115 research outputs found

    Finite-state transducers as regular Böhm trees

    Full text link

    Implicit Automata in Typed ?-Calculi I: Aperiodicity in a Non-Commutative Logic

    Get PDF

    Lambda-calculus and formal language theory

    Get PDF
    Formal and symbolic approaches have offered computer science many application fields. The rich and fruitful connection between logic, automata and algebra is one such approach. It has been used to model natural languages as well as in program verification. In the mathematics of language it is able to model phenomena ranging from syntax to phonology while in verification it gives model checking algorithms to a wide family of programs. This thesis extends this approach to simply typed lambda-calculus by providing a natural extension of recognizability to programs that are representable by simply typed terms. This notion is then applied to both the mathematics of language and program verification. In the case of the mathematics of language, it is used to generalize parsing algorithms and to propose high-level methods to describe languages. Concerning program verification, it is used to describe methods for verifying the behavioral properties of higher-order programs. In both cases, the link that is drawn between finite state methods and denotational semantics provide the means to mix powerful tools coming from the two worlds

    Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic

    Get PDF

    Implicit automata in typed λ\lambda-calculi II: streaming transducers vs categorical semantics

    Full text link
    We characterize regular string transductions as programs in a linear λ\lambda-calculus with additives. One direction of this equivalence is proved by encoding copyless streaming string transducers (SSTs), which compute regular functions, into our λ\lambda-calculus. For the converse, we consider a categorical framework for defining automata and transducers over words, which allows us to relate register updates in SSTs to the semantics of the linear λ\lambda-calculus in a suitable monoidal closed category. To illustrate the relevance of monoidal closure to automata theory, we also leverage this notion to give abstract generalizations of the arguments showing that copyless SSTs may be determinized and that the composition of two regular functions may be implemented by a copyless SST. Our main result is then generalized from strings to trees using a similar approach. In doing so, we exhibit a connection between a feature of streaming tree transducers and the multiplicative/additive distinction of linear logic. Keywords: MSO transductions, implicit complexity, Dialectica categories, Church encodingsComment: 105 pages, 24 figure

    A Type System Describing Unboundedness

    Get PDF
    We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes, which asks, given a set of letters A and a scheme G, whether it is the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. Using this type system we prove that SUP is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m. Moreover, we establish the reflection property for SUP: out of an input scheme G one can create its enhanced version that recognizes the same language but is aware of the answer to SUP

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    New Results on Context-Free Tree Languages

    Get PDF
    Context-free tree languages play an important role in algebraic semantics and are applied in mathematical linguistics. In this thesis, we present some new results on context-free tree languages
    corecore