation. For example, in the process
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of developing FP4 , we discovered a subtle compiler/runtime bug in our installed SDE

in which a multicast primitive in the default action of a table with no entries does

not properly multicast the packet. All other commands in the default action execute

correctly as does the same setup in the provided simulator. Static verification tools

that only consider the P4 program itself cannot catch this class of bug.

We note that, in traditional programs, developers often rely on fuzz testing to catch

this wider class of bugs. A fuzzer generates semi-random inputs to discover assertion

failures, memory leaks, and crashes. Fuzz testing is able to evaluate applications in

their natural environment (ignoring issues that are impossible to reach and catching

issues that only arise in the presence of the application’s surrounding components).

Fuzzing, and particularly blackbox and greybox fuzzing, also tends to scale well with

the complexity of control flow and state. As others have noted [42], these approaches

often find more bugs than whitebox approaches like static verification and symbolic-

execution-based test case generation as the latter either (a) spend significant time

doing program analysis and constraint solving or (b) further sacrifice precision, e.g.,

by approximating functions that are hard to reason about analytically, such as hash

functions.

In this work, we observe that, when applied to programmable switches, not only does

fuzzing allow a developer to check the entire device in vivo—incorporating effects of

the data plane, control plane, ASIC implementation, and compiler—it also allows the

fuzzer to leverage the intrinsic hardware parallelization, pipelining, and acceleration

of packet processing in today’s network devices. Explicitly optimized for fast packet

processing, switch-based fuzzing potentially enables input testing that is orders of

magnitude faster than is possible in a CPU.

To that end, we present FP4 , a greybox fuzz testing framework for P4-programmable

network devices that is both (a) full-stack and (b) line-rate. FP4 feeds semi-random
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Figure 5.1: Maximum possible throughput of a single instance of modern fuzzing frameworks,
both those for traditional programs (AFL, honggfuzz, and libfuzzer) and for P4 programs
(p4pktgen and FP4). In each case, the fuzz target is an empty function or data plane
program.

packets to real programmable switches to attempt to attempt to trigger violations of

programmer-specified assertions. The switches are purposely kept as faithful as pos-

sible to their production deployments and run instrumented versions of their original

P4 programs and control planes.

As a preview of the performance benefits of FP4 ’s approach, we measure executions

per second for several traditional program fuzzers and p4pktgen, a software-emulated

P4 fuzzer. The results are shown in Figure 5.1. All systems except FP4 were on an

Intel Xeon E5-2660v3 2.60GHz CPU core with empty programs (empty parser and

control block in the case of p4pktgen); thus, these numbers represent an upper bound

for prior work. FP4 has two orders of magnitude higher throughput than the fastest

traditional software fuzzer and almost 6 orders of magnitude faster than p4pktgen.

Unfortunately, implementing fuzz testing in P4 requires addressing numerous chal-

lenges. First, to take advantage of the specialization of modern switch packet process-

ing and achieve fast fuzzing speeds, we need methods to both generate and execute

fuzzing at line rate. Second, line rate packet input generation, on its own, is insuffi-
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p4v vera p4wn p4pktgen P6 FP4

type static static static runtime runtime runtime
line rate N/A N/A N/A ✗ ✗ ✓

DP logic ✓ ✓ ✓ ✓ ✓ ✓
DP state ✓ ✗ ✓ ✗ ✓ ✓
compiler ✗ ✗ ✗ ✓ ✓ ✓
control plane ✗ ✗ ✗ ✗ ✗ ✓
hardware ✗ ✗ ✗ ✗ ✓ ✓

Table 5.1: Comparison of the features of a selection of P4 verification and testing frameworks,
including whether they can catch bugs in data-plane logic, stateful behavior, the compiler,
the control-plane, and hardware.

cient to find all bugs as the space of possible packets is large and often redundant. In

both traditional and programmable-switch fuzzing, careful choice of inputs is critical

to good fuzzing performance. Finally, typical methods to handle stateful behav-

ior involve generating sequences of inputs and resetting the state between sequences

(e.g., [148]). Unfortunately, resetting switch state is a fundamentally expensive oper-

ation that would severely limit fuzzing performance.

To address the first two challenges, FP4 takes inspiration from two different fuzz

testing approaches: generator-based and coverage-guided fuzz testing. Generator-

based fuzzers [143] generate semi-random input such that inputs are passed through

the input sanitation of the program. FP4 knows the structure of the input from

the headers and how they impact the processing of packet from the parser; and

it uses it to generate valid packets. Coverage-guided fuzzing, on the other hand,

leverages program instrumentation to trace the code coverage reached by each input

and uses this information to make informed decisions about which inputs to mutate

to maximize coverage. FP4 tracks the actions visited by each packet in the dataplane

by marking bits in the header. Both are implemented, tracked, and learned quickly

with the help of a second programmable switch.

To address the third challenge, FP4 splits switch state into a few categories. For
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data-plane-only state, it leverages the fact that switches are meant to run contin-

uously and, thus, most network tasks allow for intrinsic state resets (e.g., when a

counter rolls over or a flow entry times out) [181]. Thus, continued fuzzing will even-

tually allow the switch to re-explore previous states. For everything else (i.e., control

plane, table entry, or configuration state), FP4 borrows another idea from traditional

fuzz testing—context-sensitive branch coverage [46]—that seamlessly integrates state

changes into greybox fuzzing approaches.

We implement and deploy FP4 to a hardware testbed in order to instrument and

debug real P4 programs. FP4 works by modifying the input P4 program in a way

such that it has no impact on normal packet processing. It also adds an extra header

that stores information to track the actions visited and assertions failed by the packet.

FP4 uses this tracking information to generate new seed packets. Our work makes

the following contributions:

• We leverage the observation that programmable switches can generate semi-

random packets at line-rate to design, implement and evaluate fuzz testing

framework for P4 programs that generates test packets 6 orders of magnitude

faster than similar work for P4.

• We introduce a novel technique to instrument P4 programs to track their cov-

erage and check for assertion failures at line rate.

• We implement an FP4 prototype and evaluate it on a diverse set of P4 programs.

Our results show FP4 achieves 100% coverage quickly – in <1min in most cases.

5.2. Background

In this section, we cover the challenges of discovering bugs in P4 switches and the

possible role of fuzz testing.

126



5.2.1. Potential Bugs in P4 Programs

Bugs can occur in any point of the deployment and execution of a P4 program. They

can include but are not limited to:

Bugs in the application logic The most straightforward class of bugs exists in the

P4 code itself. In some cases, these issues are a result of ambiguities or subtleties in

the language specification [56]. More generally, however, programmers are fundamen-

tally fallible and just as capable of introducing bugs to P4 programs as they are to

traditional code, especially when trying to reason about edge cases or complex inter-

actions between features. For example, a P4 reference program previously contained

a bug where ACL rules were incorrectly applied to control-plane traffic [142].

Issues in the compiler or hardware implementation The P4 program must be

compiled to run on the hardware and optimized to adhere to resource limitations on

pipeline stages, SRAM, TCAM, etc. As above, the programmers of these components

are also fallible, creating instances where an otherwise correct P4 program produces

unexpected behavior. While this class of bugs is typically rarer due to longer develop-

ment cycles, lower-level specifications, and heavier testing, the above multicast issue

and a glance at the errata of any processor or compiler documentation validates their

presence. These are among the most difficult type of error to diagnose.

