
Attribute Weighted

Fuzzy Interpolative Reasoning

Fangyi Li

Supervisors:
Prof. Qiang Shen

Dr. Changjing Shang

Ph.D. Thesis

Department of Computer Science

Faculty of Business and Physical Sciences

Aberystwyth University

April 20, 2020



Declaration and Statement

DECLARATION

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed ............................................................ (candidate)

Date ............................................................

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Where correction services1 have been used, the extent and nature of the correction

is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliogra-

phy is appended.

Signed ............................................................ (candidate)

Date ............................................................

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed ............................................................ (candidate)

Date ............................................................

1This refers to the extent to which the text has been corrected by others.



Abstract

Approximate reasoning systems facilitate fuzzy inference through manipulating

fuzzy if-then rules. Fuzzy rule interpolation (FRI) supports such reasoning with sparse

rule bases where certain observations may not match any existing fuzzy rules. While

offering a potentially powerful inference mechanism, in the current literature, it is

typically assumed that all antecedent attributes in the rules are of equal significance

in deriving the consequents. This is a strong assumption in practical applications,

thereby, often leading to less accurate interpolated results. Recently, interesting tech-

niques have been reported for achieving weighted interpolative reasoning. However,

they either employ attribute weights that are obtained using additional information

(rather than just the given rules) or fail to enable the individual attribute weights

to be integrated systematically with the corresponding FRI procedures. To devise

a weighted interpolative reasoning that works effectively and efficiently, two ma-

jor concerns need to be addressed. First, how the rule antecedent weights can be

generated automatically and efficiently, without requiring further observations or

triggering the entire unweighted FRI system. Second, how the generated weights

may be integrated within any unweighted FRI mechanism. A further associated issue

is how a weighted FRI method may be transplanted to another underlying FRI where

no individual attribute weight is involved once the weights of rule antecedents are

available.

This thesis proposes a weighted fuzzy interpolative reasoning mechanism, lead-

ing to novel FRI approaches that significantly reinforce the power of approximate

reasoning. It works by exploiting attribute ranking techniques to help determine

the relative importance of rule antecedent attributes involved in a sparse rule base.

In particular, the proposed approach employs feature selection (FS) techniques to

adjudge the relative significance of individual attributes and therefore, in order to

differentiate the contributions of the rule antecedents and their impacts on FRI. This

is feasible because FS provides a readily adaptable mechanism for evaluating and

ranking attributes, being capable of selecting more informative features. Without

requiring any acquisition of real observations, based on the originally given sparse

rule base, the individual weights are computed using a set of training samples that are

artificially created from the rule base through an innovative reverse engineering pro-

cedure. This weight generation procedure is general as it allows for any established



ranking method to be utilised to score the attributes without adversely affecting the

interpolative inference accuracy. Given the generated weights of rule antecedent

attributes, this thesis further presents three FRI approaches, each based on different

type of fuzzy interpolative reasoning technique, for systematically integrating the

weights within the FRI procedure. Such a weighted approach integrates the learned

weights explicitly with all computational steps of the interpolation process. The

implementation of each weighted FRI mechanism is of generality as it is achieved

independently of the weight generation method. Thus, the underlying generic tech-

niques can be extended to supporting any other FRI which involves multiple rule

antecedents which are not assigned with individual weights.

The proposed weighted FRI approaches have been statistically evaluated through

a range of experimentations against various benchmark datasets. The results are

reported in this thesis, demonstrating the superior and robust performance of the

weighted methods over their originals (where the rule antecedent attributes are of

equal significance). A specific and important outcome that is supported by attribute

ranking is that only two (i.e., the least number of) nearest neighbouring rules

are required to perform accurate interpolative reasoning. This avoids the need

of both searching for and computing with multiple rules beyond the immediate

neighborhood of a given observation, thereby significantly enhancing computational

efficiency. The proposed weight generation and weighted FRI mechanisms are

integrated with the standard compositional rule of inference to develop application

systems to perform real-world pattern recognition tasks, including classification and

prediction (which in turn, involves both multivariate regression and time series

prediction). Particularly, the thesis reports on a novel fuzzy rule-based diagnostic

system for mammographic mass classification. This system is able not only to derive

a conclusion for unknown observed masses that have no rules to match, but also to

produce the diagnostic outcomes that are interpretable, thanks to the semantics-rich

fuzzy rules with attribute values represented in linguistic terms. The success in all

such realistic applications demonstrates the practicality of the proposed techniques

for attribute weighted fuzzy interpolative reasoning.
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Chapter 1

Introduction

F UZZY set theory [Zadeh, 1965], and its extension, fuzzy logic, have gained rapid

developments in a variety of scientific areas, including mathematics, engineering,

and computer science. They also have been successfully applied for many real-world

problems [Ross, 2005,Terano et al., 2014,Zimmermann, 2011,Li et al., 2016], such

as systems control, fault diagnosis and computer vision, as an effective tool to address

the issues of imprecision and vagueness in modelling and reasoning. This makes

systems developed on the basis of fuzzy sets and fuzzy logic a core paradigm in the

field of soft computing [Bonissone, 1997,Zadeh, 1994], forming sharp contrast with

the conventional hard computing systems based on boolean logic and numerical

analysis. In particular, fuzzy expert systems exploit the tolerance for imprecision,

partial truth and approximations to achieve close resemblance with human activity

and reasoning intuition. Many of which have been developed using the idea of

approximate reasoning (also known as linguistic reasoning), reflecting the manner of

human cogitation and leading to new, more human interpretable, intelligent systems.

1.1 Approximate Inference

Reasoning with imprecise information is one of the central topics of fuzzy logic.

In general, an approximate reasoning system can be formalized as a fuzzy if-then

rule-based inference mechanism that derives a conclusion given an input observation.

It consists of linguistic variables, fuzzy rules and a fuzzy inference mechanism.

Linguistic variables facilitate the interpretation of linguistic expressions in terms of

1



1.2. Fuzzy Interpolative Reasoning

fuzzy quantities of certain underlying mathematical semantics. Fuzzy inference rules

are a set of rules that associate input and output data of an underlying system, to

model either historical data acquired from the system or expert opinions regarding

the system, or a mixture of both, typically expressed in linguistic terms. Based on

such rules, a fuzzy inference mechanism is encoded to implement the process of

approximate reasoning, through manipulation among the fuzzy inference rules in

response to any new input data.

Various techniques have been established to build fuzzy systems. In particular,

many have been seen to implement generalised modus ponens that facilitates rea-

soning when provided with imprecise inputs, mostly by following the basic idea

of Compositional Rule of Inference (CRI) [Zadeh, 1973]. That is, a fuzzy rule is

regarded as a triplet that consists of an antecedent, and a consequent, both of which

are linguistic variables and linked through a fuzzy relation. The CRI performs its

work given a fuzzy rule or a fuzzy rule base (i.e., a finite collection of fuzzy rules) in

the following manner: if the system input coincides with the antecedent of a fuzzy rule,

then the output should coincide with the consequent that corresponds to the antecedent

of that fuzzy rule [Fuller, 2000]. This reflects the property of CRI inference being

a generalisation of the modus ponens of classical logic, reflecting the intuition of

similar inputs normally deriving similar outputs.

The law of CRI has been successfully applied in approximate inference and fuzzy

control, for example, the Mamdani’s fuzzy logic controller [Mamdani and Assilian,

1999] was implemented this way. However, CRI is unable to draw a conclusion when

a rule base is not dense but sparse. Sparse, or incomplete, rule bases considered here

are not referring to the quantity of rules in a given rule base, but to the coverage of

the problem domain by the antecedents of rules regarding the universe of discourse.

That is, an input observation may have no overlap with any of the rules available

and hence, no rule may be executed to derive the required consequent by directly

applying CRI.

1.2 Fuzzy Interpolative Reasoning

Fuzzy rule interpolation (FRI) facilitates approximate reasoning in fuzzy rule-based

systems when only sparse knowledge is available [Kóczy and Hirota, 1993a,Kóczy
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and Hirota, 1993b]. It addresses the key limitation of conventional fuzzy rule-based

systems that work using CRI [Zadeh, 1973], requiring a dense fuzzy rule base which

fully covers the entire problem domain. If, however, the problem domain is not

completely covered by the given rules, there may exist observations that fail to

activate any existing rules to compute a required inference outcome. Resolving

real-world problems frequently involves the use of such sparse rule bases, since a

dense rule base is especially impracticable in a multidimensional environment where

the number of rules increases exponentially as the input variables and the fuzzy

linguistic labels associated with each variable increase. FRI plays an approximate

and useful role in such situations explicitly where only an incomplete rule base is

available. It works with this form of sparse knowledge, attempting to reduce, if not

to completely remove, the restriction of CRI for cases where no conclusion may be

derived due to no rules matching a new observation. This offers an alternative way

to infer an approximately interpolated outcome, accomplishing the so-called fuzzy

interpolative reasoning.

FRI essentially makes two contributions to the development of fuzzy rule-based

systems. It not only facilitates the assistance of reasoning on sparse rule bases [Burkhardt

and Bonissone, 1992], but also offers the potential for a reverse application where

the rule base may be so dense that model simplification is required. That is, FRI can

be utilised to simplify the complexity of fuzzy rule bases through say, a procedure of

iteratively replacing two existing rules with an interpolated one [Koczy and Hirota,

1997], thereby eliminating those fuzzy rules which may be approximated from their

neighbouring ones. Whilst both contributions are based on manipulating certain

defined neighbouring rules, the latter is beyond the scope of this thesis research.

That is, this work is focussed on performing inference with a sparse rule base. In

supporting fuzzy interpolative inference on sparse rule bases, the concept of neigh-

bouring fuzzy rules is indeed fundamental, of which the rule antecedent parts have

the highest similarity with the given observation. Note that the goal of FRI is not

to produce an interpolated rule through interpolative reasoning, but to compute an

interpolated consequent that corresponds to the input observation. In so doing, FRI

achieves the inference task with respect to the observations that originally have no

conclusions to be drawn due to the sparseness of the fuzzy rule base.

As an inference mechanism, FRI starts to reach its goal from the selection of

the nearest neighbouring (aka. the closest) rules in the fuzzy sparse rule base with
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regards the given unmatched observation. Such chosen rules form the basis for

conducting fuzzy interpolation. Two major categories have been seen in the litera-

ture to implement fuzzy interpolative reasoning: 1) the α-cut based interpolations

(e.g., [Chang et al., 2008, Kóczy and Hirota, 1993a, Tikk and Baranyi, 2000, Yam

et al., 2006]) and 2) the intermediate rule based interpolations (e.g., [Baranyi et al.,

2004,Chen et al., 2016,Huang and Shen, 2006, Jin et al., 2014,Yang et al., 2017]).

This categorisation depends upon whether the computation of the interpolated re-

sult is accomplished through a process of construction and transformation of an

intermediate rule first. As such, FRI methods may also be organised in two groups, re-

spectively termed as non-transformation based and transformation based FRI [Chen

and Adam, 2018]. The pioneering work for fuzzy interpolative reasoning, as of the

techniques reported in [Kóczy and Hirota, 1993a,Kóczy and Hirota, 1993b] and their

extensions, form the most typical non-transformation based FRI. For those relying on

transforming intermediate rules, a family of scale and move transformation-based

FRI (termed as T-FRI), such as those given in [Huang and Shen, 2006,Huang and

Shen, 2008, Jin et al., 2014, Yang et al., 2017], have been popularly studied and

widely applied.

1.3 Two Key Issues Concerned within Thesis

In resolving practical real-world problems, multidimensional input variables are

a common issue. Fortunately, many FRI methods exist in the literature that are

capable of dealing with interpolation, by the use of fuzzy rules that involve multiple

conditional (interchangeably termed antecedent hereafter) variables. Nonetheless,

there is a common problem existing in these FRI approaches, where the conditional

attributes within the rules are presumed to be of equal significance for interpolation.

Thus, inaccurate and even incorrect interpolated outcomes may result since different

domain attributes may generally make different contributions to the decision making

process.

Recently however, a number of methods have been proposed for FRI working

on multiple conditionals associated with different weights (e.g., [Chen and Chang,

2011b,Chen and Chen, 2016,Chen et al., 2009,Cheng et al., 2015,Diao et al., 2014]).
Nevertheless, two key questions remain to be further investigated in developing such

weighted FRI:
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1. how the weights are generated; and

2. whether and how the weights are integrated within the underlying, non-

weighted FRI.

Regarding the first question, one of the possible answers is to assign the predefined

weights by domain experts [Li et al., 2005]. However, this will require human

intervention and hence adversely reduce the flexibility and automation level of the

resulting fuzzy systems. Automatic weight learning schemes are obviously preferred.

In particular, work already exists that utilises Genetic Algorithms (GA) to induce

from data the weights of rule conditionals, thereby strengthening the effectiveness of

FRI [Chen and Chang, 2011b]. Yet, such techniques introduce much more additional

computation and also the required specification of many GA parameters. Alternatively,

the weights may be determined by a distance measure between the information

content of an observation and that of an conditional attribute within a given rule.

The information concerned is related to the characteristic points of the fuzzy sets that

specify the corresponding attributes, including, for example, the central point [Chen

and Chen, 2016] or the ranking value [Cheng et al., 2015] of a fuzzy set. The weights

are then assigned differently to the same conditional fuzzy set that appears in each

and every different rule, incurring significant extra computation and reducing the

interpretability of the weighted rules. Different from these, the weight learning

schemes as reported in [Chen et al., 2009], form an implementation of the “wrapper”

approach, thereby mixing up FRI-based inference and learning from data.

The second question arises due to the observation that the existing techniques

typically work by artificially creating a simple overall weight to each of the rules

before the weighted rules are run in FRI. Such weights are normally computed

through aggregating the weights calculated for individual conditionals, thereby

requiring additional aggregation procedures. Situations generally become even more

complicated if different fuzzy interpolative reasoning systems are considered to

exploit the weighted rules to perform FRI, assuming the use of different supporting

techniques (e.g., piecewise fuzzy entropies [Chen and Chen, 2016] and ranking

scores [Cheng et al., 2015] of the fuzzy values involved in the rules). The resulting

weights may be exploited rather differently, depending on what underlying FRI

mechanism is employed. Most significantly, within existing methods, the computed

weights are decoupled from the internal working procedures which utilise them.
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This makes the interpretation of the resulting FRI process and hence, that of the

interpolated results more difficult than the interpretation of the results from explicitly

integrating the weights and individual FRI procedures.

From the above, it is therefore desirable to conduct other research into the

aforementioned two issues for developing more effective and efficient FRI techniques.

This thesis puts forward such techniques to generate weights for individual rule

antecedents and to facilitate weighted fuzzy interpolative reasoning.

1.4 Feature Evaluation

There have been a number of proposals made in attempting to resolve the first issue

(that is how the weights can be generated), for assessing the capabilities of domain

attributes in terms of their influence upon the potential consequent that depends

on these attributes. In particular, the techniques of feature selection (FS) provide

an effective measures to facilitate such a solution. This is because FS [Dash and

Liu, 1997,Liu and Motoda, 2012] aims to discover a minimal subset of features that

are most predictive of a given outcome. It generally follows a four-step procedure:

generation, evaluation, termination and validation. Feature subsets are generated

via a certain search procedure amongst the family of subsets of the original feature

set. These feature subsets are then evaluated individually with regard to a given

quality measure. The process of searching for a reduced feature subset is terminated

if the measured quality degree reaches a satisfactory level. Finally, a selected feature

subset is validated with respect to the application problem at hand.

In developing effective FS mechanisms, much work has been carried out regarding

the second step that evaluates the quality of a candidate feature subset [Cui et al.,

2010,Dash and Liu, 2003,Jensen and Shen, 2009,Zeng and Cheung, 2010], including

those directly assessing and ranking individual features [He et al., 2006,Kononenko,

1994, Uğuz, 2011]. For any reasoning system (be it fuzzy or boolean), different

ranking scores of features or domain attributes imply different contributions of

them to the inference outcome. Inspired by this observation, feature evaluation

methods may be adapted to score the significance of individual rule antecedents, for

generating the corresponding individual weights. This methodology is to be followed

in the work of this thesis.
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1.5 Proposal for Attribute Weighted Fuzzy

Interpolative Reasoning

This thesis proposes a novel fuzzy rule-based interpolative reasoning mechanism

that is guided by the attribute weights to address the two questions raised earlier.

Firstly, the attribute weighting scheme is enabled by an innovative Reverse Engi-

neering procedure, which reduces the sparsity of the given rule base by generating an

artificial training decision table from the given sparse rule base. The essential idea is

to reformulate all rules in the rule base into a common representation, where each

(possibly) missing value of any rule antecedent is replaced by one of the alternative

fuzzy values from its domain. All these reformulated rules, artificial or original,

are collated for evaluation of the relative significance degrees of the individual at-

tributes. The weights of the attributes are individually measured using a certain

feature ranking method, which is implemented by modifying the feature evaluation

procedure extracted from a selected FS technique. Different types of FS method

may be adopted for such use without significantly affecting the level of performance

improvement over the conventional unweighted FRI. In so doing, it is expected that

resulting weighted FRI approach will offer flexibility in its implementation.

Secondly, to minimise the adverse effect of existing FRI methods that is caused

by assuming all attributes having equal significance, weights are introduced to rule

antecedent attributes. In particular, for weighted T-FRI, individual attribute weights

are integrated with every procedure of the underlying unweighted algorithm. In this

work, T-FRI is used as a representative in implementation, unless otherwise stated.

Hence, there will be three procedures that involve such integration: the selection

of the nearest neighbouring rules, the construction of intermediate rules, and the

computation of scale and move transformation factors. All computational steps in the

original T-FRI, which effectively deals with evenly calculated average of the attribute

values, will be improved by a weighted aggregation of the corresponding components.

This weighting scheme over unweighted (interchangeably termed non-weighted

hereafter) FRI will also be extended to two other popular FRI approaches, as of [Kóczy

and Hirota, 1993a] and [Chang et al., 2008], demonstrating the generalisation

capability of integrating attribute weights within unweighted fuzzy interpolative

reasoning.
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With such extended work, it is important to verify whether the resulting algo-

rithms outperform their originals and if so, to what extent and effect. One particular

aspect of this thesis is therefore to show that supported by attribute ranking, only

two (i.e., the least number of) nearest adjacent rules are required to perform accu-

rate interpolative reasoning. This helps increase computational efficiency, without

the need of searching for and operating on multiple rules beyond the immediate

neighborhood of a given observation.

Finally, also for the purpose of verifying and demonstrating the potential of the

proposed attribute weighted FRI, it will be systematically applied to facilitate fuzzy

rule-based interpolative reasoning to perform classification and prediction tasks.

It will also be adapted for accomplishing real-world mammographic mass image

analysis in support of medical diagnosis.

1.6 Thesis Structure

The rest of this thesis is structured as follows, with an illustrative reading guide

given at the end of this chapter. In particular, an indication of directly relevant, peer-

reviewed publications produced as a result of this research is shown, where journal

articles are denoted by Jx and conference papers by Cy , with x and y indexing the

journal and conference paper number, respectively.

Chapter 2: Background

This chapter reviews the preliminary knowledge that is relevant to this project,

including an overview of the seminal FRI approaches and the existing weighted fuzzy

interpolative reasoning techniques, and an outline of different types of attribute

evaluation method that are extracted from FS techniques. The contents of part

of the literature review in this chapter are currently under review (J1) for journal

publication.
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Chapter 3: Weight Learning from Rule Bases

This chapter proposes a novel weight induction mechanism that learns the weights of

rule antecedent attributes given a (sparse) fuzzy rule base only. It is implemented by

the use of an innovative Reverse Engineering procedure for generating the training data

from the given rule base, and by the adaptation of attribute evaluation approaches for

producing the required individual weights. A practical illustrative case study is also

introduced in this chapter, which is utilised to demonstrate the working procedure of

the entire weight learning process. The contents of this chapter have been published

in C1 [Li et al., 2017b], J2 [Li et al., 2018c] and J3 [Li et al., 2018a].

Chapter 4: Weighted Transformation-based FRI

This chapter presents the framework for weighted fuzzy interpolative reasoning,

provided with learned rule antecedent weights (following the work of Chapter 3).

In particular, the work is implemented by adapting the popular scale and move

transformation-based FRI (T-FRI) [Huang and Shen, 2006,Huang and Shen, 2008]
(that only deals with rules whose antecedent attributes are of equal significance),

with the weights being employed to modify both the computation process of closest

rule selection and that of rule interpolation. In addition, this chapter recalls and

continues the illustrative case study where the attribute weights have been generated

in the last chapter, to explain how the weighted T-FRI performs its work, completing

the illustration for the entire process of the proposed weighted fuzzy interpolative

reasoning. Part of this chapter has been published in C2 [Li et al., 2017a], J2 [Li

et al., 2018c] and J3 [Li et al., 2018a].

Chapter 5: Evaluation of Attribute Weighted

Transformation-based FRI

This chapter evaluates the weighted fuzzy interpolative reasoning framework as pro-

posed in Chapter 3 and Chapter 4. The computational complexity of the framework

is first analysed from the theoretical viewpoint. It is followed by an experimental

evaluation over two realistic pattern recognition tasks, namely classification and pre-

diction over a range of benchmark datasets. Comparative studies demonstrate that
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the proposed research helps minimise the adverse impact of the equal significance

assumption made in the conventional FRI techniques, significantly improving the

accuracy of interpolated results. The contents of this chapter have been published in

J2 [Li et al., 2018c] and J4 [Li et al., 2019a].

Chapter 6: Extensions to Alternative FRI Approaches

This chapter presents a further development of weighted FRI to enhance two other

commonly used FRI algorithms (namely, those first presented in [Kóczy and Hirota,

1993a] and [Chang et al., 2008]), by following the ideas of weighted T-FRI (as

presented in Chapter 4). The improvement of classification accuracies is highlighted

by systematic comparisons. Importantly, it is shown that the best performance is

achieved when the number of the nearest neighbouring rules required to perform

weighted FRI is indeed the smallest, i.e., two. Part of this chapter has been published

in J5 [Li et al., 2019c].

Chapter 7: Application of Weighted Fuzzy Interpolative

Reasoning to Interpretable Mammographic Mass Classification

This chapter presents an application of the weighted fuzzy interpolative reasoning

mechanism to a significant real-world problem, for addressing mammographic mass

classification in support of breast cancer risk analysis. The implemented system is

able to derive a conclusion for unknown observed masses that have no rules to match.

The results show that, apart from achieving accurate classification, the diagnostic

outcomes are interpretable. This latter aspect is due to the fact that the rules are

learned from selected features in terms of mass geometric and density properties,

with the feature values also represented in linguistic terms. The contents of this

chapter have been published in C3 [Li et al., 2018b] and J6 [Li et al., 2019b].

Chapter 8: Conclusion

The thesis is concluded and challenging further work discussed in this chapter. In

particular, promising research as reported in C4, J7 and J8 is identified as the

candidates to be integrated with the attribute weight learning mechanism to further

strengthen their potential.
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Appendices

Appendix A outlines a data-driven iterative rule base generation procedure that to

produce fuzzy rules are used in the experimental evaluations of Chapters 5, 6 and 7.

Appendix B summarises the abbreviations employed throughout the thesis.

In short, Fig. 1.1 provides a guidance for assisting the read of this thesis (bar

Appendices). In addition, this figure also indicates the basic relationship between

the thesis work and the resulting publications, including 7 journal articles and 4

conference papers already published and one currently under review for journal

publication. More details of the publications are summarised in Tables 1.1 and 1.2.
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Chapter 2

Background

F UZZY interpolative reasoning plays an important role in fuzzy rule based inference

systems, facilitating the extension of the capability of approximate reasoning

when dealing with incomplete knowledge. This is because fuzzy rule interpolation

(FRI) is able to produce an approximate interpolated outcome by the use of limited

fuzzy rules that fail to derive a conclusion to an unmatched input observation. FRI

techniques have been continuously investigated for decades, resulting in various

types of approach. Recent studies have shown great interesting in developing an

enhanced FRI where the rule antecedent attributes are associated with relative

weights, signifying their different importance in influencing the generation of the

conclusion, thereby improving the interpolative inference performance. Research

from this viewpoint essentially opens a wide field, including the inevitable point of

attribute evaluation and weight generation in particular.

In this chapter, the preliminary background knowledge closely relevant to the de-

velopments of the subsequent chapters is reviewed. This ranges from the fundamental

FRI techniques, the present weighted fuzzy interpolative reasoning mechanisms,

and the underlying feature evaluation approaches that will be adopted for assess-

ing the rule antecedent attributes. To facilitate the demonstration of the relevant

methodology, basic notations that will be used throughout the thesis are described

first.
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2.1. Basic Notations for Fuzzy Rule-based Inference Systems

2.1 Basic Notations for Fuzzy Rule-based Inference

Systems

In general, a fuzzy rule-based system has as its key component a set of if-then rules,

each of which takes fuzzy or crisp terms that represent specifications of the input

variables and associates these with the output of a certain problem description. In

general, a rule may involve multiple output attributes as well as multiple input

variables, but a multiple output rule can always be equivalently expressed by several

single output rules. Without losing generality, only rules which have a single output

class are considered in this work.

Formally, a typical fuzzy rule model essentially contains two key elements 〈R, Y 〉 in

describing a given problem: A non-empty finite set of domain attributes Y = A∪ {z},
where A = {a j| j = 1,2, . . . , m} represents the set of input antecedent attributes

and z stands for the consequent, and a non-empty finite set of fuzzy rules R =
{r1, r2, . . . , rN}. In many conventional fuzzy rule-based systems, including systems

implemented with FRI techniques, a given rule r i ∈ R and an observation o∗ are

often expressed generally as follows:

r i : i f a1 is Ai
1 and a2 is Ai

2 and · · · and am is Ai
m,

then z is Bi

o∗ : a1 is A∗1 and a2 is A∗2 and · · · and am is A∗m

(2.1)

where Ai
j and A∗j denote the fuzzy set values taken by the antecedent attribute a j

in r i and o∗, respectively; and Bi represents the fuzzy set value of the consequent

attribute z in r i.

Fuzzy values of both the rule antecedents and the consequent are in general rep-

resented by fuzzy sets. The concept of fuzzy sets was introduced by L. Zadeh [Zadeh,

1965]. Informally, the definition of a fuzzy set given by L. Zadeh can be stated as

follows: A fuzzy set is a class with a continuum of membership grades. Thus, a fuzzy

set A in a universe of discourse X is characterised by a membership function (MF)

A which associates each element x ∈ X with a real number A(x) ∈ [0,1]. This is
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2.1. Basic Notations for Fuzzy Rule-based Inference Systems

interpreted such that A(x) is the membership grade of x belonging to the fuzzy set

A [Bede, 2013].

As can be seen from the above, the MF A : X → [0,1] distinguishes fuzzy sets

from classical boolean sets. Unlike a classical set with clear boundaries, i.e., x ∈ A or

x /∈ A, which excludes any other possibility, the property of the membership function

enables fuzzy sets to model partial degrees to which a variable or attribute is deemed

to take a certain underlying real or categorical value. Such fuzzy sets are often

assigned with linguistic terms to help capture and reflect human interpretation of

imprecise measurements or descriptions.

Particularly, when the universe of discourse X consists of the line of real number

R, any type of continuous functions can be used as an MF, provided that a set of

parameters is given to specify the appropriate meanings of the MF. In this case, it is

impractical to list all the pairs defining an MF, even if imposing the constraint that all

MFs are convex in topology to ease the expression of common sense interpretation

of belongingness. Fortunately, only a small number of types of MF that are typically

used in practice. Basically, there are two main categories in terms of their properties:

smoothness and linearity, which are: i) polygonal (piecewise linear) fuzzy sets,

including triangular shaped, trapezoidal shaped MF, etc., and ii) nonlinear fuzzy sets,

typically including Gaussian, Generalised bell-shaped, and Sigmoid MFs.

Polygonal fuzzy sets are generally represented by their characteristic points (CPs)

in ascending order (which are defined mathematically as the odd points of the

membership function [Huang and Shen, 2008]), and nonlinear ones by the defining

parameters that are used to specify each nonlinear function. The choice of different

MFs relies on the specific requirements of a given application. Amongst the family of

all possible functions, triangular MFs and trapezoidal MFs have been used extensively,

especially for real-time implementations, thanks to their simple representation and

computational efficiency. In developing FRI methods, different MFs have been

exploited to implement various approaches. In particular, procedures employing

triangular MFs and/or trapezoidal MFs can be seen as specific cases of those which

utilise more complex polygonal fuzzy sets. It is difficult to have a generic closed form

representation that unifies all FRI processes as they are dependent upon the MFs

used. Nevertheless, for illustrative and demonstrative consistency and simplicity, as

well as for their popularity in the literature, throughout this thesis, triangular MFs

are employed for all FRI methods.
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2.2. Fuzzy Rule Interpolation Techniques

As shown in Fig. 2.1, a normal and convex triangular fuzzy set A is illustrated

with its three ascending-ordered CPs, i.e., (a1, a2, a3), where the first and third CP

stand for the two extreme points of the support with a membership value of 0 and

the middle one stands for the normal point of the fuzzy set with a membership of 1.

For a fuzzy rule base consisting of rules in the form as per Eqn. (2.1), the triangular

fuzzy values Ai
j, A∗j, Bi, and the consequent B∗ to be computed by an FRI process

(i = 1,2, . . . , N , j = 1,2, . . . , m) are therefore, represented by their corresponding

CPs: (ai
j1, ai

j2, ai
j3), (a

∗
j1, a∗j2, a∗j3), (b

i
1, bi

2, bi
3), and (b∗1, b∗2, b∗3), respectively.

Figure 2.1: Normal and convex triangular membership function.

2.2 Fuzzy Rule Interpolation Techniques

Fuzzy rule bases are the essential component of any approximate reasoning model.

Their properties determine specifically what techniques to use in order to accomplish

the required inference. Conventional fuzzy inference mechanism, represented by

Zadeh and Mamdani’s compositional rule of inference (CRI), has been successfully

applied to many problems. However, it is significantly restricted in situations where

dense rule bases are not available. That is, the problem domain is not completely

covered by the given rules where certain observation do not overlap with any rules

(fully or partially to a satisfactory degree).

In many circumstances, a dense rule base cannot be realistically obtained, but only

an incomplete rule base instead. A number of reasons may lead to such incomplete

rule bases, for example, the most common reasons include [Baranyi et al., 1999,Tikk

and Baranyi, 2000]:
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2.2. Fuzzy Rule Interpolation Techniques

• To utilise incomplete knowledge about the modelled problem, regardless of

the means for the construction of the rule base, be it from human expertise or

machine learning techniques; and

• To reduce the number of rules in a rule base and hence, the complexity of the

resultant fuzzy system.

As briefly outlined in Chapter 1, FRI techniques enable fuzzy interpolative rea-

soning to be performed with sparse knowledge. This section categorises and details

the representatives of classical FRI methods, with typical pros and cons of different

approaches discussed.

2.2.1 Categorisation of FRI Approaches

In the literature, various FRI approaches have been proposed following the seminal

work of [Kóczy and Hirota, 1993a, Kóczy and Hirota, 1993b], to perform fuzzy

interpolative reasoning. In general, the existing methodologies can be grouped into

two categories:

1. α-cut / Non-transformation based FRI, see Table 2.1 for a summary with

Table 2.2 listing further developments belonging to this category.

2. Intermediate rule / Transformation based FRI, see Table 2.3 for a summary

with Table 2.4 listing a particular family of scale and move transformation

based FRI (denoted as T-FRI hereafter) which are the most popular in the

recent literature.

This categorisation is made depending upon whether processes to construct and

then to utilise a so-called intermediate fuzzy rule are involved in order to derive an

interpolated result.

The α-cut based FRI approaches, also known as non-transformation based meth-

ods, directly interpolate the results based on the computation of each α-cut level

given at least two fuzzy rules adjacent to an unmatched observation. Considerable

work has been reported on this type of approach at the early stage of the investiga-

tion of fuzzy interpolative reasoning. In particular, the very first proposed, termed
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2.2. Fuzzy Rule Interpolation Techniques

the KH method after the name of its inventors [Kóczy and Hirota, 1993a, Kóczy

and Hirota, 1993b], is the most typical α-cut based algorithm for FRI. As indicated

earlier, Table 2.1 also summarises several other alternative α-cut based methods

from different perspectives.

Table 2.1: α-cut (Non-transformation) based FRI Methods

Methods Characteristics
[Huang et al., 2004, Kóczy and Hirota,

1993a, Kóczy and Hirota, 1993b, Ughetto
et al., 2000]

FRI with only two fuzzy rules

[Chang et al., 2008,Chen and Chen, 2016,
Chen et al., 2013a,Chen et al., 2015,Chen
and Lee, 2011, Cheng et al., 2015, Cheng
et al., 2016,Kovács, 2006,Yang and Shen,
2013]

FRI with multiple fuzzy rules

[Chen and Chen, 2016,Chen et al., 2013a,
Cheng et al., 2015]

FRI with fuzzy rules weighted

[Chen and Lee, 2011] FRI with interval type-2 fuzzy
sets [Mendel et al., 2006]

[Chen et al., 2015] FRI with rough-fuzzy sets
[Chen and Adam, 2017,Cheng et al., 2016] FRI with adaptivity

Table 2.2: Family of KH FRI

Methods Characteristics
[Koczy and Hirota, 1997,Kóczy et al., 2000,
Koczy et al., 2000,Kóczy and Hirota, 1993a,
Kóczy and Hirota, 1993b,Kóczy and Hirota,
1993c,Kóczy and Hirota, 1991]

Foundational linear KH FRI based
on computation of α-cut levels

[Vass et al., 1992] Extended KH FRI with reduction of
invalid conclusions

[Baranyi et al., 1999,Tikk, 1999,Tikk and
Baranyi, 2000,Yam et al., 1999]

Modified α-cut based method
based on coordinate modification

[Tikk et al., 1997, Tikk et al., 1999, Tikk
et al., 2002]

Stabilised (general) KH interpola-
tion

[Wong et al., 2000,Wong et al., 2005] Modified α-cut based multidimen-
sional scheme

For the group of transformation-based approaches, they work by first computing

an intermediate rule. The required consequent to an unknown observation is obtained

through a two-step procedure by manipulating selected neighbouring rules to the
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2.2. Fuzzy Rule Interpolation Techniques

observation. An intermediate rule is artificially constructed such that its antecedent is

as “close” (given a certain distance metric, often the Euclidean one) to the observation

as possible. An intermediate consequent is computed from the constructed rule

antecedent. Observing that there may still exist a difference between the antecedent

of the intermediate rule and the observation, the second step works based on the

principle of analogical reasoning mechanism [Bouchon-Meunier and Valverde, 1999,

Turksen and Zhong, 1988]. It derives the conclusion by transforming the intermediate

consequent in terms of the similarity measured between the antecedent of the

intermediate rule and the observation, in an analogical manner as transforming the

intermediate rule antecedent to the given observation. Note that the foundational

T-FRI methodology, as one of the outstanding intermediate rule based FRI methods,

has first introduced in [Huang and Shen, 2006,Huang and Shen, 2008], which also

forms the basis for the work presented in this thesis. Many follow-on developments

and modifications to this seminal approach have been proposed over the last two

decades.

Table 2.3: Intermediate Rule (Transformation) based FRI Methods

Methods Characteristics
[Hsiao et al., 1998] Exploiting slopes of fuzzy sets to

obtain valid conclusions
[Wu et al., 1996] Using similarity transfers to guar-

antee valid interpolation
[Baranyi et al., 1995,Baranyi et al., 1996a,
Baranyi and Kóczy, 1996a, Baranyi et al.,
2004, Baranyi et al., 1996b, Baranyi et al.,
1998,Baranyi and Kóczy, 1996b]

Adopting generalised concept for
interpolation and extrapolation

[Kawaguchi and Miyakoshi,
2000a, Kawaguchi and Miyakoshi,
2000b, Kawaguchi and Miyakoshi,
2001,Kawaguchi et al., 1997]

Performing B-spline based interpo-
lation

[Chen et al., 2016,Chen and Shen, 2017,
Huang and Shen, 2006, Huang and Shen,
2008, Jin et al., 2014, Li et al., 2019a, Li
et al., 2018c,Naik et al., 2017b,Shen and
Yang, 2011,Yang et al., 2017,Yang and Shen,
2011]

Running FRI with scale and move
transformation (T-FRI)

Apart from the two major groups of FRI methods to conduct fuzzy interpolative

reasoning as outlined above, there are alternative FRI techniques, as summarised in

Table 2.5. This shows the diversity of this interesting research area.
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2.2. Fuzzy Rule Interpolation Techniques

Table 2.4: Family of Scale and Move Transformation based FRI (T-FRI)

Methods Characteristics
[Huang and Shen,

2006]
Foundational T-FRI working with two given neighbour-
ing rules involving multiple antecedent variables in var-
ious fuzzy membership functions (e.g., complex poly-
gon, Gaussian or bell-shaped)

[Huang and Shen,
2008]

Extended T-FRI facilitating both interpolation and ex-
trapolation involving multiple fuzzy rules, with each
rule consisting of multiple antecedents

[Jin et al., 2014, Jin
et al., 2019]

Backward T-FRI allowing missing antecedent values
directly related to the consequent to be interpolated
from known antecedents and consequent, supporting
backward interpolation and extrapolation involving
multiple multi-antecedent fuzzy rules

[Yang et al., 2017,Yang
and Shen, 2011]

Adaptive T-FRI being capable of restoring system con-
sistency once contradictory results reached during in-
terpolation

[Chen et al., 2016,
Chen and Shen, 2012]

Rough-fuzzy T-FRI allowing representation, handling
and utilisation of different levels of uncertainty in
knowledge

[Chen and Shen,
2017]

Extended T-FRI with interval type-2 fuzzy sets

[Naik et al., 2014,Naik
et al., 2017b]

Dynamic T-FRI facilitating selection, combination, and
generalisation of informative, frequently used inter-
polated rules for enriching existing rule base while
performing interpolation

The efficacy of the inference mechanism introduced by an FRI method may be

reflected or revealed through their utilisation in resolving real-world application prob-

lems. As with many classic fuzzy reasoning tools, FRI has particularly reinforced the

power of systems control, including successful examples for: simulation of automated

guided vehicles [Kovács and Kóczy, 1999], surveillance navigation control of mobile

robots [Vincze and Kovács, 2008], and general behaviour-based control [Kovács and

Kóczy, 2004]. The work on dynamic FRI [Naik et al., 2017b] has offered significant

opportunities for facilitating selection, combination and generalisation of informative,

frequently used interpolated rules for enriching existing rule bases while performing

interpolation. It provides promising solutions to cyber-security problems, includ-

ing: network security analysis, intelligent intrusion detection [Naik et al., 2017b]
and firewall reinforcement (especially for Microsoft Windows Firewall) [Naik et al.,

2017a]. FRI also finds impressive results in performing practical pattern recognition
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2.2. Fuzzy Rule Interpolation Techniques

Table 2.5: Alternative FRI Techniques

Methods Characteristics
[Kovács and Kóczy, 1997,Kovacs and Koczy,

1997,Kovács and Kóczy, 1997]
Interpolation based on approxima-
tion of vague environment of fuzzy
rules with application to automatic
guided vehicle systems

[Bouchon-Meunier et al., 1999,Bouchon-
Meunier et al., 2001, Bouchon-Meunier
et al., 2000]

Interpolative method based on
graduality

[Jenei, 2001, Jenei et al., 2002] Axiomatic approach for interpo-
lation and extrapolation of fuzzy
quantities

[Yam et al., 2000b,Yam and Kóczy, 2000,
Yam and Kóczy, 1998,Yam and Kóczy, 2001,
Yam et al., 2000a]

Cartesian based interpolation with
each fuzzy set mapped onto a
point in high dimensional Carte-
sian space

tasks, examples include: classic prediction problem [Chen and Chen, 2016] using

weighted FRI techniques; computer vision and image super resolution [Yang et al.,

2019]; and disease diagnosis in general and colorectal polyp detection [Nagy et al.,

2018] in particular. Further applications of FRI are found in function approxima-

tion [Wong and Gedeon, 2000,Berecz, 2009] and student academic performance

evaluation [Johanyák, 2010].

