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ENGLISH SUMMARY 

A movement toward the regenerative energy harvester has been started for scavenging 

the wasted energy from the environment and structures in the hope to fabricate self-

powered electronic devices. Kinetic motion is present in any natural and 

environmental actions, making kinetic energy harvesting a popular topic. Among 

different energy harvesting mechanisms, piezoelectricity is one of the leading 

technologies because of its simple conversion mechanism, relatively high power 

density, and easy integration into the various systems. A piezoelectric energy 

harvester (PEH) is a beam consists of piezoelectric materials, substrate shim, bonding 

adhesive, and added mass. Despite many research studies in Piezoelectric Vibration 

Energy Harvesting (PVEH), there are still challenges in this field.  

There are still struggles for correctly modeling harvesters in complex shapes and 

under "real" vibration excitation. Furthermore, the power generation's sensitivity to 

the PEH components, especially the bonding layer, needs further investigation. As a 

perplex parameter, the damping coefficient determination requires accurate and 

straightforward approaches and a systematic method to investigate the sources and 

importance of different energy dissipation mechanisms in PEHs. Because of 

numerous available vibration sources, finding new applications and designing 

enhanced PEHs need constant research. In this Ph.D. thesis, the primary goals are to 

provide a comprehensive modeling technique, explore the influential parameters on 

the power generation, and develop and test PEHs for some practical vibration sources. 

A comprehensive finite element (FE) method is proposed on the modeling techniques 

that tackle the critical issues in the current FE and analytical models. The presented 

FE model is applicable for a wide range of PEH designs, including multi-layered 

composites, thick plates, variable thickness, and non-uniform piezoelectric patches. 

The FE method presents a united matrix formulation that can accommodate the 

classical (classical plate theory, first and third-order shear deformation theory) and 

advanced Carrera's Unified Formulation (CUF). Moreover, the analytical beam model 

is developed to understand the electromechanical coupling in PEHs better and study 

the interaction of optimum electric load, resonant frequency, and excitation frequency. 

By sensitivity analysis of electromechanical-coupled resonant frequency, 

recommendations for the resonant matching designs are proposed. Besides, the 

transient voltage signal from harmonic excitations is investigated. 

The damping, bonding layer, substrate shim in unimorph, and tip mass effects are 

experimentally investigated to analyze different PEH power output parameters. The 

bonding layer material can cause variations in the peak and root mean square (RMS) 

power generation. The substrate shim positively affects the unimorph power 

generation as it deviates the neutral axis from the piezo-layer mid-plane. Tip mass 

increases the power generation due to the beam deflection increase and reduces the 



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

8 

resonant frequency, which can be used as a tuning factor for the resonant matching 

design. Damping mechanisms in PEH beams are comprehensively investigated. Two 

damping determination methods are presented, which can extract the damping 

coefficient from only the piezoelectric voltage measurements without extra response 

measurements.  

Different harvester configurations are investigated for different applications in the 

PVEH applications. Typical resonant design from the ordinary rectangular beams, the 

trapezoid beams, variable-thickness piezoelectric layer, and composite energy 

harvesters are presented and discussed. The energy harvesting from the DC motor is 

experimentally measured. The power generation from the water pump is calculated 

using the experimental acceleration data made on a water pump. As one application 

for the PVEH, a conceptual design for autonomous condition monitoring is proposed 

and applied for a water pump. Composite energy harvesters with variable piezo-fiber 

directions are investigated and integrated into a harvester setting for broadband energy 

harvesting. 

This Ph.D. project is successfully presented the FE modeling technique for 

piezoelectric energy harvesters, which can be applied to a wide range of piezoelectric 

configurations. The experimental validations for these models prove the accuracy of 

the FE method.  Sensitivity analyses are carried out to study the power output 

dependency to the different structural parameters. Moreover, experimental-based 

straightforward methods are presented for the damping coefficient determination. 

These damping determination methods are employed to study the damping 

mechanisms systematically. Finally, the development of piezoelectric energy 

harvesters is carried out for a series of practical applications, namely the water pump, 

DC motor, and car vibration. The feasibility of a remote autonomous condition 

monitoring system based on PEH is also investigated.  
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DANSK RESUME 

Der er startet en bevægelse mod den regenerative energihøster til at benytte den energi 

i omgivelser, som går til spild i håb om at fremstille selvdrevne elektroniske enheder. 

Kinetisk bevægelse findes i eventuelle naturlig og miljømæssig bevægelser, hvilket 

gør høstning af kinetisk energi, et populært emne. Blandt forskellige mekanismer til 

energihøstning er piezoelektrisk en af de førende teknologier, på grund af dens enkle 

konverteringsmekanisme, relativt højt effekttæthed og nem integration i de forskellige 

systemer. En piezoelektriske energihøster (PEH) er en bjælke, der består af 

piezoelektriske materialer, underlagsskinne, klæbemiddel og ekstra masse. På trods af 

mange forskningsundersøgelser i den Piezoelectriske Vibration Energi Høst (PVEH) 

er der stadig udfordringer på dette område. 

Der er stadig mange udfordringer forbundet med korrekt modellering af høstmaskiner 

i komplekse former og under "ægte" vibrations anslag. Derudover skal el-

produktionens følsomhed over for PEH-komponenterne, især bindingslaget, 

undersøges nærmere. Som en kompleks-parameter kræver bestemmelsen af 

dæmpningskoefficienten nøjagtige og ligefremme fremgangsmåder og en systematisk 

metode til at undersøge kilderne og betydningen af forskellige 

energispredningsmekanismer i PEH'er. På grund af adskillige tilgængelige 

vibrationskilder er konstant forskning nødvendigt for at finde nye applikationer og 

konstruere forbedrede PEH'er. Primære mål i denne Ph.d. afhandling er at 

tilvejebringe en omfattende modelleringsteknik, udforske de indflydelsesrige 

parametre på ølproduktionen, udvikle og afprøve PEH'er for nogle praktiske 

vibrationskilder. 

Med hensyn til modelleringsteknikker foreslås en omfattende FE-metode (FE), som 

kan håndtere de kritiske problemer, der findes i de nuværende FE og analytiske 

modeller. Den præsenterede FE-model kan anvendes til en lang række PEH-design, 

herunder kompositter i flere lag, tykke plader, variabel tykkelse og ikke-ensartede 

piezoelektriske pletter. FE-metoden præsenterer en forenet matrixformulering, der 

kan rumme den klassiske (klassiske pladeteori, første og tredje ordens 

forskydningsdeformationsteori) og avanceret Carreras Unified Formulation (CUF). 

Desuden er den analytiske strålemodel udviklet for at forstå den elektromekaniske 

kobling i PEH'er bedre og studere interaktionen mellem optimal elektrisk belastning, 

resonansfrekvens og anslagsfrekvens. Ved følsomhedsanalyse af elektromekanisk 

koblet resonansfrekvens foreslås anbefalinger til resonansmatchende design. Desuden 

undersøges det transiente spændingssignal fra harmoniske anslager. 

I forbindelse med analysen af forskellige PEH-effektudgangsparametre undersøges 

dæmpnings-, bindingslag, substratbelægning i unimorf og spidsmassevirkninger 

eksperimentelt. Bindingslagsmaterialet kan forårsage variationer i produktionen 

begge to i spids (peak) og kvadratrod af gennemsnitlig kvadratafvigelse (root mean 
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square -RMS). Substratskinnet påvirker den uniforme energiproduktion positivt, da 

det afviger den neutrale akse fra piezo-lagets midler plane. Tipmasse øger 

kraftgenerering på grund af forøgelse af bjælkes nedbøjning og reducerer 

resonansfrekvensen. Dette kan bruges som en indstillingsfaktor til 

resonansmatchende design. Derudover undersøges dæmpningsmekanismer i PEH-

bjælker grundigt og to bestemmelsesmetoder til dæmpning præsenteres, som kun kan 

udtrække dæmpningskoefficienten fra de piezoelektriske spændingsmålinger uden 

ekstra responsmålinger. 

 I forhold til PVEH-applikationer undersøges forskellige høstkonfigurationer for 

forskellige applikationer. Typisk resonansdesign fra de almindelige rektangulære 

bjælker, trapezbjælkerne, det piezoelektriske lag med variabel tykkelse og 

høstmaskiner med komposit energi præsenteres og diskuteres. Energihøstningen fra 

jævnstrømsmotoren måles eksperimentelt. Derudover beregnes energiproduktionen 

fra vandpumpen ved hjælp af de eksperimentelle accelerationsdata, der er lavet på en 

vandpumpe. Som en applikation til PVEH foreslås et konceptuelt design til autonom 

tilstandsovervågning og anvendes til en vandpumpe. Høstmaskiner med sammensat 

energi med variabel piezo-fiberretning undersøges og integreres i en høstmaskine 

indstilling til bredbåndsenergihøstning. 