Bugs in the control plane Switch operation depends on the combination of the

data and control planes. While the data plane is responsible for handling per-packet

processing, the control plane—operating in parallel on a general-purpose CPU—is

responsible for managing the data plane and handling all of the tasks that are too

complex for line-rate processing. These include installing, updating, and removing

data-plane table rules as well as executing routing protocols. All of these can evolve

based on the sequence of incoming packets—real control planes are both dynamic and
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stateful.

Switch misconfigurations Finally, network switch behavior is also affected by

switch configuration options like knobs in the traffic manager, buffer slicing, and

port speeds. These configuration options can be independent and set separate from

either the traditional data plane or control plane programs. Errors can arise either

from operator misconfiguration or through interactions with other issues, e.g., in the

hardware implementation.

Bugs can occur within any of the above components, and some only manifest when

issues in multiple layers combine.

5.2.2. Fuzz Testing

For traditional applications, programmers often augment their software engineering

workflows with fuzz testing [72]. Fuzz testing feeds the program a set of random

inputs and observes whether the program behaves correctly on each such input. This

process is able to automatically discover bugs, even when those bugs result from

complex runtime behavior and interactions between heterogenous systems.

As prior work has noted, however, the naïve approach of random inputs (i.e., pure

blackbox fuzzing) can often lead to poor coverage as many inputs are simply invalid

or fail to explore program paths with complex or hard-to-hit branch conditions [71].

On the other hand, approaches that try to reason precisely about the program’s

structure (i.e., pure whitebox fuzzers) come with their own set of issues ranging from

being unable to model complex functions (e.g., hash functions) to exhibiting poor

scaling that makes them not worth the extra overhead [42]. In the end, many of the

most prolific fuzzers take a greybox approach that attempts to strike a balance.

FP4 ’s input generation takes inspiration from three methods from the literature on

greybox fuzzing of traditional programs:
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(1) Coverage-guided fuzzing is exemplified by the widely used AFL fuzzer [73].

AFL begins with a set of seed inputs that it subsequently mutates to create ran-

dom inputs that are then fed to the program. Based on feedback from the program

(detailing paths and branches covered), AFL learns the quality of the inputs and

selectively updates the set of seed inputs to explore new execution paths. This leads

to significant improvement in the rate of coverage compared to completely random

inputs.

(2) Generator-based fuzz testing allows users to write generator programs for

producing inputs (see [143]). As an example, consider the structure of an Ether-

net/IP protocol stack, which might accept IP-related EtherTypes and discard all

other packets as corrupted or otherwise invalid. A generator-based fuzzer will gener-

ate only valid IP packet inputs. This ensures that the fuzzer does not waste time on

inputs that are immediately discarded by input sanitation.

(3) Context-sensitive branch coverage is introduced in the Angora fuzzer (see [46],

Section 3.2). Angora observes that not every execution of the same code block (con-

taining a conditional branch) is equal. Instead, the current state of the program

and its call stack can make an execution of the same code block materially different

from prior executions. Including this context in coverage tracking therefore improves

feedback and responsiveness.

5.3. Overview

Like most other coverage-guided greybox fuzzers, FP4 is built around a single loop

in which FP4 generates a packet from a selected set of seeds, mutates the packet

semi-randomly, passes it through the target (programmable switch), and computes

the state and path coverage to determine whether the packet is a good candidate for

a new seed. However, unlike other fuzzers, FP4 is extremely fast. It achieves this
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Figure 5.2: System design of FP4 . An operator writes assertions in the P4 program. The
program is an input to (1) instrumentation (Section 5.4) that adds statements to track
packets and (2) program synthesizer (Section 5.5) that generates the P4 program and control
plane to conduct the test. After installing respective programs on both switches, FP4 runs
fuzz testing. FP4 generates valid packets (generator based fuzzing) and adds new seed
packets based on coverage information (coverage guided fuzzing).

speed with two domain-specific insights:

1. Modern switches can execute packet processing orders of magnitude faster than

commodity CPUs, and that speed is independent of the complexity of the pro-

gram as long as it fits within a single pass through the switch. As mentioned,

running the target system in vivo provides benefits to the speed, completeness,

and accuracy of fuzz testing. A key contribution of FP4 is to demonstrate that

the fuzzer is also deployable to programmable switches, generating, modifying,

and checking at line rate.

2. Switch programs are intended to be long-lived. This means that, in steady state,

switch programs typically have intrinsic mechanisms that reset persistent state,

e.g., when a counter overflows, when a ring buffer wraps, or when routes are torn

down. This allows FP4 to test most state transitions without needing an explicit

reset of the switch. An exception are bugs that occur during initialization, but

those are typically straightforward for operators to catch during development

and canarying.
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An FP4 testbed consists of two switches: (1) the switch under test, which runs the

target data plane, control plane, and switch configuration; and (2) the switch doing

the test, which generates inputs, checks program coverage, and manages seed packet

selection. See Figure 5.2 for a visual depiction.

Switch Under Test (SUT) The SUT executes the target switch system, including

both its P4 data plane and control plane program. The system should operate iden-

tically to a real deployment with the exception of some additional annotations and

instrumentation.

The annotations come in the form of a simple operator-specified error conditions on a

given packet’s contents or the state in the switch (i.e., registers, counters, and meters).

In the automatic instrumentation step, FP4 then inserts code into both the data

plane and (optionally) control plane programs to aid in checking for path coverage

to trigger the above errors. This instrumentation takes the form of an additional

packet header, an operation in every data-plane action, emulated output ports, and a

couple of additional tables for bookkeeping and assertion checking. All of the above

changes incur minimal overhead and, crucially, leave the original metadata, headers,

and control path intact.

Switch Doing Test (SDT) Alongside the SUT, we run a second switch, the SDT.

The SDT is responsible for all of the traditional tasks of a fuzzer: generating test

packets, mutating them, sending them to the SUT, and checking for violations and

coverage after packets return from the SUT.

It consists of a data-plane test generator, which is a synthesized companion P4 pro-

gram that generates the test packets, mutates them, tracks coverage, and checks for

assertion failures. The generator leverages a set of dynamically updated seed packets

to generate billions of semi-random test packets per second. FP4 mutates the packets
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1 header_type fp4_header_t {
2 fields {
3 visited_action1 : 1;
4 visited_action2 : 1;
5 ...
6 assertion1 : 1;
7 ...
8 // 0 -> freshly generated packet
9 // 1 -> additional mutation needed

10 // 2 -> completed packet
11 // 3 -> state change from SUT control
12 pkt_typ : 2;
13 }
14 }

Figure 5.3: Structure of the FP4 header.

at line rate using the programmability of the P4 switch. The mutations are such that

they retain the validity of the packet but attempt to steadily increase the coverage of

the fuzz testing.

Supporting the data-plane test generator is a control-plane fuzzing manager that is

used to consider seed packets candidates, modify the data-plane generator accordingly,

notify users of assertion failures, and perform other tasks that are beyond the capa-

bilities of today’s programmable data planes. Like in traditional networks, executing

these tasks asynchronously in the control-plane CPU (while carefully maintaining

correctness) allows the data plane to continue operating at line rate.

The remainder of this chapter describes the design of FP4 ’s SUT and SDT in more

detail.

5.4. Switch Under Test (SUT) Instrumentation

We begin by outlining FP4 ’s modifications to the SUT.