For the purpose of demonstrating the basic ideas of typical FRI methods, and more

importantly, for the following development of any weighted version that improves

on the original FRI (where no individual weights of rule antecedent variables are

involved), several commonly used FRI approaches from each of the two main cate-

gories are reviewed below. As indicated previously, the triangular fuzzy membership

functions, as defined in Section 2.1 are employed throughout, unless otherwise stated,

both for consistency in demonstration of the ideas and for efficiency in computation.

2.2.2 Representative α-Cut based FRI

The α-cut based interpolation is essentially a fuzzy extension of the classical linear

interpolation of given points that are linked with fuzzy rules. The interpolated

result is generated through the computation and then, the aggregation of linear
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2.2. Fuzzy Rule Interpolation Techniques

interpolation at each α-cut level. Theoretically, in the case of arbitrary shaped

convex normalised fuzzy sets an infinite number of α-levels should be taken into

consideration for an approximate conclusion. In practice however, to achieve an

acceptable computational requirement, most α-cut based methods only take a finite

number of α-levels (usually two, three or four) into account, with the resulting points

being connected piecewise linearly to yield an approximation of the consequent.

2.2.2.1 KH: Foundational Linear FRI

This section first formulates the basic idea of the most famous α-cut based FRI,

named KH linear FRI (after its inventors [Kóczy and Hirota, 1993a,Kóczy and Hirota,

1993b]), in a general formation, followed by its practical implementation by the use

of triangular membership functions in a multidimensional situation.

A. Core Principle

The KH rule interpolation offers an initial proposal for fuzzy interpolative reason-

ing through manipulating α-cut distances. When a given observation fails to match

any rule in the sparse rule base for firing, an interpolated consequent is constructed

by performing a linear aggregation of the rule consequents of a number (usually two)

of selected neighbouring rules closest to the observation. Such failure for activating

rule(s) may be generally due to no matching, or in certain FRI-based systems, due to

too low level a partial matching. The above aggregation operation complies with the

general principle of similarity-based analogical reasoning, such that

The closer a rule’s antecedent Ai (which is a logical aggregation of individual attribute

values Ai
j) to the observation o∗, the closer the rule’s consequent Bi to the outcome B∗

that corresponds to o∗.

The similarity measure employed is specified by the use of fuzzy distances defined

between a rule antecedent and the observation. That is, the smaller distance be-

tween Ai and o∗ is, the more similar they are, with the corresponding Bi deemed to

potentially make more contribution than otherwise to the consequent being sought.

Suppose that there are two rules r i and r j in the rule base R, which are formulated

as shown in Eqn. (2.1). Given an observation o∗ (again, as per Eqn. (2.1)), the notion

of linear rule interpolation can be written as:
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2.2. Fuzzy Rule Interpolation Techniques

d̃(A∗, Ai)

d̃(A∗, Aj)
=

d̃(B∗, Bi)

d̃(B∗, B j)
(2.2)

where

d̃(A∗, Ai) =
Ç

d̃2
i1 + d̃2

i2 + · · ·+ d̃2
im d̃i t = d̃(A∗t , Ai

t), t = 1,2, · · · , m (2.3)

and d̃ denotes the fuzzy distance between the two membership functions.

Fuzzy distance between two fuzzy sets is interpreted as a pair of lower and upper

fuzzy distances between their α-cut sets, with respect to the Resolution Principle [Kóczy

and Hirota, 1993a]. For a particular α ∈ [0, 1], the lower fuzzy distance d̃L(A, B) and

upper fuzzy distance d̃U(A, B) are denoted as:

d̃L(A, B) = D(in f (Aα), in f (Bα)) d̃U(A, B) = D(sup(Aα), sup(Bα)) (2.4)

where D denotes the Minkowski distance, and in f (·) and sup(·) are the infimum

and supremum of the α-cut concerned, respectively. Hence, the formula of linear

rule interpolation (i.e., Eqn. (2.2)) can be rewritten as:

d̃L(A∗α, Ai
α
)

d̃L(A∗α, Aj
α)
=

d̃L(B∗α, Bi
α
)

d̃L(B∗α, B j
α)

d̃U(A∗α, Ai
α
)

d̃U(A∗α, Aj
α)
=

d̃U(B∗α, Bi
α
)

d̃U(B∗α, B j
α)

(2.5)

This leads to the solution for min{B∗
α
} and max{B∗

α
} being:

min{B∗
α
}=

wi
αLmin{Bi

α
}+w j

αLmin{B j
α
}

wi
αL +w j

αL

max{B∗
α
}=

wi
αU max{Bi

α
}+w j

αU max{B j
α
}

wi
αU +w j

αU

(2.6)
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where

wi
αL =

1

d̃L(A∗α, Ai
α
)

w j
αL =

1

d̃L(A∗α, Aj
α)

wi
αU =

1

d̃U(A∗α, Ai
α
)

w j
αU =

1

d̃U(A∗α, Aj
α)

(2.7)

The α-cut of conclusion is then given by

B∗
α
= [min{B∗

α
}, max{B∗

α
}] (2.8)

and the interpolated conclusion can therefore, be obtained by the use of Resolution

Principle such that

B∗ =
⋃

α∈[0,1]

B∗
α

(2.9)

B. Multidimensional Implementation

The foundational KH FRI works effectively and efficiently for simple linear prob-

lems. It has been subsequently developed to address sparse rule interpolation in more

complex situations, for instance involving multiple rules with multiple antecedent

variables [Tikk et al., 2002, Wong et al., 2005]. Thanks to the piecewise linear

property presumed by KH interpolation, given triangular membership functions, the

interpolated outcome B∗ = (b∗1, b∗2, b∗3) can be determined with its two α-cut sets

(when α is 0 or 1), resulting in the three characteristic points taking the values of

b∗t =

∑n
i=1

1
Ç

∑m
j=1 (a

i
j t−a∗j t )

2
bi

t

∑n
i=1

1
Ç

∑m
j=1 (a

i
j t−a∗j t )

2

(2.10)

where n is the number of the neighbouring rules used for interpolation, m is the

number of attributes in the rule, and t = 1,2,3. Such computation for the interpo-

lated fuzzy set B∗ reflects exactly the general situation as expressed by Eqn. (2.6),

where
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2.2. Fuzzy Rule Interpolation Techniques

b∗1 = min{B∗0}

b∗3 = max{B∗0}, α= 0

b∗2 = min{B∗1}= max{B∗1}, α= 1 (2.11)

2.2.2.2 CCL Rule Interpolation

As one of the most popularly usedα-cut based FRI methods, the CCL rule interpolation

(named after its inventors [Chang et al., 2008]) offers an alternative means for fuzzy

interpolative reasoning that exploits the areas of the fuzzy sets involved in the rules

and the (unmatched) observation. The idea is to preserve the logically consistent

properties with respect to the ratio of fuzziness (RF), which is determined by the

areas of the fuzzy sets concerned. That is, it pursues consistency of RF between the

(to be) interpolated consequent over the observation and the consequent value over

the antecedent value of each rule used for interpolation. More specifically, the RF

between two fuzzy values A and B is defined by

RF(A, B) =
S(A)
S(B)

(2.12)

where S(A), S(B) denote the area of the fuzzy set of A and that of B, respectively.

The CCL FRI method presents a flexible interpolative reasoning framework, al-

lowing the use of different types of membership function (MF), including various

polygonal typed and Gaussian shaped MFs. It can also handle general cases that

involve multiple antecedent variables involved in multiple fuzzy rules. For simplifi-

cation and consistency throughout, the core computations are summarised below in

relation to the use of triangular fuzzy membership functions.

First, the normal point b∗2 of the (to be) interpolated consequent B∗ is defined by

linear interpolation, such that

b∗2 =
n
∑

i=1

Wi b
i
2 (2.13)
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SK(B
∗) =
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n
∑
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∃ jSK (Ai

j)>0

Wi ×
SK (Bi)

∑m
j=1 SK (Ai

j)









, if ∃i jSK(Ai
j)> 0

∑m
j=1 SK (A∗j)

m , if ∀i jSK(Ai
j) = 0

(2.14)

in which n is the number of selected rules for interpolation, and Wi is the aggregated

rule weight, which is calculated by

Wi =

∑m
j=1 wi j

∑n
i=1

∑m
j=1 wi j

, wi j = 1−

�

�

�

�

�

ai
j2 − a∗j2

maxa j2
−mina j2

�

�

�

�

�

(2.15)

where maxa j2
and mina j2

are used for normalisation, denoting the maximal and

minimal value within {ai
j2|i = 1,2, . . . , n}.

Given the three characteristic points created from the two α-cut sets (when

α = 0, 1), a triangular fuzzy set is divided into two smaller sub-triangles, as shown in

Fig. 2.2 (more triangular or even trapezoidal shaped sub-polygons may be generated

for more complex polygonal fuzzy sets with many characteristic points, but the same

idea is followed as herein). From this, the left triangular area SL(B∗) (i.e., the part

of the geometrical area of a triangular fuzzy set on the left hand side of the normal

point) and the right triangular area SR(B∗), of the fuzzy set B∗ are calculated by

Eqn. (2.14), where for the subscript SK , K ∈ {L, R}. This equation exactly reveals

the basic idea of the CCL rule interpolation, where the RF from the observation

viewpoint is constructed by the weighted aggregation of the RF of the involved rules,

thereby leading to the derivation of the area of the interpolated fuzzy set.

Finally, the left and right extreme points of the support for the interpolated result

B∗ are derived from the resulting triangular areas as follows:

b∗1 = b∗2 − 2SL(B
∗), b∗3 = b∗2 + 2SR(B

∗) (2.16)
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Figure 2.2: Left area SL and right area SR of triangular fuzzy set.

2.2.3 Representative Intermediate Rule based FRI

This section reviews the underlying interpolation mechanism of the intermediate rule

(or transformation) based FRI. In particular, more detailed description is given to the

scale and move transformation-based FRI approach which has the closest relation to

the research described in this thesis.

2.2.3.1 Representative Value of Fuzzy Set

Prior to going through the details of intermediate rule based FRI techniques, a

very important concept needs to be introduced, which is adopted within this type of

interpolation algorithm. This is the Representative Value (Rep) of a fuzzy set. There are

actually many variations in the literature (e.g., [Baranyi et al., 2004,Chen and Chang,

2011b,Chen et al., 2009,Huang and Shen, 2008]), assigned with different names,

such as representative value [Huang and Shen, 2008], reference point [Baranyi et al.,

2004], and characteristic value [Chen and Ko, 2008,Chen et al., 2009]. Nonetheless,

they imply similar interpretations as described below with the term of representative

value.

The representative value of a fuzzy set is a single value assigned to help capture

important information contained by the set in a simplified way, such as the “most

typical” overall location of the fuzzy set in its domain and also, its geometric shape.

In certain situations, the Rep value may be defined by the defuzzified value of the

fuzzy set if that is preferred since there is no unified definition. What is important is

within a particular FRI method, all Rep values are computed in the same way.
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More formally as with the most popular approach in the literature, given an

arbitrary polygonal fuzzy set A= (a1, a2, . . . , an) where ai, i = 1, 2, . . . , n denote the

characteristic points of the polygonal, its representative value Rep(A) is defined by:

Rep(A) =
n
∑

i=1

wiai (2.17)

where wi is the weight assigned to the characteristic point ai per i. In particular, the

simplest case, which is named the average Rep, is one so computed where all points

take the same weight value, i.e., wi = 1/n.

For computational simplicity, many fuzzy rule-based systems (including the

present work) have adopted triangular membership functions to define fuzzy sets

while representing attribute values. For such a fuzzy set A = (a1, a2, a3) given in

Fig. 2.1 of Section 2.1, Rep(A) is simply defined as follows (though its centre of

gravity may also be used as an alternative if preferred):

Rep(A) =
a1 + a2 + a3

3
(2.18)

The definition of representative values for more complex membership functions can

be found in [Huang and Shen, 2008].

Apart from its geometrical meaning, the Rep value also simplifies the definition

of the distance between fuzzy sets, to measure the degree of “closeness”. A simple

case of the distance between two fuzzy sets A and B can be defined by

d(A, B) =
�

�Rep(A)− Rep(B)
�

� (2.19)

which is a crisp distance in contrast with α-cut distance based methods [Baranyi

et al., 2004]. The distance definition employed in a given FRI approach will be

specified in each method later.
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2.2.3.2 Scale and Move Transformation based FRI (T-FRI)

The scale and move transformation based FRI (T-FRI) is one of the most general

and advanced intermediate rule based FRI mechanisms. One of the key aims of this

development has been to eliminate an important practical issue that earlier work of

FRI had in that the interpolated outcomes were not guaranteed to be convex and

in certain cases, not even a fuzzy set. The presentation of the fundamental idea of

T-FRI is reported in [Huang and Shen, 2006, Huang and Shen, 2008], which can

handle both interpolation and extrapolation of multiple multi-antecedent rules with

complex polygon shaped, Gaussian and bell-shaped fuzzy membership functions.

The following outlines the key computational steps of T-FRI working with multiple

fuzzy rules where in general, multiple rule antecedents are involved in each rule.

Given a sparse rule base R and an observation o∗, in the form of Eqn. (2.1), T-FRI

works by running a computational process as highlighted in Fig. 2.3, involving four

core procedures as summarised below.

A. Selection of Closest Rules

This procedure is required as the basis upon which to perform FRI, when o∗ does

not match any of the rules in the rule base. Intuitively, it searches for a certain number

of rules that are closest to the observation. The distance between an observation

o∗ and a rule rq, or the distance between any two rules r p, rq ∈ R, is determined by

computing the aggregated distances over all the corresponding fuzzy values of the

shared attributes between them:

d(v, rq) =
1
p

m

√

√

√

m
∑

j=1

d(Av
j , Aq

j)2 (2.20)

where v is o∗ or r p (so Av
j is A∗j or Ap

j ), depending on whether the distance is between

an observation and a rule or between two rules. So, the n closest rules to o∗ are

those rules leading to the n smallest values of this distance measurement.

In the above definition,

d(Av
j , Aq

j) =

�

�

�Rep(Av
j)− Rep(Aq

j)
�

�

�

maxA j
−minA j

(2.21)
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This is implemented by the use of the Rep values of the corresponding fuzzy sets

(defined in Section 2.2.3.1), representing the normalised result of the otherwise

absolute distance, where maxA j
and minA j

denote the maximal and minimal value

of the attribute a j, respectively. This normalisation is to ensure that all distance

measures are compatible with each other over different attribute domains.

B. Construction of Intermediate Fuzzy Rule

From the preceding procedure, n closest rules to a given observation can be

chosen which have the minimal distances amongst all the rules with respect to the

observation. From this, an intermediate fuzzy rule r ′ is constructed, forming the start

point of the transformation process in T-FRI. In most applications of T-FRI, n is taken

to be 2 purely for computational efficiency, but often at the expense of interpolative

accuracy (if all rule antecedents are regarded as of having equal significance).

The construction procedure computes the antecedent fuzzy sets A′j, j = 1, . . . , m

and the corresponding consequent fuzzy set B′ of the intermediate rule:

r ′ : if a1 is A′1 and a2 is A′2 and · · · and am is A′m, then z is B′

which is a weighted aggregation of the n closest rules. Let wi
j, i ∈ {1, . . . , n}, denote

the weight to which the jth antecedent of the ith fuzzy rule contributes to the

construction of the jth antecedent A′j of the intermediate fuzzy rule:

wi
j =

1
1+ d(Ai

j, A∗j)
(2.22)

where d(Ai
j, A∗j) is calculated as per (2.21). Then,

A′j = A′′j +δA j
(maxA j

−minA j
) (2.23)

with

A′′j =
∑

i=1,...,n

ŵi
jA

i
j (2.24)

where ŵi
j denotes the normalised weight and δA j

is a constant (termed the shift

factor of A j), defined respectively by
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ŵi
j =

wi
j

∑

t=1,...,n wt
j

(2.25)

δA j
=
|Rep(A∗j)− Rep(A′′j )|

maxA j
−minA j

(2.26)

The consequent value of the intermediate rule is constructed in the same manner

as above, that is

B′ = B′′ +δz(maxz −minz) (2.27)

where maxz and minz are the maximal and minimal values of the consequent at-

tribute, B′′ is the weighted aggregation of the consequent values of the n closest

rules Bi, i = 1, . . . , n:

B′′ =
∑

i=1,...,n

ŵi
zBi (2.28)

with ŵi
z being the mean of the normalised weights associated with the antecedents

ŵi
j in each rule:

ŵi
z =

1
m

m
∑

j=1

ŵi
j (2.29)

and the shift factor δz of the consequent is the mean of δA j
, j = 1, . . . , m

δz =
1
m

m
∑

j=1

δA j
(2.30)

C. Computation of Scale and Move Factors

The goal of a transformation process T in T-FRI is to scale and move an interme-

diate fuzzy set A′j, such that the transformed shape and representative value coincide

with those of the observed value A∗j. This process is implemented in two stages:
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1. scale operation from A′j to Â′j (denoting the scaled intermediate fuzzy set); and

2. move operation from Â′j to A∗j.

For this purpose, the required scale rate sA j
and move ratio mA j

are determined

in this step. It computes and records all such scale rates and move ratios for use

in the subsequent, and final, procedure to obtain the required consequent value.

Unfortunately, it is difficult to have a generic, closed form representation of these

transformation factors as they are dependent upon the fuzzy membership functions

used.

For this work, triangular fuzzy sets are used throughout. Given such a fuzzy set

A′j = (a
′
j1, a′j2, a′j3), the scale rate sA j

is:

sA j
=

a∗j3 − a∗j1
a′j3 − a′j1

(2.31)

which essentially expands or contracts the support length of A′j : a′j3 − a′j1 so that it

becomes the same as that of A∗j. The scaled intermediate fuzzy set Â′j, which has the

same representative value as A′j, is then obtained such that

â′j1 =
(1+ 2sA j

)a′j1 + (1− sA j
)a′j2 + (1− sA j

)a′j3
3

â′j2 =
(1− sA j

)a′j1 + (1+ 2sA j
)a′j2 + (1− sA j

)a′j3
3

â′j3 =
(1− sA j

)a′j1 + (1− sA j
)a′j2 + (1+ 2sA j

)a′j3
3

(2.32)

Similarly, while dealing with triangular fuzzy sets, the move operation shifts the

position of Â′j to becoming the same as that of A∗j, while maintaining its representative

value Rep(Â′j). This is achieved using the move ratio mA j
:

mA j
=











3(a∗j1−â′j1)

â′j2−â′j1
, if a∗j1 ≥ â′j1

3(a∗j1−â′j1)

â′j3−â′j2
, otherwise

(2.33)
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D. Scale and Move Transformation

After calculating the necessary scale and move factors (i.e., sA j
and mA j

, j =
1, . . . , m), this procedure completes the T-FRI process, deriving the required con-

sequent value of B∗. This follows the intuition of similar observations leading to

similar consequents, a heuristic fundamental to analogical approximate reasoning.

For this, the transformation factors on the antecedent attributes are aggregated. In

all conventional T-FRI methods, this is implemented by averaging them:

sz =
1
m

m
∑

j=1

sA j
mz =

1
m

m
∑

j=1

mA j
(2.34)

This entails the computation of scaled B̂′ = (b̂′1, b̂′2, b̂′3):

b̂′1 =
(1+ 2sz)b′1 + (1− sz)b′2 + (1− sz)b′3

3

b̂′2 =
(1− sz)b′1 + (1+ 2sz)b′2 + (1− sz)b′3

3

b̂′3 =
(1− sz)b′1 + (1− sz)b′2 + (1+ 2sz)b′3

3
(2.35)

where B′ = (b′1, b′2, b′3) is the fuzzy value of the intermediate consequent previously

computed. From this, again, by analogy to the transformation required for the

antecedent to match the observation, move transformation is applied, resulting in

the final, required interpolated consequent B∗ = (b∗1, b∗2, b∗3):

b∗1 = b̂′1 +mzγ

b∗2 = b̂′2 − 2mzγ γ=







b̂′2−b̂′1
3 , if mz ≥ 0

b̂′3−b̂′2
3 , otherwise

b∗3 = b̂′3 +mzγ (2.36)

For illustration, Fig. 2.4 outlines the scale and move transformation process (i.e.,

Steps C and D of a typical T-FRI method), where the scale and move factors of each

rule antecedent are shown to be calculated in the upper box and the interpolated

result is obtained by the corresponding transformations shown underneath. For

conciseness, such a process can be collectively represented by: B∗ = T(B′, sz, mz),
emphasising on the significance of both scale and move transformations.
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Figure 2.4: Fuzzy rule interpolation via scale and move transformations.

2.2.3.3 Representative Modifications to Scale and Move

Transformation-based FRI

Following the generic and seminal ideas of the above-reviewed T-FRI approach, there

have been a large family of works that have been proposed to further improve it, of

which an overview is previously shown in Table 2.4. This section provides an outline

of representative methods within this family.

• Adaptive T-FRI [Yang and Shen, 2011,Yang et al., 2017]

This work is motivated by an observation that there may exist inconsistency in

interpolated results after a sequence of T-FRI operations. The potential reasons have

been analysed to include detective interpolated rules and inaccurate interpolative

transformations. The adaptive fuzzy interpolation enhances the original T-FRI with

the ability for identification and correction of defective rules in interpolative trans-

formations, facilitating the removal of certain inconsistencies. This is accomplished

through two sub-systems: 1) a diagnostic sub-system that is constructed by the
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use of the general diagnostic engine, where the inconsistent interpolated results

are recorded in an ATMS (assumption-based truth maintenance system) [De Kleer,

1986]; and 2) a corrective sub-system that is derived from a fuzzy extension to

the traditional numerical interpolation theory and its application in approximation

computation. However, this work is focussed on the implementation of adaptive

T-FRI that involves just two multiple-antecedent rules. Besides, further investigation

is required to reveal whether it can handle situations where extrapolation is necessary

(since the original T-FRI is able to deal with extrapolation in the same manner as

with interpolation).

• Backward T-FRI [Jin et al., 2014, Jin et al., 2019]

Conventional FRI generally executes in a “forward” manner, where the consequent

is required to be interpolated given the rule base and all antecedent attributes of

an observation available. Nevertheless, situations may arise when certain crucial

antecedents are absent from the given observation, which may also be involved in the

subsequent interpolation process, thereby leading to the failure of the derivation of

the final interpolated conclusion. This important issue is addressed by a modification

of T-FRI, termed backward T-FRI, which provides a series of solutions for handling

both single missing antecedent value and multiple missing antecedents problems. The

single missing antecedent issue is resolved by implementing a four-step computation

procedures (mirroring what is presented in Section 2.2.3.2) of the original T-FRI,

resulting in the reverse calculation of the relative parameters corresponding to the

unknown antecedent value. The general backward T-FRI with multiple missing

antecedent values is addressed by two procedures: 1) a direct extension of the

method for the single missing value case, by estimating parameter combinations that

would lead to the closest resemblance of the original (missing) values; and 2) an

approach for the removal of possible missing antecedent values through a process

of verifying interpolative results against (past) observations. The modification for

backward T-FRI is proven to preserve many crucial properties that the original T-FRI

possesses, e.g., the capability in handling multiple multi-antecedent rules and the

maintenance of convexity and normality of interpolated results. Whilst backward

T-FRI helps address the problem of missing antecedent attribute values, it does not

totally remove this problem, especially when the scale of missing values becomes

substantial.
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• Dynamic T-FRI [Naik et al., 2017b]

A great majority of the existing transformation based FRI mechanisms work

on a static sparse rule base. However, the use of a static rule base may affect the

effectiveness of FRI due to the absence of the most concurrent (dynamic) rules as the

requirements of fuzzy systems may change over time. Yet, a volume of intermediate

fuzzy rules are typically generated from this type of FRI methods while executing rule

interpolation. Collectively, they may gradually cover regions that were uncovered

by the original sparse rule base, thereby offering possibly valuable information for

updating the static sparse rule base. From this observation, the work of [Naik et al.,

2017b] makes use of such intermediate rules which are otherwise discarded once the

required outcomes have been obtained within the most of transformation based FRI

methods, to develop a dynamic T-FRI mechanism. It enriches the rule base by refining

and promoting the intermediate rules, gaining efficiency by allowing for more direct

rule-firing while minimising future running of the interpolation procedure. It is

implemented by first partitioning the interpolated rules into hypercubes, where

the nonempty ones are fed as the input into a Genetic Algorithm-based clustering

algorithm to find the “best” cluster arrangement. An iterative process is then run to

select the densest clusters that have accumulated a sufficient number of candidate

rules for achieving the rule aggregation and promotion. The practical significance

of this approach is obvious. Further reinforcement is however, still possible, say,

by employing more effective and efficient clustering and optimisation methods to

replace the relevant components within the current implementation.

• Higher order T-FRI [Chen et al., 2016,Chen and Shen, 2017]

A common implementation shared by most of the established FRI methods is that

fuzzy membership functions in the rules and observations are generally defined with

conventional type-1 fuzzy sets, for the interpretation and treatment of uncertainty.

Very little of the existing FRI work can conjunctively handle more than one form of

uncertainty in the rules or observations, despite there may be cases in which more

complicated fuzzy set representations become necessary [Fu and Shen, 2010]. In

response to this observation, a higher order FRI has been developed, allowing for

the representation and manipulation of different types of uncertainty in knowledge
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within the common T-FRI framework. It works by first encoding uncertain knowl-

edge with higher order representation and then, by deriving the final conclusions

through performing higher order interpolation over models of such representation.

In particular, two common types of technique for uncertainty representation are

exploited, resulting in: 1) a rough-fuzzy set based rule interpolation approach [Chen

et al., 2016], which facilitates the representation of uncertain fuzzy membership

functions with rough-fuzzy approximations; and 2) an interval type-2 fuzzy set-based

approach [Chen and Shen, 2017], which works in the same manner as with the

rough-fuzzy-based T-FRI. Within either method, the concept of representative value

of a fuzzy set also plays an indispensable role as within the original type-1 T-FRI.

Another type-2 fuzzy set-based FRI method can be found in [Chen and Lee, 2011].
Such methods require relative modifications corresponding to each particular uncer-

tainty representation, which inevitably increases the computational complexity as

the cost for exchange of a much more general T-FRI mechanism that will collapse

back to the type-1 method if all uncertainty involved can be sufficiently captured by

type-1 fuzzy sets.

• Other T-FRI-like approaches

Apart from the above-outlined modifications to T-FRI that are directly investi-

gated and improved upon the original T-FRI method, there are other proposals for

reinforcing fuzzy interpolative reasoning which are analogous to the basic ideas of

T-FRI [Li et al., 2005]. For instance, in [Chen and Adam, 2018], ranking values of

arbitrary polygonal fuzzy sets are used to express the characteristic points of the

underlying membership functions, which are in turn used to play a similar role in the

modified transformation-based FRI process as the Rep values do in T-FRI. In addition,

the scale and move transformations involved in T-FRI are replaced with the distance

ratio and move rate, respectively, to transform the constructed intermediate rule in

an effort to obtain the final interpolated outcome.

Another variation of T-FRI is reported in [Chen and Ko, 2008], named CK FRI

hereafter to acknowledge it inventors. The classical Rep values are substituted by

characteristic values in this work, facilitating not only the simplified representation of

a fuzzy set but also the definition of the distance between fuzzy terms. For situations

where polygonal fuzzy sets are involved, the interpolated fuzzy set being sought is
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derived by calculating each of the characteristic points that are obtained from a series

of α-cuts. Particularly, the normal points (of which the membership is 1) are first

determined, aiding in any subsequent calculation of the remaining points. From this,

two transformations, namely increment and ratio transformations, are executed to

convert the average consequent into the final interpolated outcome with the similarity

degree measured between these two analogous to that of the average antecedent

and the observation. Improved on this work further, two enhanced transformations

have been introduced [Chen et al., 2009] to support weighted approaches to FRI

(that will be addressed separately later in this chapter).

2.2.3.4 Generalised Function-based FRI

Bearing significant similarity with the intermediate rule based FRI methods as

outlined above is another approach, which is herein referred to as generalised

function-based for convenience. Example methods falling within this family include

those reported by [Baranyi et al., 1995, Baranyi et al., 1996a, Baranyi and Kóczy,

1996a,Baranyi et al., 2004,Baranyi et al., 1996b,Baranyi et al., 1998,Baranyi and

Kóczy, 1996b]. Unlike the α-cut based interpolation algorithms, given an unmatched

observation, this approach infers the conclusion based on the interpolation of fuzzy

relations instead of using α-cut distances. It works through two major steps which

are briefly outlined below for academic completeness. Further details can be referred

to each relevant reference provided.

Given two fuzzy rules (say, r1, r2) and an observation (o∗) in the form of Eqn. (2.1),

the core of a generalised function-based method can be described through the fol-

lowing two stages.

A. Generation of Interpolated Firing Rule

The aim of this first step is to create an intermediate rule r ′, in such a way that

the antecedent of r ′ is as “close” to that of the observation (A∗) as possible. Note

that the term “close” here stands for the case where at least partial overlapping is

ensured between the observation and the intermediate rule. This implies the firing of

the resulting intermediate rule can be subsequently conducted (see the next stage).

Denote the procedure of this stage by
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r ′ = f Interpolat ion(r1, r2) (2.37)

where f Interpolat ion represents a mapping from a pair of rules onto a set of all possible

rules of the form as per Eqn. (2.1). There are two types of algorithm that may be

utilised to implement this stage of the approach:

• Fuzzy relation interpolation, which includes any of the solid cutting meth-

ods [Baranyi et al., 1995, Baranyi et al., 1996a, Baranyi and Kóczy, 1996a,

Baranyi et al., 1996b,Baranyi and Kóczy, 1996b], and those based on the fixed

point law or the fixed value law [Ding et al., 1989,Ding et al., 1992,Mukaidono

et al., 1990,Shen et al., 1993,Shen et al., 1988].

• Semantic relation interpolation, which includes any of the semantic revision

methods [Ding et al., 1989, Ding et al., 1992, Mukaidono et al., 1990, Shen

et al., 1993,Shen et al., 1988], using the semantic revision principle to describe

the relation between the antecedents and consequent fuzzy sets within an

interpolated intermediate rule.

B. Inference with Single Rule Firing

The second stage is to fire the intermediate rule returned by the first. This is

enabled by temporarily regarding the newly generated intermediate rule as one

of the existing rules within the rule base, and also by computing the overlapping

between the observation and the antecedent of the intermediate rule. The procedure

implementing this stage can be generally denoted by

B∗ = f In f erence(r ′, A∗) (2.38)

Exactly what mechanism to implement rule-firing may vary with respect to

different FRI methods in this family. Any method reported in [Ding et al., 1989,Ding

et al., 1992, Mukaidono et al., 1990, Shen et al., 1993, Shen et al., 1988] may

be utilised to directly fire the transformed intermediate rule to compute the final

consequent value required.
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For simplicity, the above description has been focussed on interpolation for the

cases where a single rule antecedent is considered. As with α-cut based and T-FRI

approaches, the generalised function-based mechanism has also been extended to

performing FRI with multiple rule antecedents and fuzzy extrapolation. More details

can be found in [Baranyi et al., 2004] and other derivatives. Overall, the workflow

of such a method can be illustrated in Fig. 2.5. Conceptually, this is of course very

similar to the underlying approach taken by T-FRI.

Figure 2.5: Workflow of generalised function-based fuzzy rule interpolation.
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2.2.4 Comparison of Representative FRI Methods over

Common Criteria

From the above, running an FRI algorithm, be it α-cut based or intermediate rule

based, results in an inference consequent in response to an unmatched observation

through interpolating the fuzzy rules in a given rule base, achieving the goal of

interpolative reasoning. Theoretically, FRI is essentially a mapping [Tikk et al.,

2011,Jenei, 2001] that relates the input spaceA and the output spaceZ , where fuzzy

subsets in the domainA andZ (denoted byF (A ) andF (Z ), respectively) indicate

the values of rule antecedent attributes and the value of rule consequent (as defined

in Eqn. (2.1)). That is, given a rule base R, ∀r i ∈ R, the values {Ai
1, Ai

2, . . . , Ai
m} ∈

F (A ), of the m antecedent variables, and the rule consequent value Bi ∈ F (Z ).
FRI pursues to define the correlation I : F (A ) → F (Z ), which associates to an

observation A∗(= {A∗1, A∗2, . . . , A∗m}) ∈ F (A ) an interpolated conclusion I(A∗) = B∗

where B∗ ∈ F (Z ). Thus, FRI methods are required to satisfy certain common

properties as a mapping function, which also form the general criteria facilitating

the comparison amongst them.

Table 2.6 summarises the most commonly used criteria for FRI evaluation in the

literature. Any given FRI method is expected to meet or qualify at least a certain

number of such properties to be effective in performing interpolative reasoning. Over

the history of FRI development, a number of approaches that have been reported

at the early stages have been analysed and compared against these criteria in the

previous work of [Johanyák and Kovács, 2006, Tikk et al., 2011], especially for

the α-cut based FRI methods including the seminal linear interpolation mechanism

introduced in [Kóczy and Hirota, 1993a,Kóczy and Hirota, 1993b] and its derivations.

Such comparative discussion is therefore, not comprehensively included in the present

review to avoid redundancy. Instead, particular attention is drawn for more recently

developed FRI approaches, including many popular transformation-based techniques.

As a summary, Table 2.7 presents the results of evaluating the representatives of such

FRI methods, over the common criteria.

In general, it is not necessary that all such criteria are fulfilled in developing an

FRI method. However, it is expected that most of the property should be satisfied,

with other problem specific parameters to fulfill given a certain application. This

also points out the trend in the development of FRI techniques, that is to amend the
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2.2. Fuzzy Rule Interpolation Techniques

Table 2.6: Commonly Adopted Criteria for FRI Evaluation

No. Criterion Interpretation
C1 Validity of conclusion Interpolated conclusion always leads to a

valid fuzzy set.
C2 Preservation of convexity

and normality
If an observation is normal and convex so
should the interpolated conclusion also be.

C3 Compatibility with rule base For all rules r i ∈ R and all A∗ ∈ F (A ): If
A∗ = Ai, then I (A ∗) = B∗ = Bi.

C4 Continuity condition For ε > 0 there exists δ > 0 s.t. if
A, A∗ ∈ F (A ), and d(A, A∗) ≤ δ then
d(I (A),I (A∗))≤ ε, where d(·, ·) denotes a
certain distance metric.

C5 Preservation of piece-wise
linearity

If fuzzy sets used for interpolation are piece-
wise linear, so should interpolated conclu-
sion be.

C6 Preservation of “in between” If A∗ is in between Ai and Aj, then inter-
polated conclusion I (A∗) should be in be-
tween I (Ai) and I (Aj).

C7 Use of arbitrary membership
function

Mapping I is applicable to any convex and
normal form of membership functions.

C8 Shape invariance If all fuzzy sets in rule antecedents are
of same type of membership function, so
should interpolated I (A∗) be.

C9 Applicability for multiple
rules

Interpolation mapping I can handle fuzzy
interpolative reasoning with any number of
rules.

C10 Applicability for multidimen-
sional input

Interpolation mapping I is applicable to
any finite number of input variables.

C11 Capability of extension to ex-
trapolation

Interpolation mapping I is extrapolatively
extensible.

drawbacks of the existing FRI methods and to satisfy more criteria. For example,

the very first proposal for FRI, KH linear interpolation [Kóczy and Hirota, 1993a],
is well-known that it cannot always guarantee the convexity of the derived fuzzy

sets (i.e., C2 in Table 2.6) although they may be normal. This has led to much

attention being paid to building FRI mechanisms that ensure not only normality

but also convexity of inferred consequences. This in turn, has led many advanced

variations of KH method. A number of recently developed FRI approaches are able

to accomplish many key criteria successfully, including the listed C1-C7 as shown in

Table 2.7. Also, criteria C9, C10 and C11 have increasingly become more demanded
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2.3. Weighted Fuzzy Interpolative Reasoning

as more sophisticated fuzzy systems are constructed that enjoy more significant

interpolative reasoning power.

2.3 Weighted Fuzzy Interpolative Reasoning

In the conventional fuzzy interpolative reasoning systems, multiple rules are generally

involved with each concerning multiple rule antecedent attributes. However, these

antecedent attributes are assumed to have equal significance when they are working

together within the rule interpolation process. Recently, a number of methods have

been proposed to weight the rule antecedents and to integrate the weights into the

traditional algorithms where attributes are not weighted.

This section reviews the relevant weighted fuzzy interpolative reasoning systems

in the literature. Table 2.8 lists the titles of the methods being reviewed, and an

acronym is assigned to each to act as the short name after its inventors while reflecting

the year of the relevant publication. The rest of this section is organised by first

summarising four particular approaches, and then by presenting a brief comparison

amongst them.

2.3.1 Typical Weighted FRI Approaches

This section reviews four representative fuzzy interpolative reasoning mechanisms

which are achieved by weighted FRI. As indicated previously, two key issues, namely

weight learning and integration of weights in FRI, are the main concerns in im-

plementing any weighted FRI approach. The following subsections are therefore

composed of three parts for each method, by first reporting the development regard-

ing these two issues and then drawing summarising remarks. To facilitate better

understanding, all weighted FRI methods are outlined by the use of unified pseudo

code for the main procedural steps.
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2.3. Weighted Fuzzy Interpolative Reasoning

Table 2.8: Weighted Fuzzy Interpolative Reasoning Schemes with Short Names

Short
Name

Title Reference

LHTZ2005 Weighted fuzzy interpolative reasoning method [Li et al., 2005]
CC2008 A new method for multiple fuzzy rules

interpolation with weighted antecedent variables
[Chang and

Chen, 2008]
CKCP2009 Weighted fuzzy interpolative reasoning based on

weighted increment transformation and
weighted ratio transformation techniques

[Chen et al.,
2009]

CC2011a Weighted fuzzy rule interpolation based on
GA-based weight-learning techniques

[Chen and
Chang, 2011b]

CC2011b Weighted fuzzy interpolative reasoning for
sparse fuzzy rule-based systems

[Chen and
Chang, 2011a]

CLS2013 Weighted fuzzy interpolative reasoning systems
based on interval type-2 fuzzy sets

[Chen et al.,
2013b]

CH2014 Weighted fuzzy interpolative reasoning based on
the slopes of fuzzy sets and particle swarm

optimization techniques

[Chen and Hsin,
2014]

DJS2014 Antecedent selection in fuzzy rule interpolation
using feature selection techniques

[Diao et al.,
2014]

CC2016 Weighted fuzzy interpolative reasoning for
sparse fuzzy rule-based systems based on

piecewise fuzzy entropies of fuzzy sets

[Chen and Chen,
2016]

CA2018 Weighted fuzzy interpolated reasoning based on
ranking values of polygonal fuzzy sets and new

scale and move transformation techniques

[Chen and
Adam, 2018]

2.3.1.1 Center of Gravity-based Weighted FRI (LHTZ2005)

A weighted FRI is presented in [Li et al., 2005] as the original approach for fuzzy

interpolative reasoning supported with antecedent weights. This is referred to as

the LHTZ2005 method in Table 2.8 and hereafter. All weights in this approach are

implemented by the use of trapezoidal fuzzy sets.