I denne ph.d. projektet præsenteres en succesfuld FE-modelleringsmetode til 

piezoelektriske energihøster, som kan anvendes til en lang række piezoelektriske 

konfigurationer. De eksperimentelle valideringer for denne FE-model beviser 

nøjagtigheden af FE-metoden. Følsomhedsanalyser udføres for at undersøge 

afhængigheden af effektudgang til de forskellige strukturelleforhold. Desuden 

præsenteres eksperimentelle baserede enkle metoder til bestemmelse af 

dæmpningskoefficienten. Disse dæmpningsbestemmelsesmetoder anvendes til 

systematiske undersøgelse af dæmpningsmekanismerne. Endelig udføres udviklingen 

af piezoelektriske energihøster til en række praktiske anvendelser, nemlig 

vandpumpe, jævnstrømsmotor og bilvibrationer. Muligheden for et eksternt autonomt 

tilstandsovervågningssystem baseret på PEH undersøges også. 
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CHAPTER 1. BACKGROUND AND 

BEYOND  

"If you want to find the secrets of the universe, think in terms of energy, frequency, 

and vibration" Nikola Tesla 

 

1.1. INTRODUCTION TO PIEZOELECTRIC ENERGY 
HARVESTING (PEH) 

With advancements in electronic development, the power consumption of small 

electronic devices has been reduced substantially [1]. Table 1-1 gives an overview of 

the small electronics' power consumption. The power consumption for 

communication applications is tens of mW for continuous operation; however, this 

power consumption can be reduced using intermittent operation. For medical 

applications, like hearing aid and heart pacemakers, the power consumption is in the 

range of µW. The voltage range for these applications lies within 2 to 4 V.  

Device Power Current Voltage 

ZigBee 60mW peak 20 mA 3.0 V 

Apple Watch 52mW avg 13.8 mA 3.76 V 

Bluetooth 4.0 45 mW peak 15 mA 2.0-3.6 V 

GPS Tracker Intermittent Intermittent 3.0 V 

Hearing Aid 1 mW avg 0.67 mA 1.4 V 

Heart Pacemaker 33 µW avg 13 µA 2.5 V 

Analog Wrist Watch 2.8 µW avg 1.0 µA 2.8 V 

Timer 88 nW 35 nA 2.5 V 

Table 1-1. The power consumption of small electronics [2]. 

The reduction in power consumption enabled researchers to seek new renewable 

energy sources that make these small electronic devices free from the power supply, 

battery, and wires. With the renewable energy sources from the environment, the 

systems' lifetime can be improved, self-powered systems are achievable, wiring 

difficulties can be eliminated, and more importantly, having access to inaccessible 

locations becomes possible [3], [4]. 

Fig. 1-1 presents the power density (power normalized to the device volume) and 

normalized power density (power density normalized to the square input acceleration) 
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for three energy harvesting technologies (electrostatic, piezoelectric, and 

electromagnetic) in the typical environmental frequency range (below 200 Hz). The 

power density for piezoelectric energy harvesting is better than electrostatic and 

electromagnetic, especially at higher frequencies. Piezoelectricity normalized power 

density is 10 to 100 µW/cm3/g2 for below 50 Hz frequencies and between 1 to 10 

mW/cm3/g2 for above 50 Hz frequencies. The piezoelectric power generation is in the 

range of the required power for small electronic devices, so that using piezoelectric 

energy harvesting for autonomous devices is feasible. The piezoelectric voltage 

generation ranges from 0.01 to 20 V [5], which is suitable for many small electronic 

devices, including those mentioned in Table 1-1.  

 

Fig. 1-1. Power density and normalized power density for different energy harvesting 

technologies (electrostatic, piezoelectric, and electromagnetic) [2]. 

Piezoelectricity benefits from advantageous priorities over the other energy harvesting 

technologies, including direct mechanical conversion to electrical [6], high practical 

power density [1], easy integration into the various systems [7], matured 

manufacturing methods [8]. Piezoelectric devices can be manufactured in various 

sizes, from micro-scale to centimeter scale. Thus, piezoelectric energy harvesting has 

been a focus for many researchers, and the number of publications in this area has 

been considerably increasing during recent years, see Fig. 1-2. 
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Fig. 1-2. Number of publications in piezoelectric energy harvesting [9]. 

Piezoelectric materials are a type of smart materials. Smart materials change their 

physical properties in a specific manner in response to a stimuli input. Piezoelectric 

materials are also categorized as a class of ferroelectric materials. Ferroelectric 

materials exhibit spontaneous polarization when no external electric field is present. 

Piezoelectric materials can be polarized by applying mechanical stress (without 

applying an external electrical field). 

Polycrystalline ceramic, as one of the most common crystal structures, has 

microscopic randomly oriented poled units, see Fig. 1-3 (a). However, as their poling 

directions are random, the macroscopic scale's net polarization is weak or null. If the 

crystal structure is subjected to a strong electrical field, the random polarization 

direction will be aligned in the electrical field direction, see Fig. 1-3 (b). The crystal 

in this condition is called macroscopically polarized, and the net polarization is not 

weak. Fig. 1-3 shows the polycrystalline ceramic structure before, during, and after 

the polarization. Once the polarization is accomplished, the piezoelectric material is 

poled, and this polarization remains after the external field removal, see Fig. 1-3 (c).  

(a) (b) (c) 

 

Fig. 1-3. Polycrystalline ceramic structure, (a) before, (b) during, and (c) after 

polarization. 

Before polarization During polarization After polarization
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Piezoelectricity is a dual-way property. Direct piezoelectricity is the electrical field 

generation due to the mechanical stress (sensor or generator), while reverse 

piezoelectricity is the mechanical deformation due to the external electrical field 

(actuator or motor). For the energy harvesting application, the direct piezoelectricity 

effect is of interest see Fig. 1-4. In direct piezoelectricity, the electrical charges are 

displaced by applying a mechanical deformation, generating a voltage difference. The 

mechanical deformation direction will impose the generated voltage direction. For 

continuous voltage generation, the mechanical deformation shall vary over time. 

(a) (b) (c) 

 

Fig. 1-4. The demonstration of direct piezoelectric effect (sensing), (a) polarization, 

(b) piezoelectric stretched, and (c) the piezoelectric compressed. 

Piezoelectric harvester operates in 33-mode or 31-mode depending on the direction 

of mechanical deformation and polarization. The harvester operates in 33-mode if the 

mechanical deformation and polarization directions are the same, while for the 31-

mode, the polarization and mechanical deformation direction are perpendiculars. Fig. 

1-5 (a) and (b) show the 33-mode and 31-mode. 

(a)  (b) 

 

Fig. 1-5. Piezoelectric harvester operation mode, (a) 33-mode harvester, and (b) 31 

mode. 
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Fig. 1-6 shows two examples of piezoelectric beams under loading. In Fig. 1-6 (a), a 

vertical force bends the piezoelectric beam, which creates stress in the length direction 

while the poling direction is through the thickness; thus, the bender acts as the 31-

mode harvester. If the force is applied lengthwise, and the piezoelectric material has 

lengthwise polarization due to the interdigitated electrodes, as shown in Fig. 1-6 (b), 

the beam serves as a 33-mode harvester. 

(a)  (b) 

 

Fig. 1-6. Examples of piezoelectric beams under different loading, (a) bending load 

and 31-mode, and (b) axial load and 33-mode [10]. 

An energy-harvesting beam can have one or two piezoelectric layers called unimorph 

or bimorph, respectively. Typically, the piezoelectric layer is attached to a substrate 

shim or a host structure. The unimorph is less stiff and has a lower natural frequency. 

On the other hand, the bimorph generates more power than the unimorph as it has two 

piezoelectric layers. Fig. 1-7 (a) and (b) demonstrate the unimorph and bimorph, 

respectively. 

(a)  (b)  

Fig. 1-7. (a) Unimorph harvester: one piezoelectric layer, and (b) bimorph harvester: 

two piezoelectric layers. 

1.2. PIEZOELECTRIC COEFFICIENTS 

This subsection will briefly present the significant piezoelectric coefficients. 