5.4.1. Programmer Assertions

One type of instrumentation in FP4 involves programmers adding assertions in their

P4 programs that define error conditions in the processing of a packet. One example

132



of violation might be where the time to live field of a packet is zero, but the program

fails to actually drop the packet:

assert(ipv4.ttl != 0 || std_metadata.drop == 1)

More generally, operators specify fields and their range of invalid values using basic

comparison operators and boolean logic. These assertions serve as syntactic sugar

that FP4 uses to automatically generate a set of tables, actions, and table rules that

will catch the assertion at runtime. Violations are marked in an FP4 packet header

that is appended to the packet (see Figure 5.3 for the header’s format). Note that

operators can use this syntax to detect issues that span multiple packets by manually

tracking relevant information in stateful elements.

5.4.2. Coverage Instrumentation

The other type of instrumentation in FP4 enables its greybox, coverage-guided fuzzing

within the data plane. Traditional fuzzers typically track coverage at the granular-

ity of basic blocks, adding instrumentation to each branch to record ‘seed-worthy’

inputs that trigger additional program coverage (i.e., that are not redundant with

existing seeds). Programmable switches, with their concomitant control planes and

frequent rearrangements of control flow (via control plane intervention), impose ad-

ditional restrictions on what it means for an input to be worthy of use as a seed. FP4

considers:

• Actions: In most P4 implementations, the most convenient single-entry, single-

exit, straight-line (with the exception of ALU operations) block of code are the

actions of the match-action pipeline. The goal of FP4 is to fuzz test all possible

actions, so coverage of novel actions is cause for addition to the input corpus.

• Table entries: The actions that are triggered and the conditions under which

they are triggered are determined by the table entries of the match-action
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pipeline. The overall path is defined by a sequence of table entry hits. Thus,

table entries—and in particular, their union—have a massive influence on the

reachability of bugs.

• Control plane state: Finally, while FP4 , its design, and its assertions are pri-

marily focused on bugs in the data plane, we note that packets sometimes pass

through the control plane as part of their processing (e.g., routing updates that

eventually add/remove table entries). FP4 is not concerned with the code cov-

erage of the control-plane program but does care about how it might eventually

affect the data plane, e.g., through table entry updates.

Purposefully missing from the above set is data-plane state. While data-plane state

(like table entries and control plane state) may also impact control flow and lead

to additional program coverage, we found that properly tracking the uniqueness of

data-plane state in the presence of per-packet register access limitations and packet

reordering imposed too much overhead and too many limitations on the scope of P4

programs that FP4 can test. We leave an exploration of more efficient methods of

state tracking to future work.

In the remainder of this section, we describe the SUT instrumentation required to

track changes to the above entities.

5.4.2.1 Actions Visited

To track the coverage of every action, FP4 assigns a bit in the fp4_header for each

action, and marks the respective bit in each packet as it passes through the switch

pipeline. For example, consider the target program of Figure 5.4, there are four total

actions and, thus, four reserved bits in the header. Laying it out in this way ensures

that every unique path through the pipeline results corresponds with a unique ‘visited’

bitstring.
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1 parser parse_ethernet {
2 extract(ethernet);
3 return select(latest.etherType) {
4 ETHERTYPE_IPV4 : parse_ipv4;
5 default: ingress;
6 }
7 }
8 parser parse_ipv4 {
9 extract(ipv4);

10 return ingress;
11 }
12 action on_l2_hit(vrf) {
13 modify_field(l3_metadata.vrf, vrf);
14 }
15 table ethernet_forward {
16 reads { ethernet.dstAddr : exact; }
17 actions { on_l2_hit; on_l2_miss; }
18 }
19 table ipv4_forward {
20 reads { l3_metadata.vrf : exact;
21 ipv4.dstAddr : lpm; }
22 actions { on_l3_hit; on_l3_miss; }
23 }
24 control ingress {
25 apply(ethernet_forward);
26 if valid(ipv4) { apply(ipv4_forward); }
27 }

Figure 5.4: A simple example target P4 program.

Note that if the same action is used in multiple tables, a naïve application of the

above may leave ambiguity in the packet’s path through the processing pipeline. FP4

addresses this by duplicating the action and renaming it, so each action is unique to

a table. The renaming has no impact on the switch hardware resources.

5.4.2.2 Control-plane State Changes

To account for the impact of control-plane changes, FP4 augments the control plane

to track its internal state. Note that this can include everything relevant to the

processing of future packets, from object attributes that persist across packet events

to the current state of the stack (which reflects function calls, parameter changes,

and returns). This additional data can only improve coverage, but is not necessary

135



for functionality.

Naïvely, one could consider every packet that causes a state change as a candidate

for inclusion in the seed corpus. Unfortunately, this fails to distinguish new states

from previously seen ones. Instead, FP4 leverages the CRC-32 algorithm to compute

a 32-bit hash of the control plane state (all global variables followed by the sequence

of function calls on the stack) that is both efficient to update and can distinguish

between unique states. CRC-32 values can be updated bi-directionally (i.e., they

support both pushing and popping bytes), so the hash is maintained on both function

calls and returns in constant time. Our FP4 prototype implements this approach

with a semi-automatic annotation process. It currently assumes that the control

plane is written in Python and all functionality is contained within a single class.

Programmers annotate the class with a superclass and add a decorator to each of

its methods and local variables, which wraps them to update the CRC value on

each call, return, and modification (in principle, these can be automated). FP4 also

automatically stores the last-seen packet/digest from the data plane and wraps all

table entry modifications.

Whenever a table entry is added or the control-plane state changes, FP4 checks if

the CRC value is novel and there is an active ‘input packet/digest.’ If both are true,

the SUT control plane forwards the new state hash and the original headers of the

input packet to the SDT for inclusion in the seed corpus.

5.4.2.3 Table Entry and Configuration Changes

Runtime updates to table entries and switch configurations can also affect the data-

plane behavior, and FP4 tracks them using a similar technique as above. Specifically,

FP4 automatically computes the CRC-32 of the string representation of all the con-

figuration changes (the value is kept separate from the hash of internal control-plane

state). For example, it interposes on the table write/update library calls to automat-
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Figure 5.5: Lifecycle of a packet in FP4 .

ically track the content of every table. It represents each entry in its runtime-CLI-

command format (which provides a simple, unique representation of the entry), and

computes the hash of a sorted list of such commands. As above, FP4 automatically

checks the uniqueness of the state and, if unique, forwards the input packet to the

SDT.

5.5. Switch Doing Test (SDT) Design

To handle the fuzzer tasks, FP4 leverages a second programmable switch: the SDT.

For the tasks that must execute for every fuzzing input, FP4 leverages the line-rate

processing capabilities of the SDT’s data plane. For other tasks, FP4 leverages the

SDT’s control-plane CPU to implement more complex behaviors that improves its

choice of inputs. In total, the SDT generates test packets, mutates them, sends them

to the SUT, and checks for violations/coverage after packets return from the SUT.

Figure 5.5 illustrates this lifecycle.