A. Learning weights

There is little learning involved in LHTZ2005, but the weights of the individual

rule antecedents are predefined by domain experts. Each antecedent attribute within

different rules of the rule base is assigned a different weight. For instance, two

weighted fuzzy rules used for weighted interpolation are therefore, represented such

that [Li et al., 2005]:
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2.3. Weighted Fuzzy Interpolative Reasoning

r1 : i f a1 is A1
1 (AW 1

1 ) and a2 is A1
2 (AW 1

2 ) and · · · and am is A1
m (AW 1

m)

then z is B1(C1)

r2 : i f a1 is A2
1 (AW 2

1 ) and a2 is A2
2 (AW 2

2 ) and · · · and am is A2
m (AW 2

m)

then z is B2(C2)

(2.39)

where AW i
j stands for the weight of the jth antecedent variable ( j = 1,2, . . . , m) in

the rule r i, i = 1,2, and Ci, i = 1,2 is the certainty factor of r i. Note that all of the

AW i
j and Ci are specified as trapezoidal fuzzy numbers. As such, the computational

effort involved may generally increase significantly.

B. Weighting FRI

This weighted fuzzy interpolative reasoning process essentially extends the FRI

mechanism of [Huang and Shen, 2003] that uses only triangular fuzzy sets. In this

work, the center of gravity (COG) of a fuzzy set is used to represent the fuzzy set for

simplicity. In particular, the COG of a trapezoidal fuzzy set A= (a, b, c, d) is defined

as a pair (hL, hR):

hL =
1
3
(a+ b+ d) hR =

1
3
(a+ c + d) (2.40)

where a, b, c, d denote the characteristic points of Awith a and d having a membership

of 0, and b and c being the odd normal points (i.e., the two extrema points of the

nuclear of the trapezoidal with a membership of 1).

The distance between two trapezoidal fuzzy numbers A1 and A2 are defined using

their COG pairs (namely, (h1L, h1R) and (h2L, h2R)) as follows:

d(A1, A2) =
1
2
(h2R + h2L − h1R − h1L) (2.41)

From this, LHTZ2005 can be summarised in Alg. 1, demonstrating the main execu-

tion steps. Note that the weights of rule antecedents are typefaced in bold wherever

they are integrated within FRI in order to highlight the weighting mechanism.
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2.3. Weighted Fuzzy Interpolative Reasoning

Algorithm 1 Weighted FRI in LHTZ2005
Input:

• Rules r1, r2 in form of Eqn. (2.39)

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditional attributes

• Individual weight, of rule antecedent variable AW i
j , i = 1, 2, j = 1, 2, . . . , m

• Certainty factors Ci, i = 1,2 of rules r i, i = 1,2
Output:

• Interpolated consequent B∗

1: Construct a new inference rule by manipulating two given adjacent rules r1, r2,
in form of

r ′ : i f a1 is A′1 and a2 is A′2 and · · · and am is A′m, then z is B′

where A′j( j = 1, 2, . . . , m) is obtained by

A′j = (1−λ j)A
1
j +λ jA

2
j

with λ j calculated using distance between fuzzy sets as per Eqn. (2.41):

λ j =
d(A1

j ⊗AW1
j ⊗ C1, A∗j)

d(A1
j ⊗AW1

j ⊗ C1, A2
j ⊗AW2

j ⊗ C2)

where ⊗ denotes multiplication operator between trapezoidal fuzzy sets. B′ is
calculated similarly, such that

B′ = (1−λc)B
1 +λcB

2, λc =
1
m

m
∑

j=1

λ j

2: Calculate scale rate s j and move rate l j ( j = 1, 2, . . . , m) for each rule antecedent
to assess difference between A′j and A∗j.

3: Aggregate scale and move rate for consequent variable by

sc =
1
m

m
∑

j=1

s j, lc =
1
m

m
∑

j=1

l j

4: Calculate consequent fuzzy set B∗ by transforming B′ using sc, lc. Note that
antecedent weights are not involved here (more details can be referred to original
work of [Li et al., 2005]).

5: Return Interpolated consequent B∗
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2.3. Weighted Fuzzy Interpolative Reasoning

C. Remarks

1. The weights of rule antecedents in this approach are assumed to be predefined,

which requires human intervention and hence adversely reduces the flexibility

of the resulting fuzzy interpolative reasoning system.

2. As reflected in Alg. 1, the individual weights for antecedent variables are

only involved in the calculation of the aggregation factors λ j, j = 1,2 while

constructing the new inference rule r ′ (as shown in Line 1). The aggregation

over the scale and move rates to compute the consequent variable is simply

implemented by an algebraic average of the corresponding antecedent items

(Line 3), which are externally assigned, to signify their individual significance

levels in influencing the consequent.

3. Computational complexity may be increased significantly due to the use of

trapezoidal fuzzy sets to represent the weights, but the interpretability may be

improved if these weights are associated with domain-specific linguistic terms

(which is possible given they are defined by the domain experts).

2.3.1.2 GA-based Weighted FRI (CC2011a)

The method of genetic algorithm (GA)-based weighted fuzzy interpolative reasoning

method integrates the weights of rule antecedents within the underlying FRI pro-

cedure it adopts. This work is referred to as CC2011a with details given in [Chen

and Chang, 2011b]. In this method, the weights of the antecedent variables are

automatically learned by the use of a GA-based weight-learning algorithm. The fuzzy

sets are represented with polygonal or bell-shaped membership functions.

A. Learning weights

The learning method for generating the optimal weights of the rule antecedent

variables used for this weighted FRI is based on the CHC algorithm [Eshelman, 1991],
which is a specialisation of traditional GAs [Holland, 1975]. This GA-based learning

mechanism encodes the weights of individual antecedents into a chromosome, on

which each gene represents an individual attribute weight.

An initial population is randomly generated, forming the start point of the evolu-

tionary weight learning process. For each chromosome in the current population, it
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2.3. Weighted Fuzzy Interpolative Reasoning

decodes a certain weight value, which is to be employed in the proposed weighted

FRI. The weighted interpolative scheme is then triggered for a set of training samples,

with the interpolated outcomes recorded. The selection of “good” chromosomes

depends on a predefined fitness function by comparing the values between the in-

ferred outputs and the target outputs of the training samples. From this, a crossover

operation is carried out among the selected chromosomes, forming the next gener-

ation. Once the number of evolutions reaches a predefined maximum number of

evolutions, this iterative weight learning procedure terminates and the chromosome

with the largest fitness value is deemed the optimal. The final learned weights for the

rule antecedent variables are obtained by decoding the optimal chromosome. In so

doing, this GA-based weight learning scheme follows a so-called “wrapper” approach,

which mixes up weight learning and weighted FRI procedures. The weights obtained

from the current generation are required to be integrated within FRI, to enable the

evaluation of the fitness values.

B. Weighting FRI

A key concept employed for facilitating this weighted interpolative reasoning is

the ratio of fuzziness (RF) [Chen and Chang, 2011b]. For polygonal fuzzy sets, the

degree of fuzziness is computed in relation to the areas of the fuzzy sets. Let A and

B be two polygonal fuzzy sets, the ratio of fuzziness RF(A, B) of A to B is defined as

follows:

RF(A, B) =
S(A)
S(B)

(2.42)

where S(A) and S(B) denote the area of the membership function of A and that of B,

respectively.

The central idea for the computation of the interpolated consequent in response

to an (unmatched) observation is the following: The algorithm attempts to keep the

RF of the fuzzy set of each attribute in the observation over that of the corresponding

antecedent of a selected rule for interpolation the same as the RF of the fuzzy set

of the required consequent (to be computed) over that of an artificially constructed

intermediate rule consequent. The intermediate rule consequent is herein generated

by aggregating the consequents of rules that are involved for interpolation. This idea

in effect reflects fuzzy or generalised modus ponens, a keen to the approach taken

by T-FRI.
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2.3. Weighted Fuzzy Interpolative Reasoning

The weights of the rule antecedent variables are integrated within FRI by following

the routine which is summarised in Alg. 2. In order to emphasise the role that those

antecedent weights play in the entire weighted FRI procedure, the individual weights

are highlighted in bold in this algorithm description.

C. Remarks

1. The GA-based weight learning scheme requires many predefined parameters,

such as fitness function and the maximum iteration number.

2. In the evolutionary learning process, the updating of weights requires the

repeated runs of weighted FRI to compute the consequent using the current

weights, in order to evaluate their fitness. This means the weight learning

process is affected by the implementation of the underlying FRI process itself.

3. The individual weights of rule antecedents are only involved in the aggregation

to obtain the rule weights, as shown in Line 3. They are not integrated with

the underlying FRI.

2.3.1.3 Piecewise Fuzzy Entropies-based Weighted FRI (CC2016)

In [Chen and Chen, 2016], another method for weighted fuzzy interpolative reason-

ing is proposed through the exploitation of the concept of piecewise fuzzy entropies.

This is referred to as CC2016 hereafter, which can handle fuzzy sets defined by polyg-

onal and bell-shaped membership functions. In this method, weights are assigned

differently to each antecedent variable when dealing with the same variable that is

involved in different rules used for interpolation.

A. Learning weights

In CC2016 a fuzzy rule is generally represented in the following:

r i : i f a1 is Ai
1 (AW i

1) and a2 is Ai
2 (AW i

2) and · · · and am is Ai
m (AW i

m), then z is Bi

where AW i
j stands for the weight for jth antecedent variable in the rule r i. As

indicated above, for a certain antecedent variable, its weight is allowed to be different
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2.3. Weighted Fuzzy Interpolative Reasoning

Algorithm 2 Weighted FRI in CC2011a
Input:

• Rule base R= {r1, . . . , rN} consisting of N rules in form of Eqn. (2.1)

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditional attributes

• Number of closest rules n
Output:

• Interpolated consequent B∗

1: Initialise randomly individual weights of rule antecedent variables AWj, j =
1, 2, . . . , m;

2: Calculate representative values for antecedent fuzzy sets A j, j = 1, . . . , m of rules
r i, i = 1, . . . , N and o∗, namely Rep(Ai

j) and Rep(A∗j);
3: Select n nearest neighbouring fuzzy rules with respect to o∗ from rule base;
4: Calculate weight for each of selected rules Wi, i = 1, . . . , n, by aggregating indi-

vidual antecedent weights AWj, j = 1,2, . . . , m such that

Wi =
Min1≤ j≤mAWjλi j

∑n
q=1 Min1≤ j≤mAWjλq j

where λi j measures similarity between jth antecedent value of rule r i and its
corresponding value in o∗, using their representative values;

5: Construct (triangular) intermediate consequence fuzzy set B′ = (b′1, b′2, b′3)
(though any other polygonal MF may be used);

6: Divide membership function of each Ai
j, i = 1, . . . , n and A∗j, j = 1, . . . , m into two

(triangular) areas, namely SL(A) and SR(A), expressing such area on left hand
side and that on right hand side of normal point, respectively;

7: Calculate RF of composite fuzziness of observed fuzzy sets S(A∗1, A∗2, . . . , A∗m) over
composite fuzziness of n weighted neighbouring antecedent fuzzy sets for each
left and right area, such that

RF =
S(A∗1, A∗2, . . . , A∗m)

∑n
i=1 WiS(Ai

1, Ai
2, . . . , Ai

m)

S(A∗1, A∗2, . . . , A∗m) =
m
∑

j=1

S(A∗j) =
m
∑

j=1

(SL(A
∗
j) + SR(A

∗
j))

S(Ai
1, Ai

2, . . . , Ai
m) =

m
∑

j=1

S(Ai
j) =

m
∑

j=1

(SL(A
i
j) + SR(A

i
j))

8: Calculate characteristic points of interpolated consequent fuzzy set B∗ =
(b∗1, b∗2, b∗3), such that

b∗2 = b′2

b∗1 = b∗2 − RF ×
�

�b′2 − b′1
�

�

b∗3 = b∗2 + RF ×
�

�b′3 − b′2
�

�

9: Return Interpolated consequent B∗ = (b∗1, b∗2, b∗3)
54



2.3. Weighted Fuzzy Interpolative Reasoning

when it is involved in different fuzzy rules. Such weights of rule antecedent attributes

are generated during the weighted FRI process itself, which is explained next.

B. Weighting FRI

The fuzzy sets in this work are assumed to be polygonal, which are repre-

sented by their characteristic points (CPs), paired with the corresponding mem-

bership degrees [Chen and Chen, 2016]. Let A be a polygonal fuzzy set in the

universe of discourse and the number of CPs for characterising A be n, then A =
(a0, a1, . . . , al , ac, ar , . . . , an−1;µ0,µ1, . . . ,µn−1), where al and ar are called the “left

normal point” and the “right normal point”, and ac =
al+ar

2 the “central point”, with

µ0 = µn−1 = 0,µl = µr = 1.

The basic idea is to construct an interpolated consequent fuzzy set B∗ with regard

to an input observation, by estimating its n CPs and the corresponding membership

values such that B∗ = (b∗0, b∗1, . . . , b∗n−1;µ∗0,µ∗1, . . . ,µ∗n−1). The key step to perform the

estimation of the membership degrees is carried out through computing the piecewise

fuzzy entropies of the fuzzy sets involved. The concept of piecewise fuzzy entropy is

defined via the notion of non-probability fuzzy entropy of a fuzzy set [Al-Sharhan

et al., 2001,De Luca and Termini, 1972]. In particular, the piecewise fuzzy entropy

Ht−1,t(A) between the (t − 1)th CP and the tth CP of a polygonal fuzzy set A is

specified as below:

Ht−1,t(A) = −K
t
∑

s=t−1

[µs log10(µs) + (1−µs)log10(1−µs)] (2.43)

where K = 1/n and 1≤ t ≤ n− 1, and µs denotes the degree of membership of the

CP as.

The weighted interpolative approach is summarised in Alg. 3, with the individual

weights highlighted in bold where they are learned and used.

C. Remarks

1. As indicated above, in this method, the weights for individual rule antecedent

variables are assigned differently when different rules involving them are taken

into consideration.
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Algorithm 3 Weighted FRI in CC2016
Input:

• Rule base R= {r1, . . . , rN} consisting of N rules in form of Eqn. (2.1)

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditional attributes
Output:

• Interpolated consequent B∗

—Estimation of CPs of B∗

1: Calculate representative values for antecedent fuzzy sets A j, j = 1, . . . , m of rules
r i, i = 1, . . . , N and observation o∗, namely Rep(Ai

j) and Rep(A∗j);
2: Calculate relative placement factor γ j for A∗j with respect to antecedent fuzzy

sets of its neighbouring rules using their corresponding Rep values, and obtain
mean value of these:

γ=

∑m
j=1 γ j

m
, j = 1,2, . . . , m

and

γ j =
Rep(A∗j)− Rep(Al j)

Rep(Ar j)− Rep(Al j)

where Al j and Ar j are left and right closest fuzzy set of A∗j, respectively, in the
ascending order of Ai

j, i = 1, . . . , N ,∗.
3: Calculate CPs of B∗ such that

b∗t = (1− γ)× bl
t + γ× br

t

where b∗t , bl
t , br

t are tth CP of B∗, B l , Br , respectively, and 1≤ t ≤ n−1, n denotes
number of CPs used for characterising a polygonal fuzzy set, l = b (n−1)

2 c and
r = d (n−1)

2 e.
—Estimation of membership values with respect to CPs of B∗

4: Calculate piecewise fuzzy entropy between (t − 1)th CP and tth CP for each
Ai

j, A∗j and Bi following Eqn. (2.43), namely Ht−1,t(Ai
j), Ht−1,t(A∗j) and Ht−1,t(Bi)

where i = 1,2, . . . , N , j = 1,2, . . . , m and 1≤ t ≤ n− 1.
5: Calculate central point ai

j,c, a∗j,c, b j,c of each Ai
j, A∗j and Bi, respectively where

i = 1,2, . . . , N , j = 1,2, . . . , m.
6: Calculate weight AWi

j for jth antecedent variable in rule r i as follows:

AWi
j = 1−

d(A∗j, Ai
j)

max1≤h,k≤N d(Ah
j , Ak

j)

(see next page for continuation)
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(continuation of Weighted FRI in CC2016)
where d(A∗j, Ai

j) and d(Ah
j , Ak

j) are defined by

d(A∗j, Ai
j) =

�

�

�a∗j,c − ai
j,c

�

�

� , d(Ah
j , Ak

j) =
�

�

�ah
j,c − ak

j,c

�

�

�

with 1≤ j ≤ m, i, h, k ∈ 1, 2, . . . , N .
7: Calculate weight for each rule Wi, i = 1, . . . , N , by aggregating antecedent

weights AWi
j, j = 1, 2, . . . , m such that

Wi =
Min j=1,...,mAWi

j
∑N

i=1 Min j=1,...,mAWi
j

8: Calculate piecewise fuzzy entropy Ht−1,t(B∗) between (t − 1)th CP and tth CP of
B∗:

Ht−1,t(B
∗) =











m
∑

j=1

¨

Ht−1,t(A∗j)×
�

N
∑

i=1
Wi ×

Ht−1,t (Bi)
∑m

j=1 Ht−1,t (Ai
j)

�

«

i f ∃i, jHt−1,t(Ai
j)> 0

∑m
j=1 Ht−1,t(A∗j) i f ∀i, j Ht−1,t(Ai

j) = 0

where 1≤ t ≤ n− 1.
9: Calculate membership degrees µ∗0,µ∗1, . . . ,µ∗n−1 with regards CPs of interpolated

result B∗, using piecewise fuzzy entropy Ht−1,t(B∗), 1≤ t ≤ n− 1 as per method
of [Chapra and Canale, 1998] (more details of which can be found in [Chen and
Chen, 2016]).

10: Obtain interpolated fuzzy set B∗ in terms of CPs (from Line 3) and corresponding
membership values (from Line 9), resulting in

B∗ = (b∗0, b∗1, . . . , b∗n−1;µ∗0,µ∗1, . . . ,µ∗n−1)

11: Return Interpolated consequent B∗

2. The generation of the antecedent weights is achieved during the weighted FRI

process, as shown in Line 5 of the algorithm.

3. The individual weights of rule antecedents are only involved in the aggregation

stage to obtain the overall rule weights, as shown in Line 6. Unfortunately, such

useful information is not integrated within the rest of the fuzzy interpolative

reasoning process.
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2.3.1.4 Weighted Increment and Ratio Transformation-based Weighted FRI

(CKCP2009)

Another weighted FRI method is presented in [Chen et al., 2009], referred to as

CKCP2009 hereafter. It uses weighted increment transformation and weighted ratio

transformation to enable weighted fuzzy interpolative reasoning. A “wrapper” algo-

rithm is implemented for automatically tuning the optimal weights of the antecedent

variables appearing in a fuzzy rule, capable of dealing with polygonal, Gaussian and

bell-shaped membership functions.

A. Learning weights

The weights on individual rule antecedent variables are automatically learned

within a “wrapper” mechanism. The weighted interpolation process is required to be

iteratively triggered in order to update the current weights. Particularly, the weight

learning procedure within the proposed weighted FRI is tailored for a certain system

control problem, where one input may lead to several states indicating the current

values of the observation. The weight learning process is summarised below.

Individual weights are initialised with the same value to start the first iteration. A

set of training samples as rule antecedent attribute values are then employed as the

input to the FRI system, together with the current weights, resulting in the next states

of these variables. To adjust the weighting value of each rule antecedent attribute,

the gradient-descent training method is utilised, where a predefined fitness function

over the rule antecedent variable is evaluated using the value recorded in its final

state. The fitness function generates the prediction error for each antecedent variable

in the current iteration and the weights are then modified with the aim to minimise

the error, which are subsequently employed to run the next iteration. The entire

iterative weight updating process is terminated when a preset maximum number of

iterations is reached.

B. Weighting FRI

As with many FRI methods reviewed previously using Rep values, a unique real

value is also defined herein and associated with a certain fuzzy set for reflecting the

key information on the overall location in its domain. In CKCP2009, for a polygonal

fuzzy set A = (a1, a2, . . . , an−1), the characteristic value CV (A) (or Rep as termed

elsewhere) is defined as follows:
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2.3. Weighted Fuzzy Interpolative Reasoning

CV (A) =
(a0 + a1 + · · ·+ an−1)

n
(2.44)

The distance between two polygonal fuzzy sets P and Q is then specified by the

use of their CV values such that

d(P,Q) =
�

�CV (P)− CV (Q)
�

� (2.45)

Given these notions, this weighted FRI method can be summarised as shown in

Alg. 4 [Chen et al., 2009], where the multiplication operation between a polygonal

fuzzy set A and a real value w (w ∈ [0,1]) is defined by

A⊗w= (a1, a2, . . . , an−1)⊗w= (wa1, wa2, . . . , wan−1) (2.46)

As with the other weighted FRI approaches, the individual weights are highlighted

in bold within the algorithm description.

C. Remarks

1. This weight learning scheme is an iterative process. It is integrated within

the weighted interpolation procedure, of which the outcome is required to be

collected to evaluate the fitness function to update the current weights.

2. Although the weights are designed to be automatically tuned for optimisation,

the approach is tailored to a specific problem, where the fitness functions for

each rule antecedent are predefined. This limits the generality of the underlying

techniques.

3. This algorithm reflects the intuition in approximate reasoning in that “how an

observation is transformed from an intermediate antecedent fuzzy set should be

reflected in how the interpolated outcome is transformed from the intermediate

consequent”. This is basically the same as the idea adopted by the conventional

T-FRI.
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Algorithm 4 Weighted FRI in CKCP2009
Input:

• Rules R= {r1, r2} in form of Eqn. (2.39)

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditional attributes
Output:

• Interpolated consequent B∗

1: Initialise individual weights of rule antecedent variable AW i
j , i = 1,2, j =

1, 2, . . . , m;
2: Construct fuzzy set A′j = (a

′
j1, a′j2, a′j3) from fuzzy sets A1

j and A2
j such that

Let

a′j1 = a∗j2 − la′j,1−2

a′j2 = a∗j2

a′j3 = a∗j2 + la′j,2−3

where

la′j,1−2 = (1−λ
j
rep)la

1
j,1−2 +λ

j
rep la2

j,1−2

la′j,2−3 = (1−λ
j
rep)la

1
j,2−3 +λ

j
rep la2

j,2−3

lai
j,1−2 = d(ai

j1, ai
j2) lai

j,2−3 = d(ai
j2, ai

j3) i = 1, 2. j = 1, 2, . . . , m

and

λ j
rep =

d(A1
j ⊗AW1

j , A∗j ⊗ (AW1
j +AW2

j )/2)

d(A1
j ⊗AW1

j , A2
j ⊗AW2

j )

3: Calculate normal point (i.e, b∗2) of interpolated fuzzy set B∗ such that

b∗2 = (1−λ)CV (B1) +λCV (B2)

where

λ=
m
∑

j=1

AW1
j +AW2

j

W
λ j W =

m
∑

j=1

(AW1
j +AW2

j )

λ j =
d(A1

j , a∗j )

d(A1
j , A2

j)
=

�

�

�CV (A1
j)− a∗j

�

�

�

�

�

�CV (A1
j)− CV (A2

j)
�

�

�

(see next page for continuation)
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2.3. Weighted Fuzzy Interpolative Reasoning

(continuation of Weighted FRI in CKCP2009)
4: Construct fuzzy set B′ = (b′1, b′2, b′3) based on fuzzy sets B1 and B2 as with that

shown in Line 2, such that

b′1 = b∗2 − l b′1−2

b′2 = b∗2
b′3 = b∗2 + l b′2−3

where

l b′1−2 = (1−λrep)l b1
1−2 +λrep l b2

1−2

l b′2−3 = (1−λrep)l b1
2−3 +λrep l b2

2−3

with

l bi
1−2 = d(bi

1, bi
2) l bi

2−3 = d(bi
2, bi

3) i = 1,2

λrep =
m
∑

j=1

 

AW1
j +AW2

j
∑m

j=1(AW1
j +AW2

j )

!

λ j
rep

5: Calculate extreme points (namely b∗1 and b∗3) of interpolated fuzzy set B∗ as
follows: Given artificially constructed antecedent and consequent fuzzy sets
A′j, j = 1, 2, . . . , m and B′, by aggregating corresponding components within two
given rules, analogical reasoning is performed to derive remaining characteristic
points of interpolated result B∗, i.e., b∗1 and b∗3. This is achieved through two sub-
routines, namely increment and ratio transformations, which are implemented by
assessing similarity between each of A′j and A∗j first and then, applying similarity
measure to B′ in order to obtain B∗. Antecedent weights AW are computed
as shown in Line 3 (more computational details are omitted but can be found
in [Chen et al., 2009]);

6: Return Interpolated consequent B∗ = (b∗1, b∗2, b∗3)
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2.3.2 Comparison of Existing Weighted FRI Methods

The above four weighted fuzzy interpolative reasoning mechanisms are typical

approaches from the viewpoint of weight learning and FRI weighting. This subsection

contrasts these approaches and categorises other weighted FRI methods listed in

Table 2.8 in relation to the distinct features of these four approaches.

2.3.2.1 Weight Learning Mechanisms

As reflected by the preceding subsections, typical approaches to weighted fuzzy

interpolative reasoning contain basic properties along with which other weighted

FRI methods can be grouped and compared.

A. Predefined vs. Automatically learned

The initial idea for obtaining weights on rule antecedent attributes is simply

to predefine them with domain expertise directly acquired from the experts. This

approach includes the early work as reported in LHTZ2005 and CC2008. It requires

human intervention and hence, adversely reduces the flexibility of the resulting fuzzy

systems. Automatic weight learning schemes are obviously preferred. Indeed, all

of the remaining methods in Table 2.8 pursue alternative ways to learn weights

automatically.

B. Unique weight vs. Multiple weights for an antecedent attribute

In general, weighted FRI works with fuzzy rule bases that involve multiple rule an-

tecedent variables. Different significance levels are associated with different variables

to indicate their different contributions towards the conclusion. In the literature, for

a given rule antecedent attribute, certain methods learn a unique weight for each

variable independent of what rules that variable appears in, whilst others assign

different weights to one common attribute in different rules. The former includes

work in CC2011a, CC2008, CH2014, DJS2014 and CC2011b, and the latter includes

LHTZ2005, CC2016, CKCP2009 and CA2018. When a rule antecedent attribute may

be assigned with multiple weights, depending on which rules it may appear in, the

overall rule model becomes more complicated and harder to interpret. Moreover,

more specific information regarding the antecedent variables of observations may

62



2.3. Weighted Fuzzy Interpolative Reasoning

become necessary, in order to compute the characteristic points of the corresponding

fuzzy sets. This may include for example, information on central point [Chen and

Chen, 2016] or that on ranking value [Cheng et al., 2015] of the fuzzy set, thereby at

the expense of involving more computation to produce the weights than otherwise.

Besides, in so doing, the weights are only measurable during the running of the

weighted FRI system when an observation is provided.

C. Filter schemes vs. Wrapper schemes

The terms filter and wrapper are used to group the weight learning schemes,

based on their dependence upon whether a weighted FRI method will be recursively

called on during the process of weighted generation. That is, these weight learning

methods following the filter scheme are independent of the weighted FRI process,

whereas the wrapper methods need to exploit the outcome of the weighted FRI

in order to evaluate the “goodness” or quality of the current weights. The filter

approach is taken by CC2016, DJS2014 and CA2018, and the wrapper approach

by CC2011a, CKCP2009, CH2014 and CC2011b. Since methods belonging to the

wrapper group employ interpolated results for constructing fitness functions (in an

effort to update the required weights in the current iteration), their performance in

terms of accuracy may be very high, but the computational overheads is relatively

costly at the same time.

2.3.2.2 Weighting FRI Procedures

This issue is concerned with how the generated weights of rule antecedent attributes

are integrated within the underlying FRI, for revealing the relative significance level of

each individual attribute in contributing to the derivation of the interpolated results.

As can be seen from the typical weighted FRI mechanisms reviewed previously, the

following observations can be drawn:

1. Existing techniques generally work by artificially creating an overall weight to

each of the rules before running the weighted rules in FRI. Such weights are

normally computed through aggregating the weights calculated for individual

rule antecedent variables, thereby involving additional weight aggregation

procedures.
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2. Learned weights are seldom systematically integrated within all major compo-

nents of the weighted FRI algorithm, but just involved in certain computational

subroutines. As such, information regarding domain attribute significance

is not exploited to its full potential. Also, different underlying FRI mecha-

nisms employ the weights in different manners, limiting the generality of these

approaches and their transplantability to suit other FRI methods.

There are also several weighted fuzzy interpolative reasoning schemes that reflect

other perspectives. For example, a particular work in [Chen et al., 2013b] constructs a

weighted FRI method based on interval type-2 fuzzy sets. However, these viewpoints

are beyond the scope of this thesis and hence, their details are omitted.

In summary, the above review of weighted fuzzy interpolative reasoning confirms

the importance of developing techniques that allow for differentiating the relative

significance levels of individual domain attributes. In particular, weights should be

learned automatically and efficiently, ideally without requiring additional observa-

tions or triggering the entire FRI system. Also, it is desirable to create a general

weighting scheme that enables different non-weighted FRI methods to be supported

with antecedent weights in a common manner. In so doing, it helps facilitate trans-

planting a developed weighting scheme from one FRI mechanism to another once

the weights of rule antecedent attributes are available.

2.4 Attribute Evaluation within Feature Selection

Feature selection (FS) aims to choose a minimal subset of domain features (inter-

changeably termed attributes or variables hereafter) that are the most relevant to

the target concept or decision. As the resultant features are directly selected from an

original feature set, the FS techniques preserve the original meaning of the selected

attributes while reducing the dimensionality of the original set.

As indicated previously (in Chapter 1), FS is achieved within a four-step procedure.

Amongst them, an evaluation function is used to measure how good an attribute

is, or a subset of attributes are, regarding the potential solution to the problem at

hand. This offers a natural way to evaluate the relative significance of an attribute. If
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systematically carried out across all domain attributes, the use of such a function will

enable the ranking of the attributes with regard to the underlying quality criteria.

Existing evaluation functions in the literature can be generally grouped into

categories that reflect the different criteria adopted to judge attribute quality, includ-

ing those based on measures over distance, information, dependence, consistency,

etc [Dash and Liu, 1997]. From the perspective of how these attributes are evaluated

and selected, two major classes can be found for attribute evaluation within FS.

One is to assess each feature individually, resulting in the most informative features

that are ranked on the top being selected; the other is based on feature subsets,

where a subset of features are measured jointly. In the following subsections, a brief

introduction is outlined to these two groups of methods, covering those that are

popularly used and readily available.

2.4.1 Individual Feature Ranking-based Methods

This subsection presents four attribute evaluation schemes which are based on

assessing and ranking each feature individually.

2.4.1.1 Information Gain (IG)

Information gain (IG) has been widely adopted in the development of learning

classifier algorithms, to measure how well a given attribute may separate the training

examples according to the underlying classes [Mitchell, 1997]. It is defined via the

entropy metric in information theory [Shannon, 2001], which is commonly used to

characterise the disorder or uncertainty of a system.

Formally, let O = (O, p) be a discrete probability space, where O = {o1, o2, . . . , on}
is a finite set of domain objects, with each having the probability pi, i = 1, . . . , n.

Then, the Shannon entropy of O is defined by

Ent rop y(O) = −
n
∑

i=1

pi log2 pi (2.47)

Regarding the task of classification, oi, i ∈ {1, . . . , n} represents a certain object, and

pi is the proportion of O which is labelled as the class j, j = 1, . . . , m, m ≤ n. Note
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that the entropy is at its minimum (i.e., Ent rop y(O) = 0) if all elements of O belong

to the same class (with 0 log2 0= 0 defined); and the entropy reaches its peak point

(i.e., Ent rop y(O) = log2 n) if the probability of oi belonging to each category is

equal; otherwise the entropy is between 0 and log2 n.

Intuitively, the less the entropy value, the easier the classification problem. It

is based on this observation that information gain has been introduced to measure

the expected reduction in entropy caused by partitioning the values of an attribute.

This leads to the popular decision tree learning methods [Quinlan, 1986]. Given

a collection of examples U = {O, A}, oi ∈ O (i = 1, . . . , n) is an object which is

represented with a group of attribute A= {a1, . . . , al} and a class label m. Information

gain upon a particular attribute ak, k ∈ {1, . . . , l}, is defined as

IG(O, ak) = Ent rop y(O)−
∑

v∈Value(ak)

�

�Ov

�

�

|O|
Ent rop y(Ov) (2.48)

where Value(ak) is the set of all possible values for the attribute ak, Ov is the subset

of O where the value of the attribute ak is equal to v (i.e., Ov = {o ∈ O|ak(o) = v}),

and |·| denotes the cardinality of a set.

From the perspective of entropy evaluation over U , the second part of Eqn. (2.48)

shows that the entropy is measured via weighted entropies that are calculated

over the partition of O using the attribute ak. The bigger the value of information

gain IG(O, ak), the better the partitioning of the given examples with regards ak.

Obtaining a high information gain therefore, implies achieving a significant reduction

of entropy or uncertainty caused by considering the influence of that attribute.

2.4.1.2 Relief-F

Relief-F [Kononenko, 1994] is an extension of the original Relief method [Kira

and Rendell, 1992b, Kira and Rendell, 1992a] developed for estimating attribute

significance efficiently. It can be used to deal with noisy, incomplete and multi-class

data sets, working by exploiting distance measures. Each individual attribute is

assigned a cumulative weight computed over a predefined number of sample data

selected from a given training data set. Attributes with a weight above a certain

threshold become selected elements of the attribute subset sought.
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A weight is assigned on the basis of the following intuition: Instances that belong

to a similar class should be closer together than those in a different class. Suppose

that near_hit represents an instance that is closest to a certain training instance

x under consideration, with both belonging to the same class, and that near_miss

represents an instance that is closest to x but in a different class. The cumulative

weight associated with a given attribute is then computed by

wi = wi−1 − d(x , near_hit)2 + d(x , near_miss)2, i = 1, . . . , I (2.49)

where w0 = 0, I stands for the number of training iterations, and d(., .) is typically

implemented with Euclidean metric.

2.4.1.3 Laplacian Score (LS)

Laplacian score (LS) [He et al., 2006] is another distance measure-based attribute

evaluation function. It is calculated for each individual attribute to reflect its capa-

bility of locality preserving. The definition of LS is inspired by an observation that

the data points being related to the same topic should be close to each other.

Let LSk denote the LS measure of a certain attribute ak. It is computed by

LSk =

∑

i j( fki − fk j)2Si j

Var( fk)
(2.50)

where fki and fk j denote the value of ak within the instance x i and that within

x j, respectively, Var( fk) is the estimated variance of ak, and Si j represents the

neighbourhood relationship between the instances x i and x j, such that

Si j =











e−
‖xi−x j‖2

σ2 , if x i and x j are nearest neighbours

0, otherwise
(2.51)

A quality attribute should be of a small Laplacian score.
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2.4.1.4 Local Learning-based Clustering for FS (LLCFS)

LLCFS [Zeng and Cheung, 2010] performs attribute selection within the framework

of Local Learning-based Clustering (LLC) [Wu and Schölkopf, 2007]. It computes a

weight and assigns it to each attribute while performing a clustering task. Typically,

the weights are thinly distributed if the dataset contains much redundancy, with a

weight of zero indicating that the corresponding attribute is dispensable; only those

attributes associated with a weight of a significant magnitude are selected.

LLCFS works by iteratively executing the following two steps until convergence:

(i) estimating the weights for the attributes using intermediate clustering results,

and (ii) updating the clustering with weighted attributes. As such, the weights are

estimated iteratively during the clustering process.

Incidentally, such an FS approach is termed wrapper-based in the literature, as

opposed to the other techniques outlined herein which follow the so-called filter-

based approach to FS [Liu and Motoda, 2012]. The filter-based and wrapper-based

schemes are specified in terms of their dependence on the inductive algorithm that

will finally use the selected subset. Filter methods are independent of the inductive

algorithm, whereas wrapper approaches employ the inductive algorithm as the

evaluation function. This is similar in concept to the description of “wrapper” and

“filter” approaches to learning attribute weights as presented in Section 2.3.

2.4.2 Feature Subset Evaluation-based Methods

Another four attribute evaluation schemes that follow the idea of assessing feature

subsets (instead of individual attributes) are reviewed below.

2.4.2.1 Rough Set-based Feature Selection (RSFS)

Rough set-based FS (RSFS) [Chouchoulas and Shen, 2001, Jensen and Shen, 2004,

Shen and Chouchoulas, 2002] employs the concepts of rough set theory [Pawlak,

1982,Pawlak, 1996,Pawlak, 2012] to distinguish the significance of attributes. Let

I = (U , A) be an information system, where U is a non-empty set of finite objects (the
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universe of discourse) and A is a non-empty finite set of attributes. An equivalence

relation associated with a particular subset P ∈ A is IN D(P):

IN D(P) = {(x , y) ∈ U2|∀a ∈ P, a(x) = a(y)}

This relation generates the partition of U , which is denoted as U/IN D(P):

U/IN D(P) = ⊗{a ∈ P : U/IN D({a})}

where

M ⊗ N = {X ∩ Y : ∀X ∈ M ,∀Y ∈ N , X ∩ Y 6= �}

Note that objects in the partition of U generated by the relation IN D(P) have

the same values over all attributes in subset P. In other words, such objects are

indiscernible by attributes from P.

Let the equivalence classes of the P-indiscernibility relation be denoted by [x]P .

Rough set approximates a subset of universe of discourse X ⊆ U by utilising a pair

of sets in approximation space, namely P-lower approximation P∗(X ) and P-upper

approximation P∗(X ), respectively:

P∗(X ) =
⋃

x∈U

{[x]P : [x]P ⊆ X }

P∗(X ) =
⋃

x∈U

{[x]P : [x]P ∩ X 6= �}

From an intuitive prospect, the P-lower approximation of X is the set of all objects,

which can be for certain classified as X with respect to P, and the P-upper approxi-

mation of X is the set of all objects, which can be possibly classified in X in view of

P.

Let P and Q be two subsets of attributes, and their associated equivalence relations

over U be IN D(P) and IN D(Q) respectively. Then, the notion positive region is

defined as:
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POSP(Q) =
⋃

X∈U/IN D(Q)

P∗(X )

It contains all objects of U that can be classified as the classes of U/IN D(Q) using

the information about the attributes P. Hence, the dependency of Q on P can be

defined by

γP(Q) =

�

�POSP(Q)
�

�

|U |
(2.52)

where |·| denotes the cardinality of set. Obviously, γP(Q) ∈ [0, 1] is held. The closer

it is to 1, the more Q depends on P.

Inspired by observation on the dependency factor, a measurement of significance

of attribute subset can be defined by the reduction of dependency of Q on a set of

attributes P while removing a particular one of them. That is, given P,Q and an

attribute a ∈ P,

σP(Q, a) = γP(Q)− γP−{a}(Q) (2.53)

The larger the reduction of dependency, the more significant the attribute a is. This

gives the manner which is to be used as a heuristic for FS.

