187 research outputs found

    Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications

    Get PDF
    This paper proposes a monostable nonlinear Piezoelectric Energy Harvester (PEH). The harvester is based on an unconventional exsect-tapered fixed-guided spring design, which introduces nonlinearity into the system due to the bending and stretching of the spring. The physical–mathematical model and finite element simulations were performed to analyze the effects of the stretching-induced nonlinearity on the performance of the energy harvester. The proposed exsect-tapered nonlinear PEH shows a bandwidth and power enhancement of 15.38 and 44.4%, respectively, compared to conventional rectangular nonlinear PEHs. It shows a bandwidth and power enhancement of 11.11 and 26.83%, respectively, compared to a simple, linearly tapered and nonlinear PEH. The exsect-tapered nonlinear PEH improves the power output and operational bandwidth for harvesting low-frequency ambient vibrations

    Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses – Analytical techniques

    Get PDF
    This paper presents new analytical modelling of shunt circuit control responses for tuning electromechanical piezoelectric vibration power harvesting structures with proof mass offset. For this combination, the dynamic closed-form boundary value equations reduced from strong form variational principles were developed using the extended Hamiltonian principle to formulate the new coupled orthonormalised electromechanical power harvesting equations showing combinations of the mechanical system (dynamical behaviour of piezoelectric structure), electromechanical system (electrical piezoelectric response) and electrical system (tuning and harvesting circuits). The reduced equations can be further formulated to give the complete forms of new electromechanical multi-mode FRFs and time waveform of the standard AC-DC circuit interface. The proposed technique can demonstrate self-adaptive harvesting response capabilities for tuning the frequency band and the power amplitude of the harvesting devices. The self-adaptive tuning strategies are demonstrated by modelling the shunt circuit behaviour of the piezoelectric control layer in order to optimise the harvesting piezoelectric layer during operation under input base excitation. In such situations, with proper tuning parameters the system performance can be substantially improved. Moreover, the validation of the closed-form technique is also provided by developing the Ritz method-based weak form analytical approach giving similar results. Finally, the parametric analytical studies have been explored to identify direct and relevant contributions for vibration power harvesting behaviours

    A face-smoothed cell method for static and dynamic piezoelectric coupled problems on polyhedral meshes

    Get PDF
    Low-order discretization schemes are suitable for modeling 3-D multiphysics problems since a huge number of degrees of freedom (DoFs) is typically required by standard high-order Finite Element Method (FEM). On the other hand, polyhedral meshes ensure a great flexibility in the domain discretization and are thus suitable for complex model geometries. These features are useful for the multiphysics simulation of micro piezoelectric devices with a thin multi-layered and multi-material structure. The Cell Method (CM) is a low-order discretization scheme which has been mainly adopted up to now for electromagnetic problems but has not yet been used for mechanical problems with polyhedral discretization. This work extends the CM to piezo-elasticity by reformulating local constitutive relationships in terms of displacement gradient. In such a way, piecewise uniform edge basis functions defined on arbitrary polyhedral meshes can be used for discretizing local constitutive relationships. With the CM matrix assembly is completely Jacobian-free and do not require Gaussian integration, reducing code complexity. The smoothing technique, firstly introduced for FEM, is here extended to CM in order to avoid shear locking arising when low-order discretization is used for thin cantilevered beams under bending. The smoothed CM is validated for static and dynamic problems on a real test case by comparison with both second-order FEM and experimental data. Numerical results show that accuracy is retained even if a much lower number of DoFs is required compared to FEM

    Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks

    Get PDF
    This paper presents an adaptive power harvester using a shunted piezoelectric control system with segmented electrodes. This technique has spurred new capability for widening the three simultaneous resonance frequency peaks using only a single piezoelectric laminated beam where normally previous works only provide a single peak for the resonance at the first mode. The benefit of the proposed techniques is that it provides effective and robust broadband power generation for application in self-powered wireless sensor devices. The smart structure beam with proof mass offset is considered to have simultaneous combination between vibration-based power harvesting and shunt circuit control-based electrode segments. As a result, the system spurs new development of the two mathematical methods using electromechanical closed-boundary value techniques and Ritz method-based weak-form analytical approach. The two methods have been used for comparison giving accurate results. For different electrode lengths using certain parametric tuning and harvesting circuit systems, the technique enables the prediction of the power harvesting that can be further proved to identify the performance of the system using the effect of varying circuit parameters so as to visualize the frequency and time waveform responses

