10,611 research outputs found

    Degree of Sequentiality of Weighted Automata

    Get PDF
    Weighted automata (WA) are an important formalism to describe quantitative properties. Obtaining equivalent deterministic machines is a longstanding research problem. In this paper we consider WA with a set semantics, meaning that the semantics is given by the set of weights of accepting runs. We focus on multi-sequential WA that are defined as finite unions of sequential WA. The problem we address is to minimize the size of this union. We call this minimum the degree of sequentiality of (the relation realized by) the WA. For a given positive integer k, we provide multiple characterizations of relations realized by a union of k sequential WA over an infinitary finitely generated group: a Lipschitz-like machine independent property, a pattern on the automaton (a new twinning property) and a subclass of cost register automata. When possible, we effectively translate a WA into an equivalent union of k sequential WA. We also provide a decision procedure for our twinning property for commutative computable groups thus allowing to compute the degree of sequentiality. Last, we show that these results also hold for word transducers and that the associated decision problem is PSPACE -complete

    A Generalised Twinning Property for Minimisation of Cost Register Automata

    Get PDF
    Weighted automata (WA) extend finite-state automata by associating with transitions weights from a semiring S, defining functions from words to S. Recently, cost register automata (CRA) have been introduced as an alternative model to describe any function realised by a WA by means of a deterministic machine. Unambiguous WA over a monoid (M, ⊗) can equivalently be described by cost register automata whose registers take their values in M, and are updated by operations of the form x: = y ⊗ c, with c ∈ M. This class is denoted by CRA⊗c(M). We introduce a twinning property and a bounded variation property parametrised by an integer k, such that the corresponding notions introduced originally by Choffrut for finite-state transducers are obtained for k = 1. Given an unambiguous weighted automaton W over an infinitary group (G, ⊗) realizing some function f, we prove that the three following properties are equivalent: i) W satisfies the twinning property of order k, ii) f satisfies the k-bounded variation property, and iii) f can be described by a CRA⊗c(G) with at most k registers. In the spirit of tranducers, we actually prove this result in a more general setting by considering machines over the semiring of finite sets of elements from (G, ⊗): the three properties are still equivalent for such finite-valued weighted automata, that is the ones associating with words subsets of G of cardinality at most ℓ, for some natural ℓ. Moreover, we show that if the operation ⊗ of G is commutative and computable, then one can decide whether a WA satisfies the twinning property of order k. As a corollary, this allows to decide the register minimisation problem for the class CRA⊗c(G). Last, we prove that a similar result holds for finite-valued finite-state transducers, and that the register minimisation problem for the class CRA.c (B*) is Pspace-complete

    Series which are both max-plus and min-plus rational are unambiguous

    Get PDF
    Consider partial maps from the free monoid into the field of real numbers with a rational domain. We show that two families of such series are actually the same: the unambiguous rational series on the one hand, and the max-plus and min-plus rational series on the other hand. The decidability of equality was known to hold in both families with different proofs, so the above unifies the picture. We give an effective procedure to build an unambiguous automaton from a max-plus automaton and a min-plus one that recognize the same series

    JohnnyVon: Self-Replicating Automata in Continuous Two-Dimensional Space

    Get PDF
    JohnnyVon is an implementation of self-replicating automata in continuous two-dimensional space. Two types of particles drift about in a virtual liquid. The particles are automata with discrete internal states but continuous external relationships. Their internal states are governed by finite state machines but their external relationships are governed by a simulated physics that includes brownian motion, viscosity, and spring-like attractive and repulsive forces. The particles can be assembled into patterns that can encode arbitrary strings of bits. We demonstrate that, if an arbitrary “seed” pattern is put in a “soup” of separate individual particles, the pattern will replicate by assembling the individual particles into copies of itself. We also show that, given sufficient time, a soup of separate individual particles will eventually spontaneously form self-replicating patterns. We discuss the implications of JohnnyVon for research in nanotechnology, theoretical biology, and artificial life

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP∩coUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas
    • 

    corecore