RSFS works via generating possible subsets of attributes and selecting the one

which leads to the maximum rough set dependency degree. The generation procedure

can be achieved by pruning techniques to reduce the time complexity. The maximum

rough set dependency should be equal to the dependency on all conditional attributes

(if the dataset given is consistent). For FS, the cardinality of the selected feature

subset should of course, be as small as possible. More formally, suppose that D

denotes a decision attribute and C denotes all conditional attributes. Then, the

searched reduct, which is denoted by Rmin, can be computed such that

Rmin = {X : X ∈ R,∀Y ∈ R, |X | ≤ |Y |}

R= {X : X ⊆ C ,γX (D) = γC(D)} (2.54)

where RSFS is a purely data-driven approach selecting attributes from the data

available. However, it works for situations involving discrete values only. To handle

real valued features, fuzzy-rough feature selection is developed as outlined below.
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2.4.2.2 Fuzzy-Rough Feature Selection (FRFS)

Fuzzy-rough set based feature selection (FRFS) approach [Jensen and Shen, 2004,

Jensen and Shen, 2007, Jensen and Shen, 2008, Jensen and Shen, 2009] is used to

discover data dependencies and to reduce the number of attributes contained within

a data set using the data alone without acquisition of additional information. This

method employs fuzzy positive region based on the concepts of fuzzy-rough sets to

define a feature subset dependency function that assesses the relative significance of a

certain subset of features. As with the dependency function in RSFS, this fuzzy-rough

dependency function may also be used to evaluate the degree of importance of each

individual feature if a subset contains just one element.

Fuzzy rough sets employ similar notions to those used in rough sets. By introduc-

ing fuzzy concepts into rough sets as an extension of rough set-based approach, the

fuzzy lower and fuzzy upper approximation are defined as follows:

µP∗(X ) = sup
F∈U/IN D(P)

min(µF(x), inf
y∈U

max{1−µF(y),µX (y)})

µP∗(X ) = sup
F∈U/IN D(P)

min(µF(x), sup
y∈U

min{µF(y),µX (y)})

Compared with RSFS, FRFS defines the dependency measurement by employing

the fuzzy lower approximation. In particular, the membership function of the fuzzy

positive region is defined by

µPOSP (Q)(x) = sup
X∈U/IN D(Q)

µP∗(X )(x) (2.55)

Thus, the new dependency function now is:

γP(Q) =

�

�

�µPOSP (Q)(x)
�

�

�

|U |
=

∑

x∈U µPOSP (Q)(x)

|U |
(2.56)

where
∑

x∈U µPOSP (Q)(x) denotes the fuzzy cardinality of fuzzy membership function

µPOSP (Q)(x).
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Based on the fuzzy-rough set-based dependency function, the significance of

a certain attribute can be measured by the reduction of this dependency degree

with respect to the attribute. Indeed, the resulting FS procedure performs in the

same manner as RSFS. There is a slight difference between FRFS and RSFS in that

(for a consistent dataset) RSFS searches for a smallest subset of attributes whose

dependency degree is the same as the whole conditional attributes, whereas the

searching procedure in FRFS terminates when the dependency will not increase by

adding any one of remaining attributes.

Note that the basic idea of FRFS has been extended to producing a number of

more advanced techniques [Jensen and Shen, 2009], including that employing fuzzy

similarity relations. These help to reduce the computational complexity caused by

calculating the Cartesian product of fuzzy equivalence classes. These are not purely

data-driven techniques however, the fuzzy similarity relations need to be predefined

prior to their applications.

2.4.2.3 Correlation-based Feature Selection (CFS)

As a filter type of FS algorithm, CFS [Cui et al., 2010,Hall, 2000] exploits a correlation

based heuristic to evaluate the worth of features. In particular, it employs the

correlation coefficients amongst features to construct an evaluation function. The

core principle is formulated as quantitatively assessing the quality of a given feature

subset S:

Q(S) =
krc f

Æ

k+ k(k− 1)r f f

(2.57)

where rc f and r f f denote the average, feature-class and feature-feature correlations,

respectively, and k is the number of features contained within S. In fact, Eqn. (2.57)

is Pearson’s correlation where all attributes have been standardised [Ghiselli, 1964].

This reflects the core heuristic for CFS to evaluate the merit or significance of a

subset of features: “Good feature subsets contain features highly correlated with class,

yet uncorrelated with each other.” Following this heuristic, features which are highly

correlated to the decision attribute but independent to each other are deemed to be

more significant and are therefore, more likely to be chosen in the process of CFS.
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2.4.2.4 Consistency-based Feature Selection (IRFS)

The consistency measure presented in [Dash and Liu, 2003] for FS is defined through

the introduction of the concept of inconsistency rate (IR) over a certain training

dataset for a given feature set. IR is calculated via a three-stage process:

i) Determining all patterns that are inconsistent, where a pattern (or a part of an

instance without class label) is considered inconsistent if there exists at least two

instances such that they match all but their class labels.

ii) Calculating the inconsistency count for each pattern of the feature subset, which

is the number of times this pattern appears in the data minus the largest of such a

number among different class labels.

iii) Computing the inconsistency rate of the feature subset that is defined by the sum

of all the inconsistency counts over all patterns of that subset appearing in the data,

divided by the total number of the training instances.

The selected feature subset is expected to gain the smallest summation of in-

consistency rates. From the above listed IRFS procedures, the consistency measure

is able to work when data has discrete valued features. Any continuous feature is

supposed to be discretised firstly by the use of any discretisation method before it is

dealt with IRFS. Incidentally, this methodology for handling continuous data may be

equally applied to RSFS.

2.4.3 Discussion

As can be seen from the above, FS approaches within both categories, namely feature

ranking-based and feature subset evaluation-based, facilitate a variety of ways to

evaluate features in an individual or group manner. More specifically, FS methods that

follow the feature ranking-based scheme directly weigh and hence, rank individual

features, which may follow a filter or wrapper based approach. The feature subset

evaluation-based methods evaluate the quality of an attribute subset, instead of that

of an individual attribute. However, if the subset is set to contain just one feature

at a time, then the group-based approach becomes directly applicable to individual

feature ranking also. These different styles of FS mechanism are all considered
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here in order to demonstrate the generality of ranking and weighting conditional

attributes in fuzzy rules for guiding non-weighted fuzzy interpolative reasoning with

the weights of rule antecedents, which will be illustrated in detail in the following

chapters.

Finally, note that the evaluation functions embedded within FS techniques can

also be categorised into two different types in terms of whether or not the decision

attribute is involved when evaluating the conditional features. This leads to the

supervised attribute evaluation schemes that include methods such as IRFS [Dash

and Liu, 2003] and Relief-F [Kononenko, 1994], and the unsupervised schemes

that include those like LS [He et al., 2006] and LLCFS [Zeng and Cheung, 2010].
Unsupervised approach offers more flexibility since the consequent attribute is not

required during the attribute evaluation process.

2.5 Summary

This chapter has systematically reviewed the relevant background knowledge that

forms key foundations for the investigations carried out in this project, as to be

reported in the subsequent chapters. In particular, the fundamental fuzzy rule

interpolation (FRI) techniques have been comprehensively analysed, resulting in the

division of two major groups of methodologies, namely, the α-cut based interpolations

and the intermediate rule based interpolations. These two types of approach are

distinguished mainly by whether a so-called intermediate rule is to be used to facilitate

the inference. Representative FRI approaches have been introduced for each category.

Specific attention has been paid to one of the most popular intermediate rule based

interpolation methods, the scale and move transformation based FRI (T-FRI), which

has the closest relation to this project.

In the recent literature for FRI, there has been a significant volume of effort

to enhance the potential of conventional FRI mechanisms by considering the rule

antecedent weights within the original unweighted FRI procedure. This has been

inspired by the observation that a common assumption was shared for traditional

FRI methods in that the rule antecedent attributes are of equal importance. This

is obviously an impractical assumption for many real-world problems. Two crucial

issues are identified for developing the weighted FRI, namely weight generation
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and weight integration. Whilst relevant literature has shown limited progress, much

work needs to be done in order to establish a weighted fuzzy interpolative reasoning

system that would work effectively and efficiently.

Also covered in the review are the mechanisms for attribute evaluation. Partic-

ularly addressed are those that are embedded in the feature selection techniques.

This is because they are mature techniques and readily available, which can be easily

modified to assess the significance of individual rule antecedent attributes, thereby

facilitating the learning of the corresponding weights, as to be shown next.
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Chapter 3

Weight Learning from Rule Bases

A S indicated previously, the first key issue for achieving a weighted fuzzy inter-

polative reasoning mechanism is to evaluate the relative significance levels of

rule antecedent attributes appearing in the given rule base. Several alternatives for

generating weights of the rule antecedents have been reported in the literature (as

reviewed in Chapter 2). From a computational viewpoint, to automate the weight

generation process, it has an intuitive appeal to take a two-step approach: 1) collect-

ing data for the evaluation of the rule antecedent attributes, and 2) looking for an

appropriate and applicable technique to evaluate the attributes using the available

data. Without requiring any further information other than the given sparse rule base

for the problem at hand, the question is whether such a two-step procedure can still

be implemented. That is, can weights of rule conditional attributes be generated by

the use of the sparse rule bases only? This chapter addresses this important question.

The rest of this chapter is structured as follows. Section 3.1 introduces how

the data useful for attribute evaluation can be (re-)produced from a given sparse

rule base. Section 3.2 illustrates how the rule antecedent weights can be generated

from the data available. To further illustrate how the basic theoretical mechanisms

perform their work, a practical case study is provided, which is integrated within the

above two routines. Finally, Section 3.3 summarises the chapter.
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3.1. Data Generation: Reverse Engineering for Rule Base Sparseness Reduction

3.1 Data Generation: Reverse Engineering for Rule

Base Sparseness Reduction

In conventional FRI algorithms, the first key stage is the selection of n closest fuzzy

rules to an observation when the observation is presented with no matching rules

available in the rule base. In such work, all rule antecedents are assumed to be

of equal significance while searching for the subset of closest rules; there is no

assessment regarding the relative importance or ranking of these antecedents. This

may reflect a seemingly important observation where typically, the fuzzy rules that

are provided by domain experts or learned from historical data (which constitute the

rule base) are of the form as shown in Eqn. (2.1). That is, there is no information

available on the relative significance of individual antecedent attributes. This is a

premier reason that the most existing approaches to FRI commonly assume the use

of this format of knowledge representation. In real-world problems however, it is

often the case where different domain attributes are of different significance.

Fortunately, the evaluation functions embedded in the feature selection (FS)

techniques offer an effective ranking mechanism to address this issue. Nevertheless,

while utilising the evaluation function of a certain FS method to differentiate the

significance levels of the domain attributes, data is required to act as the training

instances for computing their relative ranking scores. Therefore, the biggest prob-

lem of learning weights in an effort to distinguish the relative significance degrees

associated with the conditionals is where the data comes from.

In general, FRI works with a sparse rule base. This implies that in the first place,

it may be difficult to acquire sufficient example data for use in support of computing

the required weights. Had there been sufficient training data in the problem domain,

the situation of having a sparse rule base might not have existed, as such data could

have been utilised to generate a dense rule base. Thus, only the originally provided

sparse rule base is used as the information source for assessing attribute weights.

This requires the introduction of a method to preprocess the sparse rule base for the

generation of a valid set of training instances.

An innovative reverse engineering procedure is proposed here to address this

issue. This is doable because every FRI system has a sparse rule base consisting of

rules as represented in the form of Eqn. (2.1). This set of rules can be translated
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into a man-made decision table, forming a set of artificially created training samples,

where each row represents either a rule in the given rule base or an artificial rule

generated from a given rule. Note that in data-driven learning, rules are learned

from data samples. The work here is done through a reverse engineering process of

data-driven learning, translating rules back to data.

3.1.1 Reverse Engineering Procedure

The basic idea of the reverse engineering procedure is to reformulate automati-

cally the rules in the given sparse rule base into data representations of a common

structure. This is necessary because for a sparse rule-based system, different condi-

tional attributes may appear in different rules and different rules may have different

numbers of conditionals. Reflecting this view, the training instances are artificially

generated through the following three steps:

i) Identification of all conditional attributes appearing in all the rules and all

(finite fuzzy) values used to define these attributes;

ii) Expansion of each rule in the sparse rule base into one that involves all condi-

tional attributes such that if a certain conditional is not originally involved in

the rule, then it is inserted into the rule with its value being set to a qualitative

term, “don’t care”; and

iii) Replacement of each “don’t care” with every possible fuzzy value for the

corresponding attribute in each rule that contains this qualitative value, such

that one rule involving L attributes of the “don’t care” value (L ≥ 1) is replaced

by
∏L

i=1 ci rules, with ci being the cardinality of the value domain of a certain

conditional that does not appear in the original rule.

In so doing, within each of the expanded rules a conditional attribute that does

not appear in a given rule now takes one and only one possible fuzzy value from its

underlying domain. For example, if a given original rule contains just one “missing”

conditional attribute, then this rule is expanded to k rules where k is the number of

the fuzzy sets that this attribute may take as its value.
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This reverse engineering procedure can be logically justified: For a given rule

in the sparse rule base, if an attribute is missing from the rule antecedent, then

the rule will have the same consequent value independent of what fuzzy value

that attribute may take, provided that all other attributes appearing in the rule are

satisfied regarding their respectively specified value. The presumption of the value

domains being finite and discrete is also justifiable given that only fuzzy rules are

considered here, where each attribute takes values from a (normally small) collection

of fuzzy sets. In particular, the proposed reverse engineering procedure works with

a sparse rule base, which typically involves a much smaller number of rules than

the usual fuzzy rule-based systems. Besides, only those missing antecedents are to

be filled with the possible fuzzy sets taken from their value domains. These factors

jointly help restrain the adverse impact of the curse of dimensionality possibly caused

by converting individual rules in the sparse rule base into artificial training samples.

3.1.2 Illustration of Reverse Engineering

A simple artificial example may help illustrate the idea of this procedure. Suppose

that the sparse rule base consists of the following two rules only, each involving one

different antecedent attribute, x or y , and the common consequent attribute z:

r1: if x is A1, then z is C1

r2: if y is B2, then z is C2

where x takes values from the domain {A1, A2} and y from {B1, B2, B3}.

Following the three-step reverse engineering procedure, first, all possible an-

tecedent attributes involved in the problem are identified, these are x and y , together

with their value domains as indicated above. Then, a temporary artificial decision

table is generated by inserting “don’t care” as the values taken by those antecedent

attributes which are missing in the original rules, as shown in Table 3.1. The final

artificial decision table as of Table 3.2 can then be constructed.

This creation of the artificial table is implemented as such, because there are

two antecedent attributes in question, of which x has two possible values (A1 and

A2) and y has three alternatives (B1, B2, B3). Without losing generality, suppose that

the first given rule is used to construct part of the emerging artificial decision table
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Table 3.1: Temporary Artificial Decision Table

``````````````̀Artificial Rules
Variables

x y z

r1 A1 “don’t care” C1

r2 “don’t care” B2 C2

first. As y is missing in r1, which means if x is satisfied (with the value A1), this rule

is satisfied and hence, the consequent attribute z will have the value C1 no matter

which value y takes. That is, r1 can be expanded into three artificial rules, resulting

in r1, r2 and r3 in Table 3.2, for each of which y takes one of its three possible values.

Similarly, r4 and r5 can be constructed to expand the original rule r2.

Table 3.2: Example for Reverse Engineered Decision Table

``````````````̀Artificial Rules
Variables

x y z

r1 A1 B1 C1

r2 A1 B2 C1

r3 A1 B3 C1

r4 A1 B2 C2

r5 A2 B2 C2

3.1.3 Inconsistency in Artificial Decision Table

When the reverse engineering procedure is applied to a given (sparse) rule base, the

resultant, artificially constructed decision table may include logically inconsistent

rules where certain rules may have the same antecedent but different consequents.

For instance, in the above illustrative example, r2 and r4 in Table 3.2 may appear to

be inconsistent. This does not matter as the eventual rule-based inference, including

rule interpolation does not use these artificially generated rules, but the original

sparse rule base. They are created purely to help assess the relevant significance of

individual variables through the estimation of their respective ranking scores. It is

because there are attributes which may lead to potentially inconsistent implications

in a given problem that it is possible to distinguish their relative importance to the

problem (or their potential power in influencing the derivation of the consequent).

80



3.1. Data Generation: Reverse Engineering for Rule Base Sparseness Reduction

3.1.4 Practical Illustrative Case Study — Case Description

To help illustrate the proposal in this thesis, for attribute weighted fuzzy interpolative

reasoning, a case study is utilised while being integrated within individual steps

of the entire inference procedure. This illustrative case includes a commonly used

fuzzy classification problem [Yuan and Shaw, 1995], involving a small set of training

data of 16 instances. The system is set to make a decision on what sports activity to

be undertaken (namely, volleyball, swimming and weight lifting) given the status

of four conditional attributes regarding the weather, in terms of temperature (hot,

mild and cool), outlook (sunny, cloudy and rain), humidity (humid and normal) and

wind (windy and not windy).

Six fuzzy rules have been generated as given below using a standard rule induction

algorithm [Yuan and Shaw, 1995]. These six rules form a dense rule base where

the domains of the antecedent variables are completely covered by the rules. To

facilitate the illustration (of rule interpolation), Rule 6 is purposefully removed to

have a sparse rule base.

1. If Temperature is Hot and Outlook is Sunny, then Swimming.

2. If Temperature is Hot and Outlook is Cloudy, then Swimming.

3. If Outlook is Rain, then Weight lifting.

4. If Temperature is Mild and Wind is Windy, then Weight lifting.

5. If Temperature is Mild and Wind is Not Windy, then Volleyball.

6. (If Temperature is Cool, then Weight lifting.)

3.1.5 Illustrative Case Study — Stage 1: Reverse Engineering

From the earlier theoretical demonstration, the reverse engineering procedure, as a

crucial tool, converts the rules into a set of artificial training samples given a rule

base, forming a decision table for the subsequent calculation of required attribute

weights. In this illustrative case, the rule base presented in Section 3.1.4 (bar Rule
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Table 3.3: Rule Base in Illustrative Case

XXXXXXXXXXXXRules
Variables

Temperature Outlook Humidity Wind Decision

r1 Hot Sunny - - Swimming
r2 Hot Cloudy - - Swimming
r3 - Rain - - Weight

lifting
r4 Mild - - Windy Weight

lifting
r5 Mild - - Not

Windy
Volleyball

6) is reformulated as given in Table 3.3. As can be seen, a few values of certain rule

antecedents are missing.

Recall the three-step procedure presented in Section 3.1.1, 32 training data are

generated as listed in Table 3.4. The reverse engineering process is explained using

this illustrative case. Without losing generality, assume that the first given rule is

used to create the artificial data first. Then, part of the emerging artificial decision

table is first constructed from this rule. Note that Humidity and Wind are missing in

Rule 1, which means if Temperature is satisfied with the value Hot and Outlook with

Sunny, the rule is satisfied and thus, the consequent variable Decision will have the

value of Swimming no matter which values Humidity and Wind may take. That is,

Rule 1 can be expanded by the first four data in Table 3.4, each having the variables

Humidity and Wind taking one of their respective two possible values. Similarly, more

artificial data can be created by translating and expanding the remaining original

rules.

Examining both the antecedent and the consequent values in Table 3.4, it can

be seen that there are several identical samples which are generated from different

original rules. Retaining one and only one of the same samples results in a total of

30 training data. Note that in such an artificially constructed decision table, it may

again appear to include inconsistent data since they may have the same values for

the respective antecedent attributes but different consequents (e.g., two inconsistent

pairs are highlighted in Table 3.4). This makes no difference to the eventual rule-

based inference, including rule interpolation, as previously discussed in Section 3.1.3.

However, this enables the measuring of the attribute weights of individual antecedent

variables as to be described next.
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Table 3.4: 32 Training Data after Reverse Engineering Given Five Rules

Temperature Outlook Humidity Wind Decision
Hot Sunny Humid Windy Swimming
Hot Sunny Humid Not Windy Swimming
Hot Sunny Normal Windy Swimming
Hot Sunny Normal Not Windy Swimming
Hot Cloudy Humid Windy Swimming
Hot Cloudy Humid Not Windy Swimming
Hot Cloudy Normal Windy Swimming
Hot Cloudy Normal Not Windy Swimming
Hot Rain Humid Windy Weight lifting
Hot Rain Humid Not Windy Weight lifting
Hot Rain Normal Windy Weight lifting
Hot Rain Normal Not Windy Weight lifting
Mild Rain Humid Windy Weight lifting
Mild Rain Humid Not Windy Weight lifting
Mild Rain Normal Windy Weight lifting
Mild Rain Normal Not Windy Weight lifting
Cool Rain Humid Windy Weight lifting
Cool Rain Humid Not Windy Weight lifting
Cool Rain Normal Windy Weight lifting
Cool Rain Normal Not Windy Weight lifting
Mild Sunny Humid Windy Weight lifting
Mild Sunny Normal Windy Weight lifting
Mild Cloudy Humid Windy Weight lifting
Mild Cloudy Normal Windy Weight lifting
Mild Rain Humid Windy Weight lifting
Mild Rain Normal Windy Weight lifting
Mild Sunny Humid Not Windy Volleyball
Mild Sunny Normal Not Windy Volleyball
Mild Cloudy Humid Not Windy Volleyball
Mild Cloudy Normal Not Windy Volleyball
Mild Rain Humid Not Windy Volleyball
Mild Rain Normal Not Windy Volleyball
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3.2 Weights Evaluation: Feature Ranking for

Weighting Rule Antecedent

Having gone through the reverse engineering procedure for a given sparse rule

base, an artificial decision table is derived that can be employed as a set of training

instances, from which the weights of the rule antecedent attributes are learned.

Such a decision table is also termed as a training instance pool that is to be used

interchangeably hereafter. The significance levels, or weights, of the rule antecedent

attributes are then assessed using an appropriate attribute evaluation method. This

is because weighting the rule antecedent attributes essentially is to evaluate the

relative significance of each of them, which may therefore be implemented through

ranking amongst the attributes.

As indicated previously, the evaluation functions embedded in FS techniques

offer an effective ranking mechanism to accomplish this task. In general, two types

of the evaluation scheme exist in the literature, where one is to assess each attribute

individually and respectively, while the other is to perform feature subset-based

evaluation, where a group of features are assessed jointly. As reviewed in Chapter 2,

any of the different types of feature ranking method may be applied to evaluate the

relative significance of individual antecedent attributes, which is demonstrated in

the following.

3.2.1 Scoring Individual Attributes

The category of attribute evaluation functions reviewed in Section 2.4.1 can be

directly applied to assess individual attributes, including Information Gain (IG),

Relief-F, Laplacian Score (LS) and Local Learning-based Clustering for FS (LLCFS).

Application of each results in a vector of weighting scores associated with those

attributes assessed. For easy referencing, these score vectors are denoted as ScoreIG,

ScoreRelie f −F , ScoreLS and ScoreLLC FS, respectively.

Note that the LS-based FS method seeks those attributes of the smallest Laplacian

score(s) for selection. Thus, the ranking score of LS for a rule antecedent attribute

ai, i = 1, . . . , m, can be defined by
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ScoreLS(ai) =
1

1+ LSi
(3.1)

This is just one of the possible alternatives, other transformation for example, e−LSi ,

may be employed to define the LS-based scores.

The other category of FS methods summarised in Section 2.4.2 conducts the

selection process based on evaluating feature subsets, instead of individual attributes

however. To obtain individual feature scores using any of these techniques the

evaluation procedure needs to be modified. The following presents the modified

version for use in this work. Note that as for the present problem, all entries in the

training instance pool are discrete values by nature, Fuzzy-Rough FS (FRFS) is not

applied here (since it deals with real-valued problems).

3.2.1.1 Rough Set-based FS (RSFS) for Scoring

It is known that the dependency degree γP(Q) captures the dependence of an at-

tribute subset Q on another subset P. Suppose that the subset Q contains the single

consequent attribute z and the subset P contains just one certain antecedent at-

tribute ai, i = 1, . . . , m of a rule in the sparse rule base. Then, the general form of the

dependency degree γ{ai}({z}) between two subsets of attributes as per Eqn. (2.52)

degenerates to one that assesses the importance degree of each individual antecedent

attribute upon which the consequent depends:

ScoreRSFS(ai) = γ{ai}({z}) =

�

�

�POS{ai}({z})
�

�

�

|U |
(3.2)

This is of course, what RSFS exactly does in the first round during its iterative process

of adding attributes to the emerging selected feature subset (starting from an empty

set), determining which attribute is individually speaking, the best to be selected. It

means that to obtain attribute scoring vector using the evaluation function of RSFS,

only one iteration of the FS algorithm is needed to be run.
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3.2.1.2 Correlation-based FS (CFS) for Scoring

Let the number of features be equal to 1, i.e., k = 1 in Eqn. (2.57), the evaluation

criterion used in CFS is then modified to

ScoreC FS(ai) =Q({ai}) = r{z}{ai} (3.3)

The feature subset S is replaced by a single antecedent variable of a given rule,

degenerating to such a simple formula where only the feature-class correlation

remains. This simplification has an intuitive appeal since any degree of correlation

between an individual antecedent variable and a possible consequent reflects the

fact that there is a certain contribution made by the given antecedent towards that

consequent.

3.2.1.3 Consistency-based FS (IRFS) for Scoring

The modification of the consistency measure for scoring individual antecedent vari-

ables lies on the modification of the inconsistency rate (IR). Similar to the last two

methods, the feature subset consisting of a single antecedent is assessed, resulting in

the summation of the IR of all patterns of this antecedent. Note that the more impor-

tant an antecedent variable, the smaller the IR. Hence, the score of each antecedent

ai, i = 1, . . . , m, can be calculated by

ScoreIRFS(ai) =
1

1+
∑

allpat terns IR
(3.4)

where the highest score indicates the most significant antecedent variable amongst

all.

3.2.2 Attribute Weighting

Having computed the scores of individual attributes, using either of the aforemen-

tioned scoring methods, a normalised relative weighting scheme can be readily
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introduced. Thus, all antecedent attributes employed in the rules of a given sparse

rule base can be ranked, each (say, the attribute ai) being associated with a weight:

Wi =
Score∗(ai)

∑

t=1,...,m Score∗(at)
(3.5)

where Score∗ denotes any of the seven types of score (namely, one of the following:

ScoreIG, ScoreRelie f −F , ScoreLS, ScoreLLC FS, ScoreRSFS, ScoreC FS and ScoreIRFS).

Given their underlying definition, the resulting normalised values have a natural

appeal to be interpreted as the relative significance degrees of the individual rule

antecedent attributes, in the determination of the corresponding rule consequent.

Therefore, they can be used to act as the weights associated with each individual

antecedent attribute in the original sparse rule base. Of course, for any implemen-

tation in modifying conventional non-weighted FRI, one and just one of the seven

types of the weight is required. From this viewpoint, this work presents a range of

choices regarding the weighting methods that may be utilised to support and refine

fuzzy interpolative reasoning, as to be described in next chapter.

3.2.3 Illustrative Case Study — Stage 2: Weights Generation

The proposed weights generation mechanism is herein illustrated by continuing the

example of Section 3.1.4 and following the illustration in Section 3.1.5. As indicated

previously, it is only one of the modified feature ranking methods that is required at a

time for one implementation, although any of those methods available may be taken

to assess the relative significance of individual antecedent attributes. Information

gain (IG) is utilised here due to its popularity and the simplicity of demonstration.

Others may be utilised in a similar manner.

In the following, the computational process regarding the weights generation by

the use of IG is explicitly shown, for tailoring it to the illustrative case. Given an

artificial decision table that is derived from a sparse rule base via reverse engineering,

the information gain IGi of a certain antecedent variable ai, i = 1, . . . , m, regarding

the consequent variable z can be calculated, as per its definition in Eqn. (2.48) as

follows:

87



3.3. Summary

IGi = Ent rop y({z})−
∑

v∈Value(ai)

�

�{z}v
�

�

�

�{z}
�

�

Ent rop y({z}v) (3.6)

where {z}v denotes the subset of rules in the artificial decision table in which the

antecedent variable ai has the value v. Repeating the above, the information gains

for all antecedent variables IGi, i = 1, . . . , m can be computed. These values are

then normalised into the attribute weights Wi, i = 1, . . . , m according to the weights

generation scheme described in Section 3.2.2, such that

Wi =
IGi

∑

t=1,...,m IGt
(3.7)

For the example case, the normalised IGs calculated for each antecedent variable

using those 30 training samples (reduced from Table 3.4 by eliminating identical

data) are shown in Table 3.5. The weight of the antecedent attribute Temperature is

relatively higher than those for the other three, which indicates Temperature plays a

more important role in the decision on the sports activity. This can be verified from

examining the five fuzzy rules, where the antecedent variable Temperature appears

in four rules. On the other hand, Humidity and Wind are assigned a very small or

zero-valued weight. In particular, the normalised weight of Humidity is 0, signifying

its irrelevance on the decision in this rule base.

Table 3.5: Normalised Weights Calculated by Information Gains

Antecedent Temperature Outlook Humidity Wind
Normalised Weights 0.5000 0.4515 0.0000 0.0485

3.3 Summary

In this chapter, the first key issue for constructing a weighted FRI algorithm has been

addressed, regarding the automatic generation of the weights of rule antecedent

attributes. In particular, the data used for the weight learning is derived from the

given sparse rule base only, through creating a training instance pool via a reverse

engineering procedure. The individual weights are then evaluated by the use of
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the attribute ranking mechanism extracted and modified from a given FS technique.

The resultant learned weights are uniquely associated with each of rule antecedent

variables, no matter which rule it is involved in. Importantly, the entire weight

learning scheme exploits just the knowledge already available, i.e., the sparse fuzzy

rules in the given rule base, without acquisition of any observations nor that of any

other information.
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Chapter 4

Weighted Transformation-based

Fuzzy Rule Interpolation

A S illustrated in Chapter 3, the weights of individual rule antecedent attributes

appearing in all rules of a given sparse fuzzy rule base can be computed through

a reverse engineering procedure. From this, conventional fuzzy interpolative rea-

soning mechanism where all rule antecedents are unrealistically treated as of equal

significance can be improved. For easy cross-referencing, the original FRI algorithms

with no weighting imposed upon antecedent variables are interchangeably termed

as non-weighted or unweighted methods hereafter. Correspondingly, those modified

ones with weights are called weighted FRI methods.

This chapter presents an investigation into the issue of how weights of rule an-

tecedents are integrated within non-weighted FRI. In general, FRI achieves interpolative

inference given an observation that matches no rules in the given rule base, by the

use of a small number of fuzzy rules which are closer to the observation (in other

words, which have more similarity to the observation than the others). As such,

the first step of FRI is normally the selection of what rules to be used to perform

interpolation. These selected rules are interchangeably termed as the closest or

the nearest neighbouring rules to the observation. The FRI is then executed with

the selected closest rules regardless of the rest in the rule base. As an initial study

of weighting conventional non-weighted FRI, the work is, herein, implemented by

adapting the popular and award-winning scale and move transformation-based FRI

(T-FRI) [Huang and Shen, 2006,Huang and Shen, 2008]. In particular, the weights

are used to modify all components of the T-FRI computation process systematically,

including the closest rule selection and rule interpolation.
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4.1. Weighted Selection of Fuzzy Rules for Interpolation

This chapter is structured as follows. Sections 4.1 and 4.2 present the integration

of antecedent weights within the closest rule selection and rule interpolation in T-FRI,

respectively. In order to further demonstrate the theoretical work of the proposed

weighted T-FRI, Section 4.3 illustrates the working procedure of the methods de-

scribed in the first two sections, by continuing the illustrative example of Chapter 3.

Section 4.4 discusses the key differences between the original non-weighted T-FRI

method and the proposed attribute weighted modification. Section 4.5 describes the

workflow of weighted T-FRI in implementation and a general framework for fuzzy

rule-based inference that is supported by weighted FRI. Finally, Section 4.6 draws a

summary of the work presented in the chapter.

4.1 Weighted Selection of Fuzzy Rules for

Interpolation

Any FRI process starts as an observation o∗ being newly presented to the fuzzy system

does not activate any rule in the sparse rule base, due to no matching (or in certain

FRI-based systems, due to too low level a partial matching). Thus, a neighbourhood

of n (n ≥ 2) closest rules of the observation is required to be chosen in order to

perform rule interpolation. The conventional T-FRI approach to making this choice

is by exploiting the Euclidean distance measured through aggregating the distances

between individual antecedent attributes of a given rule and the corresponding

attribute values in the observation, as per Eqn. (2.20). Now that the weights of

individual attributes have been obtained with a scoring mechanism (derived from the

use of the evaluation function in a feature selection method), the distance between

a given rule r p and the observation o∗ needs to be updated accordingly.

Let W = {Wj| j ∈ 1,2, . . . , m} be the collection of the weights on the antecedent

attributes in the problem domain, with m denoting the number of all antecedent

attributes concerned. Then, the traditional distance measure is modified such that

d̃(r p, o∗, W ) = 1
È

∑m
t=1

�

1−Wt
m−1

�2

s

∑m
j=1

�
�

1−Wj

m−1

�

d(Ap
j , A∗j)

�2

= 1p
∑m

t=1(1−Wt )2

È

∑m
j=1

�

(1−Wj)d(A
p
j , A∗j)

�2

(4.1)
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4.1. Weighted Selection of Fuzzy Rules for Interpolation

where d(Ap
j , A∗j) is calculated according to Eqn. (2.21) which is herein recited below

for completion:

d(Ap
j , A∗j) =

�

�

�Rep(Ap
j )− Rep(A∗j)

�

�

�

maxA j
−minA j

(4.2)

Note that d(Ap
j , A∗j) represents the normalised result of the otherwise absolute

distance; maxA j
and minA j

denote the maximal and minimal value of the attribute

a j, respectively. As stated previously, triangular membership functions are used

throughout the reasoning process, the representative value of a fuzzy set can be

simply calculated by averaging the vertices of the triangular membership function,

such that

Rep(A) =
v1 + v2 + v3

3
(4.3)

where v1 and v3 represent the two extreme points of the support of the fuzzy set and

v2 denotes the normal point where the member value reaches 1.

Recall that in Eqn. (4.1), m is the total number of rule antecedents in the rule base.

Thus, and m≥ 2 since there is no need to assign any weight if all rules in the rule base

involve just the same single antecedent attribute. The term (m−1) in the first part of

this formula is for local weight normalisation purpose, but it is cancelled out in the

overall equation. In so doing, those n closest rules whose antecedent attributes are

deemed more significant (than the rest) will be selected with priority. This is because

such attributes will make less contribution (i.e., (1−Wj)d(A
p
j , A∗j), j = 1, . . . , m) to

the aggregated distance d̃(r p, o∗, W ) given their relatively larger weight values.

The computation of the distance d̃(r p, o∗, W ) is carried out to measure the relative

closeness of the rules to the observation. Under the condition where there is no rule

matching the given observation, the attribute weighted FRI is triggered. Hence, the

aggregated distance is calculated as per Eqn. (4.1) between the individual elements

of the observation and each corresponding rule antecedent attribute. Given this,

those n rules that have resulted in the n smallest distance values are selected.

Note that the normalisation term 1p
∑m

t=1(1−Wt )2
in the above is a constant and

therefore, can be omitted in the process of executing fuzzy rule interpolation. This is
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4.2. Weighted Rule Interpolation with T-FRI

because selecting the closest rules only requires information on the relative distance

measures.

In any potential practical application of an inference system, it is important for

the underlying reasoning mechanism to be robust or stable. It is therefore, interesting

to examine and establish the stability of the proposed method for weighted selection

of fuzzy rules. Given a certain application, once a rule base (either predefined by

experts, learned from data, or a mixture of both), an input (unmatched) observation,

a distance metric (generically defined as per Eqn. (4.1)), and the thresholding

number of nearest neighbours are provided, the rules which are to be selected as

the nearest neighbours of the observation are in general always the same subset.

There is only one extreme case where the distance measures returned are identical

regarding two or more rules on the same observation such that the number of the

closest neighbours including these and any other rules that are of shorter distances

is greater than the given threshold. In this case, a random choice of a subset of the

closest rules is made till the total number of the selected being the set threshold. Of

course, the likelihood of such extreme cases taking place is very low. This ensures

that in general, the proposed method is robust (see further discussion about this

later in Section 5.2.2.2).

4.2 Weighted Rule Interpolation with T-FRI

In sharp contrast with conventional T-FRI techniques, the significance degrees of

individual conditional attributes (captured as artificially calculated attribute weights)

are herein used to compute the (interpolated) consequent given an unmatched ob-

servation. Further to the procedure for the closest rules selection as discussed above,

it is naturally desirable for the resulting weights to be integrated throughout the

entire interpolation process. That is, procedures for intermediate rule construction,

transformation factors calculation and eventual interpolative transformation are all

expected to take advantage of the weights to improve interpolation performance.

Details for implementing such weighted procedures are shown below.

4.2.1 Weighted Construction of Intermediate Rule

With the attribute weighting method as introduced previously in Chapter 3, all con-

ditional attributes can be ranked with respect to their estimated relative significance
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4.3. Illustrative Case Study — Stage 3: Weighted T-FRI

levels, reflecting their potential implication upon the derivation of the (interpolated)

consequent. This allows for the development of a computational means to implement

an improved version of T-FRI, where weights are integrated in all calculations during

the transformation process, including the initial construction of the intermediate

rule. Without unnecessarily detailing the entire construction process of the weighted

intermediate rule, which is similar to that of the conventional approach (see Sec-

tion 2.2.3.2), only the weighting on the consequent and the shift factor during the

modified process are presented here:

˜̂
wi

z =
m
∑

j=1

Wjŵ
i
j, δ̃z =

m
∑

j=1

WjδA j
(4.4)

Obviously, these will degenerate to those computed as per Eqn. (2.29) and Eqn. (2.30)

in Section 2.2.3.2, when all attributes are equally regarded in terms of their signifi-

cance.

4.2.2 Weighted Transformation

Given the above method for constructing the weighted intermediate rule, the scale

and move factors originally provided in Eqn. (2.34) now become:

s̃z =
m
∑

j=1

WjsA j
, m̃z =

m
∑

j=1

WjmA j
(4.5)

From this, if an observation that does not match any rule in the sparse rule base

is presented, an interpolated fuzzy value B∗ for the consequent attribute can be

obtained by computing the transformation T (B̃′, s̃z, m̃z), in the exactly same way as

given in Section 2.2.3.2.

4.3 Illustrative Case Study — Stage 3: Weighted

T-FRI

This section continues the illustrative case study of Section 3.1.4 for weighted T-FRI,

including both the process of weighted closest rule selection and that of weighted
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4.3. Illustrative Case Study — Stage 3: Weighted T-FRI

rule interpolation, when providing an observation that fails to match any rules in the

rule base. To ease cross-referencing, the resulting weighted T-FRI using the weights

learned by the use of information gain is hereafter referred to as IG-T-FRI, unless

otherwise stated.

Recall the illustrative case where a fuzzy classification task is involved to deter-

mine which sports activity is to be undertaken (choosing from volleyball, swimming

and weight lifting) given the status of four conditional attributes (i.e., temperature,

outlook, humidity and wind). Suppose that the triangular membership functions

adopted in this case are shown in Fig. 4.1, which are used to represent all the

antecedent variables for the original data set as given in [Yuan and Shaw, 1995].