    DEVELOPMENT OF PIEZOELECTRIC ENERGY HARVESTING SYSTEM FOR LOW-FREQUENCY VIBRATIONS

    Get PDF
    Harvesting energy from vibration sources has attracted the interest of researchers for the past three decades. Researchers have been working on the potential of achieving self-powered MEMS scale devices. Piezoelectric cantilever harvesters have caught the attention in this field because of the excellent combination of high-power density and compact structure. The main objective of this thesis is to develop a novel and optimum piezoelectric harvester system using lumped parameter model (LPM) for given vibration sources. The finite element model (FEM) is used in this work as an original approach to be utilized for optimal design optimization. Three types of validations are accomplished to solidify the use of FEM in mimicking the distributed parameter model (DPM) for linearly tapered piezoelectric cantilevers. The first two validations are accomplished using beam deflection and relative transmissibility functions. Comparisons between the FEM and the DPM developed by the literature are performed. The third validation is carried for an electromechanical piezoelectric cantilever in FEM. Results confirmed the effectiveness of the developed FEM. A number of significant contributions are achieved while fulfilling the aim of this work. First, a dimensionless parameter, Power Factor (PF), is derived and used to understand the impact of the geometry on the piezoelectric harvester performance. The PF showed an optimum performance at a taper ratio of 0, taking the full length of the cantilever and thickness ratio of 0.7. Second, the accuracy of the LPM for linearly tapered piezoelectric harvesters and optimal design are investigated. Results indicated that the percentage of the deflection error between the LPM and the FEM reaches 9% when the taper ratio is zero. However, when tip-mass to cantilever ratios are larger than 2, the error decreases to less than 0.5% leading to more accurate results in the vibrational response of the beam. Further studies on the accuracy are accomplished using the relative transmissibility function. Results showed that as the taper ratio decreases towards zero, the percentage error of using the LPM to predict the vibration response increases significantly to 55%. These results lay the foundation for the third contribution of developing correction factors for tapered and optimal piezoelectric cantilever harvesters using FEM. Comparisons of the corrected LPM and FEM for different configurations are examined. Results indicated that as the taper ratio decreases, the surface power density increases. However, the developed optimal design exhibits the highest surface power density of 1.40×104 [(mW/g2)/ m2] which is 16.4% more than the best following shape of a taper ratio 0.2 and 58% more than the taper ratio 1. Furthermore, a parametric study of the optimal design is performed to scrutinize the effect of various parameters on the harvester performance. Finally, detailed criteria for designing the optimal piezoelectric harvester for different conditions are structured

    Development Of A Dynamic Force Sensor

    Get PDF
    Sensors are employed for various applications in different industries. Chief of these applications is in the process and equipment monitoring. Most sensors used in the equipment monitoring are mostly after-market devices. This research answered the question of how can we include the condition monitoring of equipment into the design phase of the equipment. This research developed a dynamic force sensor using a PolyVinyliDene Fluoride (PVDF) film. The piezoelectric film attached to a fixed-fixed substrate which serves to support film and the properties of which the sensor equations were based. The sensor was tested in the laboratory by subjecting it to harmonic and random excitations of different magnitude and frequencies.The measured force as obtained from the sensor is compared to the corresponding excitation force in plots. The results obtained show that the sensor is accurate with an error of about 7% for an excitation with a frequency lesser than the first natural frequency of the substrate of the sensor. This result shows that dynamic sensors using piezoelectric materials can be designed and adapted to any application with the selection of the right substrate and boundary conditions