5.5.1. Packet Generation

To generate the input packets for the target at line rate, FP4 ’s SDT uses the built-in

hardware packet generation capabilities of the Tofino and similar switches. Generated
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1 action add_ethernet_ipv4_header() {
2 add_header(ethernet);
3 add_header(ipv4);
4 add_header(ethernet_original);
5 add_header(ipv4_original);
6 modify_field(ethernet.etherType, 0x0800);
7 }
8 action add_ethernet_ipv4_content(ethdstAddr, ...) {
9 modify_field(ethernet.dstAddr, ethdstAddr);

10 modify_field(ethernet.srcAddr, ethsrcAddr);
11 modify_field(ipv4.version, ipv4version);
12 ...
13 }

Figure 5.6: Actions that are used to create an Ethernet+IPv4 packet from an existing
seed. These correspond to the ‘Add headers’ and ‘Set field values’ steps of Figure 5.5.
For the example target of Figure 5.4, a separate set of actions would be synthesized
for creating Ethernet-only packets.

packets contain an fp4_visited header (depicted in Figure 5.3) with all fields initialized

to 0s. The generated packets are then passed through automatically synthesized tables

that transform the zeroed packet into one of a limited set of seed packets.. The tables

first select a random seed number. Based on that seed, the SDT will add a set of

headers to the packet and fill them in with an initial value corresponding to one of

the configured seed packets. Figure 5.6 provides a snippet of the synthesized actions

that FP4 uses to transform the generated packets.

When FP4 is first executed, it only contains few seed packets based on the program

in SUT; more are added during runtime (see Section 5.5.3).

Deriving expected packet formats The first step in any P4 program is the parser,

which takes a sequence of bits from the MAC layer and parses it into its constituent

headers. Packets at this stage must adhere to strict formats—all others are dropped

before reaching the ingress pipeline of the switch. When generating packets, FP4

ensures that all seeds (whether from the initial set or added later) pass this stage

using a generator-based fuzzing approach.
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More specifically, we note that P4 parsers are structured as state machines. The

parser transitions between different states depending on the contents of the packet; a

packet is only fed into the packet processing pipeline if it reaches an accept state in

the parser. FP4 analyzes the state machine to find all paths from the start to any

terminal state; it records the headers extracted in each path along with any field and

header contents that triggered the path.

FP4 synthesizes implementations of the above seed-packet generation tables so that

it is able to configure seed packet contents from the control plane. Adding a seed is

as simple as inserting a table rule to the above tables.

Computing an initial set of seeds FP4 also uses information from the parser

to compute the initial set of seeds. Specifically, it pre-computes one seed packet for

each unique parser path, setting the content of the seed packet header to specific

values that are part of transitions in the state machine5All other fields in the seed

header that are not constrained by the parser state machine transitions are randomly

populated.

As an example, consider Figure 5.4 and its synthesized actions in Figure 5.6. The

parser for this program always extracts an Ethernet header, and then only extracts

an IPv4 header if the contents of the EtherType are “0x0800.” Its state machine,

therefore, consists of three states: the start state (not shown), a state to parse the

Ethernet header, and a state to parse the IPv4 header. Further, there are only two

unique paths through this state machine that lead to accepting states: (1) an L2

frame with only an Ethernet header and (2) an L3 packet with both Ethernet and

IPv4 headers. During initialization of the SDT, FP4 discovers these two paths and

randomly generates two initial seed packets that will trigger these parser paths.
5Note that, like other implementations of the P4 compiler, FP4 limits parser recursion to a specified

depth, ensuring finite seed packets.
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5.5.2. Mutating the Generated Packets

With the seed packet in hand, FP4 ’s goal is then to use the packet to expose new

switch behavior. A simple straw man approach to mutating packets would be to

randomly select a subset of the header fields and set them to random values. While

such an approach will eventually catch any bug, blindly mutating packets may only

rarely result in inputs that traverse new control flow or trigger new table actions.

Instead, FP4 takes a more targeted approach using one of three techniques per packet

(with configurable probability of each decision).

(1) Targeting a specific table entry or conditional statement Fundamentally,

code coverage is determined by the actions triggered in the SUT. For a packet to

trigger a given action, its headers and metadata must match the set of ‘keys’ in a

table entry that is mapped to the target action. FP4 takes advantage of the fact that

the current set of table entries are known precisely at runtime to implement a ‘magic

value’ approach to fuzzing [150, 116].

More specifically, the SDT contains a ‘mutation’ table with an action corresponding

to each match-action table and conditional statement in the SUT. In the case of a

SUT table, the action takes its match fields as parameters; thus, whenever an entry is

added to a SUT table, FP4 can attempt to add a corresponding entry to the mutation

table with the match-key constants passed as parameters to the table-specific action.

LPM keys are converted to their base value; ‘do not care’ bits of ternary matches are

converted to zeros. In the case of a conditional, the action takes any referenced fields

as parameters, and FP4 tries to add a corresponding entry based on static analysis

of the program.

When target values are sparse and directly dependent on the input packet header,

this technique can greatly speed coverage. For example, consider an ingress MAC
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ethernet.dstAddr ipv4.dstAddr

l3_metadata.vrf

ethernet_forward (stage 0) ipv4_forward (stage 1)

0

0
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Figure 5.7: Example dependency graph for the example of Figure 5.4. Arrows indicate a
“depends on” relation where the source node affects the computation of the target node.
Tables are marked with their stage, and arrows are labelled with the earliest stage with the
dependency. A table depends on a field if there is a path from the field to the table with
only edges that have labels less than or equal to the table’s stage.

filter that only matches the interface and broadcast MAC addresses, two values out

of 248. Even at ∼2 billion packets per second, triggering the action would take an

average of ∼20 hours.

(2) Targeting a table or if statement Note that not all matched fields are directly

configurable. Examples include tables that match on metadata or on fields that are

changed in previous stages of the pipeline. For these cases, FP4 takes advantage of

the P4 program’s structure to preferentially mutate a set of fields together if it knows

these fields are more likely to result in “hitting” a new table entry or conditional

branch, thus dramatically shrinking the search space of mutations.

But how does FP4 decide what groups of fields should be mutated together? To

determine this, FP4 makes use of a lightweight, stage-sensitive static analysis over the

program control flow graph (CFG). The analysis extends traditional flow-insensitive

static analysis techniques [132] to be sensitive to packet modifications occurring at

different stages. In particular, FP4 statically analyzes the input program to create

a dependency graph that captures whether each packet field “could be” relevant for

a given table lookup. The graph for Figure 5.4 is shown in Figure 5.7. It contains

nodes for each of the packet’s header and metadata fields as well as for each table

appearing in the program.

141



In P4, each table is associated with a stage number. FP4 labels the table nodes with

that stage number and adds an arrow between two nodes when there is a dependency

between these components. For example, if on_l3_hit() modifies the egress_port of

the packet, the egress_port field would depend on the content of both the ipv4.dstAddr

and a vrf metadata field. The vrf field may, in turn, depend on ethernet.dstAddr if

it is modified in an action of the ethernet_forward table. FP4 adds arrows for fields

that are used as keys in tables as well as between tables whose actions may influence

the future lookup of other tables. It also adds dependency edges when fields are used

in conditionals or updates of stateful ALUs. In most cases, there is only one edge

between tables; however, when an if statement immediately follows a table lookup,

there can be more than one dependency edge as there are multiple possible next

tables.

Each dependency edge is labelled with the earliest stage in which the dependency

occurs. The mutation procedure is, thus, as follows: For each table in the graph, FP4

precomputes the set of all packet fields that can impact that table. These fields are

all those that can reach the table node in the dependency graph using only edges with

stage labels less than or equal to the table stage. At runtime, for each seed packet,

FP4 stores the list of tables that this seed might be able to mutate given the fields

present in the seed (which might be a subset of all possible fields). During mutation,

after selecting seed packet, it picks one table from the list and preferentially mutate

together fields that are keys of that table.