Figure 4.1: Definition of linguistic terms for domain variables.

In particular, the variables Outlook and Temperature adopt the membership func-

tions defined on the left of the figure, where A, B, C stand for Sunny, Cloudy, Rain,

or Hot, Mild, Cool, respectively in relation to the two variables. Humidity and Wind

adopt the membership functions on the right, with D, E standing for Humid, Normal

or Windy, Not Windy, respectively. Note that the attribute domain of each variable

where the numerical values are observed has been normalised in the range of 0

to 1. The consequent variable denotes the classification outcome. Therefore, it is

computationally simple to adopt the representation of singleton fuzzy sets in the

description of the decision.

Suppose that the observation of Table 4.1 (involving only singleton fuzzy sets that

indicate the observed numerical values) is presented, with the membership values

for the observation shown in the bottom row of the table. This does not match any

of the rules in the sparse rule base. Thus, no rule in the sparse rule base can be

fired directly and FRI is applied to derive a conclusion. Both the weighted FRI (i.e.,

IG-T-FRI) and the original T-FRI are employed here for comparison.
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4.3. Illustrative Case Study — Stage 3: Weighted T-FRI

For simplicity, the minimal number (i.e., two) of the nearest neighbouring rules

are chosen for the implementation of each interpolation method. Given the rule

base, the observation and the calculated attribute weights as of Table 3.5 (which

are implemented with information gains), the two closest rules selected by T-FRI

and those by IG-T-FRI are different, with Rules 4 and 5 selected by T-FRI following

Eqn. (2.20), and Rules 3 and 5 by IG-T-FRI using weighted distance of Eqn. (4.1),

respectively.

Using the two selected rules (Rules 3 and 5) via IG-T-FRI, applying the weighted

T-FRI method leads to the following intermediate rule:

If Temperature is (0.78,0.91,1.03) and Outlook is (0.31,0.47,0.47) and

Humidity is (0.50,0.50,0.50) and Wind is (0.20,0.66,0.66),

then Decision is (2.49,2.49,2.49).

Differently, the intermediate rule created by the two closest rules, Rules 4 and 5,

using T-FRI is:

If Temperature is (0.61,0.91,1.21) and Outlook is (0.42,0.42,0.42) and

Humidity is (0.50,0.50,0.50) and Wind is (0.01,0.51,1.01),

then Decision is (2.51,2.51,2.51).

Given the simplified case where observations are all singleton fuzzy sets, the

above intermediate rules imply that the final interpolated result with IG-T-FRI is B̃∗ =
(2.49, 2.49, 2.49), using the IG-guided transformation T (B̃′ = (2.49, 2.49, 2.49), s̃z =
0, m̃z = 0), and that the result with the standard T-FRI is B∗ = (2.51, 2.51, 2.51), using

a transformation of T(B′ = (2.51,2.51,2.51), sz = 0, mz = 0). From this, through

defuzzificaiton (to obtain a classification result), the conclusions drawn by the use

of these two different methods are Weight lifting and playing Volleyball, respectively.

Clearly, the outcome of applying IG-T-FRI has a better intuitive appeal given the

particular observation. Indeed, recall the original rule base for this illustrative case

in Section 3.1.4 that is taken from [Yuan and Shaw, 1995], the observation used for

illustration actually matches Rule 6 (i.e., the one purposefully removed to form a
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4.3. Illustrative Case Study — Stage 3: Weighted T-FRI

sparse rule base). This results in the same decision (as the ground truth) if fired as

the interpolated consequent, whilst conventional T-FRI leads to an incorrect outcome.

The workflow of both the construction of the intermediate rule and the computa-

tion of the interpolative results using the original T-FRI and that using the IG-T-FRI

are shown in Fig. 4.2. The left hand side of the figure illustrates the former and the

right does the latter. In particular, the fuzzy sets of the antecedent variables taken by

the selected closest rules, observation and the intermediate rule are shown in the

first row, while the interpolated consequent values are displayed in the last. The

observation of each antecedent variable and the consequent of the selected rules are

both illustrated using singleton fuzzy sets for simplicity.

For T-FRI, on the left of Fig. 4.2, the fuzzy sets in dashed lines represent the

variable values in Rule 4, while those in dash-dotted lines represent the sets in Rule

5. For IG-T-FRI, on the right of the figure, the fuzzy sets in dashed lines represent

the variable values in Rule 3, and those in dash-dotted lines represent the sets in

Rule 5. The dotted-lines represent the (fuzzy) values of the computed intermediate

antecedent and consequent variables.

Note that in general and also, as in this simple case, a certain antecedent variable

may not be present in both selected rules (e.g., Temperature and Wind are involved in

Rule 5 but missing in Rule 3). In such situations, the corresponding value of the given

observation is employed to replace the missing one in the closest rules, facilitating

the interpolation. This makes logical sense as the missing value of an antecedent

variable in a rule indicates that any value in its domain may be matched, so the

observation naturally provides the best replacement guided by the representative

value. Note also that since the transformation factors in this very simple illustrative

case are zero, the interpolated consequents are also shown in dotted lines in the last

row of Fig. 4.2.
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Figure 4.2: Workflow of illustrative example.
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4.4. Comparison with Original Non-weighted T-FRI

4.4 Comparison with Original Non-weighted T-FRI

As a weighted extension to the conventional T-FRI that is described in [Huang and

Shen, 2006,Huang and Shen, 2008], the general rule interpolation process of this

extended algorithm remains the same as its original. Note that the term of weight

is a little over-worked herein, since it has already appeared in the conventional T-

FRI, namely wi
j, i = 1, . . . , n, j = 1, . . . , m as specified in Eqn. (2.22). However, those

weights are assigned for the sake of the construction of the intermediate rule, through

direct comparison between the conditional attributes of a rule and the observation.

This is completely different from the term of attribute weight Wj, j ∈ {1, . . . , m},
that is focused on here, which reveals the relative importance of each conditional

attribute underpinning the original data. In particular, the weight Wj associated with

a certain conditional attribute a j is computed independent of, and fixed throughout,

the interpolative process, no matter which original rule is under consideration. They

are artificially calculated without acquisition of any real observations nor comparison

between a given observation and any rules. Yet, in the original T-FRI, the weight wi
j

computed with respect to a certain conditional attribute is generally of a different

value when a different fuzzy rule r i is addressed.

Importantly, when all antecedent attributes are assumed to be of equal signif-

icance, namely when all weights are equal, the above modified fuzzy rule-based

interpolative process degenerates to the conventional T-FRI. Mathematical proof for

this is straightforward and can be easily justified. All that is required is to recall the

weighting procedure regarding the individual rule antecedent attributes as described

in Section 3.2. Note that the weight of each attribute has been normalised over the

ranking scores derived from a given feature ranking method, which results in an

identical weight for each of rule antecedent being Wj = 1/m, j = 1,2, . . . , m if all

weights are assumed to be equal.

4.5 Fuzzy Rule-based Inference Supported by

Weighted Interpolative Reasoning

Summing up the above developments, together with the weight learning mechanism

as proposed in Chapter 3, a weighted FRI scheme can be implemented. Fig. 4.3

illustrates the workflow of such weighted T-FRI.
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Figure 4.3: Workflow of weighted transformation-based fuzzy rule interpolation.

As indicated previously, and also clearly shown in this figure, the entire system

only requires the given sparse rule base for generating the weights of rule antecedent

attributes and for performing weighed fuzzy interpolative reasoning when provided

with an observation. In addition, the weights which are derived from the evaluated in-

dividual antecedent scores are integrated throughout the conventional non-weighted

T-FRI, covering the selection of the closest rules, the construction of an intermediate

rule and the transformation process for producing the interpolated consequent. Such

an integrated system works by emphasising the relative significance levels of the

individual rule antecedent attributes in their use to derive more accurate interpolated

consequent. The working of this weighted T-FRI has been illustrated through a case

study, and further experimental verification of this will be shown later.

Traditionally, fuzzy rule-based reasoning systems infer an outcome to an unknown

input or observation by firing fuzzy rules, typically using Zadeh’s compositional rule

of inference (CRI). Such inference works via assuming that at least one of the rules

has a full or partial matching with the observation. If however, no rules have been

found to match the observation, the conventional inference systems may fail to

perform reasoning. Thus, extending a traditional system by emploing an FRI method
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4.5. Fuzzy Rule-based Inference Supported by Weighted Interpolative Reasoning

Figure 4.4: Fuzzy rule-based inference system supported by weighted FRI.

in general and the proposed attribute weighted FRI in particular will significantly

reinforce the power of fuzzy rule-based systems. Fig. 4.4 shows the workflow of a

generic fuzzy rule-based inference system supported by weighted rule interpolation.

Note that the work so far has utilised weighted T-FRI to implement weighted inter-

polative reasoning mainly due to the popularity and availability of T-FRI. However,

other alternative FRI approaches may also be modified with attributes weighted

using the same weighting techniques. This point will be extensively addressed in

Chapter 6.

Continuing the case study example employed previously, the working procedure

of the above presented fuzzy rule-based inference system can be briefly illustrated

also. Recall the rule base in Section 3.1.4 used for fuzzy reasoning in general and

weighted FRI inference in particular for determining what sports activity to do.

Suppose that here comes another observation o∗ with the conditional attribute values

observed as follows:
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o∗ : Temperature = 1.0,
Outlook = 1.0,
Humidity = 0.0,
Wind = 0.2.

Given the linguistic terms for each of the domain variables as specified in Fig. 4.1,

the membership degrees of this new observation belonging to different fuzzy terms

of each variable can be determined, resulting in:

o∗ : Temperature (Hot=0.0 Mild=0.0 Cool=1.0)
Outlook (Sunny=0.0 Cloudy=0.0 Rain=1.0)
Humidity (Humid=1.0 Normal=0.0)
Wind (Windy=0.8 Not Windy=0.2)

This means that the observation can be stated as follows:

Temperature is Cool, Outlook is Rain, Humidity is Humid and Wind is Windy.

When the fuzzy rule-based system illustrated in Fig. 4.4 is provided with this

observation and the rule base (bar Rule 6) as shown in Section 3.1.4, a rule-matching

check is carried out first to determine which technique (CRI or weighted FRI) to be

employed next. In this example, the observation happens to match Rule 3, which

results in the conclusion for sports activity being Weight lifting. If however, an

observation is given in the situation as previously shown in Table 4.1, no rule has

been matched, which leads to the execution of weighted FRI (more specifically,

weighted T-FRI) to derive a reasonable outcome, as illustrated earlier in Section 4.3.

4.6 Summary

This chapter has dealt with the second key issue for building weighted FRI systems

by integrating learned weights of rule conditionals with all important procedures

of T-FRI. It has also highlighted the theoretical differences between the weighted

and unweighted approaches. This resulting weighted T-FRI has been combined with

classical fuzzy rule-based inference, leading to a system framework that potentially

permits efficient rule firing when there is a rule matching a given observation and

effective interpolation when there are no such matching rules.
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Note that in the above description, no specification of which attribute ranking

mechanism to use for generating the required weights is made. Indeed, the proposed

technique is independent of the feature evaluation method, any of the attribute

ranking methods available may be taken to assess the relative significance of individ-

ual antecedent attributes. Thus, the proposed weighted FRI offers flexibility in its

implementation.

In addition, the weighted FRI system has been illustrated by the use of the same

case study introduced in Chapter 3. The illustrative case is very simple but serves

the purpose to explain the workflow of the weighted T-FRI. It involves only a small

number of instances and a rather specific rule base. It is therefore not surprising

that similar interpolated values may result by the use of either the original T-FRI

or IG-T-FRI (which is one of the specific implementation of the generic framework).

Nonetheless, the case demonstrates the strength of the proposed approach in that

IG-T-FRI is able to produce a more intuitive outcome than the traditional unweighted

T-FRI. The next chapter will systematically evaluate the work proposed so far using a

range of significantly more complicated datasets over different application problems,

as well as a theoretical analysis of computational complexity.
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Chapter 5

Evaluation and Application of

Attribute Weighted T-FRI

F UZZY rule interpolation methods have the potential in supporting reasoning in

sparse fuzzy rule bases. The evaluation of them over realistic applications is

essential to reveal the actual efficacy of such a system when only a sparse rule bases

is available. This chapter evaluates the proposed framework for weighted fuzzy

interpolative reasoning. This includes the performance evaluation of implemental

systems, for learning the weights of rule antecedent attributes and more importantly,

for integrating weights within the scale and move transformation-based FRI (T-

FRI). Two generic application problems, classification and prediction, are taken into

consideration to facilitate the evaluation, in comparison to alternative approaches.

Fuzzy interpolation techniques are desired to give prompt responses when they

are implemented in time critical applications. Therefore, the complexity analysis in

terms of time is a significant issue for any interpolation methods. To address this

issue, the chapter will firstly analyse the computational complexity of the proposed

approach from a theoretical viewpoint.

5.1 Analysis of Computational Complexity

To aid in performing computational complexity, the pseudo code of the entire

weighted interpolative reasoning system is presented first. This is then followed by a

systematical analysis of the time complexity.
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5.1.1 Pseudo Codes of Algorithms

As reflected by Fig. 4.4 (in Section 4.5), given a fuzzy rule base R and an observation

o∗, most of the conventional fuzzy rule-based systems may be able to generate a

required consequent by the use of compositional rule of inference (CRI) firing the

matching rule(s). If however, the rule base is sparse, where no rule matches the

observation, fuzzy interpolative inference is utilised as an alternative reasoning

mechanism for deriving an estimated consequent. The general framework proposed

integrates both conventional CRI and a novel weighted T-FRI mechanism that is

guided with the weights learned and assigned to the rule conditionals. Through this

integration, it is expected to obtain more accurate inference results by exploiting

the advantage of CRI for matched observations and that of the weighted FRI for

unmatched ones.

The detailed methodology of weight learning from rule base and that of weighted

T-FRI have been presented in Chapter 3 and Chapter 4, respectively. Alg. 5 summarises

the integrated framework in pseudo code. First of all, a check is made to determine

whether the observation is matched with any rule in the given rule base. If there is

at least one rule being found to match the observation, the result will be obtained by

firing the matched rule(s). Otherwise, the weighted T-FRI is used to make inference

to estimate the consequent.

For the weighted T-FRI in particular, as illustrated in Fig. 4.3 (of Section 4.5), the

weights are first learned by the use of attribute evaluation from the sparse rule base

only, without requiring any observations. Then, given the rule base and the weights

derived from it, the weighted T-FRI algorithm performs the required inference,

through weighted search of the closest neighbouring rules of the observation and

weighted interpolation with the selected closest rules. These are reflected in Lines 8

and 13 respectively, in Alg. 5, with the details for these two subroutines presented in

Alg. 6 and Alg. 7 below, respectively.
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Algorithm 5 Fuzzy Sparse Rule-based Inference
Input:

• Rule base R= {r1, . . . , rN}, of N rules

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditional attributes

• Cardinalities of fuzzy partitions C = [c1, . . . , cm], over attribute domains

• Lists of fuzzy values F = [g1, . . . , gm], where gi = { f1, . . . , fci
} per attribute

• Number of closest rules n
Output:

• Outcome in crisp value
1: for i = 1 to i = N do
2: Matching o∗ against rule r i;
3: end for
4: if matched with at least one rule then
5: Fire matched rule(s) using CRI to obtain required consequent Z∗ for o∗;
6: else
7: if o∗ is first unmatched ever then
8: Learn weights from sparse rule base R: W = LW FR(R, C , F);
9: Save W ;

10: else
11: Recall attribute weights W ;
12: end if
13: Execute weighted FRI to compute B∗ =WeightedT FRI(R, o∗, n, W );
14: end if
15: Defuzzify B∗ as crisp real number;
16: Return Crisp-valued outcome
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Algorithm 6 Learning Weights from Sparse Rule Base: W = LW FR(R, C , F)
Input:

• Rule base R= {r1, . . . , rN}, of N rules

• Cardinalities of fuzzy partitions C = [c1, . . . , cm], over attribute domains

• Lists of fuzzy values F = [g1, . . . , gm], where gi = { f1, . . . , fci
} per attribute

Output:
• Normalised attribute weights W

1: Initialise training instance pool T I P = R;
2: for i = 1 to i = N do
3: Check if there are any missing conditionals in rule r i;
4: if no missing then
5: Continue;
6: else
7: for each missing conditional ak in r i do
8: Replacing r i in T I P with ck copies of r i;
9: Assigning ak in each copy with one of different fuzzy values in gk;

10: end for
11: end if
12: end for
13: Remove identical instances in T I P;
14: Calculate scores for each individual antecedent attribute using one of these:

ScoreIG = IG(T I P) or ScoreRelie f −F = Relie f − F(T I P) or ScoreLS = LS(T I P)
or ScoreLLC FS = LLC FS(T I P) or ScoreRSFS = RSFS(T I P) or ScoreC FS =
C FS(T I P) or ScoreIRFS = IRFS(T I P);

15: Calculate normalised attribute weights:

Wi =
Score∗(ai)

∑

t=1,...,m Score∗(at)

16: Return Normalised attribute weights W
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Algorithm 7 Weighted T-FRI B∗ =WeightedT FRI(R, o∗, n, W )
Input:

• Sparse rule base R= {r1, . . . , rN}, of N rules

• Observation o∗ = {A∗1, . . . , A∗m}, over m conditionals

• Number of closest rules n

• Conditional weights W = (W1, . . . , Wm)
Output:

• Interpolated consequent B∗

– Closest Rules Selection:
1: for i = 1 to i = N do
2: Calculating weighted distance d̃(o∗, r i, W ) between o∗ and r i;
3: end for
4: Select n rules of shortest distance(s);

– Intermediate Rule (r ′) Construction:
5: Obtain weights wi

j, i = 1, . . . , n, j = 1, . . . , m, as computed by original T-FRI to
jth conditional attribute of ith selected rule, such that

wi
j =

1
1+ d(A∗j, Ai

j)

6: Compute conditional attribute values of intermediate rule A′j, j = 1, 2, . . . , m, by
linearly aggregating corresponding weighted conditional values over selected n

rules using normalised weights ŵi
j =

wi
j

∑n
t=1 wt

j
;

7: Calculate weight w̃i
z for each consequent per selected closest rule, by accumulat-

ing normalised weights contributed by ŵi
j, such that

w̃i
z =

m
∑

j=1

Wjŵ
i
j

8: Construct fuzzy term Z ′ for consequent attribute of intermediate rule, by aggre-
gating consequent values of n closest rules z i, i = 1, . . . , n, which are respectively
weighted by w̃i

z;
– Scale and Move Factor Calculation:

9: for each conditional attribute do
10: Obtaining scale rate sA j

that modifies A′j into Â′j such that it maintains same
scale as corresponding component in o∗;

11: Obtaining move ratio mA j
that modifies Â′j for it to maintain same position as

corresponding component in o∗;
12: end for

(see next page for continuation)
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(continuation of Algorithm 3)
– Scale and Move Transformation:

13: Calculate overall transformation factors for B′ to ensure analogy, by aggregating
corresponding weighted scale and move factors, such that

s̃z =
m
∑

j=1

WjsA j
m̃z =

m
∑

j=1

WjmA j

14: Compute final interpolated outcome B∗ by applying scale and move factors to B′,
such that B∗ = T (B′, s̃z, m̃z);

15: Return B∗

5.1.2 Time Complexity Analysis

This subsection analyses the computation complexity of the proposed framework for

fuzzy sparse rule based inference system which is supported by weighted T-FRI. Recall

Alg. 5, 6 and 7, the time complexity of the overall approach can be estimated in the

following. In particular, the two key sub-procedures, namely learning weights from

sparse rule and weighted T-FRI, are analysed first, which are then collected together

to derive the overall computational complexity. The notations for describing the

algorithmic variables involved are the same as those specified in the Input statements

of each algorithm.

5.1.2.1 Time Complexity of Learning Weights from Sparse Rule Base

As shown in Alg. 6, the initialisation and result return in Line 1 and Line 16 cost O(1)
of computation time. The for loop in Lines 2 - 12 repeats N times. In particular, Line

3 takes O(m). Without losing generality, suppose that there are conditional attributes

missing in a certain rule. Consider the worst case, where only one conditional

is not missing from the rule, the for loop in Lines 7 - 10 repeats m − 1 times,

costing O(c) for each, where c = max{c1, . . . , cm}. The computation time of Line 13

involves the number of entries in the resultant training instance pool, which costs

O((size(T I P)− 1)!). Assume that the time complexity of the method for attribute

evaluation is T(At t riEval), and note that the computation cost for normalised

weights is O(m). Thus, in total, the time complexity of Alg. 6 is
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T (LW FR)

= 2O(1) + N × [O(m) + (m− 1)O(c)] +O((size(T I P)− 1)!)

+ T (At t riEval) +O(m)

= O(Nmc) +O((size(T I P)− 1)!) + T (At t riEval)

(5.1)

5.1.2.2 Time Complexity of Weighted T-FRI

In weighted T-FRI, Lines 1 - 3 of Alg. 7 cover a for loop which costs N ×O(m) of

computation time, and Line 4 takes O(N 2) for sorting. Lines 5, 6 and 7 lead to a time

cost of O(mn) each, as they involve linear computation for every jth conditional

attribute of the ith selected closest rule (i = 1, . . . , n, j = 1, . . . , m). Line 8 requires

O(n) time. Lines 9 - 12 form a for loop with each step in the loop (i.e., Line 10 or

11) taking a unit time of O(1), and thus, the entire loop costs O(m) of computation

time. Line 13 takes O(m) as the calculation of the transformation factors takes linear

time with regard to the number of conditional attributes. Finally, the computation

of the required interpolated result and returning it as shown in the last two lines

take O(1) time each. Note that the number of the closest rules required to perform

interpolation is commonly set to n = 2 (or a small integer otherwise) in the existing

literature (which is also experimentally justified later in this thesis). The total time

complexity of weighted T-FRI is therefore, estimated to be

T (WeightedT FRI)

= N ×O(m) +O(N 2) + 3O(mn) +O(n) + 2O(m) + 2O(1)

= O(N(m+ N))

(5.2)

5.1.2.3 Overall Computational Complexity

Algorithm 5 outlines the fuzzy sparse rule-based inference process, which invokes

two subroutines: weights learning scheme and weighted T-FRI. Given the above

analysis regarding the time complexity of these two sub-procedures, it is ready to
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assess the overall computational complexity of a system implementing the entire

framework. The starting for loop in Lines 1 - 3 repeats N times (N being the number

of the rules in the rule base), each of which costs O(m) of computation time. The if

statement in Line 4 takes O(m) as well. Firing matched rules in Line 5 only requires

a unit time of O(1), otherwise, the worst case time complexity will reach the sum

of T (LW FR) + T (WeightedT FRI). The close up step for defuzzification and return

statements costs a unit time of O(1) for each. This results in the total time complexity

(in the worst case):

Tworst

= N ×O(m) +O(m) + T (LW FR) + T (WeightedT FRI) + 2O(1)

= O(Nmc) +O((size(T I P)− 1)!) +O(N(m+ N)) + T (At t riEval)

(5.3)

Note that the time complexity of attribute evaluation is not detailed here as

the employment of such an algorithm is independent of the FRI inference process.

Naturally, an evaluation method which has less time consumption is preferred for

use. As can be seen in the experimental evaluation, on practical classification and

prediction applications that are to be shown next, the use of which evaluation method

may not cause much difference upon the accuracy. Hence, the choice of an attribute

evaluation mechanism can be made with respect to their computational simplicity.

For comparison, the time complexity of the conventional T-FRI procedure [Huang

and Shen, 2006,Huang and Shen, 2008] is also checked here, which is T (T FRI) =
O(N(m + N)). This is exactly the same as the complexity of the weighted T-FRI

because the attribute weights in the weighted version are not computed within the

interpolative process itself. However, regarding the entire rule-based inference system

which employs just the original T-FRI for interpolative reasoning, without involving

attribute weight learning, the worst total time complexity becomes: Tworst-TFRI =
N ×O(m) +O(m) + T (T FRI) + 2O(1) = O(mN +N 2), which is of course lower than

that required by the weighted version and which is expected.
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5.2 Evaluation with Applications to Classification

and Prediction Problems

Experimental evaluation of the proposed work so far is conducted on realistic classi-

fication and prediction tasks over a range of datasets.

5.2.1 Common Experimental Set-up

Whilst different applications may involve different settings, the common set-up for

both application tasks are presented first.

5.2.1.1 Fuzzy Rule Base Generation

The rule bases have been assumed to be given for the theoretical analysis of the

proposed work. However, in practice, it may be difficult and even unrealistic to

suggest that a rule base is readily available from domain experts. It is often required

to generate rule bases in the first place for a practical application (and evaluation).

In this work, the rules used to perform both rule firing (through CRI) and rule

interpolation are learned from the raw data by the use of the classical method

of [Wang and Mendel, 1992], after fuzzification. The procedure of fuzzifying input

variables will be explained later. Detailed procedure of this rule induction technique is

summarised in Appendix A, which is employed herein forming a common ground for

fair comparison. However, if preferred, more advanced rule induction mechanisms

(e.g., those implemented with evolutionary algorithms) may be exploited to produce

a more compact and accurate rule base.

5.2.1.2 Experimental Methodology

To minimise the potential influence of noise in judging the classification or prediction

quality, experimental results are obtained by averaging the outcomes of repeated

k-fold cross validation (CV) per classification or prediction dataset. In particular, the
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classification is conducted in 10 times 10-fold CV while the prediction is running in

10 times 5-fold CV for each dataset.

The experimental evaluation on k-fold CV is commonly used in the literature.

That is, an original dataset is partitioned into k subsets of data objects, of which

a single subset is retained as the testing data for the classifier, and the remaining

(k− 1) subsets are used for training. In particular, k is often set to 5 or 10. Such CV

process can be repeated for many times (say, ten). The 10 sets of results are then

averaged to produce a single classifier estimation. The repeated k-fold CV is taken in

terms of its advantage over random subsampling, which is that all objects are used

for both training and testing in multiple times for a statistically evaluation [Qu et al.,

2018].

In general, the training phase generates the rule base required for the subsequent

inference (namely rule firing or rule interpolation) and the attribute weights that

may be needed for the weighted interpolative reasoning, while the performance is

assessed in terms of classification or prediction accuracy over the testing data. In

each test, a testing sample is checked against the rules within the rule base first. If

there is no rule matching the observation, FRI is applied to draw inference, using both

the conventional T-FRI and the attribute weighted T-FRI to facilitate comparisons.

The weighting scheme used in classification and prediction will be specified later.

Nevertheless, throughout all the experiments carried out, for feature evaluation the

implementation of all the attribute weighting methods adopt the existing component

tools from the Feature Selection Library (MATLAB Toolbox) [Roffo et al., ]. If desired,

several parameters of these methods may be tuned in order to potentially optimise the

solution for each particular problem. However, for fair comparison, the experiments

conducted herein do not attempt to exhaustively tune the parameters but use the

default values as set in the toolbox.

5.2.2 Classification

This section presents a systematic experimental evaluation of the proposed attribute

weighted T-FRI for dealing with classification problems. It first reports on the results

of performing pattern classification over ten benchmark datasets. Classification

results are compared with those obtained by: (i) the state-of-the-art T-FRI; and (ii)

114



5.2. Evaluation with Applications to Classification and Prediction Problems

the standard rule-based reasoning via the application of CRI, without involving rule

interpolation but directly firing those (fully or partially) matched rules. Then, the

robustness and effectiveness of the new approach is also empirically demonstrated

by observing the following:

(i) The analysis of confusion matrices obtained for a specified case study.

(ii) The classification accuracy in relation to the number of the closest rules

selected for interpolation.

(iii) The consistency and efficiency of utilising different attribute evaluation

methods in implementing weighted T-FRI.

(iv) The effect of using fine-tuned membership functions in defining the fuzzy

values involved in the rules.

5.2.2.1 Datasets and Particular Set-up for Classification Evaluation

A. Datasets

Ten benchmark datasets are taken from the UCI machine learning [Dheeru and

Karrai, 2017] and KEEL (Knowledge Extraction based on Evolutionary Learning)

dataset repositories [Alcalá-Fdez et al., 2011]. The details of these are summarised

in Table 5.1. Apart from their popularity for evaluation of classification performance,

these ten datasets are chosen as the attributes of different numbers are involved

in different task, in order to fully assess the influence of weighting on individual

attribute in fuzzy interpolative reasoning.

B. Fuzzy Values for Variables in Fuzzy Rules

As stated previously, triangular membership functions are employed here unless

otherwise stated. They are used to represent the fuzzy values of the antecedent

attributes. For each problem, the consequent attribute is designed to take a singleton

fuzzy set (which is equivalent to a discrete crisp value), representing a certain

class label. Whilst different antecedent attributes have their own underlying value

domains, these domains are normalised to be within the common range of 0 to 1

and consisting of three qualitatively distinct fuzzy values, as shown in Fig. 5.1. Such

a simple fuzzification is used in the main body of the experiments for simplicity as
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Table 5.1: Datasets Used for Classification

Dataset #(Attributes) #(Classes) #(Instances)
Iris 4 3 150
Diabetes 8 2 768
Phoneme 5 2 5404
Appendicitis 7 2 106
Magic 10 2 1902
NewThyroid 5 3 215
Banana 2 2 5300
Haberman 3 2 306
BUPA 6 2 345
Hayes-Roth 4 3 160

Figure 5.1: Membership functions defining antecedent attribute values for classifica-
tion.

well as for fair comparison, with no optimisation of the value domain carried out. Of

course, if fine-tuned membership functions are available and used, the classification

performance can be expected to further improve (as to be illustrated later).

The fuzzified variables of attributes are then able to facilitate the generation of

fuzzy rule bases from the data, as indicated in Section 5.2.1.1. Prior to applying the

originally learned rule base to infer an outcome, an average 20% of the rules are

purposefully removed randomly in order to make the resultant rule base sparser, and

hence, to validate the effectiveness of rule interpolation.

C. Weighting Scheme Used for Classification

Attribute weights are derived from the use of each of the following five ranking

methods (one at a time of course), Information Gain (IG), Relief-F, Laplacian Score

(LS), Local Learning-based Clustering for Feature Selection (LLCFS) and Rough

Set-based Feature Selection (RSFS). Such selection from the available approaches
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includes both types of the attribute evaluation scheme, individually or group-based

owing to their availability. Given the rule base learned from the training data

partitioned from the cross validation, each of the employed weighting scheme is

performed using the artificial training data generated from the sparse rule base via

the reverse engineering procedure.

D. Number of Closest Rules for Interpolation

The main body of this experimental study is based on the use of n = 2 closest

rules to perform rule interpolation. However, a series of experiments are also carried

out by varying the number of the closest rules selected for interpolation (see part C

in the next subsection). In particular, 10 times 10-fold CV is adopted for each of the

5 different cases where the number of the closest rules selected is set to 2, 3, 4, 5, 6,

respectively.

5.2.2.2 Analysis of Results

A. Classification Accuracy

Table 5.2 shows the average classification accuracies, and standard deviations

(SD), which are calculated by averaging the 10 times 10-fold CV, for each of the

seven compared approaches. In this table, CRI is the column showing the accuracies

achievable using CRI based on the sparse rule base; Ori lists the accuracies obtained

using the conventional T-FRI, with the rest naming schemes used being obvious

and self-explanatory (e.g., IG stands for the accuracies achieved by the proposed

approach with the antecedent attributes in the rules weighted by their corresponding

information gains); and GUIDED AVERAGE presents the accuracies obtained by

averaging the performances of the five attribute weighted T-FRI methods.

A comparison with the use of CRI is included herein to demonstrate the power of

FRI in general and that of weighted FRI in particular in performing fuzzy reasoning,

both of which significantly outperform CRI in all the problems that involve a sparse

rule base. This may be expected since a fuzzy system implemented with CRI alone

cannot draw any conclusion when an observation does not match any of the rules in

the rule base. As already indicated, no attempt is made to optimise the fuzzification of

any attribute domains. Thus, the classification rates are generally not very impressive.

However, this is not the point of this experimental investigation. The point is to
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compare the relative performances of different approaches, provided that a common

ground is ensured for fair comparison. The improvement achievable by employing

learned membership functions (from training samples) will be shown later.

The use of any of the five attribute weighted methods is shown to enable the cor-

responding fuzzy reasoning system to outperform the system using the conventional

T-FRI. This indicates that individual rule antecedent attributes do make different

contributions to the classification, and that the ranking scores obtained by the feature

evaluation methods taken from their original FS techniques offer positive means

for discovering such differences. Interestingly, the narrow-banded SD values (those

numbers following the classification accuracy) given in Table 5.2 further demonstrate

that the performance of the proposed work is robust.

Examining more closely, those methods based on directly assessing individual

attributes (namely, IG, Relief-F, LLCFS and LS) achieve more significant improvements,

with the best average accuracy being obtained by IG-guided T-FRI (having an average

improvement of 9.44% over all ten datasets than that of Ori). The remaining one,

RSFS, adopts the technique of (attribute) subset selection. As shown in Section 3.2.1,

ranking attributes with such a technique requires modification of the underlying FS

algorithm. Nevertheless, the RSFS-based FRI has a comparable improvement over

the conventional T-FRI to the average performance of the other four, again indicating

the robustness of the innovative approach proposed in this work. Collectively, these

results also show the generality of attribute weighted approach in that the use of a

very different FS method retains the improved performance (over the underlying

original T-FRI).

As also can be seen from Table 5.2, both FRI approaches (the original and the

attribute weighted) significantly outperform the standard fuzzy reasoning based on

CRI, and the results are more stable with a relatively lower SD values. Of course,

such an obviously poorer classification accuracy obtained by the use of CRI can be

expected as it fires matched or partially matched rules only while facing the problem

of sparseness of the rule base. This strongly demonstrates the effectiveness of fuzzy

interpolative reasoning, especially for the proposed approach owing to its further

enhanced performance over the conventional T-FRI.

B. Confusion Matrices

Apart from the overall classification accuracies, it is practically interesting to

investigate the statistical properties of the classification performance in terms of true
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positive (TP), true negative (TN), false positive (FP) and false negative (FN). Without

overwhelming the examination while having a focused discussion, the Haberman

dataset is taken as an example to run such an investigation. Tables 5.3-5.9 show the

confusion matrices computed by the use of each of the seven compared approaches,

respectively. The entries in these tables are calculated by averaging the rounded

results obtained from the each 10×10 fold. Table 5.10 lists the averaged performance

of the five different implementations of the attribute weighted method. Despite the

fact that this dataset contains samples that are distributed in a imbalanced manner

(which increases the difficulties in performing accurate classification), these tables

clearly show the superior performances achieved by the proposed approach to the

original T-FRI, leaving alone CRI.

Importantly, these tables reveal, both individually and collectively, that the classi-

fication accuracy achieved by the use of attribute weighted T-FRI is led by a significant

reduction of false negatives and simultaneously, by a substantial increase in true

positives. These results form a sharp contrast with those obtainable by the use of the

original T-FRI and more remarkably, with those by CRI. This is of practical significance

because for many real-world applications, not only the overall classification rates

should be high, but also false negatives should be minimised while true positives

are maximised. This is of particular importance for medical applications as with

the situation of this dataset (which summarises the cases on the survival of patients

who had undergone surgery for breast cancer – if a patient died within 5 year of

the surgery then the case is regarded as positive, or if the patient survived for 5

years or longer then it is a negative case). For such problems, false negatives can be

extraordinarily damaging.

Fortunately, the implementations with the proposed approach all lead to much

reduced false negatives (with an averaged rate of 4.44% over the range of 3.32% to

4.88%, as compared to 8.79% returned by the conventional T-FRI and 27.04% by

CRI). This is in addition to the remarkable improvements over the true positive rates

(an average of 72.95% over the range of 72.32% to 74.20%, as opposite to 68.40%

by the original T-FRI and a mere 50.16% by CRI).

C. Number of Closest Rules

Up till now, all experimental results reported in the existing literature regarding

the use of T-FRI have been based on the use of two closest rules (i.e., n = 2) to
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Table 5.3: Confusion Matrix of CRI

Classified
Positive Negative

Actual
Positive 50.16% 27.04%
Negative 17.51% 5.28%

Table 5.4: Confusion Matrix of Original T-FRI

Classified
Positive Negative

Actual
Positive 68.40% 8.79%
Negative 16.93% 5.86%

Table 5.5: Confusion Matrix of IG-T-FRI

Classified
Positive Negative

Actual
Positive 72.64% 4.56%
Negative 16.61% 6.19%

Table 5.6: Confusion Matrix of ReliefF-T-FRI

Classified
Positive Negative

Actual
Positive 72.64% 4.88%
Negative 15.96% 6.51%

Table 5.7: Confusion Matrix of LLCFS-T-FRI

Classified
Positive Negative

Actual
Positive 74.20% 3.32%
Negative 15.56% 6.91%

Table 5.8: Confusion Matrix of LS-T-FRI

Classified
Positive Negative

Actual
Positive 72.32% 4.88%
Negative 16.61% 6.18%

121



5.2. Evaluation with Applications to Classification and Prediction Problems

Table 5.9: Confusion Matrix of RSFS-T-FRI

Classified
Positive Negative

Actual
Positive 72.96% 4.56%
Negative 16.28% 6.19%

Table 5.10: Confusion Matrix of AVGERAGE GUIDED-T-FRI

Classified
Positive Negative

Actual
Positive 72.95% 4.44%
Negative 16.20% 6.40%

perform interpolation. The choice of using two rules is for computational simplicity.

Hypotheses have been given previously in that a larger neighbourhood (i.e., more

than 2 closest rules) may lead to generally more accurate interpolated outcomes. It

is therefore, interesting to investigate the level of change in classification accuracy

with regard to varying the number of the closest rules selected for fuzzy rule-based

interpolative reasoning.

Considering the computational effort required for such an experimental investi-

gation, only a subset of the previously listed 10 benchmark datasets (namely, BUPA,

Hayes-Roth, Appendicitis and Phoneme) are randomly used to conduct this study.

Table 5.11 presents the experimental results, with the summary of these plotted in

Fig. 5.2. Again, the accuracies shown in in this table are calculated by averaging the

results obtained over 10 times 10-fold CV.

Over the range of n, n ∈ {2, . . . , 6} that are examined, running both the conven-

tional T-FRI and the attribute ranking-supported T-FRI always results in a substantial

improvement (in terms of the classification accuracy) over the performance achiev-

able by running CRI that works by direct rule-firing (which is shown in Table 5.2 and

is irrelevant to the n). Importantly, each of the five implemented attribute-guided

T-FRI methods consistently outperforms the conventional T-FRI for almost all datasets

and all settings of n. The results in Table 5.11 further demonstrate the robustness

of the proposed work since the standard deviation (SD) values of the classification

accuracy across all n values are rather small.