 Piezoelectric charge coefficient (d) 

The piezoelectric charge coefficient shows the induced strain (𝑆) under an external 

electrical field (𝐸), as shown in Eq. (1.1), 

Piezoelectric 

Substrate 

shim Piezoelectric 
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𝑆 = 𝑑𝐸. (1.1) 

d coefficient is important for actuators as it demonstrates the mechanical deformation 

under a particular electrical field. 

By considering the elastic relationship between strain (𝑆) and stress (𝑇), 

𝑇 = 𝑄𝑆 = 𝑄𝑑⏟
𝑒

𝐸 = 𝑒𝐸.    (𝑒 = 𝑄𝑑) 
(1.2) 

where 𝑄 is the elastic constant. 

There is also an alternative way to express coefficients d and e, as given by:  

𝐷 = 𝑑𝑇. (1.3) 

𝐷 = 𝑒𝑆. (1.4) 

where 𝐷 is the electric displacement field. 

 Piezoelectric voltage coefficient (g) 

The piezoelectric voltage coefficient calculates the generated electrical field (𝐸) under 

external mechanical stress (𝑇), as shown in Eq. (1.5). 

𝐸 = −𝑔𝑇 (1.5) 

g coefficient is important for sensors (energy harvesting) as this is a measure for the 

output voltage under mechanical stress. 

By considering the elastic relationship, the piezoelectric voltage coefficient can also 

be given by: 

𝐸 = −ℎ𝑆  ,    ℎ = 𝑄𝑔. (1.6) 

 

 Permittivity (dielectric) constant (휀) 

The permittivity constant relates the electric displacement field (𝐷) to the electrical 

field (𝐸) as given by: 

𝐷 = 휀𝐸 (1.7) 
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By the permittivity constant definitions, the relationship between the piezoelectric 

voltage and charge constants can be expressed by: 

𝑔 =
𝑑

휀
 (1.8) 

 Coupling factor (𝐾) 

The coupling factor is defined as 

𝐾2= 
Extracted electrical charge

Applied mechanical energy
 (1.9) 

The extracted electrical energy is 
1

2
휀𝐸2 and the applied mechanical energy is 

1

2
𝑆𝑇. 

Therefore, the coupling factor is, 

𝐾2= 
1

2
𝐸2

1

2
𝑆𝑇
=

×(𝑔𝑇)2

(𝑇/𝑌)×𝑇
= 휀𝑔2𝑌. (1.10) 

As can be seen from Eq. (1.10), the coupling factor depends on the piezoelectric 

voltage coefficient, the permittivity constant, and the elastic modulus. 

 Electromechanical coupling factor (𝑘) 

The electromechanical coupling factor illustrates the generated charge from a 

mechanical deformation under a specific vibration mode. 

For the lengthwise vibration (33-mode), transverse vibration (31-mode), and shear 

vibration (15-mode), the electromechanical coupling coefficients are defined by [11]: 

𝑘33 = 𝑑33/(휀33
𝑆 𝑄33

𝐸 )
1

2. (1.11a) 

𝑘31 = 𝑑31/(휀33
𝑆 𝑄11

𝐸 )
1
2 (1.11b) 

𝑘15 = 𝑑15/(휀11
𝑆 𝑄55

𝐸 )
1
2 (1.11c) 

 

 Piezoelectric effect on the elastic modulus 

For piezoelectric materials subjected to mechanical deformation, in addition to the 

mechanical stresses, a piezoelectric polarization is generated. 
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The elastic stress is given by 𝑇𝑒 = 𝑄𝑆. 

According to Eq. (1.4), the piezoelectric polarization is given by 𝐷 = 𝑒𝑆. This 

polarization will create an electrical field of 𝐸 =
𝐷

 according to Eq. (1.7).  This 

electrical field then will create mechanical stress of 𝑇𝑝 = 𝑒𝐸 = 𝑒
𝑒𝑆
=
𝑒2𝑆

. 

Thus, the resultant mechanical stress by applying a mechanical strain can be expressed 

by: 

𝑇 = 𝑇𝑒 + 𝑇𝑝 = 𝑄𝑆 + 𝑒𝐸 = (𝑄 +
𝑒2
) 𝑆. (1.12) 

As can be seen from Eq. (1.12), the piezoelectric effect increases the structure's 

stiffness. 

 Piezoelectric effect on the dielectric constant 

Like the elastic modulus, the piezoelectricity also affects the dielectric constant. If an 

electrical field is applied to a piezoelectric material, an electric displacement field is 

created, and a mechanical strain due to the piezoelectric coupling. 

The electric displacement field is 𝐷 = 휀𝐸. 

The mechanical strain due to the electrical field is 𝑆 = 𝑑𝐸. This mechanical strain 

causes an electric displacement field 𝐷𝑝 = 𝑒𝑆 according to Eq. (1.4). 

Thus, the total electric displacement field can be expressed by: 

𝐷 = 𝐷 + 𝐷𝑝 = 휀𝐸 + 𝑒𝑑𝐸 = (휀 + 𝑒𝑑)𝑆. (1.13) 

 

1.3. TYPICAL PIEZOELECTRIC MATERIALS 

There is a wide range of piezoelectric materials, from natural to synthetic materials. 

Four types of piezoelectric materials have been extensively used in energy harvesting 

applications, namely Piezoceramic, Piezo polymer, Piezo composite, and 

piezoelectric single crystals. These four will be introduced in this subsection. Fig. 1-8 

(a) to (c) shows the Piezoceramic, Piezo polymer, and the piezo composite. 

Piezoceramic materials have a good piezoelectric property, so they have been 

frequently used for energy harvesting. They have low cost, good conversion coupling, 

high elastic modulus, high density, and brittle. They can tolerate their weight, but they 
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are solely used alone because they are very brittle and stiff. Lead Zirconate Titanate 

(PZT) is a popular and widespread member of Piezoceramic materials, with different 

PZT-5A and PZT-5H. 

Piezoelectric single ceramic has single crystalline structures, with a highly ordered 

orientation of positive and negative ions [7]. PMN-PT and PZN-PT are two common 

single crystal materials. Comparing with Piezoceramic, the single ceramic materials 

have a better piezoelectric conversion, high permittivity, and low elastic modulus.  

Piezo polymers are flexible materials with a low piezoelectric property. Nevertheless, 

they have a lightweight, low elastic modulus and highly flexible. Polyvinylidene 

difluoride (PVDF) is the most common member of piezo polymers. PVDF cannot 

tolerate its weight, so a host structure is essential for the PVDF materials.  

(a) 

 

(b) 

(c) 

Fig. 1-8. Three common piezoelectric materials, (a) Piezoceramic, (b) Piezo polymer, 

and (c) piezo composite. 

Table 1-2 shows the properties of these four types of piezoelectric materials. The 

coupling factor in 33-mode for the single ceramic materials is approximately 90%, 

which is the highest among these materials. Overall, the single ceramic materials have 

the best performance, and the PVDF materials have the lowest energy conversion. 

Overall, the MFC coupling factor is considerably better than the PVDF, still lower 

than the Piezoceramic. 

Flexible MFC 
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 PVDF PZT-5A 
PMN-PT 

(single crystal) 
MFC 

Density (kg/m3) 1800 7800 8120 5440 

Relative permittivity ε/ε0 12 1800 4753 1600 

d31 (10-12 C/N) -23 -190 -646 -170 

g31 (10-3 Vm/N) -216 -11.6 -15.36 -12.0 

K31 0.19 0.35 0.46 0.25 

d33 (10-12 C/N) 30 390 1285 400 

g33 (10-3 Vm/N) 340 24 30.55 28.2 

K33 0.13 0.72 0.89 0.59 

Y (Gpa) 8.5 52 20.4 30.3 

Mechanical quality factor Q=1/ζ 3-10 80 150  

Curie Temp (ºC) 150 200 90 150 [12] 

Table 1-2. Comparing material properties between Piezoceramic (PZT and single 

ceramic), polymer-based piezoelectric, and composite piezoelectric materials [13]. 

Fig. 1-9 compares the power output from Piezoceramic and single ceramic materials. 

The efficiency of single-crystal materials is considerably higher than the PZT 

performance [14]. The better performance of single crystals exists in both on-

resonance and off-resonance excitations [14]. 

 

Fig. 1-9. Power output and efficiency comparison between PZT ceramic and PMN-

PT and PZN-PT single crystals [14].  
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1.4. TYPICAL PIEZOELECTRIC BENDERS FOR ENERGY 
HARVESTING 

For many practical applications, including human motion, environmental vibrations, 

and industrial sources, the working frequency span is below 200 Hz see Table 1-3. 