    Towards Intelligent Tire and Self-Powered Sensing Systems

    Get PDF
    Tires are the interface between a vehicle and the ground providing forces and isolation to the vehicle. For vehicle safety, stability, maintenance, and performance, it is vital to estimate or measure tire forces, inflation pressure, and contact friction coefficient. Estimation methods can predict tire forces to some extent however; they fail in harsh maneuvers and are dependent on road surface conditions for which there is no robust estimation method. Measurement devices for tire forces exist for vehicle testing but at the cost of tens of thousands of dollars. Tire pressure-monitoring sensors (TPMS) are the only sensors available in newer and higher end vehicles to provide tire pressure, but there are no sensors to measure road surface condition or tire forces for production vehicles. With the prospect of autonomous driving on roads in near future, it is paramount to make the vehicles safe on any driving and road condition. This is only possible by additional sensors to make up for the driver’s cognitive and sensory system. Measuring road condition and tire forces especially in autonomous vehicles are vital in their safety, reliability, and public confidence in automated driving. Real time measurement of road condition and tire forces in buses and trucks can significantly improve the safety of road transportation system, and in miming/construction and off-road vehicles can improve performance, tire life and reduce operational costs. In this thesis, five different types of sensors are designed, modelled, optimized and fabricated with the objective of developing an intelligent tire. In order to design these sensors,~both electromagnetic generator (EMG) and triboelectric nanogenerators (TENG) are used. In the first two initial designed sensors, with the combination of EMG and TENG into a single package, two hybridized sensors are fabricated with promising potential for self-powered sensing. The potential of developed sensors are investigated for tire-condition monitoring system (TCMS). Considering the impressive properties of TENG units of the developed hybridized devices, three different flexible nanogenerators, only based on this newly developed technology, are developed for TCMS. The design, modelling, working mechanism, fabrication procedure, and experimental results of these TENG sensors are fully presented for applications in TCMS. Among these three fabricated sensors, one of them shows an excellent capability for TCMS because of its high flexibility, stable and high electrical output,and an encapsulated structure. The high flexibility of developed TENG sensor is a very appealing feature for TCMS, which cannot be found in any available commercial sensor. The fabricated TENG sensors are used for developing an intelligent tire module to be eventually used for road testing. Several laboratory and road tests are performed to study the capability of this newly developed TENG-based sensor for tire-condition monitoring system. However the development of this sensor is in its early stage, it shows a promising potential for installation into the hostile environment of tires and measuring tire-road interacting forces. A comparative studies are provided with respect to Michigan Scientific transducer to investigate the potential of this flexible nanogenerator for TCMS. It is worth mentioning that this PhD thesis presents one of the earliest works on the application of TENG-based sensor for a real-life system. Also, the potential of commercially available thermally and mechanically durable Micro Fiber Composite (MFC) sensor is experimentally investigated for TCMS with fabricating another set of intelligent tire. Several testing scenarios are performed to examine the potential of these sensors for TCMS taking into account a simultaneous measurement from Michigan Scientific transducer. Although both flexibility and the cost of this sensor is not comparable with the fabricated TENG device, they have shown a considerable and reliable performance for online measuring of tire dynamical parameters in different testing scenarios, as they can be used for both energy harvesting and sensing application in TCMS. The extensive road testing results based on the MFC sensors provide a valuable set of data for future research in TCMS. It is experimentally shown that MFC sensor can generate up to 1.4 μW\mu W electrical power at the speed of 28 [kph][kph]. This electrical output shows the high capability of this sensor for self-powered sensing application in TCMS. Results of this thesis can be used as a framework by researchers towards self-powered sensing system for real-world applications such as intelligent tires

    Hybrid Structural Composites with Energy Harvesting Capabilities

    Get PDF
    Hybrid materials have received significant interest due to the potential enhancements they provide over traditional materials such as sensing, actuating, energy scavenging, thermal management, and vibration damping. While traditional materials can be utilized for either one of these functions or loadbearing, the hybrid materials are superior as they allow combination of a wide array of functionalities whilst being suitable for load-bearing purposes. The goal of this thesis is to elucidate the synergistic effects of hybridization of two piezoelectric materials; zinc oxide nanowires (ZnO NWs) and thin film of lead zirconium titanate (PZT) on the mechanical and energy harvesting of beams made from plain-woven carbon fiber reinforced epoxy composites (CFRPs). ZnO NWs have, by contrast, displayed great promises. While not only being a very strong piezoelectric material, it enhanced the mechanical and dynamic properties of the composite due to the increased surface area and mechanical interlocking. However, the aspect of energy scavenging is somewhat limited due to the weak piezoelectrical effects of ZnO nanowires. In this thesis, the prospects of ZnO NWs are exploited further to improve both their production processes and piezoelectric performance. Combining ZnO NWs grown on carbon fibers combined with other piezoelectrical materials has not yet been implemented but appears to be encouraging. This is the focus of this thesis. Despite that the composite comprising the combination of the two piezoelectric materials showed a minor drop in tensile strength and damping characteristics, the substantial gain in both stiffness (25.8 % increase compared to plain composite) and the electrical power gain (733.94 % more than that for ZnO NWs) is very promising for future application of the hybrid material into real engineering problems. A comprehensive study utilizing available commercial finite element software to simulate and foresee the behavior of hybrid materials was also carried out. The simulations agreed qualitatively with the experimental observations and explanations of the discrepancies between the model and experiment setup were discussed. Despite the preliminary promising results, more work is necessary to exploit the full potential of these material by optimizing the design of the energy harvesting devices and establishing more feasible models that treat the electromechanical coupling of these multifunctional hybrid composites more realistically

    Design, modeling, and analysis of piezoelectric energy harvesters

    Get PDF

    Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications

    Get PDF
    The need for wireless condition monitoring and control of hydraulic systems in an autonomous and battery-free manner is attracting increasing attention in an effort to provide improved sensing functionality, monitoring of system health, and to avoid catastrophic failures. The potential to harvest energy from hydraulic pressure ripples and noise is particularly attractive since they inherently have a high energy intensity, which is associated with the hydraulic mean pressure and flow rate. This paper presents a comprehensive overview of the state of the art in hydraulic pressure energy harvesting, which includes the fundamentals of pressure ripples in hydraulic systems, the choice of electroactive materials and device structures, and the influence of the fluid–mechanical interface. In addition, novel approaches for improving the harvested energy and potential applications for the technology are discussed, and future research directions are proposed and outlined
    • …
    corecore