Surprisingly (and very positively in support of the present approach), as a larger

n is assumed, little improvement can be gained for any of the five attribute ranking-
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Table 5.11: Average Classification Accuracy (%) vs. Number of Closest Rules Used
for Interpolation

Dataset Method
Number of Closest Rules (n) SD

2 3 4 5 6 over n

B
U

PA

Ori 48.72 53.95 53.05 51.88 51.57 1.98
IG 62.03 57.95 54.74 53.91 51.56 4.05

Relie f F 58.84 55.95 51.89 52.18 50.71 3.38
LLC FS 57.35 57.10 56.52 54.18 54.74 1.43

LS 55.69 55.68 55.68 53.05 51.03 2.11
RSFS 55.40 55.37 55.97 51.86 50.99 2.30

H
ay

es
-R

ot
h

Ori 46.87 49.37 48.12 48.75 48.12 0.93
IG 60.00 58.12 58.12 55.00 53.12 2.76

Relie f F 60.62 56.25 56.25 55.00 51.25 3.35
LLC FS 54.37 52.50 53.75 55.00 53.75 0.92

LS 56.25 54.37 53.75 53.75 54.37 1.02
RSFS 58.75 58.75 56.25 52.50 50.00 3.89

A
pp

en
di

ci
ti

s Ori 52.00 52.18 53.00 51.09 52.09 0.68
IG 69.72 62.09 62.18 62.18 62.18 3.38

Relie f F 66.91 64.18 62.36 64.18 62.27 1.88
LLC FS 57.72 56.81 56.81 55.91 55.81 0.78

LS 59.45 55.63 54.72 53.81 53.91 2.32
RSFS 66.72 63.81 62.91 60.18 60.18 2.74

Ph
on

em
e

Ori 57.10 54.16 57.54 58.91 59.19 2.01
IG 67.33 64.93 63.45 64.63 65.08 1.40

Relie f F 64.78 62.89 62.91 63.71 63.82 0.77
LLC FS 64.59 61.56 60.99 60.65 61.02 1.61

LS 60.47 61.28 60.28 61.47 62.43 0.86
RSFS 61.67 61.34 61.76 61.82 60.39 0.59

supported methods. In fact, the performance may even deteriorate as n increases.

The best performance is actually achieved when the number of selected closest rules

is the smallest (i.e., 2). This indicates that the weighting scheme facilitates the

determination of the best neighbouring rules to be taken at the earliest opportunity.

This result empirically negates the hypothesis commonly made about T-FRI in that

more rules used for interpolation would lead to significantly better results. It also

helps avoid the use of a larger n in applications of the weighted T-FRI, thereby

reducing the computational complexity that would otherwise be increased due to

the requirement of searching for and running with more rules for interpolation.

The need of just two neatest neighbouring rules helps reinforce the stability of

the proposed approach. In most cases, the rules which are selected as the nearest
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(a)

(b)

(c)

(d)

Figure 5.2: Accuracy variation with number of closest rules for four datasets: (a)
BUPA. (b) Hayes-Roth. (c) Appendicitis. (d) Phoneme.
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neighbours of the observation are identical given the availability of a certain rule

base, an input (unmatched) observation, a distance metric (generically defined as

per Eqn. (4.1)), and the number of nearest neighbours. There indeed exists extreme

cases where a random choice of a subset of the closest rules may occur. Fortunately,

the impact of such an uncertainty can be minimised as it has been empirically shown

that only two nearest neighbours are required to implement the weighted FRI. That is,

the employment of only two rules further minimises the already very small likelihood

of having multiple rule that would return an equal distance to the observation.

D. Consistency and Efficiency of Ranking Methods

There is one exception in the above results regarding the Phoneme dataset where

the classification accuracy achieved using LS-guided T-FRI is eventually increasing as

the number of closest rules goes up, though this variation is not significant. Therefore,

a further investigation has been conducted to forensically examine the ranking scores

which are obtained by the use of the five different evaluation functions. The results

are presented in Table 5.12.

As can be seen from this table, the first four attribute ranking methods consistently

agree on that the fourth antecedent attribute plays the most significant role in

deciding on the consequent, with a much higher ranking scores obtained. Three

of these (IG, Relie f F and RSFS) put the first antecedent attribute in second place,

with LLC FS ranking it the third. The only one method which is out of the tune is LS,

which ranks the first antecedent attribute at the bottom, with a zero score signifying

its relatively lack of relevancy in this rule base. This is a very different result from

the great majority, implying that the LS algorithm may underperform in deriving an

appropriate ranking for this particular dataset. As such, it may explain the reason

that the FRI guided with LS achieves a relative poor performance when the number

of the closest rules is 2 and the overall different trend of the classification accuracy

while varying n in this dataset case, as shown in Fig. 5.2.

The introduction of ranking scores of antecedent attributes in support of weighted

fuzzy rule interpolation may lead to additional computational overheads overall

(albeit it ensuring that only the smallest number of closest rules are needed). Ta-

ble 5.13 shows the corresponding average testing time recorded for classification

over testing samples when the number of closest rules is increasing, together with

the SD value over n. In this table, the column of Max Increase lists the maximum

increase of the testing time observed while increasing the number of closest rules n.

125



5.2. Evaluation with Applications to Classification and Prediction Problems

Table 5.12: Attribute Weights and Rankings Using Different Ranking Schemes for
Phoneme Dataset

Methods Antecedent Weights Rankings
IG 0.2852 0.0792 0.0125 0.5724 0.0507 [4 1 2 5 3]

Relie f F 0.1326 0.0414 0 0.7286 0.0973 [4 1 5 2 3]
LLC FS 0.0001 0 0 0.7416 0.2583 [4 5 1 2 3]
RSFS 0.0016 0.0016 0.0016 0.9938 0.0016 [4 1 2 3 5]

LS 0 0.4541 0.0988 0.1995 0.2476 [2 5 4 3 1]

Generally, there is a slight increase in time consumption when involving more

closest rules in the implementation of rule interpolation for all T-FRI methods. How-

ever, whilst the attribute weighted T-FRI employs the weights in all of the key stages

of interpolation (including the selection of the closest rules, the construction of

the intermediate rule, the calculation of weighted transformation factors and the

execution of weighted transformations), there is no significant increase in the time

consumed by the weighted T-FRI as compared to that by the original T-FRI. This,

together with the above observed general consistency amongst the use of different

attribute ranking schemes, once again shows the efficacy of the proposed approach.

E. Use of Learned Membership Functions

As indicated previously, the classification performance in terms of accuracy is

not very impressive, even though the proposed work improves it significantly over

the conventional approaches. However, this is expected as the quantity space used

to depict the value domains of all the attributes across all datasets is so simplistic

(recall Fig. 5.1), without any optimisation (which is purposefully designed so as

to enable systematic investigations over a wide range of experimental settings).

Such unbiased specification of the domain values allows fair comparison to be made

between different fuzzy reasoning techniques. Besides, an average of 20% of the

learned rules are deliberately removed randomly, in order to have a rule base that

is rather sparse. This makes the domain knowledge, represented in terms of fuzzy

rules, rather incomplete, which in turn, makes the classification task a challenge for

any learning classifier and hence, leads to less accurate classification. Nevertheless,

it is interesting to empirically verify what if an (at least partially) optimised quantity

space is utilised. In order to do this, the partition of the linguistic values of a certain

rule antecedent over its domain may need to be generated by the use of data-driven

methods to learn form data. The technique of clustering provides a potential solution.
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Fuzzy C-Means (FCM) [Bezdek et al., 1984] is one of the most widely used

fuzzy clustering algorithms. It works by assigning a membership degree to each

data sample corresponding to a certain cluster centre based on the relative distance

between the cluster centre and that sample. The closer to the cluster centre the

higher the membership degree to which the sample is deemed to belong to the

corresponding cluster. Thus, the clustering outcome on a given dataset reveals the

distribution of the membership functions for the underlying attributes. Owing to its

popularity, FCM is herein adopted to perform fuzzification, learning the membership

functions for the antecedent attributes. However, any optimisation of the membership

functions is directly influenced by the dataset itself. Without overly complicating the

experimental investigation, only the simple Iris dataset is used in this specific study

(on the effect of using learned fuzzy sets).

Figure 5.3 shows the membership functions generated using FCM. The optimal

number of clusters for each antecedent attribute is selected by the method of [Chen

and Wang, 1999], resulting in 4 clusters for the first antecedent attribute, 2 for the

third and 3 for each of the remaining two.

Table 5.14 presents the classification results using the FCM-returned membership

functions. For comparison, it also lists those that are obtained by the use of evenly

distributed fuzzification based on the entries given in Table 5.2. As expected, a better

fuzzification leads to a better classification. Individually speaking, each weighted

method that uses FCM-learned membership functions beats their corresponding

opponent (that employs just the simple quantity space of Fig. 5.1 for each antecedent

attribute). Collectively, this leads to an averaged enhancement of 1.87% (= 93.07%−
91.20%) for the FS-supported T-FRI methods. Importantly, this is on top of the already

achieved substantial improvement of the FS-supported T-FRI over the conventional

T-FRI and CRI-based classification methods, as also highlighted in this table.

It may be recognised that the improved classification rate is still not so high as

the highest possible as reported in the literature regarding this simple dataset [Riza

et al., 2015], where a fully trained learning classifier is adopted with the fuzzy sets

involved having been comprehensively optimised. However, it must be noticed that

the present relatively high accuracy is attained with an average of 20% rules having

been randomly taken out of the learned rule base. This demonstrates the great

potential of the weighted FRI approach in dealing with real-world problems where

typically only partial and imprecise knowledge is available.
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(a) Sepal Length

(b) Sepal Width

(c) Petal Length

(d) Petal Width

Figure 5.3: Membership functions learned with fuzzy c-means for Iris dataset, re-
spectively plotted in sub-figures (a)-(d) for four attributes.
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5.2.3 Prediction

Unlike knowledge-based classification systems that use inference rules to determine

categorical class labels for unknown data, prediction systems perform the forecasting

of the behaviour of continuous-valued variables in a certain problem domain. Such

systems enjoy a wide range of successful real-world applications, including medical

case assessment [Steyerberg, 2008], object tracking and video surveillance [Ahmad

et al., 2016,Sun et al., 2017], financial trend forecasting [Shin et al., 2005], civil

industry simulation [Wang et al., 2016] and the generic problem of time series

analysis [Box et al., 2015,Xu et al., 2018].

In this section, the proposed weighted T-FRI algorithm is applied for dealing with

12 benchmark prediction problems, including eight of which for multivariate regres-

sion and four for time series forecasting. The prediction accuracies are compared

against those obtained by the conventional unweighted T-FRI method. In addition,

the performance is also compared against the weighted fuzzy interpolation method

as reported in [Chen and Chen, 2016], which represents the state-of-the-art of FRI

involving attribute weights, across the same seven problems used in that work. Note

that there were eight datasets given in [Chen and Chen, 2016] but one of which

is not available for the present investigation and hence, only seven datasets are

considered here.

5.2.3.1 Datasets and Particular Set-up for Prediction Evaluation

A. Datasets

The eight benchmark multivariate regression problems are taken from the pop-

ular UCI machine learning [Dheeru and Karrai, 2017] and KEEL dataset reposito-

ries [Alcalá-Fdez et al., 2011], while the four classic time series prediction problems

are acquired from [Box et al., 2015,CROWDER, 1990]. These 12 datasets involve

different numbers of conditional attributes and cover various real-world problem

domains, including: civil engineering, energy consumption, weather forecasting,

and time series prediction in industrial processes, amongst others. The properties of

these datasets are summarised in Table 5.15.

131



5.2. Evaluation with Applications to Classification and Prediction Problems

Table 5.15: Datasets Used for Prediction

Dataset #(Attribute) #(Instance)
Abalone (KEEL) 7 4177
Concrete Compressive Strength (KEEL) 8 1030
Concrete Slump Test (UCI) 9 103
Laser (KEEL) 4 993
Plastic (KEEL) 2 1650
Daily Electricity Energy (KEEL) 6 365
Weather Izmir (KEEL) 9 1461
Auto MPG6 (KEEL) 5 392
Mackey-Glass Chaotic 4 3000

Time Series Prediction
Chemical Process Concentration 3 194

Readings Prediction
Chemical Process Temperature 3 223

Readings Prediction
Gas Furnace Prediction 6 293

B. Fuzzy Values for Variables in Fuzzy Rules

For simplicity and consistency, the fuzzy values of all conditional attributes

are again represented by triangular membership functions in this experimental

investigation. The partition of each conditional attribute domain into such fuzzy

values is realised by approximating what is learned by the use of Fuzzy C-Means

(FCM) [Bezdek et al., 1984], owing to its popularity. The number of triangular

membership functions tuned by FCM is set to 6 for each conditional attribute across

all dataset, making a fair and common start point for comparison. Whilst different

conditional attributes have their own underlying value domains, they are normalised

to the common range of 0 to 1 before fuzzification.

In terms of rule consequent, without any prior knowledge to set an unbiased

ground for comparison, the consequent learned in all prediction rules are evenly

represented by isosceles triangular fuzzy sets with each having 1/5 of its domain

range. The general case is illustrated with the fuzzified isosceles triangle in the

middle of Fig. 5.4, where the midpoint stands for the discrete value that the predicted

outcome adopts. If however, a certain prediction is so close to the boundary that

one of the extreme points of the isosceles triangle locates beyond the range of the

consequent domain, this extreme point is void and set to the corresponding boundary
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point (namely minz or maxz) instead, as shown with both triangles on the left and

right side in Fig. 5.4.

Figure 5.4: Fuzzification of consequent with isosceles triangles bounded by domain
range.

C. Weighting Scheme Used for Prediction

As indicated in Section 2.4.3, the attribute evaluation functions can be broadly

categorised into supervised schemes and unsupervised schemes. The unsupervised ap-

proaches offer more flexibility for prediction problems since the consequent attribute

is not required during the attribute evaluation process. Therefore, two methods from

this group, i.e., Local Learning-based Clustering for Feature Selection (LLCFS) and

Laplacian Score (LS), are herein employed for performing the weight learning.

D. Performance metric

The prediction performance is measured using the root mean square error (RMSE)

as defined by

RMSE =

√

√

√

∑c
i=1(y

∗
i − yi)2

c
(5.4)

where y∗i and yi represent the predicted and target outcomes of the testing samples

t i, i = 1, 2, . . . , c, respectively, and c stands for the cardinality of the testing dataset.

To obtain a defuzzified value as the predicted outcome, the classical defuzzification
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method that uses the centroid of the area under the output fuzzy set is employed. It

is computed such that

z0 =

∫

µA(z) · z dz
∫

µA(z) dz
(5.5)

where µA(z) denotes the membership degree for the variable z (of the universe of

discourse) in fuzzy set A.

Generally, the smaller the RMSE values are, the more accurate the prediction is.

5.2.3.2 Analysis of Prediction Results

A. Prediction Accuracy

Table 5.16 shows the averaged prediction RMSEs directly computed using Eqn. (5.4),

and the corresponding standard deviation (SD) values. In this table, the column

under the heading of Non-Weighted lists the calculated RMSEs for the testing data

obtained, by the use of CRI working together with the original unweighted T-FRI.

The middle two, LLCFS and LS, list the RMSEs achieved by weighted T-FRI with the

conditionals evaluated using either LLCFS or LS, respectively. Last but not least,

the column of AVG_Proposed shows the average prediction RMSEs between the two

attribute weighted T-FRI methods. From these RMSEs, it can be seen that across all

datasets, the proposed approach outperforms the conventional T-FRI (that has now

been strengthened with the use of CRI). This general result is not affected by the

use of either of the two attribute weighting methods, as revealed by comparing the

RMSEs obtained using LLCFS- and LS-weighted T-FRI.

The above results are measured on the predicted outcomes over different problem

domains, showing different orders of the error scale. To facilitate a better comparison

amongst different methods across all datasets, the RMSE and SD values in Table 5.16

are normalised into the range of [0,1] per dataset, with the averaged values cal-

culated across all datasets presented in Table 5.17. A clearer comparison can now

be made regarding the relative performances of the different methods investigated.

Using either of the weighted T-FRI, the averaged RMSE is much smaller than that

achievable by unweighted T-FRI. This indicates that introducing weights to individual
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5.2. Evaluation with Applications to Classification and Prediction Problems

rule conditional attributes leads to more accurate prediction, and that the weights

obtained by artificially learning from an original sparse rule base are effective for

distinguishing the contributions of their corresponding attributes upon the prediction

outcome. Moreover, the relatively lower SD values in Table 5.16 (those figures

following the RMSEs), obtained by the use of weighted FRI systems across almost

all datasets, further demonstrate the robustness of the proposed work. This is also

verified by the results given in Table 5.17. This superior prediction performance

conforms to the general results achievable by running weighted T-FRI that is tailored

for classification problems, as shown in the preceding section.

Table 5.17: Comparison on RMSE and SD Averaged across Datasets

Non-Weighted LLCFS LS AVG_Proposed
RMSE 1.0000 0.0851 0.2897 0.1869
SD 0.7904 0.2780 0.5252 0.3999

Apart from the prediction error and its standard deviation, it is important to

investigate whether the improvement of the attribute weighted approach over un-

weighted FRI is of statistical significance. Table 5.18 presents the p-values (in the

range of [0,1]) returned from the statistical pairwise t-test between the attribute

weighted (i.e., LLCFS- and LS-based) T-FRI and the conventional unweighted T-FRI.

Given the null hypothesis that there is no significant difference between the two

compared approaches, small values of p indicate doubt regarding such a hypothesis.

As can be seen from this table, both LLCFS and LS weighted methods lead to rather

small p-values for almost all datasets. In most cases, the test results reject the null

hypothesis at a rather low significance level. Note that in this table, the asterisk

sign (∗) indicates that the improvement made by the LLCFS/LS-weighted T-FRI over

unweighted T-FRI is validated at the 5% significance level (as commonly used). Also,

in the situation where the Bonferroni correction [Rupert Jr et al., 2012,Shaffer, 1995]
is applied for multiple significance testing, a number of comparisons are shown to

have rejected the null hypothesis at a lower significance level of 2%. This implies

that statistically, the attribute weighted T-FRI significantly outperforms the original

unweighted version.

B. Comparison with State-of-the-art Weighted FRI

This part of experimental study compares the proposed work with the state-of-

the-art weighted FRI mechanism, which is reported in [Chen and Chen, 2016] and
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5.2. Evaluation with Applications to Classification and Prediction Problems

Table 5.18: P-value in Statistical Pairwise t-test Analysis

Dataset LLCFS LS
Abalone 0.0386(∗) 7.25× 10−4(∗)
Concrete Compressive Strength 0.0442(∗) 0.0005(∗)
Concrete Slump Test 0.0039(∗) 0.0027(∗)
Laser 0.2707 1.00× 10−6(∗)
Plastic 2.00× 10−5(∗) 0.0960
Daily Electricity Energy 2.98× 10−9(∗) 0.3530
Weather Izmir 5.24× 10−11(∗) 0.2988
Auto MPG6 0.0433(∗) 3.85× 10−10(∗)
Mackey-Glass Chaotic 0.0197(∗) 0.0323(∗)

Time Series Prediction
Chemical Process Concentration 0.0001(∗) 0.0032(∗)

Readings Prediction
Chemical Process Temperature 0.0021(∗) 1.91× 10−4(∗)

Readings Prediction
Gas Furnace Prediction 0.0154(∗) 0.0139(∗)

is referred to as the CC method (or simply, CC taken after the names of its inventors)

below. Table 5.19 and Fig. 5.5 show the results of RMSEs over seven prediction

problems that have been used by CC, including both multivariate regression and

time series prediction tasks. Note that different scales are used to present the results

in Fig. 5.5, in an effort to reduce the impact of significant differences in the output

domains over the different problems examined. For fair comparison, the settings

regarding the partition of input and output attributes follow the same definition as

indicated in the original work of [Chen and Chen, 2016].

Table 5.19: Comparison with CC on RMSE over 10 Times 5-Fold Cross Validation

Dataset CC Non-Weighted Proposed
Abalone 2.45 2.5124 2.4639
Concrete Compressive Strength 13.44 9.1938 8.8001
Concrete Slump Test 5.91 4.2263 3.6576
Mackey-Glass Chaotic 0.0597 0.0432 0.0391

Time Series Prediction
Chemical Process Concentration 0.3248 0.3331 0.3154

Readings Prediction
Chemical Process Temperature 0.2241 0.4221 0.3673

Readings Prediction
Gas Furnace Prediction 0.7035 0.6527 0.6214
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5.2. Evaluation with Applications to Classification and Prediction Problems

Figure 5.5: Comparison with CC on RMSE across datasets.

To minimise any potential bias against the use of a particular attribute evaluation

method, the averaged performance between the two implementations of the proposed

approach is shown here, in the column of Proposed (which is taken from Table 5.16).

As empirically proven in [Chen and Chen, 2016], CC already outperforms six classical

non-weighted and weighted FRI techniques in dealing with these seven prediction

problems. In particular, the conventional T-FRI (which is denoted as the HS method

in [Chen and Chen, 2016] without including the use of CRI) has been shown to be

of less accurate performance amongst the competitors. Still, the present fuzzy sparse

rule-based inference scheme, by integrating CRI (for those matched observations) and

weighted T-FRI (for the unmatched ones, using the weights learned from the original

sparse rule base alone), produces much more accurate results for five problems,

basically ties one with CC and only underperforms with respect to CC for the dataset

“Chemical Temperature”. These results can be seen in Table 5.19 and also from

Fig. 5.5.

To examine the overall relative performance across all seven datasets that the

compared systems have been run on, as with Part A of this subsection, normalisation

on RMSEs is carried out per dataset. The resultant averaged relative RMSEs between

the different approaches investigated are shown in Table 5.20. It reaffirms that the
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proposed approach has the smallest error in five datasets out of the seven, whilst

in the other two cases it still beats the conventional unweighted T-FRI. As a whole,

in comparison to CC, the averaged relative RMSE is significantly lower (0.1351 vs.

0.6472 out of a universal maximum of 1.0). The relative error reduction of 0.5121

(= 0.6472− 0.1351) stands for an over 50% increase in prediction accuracy overall.

Additionally, this table also shows that with an averaged RMSE reduction of 0.0876

(= 0.6472 − 0.5596), combining CRI and the conventional T-FRI method helps

improve the performance of unweighted T-FRI to supersede that of CC, although this

can be expected to certain extent given the employment of CRI. Collectively, these

results positively reflect the significant potential of the proposed work.

Table 5.20: Comparison with CC on RMSE across Datasets

Dataset CC Non-Weighted Proposed
Abalone 0.0000 1.0000 0.2227
Concrete Compressive Strength 1.0000 0.0848 0.0000
Concrete Slump Test 1.0000 0.2524 0.0000
Mackey-Glass Chaotic 1.0000 0.1990 0.0000

Time Series Prediction
Chemical Process Concentration 0.5310 1.0000 0.0000

Readings Prediction
Chemical Process Temperature 0.0000 1.0000 0.7232

Readings Prediction
Gas Furnace Prediction 1.0000 0.3812 0.0000
Average 0.6472 0.5596 0.1351

5.3 Summary

In this chapter, the proposed weighted fuzzy interpolative reasoning framework has

been systematically evaluated from both theoretical and practical viewpoints. To

facilitate the investigation of the computational complexity of the proposed work,

pseudo code of the entire system has been presented. This also helps to have a better

understanding of the working process of weighted T-FRI. By applying the system to

practical classification and prediction problems, this chapter has also demonstrated

the very promising potential of weighted T-FRI.

Collectively, the experimental results presented have clearly shown the efficacy

and robustness of the proposed approach. In particular, the weighted interpolative
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5.3. Summary

methods have produced results of remarkably improved classification and prediction

accuracy, over both conventional T-FRI and CRI-based fuzzy reasoning techniques.

This has been achieved using a very simple fuzzification mechanism. The experi-

mental investigations have also confirmed that any feature evaluation subroutine,

as a component of feature selection, may be employed to evaluate and score rule

antecedent attributes, without adversely affecting the classification or prediction

outcome, nor considerably increasing the computational time complexity. Experi-

mental results have further illustrated that better performance can be obtained by

fine tuning the membership functions which define the antecedent attributes within

a given problem.

In addition to the aforementioned advantages over conventional T-FRI techniques,

an important discovery has been achieved while performing classification evaluation.

It has systematically proven that the weighted T-FRI method only requires the least

number of the closest rules to carry out interpolation (with respect to a given obser-

vation that does not match any existing rule in the sparse rule base). Overall, as the

most appropriate closest rules are selected in terms of the relative significance of

domain attributes, better results are obtained using fewest rules possible, thereby,

minimising the complexity in both rule searching and rule firing. This finding will be

further evaluated by extending the current work to suit other typical FRI approaches,

as to be developed next.
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Chapter 6

Extensions to Attribute Weighted FRI

I N the previous chapters, a weighted interpolative reasoning scheme has been

proposed, where the weights of individual antecedent attributes are learned from

the given knowledge (i.e., the sparse rule base) in support of attribute ranking.

Such weights are explicitly integrated with the procedures of the popular scale

and move transformation-based FRI (T-FRI) [Huang and Shen, 2006]. This has

led to a promising performance in tackling classification and prediction problems,

as empirically shown. In particular, an important finding is that only two (i.e.,

the minimal number of) neighbouring rules are required for the weighted T-FRI to

perform, significantly reducing the computational overheads caused by otherwise

running rule interpolation with more rules.

Given this exciting empirical outcome for weighted T-FRI, it is interesting to

investigate whether the discovery that “the use of least number of neighbouring

rules does better” is common to other FRI methods if a similar weighting scheme is

adopted. Fortunately, the weights learning mechanism as proposed in Chapter 3 is

independent of the underlying FRI process, which works by exploiting the sparse

rule base only.

Inspired by this observation, this chapter presents a further development that

enhances two other commonly used FRI algorithms (namely, those first presented

in [Kóczy and Hirota, 1993a] and [Chang et al., 2008]), by following the ideas

of weighted T-FRI (which is presented in Chapter 4). The resultant weighted FRI

methods are systematically evaluated via addressing ten benchmark classification

problems, in comparison with their corresponding non-weighted originals. The

improvement of classification accuracies is highlighted and more importantly, it is
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6.1. Enhancing Alternative FRI Approaches with Attribute Weighting

demonstrated that the best performance is achieved when the number of the nearest

neighbouring rules required to perform the weighted FRI is indeed the smallest.

The rest of this chapter is structured as follows. Section 6.1 presents the modifica-

tion of those two FRI methods with the use of attribute weights. Section 6.2 discusses

the systematically compared experimental results. Finally, Section 6.3 provides a

summary of the work reported in this chapter.

6.1 Enhancing Alternative FRI Approaches with

Attribute Weighting

Two representative unweighted FRI methods (that differ from T-FRI) are considered

here. These are the KH linear rule interpolation [Kóczy and Hirota, 1993a,Wong et al.,

2005] and the CCL interpolation [Chang et al., 2008], which have been reviewed

in Section 2.2.2.1 and 2.2.2.2, respectively. In this section, these two unweighted

FRI methods are generalised by integrating the weights of rule antecedent attributes

within the underlying FRI procedures. As with the presentation of the two methods

previously, triangular membership functions and their associated notations for de-

picting the corresponding fuzzy sets, shown in Section 2.1, are adopted herein for

implementing the weighted approaches, in order to maintain consistency throughout

this thesis.

Note that the mechanism for learning the attribute weights AWj, j = 1,2, . . . , m

(where m denotes the number of total rule antecedent variables appearing in the

rule base), from a given sparse rule base remains exactly the same as that presented

in Chapter 3 and hence, is omitted here.

6.1.1 Weighted KH Rule Interpolation

The attribute weights learned from a given sparse rule base reveal the relative

significance degrees of the individual antecedent attributes, in terms of their potential

in deriving the consequent given an observation. The main issue of embedding

such weights within an FRI method is how to adapt the original computational

mechanism of the unweighted FRI [Li et al., 2018c]. This is in order to ensure that
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6.1. Enhancing Alternative FRI Approaches with Attribute Weighting

the individually weighted attributes are aggregated in a way to better reflect their

respective contributions in the interpolation process of the consequent.

As the attribute weights are learned independently of the interpolative reasoning

process, all that is needed to develop a weighted version of the KH interpolation

method is to modify its procedures that involve the use of α-cut distances by con-

sidering the weights accordingly. This can be carried out so that the distances are

measured by taking into consideration of the relevant significance degrees of the

attributes. Thus, the original unweighted KH interpolation can be extended in a

straightforward manner, by computing the characteristic points of the interpolated

consequent as per Eqn. (2.10) through the following weighted calculation:

b̃∗t =

∑n
i=1

1
Ç

∑m
j=1 AWj(ai

j t−a∗j t )
2
bi

t

∑n
i=1

1
Ç

∑m
j=1 AWj(ai

j t−a∗j t )
2

, t = 1, 2,3 (6.1)

Note that if the assumption of attributes having equal significance is applied, that

is, AWj, j = 1, 2, . . . , m are of the same value, the above formula degenerates to the

original version, i.e., Eqn (2.10). As such, this weighted KH method is a generalised

version of the original, still working as previously in the event where no weighting

scheme is applicable or necessary.

6.1.2 Weighted CCL Rule Interpolation

The original CCL FRI procedure as per Section 2.2.2.2 can be generalised in a similar

manner to the above. In particular, the attribute weights are integrated in the

construction of the normal point b∗2 and also, in the computation of the triangular

area SK(B∗) of the interpolated consequent.

In particular, the normal point b∗2 can be specified by the weighted aggregation

of rule consequents of the selected neighbouring rules, where the rule weights Wi of

Eqn. (2.15) are redefined by normalising the aggregated weight of each entire rule

antecedent per rule. Note that in the original CCL method, the aggregation of rule

weights is implemented by arithmetic average. Thus, the modified rule weight W̃i is

now extended to
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S̃K(B
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(6.2)

W̃i =

∑m
j=1 AWjwi j

∑n
i=1

∑m
j=1 AWjwi j

(6.3)

Intuitively, the average operation imposed over the rule antecedents also needs

to be applied to the computation of the interpolated consequent fuzzy set. This

leads to the corresponding modification of the area of the interpolated consequent

fuzzy set, from Eqn. (2.14) to Eqn. (6.2). In this extension, the attribute weights

AWj, j = 1, 2, . . . , m, are different from the weighting terms wi j used in the original

method which are still required to be computed in the same way as the original.

Together, they are used to construct modified overall rule strengths. In effect, AWj

adjusts wi j to better reflect the contribution of each individual antecedent attribute

in relation to its significance, towards the calculation of the overall rule weight in

deriving the consequent.

As with the weighted KH method, the above newly introduced rule weight W̃i

and interpolated consequent area S̃K(B∗) also degenerate back to their original

counterparts in the non-weighted version if all attribute weights are equal, in terms

of their relative significance. Indeed, in this case, AWj = 1/m,∀ j ∈ {1, 2, . . . , m}.

6.1.3 Weighted Fuzzy Rule-based Interpolative Reasoning

Now given the weighted KH and weighted CCL interpolation methods, the fuzzy rule-

based inference framework which is supported by weighted interpolative reasoning

(as described in Section 4.5) can be added with new family members. The result is

illustrated in Fig. 6.1, where each of all three weighted interpolation approaches

provides an alternative for achieving weighted fuzzy interpolative reasoning. One

and only one of them is required be to triggered when needed, of course.
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6.2. Experimental Evaluation

Figure 6.1: Workflow of fuzzy rule-based inference system supported by either of
three weighted rule interpolation schemes.

6.2 Experimental Evaluation

This section presents a systematic experimental comparison among the proposed

weighted KH, CCL and T-FRI, against their originals that do not involve individual

attribute weights. The comparative investigation is performed over ten benchmark

classification problems, most of which are of multiple class labels. The changes of

classification accuracy with respect to the number of the nearest neighbouring rules

selected for interpolation are examined, demonstrating the efficacy of weighted FRI

algorithms.

6.2.1 Experimental Setup

The datasets employed for the experimentation are introduced first, followed by an

outline of the experimental methodology taken.
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6.2.1.1 Datasets

Ten benchmark classification datasets are taken from KEEL (Knowledge Extraction

based on Evolutionary Learning) [Alcalá-Fdez et al., 2011] and UCI machine learn-

ing [Dheeru and Karrai, 2017] dataset repositories, with details summarised in

Table 6.1. These ten datasets are taken for conducting the experimental evaluation

of the proposed methods due to their popularity and their diversity in terms of the

number of the attribute variables and that of the classes. In particular, the first five

datasets are the same as those used in the experimental evaluation of Section 5.2.2

with each having a different number of attributes for binary or three-class classifica-

tion, while the latter five are chosen for evaluation over many class problems.

Table 6.1: Datasets Used for Classification

Dataset #(Attributes) #(Classes) #(Instances)
Diabetes 8 2 768
Phoneme 5 2 5404
Magic 10 2 1902
Haberman 3 2 306
Hayes-Roth 4 3 160
Page-blocks 10 5 5472
Ecoli 7 8 336
Red Wine Quality 11 11 1599
Wireless Indoor Localization 7 4 2000
User Knowledge Modelling 5 4 403

6.2.1.2 Experimental Methodology

As indicated previously, the proposed weighted KH, CCL and also T-FRI methods

and their original versions (those given in [Wong et al., 2005], [Chang et al., 2008],
and [Huang and Shen, 2006] respectively) adopt triangular membership functions

to represent fuzzy values. A primitive three-valued fuzzy partition (as shown in

Fig. 6.2) is employed after normalisation over all datasets, for fair comparison as

well as for illustrative simplicity.

The comparative experiments are performed via 5 times 10-fold cross validation

per dataset. The rule base for each problem is learned from the training data in each

fold independently. The classical rule induction technique of [Wang and Mendel,
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Figure 6.2: Membership functions defining values of antecedent attributes.

1992] (see Appendix A) is employed to generate an initial rule base, where 40% of

the learned rules are purposefully removed randomly, resulting in a rather sparse rule

base to better evaluate the performance of each FRI method. The attribute weights

are then derived from the resultant sparse rule base, by the use of information gain

(IG) for scoring each individual rule antecedent. Note that only IG is employed herein

to compute attribute weights, because it has been shown from the performance of the

weighted T-FRI with different types of weight (see evaluation results in Section 5.2)

that any of the popular feature ranking methods may be utilised to perform attribute

weighting without incurring much performance deviation.

For testing, as shown in Fig. 6.1, each new observation is checked against the

rules in the rule base first, the consequent is calculated by aggregating the outcomes

of firing the matched rules. If however, no matching is found, FRI methods are

applied to derive an interpolated consequent (only one FRI method is applied at

once of course, weighted or not).

Further to the comparative studies carried out between weighted FRI methods

and their original unweighted ones, a series of experiments are conducted to in-

vestigate the variation of classification accuracy in relation to the number n of the

nearest neighbouring rules selected for interpolation. For consistency, as with the

investigation in Section 5.2.2, five different cases are compared regarding the cases

where n is set to 2, 3, 4, 5, 6, respectively (whilst it makes little sense, both com-

putationally and intuitively, to use any larger number of rules for interpolation).

Also, for fair comparison, the selection scheme for the nearest neighbouring rules

as described in [Huang and Shen, 2008] is employed to determine the closest rules

that are required to implement the interpolation, across all six (three weighted and

three original) methods compared.
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6.2.2 Results and Discussion

Experimental results are presented mainly in two groups, reflecting the effectiveness

and efficiency of the weighted approaches, respectively. Further results regarding

classification confusion analysis and run-time performance are also reported.

6.2.2.1 Effectiveness of Weighted FRI

Table 6.2 shows the classification accuracies calculated by averaging the outcomes

of 5 times 10-fold cross validation, for each of the six methods: three originals and

three extended methods enhanced with the weighting scheme. The performances of

weighted methods are directly compared against those of their originals, where two

nearest neighbouring rules to the testing observation are selected for interpolation

(unless otherwise stated). The results are presented in the column of Weighted and

that of Original, respectively.

As indicated previously, a significant portion (40%) of rules are randomly re-

moved from the original learned rule base for each classification problem, in order

to thoroughly compare the performance of weighted interpolation against the un-

weighted. In so doing, more opportunities may be generated for those observations

that find no rules to match. However, for potential practical applications, it is also

desirable to investigate how much better the proposed methods do their job than

their originals if more rules are available. For this purpose, Table 6.2 shows not only

the comparative results obtained when the FRI methods are applied using artificially

created sparse rule bases, but also the outcomes when they work with the entire

learned rule bases.

As reflected in this table, by comparing the two right-most columns, not very

significant improvement is gained by the weighted FRI methods if the full rule

bases are employed. This can be expected as most new observations may match

certain rules to fire in the first place. However, when the number of testing samples

requiring interpolation becomes large, as per the situation of running a sparse

rule base, each of the three weighted FRI methods significantly outperforms its

corresponding unweighted method for almost all datasets.

Table 6.3 lists the (rounded) average numbers of testing samples that are un-

matched by the sparse rule bases and those unmatched by the original rules. Despite
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Table 6.2: Average Classification Accuracies (%) by Interpolation with Two Nearest
Neighbouring Rules

Dataset FRI
Sparser Rule Base Full Rule Base

Original Weighted Original Weighted

Diabetes
T-FRI 61.19 68.98 63.85 65.13
KH 59.07 65.11 62.37 62.87
CCL 60.92 66.83 63.91 64.61

Phoneme
T-FRI 53.89 65.85 65.51 66.18
KH 58.07 60.79 64.22 64.41
CCL 63.21 66.48 65.83 65.93

Magic
T-FRI 63.86 69.16 69.03 69.60
KH 64.39 67.17 69.37 69.71
CCL 65.71 68.43 69.51 69.74

Haberman
T-FRI 72.49 77.19 74.02 74.54
KH 69.21 73.39 72.99 73.52
CCL 70.91 74.77 73.93 74.46

Hayes-Roth
T-FRI 46.87 61.00 55.25 56.62
KH 47.75 58.00 54.87 56.75
CCL 46.37 55.75 55.50 56.75

Page-blocks
T-FRI 66.77 72.13 69.78 69.80
KH 65.18 69.93 70.13 70.15
CCL 66.71 72.07 69.76 69.76

Ecoli
T-FRI 59.52 65.96 62.50 65.86
KH 59.89 64.04 62.71 65.81
CCL 61.56 65.90 63.12 66.31

Red Wine Quality
T-FRI 52.98 57.37 52.54 53.89
KH 52.52 53.92 52.25 53.62
CCL 52.73 53.33 52.44 53.32

Wireless Indoor T-FRI 76.36 79.89 79.34 80.03
Localization KH 77.50 78.85 79.90 80.87

CCL 75.59 77.18 78.84 79.85
User Knowledge T-FRI 74.85 82.54 74.97 78.24
Modeling KH 69.63 75.24 71.14 73.96

CCL 70.53 74.22 71.52 74.18

Average
T-FRI 62.87 70.01 66.68 67.99
KH 62.32 66.64 65.99 67.17
CCL 63.42 67.50 66.43 67.49

the fact that there are significantly larger numbers of unmatched rules in the cases

where a sparse rule base is employed, the average classification accuracies (across

the ten datasets) obtained using the weighted methods beat those achievable using
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the full original rule bases. From the perspective of obtaining improved classification

accuracy rates, this clearly demonstrates the potential of the present work.