(3) Targeting stateful counters Finally, while FP4 does not explicitly track data-

plane state (for the reasons in Section 5.4.2), FP4 can still discover bugs that de-

pend on stateful behavior. The table-targeted mutation technique, for instance, will

properly track the dependencies of stateful registers and modify them if the register

outputs are useful for increasing coverage or testing assertions (it will not attempt
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to mutate state that is write-only). There are, however, edge cases where FP4 ’s lack

of visibility into data-plane state changes may impede its efficiency. For example,

consider a target program that counts the number of packets for each 5-tuple and

triggers an assertion violation if any counter exceeds a threshold. FP4 will quickly

cover the action with the stateful counter, and it will eventually trigger the violation

(after sufficient random collisions), but may do so slowly. Noticing this tendency

toward counters in network programs, FP4 will occasionally repeat packets to ensure

that the most common classes of stateful behaviors are captured quickly.

Chaining mutations Note that, particularly for (1) and (2), it may be advantageous

to chain mutations to trigger matches that are impossible with only one mutation of

existing seeds. FP4 can pack a few such mutations within a single pipeline. It can

also optionally recirculate the packet to apply even more rounds of mutations, albeit

at the cost of throughput.

5.5.3. Evaluating Assertions and Coverage

At the end of pipeline, FP4 makes a copy of all headers to reserved *_original headers.

If the packet is later determined to be seed-worthy, the cloned headers serve as a record

of the original input packet, prior to any SUT modifications.

Two types of packets will return from the SUT: test packets that have traversed the

SUT data plane and state-change notifications from the SUT control plane. It may

also receive packets generated at the SUT and destined for remote devices (e.g., a

periodic control plane routing keepalive message), but these never result in an addition

of seed packet (as they are not the result of an SDT input).

For packets from the SUT, the header will contain the visited action bitstring and

assertion failure flags along with the original header. The packet has attained ad-

ditional coverage iff its visited bitstring is novel, i.e., it visited a unique sequence of
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actions or path. Because the string can potentially be large, FP4 tracks uniqueness

with the help of a bloom filter. On a filter miss or a set assertion flag, FP4 sends

the packet and its original header to the SDT control plane for further processing.

Otherwise, FP4 recycles the packet by removing all the headers; the recycled packets

are treated as a freshly generated packet. Packets from the SUT control plane are

always sent to the SDT control plane for addition to the seed packet set. The SUT

control plane should have already verified its uniqueness.

5.6. Implementation

We implemented a prototype of FP4 , including the SUT instrumentation and SDT

data plane and control plane agent. Our hardware testbed consists of two Barefoot

Wedge100BF-32X programmable switches with all ports on both switches connected

by an array of 100GbE DAC cables. Our implementation currently uses a single line

card on each switch.

SUT Instrumentation The FP4 instrumentation adds the required changes to the

input P4 program stated in Section 5.4 to generate an instrumented P4 program.

In total, instrumentation implementation comprises around 5500 lines of C++ code,

with 4300 lines for a frontend to parse input P4 code using Flex/Bison and build an

AST of the input program and 1200 lines to instrument the target SUT program.

The SUT control plane scaffolding currently requires that the programmer annotate

their code as described in Section 5.4.2.2 and adhere to a general entrypoint signature.

SDT implementation Our prototype SDT data plane implements the pipeline and

functionality detailed in Section 5.5. The code to synthesize the program for SDT in-

corporates an additional 4200 lines of code. The program synthesis code also outputs

a json file to be used by the SDT control plane. This json file contains the structure

of packets so the control-plane can parse the incoming packets.
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Program LoC Actions Stateful ALUs Control Plane Coverage (s)

Load Balancer 159 4 0 Static 0.79 (100%)
Basic Routing 165 6 0 Static 54.33 (100%)
Rate Limiter 197 7 3 Static 8.53 (100%)
Firewall 313 12 4 Static 1.66 (100%)
Netchain [93] 264 6 2 Static 1.11 (100%)
Mirroring 213 7 4 Static 0.24 (100%)
DV Router 284 11 0 Dynamic 39.14 (93%)

Table 5.2: Features and coverage of P4 programs we evaluated

Hardware limitations in the per-stage random number generator restrict the size of

mutations to 32-bits, but we find that table-entry-targeted mutations are sufficient

to fill this gap. Our prototype SDT control plane takes in the json file generated

during instrumentation, adds initial seed packets, parses packets coming from the

data plane, track coverage and installs new seed packets in the SDT data plane. The

Python control plane is more than 1200 lines of code.

5.7. Evaluation

To evaluate the performance of FP4 , we conducted experiments on a diverse collec-

tion of programs that vary in size and complexity. Rather than merely reaching a

particular behavior (such as an assertion violation or invalid header access on a par-

ticular line), we focus on the more holistic problem of achieving full coverage of all

actions and paths in P4 programs, which can be combined with assertions to catch

specific bugs. As such, our evaluation aims to address the following questions: (1)

How quickly does FP4 achieve 100% code coverage, compared to existing tools for

software-based fuzz testing? (2) Which factors of FP4 s design have the biggest im-

pact on coverage, and how does its performance compare to more naïve baselines?

(3) What is the performance overhead of the added FP4 instrumentation on the

switch under test? (4) Finally, can FP4 be used successfully to find bugs in existing

P4 programs—with a particular eye to bugs that could not be caught with static

verification techniques?
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Programs tested Table 5.2 lists tested programs. Load Balancer, Basic Routing,

and Rate Limiter represent programs designed primarily for packet forwarding. The

Load Balancer makes use of hashing, while Rate Limiter tests Stateful ALUs. Firewall

represents a more complex application using Bloom filtering. Netchain also uses

concurrency control. In order to avoid false positives due to invalid table rules inserted

by the control plane [59], for these examples, we employ a static controller which

inserts a fixed number of table rules.

We also evaluate an additional two programs, Mirroring and DV Router. The first

program contains the bug mentioned in the introduction: our goal is to determine

whether we can catch the bug automatically with fuzzing. The second program is

included to test the behavior of switch together with a dynamic, stateful control plane.

This example involves additional instrumentation in the control plane, as overviewed

in Section 5.4.2.2. Both examples include components that cannot be handled by

static verifiers: a hardware-only bug in the first case, and a dynamic stateful control

plane in the second case.

5.7.1. FP4 Covers Code Quickly

We begin by evaluating the speed at which FP4 can provide code coverage and test

programmable switches. We ran FP4 over all of the programs described in Table 5.2

on the setup described in Section 5.6, and we log every time a packet arrives at the

SDT control plane with a newly covered path through the P4 program or state.

Figure 5.8a shows the speed at which FP4 triggers all actions in the target programs.

The y-axis is the fraction of unique actions triggered divided by the total number of

unique table-action pairs in the programs. We note that, in all but one of our test

programs, FP4 provides complete coverage for all the programs within around 1 min.

This is true even for programs with only a single entry in a table with a wide keyspace.

The only exception was DV Router, where an action hit depends on (1) a properly
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Figure 5.8: Action coverage over time for
FP4 and p4pktgen. Coverage is normalized
to the total number of actions in the pro-
gram. When comparing (a) and (b), we cau-
tion readers to consider the differences laid
out in Section 5.7.1
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Figure 5.9: Path coverage over time for
FP4 and p4pktgen over up to a 5 min trace.
When comparing ((a)) and ((b)), we caution
readers to consider the differences laid out in
Section 5.7.1.

formatted incoming routing update followed by (2) a matching ARP response for the

next-hop router and (3) a packet that hits the target routing table entry. While FP4

can eventually trigger this sequence of events, step (2) is currently improbable as it

relies on a metadata field nextHop whose dependencies cross the DP/CP boundary.