This frequency span is a low-frequency category, and therefore, the focus for the 

piezoelectric harvesters is the low-frequency designs. 

Category Frequency span 

Human walking and running 0 to 5 Hz 

Human motion 5 to 15 Hz 

Automobiles’ vibration 15 to 50 Hz 

Household appliances 50 to 200 Hz 

Industrial vibration 200 Hz 

Table 1-3. The working frequency range for different vibration sources [15]. 

The cantilevered beam is one of the most widely used configurations in piezoelectric 

energy harvesting because it undergoes high deformation under vibration and 

therefore is suitable for power generation. The cantilevered beam also has a relatively 

low working frequency, suitable for low-frequency energy harvesting. Fig. 1-10 

shows a typical energy harvester under the base excitation. The beam under the base 

excitation experiences bending deformation. One way of applying the base excitation 

is to attach the clamp box to a vibration shaker. Besides, a force transducer, an 

accelerometer, or a laser displacement sensor may be employed for measuring the 

input vibration characteristics. Fig. 1-10 illustrates the typical instrumentation of a 

shaker test on the piezoelectric cantilevered beam. 
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Fig. 1-10. A typical experimental setup for the piezoelectric energy harvester under 

the clamped-free boundary condition [16]. 

As a typical performance of the piezoelectric bender, the voltage response of a 

unimorph beam (Fig. 1-11 (a)) under harmonic excitation is shown in Fig. 1-11 (b). 

The input vibration has a harmonic form, so the output voltage has a harmonic shape, 

and the voltage output is AC. However, in many practical cases, the AC voltage will 

be connected to a full-bridge rectifier to transform the AC voltage to an always-

positive voltage. 

As the output piezoelectric voltage depends on the beam vibration, the excitation 

frequency that affects the beam vibration will also influence the voltage generation. 

The voltage output for harmonic excitations with a 0-70 Hz frequency range is shown 

in Fig. 1-11 (c). As can be seen from Fig. 1-11 (c), the voltage output is negligible 

firstly but sharply rises to a peak value at a specific frequency called "resonant 

frequency". At the resonant frequency, the bender deflection is maximum, which will 

therefore generate the maximum voltage. 

An electrical resistance load is often attached to the piezoelectric beam so that the 

current flows. In no-load condition (open-circuit or infinity load), the voltage is 

maximum but no current flows, so the power generation is zero. When the load is 

close to zero (short-circuit condition), the current flow is maximum, but there will be 

no voltage difference, so the power generation is zero. An "optimum electrical" load 

gives the maximum power output (Fig. 1-11 (d)), which should be found for 

piezoelectric energy harvesting. 
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These basic introductory definitions for the resonant frequency and optimum load will 

be comprehensively developed in the following chapters. 

(a)  

(b)  

(c)  

(d)  

Fig. 1-11. (a) A piezoelectric unimorph with one MFC under the base excitation, (b) 

the voltage response over frequency, and (c) resonant voltage and power outputs 

versus electrical load resistance [17]. 
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The clamping in the cantilever configuration can be done in different ways. One way 

can be using a clamp bar that keeps the energy harvester by tightening screws, or the 

energy harvester is attached to a medium plate by adhesive, and then the medium plate 

is joined to the base plate by screws. Fig. 1-12 (a) shows these two clamping types. It 

is also typical to add a tip mass so that the beam deformation increases. Fig. 1-12 (b) 

shows an added tip mass attached to a piezoelectric beam. 

(a) 

 

(b) 

Fig. 1-12. The demonstrations of different (a) clamping types and (b) added tip mass 

connection. 

In many practical cases, an energy harvester may comprise more than one 

piezoelectric beam to improve the power output performance. The multi-beam energy 

harvesters can have multiple beams with different piezoelectric materials, Fig. 1-13 

(a), or substrate shims, Fig. 1-13 (b). Since each beam has an optimal frequency range, 

the two beams' combined performance is improved over the frequency range. Fig. 

1-13 (c) illustrates a typical power output for a two-beam energy harvester. 
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(a) 

 

(b) 

(c) 

 

Fig. 1-13. Two-beam energy harvesters under the same base excitation, (a) one PZT 

and one MFC sample in one energy harvesting box, (b) two MFCs attached to one 

clamping box, and (c) a typical response from the two-beam harvester. 

1.5. PIEZOELECTRIC VIBRATION ENERGY HARVESTER (PVEH): 
STATE-OF-THE-ART 

According to Scopus, piezoelectricity has been a significant focus for energy 

harvesting research, with more than 1000 research articles annually. Thus, there are 
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also vast review articles addressing the piezoelectric energy harvesting, from design, 

material, and application perspectives [1], [7], [9], [10], [15], [18]–[29].  

Sodano and coworkers [25] reviewed the energy harvesting by piezoelectric materials 

in 2004. In addition to the harvesters' fundamental vibration, they also studied the 

electrical circuit, electrical damping, and storage. [25]. Later, in a paper by Anton and 

Sodano [26], Sodano and his team presented a review paper on piezoelectric energy 

harvesting focusing on mechanical and electrical modulations for improving power 

generation performance. Ten years later, in 2019, Safaei, Sodano, and Anton [24] 

reviewed piezoelectric energy harvesting by reporting the recent advancements in 

material science and electrical circuits as well as a comprehensive presentation of 

different piezo-harvester designs. 

In 2021, Sezer and Koc [9] reviewed the most recent advancements in piezoelectric 

material developments and presented a comprehensive review of the different 

piezoelectric harvesters from different vibration sources. 

The following subsection, state-of-the-art piezoelectric energy harvesting, its 

challenges, and the leading-edge solutions for these challenges, will be reviewed. 

1.5.1. A BRIEF SURVEY ON THE PVEH FROM DIFFERENT VIBRATION 
SOURCES 

1.5.1.1 Environmental forces 

As one of the available environmental forces, the air force has been extensively used 

for piezoelectric energy harvesting. Wind energy can be a substantial source of 

energy, as it has been shown that a wind speed of 4.6 m/s can approximately generate 

0.35 mW power using a T-shape harvester with piezo-patches [30]. 

Aircraft is one potential vibration source experiencing structural vibration during the 

flight. The aircraft vibration has been used for piezoelectric energy harvesting. Energy 

harvesting from unmanned aerial vehicles (UAV) [31], wing-box [32], and composite 

wing surface [33] are some research examples. 

The wind turbine blade will experience mechanical strain during the turbine operation. 

This strain energy can be used for piezoelectric energy harvesting [34]. It is suggested 

that the stored electrical energy from piezoelectricity made on the wind turbine blade's 

stored energy is sufficient for wireless sensor nodes [35]. 

Fluids (other than air) can also create energy sources for energy harvesting. Rain [36] 

and ocean wave [37] energy are two familiar energy sources by water. In an actual 

rain, it has been shown that in an actual rain in an 18 cm2 surface area, 6.9 µJ/min 
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energy can be stored from an actual rain [38]. The power output from ocean waves is 

considerably high at the 30 W range [37]. 

1.5.1.2 Car, road, and bridge 

The vibration in a traffic tunnel wall can reach 7 m/s2 from a passing car to more than 

20 m/s2 for the induced vibration by a truck [39]. This kinetic energy source is often 

wasted. The excitation frequencies from the tunnel are in the range of kilo-Hz. It has 

been experimentally shown that power of 2.43 mW is generated from the pavement 

road from a 1200 N axel passing with 60 km/h [40]. The power generation from a 6×6 

in2 prototype with four Φ8mm×t8mm piezoelectric discs is estimated to be 1080 W h 

of RMS energy per year [41]. 

In addition to the structural vibration, the moving car itself can be another vibration 

source. By designing a flexible piezoelectric composite and attaching it to the tire 

surface, a 380.2 µJ energy per tire revolution has been generated, equivalent to 1.37 

µW/mm3 [42]. The car suspension system can also be a potential energy source for 

power generation in the range of Watts [43]. 

The piezoelectric energy harvesting from car and road can be used to power car 

wireless sensors [42], smart tires [44], and smart roads [45] for the future. 

Peigney and Siegert [46] showed that the traffic-induced bridge vibration could be 

used for designing a wireless sensor for low-duty cycle structural health monitoring. 

1.5.1.3 Floor and building 

Walking can cause the floor to be excited by a considerable force. Therefore, floors 

can be designed to accommodate piezoelectric harvesters for power generation. 

A 63-kg pedestrian by a soft step can generate approximately 10 V and 0.18 A [47].  

A floor tile with 150×150 mm2 has been designed and showed that for one step from 

a 68-kg man, 0.12 mW RMS power has been generated, which was enough to turn on 

sixty chip LED [48]. 