Table 6.3: Average Number of Testing Samples for Interpolation

Dataset
Samples Requiring Samples Requiring

Interpolation in Interpolation in
Sparser Rule Base / Total Full Rule Base / Total

Diabetes 58 / 77 31 / 77
Phoneme 259 / 540 52 / 540
Magic 96 / 190 45 / 190
Haberman 10 / 31 2 / 31
Hayes-Roth 9 / 16 3 / 16
Page-blocks 207 / 547 8 / 547
Ecoli 21 / 33 15 / 33
Red Wine Quality 144 / 160 99 / 160
Wireless Indoor Localization 146 / 200 78 / 200
User Knowledge Modeling 28 / 40 18 / 40

More particularly, the average improvements of the weighted T-FRI, weighted

KH and weighted CCL on all ten datasets over the unweighted ones are measured

to be 7.14%, 4.32%, and 4.08%, respectively. This is statistically significance as

verified by pairwise t-tests, which result in low p values as listed in the third column

of Table 6.4. Again, these results show that the weighted FRI methods significantly

enhance the interpolative performance of the unweighted ones, and that such superior

performance is attained under the condition that only two nearest neighbouring

rules are employed for interpolation.

6.2.2.2 Efficiency of Weighted FRI

The previous study on weighted T-FRI (see Section 5.2.2) produced a surprising and

very positive result, discovering that the use of the minimum number of nearest

neighbouring rules does better for such rule interpolation. Inspired by that discovery,

this part of the experimental investigation systematically looks into the effect of

varying the number of neighbouring rules used for interpolation across all three

weighted methods. The investigation is carried out for all aforementioned ten

datasets, using five different numbers of closest rules.
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Table 6.4: P-value in Statistical Pairwise t-Test

Dataset FRI
Ori vs. Weighted n= 2 vs. n= 3

(n= 2) (Weighted FRI)

Diabetes
T-FRI 8.50× 10−6 4.58× 10−4

KH 1.44× 10−6 0.0254
CCL 3.84× 10−6 3.16× 10−5

Phoneme
T-FRI 3.26× 10−6 1.20× 10−4

KH 6.60× 10−6 0.1156
CCL 1.29× 10−4 5.36× 10−4

Magic
T-FRI 4.02× 10−5 0.0211
KH 1.68× 10−5 0.6869
CCL 6.14× 10−7 0.0719

Haberman
T-FRI 1.77× 10−5 0.0018
KH 1.88× 10−4 0.0074
CCL 3.48× 10−5 9.40× 10−4

Hayes-Roth
T-FRI 1.66× 10−5 0.0300
KH 2.98× 10−7 0.0155
CCL 2.91× 10−5 0.1575

Page-blocks
T-FRI 1.62× 10−5 1.29× 10−4

KH 8.26× 10−5 6.82× 10−5

CCL 2.50× 10−5 7.24× 10−4

Ecoli
T-FRI 1.84× 10−6 5.96× 10−5

KH 2.80× 10−4 6.22× 10−4

CCL 5.24× 10−5 1.52× 10−4

Red Wine Quality
T-FRI 2.03× 10−6 0.0025
KH 0.0559 0.0152
CCL 0.0423 0.2836

Wireless Indoor Localization
T-FRI 1.79× 10−5 0.0019
KH 9.55× 10−4 0.0089
CCL 0.0020 0.1940

User Knowledge Modeling
T-FRI 1.50× 10−5 2.26× 10−4

KH 0.0026 0.0075
CCL 0.0030 8.13× 10−4

Note that attribute weights can also be exploited to help modify the selection

procedure for the nearest neighbouring rules (see Section 4.1 for details). Thus, in

order to thoroughly examine the implication of the weighting scheme upon both the

procedure for closest rules selection and that for rule interpolation, the experiments

on classification results are herein purposefully designed to cover the following all

four cases, for each particular FRI approach (be it T-FRI, KH or CCL): unweighted

selection with unweighted interpolation, unweighted selection with weighted inter-

151



6.2. Experimental Evaluation

polation, weighted selection with unweighted interpolation, and weighted selection

with weighted interpolation. These are denoted as Sw̄Iw̄, Sw̄Iw, SwIw̄ and SwIw respec-

tively. Of course, if the number of the neighbouring rules is set to two, then the first

and the last become exactly the same as those denoted by Original and Weighted as

previously given in Table 6.2, running on a sparse rule base.

Tables 6.5 - 6.9 (with Tables 6.6 - 6.9 being the continuations of Table 6.5 due

to the limit of the physical space) present the results of this set of experiments,

with the examined range of n set to {2,3, . . . , 6}. This is partly to facilitate direct

comparison with the state-of-the-art results provided in Section 5.2.2, and partly

to reflect the practical consideration where using more than six closest rules to

perform interpolation is of little intuitive appeal, both in terms of computational

complexity and of classification result interpretability. Over this entire range, the

accuracies obtained by the use of weighted interpolation generally outperform those

by the unweighted for all three FRI approaches. That is in most cases, the results

achieved by Sw̄Iw are improved over Sw̄Iw̄, while SwIw does better than SwIw̄. These

improvements further demonstrate the effectiveness of the weighted FRI methods

proposed here.

Figure 6.3 plots the changing trend of classification accuracy in relation to the

number of the nearest neighbouring rules used. As n goes up from the minimum

(i.e., n = 2), the accuracies drop, sometimes sharply, for all three weighted FRI

methods with the weighted interpolation supported by weighted rule selection (i.e.,

SwIw). This behaviour of weighted FRI for the Magic and Red Wine Quality datasets

is slightly less obvious, but increasing n does not help to improve the classification

performance either.

The observation that the results of SwIw with any FRI approach when n= 2 beat

those when n= 3 is further validated by pairwise t-test in Table 6.4, with p values

shown in the fourth column of this table. These experimental results indicate that the

reduction of classification accuracies when the number of the nearest neighbouring

rules is increased from 2 to 3 is statistically significant for almost all FRI methods

across all datasets.

Examining the results of Tables 6.5-6.9 more closely, as highlighted in bold for

each of the ten datasets, the best performance of each FRI across the four implemen-

tations (namely, Sw̄Iw̄, Sw̄Iw, SwIw̄, and SwIw) over the entire range of n studied, is
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Table 6.5: Average Classification Accuracies (%) vs. Number of Nearest Neighbouring
Rules Used for Different FRI

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Diabetes

T-FRI

2 61.19 66.50 63.69 68.98
3 63.64 63.77 62.44 63.09
4 65.15 67.13 63.87 66.00
5 64.68 65.41 63.12 65.02
6 65.12 66.76 64.21 65.90

KH

2 59.07 63.81 60.21 65.11
3 63.52 63.49 61.95 62.03
4 63.00 64.67 61.77 63.08
5 64.46 64.51 62.50 62.87
6 64.28 65.37 62.45 63.49

CCL

2 60.92 64.90 62.71 66.83
3 62.24 62.63 59.87 60.31
4 63.65 64.74 61.80 63.15
5 63.39 63.65 61.72 61.56
6 64.01 65.00 61.93 63.28

Phoneme

T-FRI

2 53.89 56.43 62.15 65.85
3 55.09 55.22 58.57 62.37
4 54.78 57.08 61.09 64.51
5 55.59 56.74 57.75 64.52
6 56.11 58.51 60.86 65.33

KH

2 58.07 59.53 59.21 60.79
3 59.50 59.50 59.38 59.38
4 59.58 59.78 59.47 59.42
5 59.34 59.40 59.35 59.39
6 60.03 60.12 59.91 60.19

CCL

2 63.21 64.31 65.68 66.48
3 58.84 60.82 60.59 62.33
4 63.57 64.05 64.44 64.83
5 60.22 63.27 60.81 63.79
6 63.90 65.06 64.49 65.32

generally achieved using SwIw with n= 2. However, for the conventional Sw̄Iw̄ FRI

methods where no weighting scheme is employed, the accuracy increases with n.

This forms a sharp contract between the weighted and unweighted approaches, and

demonstrating the efficacy of the proposed work.

There are exceptional cases to observe. Particularly, the results show that the Sw̄Iw

FRI method can do better than the rest if a large number (e.g., n = 5 or n = 6) of rules
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Table 6.6: Average Classification Accuracies (%) vs. Number of Nearest Neighbouring
Rules Used for Different FRI (Continued)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Magic

T-FRI

2 63.86 67.86 65.46 69.16
3 67.79 67.97 67.53 67.95
4 67.37 68.90 67.30 68.95
5 68.91 69.02 68.28 68.90
6 68.78 69.61 68.23 69.45

KH

2 64.39 66.29 65.01 67.17
3 66.79 66.78 67.00 67.05
4 66.95 66.91 66.89 67.00
5 67.45 67.47 67.31 67.44
6 67.45 67.43 67.18 67.43

CCL

2 65.71 67.62 66.48 68.43
3 67.58 67.78 67.57 67.81
4 67.41 68.03 67.16 67.79
5 68.48 68.29 68.17 67.91
6 67.83 68.22 67.31 67.73

Haberman

T-FRI

2 72.49 74.44 75.36 77.19
3 72.94 73.39 73.53 74.56
4 74.38 74.77 74.19 74.25
5 74.32 74.83 74.12 74.71
6 74.25 74.58 74.58 74.44

KH

2 69.21 70.26 72.28 73.39
3 72.29 71.69 72.88 71.30
4 72.21 72.35 72.35 72.42
5 72.16 71.64 72.55 71.36
6 72.69 71.90 72.29 71.95

CCL

2 70.91 72.36 73.13 74.77
3 71.77 72.62 72.15 72.68
4 72.48 72.88 71.83 72.29
5 71.97 72.30 72.09 72.29
6 72.09 71.97 71.90 71.90

are used. Such situations occur mostly when the KH weighted interpolation method

is employed with rules taken by unweighted selection. Nonetheless, the interpolation

procedure is still weighted in these cases; this again shows the effectiveness of

weighting upon rule antecedent attributes. Besides, there is little win of Sw̄Iw over

SwIw. Yet, such minor win is obtained at the expense of much more computational

overheads as more rules are involved in the interpolation procedure, as illustrated

below. This finding is of great importance in practical application of FRI since it
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Table 6.7: Average Classification Accuracies (%) vs. Number of Nearest Neighbouring
Rules Used for Different FRI (Continued)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Hayes-Roth

T-FRI

2 46.87 47.00 60.37 61.00
3 48.75 48.75 55.75 56.37
4 50.50 50.50 53.99 53.37
5 52.50 52.37 55.75 55.87
6 51.87 52.37 54.75 54.87

KH

2 47.75 48.50 57.12 58.00
3 49.75 49.62 52.37 51.62
4 51.37 52.00 51.87 52.12
5 51.00 51.37 51.87 52.50
6 51.12 51.12 51.50 51.50

CCL

2 46.37 47.12 55.25 55.75
3 48.25 49.00 51.87 53.25
4 50.62 50.37 53.00 52.24
5 52.37 51.62 53.00 52.37
6 50.87 51.12 51.50 51.87

Page-blocks

T-FRI

2 66.77 66.76 72.12 72.13
3 60.54 59.26 61.25 60.23
4 65.45 65.37 64.99 64.91
5 66.81 65.66 66.57 65.49
6 64.97 64.28 64.39 63.85

KH

2 65.18 65.12 69.86 69.93
3 57.83 57.83 58.22 58.23
4 59.39 58.02 59.11 57.82
5 60.30 60.14 60.11 59.93
6 59.44 58.83 59.00 58.58

CCL

2 66.71 66.68 72.03 72.07
3 74.67 63.77 74.63 64.63
4 71.80 66.05 72.27 65.92
5 68.08 65.86 68.31 65.86
6 70.02 65.06 69.12 64.71

empirically confirms that weighted FRI methods only require two (i.e., the least

number of) nearest neighbouring rules to perform rule interpolation, significantly

enhancing the overall algorithm efficiency.
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Table 6.8: Average Classification Accuracies (%) vs. Number of Nearest Neighbouring
Rules Used for Different FRI (Continued)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Ecoli

T-FRI

2 59.52 61.38 64.34 65.96
3 56.56 56.50 55.77 55.71
4 52.87 52.51 52.15 51.85
5 49.04 48.93 48.99 49.11
6 47.38 47.85 46.06 46.24

KH

2 59.89 59.82 63.92 64.04
3 56.50 56.50 55.77 55.77
4 53.40 53.11 52.09 51.97
5 49.52 49.53 49.17 49.12
6 48.44 48.50 47.07 47.08

CCL

2 61.56 61.68 65.60 65.90
3 56.50 56.50 55.71 55.77
4 52.87 52.81 52.34 52.46
5 49.10 49.22 49.17 49.29
6 47.37 47.37 46.06 46.07

Red Wine Quality

T-FRI

2 52.98 55.64 54.55 57.37
3 53.29 53.28 53.17 53.14
4 53.23 54.24 53.27 54.11
5 53.33 53.39 52.69 52.85
6 53.68 54.19 53.10 53.42

KH

2 52.52 52.83 53.22 53.92
3 53.26 53.23 53.14 53.07
4 53.43 53.84 53.48 53.78
5 53.29 53.29 52.68 52.62
6 53.81 54.13 53.29 53.28

CCL

2 52.73 52.74 53.24 53.33
3 52.62 53.14 52.14 52.89
4 53.56 53.14 53.37 52.99
5 53.84 54.54 53.29 53.68
6 53.87 53.87 52.95 52.55
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Table 6.9: Average Classification Accuracies (%) vs. Number of Nearest Neighbouring
Rules Used for Different FRI (Continued)

Dataset FRI n Sw̄Iw̄ Sw̄Iw SwIw̄ SwIw

Wireless Indoor Localization

T-FRI

2 76.36 78.32 77.94 79.89
3 77.22 77.22 76.93 76.93
4 75.12 75.45 74.56 74.91
5 74.41 74.50 73.92 74.02
6 76.47 77.00 75.92 76.44

KH

2 77.50 78.02 78.37 78.85
3 77.22 77.22 76.93 76.94
4 75.50 75.89 75.03 75.25
5 74.52 75.10 74.06 74.79
6 79.33 79.62 79.06 79.06

CCL

2 75.59 76.24 76.12 77.18
3 76.82 76.95 76.53 76.89
4 75.37 76.12 74.66 75.58
5 76.36 77.12 75.89 76.82
6 76.11 76.33 75.47 75.76

User Knowledge Modeling

T-FRI

2 74.85 78.91 77.03 82.54
3 74.44 75.54 63.84 69.55
4 76.18 78.91 66.17 69.15
5 76.29 79.16 61.55 68.50
6 77.92 79.95 61.10 66.85

KH

2 69.63 71.51 72.68 75.24
3 74.69 74.69 64.89 68.21
4 74.05 74.39 65.73 69.05
5 76.09 76.68 62.94 68.01
6 75.78 76.02 62.04 66.90

CCL

2 70.53 69.73 70.64 74.22
3 73.64 71.91 63.84 66.02
4 73.99 72.05 63.19 66.65
5 74.80 74.34 60.60 66.06
6 75.64 74.54 59.50 64.42
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6.2.2.3 Further Analysis

A. Confusion Matrix

The analysis of confusion matrices has also been conducted for each of the three

weighted FRI methods regarding the use of two or three nearest neighbouring rules.

To save space, Tables 6.10-6.12 present the outcomes for the Diabetes dataset as an

example case study, since the general trends for the others are similar. The comparison

in each of these tables helps explain why the overall classification accuracy may

dramatically decrease as n increases from 2 to 3. As reflected by these results,

the adverse variation of the overall accuracy when n = 3 appears to be caused by

the significant increase of false positives and the considerable reduction of true

negatives. Of course, such situations must be minimised in any realistic application,

especially for instance in medical diagnosis as is indeed the case concerning this

dataset. Both increase in false positives and reduction in true negatives will usually

cause undue anxiety of the patient, and in worse scenarios, may even cause missing

the correct diagnosis of other disease(s) that the patient may be suffering from the

given symptoms.

B. Run Time

Results so far have demonstrated that weighted FRI methods (that involve addi-

tional computation in both rule selection and rule interpolation procedures) generally

outperform their originals. However, a question may be raised as to how much extra

computation effort is required to attain such improved performance, despite the

recognition that learning the weights themselves is an offline task. This final ex-

perimental study therefore, addresses this natural concern regarding the run time

performance of the weighted methods.

Table 6.13 lists the average testing time recorded for all three weighted FRI

methods (i.e., in the form of SwIw) and their originals (namely, Sw̄Iw̄), when dealing

with the final five problems given in Table 5.1. The tests are carried out in relation

to the increase of the number of the nearest neighbouring rules employed. Note

that these five cases are selected because they each involve more classes and hence,

are more difficult to classify (whilst saving the space otherwise required to present

similar results for the other five). As expected, there is indeed an increase in time

consumption when exploiting more nearest neighbouring rules for all FRI methods
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Table 6.10: Confusion Matrix of Weighted T-FRI with n = 2 and n = 3 Nearest
Neighbouring Rules

Classified (n= 2) Classified (n= 3)
Positive Negative Positive Negative

Actual
Positive 23.12% 11.76% 21.09% 13.79%
Negative 19.26% 45.82% 24.34% 40.75%

Table 6.11: Confusion Matrix of Weighted KH with n = 2 and n = 3 Nearest
Neighbouring Rules

Classified (n= 2) Classified (n= 3)
Positive Negative Positive Negative

Actual
Positive 20.70% 14.19% 19.99% 14.89%
Negative 20.74% 44.34% 23.57% 41.51%

Table 6.12: Confusion Matrix of Weighted CCL with n = 2 and n = 3 Nearest
Neighbouring Rules

Classified (n= 2) Classified (n= 3)
Positive Negative Positive Negative

Actual
Positive 18.14% 16.73% 18.92% 15.95%
Negative 16.49% 48.60% 23.65% 41.44%

(weighted or not). The use of fewer rules will thus be more efficient. However, as

can be seen from this table, there is no significant increase in the time cost by a

weighted FRI as compared to that by its original where no weights are involved, while

using the same number of rules for interpolation. This once again demonstrates the

efficacy of the proposed weighted FRI techniques and supports the outcome that

least neighbouring rules do better with attribute weighted FRI.

6.3 Summary

This chapter has further developed the work of Chapter 4 on weighted fuzzy inter-

polative reasoning, by extending the weighted transformation-based FRI to two other

classical FRI methods, namely the KH [Kóczy and Hirota, 1993a] and CCL [Chang
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Table 6.13: Average Testing Time (sec) vs. Number of Nearest Neighbouring Rules

Dataset Methods
Number of Closest Rules (n)

2 3 4 5 6

Page-blocks

T-FRI
Sw̄Iw̄ 0.1881 0.1930 0.1953 0.2013 0.2049
SwIw 0.1876 0.1924 0.1961 0.2045 0.2063

KH
Sw̄Iw̄ 0.1794 0.1813 0.1915 0.1940 0.1971
SwIw 0.1829 0.1839 0.1910 0.1941 0.1972

CCL
Sw̄Iw̄ 0.1789 0.1784 0.1833 0.1881 0.1887
SwIw 0.1814 0.1813 0.1854 0.1922 0.1925

Ecoli

T-FRI
Sw̄Iw̄ 0.0165 0.0203 0.0192 0.0207 0.0206
SwIw 0.0162 0.0199 0.0192 0.0217 0.0207

KH
Sw̄Iw̄ 0.0166 0.0200 0.0175 0.0201 0.0198
SwIw 0.0164 0.0197 0.0177 0.0199 0.0184

CCL
Sw̄Iw̄ 0.0181 0.0182 0.0188 0.0209 0.0199
SwIw 0.0184 0.0198 0.0184 0.0213 0.0201

Red Wine Quality

T-FRI
Sw̄Iw̄ 0.1673 0.1735 0.1733 0.1782 0.1819
SwIw 0.1649 0.1722 0.1729 0.1773 0.1799

KH
Sw̄Iw̄ 0.1687 0.1695 0.1736 0.1754 0.1784
SwIw 0.1692 0.1713 0.1753 0.1747 0.1777

CCL
Sw̄Iw̄ 0.1609 0.1612 0.1632 0.1647 0.1684
SwIw 0.1625 0.1625 0.1634 0.1685 0.1688

Wireless
Indoor
Localization

T-FRI
Sw̄Iw̄ 0.1594 0.1704 0.1694 0.1775 0.1735
SwIw 0.1592 0.1723 0.1709 0.1788 0.1742

KH
Sw̄Iw̄ 0.1695 0.1692 0.1706 0.1755 0.1741
SwIw 0.1660 0.1695 0.1682 0.1762 0.1723

CCL
Sw̄Iw̄ 0.1639 0.1629 0.1610 0.1655 0.1668
SwIw 0.1643 0.1640 0.1639 0.1699 0.1691

User
Knowl-
edge
Modeling

T-FRI
Sw̄Iw̄ 0.0265 0.0351 0.0300 0.0323 0.0309
SwIw 0.0264 0.0346 0.0301 0.0338 0.0313

KH
Sw̄Iw̄ 0.0268 0.0305 0.0294 0.0322 0.0301
SwIw 0.0268 0.0304 0.0292 0.0319 0.0302

CCL
Sw̄Iw̄ 0.0256 0.0312 0.0284 0.0306 0.0289
SwIw 0.0256 0.0317 0.0281 0.0309 0.0292

et al., 2008] algorithms. The work introduces weights into rule antecedent attributes

within these FRI procedures. The extensions have been systematically evaluated on

ten benchmark classification problems, demonstrating the superior performance of

these extended methods over their originals. Very importantly, as illustrated by the

experimental analysis, the weighted FRI methods only require the least number (i.e.,

2) of the nearest neighbouring rules to perform interpolation, thereby ensuring their

efficiency in practical applications.
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Such improved performances of the extended methods are attainable owing to the

use of the relative significance degrees, or weights, of the individual rule antecedents

to guide the selection of the nearest neighbouring rules for interpolation. These

weights are derived from ranking attributes using the given sparse rule base only.

The interpolation processes are modified by the weights as well, thereby reflecting

different contributions made by different attributes in deriving the interpolated

consequents. This differs from the existing approaches where all attributes are

treated equally.

The ideas of weighted KH and weighted CCL essentially form two examples of

the generalisation of the weighted T-FRI which was proposed in Chapter 4. Along

with the weighted T-FRI, these three methods provide a choice for the alternatives to

implement the weighted fuzzy interpolative reasoning framework. This offers more

options to achieve more accurate performance for inference with sparse rule bases.
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Chapter 7

Weighted Fuzzy Interpolative

Reasoning for Interpretable

Mammographic Mass Classification

T HE proposed attribute weighted fuzzy rule interpolation (FRI) scheme has been

seen successful applications in the field of classic pattern recognition, for tackling

classification and prediction problems, as reported in Chapter 5. This chapter presents

a systematic application of this scheme in the medical domain, for addressing the

problem of mammographic mass classification (MMC).

The remainder of this chapter is organised as follows. Section 7.1 firstly introduces

the background knowledge of MMC, motivating this application work. Section 7.2

describes the mammographic image data to be addressed. Section 7.3 describes the

fuzzy rule-based interpolative reasoning system for MMC. Section 7.4 provides ex-

perimental evaluation of the implemented system, supported with statistical analysis.

Finally, Section 7.5 presents a summary of this realistic application.

7.1 Preliminaries

This section presents a brief introduction to the problem of MMC, including a review

of the relevant techniques for MMC and a discussion of challenging issues remaining

to be resolved. The motivations for the current work are then reported.
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7.1. Preliminaries

7.1.1 Background

Breast cancer is one of the severest threats for women around the world. Early de-

tection of breast lesions has been shown to provide an essential means to reduce the

possibility of deterioration of patients’ health conditions or even death. Amongst var-

ious tools available, mammography screening offers a particularly popular technique

for identifying the presence of abnormalities in breasts. As a result, mammographic

images are produced, in the form of films or more advanced recently, in that of

full field digital mammograms, which are helpful to effectively detect and diagnose

breast cancer by medical professionals.

Mass and microcalcification are two important early signs of abnormalities for

detecting developing breast cancer, which are normally present in mammographic

images. Masses are often indistinguishable from the surrounding parenchymal, re-

sulting in more significant challenges for mass detection and classification. In general,

an abnormal mass can be categorised into either benign or malignant. For instance,

the standardised Breast Imaging Reporting and Data System (BI-RADS) [Samuels,

1998] characterises masses for determination of benign or malignant in terms of

their shapes, margins and densities. This reflects how radiologists visualise the mam-

mographic images for diagnosis. Benign masses are frequently found to be in round

or oval shapes, having well-defined margins and low densities, whilst malignant

masses are more likely in irregular shapes and have spicule margins with relatively

high densities.

Reading mammograms is a very demanding task for radiologists, and the deter-

mination of whether an image shows a benign mass or malignant may be affected by

the experience and subjective criteria of a certain radiologist who handles a given

case. The development of Computer-Aided Diagnosis (CADx) techniques plays an

effective supporting role in assisting medical professionals in the interpretation of

medical images. Especially, a combination of using a CADx system and exploiting

human expertise directly would greatly improve diagnostic accuracy and efficiency.

A number of CADx systems have been studied and applied to support mammographic

abnormality diagnosis (e.g., [Liu and Tang, 2013,Magna et al., 2016,Miranda and

Felipe, 2015,Oliver et al., 2012,Pérez et al., 2015,Xie et al., 2016]). Most developed

techniques can be referred to in the recent survey of such research in [Cheng et al.,

2006,Oliver et al., 2010,Yassin et al., 2018].
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Existing computational techniques may provide a second opinion for mammo-

graphic mass diagnosis, by dealing with the mammograms using pathological related

knowledge. In general, most CADx systems for mammogram mass classification build

their structures by following a number of key phases, including: image preprocess-

ing, region of interest (ROI) extraction, mass segmentation, feature extraction and

selection, and class determination. Various image features have been found in the

literature for characterising mass properties, such as traditional features in terms of

intensity, morphology, texture, etc. and features generated from advanced computa-

tional mechanisms like deep neutral networks [Wu et al., 2018]. Morphological (aka.

geometric) features are one of the most common types used to discriminate mammo-

graphic masses [Pedro et al., 2019], typically extracted to represent the shape and

boundary characteristics of masses. They are commonly adopted to support precise

mass segmentation carried out by radiologists or CADx systems. This is because

such features depict what radiologists visualise a mass lesion, which are essential to

enable subsequent interpretation of the classification or diagnostic outcome.

From medical viewpoint, interpreting mammogram masses visually is a very

demanding task for radiologists. It would therefore be a great assistance to be

able to produce interpretable diagnoses from any CADx system in use. Recently,

efforts have been made for improving accuracy of CADx systems for mammogram

classification, such as those achieved by deep convolutional neural networks (DCNNs,

e.g., [Lévy and Jain, 2016,Wu et al., 2018,Yi et al., 2017]), which have been seen

to make great progress in meeting the visual recognition challenges. In such work,

informative features are extracted to generate potential explanations for mammogram

classification, by visually showing the edge of mass in saliency maps for example.

However, to ensure interpretable feature representations requires the annotations

of radiologists (or other alternative means) to correlate the DCNNs features with

radiological features that reflect clinically relevant phenomena. This makes the

interpretation progress and hence, the entire diagnostic system more complicated.

It remains a difficult problem to discover clinically explainable interpretations for

machine learning-based CADx systems.

7.1.2 Motivations

The question now is what intelligent classification methods can be better developed

to facilitate the use of semantics-rich geometric mass features, in an effort to enhance
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CADx systems’ explainability explicitly. Fuzzy rule-based systems are known to be

able to simulate human reasoning in decision support. Inference made by firing

fuzzy if-then rules can be readily interpreted by human users. Such systems provide

an effective tool to deal with the impreciseness and vagueness commonly incurred

in real-world problems, including the description of mammographic mass character-

istics. Fuzzy rule-based techniques therefore, have a natural appeal in establishing

a CADx system for mammographic mass diagnosis. For example, Adaptive Neuro-

Fuzzy Inference System (ANFIS) has been applied to classifying normal/abnormal

mammograms, as well as to determining abnormal severity [Mousa et al., 2005].
Also, the classical Compositional Rule of Inference (CRI) [Zadeh, 1973] has been

employed to perform mammogram diagnostic reasoning (e.g., classifying mammo-

gram mass lesions into the well-known BI-RADS shape categories) [Miranda and

Felipe, 2015,Vadivel and Surendiran, 2013].

Little work exists to explicitly interpret radiological phenomena of mass lesions

in mammograms with the use of fuzzy rules, however. In addition, there may not be

sufficient mammographic image data to enable the full exploitation of traditional

fuzzy systems to perform required diagnostic tasks. As such, a fuzzy rule base

inducted from the data may not cover the entire problem domain, resulting in the

situations where certain observations can not match any of the rules in the rule base,

thereby deriving no or wrong conclusions [Vadivel and Surendiran, 2013]. Fuzzy

interpolative reasoning through fuzzy rule interpolation (FRI) can help to deal with

exactly such sparse knowledge-based problems [Baranyi et al., 2004, Chen et al.,

2015, Huang and Shen, 2006, Kóczy and Hirota, 1993a, Yang et al., 2017]. The

efficacy of classical FRI techniques have been significantly strengthened with the

recent advances in the literature, including the weighted FRI approach introduced

earlier in this thesis, which no longer imposes the constraint that the rule antecedent

features are of equal significance in decision-making. Instead, features are ranked

with their relative weights exploited in the procedures of a conventional FRI method

(e.g., the scale and move transformation-based FRI, T-FRI [Huang and Shen, 2008]).
As demonstrated before, the resultant techniques have been successfully applied in

tackling classification and prediction problems, inspiring the development reported

herein.

Two key contributions to the relevant literature are to be reflected and reinforced

in this application work: 1) an implemented fuzzy rule-based inference system
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for mass classification in mammograms, where fuzzy interpolative reasoning is

embedded for the first time in a CADx system (for coping with sparse rule bases),

supported by feature weight-guided FRI; and 2) an explicit explanation output from

the CADx system, in the form of clinically interpretable rules using features of doamin

semantics, thereby providing a “second opinion” for assisting radiologists to read

mammograms.

7.2 Databases

The benchmark mammographic image datasets used in this work are adopted from

the Breast Cancer Digital Repository (BCDR) [Lopez et al., 2012]. It is a wide-

ranging and comprehensively annotated public database for mammographic disease

study, especially for the development of breast cancer CADx techniques and for

training medical physicians involved in the diagnostic, treatment or research of

breast cancer and associated technologies. This repository is continuously being

enriched and currently, contains cases of 1734 patients with mammography and

ultrasound images, clinical history, lesion segmentation and selected pre-computed

image-based descriptors.

BCDR consists of two different types of sub-repository: 1) a digitalised film

mammography (FM)-based repository, and 2) a full field digital mammography

(DM)-based repository. Both FM and DM repositories are divided into several sub-

datasets including different number of cases, which form a common ground for

fair comparison between various CADx systems for mammographic disease analysis.

As with other established mammographic databases, digitalised film mammogram

images have rather lower resolution whilst full field digital mammogram images

are much more common nowadays (because of their higher spatial resolution and

permitting more image manipulation to enable better visualisation). Without biases,

the present work takes samples from both FM and DM sub-datasets, containing the

following types of mass:

• BCDR-D01: comprised of 79 biopsy-proven lesions of 64 women, rendering

141 segmentations. All of them present suspicious mass, of which 85 are benign

and 56 are malignant. Each image is a grey level mammogram in 14 bits with

a resolution of 3328×4084 pixels.
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• BCDR-F01: comprised of 200 biopsy-proven lesions of 190 women, rendering

362 segmentations, with mass lesions occurring in 231 segmented images

where the number of benign and malignant masses are 112 and 119, respec-

tively. Each image is a grey level digitalised mammogram in 8 bits with a

resolution of 720×1168 pixels.

Note that multiple views of a single abnormality are involved in each sub-dataset,

which results in the number of the abnormality segmentation being possibly more

than that of the detected lesions (or the number of patients). This study exploits

all views of a certain mass for conducting the evaluation of the proposed work, in

order to demonstrate its potential practicality for constructing an interpretable fuzzy

rule-based CADx system to classify mammographic mass lesions. As for the ultimate

task of directly assisting the diagnosis of breast cancer, a pre-processing procedure

for separating the mammographic images in different views needs to be taken into

consideration.

Note that each mammogram image considered has a precise segmentation of

identified lesion. In particular, the contour of mass is manually annotated by medical

specialists. Fig. 7.1 shows examples of benign and malignant mass lesions with

respective mass segmentations, taken from each of the two datasets.

7.3 Fuzzy Rule-based Interpolative Classifier

This section details the design and implementation of a rule-based system that works

through the assistance of fuzzy interpolative reasoning, for classifying mammographic

mass in mammogram images.

7.3.1 System Framework

The workflow of the entire diagnostic system is specified as illustrated in Fig. 7.2.

The general working process is as follows. Having identified a general region of

interest (ROI) and segmented mass lesion from a given original mammogram image,

a set of potentially descriptive features are extracted for characterising the properties
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(a) Malignant mass in BCDR-D01 (b) Benign mass in BCDR-D01

(c) Malignant mass in BCDR-F01 (d) Benign mass in BCDR-F01

Figure 7.1: Samples of mass lesions with mass contours annotated.

of the image (particularly regarding the geometric shape, margin, density of mass

lesion). The resulting mass features are evaluated by a feature ranking method, of

two-fold objectives: 1) selection of more informative top features, and 2) assignment

of weights to those selected ones in terms of their relative ranking scores. A fuzzy

semantic rule base is generated from the given image database through the use of

selected mass features as rule conditionals, by employing a certain standard fuzzy

rule induction method (e.g., the one described in Appendix A).

Following the aforementioned preparation, the primary work for mass classi-
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7.3. Fuzzy Rule-based Interpolative Classifier

fication is highlighted in the dashed box in Fig. 7.2. In particular, when a novel

observed mass is present (represented with selected features) it is regarded as a new

observation to be checked against the rules within the rule base. If it is matched

by any existing rule, the rule is fired by the use of CRI. If there is no rule matching

the observation, weighted fuzzy rule interpolation (where T-FRI is used for imple-

mentation here, though others such as those presented in Chapter 6 may be used

as an alternative) to perform interpolative reasoning, estimating the benignancy or

malignancy of the given mass. Technical details are provided in the following.

7.3.2 ROI Extraction and Mass Segmentation

In BCDR, each mammogram is associated with a precise segmentation of the under-

lying mass lesion. Since the focus of this work is on mass classification, the available

contours of masses are adopted here for generating the ROI image and subsequently,

the mass-segmented mask image of each given mammogram. These two images are

chopped from the original mammogram, such that the observed mass locates in the

centre. The resultant images consolidate the basis upon which to extract features

in terms of mass shapes, margins and densities. Fig 7.3 shows examples of the ROI

and mass-segmented mask images as per those mammogram samples displayed in

Fig 7.1.

(a) ROI of (a) (b) Mask of (a) (c) ROI of (b) (d) Mask of (b)

(e) ROI of (c) (f) Mask of (c) (g) ROI of (d) (h) Mask of (d)

Figure 7.3: ROI and mass-segmented mask images of mass samples given in Fig. 7.1.
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7.3.3 Mass Feature Extraction and Ranking

Given the ROI image and mass-segmented image of a mammogram, a set of features

are extracted for characterising mass lesion in terms of the image properties such as

mass shape, margin and density. Generally, the benign masses are frequently found

to be in round or oval shapes, having well-defined margins and low densities, while

the malignant masses are more likely in irregular shapes and have spicule margins

with relatively high densities. Inspired by this observation, in this work, a total of 18

features are taken as the possible ones to distinguish benign and malignant masses, as

listed in Table 7.1. This intuitive approach is based on the understanding of medical

professionals practice, in that these two types of mass are often differentiated from

their geometrical shape and boundary as well as density.

Benign and malignant masses may be found in rather different shapes. To reflect

this viewpoint, six geometry features are extracted from the mask images of mass,

including: mass area (F1), mass perimeter (F2), circularity measure (F3), convexity

measure (F4), mass eccentricity (F5) and dispersion (F6). In particular, area and

perimeter are basic shape descriptors for measuring the size of a mass. The features

F3-F6 are metrics which define the morphological characteristics of masses in different

shapes, potentially helpful to differentiate masses of regular shape from those of

irregular, and to quantify the circularity and ellipticity of regular masses.

The margin of a mass offers another view for depicting the geometric properties

of masses. Margin features can be grouped in two sub-categories. One is used

to determine the degree of boundary roughness. Herein, five normalised radial

length (NRL)-based statistical features (F7-F11) and compactness measure (F12)

are employed to cover this aspect. The other group is to quantify the sharpness of

margin intensity, with three margin gradient features (F13-F15) adopted to measure

the pixel intensity variations over the boundaries of masses.

Mass shape and margin features characterise the morphological properties of

mass regions, while the density features of mass reveal the intensity of mass region

compared against its surrounding tissue. The last three features are therefore adopted

to exploit the pixel intensity within a mass involved in the ROI images. In particular,

the features F16 and F17 are computed with respect to the statistics relevant to

the moments which measure the intensity of suspicious mass region. The contrast

measure (F18) is the difference between the average grey level of the ROI and that of

the surrounding region, evaluating the intensity variation within masses in contrast

to that outside.
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Table 7.1: Mass Features in Different Category for Characterising Mass Lesion

Mass Features Physical Meaning

Shape

Area (F1) [Cheng et al., 2006,Dominguez and Nandi,

2008]
Size

Perimeter (F2) [Cheng et al., 2006,Xie et al., 2016] Small values indicate small mass lesion

Circularity (F3) [Cheng et al., 2006, Petrick et al.,

1999]
Degree of roundness/circularity

F3=1 for a circular mass and less than 1 for mass that

departs from circularity

Convexity (F4) [Cheng et al., 2006] Relative amount that an object differs from a convex object

F4=1 for convex mass (as with many benign masses) and

less than 1 for nonconvex mass (as with many spiculated

or malignant masses)

Eccentricity (F5) [Dominguez and Nandi, 2008,Vadi-

vel and Surendiran, 2013]
Degree of ellipticity

Small values for circle-like ellipse and large for line

segment-like ellipse

Dispersion (F6) [Dominguez and Nandi, 2008,Vadi-

vel and Surendiran, 2013]
Degree of irregularity (Density of region)

Small values indicate regular masses while large values

for irregular masses
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Margin

Statistical normalised radial length (NRL) features

(F7-F11) [Cheng et al., 2006,Petrick et al., 1999]:
Degree of boundary roughness

mean, SD, entropy, area ratio, zero-crossing count

Compactness (F12) [Dominguez and Nandi, 2008,

Mu et al., 2008]
Small values indicate smooth contour (as with benign

masses)

Margin statistical gradient features (F13-F15) [Xie

et al., 2016]:
Intensity variations across the boundaries of mass

mean, SD, entropy Small values indicate flat edges while large values for

sharp boundary

Density

Mass Intensity Mean (F16) [Cheng et al., 2006,Xie

et al., 2016]
Average intensity value inside mass

Small values indicate low density mass

Mass Intensity Standard Deviation (F17) [Cheng

et al., 2006]
Intensity variation inside mass

Small values indicate little intensity variation within mass

Contrast measure of ROIs (F18) [Cheng et al., 2006,

Petrick et al., 1999]
Intensity variation between inside and outside of mass

Small values indicate low density contrast
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Note that there may exist redundant features among the extracted combinatorial

properties of mass shape, margin and density. Obviously, such redundancy should be

removed, not only to improve the performance of classifier (via the use of less features

gaining efficiency and the reduction of measurement noise gaining effectiveness), but

also to enhance interpretability of the diagnostic system (with less complex rules). In

this chapter, a feature ranking mechanism taken from the core of the popular Relief-F

algorithm [Kononenko, 1994] is employed to evaluate individual mass features. This

differs from the work in Chapter 5, where information gain was adopted. This is

purely for the purpose of demonstrating the diversity of feature evaluation methods

for possible use. As stated before, other evaluation algorithms may also be utilised

as an alternative if preferred.