Figure 5.9a also shows results from the same run for paths through the program,

defined as a either a unique sequence of triggered actions or a change in the control-

plane state.

We also show results for another open-source P4 fuzzer, p4pktgen [140]. We note

an important difference between the experiments: p4pktgen uses symbolic execution

to solve for a small number of input packets and assumes it can freely configure the

control plane rules when doing so. As such, some of the inputs/configurations are not

actually achievable in real networks with real control planes. In fact, we needed to

remove all default_action statements from the test programs (we modified p4pktgen
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Figure 5.10: Packet efficiency (i.e., actions covered, relative to total, per test packet) with
and without FP4 ’s optimizations.

so that it would stop considering impossible NoAction actions).

In contrast, FP4 takes the deployed program and its existing table entries and config-

urations. Despite this advantage, Figures 5.8b and 5.9b demonstrate that p4pktgen

still struggles to achieve full action coverage in real programs. While they can achieve

some coverage very quickly, limitations in its current language support (e.g., state-

fulness and egress logic) mean that some paths are never solvable.

Note that the higher path coverage of p4pktgen in Figure 5.9b is due it taking im-

possible paths. For example, Firewall contains a IPv4 lookup followed by per-port

map lookup. p4pktgen finds paths that include an IPv4 miss (where the packet is

dropped) followed by a map hit on a non-existent port. The static table rules do not

allow FP4 to take this path.

5.7.2. Factor Analysis

To evaluate the benefits of different features of FP4 , we evaluate the packet efficiency

of FP4 in covering the P4 program over a 5min period. Figure 5.10 shows these results

for (1) the full FP4 implementation, (2) FP4 without magic values (the mutations of

148



Program Stages Tables SRAM (KB) Metadata (b)

Load Balancer 2→3 (+1) 4→6 (+2) 144→160 (+16) 948→1056 (+108)
Basic Routing 6→8 (+2) 9→11 (+2) 2080→2096 (+16) 647 → 747 (+70)
Rate Limiter 5→6 (+1) 7→11 (+4) 128→144 (+16) 755→879 (+124)
Firewall 7→8 (+1) 12→18 (+6) 160→176 (+16) 1043→1178 (+135)
Netchain [93] 3→6 (+3) 6→10 (+4) 544→560 (+16) 1084→1203 (+119)
Mirroring 1→4 (+3) 7→13 (+6) 128→128 (+0) 651→781 (+130)
DV Router 3→4 (+1) 11→15 (+4) 352→400 (+48) 949→1104 (+155)

Table 5.3: Resource overhead of P4 programs we evaluated

Section 5.5.2 that are targeted for specific table entries or conditional statements), and

(3) FP4 without coverage-guided fuzzing (and only the parser-based seed generation).

We show values for two programs that illustrate different effects. Basic Routing

benefits from magic values to quickly cover most actions, but hitting the remaining

actions relies solely on the long tail of randomness. DV Router, on the other hand, is

aided by FP4 ’s optimizations in both its initial (first 100 packets) and final coverage.

5.7.3. Overhead of FP4

FP4 ’s primary overheads stem from the instrumentation it adds to the SUT in order

to gain enough visibility to implement its greybox fuzzing approach. We note that the

resource consumption of the SDT is less important as the program is not co-resident

with any other programs. Rather, Table 5.3 shows the key resources required on the

SUT, which are generally low across all tested programs. The overhead does mean

that not all programs are amenable to FP4 ’s greybox approach. An exploration of

which of FP4 ’s features can be relaxed to address programs that are already close to

exhausting all resources is out of the scope of this work.

5.7.4. Case Studies

We now present our experiences testing and finding issues in real programs using

FP4 .
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1 table tiMirror {
2 reads { ethernet.etherType : exact; }
3 actions { aiMirror; }
4 default_action: aiMirror();
5 }

Figure 5.11: A snippet of a table that triggers the mirroring bug.

5.7.4.1 Mirroring Bug

As previously mentioned, during the development of FP4 , we stumbled on a bug

in the interaction between mirroring and default actions. Specifically, given a table

such as Figure 5.11, if the action aiMirror() configures the packet to be mirrored, the

P4 specification would suggest that the packet should be mirrored even if the user

does not add any entries beyond the default entry. In reality, while other primitive

actions in aiMirror() execute properly, we find that packet is not multicasted. Only

after adding a non-default entry does the multicast properly apply. After adding

an assertion to the input program (Mirroring), FP4 finds the path that violates the

assertion in under 1 seconds.

While this bug was identified and addressed in more recent versions of the switch

SDE, static verification tools that only consider the P4 program itself would not have

found any faults in this program. Further, we note that the simulators provided as

part of the behavioral model and the switch SDE also do not catch this bug. Only

when this program is deployed to a hardware switch will this issue manifest.

5.7.4.2 Testing a Distance Vector Router

We also use FP4 to test for issues in a device in which the P4 data plane and its

control plane interact to implement a distance-vector powered IPv4 router. The

router provides the basic functionality required for it to be placed in an arbitrary

network and learn its surroundings. Thus, the router’s functionality includes the

ability to handle ARP requests and responses, to understand Ethernet forwarding,
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and to execute a distance vector protocol to determine the correct set of LPM routing

table entries. Like a real router, the data plane is designed to be general to the

topology, port counts, and address assignments of the network; instead, the control

plane will configure all tables based on a provided interface configuration and data

learned from neighbors or passing packets.

The original purpose of this router is as a teaching tool: students are given some

skeleton code and are expected to fill in the P4 and control-plane logic for the above

protocols. Testing and debugging students’ implementations is a critical task. While

testing the end-to-end correctness of the implementation is straightforward (e.g., by

deploying a set of their routers and connecting two Linux hosts to either side), it is

often also useful to test for violations of basic invariants, which can serve as both

sanity checks and a method to localize errors. Because of the tight integration of the

control and data plane, static verification tools are not sufficient and prone to false

positives. In particular, there are many invariants where one set of table rules may

result in correct behavior and another that result in errors. For example:

• Testing that the router only responds to L2 frames destined for the local inter-

face’s MAC address or the broadcast address.

• Testing that outgoing packets are all filled with a sender MAC address corre-

sponding to the egress port.

• Testing that outgoing ARP responses match the incoming requests (e.g., the

correct operation code and sender/target hardware and protocol addresses.

Further, the target includes routing packets that are generated by the onboard control

plane, and while the data plane could produce errors depending on the contents of

the generated packets, they will not because of the correctness of the control plane.

Example of such properties include:
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• Testing that outgoing distance-vector updates include the correct source IP.

• Testing that the outgoing distance-vector updates are properly formatted, e.g.,

the advertised cost is less than some preconfigured ‘small infinity’ so as to mit-

igate the count-to-infinity problem of distance vector protocols.

In all cases, FP4 enables expressive testing of the complete programmable switch

that only finds bugs that are feasible.

5.8. Limitations and Future Work

In principle, by virtue of randomness, FP4 is able to eventually able to trigger any

possible data plane bug except those that involve unused fields or that only manifest

when incoming packets are rare. One could also cover those types of bugs, e.g., if

FP4 had support for dropping a random number of seed packets, but doing so would

greatly sacrifice throughput.