It has been estimated that for an educational building at Macquarie University in 

Sydney, by 3.1% piezoelectric coverage, 1.1 MW h/year can be generated [49]. 

1.5.1.4 Train and railway 

A considerable vibration is induced into the railway by a moving train. The moving 

train is a moving load, and a particular modeling type is required for this type of 

analysis. Zhang et al. [50] presented a modeling technique for a piezoelectric 
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cantilevered beam subjected to a moving load. The train-induced acceleration is in the 

range of 600 m/s2 and lasts for approximately 20 seconds at one point in the rail [39]. 

Wischke and coworkers estimated that energy of 395 µJ per train could be stored [39].  

For the railway energy harvesting, the patch and stack-box designs have been 

proposed by Wang and coworkers [51], and it has been calculated that 85.6 mJ and 

21.88 mJ energy can be stored from the patch and stack designs. 

Amini et al. [52] presented a complete study on the power output from multiple 

moving loads and showed that power in the range of 1mW could be generated for 

velocities above 30 m/s. 

1.5.1.5 Industrial vibration 

The vibration induced in the pipe by a moving flow can also be regarded as a kinetic 

energy source. One issue for applying piezo-materials is that the piezoelectric patches 

should be flexible. Thus, the Piezoceramic patches cannot be attached to the pipe 

surface. The development of MFC materials for PVEH from pipes was demonstrated 

with a demo that generated power above 3 mW/N2 [53]. 

Motors, which inevitably emits vibration due to their rotating shaft, typically have a 

high acceleration level with relatively moderate excitation frequency. Different 

conversion mechanisms can be employed for the PEH from motor vibration. Direct 

attachment of piezoelectric beam to the motor case [54] is the most straightforward 

design; nevertheless, the vibration level might be low at some working conditions. 

Another solution can be to use the shaft rotating motion as a base excitation, as shown 

in Fig. 1-14 [55]. In addition to the rotation motion design, the shaft rotation motion 

can be converted to a linear motion, and that this linear motion excites the 

piezoelectric beam, as illustrated in Fig. 1-15 [56]. Another way to use the rotation 

motion as a beam excitation force is to apply magnets, as shown in Fig. 1-16 [57]. 

 

Fig. 1-14. Piezo-beam for rotation energy harvesting with the application on the motor 

[55] 

Electric motor Frame for harvester 
attachment

Piezo layer

Substrate
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Fig. 1-15. Converting rotation motion to linear motion for parametric excitation of 

piezoelectric beams [56]. 

 

Fig. 1-16.  Using the magnetic force in a rotating shaft to excite the piezoelectric beam 

by tip force [57]. 

1.5.1.6 Kinetic energy from living sources 

The human body is an excellent source of various energy types. Moreover, the human 

body may need to have implants or biomedical sensors for health purposes. Fig. 1-17 

illustrates a schematic of some implanted medical electronic devices [58]. Therefore, 

the human body can be an excellent power generation source and a customer for the 

power. Therefore, many studies have focused on the body as an energy-harvesting 

source. 

Electric 
motor

linear bearings

seismic mass

Piezo layer

Substrate
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Typical, the medical implants need power around 100µW (with a lifetime of 10 years), 

and specifically for the pacemakers, the required power is within 10µW range (with a 

lifetime of 5 years) [59]. Human motion and activities can be kinetic energy sources 

with available power output in the range of mW to W, as illustrated in Table 1-4. 

Thus, from a power consumption point of view, having self-powered implanted 

medical devices is possible. Dagdeviren and coworkers [60] demonstrated a series of 

practical demonstrations of the energy harvesters using biofuel cells, thermoelectric 

generators, triboelectric generators, and piezoelectric generators. Their study focused 

on the harvesters that can be implanted. For the on-body energy harvesters, Roundy 

and Trolier-McKinstry [61] reviewed different energy-harvesting technologies, 

including the piezoelectricity, for the on-body applications.  

 

Fig. 1-17. The various implanting medical devices [58] 
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Activity Available electrical power Available energy per motion 

Blood flow [62] 0.37 W 0.37 J 

Exhalation [62] 0.4 W 2.4 J 

Breath [62] 0.091-0.42 W 0.5- 2.5 J 

Upper limbs [62] 0.33-1.5 W 1.5-6.7 J 

Typing by fingers [62] 0.76- 2.1 mW 143- 266 µJ 

Walk [62] 5- 8.4 W 8.3- 14.0 J 

Stepping- Heel strike [63] 2-20 W 1-5 J 

Stepping- ankle [63] 66.8 W 33.4 J 

Knee [64] 4.8 mW  

Table 1-4. Estimation of available power and energy from human motion [62], [63] 

Platt et al. [65] explored the use of PZT bulk elements in a knee implant toward the 

use of autonomous biosensors. Furthermore, a vast number of studies focused on 

human walking motions for power generation, and they showed that considerable 

power could be generated from human walking. Examples of studies on the power 

generation from human walking are Fan et al. [66], Wang et al. [67], and Hwang et 

al.  [48]. Fan et al. [66] could successfully design a piezoelectric harvester by which 

an RMS voltage output of 1.64 V can be produced when the walking speed is 8 km/h. 

Besides, kinetic energy from jaw motion  [68] has been converted to electrical energy 

by a flexible piezoelectric strap.  

Moreover, several practical devices have been tested on animals for future body 

applications. A flexible PVDF film was warped around a pig ascending aorta in one 

study, and a voltage of 1.5V has been generated [69]. Furthermore, a PZT-based thin 

film is integrated into the soft tissues for being attached to the heart, lung, and 

diaphragm of cows and sheep [70]. Their study showed that a power density of 1.2 

µW/cm2 could be produced from PZT materials [70].  Furthermore, a flexible thin-

film PMN-PT harvester with 1.7×1.5 cm2 could generate an 8.2 V voltage from the 

rat heart [71]. 

1.5.2. GENERAL TECHNIQUES FOR PVEH MODELING 

1.5.2.1 Constitutive equations for piezoelectric materials 

IEEE standard on piezoelectricity has introduced the linear piezoelectricity equations 

from the first law of thermodynamics and the electric enthalpy density [72], as given 

by: 

𝑇𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙
𝐸 𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 (1.14) 
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𝐷𝑖 = 𝑒𝑖𝑘𝑙𝑆𝑘𝑙 + 휀𝑖𝑘
𝑆 𝐸𝑘 (1.15) 

wherein T is the stress tensor, S is the strain tensor, E is the electrical field, e is the 

piezoelectricity coupling coefficients, Q is the stiffness constants, D is the electrical 

displacement tensor, and 휀 is the piezoelectric permittivity constant. 

The IEEE piezoelectricity standard also has presented different piezoelectric 

constitutive equations and the relationships between the piezoelectric coupling 

coefficients. Eq. (1.16) and Eq. (1.17) show another alternative form of the 

piezoelectric constitutive equations.  

𝑆𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙
𝐸 𝑇𝑘𝑙 + 𝑑𝑘𝑖𝑗𝐸𝑘 (1.16) 

𝐷𝑖 = 𝑑𝑖𝑘𝑙𝑆𝑘𝑙 + 휀𝑖𝑘
𝑇 𝐸𝑘 (1.17) 

 

Joshi [73] introduced the nonlinear constitutive equations for piezoelectric materials 

by employing the thermodynamic Gibbs potential function, as shown by Eq. (1.18) 

and Eq. (1.19). 

𝑆𝑖𝑗 = 𝑄𝑖𝑗𝑙𝑚
𝐸 𝑇𝑙𝑚 + 𝑑𝑖𝑗𝑛𝐸𝑛 +

1

2
𝑄𝑖𝑗𝑙𝑚𝑝𝑞
𝐸 𝑇𝑙𝑚𝑇𝑝𝑞 +

1

2
𝑑𝑖𝑗𝑛𝑟𝐸𝑛𝐸𝑟

+ 𝜅𝑖𝑗𝑙𝑚𝑛𝑇𝑙𝑚𝐸𝑛 
(1.18) 

𝐷𝑘 = 𝑑𝑘𝑙𝑚𝑆𝑙𝑚 + 휀𝑘𝑛
𝑇 𝐸𝑛 +

1

2
𝜅𝑖𝑗𝑙𝑚𝑛𝑇𝑙𝑚𝑇𝑝𝑞 +

1

2
휀𝑘𝑛𝑟
𝑇 𝐸𝑛𝐸𝑟

+ 𝑑𝑘𝑙𝑚𝑛𝑇𝑙𝑚𝐸𝑛 
(1.19) 

As can be seen from Eq. (1.18) and Eq. (1.19), nonlinear terms exist in the constitutive 

equations. 