The use of the feature ranking mechanism results in a set of scores that indicate

the relative importance of each feature in the determination of benign and malignant

mass. Intuitively, those features which have relatively lower scores may have poorer

capability in the discrimination of different classes, and thus a subset of features

are selected whose score values are higher than the average. The average score is

herein utilised in order to ensure the process is automated; otherwise, if desirable, a

pre-defined threshold may be used for the removal of low-ranking features.

Without losing generality, suppose that there are m features being selected, each

of which has a ranking score RSi, i = 1, 2, . . . , m. These different score values can then

be normalised as weights associated with each of the selected individual features, as

follows:

Wi =
RSi

∑

t=1,...,m RSt
(7.1)

Given their underlying definition, the resulting normalised ranking scores have a

natural appeal to be interpreted as the relative significance degrees of the contribution

that a remaining feature may make to the decision, regarding the benignancy or

malignancy of the mass. Such weights will also be utilised to guide the fuzzy rule-

based interpolative inference system for mass classification as to be discussed later.

7.3.4 Generation of Fuzzy Classification Rules

Having represented mass lesions in mammograms with selected mass shape, margin

and density features, fuzzy rules for mass classification can be generated from given
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images whose decision classes are known. More specifically, the fuzzy rule base for

mass classification consists of fuzzy if-then rules whose antecedent attributes are

selected mass features and consequent attribute is the corresponding mass lesion

type (i.e., Benign or Malignant).

The fuzzy values for each antecedent feature are fuzzified linguistic terms, which

are defined in terms of the physical meaning of the underlying mass features (that are

given in Table 7.1). Different values of the numerical metrics defining the features

indicate different properties of a certain mass (including: shape, margin and density).

Generally, the linguistic terms describing the features can be given in order, such as

“..., Small ,..., Medium ,..., Large ,...”. Table 7.2 lists the linguistic values used in this

work, mimicking the terms used by the medical professionals in the field concerned.

The number of linguistic terms adopted by each mass feature can be determined

from data by a data-driven method (see later for evaluation). From this definition,

a fuzzy rule base is inducted from the extracted feature data, by promoting any

hype-grid delimited by the fuzzy feature values that is hit by at least one given data.

Note that any standard fuzzy rule induction method may be employed to create the

rules, which is not the focus of this work. Unless stated otherwise, rules are herein

learned from the selected mass features based on the use of the classical method

of [Wang and Mendel, 1992], a summary of which is given in Appendix A.

A possible rule, for example, from the learned rule base may be represented such

that

If Area is Small and ... Circularity is Large and ... NRL zero-crossing is Small and

Margin gradient mean is Large and ... Density contrast is Small, then Mass is Benign.

From the underlying semantics of the morphological and density features, this

rule can be directly mapped onto the following, using the linguistic terms given in

Table 7.2:

If Mass is Small and ... Mass shape is Very Like Circular and ... Mass margin is

Smooth and Margin is Circumscribed and ... Mass density contrast (between inside and

outside mass) is Low, then Mass is Benign.

Using fuzzy rules like the above helps facilitate the understanding of any conclusion

drawn regarding whether a new mammogram stands for a benign or malignant mass,

through the use of the fuzzy interpolative reasoning system as described next.
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7.3.5 Feature Weight-Guided Interpolative Reasoning

When a new observation is present, in terms of a set of measured feature values

(representing an unknown mass lesion), all rules in the rule base are used to match

against it in order to derive a diagnostic conclusion. However, the rule base learned

from previously given data may be sparse, especially when only limited source data

(or classified medical mammographic images) are available. Thus, checking against

all the available rules cannot fully cover the entire problem domain. That is, there

exist situations where no rules can be found that match the new observation, leading

to no conclusion to be drawn. To enable approximate inference on the unmatched

observation, FRI is utilised. Thus, the previously developed feature weighted FRI is

adapted to implement the required interpolative reasoning for mass classification.

The formal illustration of the feature weighted FRI approach can be referred to

technical details presented in Chapter 4. In particular, suppose that each antecedent

attribute in the learned (sparse) fuzzy rule base is now associated with a weight

through feature ranking as given in Section 7.3.3. For simplicity and consistency

throughout this thesis, triangular membership functions are employed for imple-

menting the CADx system, with each fuzzy set represented by three characteristic

points, as previously illustrated in Section 2.1 of Chapter 2.

In this work, the number of closest rules, n is set to 2 for conducting rule interpo-

lation. This follows the empirical conclusion drawn previously, in that the adoption

of the least number of closest rules (i.e., n= 2) is able to achieve a superior perfor-

mance for feature weighted T-FRI. Such a set up normally has a high classification

accuracy while saving computational costs.

Once the weighted FRI is reached, when a sparse rule base is learned from source

data and a novel observation finds no rules to match, the required consequent can

be derived. The entire interpolative process is guided by the feature weights. Note

that for those matched observations, the classification results are directly obtained

by firing the matched rules without going through interpolation. As with many fuzzy

rule-based systems, the resultant consequent fuzzy sets are required to be defuzzified

for providing a class label, returning the conclusion on classification. Obviously, in

the present CADx system, the conclusion drawn over the given mass is whether its

type is benignancy or malignancy.
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Finally, to reinforce the understanding and to help implement the proposed

mammographic diagnostic system, Algorithms 8 and 9 present the pseudocode for

the training and application (or testing) of the classification system, respectively.

They jointly reflect the overall system framework as illustrated in Fig. 7.2. Note that

the subroutine implementing the core shaded part of Fig. 7.2, i.e., the procedure for

feature weight-guided interpolation, is simply outlined in Line 8 of Alg. 9 without

comprehensively detailing it. This is because the work presented herein is aimed to

offer a practical application of weighted FRI, detailed pseudocode of which can be

found in Alg. 7 in Section 5.1 (i.e., Weighted T-FRI B∗ =WeightedT FRI(R, o∗, n, W )
where n= 2).

Algorithm 8 Pseudodode of Mammographic Mass Classifier under Training
Input:

• Training dataset with mammographic images labelled with mass type
Output:

• Selected conditional attributes and their relative weights

• Rule base
1: Identify mass ROI images for each of input mammographic images;
2: Segment mass aided with available contours provided in dataset, resulting in

mass-segmented mask images;
3: Extract K mass shape (F1-F6), margin (F7-F15) and density (F16-F18) features

(K = 18, as specified in Table 7.1) for each mammogram using pairs of ROI and
mass-segmented mask images;

4: Rank extracted mass features (F1-F18) of training dataset to obtain ranking score
RSi, i = 1, 2, . . . , K;

5: Select top m features F = {RSi, i = 1, . . . , m} such that RSi >
1
K

∑K
t=1 RSt;

6: Calculate feature weights W in terms of Eqn. (7.1);
7: Generate fuzzy rule base R using selected mass features and mass types;
8: Return F , W and R

7.4 Experimental Evaluation

This section presents a systematic experimental evaluation of the proposed fuzzy

rule-based interpolative system for mammographic mass classification. The results

are reported on the classification accuracy, sensitivity, specificity, the area under the

Receiver Operating Characteristic (ROC) curve, and the ratios of false positives and

false negatives over the size of the testing data. These are supported by running
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Algorithm 9 Pseudocode of Mammographic Mass Classifier in Action
Input:

• Rule base (R) generated from training

• Selected features (F) and their relative weights (W ) produced from training

• Unknown mammogram to be classified
Output:

• Mass category (i.e., benignancy or malignancy)
1: Identify mass ROI image of given mammogram;
2: Segment mass, resulting in mass-segmented mask images;
3: Extract |F | features (as specified in F , where |F | stands for F ’s cardinality),

serving as observation o∗ to be classified;
4: Match o∗ against each rule in rule base R;
5: if matched with at least one rule then
6: Fire matched rule(s) using CRI to obtain required consequent B∗ for o∗;
7: else
8: Execute weighted FRI to compute B∗ =WeightedT FRI(R, o∗, 2, W );
9: end if

10: Defuzzify B∗ as a class label;
11: Return Benign or Malignant mass

nonparametric Wilcoxon signed-rank tests for validating the statistical significance

of the classification performance.

7.4.1 Experimental Setup

To have a common ground for fair comparison, all of the given mammographic

images which contain mass lesions provided in BCDR-D01 and BCDR-F01 datasets

are employed to conduct the evaluation, respectively. The experimentation is carried

out independently over these two datsets for full field digital mammograms and

digitalised film mammograms. As indicated previously, the mass contours annotated

by medical specialists are used for the generation of mass-segmented mask images,

where the distance between the margin of the chopped box and the provided mass

boundary is empirically set as 30 pixels. The corresponding ROI images are of the

same size as that of the mask images, while each sharing the same location as their

respective original. Again, examples of those can be found in Fig. 7.3 of Section 7.3.2.

The classification performance is herein evaluated by 10-fold cross validation

randomly repeated for 10 times for both datasets. The partition of each antecedent
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attribute domain (which is normalised) into triangular membership fuzzy values is

achieved by approximating what is learned by the use of Fuzzy C-Means (FCM) [Bezdek

et al., 1984]. The number of triangular membership functions (i.e., clusters) for

each attribute tuned by FCM is determined by the standard method of [Chen and

Wang, 1999].

Comparative experimental studies are carried out for classifying mammographic

masses, amongst the following three situations: 1) matching the rules in the learned

rule base using CRI only for classification (as per classical fuzzy inference systems

without FRI), 2) performing CRI for those matched testing observations and conven-

tional unweighted T-FRI for those unmatched ones, and 3) running CRI for matched

rule firing and weighted T-FRI for interpolative rule-based classification.

To comprehensively evaluate the classification performance, the following four

commonly used metrics are adopted: classification accuracy, sensitivity, specificity

and AUC (i.e., area under ROC curve). These performance indices are computed as

follows:

Accurac y =
T P + T N

T P + F P + T N + FN
(7.2)

Sensi t ivi t y =
T P

T P + FN
(7.3)

Speci f ici t y =
T N

T N + F P
(7.4)

where TP, FP, TN and FN stand for the number of: true positives, false positives, true

negatives and false negatives, respectively. The ROC curve is created by plotting the

true positive rate against the false positive rate at various threshold settings and then,

the area encompassed by the plotted curve is computed. All of the four evaluation

metrics take values between 0 and 1, and a good diagnostic test is obtained when

these are close to 1. In addition, two ratio-based performance criteria are also

checked, namely FP ratio and FN ratio, which are defined as the ratio between the

number of FP over the data size, and that between the number of FN over the data

size, respectively. Here, data size stands for the number of images tested. These two

ratios are computed as follows:
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FP ratio=
F P

Number of testing images
(7.5)

FN ratio=
FN

Number of testing images
(7.6)

Smaller values of these ratios indicate better classification, of course.

7.4.2 Results and Discussion

Comparative experimental results are reported and discussed in this section, including

aspects regarding classification interpretability as well as performance measurements.

7.4.2.1 Interpretability of Fuzzy Rules for Diagnosis

The mechanism for mammographic mass classification is achieved by the use of

semantic fuzzy rules, through rule firing for novel observations that match a certain

given rule or rule interpolation for those that match no rules. As indicated before,

such fuzzy rules are human interpretable because of the employment of selected

semantics-rich, morphological and density features as rule antecedent attributes. In

the following, two examples are provided to show the interpretable diagnostic proce-

dure of rule matching (i.e., CRI) and that of rule interpolation for mass classification,

respectively.

A. Running CRI over Matching Rule(s)

For BCDR-D01 dataset, nine top-ranked features are selected to generate the fuzzy

rule base. These are: Perimeter (F2), NRL entropy (F9), Mass intensity standard

deviation (F17), Margin gradient entropy (F15), Compactness (F12), Mass intensity

mean (F16), Margin gradient SD (F14), Convexity (F4), Margin gradient mean

(F13). All types of mass feature are involved. In particular, F2, F4 and F17, F16 are

mass shape and density features, respectively, while the remaining are mass margin

descriptors. These features utilise 3, 3, 4, 4, 3, 3, 3, 4, and 4 fuzzy membership sets

representing the underlying linguistic terms, returned by the application of FCM. In

particular, the terms used for three-membership features are “Small, Medium, Large”,
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and those for four-membership features are “Small, Medium-small, Medium, Large” or

“Small, Medium, Medium-large, Large”, depending on which end over the normalised

interval [0,1] the partitions are closer to.

Consider as an illustrative example, the observation consisting of the following

feature values:

[F2, F9, F17, F15, F12, F16, F14, F4, F13] =

[0.0760, 0.3178, 0.0368, 0.4178, 0.2690, 0.1181, 0.0709, 0.9179, 0.0865]

with the original mammogram, mass-segmented mask and ROI images shown in

Fig. 7.4. There are four fuzzy rules in total which match this observation, of which

the one shown below has the largest matching degree:

If Perimeter (F2) is Small and NRL entropy (F9) is Medium and Mass intensity SD

(F17) is Small and Margin gradient entropy (F15) is Medium and Compactness (F12)

is Small and Mass intensity mean (F16) is Small and Margin gradient SD (F14) is

Small and Convexity (F4) is Large and Margin gradient mean (F13) is Small, then

Mass is Benign.

Considering the semantic meaning of each feature given in Table 7.2, the above rule

can be directly translated into:

If Mass size is Small and Mass contour is Smooth and Blurred and Mass density

(and its variation) is Low and Mass is Very Like a convex regular region, then Mass is

Benign.

Firing this rule successfully classifies the mass as Benign, as shown in Fig. 7.4.

It visually recognises the mass lesion in terms of its geometrical shape, contour

and density properties, which can be readily understood by medical specialists or

explained to the patient.

B. Running Weighted Rule Interpolation due to No Matching Rules

As illustrated in Fig. 7.2 of Section 7.3.1, feature weight-guided FRI procedure is

triggered by any observation that matches no rules in the sparse rule base, deriving

an interpolative classification of the mass category. In this case, selecting two

closest neighbouring rules forms the starting point and sets the foundation for

rule interpolation.
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(a) Original mammogram (b) Mass-segmented
mask

(c) Chopped ROI

Figure 7.4: Benign mass classified by matched fuzzy rules.

As with the case for BCDR-D01, in BCDR-F01, all extracted features are ranked

first, resulting in the top six being selected. These are: Compactness (F12), Convexity

(F4), Circularity (F3), NRL entropy (F9), NRL zero-crossing count (F11) and Mass

intensity mean (F16). In particular, F4 and F3 are mass shape features, F12, F9 and

F11 are mass margin features, and F16 is selected again as the density descriptor in

this dataset.

The number of fuzzy membership functions learned for these selected features

are 4, 4, 5, 4, 2, 4, respectively. The fuzzy terms taken by the four-membership

features attain the same rule as set in BCDR-D01, while the (only) two-membership

feature has two alternatives (i.e., “Small, Large”) and the remaining one has five

fuzzy values, taking from “Small, Medium-small, Medium, Medium-large, Large”.

Consider the case where the following observation is given which has no rules

matched:

[F12, F4, F3, F9, F11, F16] = [0.9184, 0.2868, 0.2456, 0.8442, 0.4595, 0.4882]

The original mammogram, mass-segmented mask and ROI images for this case are

shown in Fig. 7.5. From this, two fuzzy rules are found to be the closest to the given

observation, which are:
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Rule 1: If Compactness (F12) is Large and Convexity (F4) is Medium-small and

Circularity (F3) is Medium-small and NRL entropy (F9) is Medium-large and NRL

zero-crossing count (F11) is Large and Mass intensity mean (F16) is Medium, then

Mass is Malignant.

Rule 2: If Compactness (F12) is Medium-large and Convexity (F4) is Medium and

Circularity (F3) is Medium and NRL entropy (F9) is Medium-large and NRL zero-

crossing count (F11) is Large and Mass intensity mean (F16) is Medium, then Mass is

Malignant.

Both rules give malignancy as the conclusion. Having taken into account the

semantic linguistic values used for each mass feature in Table 7.2, these two selected

rules jointly lead to the following interpolated rule, with detailed computational

process omitted to save space:

(a) Original mammogram (b) Mass-segmented mask (c) Chopped ROI

Figure 7.5: Malignant mass classified by feature weight-guided FRI.

If Mass is Less Like a circular regular region and Mass contour is Irregular and Mass

density is Slightly high, then Mass is Malignant.

The final interpolated consequent also indicates malignancy for the observed mass.

As can be seen, classifying mammographic mass through interpolating two semantic

fuzzy rules offers clear interpretability.
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Collectively, the interpretability of the proposed fuzzy rule-based diagnostic

system is shown by the process of inferring the category of mammogram mass,

running either CRI over matched rule(s) against a given observation or weighted rule

interpolation when there is no matching rule. Such interpretability is empowered by

the employment of selected semantics-rich, morphological and density features as rule

antecedent attributes, in conjunction with the underlying logic relationships between

these attributes and the classification outcome. Only clinically explainable fuzzy rules

are used for classification. This forms a significant contrast with existing techniques

for addressing the problem of mass classification. For instance, in attempting to

building an interpretable CADx system using a deep convolution neural network

(DCNN)-based framework, such as DeepMiner [Wu et al., 2018], great effort has

been devolved to discovering interpretable representations in deep neural networks

so as to provide explanations for medical predictions. Unfortunately, generation

of explanations for DCNN-based mammogram classification requires sophisticated

expert annotation regarding any interpretable network units. Another attempt is to

reveal visually interpretable images extracted from a DCNN, being only concerned

with the edge of masses in saliency maps [Lévy and Jain, 2016]. Yet, no human-like

linguistic explanation is produced automatically, unlike what is facilitated in the

present rule-based approach.

7.4.2.2 Performance Based on Fairly Dense Rule Base

In this part of investigation, all fuzzy rules in the learned rule base are used for

mammographic mass classification. Table 7.3 shows the results with respect to the six

performance criteria, namely classification accuracies, sensitivities, specificities, AUC,

FP ratio and FN ratio, which are obtained by averaging the outcomes of 10×10-fold

cross validation. In particular, results on the row named CRI are those achieved

by firing matched rules only, those on T-FRI by aiding CRI with classical T-FRI,

those on W-T-FRI by combining CRI and feature weighted T-FRI. The classification

outcome is obviously unknown for cases where CRI is used alone to deal with any

unmatched observation, in which case an error is recorded while calculating the

accuracy, sensitivity, specificity, FP ratio and FN ratio, but this does not apply to the

computation of AUC.

The performance of CRI provides the baseline for comparison. As can be seen in

Table 7.3, most of the testing samples are matched with the learned rule(s), resulting
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in reasonable classified results for both datasets. This is not surprising as the datasets

used for training have been fairly comprehensive. Nevertheless, the rule base is

not complete, there are uncovered problem spaces for which T-FRI and W-T-FRI can

help improve the performance. Indeed, the use of either FRI method significantly

strengthens the effectiveness of CRI on BCDR-D01, in terms of the improvement on

classification accuracy, sensitivity and specificity, and in the reduction of both false

positive ratio and false negative ratio. This shows the potential of fuzzy interpolative

inference for coping with challenging situations where the given rule base fails to

include rules matching a novel observation.

Applying the feature weighted FRI method has shown a slight further enhance-

ment over the use of the popular T-FRI. The statistical significance is herein verified

by Wilcoxon signed-rank test (with the parameter p = 0.0312). This demonstrates

that the best AUC performance is attained by the use of W-T-FRI for both datasets,

with 0.9614 and 0.9023 for the two datasets, respectively. This performance is

comparable to that of the state-of-the-art CADx systems for mammographic mass

classification, where the recorded best AUC measures are 0.9650 and 0.8940, re-

spectively for BCDR-D01 and BCDR-F01 (see [Moura and López, 2013,Moura et al.,

2013]). Yet, the classification process, and hence, the results of running the existing

methods are not so easy to interpret as their counterparts of the proposed approach

implemented herein. More importantly, the performance improvement becomes

much more significant when considering situations where only a sparse rule base is

available, as to be shown next.

7.4.2.3 Performance Based on Very Sparse Rule Base

The classification results presented in the preceding part of experimental evaluation

are achieved by the use of the entire rule base learned from the data available. This

is the situation that a real-world application would encounter. Even for the examined

problem where a good amount of training data is exploited to generate a fairly dense

rule base, as with the investigated case, sparseness may exist. This itself already

shows the need for the employment of FRI techniques. However, there are practical

situations where not sufficient training data is obtainable, especially when dealing

with certain novel medical cases. It is therefore very interesting to investigate how the

T-FRI in general and the W-T-FRI method in particular may bring forward any benefits
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in such situations. For this purpose, without complicating the experimental studies

by introducing different datasets, here, two rule bases which are much sparser than

the one used previously are artificially generated, by randomly removing a number

of learned rules from the originally used. Note that this artificially imposed removal

is for academic investigation only; in real application, unless there is inconsistency

or redundancy, learned rules are not to be removed.

Table 7.4 shows the averaged results of this investigation, in relation to the

percentage of rules removed. Particularly, the two sparser rule bases run are created

by randomly deleting 30% and 70% of the learned rules, respectively. As expected,

and reflected by this table, the performance of applying CRI alone declines dra-

matically as the proportion of rules remaining available decreases. The accuracies

drop 30.01% (=83.44%-53.43%) and 60% (=83.44%-23.44%) for BCDR-D01 and

45.31% (=83.73%-38.42%) and 67.4% (=83.73%-16.33%) for BCDR-F01, respec-

tively. The resultant performance deteriorates so much that such an approach is no

longer acceptable in practice.

On the contrast, both FRI methods have shown to be able to alleviate such

performance decline. With the employment of a FRI mechanism present CADx

system maintains a strong capability in distinguishing suspicious mass lesions when

CRI performs poorly, given only a considerably sparse rule base. Even when just a

small proportion of rules remains available (for the cases where 70% of the rules

are removed), the classification performance (regarding accuracies, sensitivities and

specificities) is still at an approximate rate of 80% on the BCDR-D01 dataset and

at high 60% on BCDR-F01. Regarding the FP and FN ratios, a significant reduction

in these for both datasets has been shown by the use of either T-FRI or W-T-FRI as

compared to the use of just CRI. Together, these results strongly demonstrate the

significant effectiveness of fuzzy interpolative reasoning for resolving the problems

involving a sparse rule base.

Examining more closely by comparing the performance of T-FRI and that of W-T-

FRI, as the rule base is reduced to be much sparser, the improvement of W-T-FRI over

T-FRI becomes more notable. In particular, the classification accuracy is enhanced by

2.36% and 4.08% with regards to 30% and 70% reduction of the rules on BCDR-D01,

and by 1.62% and 3.73% on BCDR-F01. Furthermore, Table 7.5 summarises the

average number of testing samples that require rule interpolation in each of the three

inference situations (namely, running CRI alone, and CRI with T-FRI or W-T-FRI).
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Note that RB in this table and the next, stands for Rule Base. It is evident that the

more unmatched samples, the more opportunities there are for the FRI methods to

perform.

Table 7.5: Average Number of Testing Samples

Dataset
Number of Samples Requiring Interpolation/Total (per Fold)
Fairly Dense RB Sparser RB 1 Sparser RB 2

BCDR-D01 1.24/14 5.85/14 10.50/14
BCDR-F01 0.21/23 12.77/23 18.70/23

Comparative performance is also measured through ROC analysis. The ROC

curves resulting from running the standard T-FRI and feature weighted T-FRI over the

use of different rule bases are given in Fig. 7.6, on both BCDR-D01 and BCDR-F01.

Whilst it is not surprising that the best performance is achieved using the fairly dense

rule base for both methods, W-T-FRI is shown to be less sensitive to the deterioration

of sparsity of the rule base.

Last but not least, as indicated previously, to further determine the statistical

significance in performance improvement of T-FRI over CRI, and that of W-T-FRI over

T-FRI, the nonparametric Wilcoxon signed-rank tests are conducted. This is carried

out for the classification accuracies obtained from the use of three different inference

mechanisms implemented, with three different sparsities of the rule base on both

datasets. Table 7.6 lists the p-value of each pairwise test. As can be seen in this

table, all but one expectable test show relative small p-values (e.g., p < 0.05), which

reflects the statistical significance of outperformance in each comparison. The only

exception (with p = 1) is for the case comparing W-T-FRI against T-FRI on BCDR-F01

when the originally learned, fairly dense rule base is employed.

Table 7.6: P-value in Statistical Wilcoxon Signed Rank Test

BCDR-D01
Original RB 30% Reduced RB 70% Reduced RB

CRI vs. T-FRI 5.65× 10−13 1.34× 10−11 3.31× 10−8

T-FRI vs. W-T-FRI 0.0312 8.03× 10−5 1.71× 10−4

BCDR-F01
Original RB 30% Reduced RB 70% Reduced RB

CRI vs. T-FRI 0.0019 3.36× 10−8 1.56× 10−6

T-FRI vs. W-T-FRI 1 0.0169 4.88× 10−4
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(a) (b)

(c) (d)

Figure 7.6: ROC for T-FRI and W-T-FRI using rule bases of different sparsity.

7.5 Summary

In this chapter, a novel fuzzy rule-based diagnostic system for mammographic mass

classification (MMC) has been presented. The system is able to derive a conclusion

for unknown observed masses that have no rules to match. The diagnostic outcomes

are interpretable as the rules are learned over selected features in terms of mass

geometric and density properties, with feature values represented in linguistic terms.

The effectiveness of adapting feature weighted fuzzy rule interpolation as the core

of the implemented system has been systematically evaluated and demonstrated,

capable of dealing with rather sparse rule bases. This has been accomplished through

comparison with the state-of-the-art work on mammogram datasets.
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The applied feature weighted FRI presented in this chapter is essentially a realistic

application of the attribute weight-guided FRI that was proposed in Chapter 4,

through integrating weighted FRI into a realistic MMC diagnostic system. The

implemented system (as shown in Fig. 7.2 and specified in Alg. 8 and Alg. 9) may

seem a bit inconsistent when compared against the general workflow of weighted

T-FRI (see Fig. 4.3 in Chapter 4), in terms of the derivation of the feature weights

using feature ranking. The system here has used the weights from feature ranking

via training data, while the generic framework is supported to apply the weights

learned from the originally unweighted sparse rules. This is simply because the

starting point of the general framework is a given sparse rule base, which is not the

case for the present problem. Nonetheless, how the weights are obtained makes no

difference for the weighted FRI method to work. This also provides a case to show

the flexibility of the proposed weighted fuzzy interpolative reasoning.
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Chapter 8

Conclusion

T HIS chapter concludes the thesis. Firstly, a summary of the research presented in

this thesis is given, which also re-states the contributions made from the study.

Secondly, possible future work is outlined, including several further developments

for the proposed innovative reverse engineering mechanism as well as those for the

weighted fuzzy interpolative reasoning techniques.

8.1 Thesis Summary

The core work presented in this thesis is a novel fuzzy rule interpolation (FRI)

approach that significantly reinforces the power of fuzzy interpolative reasoning.

It works by exploiting attribute ranking methods that help determine the relative

importance of rule antecedent attributes involved in a sparse rule base. The approach

has been developed to form a generalised methodology from two-fold perspectives:

1) it allows for any established ranking method to be utilised to score the attributes,

leading to a flexible weighting scheme for FRI; and 2) it can be extended to any

other FRI which involves multiple rule antecedents but not assigned with individual

weights.

The implemented work also enables fuzzy rule based systems to use the conven-

tional compositional rule of inference (CRI) and the weighted FRI jointly. Through

this integration an implemented system can obtain more accurate inference re-

sults, thereby taking advantage of both methods: CRI for matched observations

and weighted FRI for unmatched ones. The following summarises the main work
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from this research, reflecting its key contributions for achieving the goal of attribute

weighted fuzzy interpolative reasoning. In particular, the summarising discussions

are presented in response to the original two research aims as identified in Sec-

tion 1.3: 1) how the weights are generated; and 2) whether and how the weights

are integrated within the underlying, non-weighted FRI.

8.1.1 Generation of Attribute Weights

In response to this issue, without requiring any observation or running the underlying

FRI system, the proposed weight learning method can automatically determine the

relative importance of rule antecedent attributes by the use of the given sparse rule

base only. An innovative reverse engineering procedure has been proposed, through

which to compute the ranking scores from an artificial decision table derived from

the given rules. Such a learning method is independent from the underlying FRI

mechanism, thereby offering flexibility in developing fuzzy systems. To reflect this

viewpoint, the thesis has provided several different attribute ranking methods as

alternatives for attribute weighting, based on popular feature selection techniques in

the relevant literature.

8.1.2 Integration of Weights with Fuzzy Interpolative Reasoning

In dealing with the second identified challenging problem (of whether and how

weights are integrated within an FRI that works effectively), three pieces of distinctive

work have been carried out in this research:

• Weighting Fuzzy Rule Interpolation

Given the generated weights of rule antecedent attributes, the scale and move

transformation-based FRI (T-FRI) has been first adopted as an initial investigation to

develop a weighted FRI algorithm, with the aforementioned weighting mechanism

thoroughly applied within each core step of T-FRI. The weighted fuzzy interpolative

reasoning has also been established by extending weighted T-FRI to two other classical

FRI methods, namely the KH and CCL algorithms. Together, these weighted FRI

approaches provide possible alternatives for implementing the proposed weighted

fuzzy rule-based interpolative framework that works effectively.
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• Interpolating with Just Two Nearest Neighbouring Weighted Fuzzy Rules

The proposed weighted FRI algorithms, namely the weighted T-FRI, weighted

KH and weighted CCL, have been systematically evaluated through experimentation.

The results demonstrate the superior performance of these weighted methods over

their original unweighted counterparts, without incurring significant increase in run

time cost. These collectively reflect the effectiveness and efficiency of weighted FRI.

Very importantly, as have been illustrated by experimental analysis, supported by

attribute ranking, only two (i.e., the least number of) closest rules are required to

perform accurate interpolation. As such, better results can be achieved with fewest

rules. This helps increase computational efficiency, without the need of searching

for and operating on multiple rules beyond the immediate neighborhood of a given

observation. It also helps reinforce the stability of the underlying weighted FRI

mechanism.

• Applying Weighted Fuzzy Interpolative Reasoning

The proposed weighted fuzzy interpolative reasoning framework has been fully

implemented (using different feature evaluation and unweighted FRI techniques) and

successfully applied for classification and prediction problems. It has been systemati-

cally shown to outperform both unweighted FRI and the state-of-the-art weighted

FRI techniques. Furthermore, a novel fuzzy rule-based system for interpretable

mammographic mass classification has been presented. This provides another case to

demonstrate the potential success in applying weighted fuzzy interpolative reasoning

in practical problem settings.

8.2 Future Work

Whilst very promising, there is much room to strengthen the work reported in this

thesis. This final section prints out important further work that of carried out, will

improve the present research.
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8.2.1 Weights Generation via Reverse Engineering

This thesis assumes that in general, a sparse rule base is given for producing the

weights of rule antecedent attributes. Yet, in the experimental evaluation for the

proposed work, a data-driven rule learning mechanism is presumed available to

convert a given dataset into rules, with a simple fuzzification procedure. Nevertheless,

the attribute weights are learned by the use of the rule base only. Thus, it would

be interesting to investigate how much better a weighted FRI method may perform

with optimized fuzzy quantities and rules.

Additionally, the problem of the curse of dimensionality may arise due to the

production of the artificial training instances from the given rule base, as the number

of missing rule antecedents increases despite only a sparse rule base is involved. Thus,

it is desirable to increase the algorithmic efficiency while revising the work. Potential

solutions to this include: to exploit feature selection techniques (e.g., [Jensen and

Shen, 2009,Diao and Shen, 2015]) to restrain the learning process; and to explore

link-based analysis tools (e.g., [Boongoen et al., 2010,Shen and Boongoen, 2012])
to better associate and refine the rules and rule conditions.

8.2.2 Weighted Fuzzy Interpolative Reasoning

The proposed methodology for weighted FRI can be further enhanced from the

following viewpoints.

8.2.2.1 Weighting Dynamic FRI

The proposed weighted transformation-based FRI currently works on a static rule base.

Yet, a volume of intermediate fuzzy rules are typically generated while executing

rule interpolation. From this, the ideas of [Naik et al., 2017b] can be exploited to

enrich the rule base by refining and promoting these intermediate rules, gaining

efficiency by allowing for more direct rule-firing without running the interpolation

procedure. In particular, the attribute weights in the present work may help leading

to a weighted assembly of additional rules, thereby improving the performance of

the emerged rule base by considering different importance levels amongst the rule
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antecedents. Nonetheless, in general, any addition or removal of certain original

rules will affect the weights induced from the given rule base, which in turn, will

affect the interpolated results. The exact influence upon the interpolative reasoning

process therefore, remains a piece of important further research.

8.2.2.2 Theoretical Analysis of “Two Rules Interpolation”

The conjecture that “least number of neighboring rules do better with weighted FRI”

has been empirically shown to hold for three weighted FRI approaches. Whilst this

has been supported by substantial and consistent experimental results, it is unclear

how to further verify this notion through mathematically rigorous analysis. This

forms an important next step to reinforce the current research.

8.2.2.3 Use of Non-triangular Fuzzy Sets

As stated throughout this thesis, all implementations of the proposed approaches have

been carried out on the basis of representing fuzzy values with triangular membership

functions. It has a natural appeal to consider modifying the implemented systems

with more sophisticated and more powerful representations of fuzzy values, which

would not too much additional computation overheads. Trapezoidal and Gaussian

representations are likely candidates for this. An investigation into how they be

utilised to enable the desirable improvement forms another piece of further research.

8.2.2.4 Weighted FRI with TSK Fuzzy Models

All work carried out so far has to do with fuzzy rules of Mamdani type. Most

recently, there has been research which reports on extending conventional T-FRI

methods to building FRI mechanisms for Takagi Sugeno Kang (TSK) fuzzy models in

general [Chen et al., 2019] and ANFIS (Adaptive-Network-based Fuzzy Inference

System) in particular [Yang et al., 2018]. The extension of rule interpolation on

ANFIS has also seen a successful initial application for addressing image super

resolution problem [Yang et al., 2019]. Nevertheless, all of these developments

follow an unweighted approach. Thus, it would be very interesting to consider

further extending such work within the weighted FRI framework.
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Appendix A

Iterative Rule Base Generation

A data-driven rule base learning mechanism is to generate rules by generalising raw

data, with rules expressed in the format of antecedents associated with a correspond-

ing consequent [Hong and Lee, 1996,Wang and Mendel, 1992]. Such a generation

process may follow an iterative procedure [Galea and Shen, 2006,Hoffmann, 2004]
to incrementally add new rules to the rule base. This appendix outlines an iterative

rule base generation procedure, which repeatedly sequentially extracts rules from

data into an emerging rule base, and which is utilised in this thesis for producing

rules in all experimental studies (unless otherwise stated).

Given a set of instances each of which consists of r antecedent attributes and a

consequent attribute, a rule base is generated in an iterative procedure as illustrated

in Algorithm 10. Here, fuzzy rules are considered for generality, which may be readily

degenerated into a crisp rule set if preferred. The iteration process is terminated by

checking against a pre-set threshold value, that determines at least how many data

points have been covered by the extracted rules so far.

Before the iterative procedure is executed to generate the rule base, the domains

of all r antecedent attributes and the consequent attribute are quantified evenly into

m1, m2, . . . , mr and mc fuzzy regions, respectively, where mc denotes the number of

regions for the consequent attribute. Each fuzzy region is assigned with a member-

ship function (implemented with triangular membership functions in this work for

consistency and simplicity). This results in a division of fuzzy region space of the

antecedent of an emerging rule in the form of a hypercube, of which each hypergrid

stands for a combination of particular fuzzy regions of the r antecedent attributes.
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Algorithm 10 Iterative Rule Induction from Data
Input:

• Data set of instances D

• Threshold value δ
Output:

• Rule base R
1: Divide the domain of each antecedent and consequent attribute evenly into a

certain number of fuzzy regions, and construct the fuzzy region space (FRS) of
the antecedent, which is a hypercube with the dimensionality of m1×m2 · · ·×mr ,
where mi, i = 1, . . . , r stands for the number of regions for the ith attribute;

2: while true do
3: Apply the data of instances D into the FRS and match each instance to a

corresponding hypergrid in the hypercube in terms of its antecedent attributes;
4: Select the hypergrid with the highest hits, denoting n as the highest hit number;
5: if n> δ then
6: Extract a rule from this hypergrid, and add it into the rule base R;
7: Remove all of the instances which hit this hypergrid from D, update D =

D− Dmost_hit;
8: else
9: End While Loop;

10: end if
11: end while
12: Return R

The iteration process begins with a complete data set of instances D. A hypergrid

hit by an instance indicates a certain value of membership is obtained for the corre-

sponding combination of fuzzy regions. The hypergrid which is most covered by the

instances in D receives the most hits amongst all. As indicated above, a threshold δ

is used to determine whether the most covered hypergrid can form a rule and be

added into the emerging rule base R. If the number of the highest hits is larger than

the threshold, a rule is extracted from this hypergrid.

The rule antecedent values returned by one iteration are those fuzzy values

associated with the corresponding hypergrid. The rule consequent adopts the fuzzy

value which corresponds to one of the mc values at which the instances have the

highest number of hits. After this, those instances hit in this hypergrid are removed

from the original data set, and the iterative process repeats by treating the remaining

data as the input data set to start the next round for the generation of the rules

following the current one. However, if the proportion of hit instances is less than δ,

a rule cannot be generated by this hypergrid because a small number of those hits
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may just be due to noise, and the iterative procedure is hence continued to the next

round until all given instances are removed.

As stated earlier, this simple iterative rule generation procedure is used to learn

a rule base to construct the inference system proposed in this thesis, especially for

the implementations which assumed that no rules were provided by domain experts

(see Chapter 5). Of course, a number of other advanced rule learning methodologies

can be adopted to generate more compact rule bases, but this is beyond the scope of

this thesis.



Appendix B

List of Acronyms

ANFIS Adaptive Neuro-Fuzzy Inference System

AUC Area Under Curve

AW Attribute Weight

BCDR Breast Cancer Digital Repository

BI-RADS Breast Imaging Reporting and Data System

CADx Computer-Aided Diagnosis

CC S.-M. Chen and Z.-J. Chen

CCL Chang, Chen and Liau

CFS Correlation-based Feature Selection

COG Center Of Gravity

CP(s) Characteristic Point(s)

CRI Compositional Rule of Inference

CV Cross Validation

DCNNs Deep Convolutional Neural Networks

DM Digital Mammography

FCM Fuzzy C-Means

FM Film Mammography

FN False Negative

FP False Positive
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FRFS Fuzzy-Rough Feature Selection

FRI Fuzzy Rule Interpolation

FS Feature Selection

GA Genetic Algorithm

IG Information Gain

IG-T-FRI Information Gain-guided T-FRI

IR Inconsistency Rate

IRFS Consistency-based Feature Selection

KEEL Knowledge Extraction based on Evolutionary Learning

KH Kóczy and Hirota

LLC Local Learning based Clustering

LLCFS Local Learning-based Clustering for Feature Selection

LS Laplacian Score

MF Membership Function

MMC Mammographic Mass Classification

NRL Normalised Radial Length

Rep Representative Value

RF Ratio of Fuzziness

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

ROI Region Of Interest

RSFS Rough Set-based Feature Selection

SD Standard Deviation

SRM Semantic Revision Method

T-FRI Scale and Move Transformation-based Fuzzy Rule Interpolation

TN True Negative

TP True Positive
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