Looking forward, we note that there are significant opportunities for extending FP4

to incorporate more recent advancements in the field of fuzzing, and/or to more ef-

ficiently cover several classes of bugs that are currently inefficient for FP4 to catch.

The space of possible optimizations is infinite, but promising directions include: co-

ordinated time stamp emulation in the data plane and control plane to better handle

timing-triggered bugs, pruning of old or useless seeds to improve the efficiency of

exploration, prioritization of existing seeds to target known gaps in the program cov-

erage, gating seed packets based on the current system state to guarantee uniqueness

of seed coverage, and tracking control plane code coverage to more efficiently explore

bugs that originate there.

5.9. Summary

In this chapter, we present FP4 , the first line-rate greybox fuzzing framework for P4

programmable switches. FP4 adapts several carefully selected, time-tested ideas from
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the realm of traditional application fuzz testing and demonstrates how to adapt the

ideas to programmable switches—with the switches serving as both the target and

the fuzzer. Our evaluation demonstrates that FP4 can quickly find bugs in programs,

even if the bugs are not in the P4 program itself (e.g., in the case of compiler and

control-plane bugs).
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CHAPTER 6

Related Work

This chapter summarizes areas of research that are related to the problems discussed

and systems introduced by this thesis.

6.1. Network Measurements

Network measurement is a well-studied field, with many proposals for better and

more expressive measurement tools [134, 196, 77, 104]. As networks grow, it becomes

even more important to have good monitoring and debugging tools. Our work is,

to the best of our knowledge, the first to demonstrate practical, synchronous, and

consistent network-wide measurement with analysis. A large body of prior work has

tackled related goals and solutions. We discuss that work below.

Hardware-assisted measurement. With the recent rise of programmable data

and control planes, there has been increased interest in novel measurement applica-

tions [134, 149, 184, 123, 117, 169]. Thus far, these approaches have concentrated

on exploring the limits of what can be feasibly collected. Together, they are a tes-

tament to the expressiveness and utility of programmable switches. Our work is

complementary—network snapshots can be of any local state, including the statistics

generated by these systems.

Multi-device measurement. One method to move beyond single-component mea-

surement is to leverage traffic to capture relevant state as it traverses the network [16,

77, 20, 104]. For example, packets could record the minimum queue depth at any inter-

mediate switch. These techniques have the advantage of enforcing causal consistency

at the level of an single sample; however, like single component measurement, it is

154



still difficult to compare across samples and paths.

Distributed snapshots. The literature on distributed snapshot algorithms is simi-

larly rich. The original paper on the topic [45] inspired a wide variety of improvements

and refinements. Of particular note are piggybacking-based protocols like [108, 114].

Originally designed to allow for non-FIFO channels, Speedlight borrow their tech-

niques for handling packet drops, but prohibit out-of-order delivery for efficiency.

Finally, we note that others have discussed the practicality of distributed snapshots

in networks [96, 160], but in the control plane rather than the data plane.

6.2. Network Analysis

Measurement aggregation. An approach for trying to understand network-wide

behavior is to take measurements of individual devices or paths and build larger

insights on top of their aggregates. There are too many such approaches to cover

here, but these largely rely on statistics, thresholds, and similar techniques. Network

tomography [113, 133, 100, 47] is a common example that uses statistics to tease out

interesting behavior from long-term traces of multiple devices. While this class of

approaches can assist in a variety of use cases, they lack the granularity to answer

the questions related to network-wide behavior.

Traffic pattern inference. We note that the concept of a network traffic pattern is

not novel. Many prior works have both identified and used traffic patterns to great

benefit [48, 78, 112, 157, 193, 154]. Unfortunately, these insights have typically been

limited to situations where the pattern can be measured at a single link/device [194,

112, 157, 193] or have been a result of property-specific analyses, often with a large

dose of manual effort [78, 48, 154, 36]. The goal of tpprof is instead the automatic

extraction and ranking of common patterns from running networks.

Network visualization tools. We also acknowledge the vast array of existing
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network monitoring and visualization tools, both commercial [149, 138, 70, 98, 1, 2,

3, 4, 5] and academic [194, 131, 123, 179, 162, 79]. We lack sufficient space to discuss

them all, but one worth mentioning is Cisco’s recent Tetration platform [149]. Among

other features, Tetration can extract the control flow of a distributed application by

clustering hosts based on the partners with which they communicate. Other work

has attacked similar problems [95]. To the best of our knowledge, tpprof is the first

tool that extracts common network-wide traffic patterns, rather than application-level

communication patterns or packet/flow-level behavior. Broadly speaking, tpprof

operates at a higher-level of abstraction than these existing systems.

Wee note, however, that tpprof is compatible with some infrastructure monitoring

frameworks like Nagios [98] that collect monitoring data from across the network.

By default, none of these provide the same abstraction as tpprof, but many allow

custom measurement configurations and plugins, of which tpprof could be one.

Application performance profilers. tpprof draws inspiration from a long history

of work in application performance profiling [75, 171, 153, 43, 50, 186, 130]. Some

of which are even able to profile distributed applications [86, 118, 141, 85]. While

tpprof borrows its approach from the subset of these that profile stochastically, it

does this for traffic patterns, which have their own unique set of challenges.

Anomaly detectors. tpprof alerting mechanisms are related to prior work in

anomaly detection. Compared to unsupervised anomaly detection [41, 191], however,

tpprof provides a much more accurate and fine-grained detection method. Compared

to traditional profiling-based anomaly detection in which a user provides a ‘correct’

trace and the system determines whether the current system diverges [109, 167],

tpprof can distinguish between different anomalies and does not require the user to

obtain a correct trace. More generally, tpprof’s scoring engine presents a natural,

declarative interface for the user tell the detector, via traffic pattern signatures, the
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approximate characteristics of relevant traffic patterns.

Clustering and compression. Finally, we note that our techniques for compressing

network states borrow from or are related to the rich literature on clustering and

compression [66, 53, 34, 91]. Our network state extraction techniques, in particular,

leverage existing algorithms. The contribution of this work is instead the choice and

tuning of these clustering algorithms to the domain of network traffic pattern analysis.

6.3. Network Verification

Network verification is an extensively studied field. Verification tools such a HSA [101]

and Anteater [128] verify the correctness of a static snapshot of network forwarding

tables. Later tools such as Veriflow [102] perform runtime verification by constantly

re-verifying the network state as changes occur. Each of these tools reasons about

all packet behaviors—a challenging task—however, their reasoning is limited to ver-

ification of stateless network forwarding. This dissertation is focused on complex

temporal, stateful properties of general-purpose distributed NFs and full stack test-

ing for programmable switches.

Runtime verification Researchers have studied runtime verification extensively,

with many papers dedicated to improving its expressiveness and performance. We

find that, unfortunately, these existing systems are a poor fit for our setting. For

example, D3S [122] is a runtime verifier. Like Aragog , it focuses on identifying bugs

in distributed systems at runtime, and its usage of C++ implementations to specify

general-purpose properties means that it can check a wider range of properties than

Aragog . On the other hand, Aragog is able to leverage its domain-specific IV speci-

fication language (based on regular expressions) to reduce overhead (e.g., with event

suppression). Similarly, while CrystalBall [177] can proactively steer a distributed

system away from bad states, it imposes restrictions on the target system’s architec-
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ture that make sense for a distributed system, but not necessarily for a large-scale NF.