Wang and Gross [74] have developed the constitutive equations for bimorph 

piezoelectric bender with a substrate. Their formulation considers the voltage, point-

load, moment at the beam end, and uniform load.  

Nguyen et al. [75] have developed the constitutive equations for two types of 

piezoelectric harvesters, 31-mode by the top and bottom electrodes (TBE) and 33-

mode by interdigitated electrodes (IDE). 

1.5.2.2 Linear models 

In the linear models, the constitutive piezoelectric equations and the strain-

deformation relationships are linear. Therefore, the material and geometrical 
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nonlinearities are not considered in the linear models. A great deal of piezoelectric 

modeling techniques has been developed in the linear framework. 

Single-degree-of-freedom (SDOF) models 

In 1996, Williams and Yates [76] presented a mass-spring-damper model to illustrate 

a micro-electric generator's performance focusing on the electromagnetic generator. 

This model has not been developed for the piezoelectric purpose, and therefore the 

material electromechanical coupling behavior is not present in the model. 

Plat et al. [65] have developed an SDOF model with the electromechanical coupling 

(from the linear constitutive equations) and extracted the steady-state response under 

the harmonic excitation. 

DuToit et al. [77] investigated an SDOF model considering the electromechanical 

coupling effects. Using this SDOF model, they obtained the optimal conditions 

(frequency and electrical load) for the optimum power generation. They also showed 

that the piezoelectric voltage generation affects the beam stiffness. The DuToit SDOF 

model can provide a correct platform for sensitivity analysis of power output and 

structural analysis. Nevertheless, finding the equivalent dynamic properties of the 

piezoelectric beam for the SDOF model is an issue. 

Therefore, some researchers employed the beam models to provide correlation factors 

so that the SDOF model is correlated to the beam models, such as [78]. Shu and Lien 

presented an SDOF model with correlation factors from the Rayleigh-Ritz 

approximation [79].  

Luschi and coworkers [80] have recently provided a global reduced one-dimension 

beam model for piezoelectric beams under different beam dimensions, e.g., narrow 

enough beams and beams with a very-thin piezoelectric layer and wide beams. 

Beam distributed models 

In 1999, Li and coworkers [81] presented the bending moment of a PZT-brass 

unimorph considering the electromechanical coupling.  

DuToit and coworkers [77] presented an analytical model for the unimorph and 

bimorph beams using the generalized Hamilton's principle. Later, DuToit and Wardle 

[82] presented the experimental verification for their analytical beam model by testing 

a PZT-5A bimorph. According to their experimental data, the beam analytical model 

under-predicts the mechanical response and the power output at the resonance or near 

resonance. 

Erturk and Inman in 2008 [83] critically reported issues in piezoelectric beam 

modeling and provided solutions for these issues. Erturk and Inman, in another study 

[84], presented a distributed beam model based on Euler-Bernoulli's beam theory. 
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This study [84] presented detailed explanations about the power output, 

electromechanically coupled responses, and power-load relationships. Later, Erturk 

and Inman [85] expanded their model to bimorphs (parallel and series connections) 

and carried out experimental data verifications. 

In the distributed beam models, the equations of motion are often developed based on 

the modal coordination so that for solving the equations, a summation over all the 

modal modes (in theory, from one to infinity) is required. However, if the piezoelectric 

beam vibrates with a frequency around its first natural frequency, the first mode 

contribution is substantially more vital than the other modes' contributions; therefore, 

the distributed beam models can be reduced to single-mode equations. Liao and 

Sodano [86] introduced a reduced-order model using the analytical transverse 

vibration of beams. Banerjee and Roy [87] developed a 1D reduced-order 

electromechanical coupled model for the piezoelectric beams. 

The previously mentioned models have been developed for conventional 31-mode 

harvesters. Ajitsaria and coworkers [88] investigated unimorph benders' performance 

with interdigitated electrodes by developing a theoretical model for this unimorph 

type. 

Kim and coworkers [89] thoroughly studied the effect of added tip mass on the 

piezoelectric beams by employing the distributed beam model.  

Lumentut and Howard [90] provided an analytical beam model for both bending and 

axial vibration excitations, focusing on developing various frequency response 

functions. Their model has good agreement with the experimental data. 

Many material and geometrical properties are required for modeling the piezoelectric 

harvester based on the beam models that may be incorrect or inaccessible. Therefore, 

for making the beam models straightforward, Kim and coworkers [91] provided a 

reduced-order beam model that the modeling parameters can be simply obtained by 

the geometry and the modal data from the experiment. 

The distributed beam models for trapezoid harvesters differ from the rectangular ones, 

which have been generally assumed for the model development. Muthalif and Nordin 

[92], Xie and coworkers [93], and Kherbeet and coworkers [94] have developed the 

analytical beam models for the tapered beam configurations. 

Most of the work on piezoelectric beam modeling has been derived from the Euler-

Bernoulli beam theory. Banerjee and Roy [95] presented a Timoshenko-like beam 

model by taking the shear mode into account. 

Paknejad and coworkers [96] developed an analytical solution for the piezoelectric 

bimorph beams with a composite center shim. 
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Wang and Wang [97] developed a beam model with a partially covered piezoelectric 

layer and the tip mass for the nanoscale and considering the flexoelectric effect. They 

showed that if the piezoelectric layer's thickness is less than 1000 nm, the flexoelectric 

effect becomes significant, influencing the output voltage. 

Zhang and coworkers [50] investigated a piezoelectric bimorph attached to a bridge 

and developed a beam model under a moving harmonic load. 

Mallouli and Chouchane [98] provided an analytical beam model for piezoelectric 

harvesters with the macro fiber composite (MFC), which has the interdigitated 

electrodes. 

Zhou and Zhao [99] have recently revisited the classical beam approach for modeling 

the piezoelectric energy harvesters and provided a comprehensive archive of the beam 

models. 

In the previous methods, the boundary condition is considered chiefly clamped-free. 

If the boundary condition is changed, the piezoelectric beam formulation shall be 

modified as well. Lu and coworkers [100] presented a beam model for two-span 

piezoelectric energy harvesters and investigated this energy harvester type. 

2-D Finite element models 

Conventional and straightforward beam configurations can be solvable analytically 

by the beam models. However, for the beam complex configurations, providing 

analytical solutions is not possible. Besides, only the simple deformation theories can 

be applied in the beam models; otherwise, finding the solutions would be complex. 

Finite element (FE) models are powerful numerical models for solving the partial 

differential equations (PDEs) under the boundary conditions (BCs).  

In the FE method, the piezoelectric domain is divided into small elements, and the 

PDEs are developed for the small element. Next, by assembling the PDEs, a matrix 

representation of the PDEs over all the elements is obtained. This matrix equation will 

be solved after applying the BCs. 

Many researchers on the FE model for piezoelectric materials were devoted to the 

actuator-sensor applications in a composite multi-layered structure, not energy 

harvesting applications. The works by Hossack and Hayward [101], Lam and 

coworkers [102], Reddy [103], and Azzouz and coworkers [104] are among the FE 

models for the piezoelectric sensor or actuator applications. Later, studies have been 

carried out for the FE analysis for the piezoelectric energy-harvesting applications, 

including the works by Yaman [105], Moradi-Dastjerdi et al. [106], Lezgy-Nazargah 

and coworkers [107], and Marqui-Junior and coworkers [108]. 
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Different plate theories can be employed for the FE formulation. Fig. 1-18 shows a 

category of different plate theories based on the beam deformations' assumptions. In 

the classical methods, the beam deformation in the thickness is null, so that the beam 

displacement through the thickness is constant. In the classical methods, classical 

plate laminate theory (CLPT) does not consider the shear stresses. While the shear 

deformation theories consider the shear stresses, the out-of-plane stresses are not 

continuous in the classical methods as the mechanical properties in the thickness are 

not continuous. Here, the advanced theories appear as a tool for satisfying the inter-

laminar continuity.  

 The FE works on the piezoelectric energy harvesters have developed based on the 

classical theories. For instance, the studies [105], [108] use the classical plate theory, 

and the study [106] uses the high order shear deformation theory, but in all of these 

studies, the deformation in the thickness is null.  On the other hand, the studies that 

used advanced theories, like [109], [110], have not been developed for energy 

harvesting applications. 

 

Fig. 1-18. Different plate theories for structural analysis of piezoelectric materials. 