A third system, Pivot Tracing [127] tracks only causal relationships and not unrelated

events at different machines—a property required by some of NATGW’s uniqueness

invariants. We emphasize that none of the above implies strict superiority. In partic-

ular, as Aragog is domain-customized for NFs, it should not be used for more general

cases (e.g., it may not be able to verify systems like Chord or Paxos efficiently).

We also note that Aragog borrows ideas from two areas within runtime verification.

The first is verification of distributed systems, which is broadly separated into two

categories based on whether the system assumes a synchronized global clock [64]. In

this respect, Aragog would be considered a decentralized [64, 58] runtime verification

system. The second is parametric verification, which focuses on checking universally

or existentially quantified expressions [80, 151, 54, 126]. The location variables in

Aragog are examples of parametric variables. The main distinction of Aragog from

these systems is its combination of parametric and decentralized runtime verification

through its support for location variables. Moreover, Aragog ’s efficient implementa-

tion of this combination of features through its use of sharding and local symbolic

state machine partitioning is new in this context.

Static verification of NFs and distributed systems Static verification has as

equally rich history, including in the domain of NFs and distributed systems [192,

144, 22, 188]. Static verification approaches may provide exhaustive guarantees of

correctness, but often suffer from issues of scalability. For this reason, many static

verifiers (e.g., [192, 188]) assume single-machine middleboxes, while others (e.g., [125,

103, 178]) may require checking an exponential number of states/paths. Leveraging

hand-written NF models can improve scalability compared to verifying source code,

but requires tedious and error-prone manual translation of NF models and divorces

the verifier from the behavior of the actual deployed system [144, 22].
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Aragog makes a different set of tradeoffs, opting to sacrifice principled exploration for

improved scalability and giving up the ability to catch bugs early for the ability to

test real implementations running over live data. We argue that these tradeoffs are a

better fit for our operators’ requirements.

Related to the above approaches is the use of semi-automated theorem provers such

as Dafny [111]. Users can apply these tools to build systems that are provably correct.

A good example of this approach is IronFleet [81], which was used to build a verified,

Paxos-based replicated-state-machine library. On the other hand, a drawback of this

approach is that it requires significant development effort. IronFleet verification, for

example, involved tens of thousands of lines of proof. In contrast, Aragog aims to be a

lightweight (but sans proof-of-correctness) alternative, requiring little to no developer

effort by catching bugs at run time.

Static P4 verification Static verification offers an alternative approach to finding

bugs in P4 programs. There is a long line of prior work on applying static veri-

fication techniques such as symbolic execution [60, 139, 172, 119, 124] and model

checking [173] to P4. Symbolic execution techniques can be categorized based on the

correctness specification; for example, netdiff [60] uses differential testing [129, 76]

to define correctness, and Assert-P4 [65] uses an expressive assertion language. Sys-

tems like bf4 [59] combine static verification with additional runtime checks to ensure

properties that it can not verify statically.

Static verification offers strong guarantees regarding completeness—all possible input

packets are checked for correctness—but it is not a panacea. Static verifiers can not

yet (1) prove properties about stateful programs that would involve reasoning about

potentially arbitrarily large sequences of packets, and they can not (2) find bugs in

the switch hardware, (3) P4 compiler or (4) the control plane. Finally, because these

tools lack visibility into the control plane, they may (5) report false positives [59] by
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conservatively overapproximating the control plane’s actual behavior.

We view FP4 as being complementary to static verification tools. It can test a switch

program in vivo but provides no coverage guarantees. To improve coverage in practice,

FP4 leverages a combination of (1) a design based on leveraging high-throughput

programmable switches, (2) P4 instrumentation for coverage guided feedback, and

(3) a bevy of other optimizations (See §5.4 and §5.5).

6.4. Fuzz Testing Programmable Switches

Prior to FP4 , p4pktgen [140], P4RL [164], and P6 [163] were the first to propose

fuzzing for P4 dataplanes. These tools demonstrated that P4 fuzz testing could be

effective at identifying a wide variety of bugs. Going off the past observation from

software fuzzing that more tests equals more bugs [42], FP4 leverages programmable

switches to generate test packets up to 6 orders of magnitude faster than the prior P4

fuzzing work that is based on software emulation. Moreover, emulating the P4 switch

in software means that most prior works cannot detect bugs that only show up in

hardware (an observation also made in [82]) such as the mirroring bug from 5.7.4.1.

Work on P4 fuzzing builds on prior research in automatic test packet generation

(ATPG [190]), including tools such as PAZZ [165] and Pronto [195]. FP4 shares

a similar goal to these works (i.e., automatically identifying bugs), but specifically

takes advantage of the programmability of P4 to enable efficient greybox (rather than

blackbox) testing by tracking the test coverage of packets in the dataplane itself.

P4Fuzz [17] and Gauntlet [156] propose fuzz testing for P4 compilers by generating

structured test P4 programs more in the style of traditional compiler testing [180].

These works can identify a variety compiler bugs across a diverse set of P4 programs.

In contrast FP4 focuses more narrowly on rigorously testing a particular program in

its entirety, including the compiler, hardware, control plane, and data plane.
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Stateful fuzz testing Finally, FP4 falls into a broad category of research in bringing

fuzz-testing to complex stateful systems. Popular general-purpose stateful fuzzers

include RESTler [31], Ijon [30], Peach [55], BeSTORM [38], and Sulley [23]. Outside of

programmable dataplanes, stateful fuzzing has also been successfully applied to stress-

test the security of network protocols [147, 148, 67, 135, 32, 15, 174]). Compared to

these works, FP4 can not efficiently restart the switch, and thus opts not to generate

sequences of test inputs. Instead it leverages the observation that most P4 programs

are meant to be run in a “continuous” mode and naturally reset switch state. FP4

also collects control plane state change information and incorporates this information

to derive new seed inputs.

161



CHAPTER 7

Conclusion

The size, number and complexity of datacenters are growing. Managing such an exten-

sive network with a diverse set of network policies has become more complicated with

the introduction of programmable hardware and distributed network functions. Un-

fortunately, existing debugging tools are not sufficient to monitor, analyze, or debug

modern networks; either they lack visibility in the network, require manual analyses,

or cannot check for some properties. These limitations arise from the outdated view

of the networks, i.e., that we can look at a single packet or path in isolation.

This thesis calls for a different approach for network debugging: To look at the

network as a whole and design tools that look at measuring, understanding, and de-

bugging the network across “space” (multiple devices), and “time”. Our key idea is to

use both (1) in-network packet processing including programmable data-planes and

distributed middleboxes to collect precise measurements and (2) out-of-network pro-

cessing to coordinate measurement and scale analytics. Looking into specific systems,

we show how we can use Speedlight to capture network wide measurements that give

us in-network visibility and tpprof to automatically analyze the network behavior

using the measurements. While Speedlight and tpprof expand on monitoring space

to analyze network-wide behavior, Aragog and FP4 focus on testing the full stack of

network functions and programmable switches. Aragog collects measurements from

stateful distributed network functions and does runtime verification using symbolic

finite automata to alert for violations at the data center scale in real-time. FP4 is

a fuzz-testing framework for P4 switches that achieves high expressiveness, coverage,

and scalability.
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Overall, this thesis design tools that can reduce bugs present before deployment and

builds framework to simplify the debugging process. I hope this thesis would guide

admins towards self driving networks. In theory, self-driving networks would be able

to detect, locate and find root cause of network problems without human inference

without human interference. It would also predict application resource usage and

network performance trends to avoid problems that could occur in the future, schedule

configuration, and request optimal capacity upgrades
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