 

1.5.2.3 Nonlinear models 

The piezoelectric energy harvester is typically designed to work in the resonant for 

the highest possible electrical power conversion. The resonant operation can cause a 

sizeable mechanical strain, as the deformation will be substantial at the resonance. If 

the mechanical strain becomes substantial, elastic nonlinearities can occur, as 

demonstrated by Priya et al. [111] for soft and hard PZTs. 

Many of the developed models for the piezoelectric energy harvesters are obtained in 

the linear framework. Nevertheless, nonlinearities can occur for the high strain 

conditions. Abdelkefi and coworkers [112] developed a nonlinear distributed beam 
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model for the 31-mode harvester considering the geometric, inertia, and piezoelectric 

material nonlinearities. According to their conclusions, the PZT has a nonlinear 

softening behavior, and the nonlinearity can affect the voltage generation performance 

depending on the effective nonlinear coefficient. It has also shown that if the 

piezoelectric beam exhibits nonlinear behavior, using the single-mode approximation 

leads to misleading conclusions. Besides, Abdelkefi and coworkers [113] also 

developed a nonlinear distributed beam model for a piezoelectric beam under the 

length-wise vibration excitation. 

Mam and coworkers [114] investigated the nonlinearity from large-deflection and 

piezoelectric material nonlinearity for the piezoelectric beams with transverse and 

axial base excitations. 

Firoozy and coworkers [115] presented a nonlinear beam model for a piezoelectric 

beam with a proof mass and showed that attaching a massive proof mass will change 

the system behavior from linear to nonlinear, causing changes in the power generation 

and optimal frequency and load conditions. 

1.5.3. CHALLENGES AND PERFORMANCE OF THE PVEHS 

1.5.3.1 Resonant frequency tuning 

One of the challenges for piezoelectric energy harvesting is that they generate low 

power on the off-resonant. Therefore, the harvester should be designed so that its 

natural frequency matches the excitation frequency. Therefore, PVEH designs that 

can adopt the harvester's natural frequency without changing the harvester 

configurations are advantageous. 

Considering a piezoelectric beam in the simply supported boundary condition, 

applying a preload and using a mobile mass can be used for frequency tuning. The 

preload can reduce the harvester's natural frequency up to 24%, which can also 

partially increase the power output even though it also increases the damping 

coefficient [116]. A mobile mass can provide an automatic resonant tuning for a range 

of approximately 40 Hz [117]. Even though these techniques can lead to resonant 

frequency tuning, the energy harvester with simply supported boundary conditions 

has higher resonance than the clamped-free boundary conditions. This may hinder the 

use of these harvesters for human motions and environmental forces. 
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(a)  

(b)  

Fig. 1-19. Frequency tuning in simply supported beams, (a) the use of preload [116], 

and (b) the use of mobile mass for the automatic tuning [117]. 

Using nonlinear mechanisms for resonant tuning is another option. The nonlinear 

mechanisms can be applied by a direct mechanical nonlinearity (a stopper plate, for 

example) or nonlinear couplings, like magnetic forces. With a spring-plate 

combination in the bottom and stopper-plate on top, the resonant frequency can be 

tuned by adjusting the gap between these plates [118]. Using magnetic forces and 

adjusting the magnets' gap, the resonant frequency can be tuned  [119]. In the non-

linear stopper and spring plates, the resonant frequency is tuned within the 150 Hz 

range [118], and for the magnetic design, the resonant frequency is tuned within the 

40 Hz range [119]. 

As mentioned before, the resonant frequency for the above resonant tuning is more 

than 40 Hz, which may be significant for some applications. Another method is 

adjusting the added mass position along a polymer-based large substrate  [120], as 

demonstrated in Fig. 1-20. This approach can provide resonant frequencies in the 

range of 10 Hz.  
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Fig. 1-20. The use of added mass position as a resonant tuning parameter [120]. 

1.5.3.2 Narrowband power output 

As Fig. 1-11 (b) demonstrated a typical voltage output made on a piezoelectric beam, 

the power generation will decrease meaningfully by a slight variation in the excitation 

frequency. For the smaller damping coefficient becomes, the power frequency 

response will have narrower bandwidth. This narrow bandwidth will reduce 

piezoelectric harvesters' efficiency, as the source excitation frequency may slightly 

change, which will cause a considerable power reduction. Thus, a wide range of PEH 

studies has focused on providing broadband power generation. These techniques can 

be broadly categorized into four groups: 

 Group 1: Magnetic force [66], [119], [121]–[126] 

Using the magnetic force has been one approach for providing a coupling between the 

mechanical vibration and the magnetic force. Attaching magnets to the beam tip will 

provide a magnetic force, which will create broadband power outputs. The magnets 

can be simple permanent magnets, coils with an electromagnetic field, or oscillatory 

magnets. Fig. 1-21 (a) and (b) show the permanent magnet use in two different 

configurations.  
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Fig. 1-21. Improving the power bandwidth by (a) the use of one or two magnets by Li 

and Thomsen [122], and (b) the use of a magnet and a rolling steel ball by Fan and 

coworkers [66]. 

The power generation performances of permanent magnets in the fixed and oscillatory 

configurations are compared with the standard linear harvester performance in Fig. 

1-22. Comparing the standard and fixed permanent magnets in Fig. 1-22 (a) and Fig. 

1-22 (b) shows that the power bandwidth is slightly improved, but the peak power is 

reduced. This power reduction can be due to preventing the beam vibration by the 

magnet force. Nevertheless, the oscillatory magnet design improved both the peak 

power and the bandwidth power. 

 

Fig. 1-22. A comparison between the power outputs in (a) standard PVEH design, (b) 

fixed magnets, and (c) oscillatory magnet mass [121]. 
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Adding one or two mechanical stoppers at the beam tip can also provide a broadband 

power frequency response. The mechanical stopper can be a piezoelectric beam [127] 

or a rigid stopper [129]. The power output over the frequency range for a piezoelectric 

harvester with a beam stopper is shown in Fig. 1-23 [127], showing that the power 

bandwidth is increased from a few Hertz to 25-35 Hertz. The stopper mechanism and 

the magnetic forces can form a combined version for broadband energy harvester 

[128]. 

 

Fig. 1-23. The power output from a piezoelectric beam with another piezo-beam 

stopper [127]. 

 Group 3: Multi-modal beams [119], [133]–[136] 

Another group of designs for providing broadband energy harvester is to use multiple 

beams attached to one base. Such energy harvesters with multiple beams have been 

shown in Fig. 1-13. By attaching several harvesting beams, a wider range of 

frequencies can be covered and reach broadband power performance. One example of 

the multi-modal beams is shown in Fig. 1-24 [136]. 

 

Fig. 1-24. A multi-beam energy harvester design with its power output [136]. 

 Group 4: Impact-driven forces [137]–[141] 
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When an energy harvester is subjected to an impact, it vibrates with its natural 

frequency. Regardless of the excitation frequency, each impact excites the beam with 

its natural frequency; therefore, a wider power bandwidth can be expected in the 

impact-driven designs. Fig. 1-25 shows an energy harvester with two piezoelectric 

beams excited with the impact from a sliding mass [141]. Jacquelin and coworkers 

[141] showed that this energy-harvesting design benefits from a wider power 

bandwidth. 

 

Fig. 1-25. An energy harvester based on the impact force [141]. 

 

1.5.3.3 Mechanical damping 

Damping has a negative role on the power generation by piezoelectric energy 

harvesters as it dissipates the mechanical energy. The drop in the power output versus 

the mechanical damping ratio is substantial, as can be seen from Fig. 1-26. For 

instance, increasing the damping ratio from 1% to 2% will reduce the power from 

2mW to 0.85mW [142]. 

seismic mass
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Fig. 1-26. The piezoelectric power output is a function of the mechanical damping 

ratio [142]. 

As can be seen from Fig. 1-27 (a), the mechanical damping depends on the beam 

width, according to Dayou and coworkers [143]. Therefore, they suggested that 

splitting the beam into three splits will increase the power output due to the damping 

reduction. The power increase of beam splitting is shown in Fig. 1-27 (b). 

(a) (b) 

 

Fig. 1-27. The influence of beam width on the mechanical damping, (a) beams with 

reduced width, (b) damping ratio versus the beam width, and (c) the power output 

improvement by splitting the beam [143]. 

For the piezoelectric beams that vibrate in the surrounding fluid, the fluid resistance 

force is a factor that prevents the beam vibration. In other words, the fluid resistance 

force dissipates the kinetic energy. The fluid resistance force is called viscous 

damping. This viscous damping depends on the excitation amplitude and the 
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surrounding fluid [144], as can be seen from Fig. 1-35 (a). The effect of surrounding 

fluid on the power generation can be seen in Fig. 1-35 (b). The bimorph vibrating in 

oil generates considerably lower power than that of vibrating in the air. 

(a) (b) 

 

Fig. 1-28. (a) The damping ratio is a function of excitation acceleration for the 

bimorph vibration in air and oil and (b) the power frequency response for different 

vibrating conditions [144]. 

One way to quantify the effect of viscous air damping on the PEH performance is to 

study the power generation in a vacuum surrounding. This study has been carried out 

by Elfrink and coworkers [145]. They showed a considerable power rise from the PEH 

when it is vibrating in the vacuum, showing that the effect of viscous damping can be 

reduced if the piezoelectric sample is inserted into a vacuum-package.  
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Fig. 1-29. The power increase of piezoelectric sample using the vacuum-package 

[145]. 

In addition to the viscous damping, internal energy dissipation is also another damping 

mechanism. According to Baker et al. [146] and Crandall [147], which considered 

structural damping due to acoustic radiation loss, internal damping is maximum at a 

frequency called relaxation frequency. In Crandall's study [147], it was shown that by 

adding a strip of damping tape to an aluminum plate, internal damping changes with 

an order of six, indicating the importance of adding viscoelastic materials on structural 

damping. Baker et al. [146] showed that structural damping has a negligible 

dependency on the vibration amplitude for thin benders. 

1.5.3.4 Fragility of Ceramics 

Ceramics, Piezoceramic, and single crystals have excellent piezoelectric properties, 

yet they suffer from fragility and inflexibility. Sessler in 1981 [148] reported that 

piezoelectricity exists in the PVDF polymer. Nevertheless, the low piezoelectric 

coupling coefficients in the PVDF are an issue. Thus, many efforts have been focused 

on proving flexible piezoelectric samples with an excellent piezoelectric conversion. 

One of the solutions is to manufacture composite materials with piezoelectric fibers. 

Two of the widely used piezo-composites are Piezoelectric Fiber Composite (PFC) 

and Macro Fiber Composite (MFC). The PFC has cylindrical fibers, while the MFC 

has rectangular fibers. In both of them, the Piezo-fibers are aligned and embedded into 

a polymer resin. Therefore, these composites become more flexible, but their power 

generation performance diminishes [7]. 
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Fig. 1-30. The illustration of Piezo-composites, (a) Piezoelectric Fiber Composite 

(PFC), and (b) Macro Fiber Composite (MFC) [149] 

Crossley and Kar-Nayaran [150] discussed the thin-film flexible Nanogenerators 

based on piezoelectric nanofibers. Using piezoelectric particles to form a piezoelectric 

composite layer with interdigitated electrodes is investigated by Sun and coworkers 

[151].  

3D printing using the polymer PVDF can also manufacture the flexible composite 

piezoelectric structures [152]. A highly flexible piezoelectric sample made from 

PVDF sandwiched between aluminum substrates is developed for energy harvesting 

from human vessels [69]. 

Another solution, developed by Hwang and coworkers [71], is to manufacture a thin 

film ceramic and then attach it onto a flexible substrate. Hwang and coworkers 

fabricated the flexible piezo-harvester from PMN-PT single crystal to harvest energy 

from the external heart wall [71]. 

A flexible type of materials for piezoelectric energy harvesting is recently developed 

from the pomelo fruit membrane [153]. This piezoelectric generator's performance is 

low compared to the other materials, but this material is bio-waste and sustainable. 

1.5.3.5 Temperature effect 

The temperature harms the piezoelectric performance. Above the Curie temperature, 

the piezoelectric materials will be depolarized and lose their conversion ability. 

Between the room temperature and the Curie temperature, the temperature also affects 

the piezoelectric voltage generation.  

For the Piezo-composites, the MFC [12] and PFC [154], the conversion mechanism 

has the best performance around 20ºC, and after this temperature, the power 

generation is expected to decrease. In another study in Ref. [155], it is observed that 

for the Piezoceramic PZT-5A, increasing the temperature will reduce the voltage 

output. For higher excitation forces, the voltage reduction due to the temperature 

becomes more severe. 

interdigitated electrodes

epoxy matrix
rectangular fiberscylindrical fibers



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

64 

(a)   

(b)  (c)  

 

Fig. 1-31. The temperature effect on the Piezo composites, (a) voltage output from a 

Macro Fiber Composite (MFC) sample [12], (b) d33, and (c) d31 coefficients for 

Piezoelectric Fiber Composite (PFC) [154]. 

 

Fig. 1-32. The effect of temperature on the voltage output from PZT-5A [155]. 

The piezoelectric composite made from the piezoelectric particles in the polyimide 

matrix has demonstrated excellent performance at high temperatures [151], as shown 

in Fig. 1-33. 
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Fig. 1-33. The improved performance of the piezoelectric composite made from 

piezo-particles and polyimide matrix [151]. 

1.5.3.6 Long-term use of PVEHs 

The discussion about the long-term use of piezoelectric harvesters has recently drawn 

attention. There is a low number of studies on the fatigue performance of PVEHs. 

Nevertheless, as PVEHs aims to provide a long-term power source, their long-term 

performance shall be considered. Salzar and coworkers [156] have recently reviewed 

the fatigue behavior of piezoelectric materials for energy-harvesting applications. 

The MFC fatigue behavior can be more difficult because, generally, composites' 

fatigue behavior is challenging. Therefore, there are more studies on the MFC 

behavior study than other materials. 

The MFC composite with PZT fibers after around 1 million cycles experiences a drop 

in the power generation and a shift in the resonant frequency, as shown in Fig. 1-34 

(a) [157]. Therefore, this frequency shift should be considered if the resonant 

matching design is considered. Besides, in Ref. [157], it has been observed that the 

MFC layer in tension has more severed power degradation than the compressed MFC, 

as shown in Fig. 1-34 (b). The severe power degradation in the tension-layer is 

because of the initiation of Micro-cracks, which has been observed experimentally 

[157]. 
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(a)  (b)  

 

Fig. 1-34. The fatigue behavior of MFC with PZT fibers (a) frequency shift and (b) 

the voltage output for the compression and tension layers [157] 

Ref. [158] investigated the MFC's fatigue behavior with single-crystal fibers (soft and 

hard single crystals). In both samples, after 1 million cycles, the power variation 

initiates. Nevertheless, the power degradation for the soft single crystal fibers is more 

severe [158]. This outcome can be seen in Fig. 1-35 (a) and (b). 

(a)  (b)  

 

Fig. 1-35. The power output during a fatigue test for MFCs (a) hard single crystal fiber 

and (b) soft single-crystal fiber [158]. 

Another study about the MFC fatigue behavior, the voltage output, surface strain, and 

natural frequency is analyzed over a cyclic loading [159]. In the first 0.5 million 
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cycles, first, a drop in the voltage experienced, but afterward, again, the voltage value 

is slightly recovered. The resonant frequency constantly reduces during the cyclic load 

in contrast to the strain where it increases constantly. According to Ref. [159], if the 

acceleration level is below 6 m/s2, the voltage degradation is negligible, as shown in 

Fig. 1-36 (c). 

(a)  (b)  

 

(c)  

Fig. 1-36. The fatigue behavior of the MFC, (a) the voltage for 0.5 million cycles, (b) 

the resonant frequency and strain for 0.5 million cycles, and (c) the voltage for 

different strain levels during 20 million cycles [159]. 

Ref. [160] compared the fatigue behavior of PVDF, MFC, and PZT materials for three 

different tip mass ratios. The power output made from these materials over the cyclic 

load is shown in Fig. 1-37 [160]. PVDF does not demonstrate power reduction due to 

the fatigue, while there is a power reduction for the MFC and PZT. The MFC fatigue 
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behavior is abnormal compared to the PZT. For 10% and 30% tip mass ratios, the 

power output remains relatively constant, while for the 20% tip mass ratio, the power 

is reduced over time. There is power degradation for all tip mass ratios for the Quick 

Pack sample (with PZT layers); especially for the larger tip mass ratio, the power 

reduction increases. 

(a) (b) (c) 

 

Fig. 1-37. The voltage degradation for three different tip mass ratios for (a) PVDF, 

(b) MFC, and (c) Quick Pack made of PZT [160]. 

Yang and Zu [14] showed that the fatigue performance of the single crystals PMN-

PT and PZN-PT is more substantial than the PZT. 

In some applications, there is a need to insert the piezoelectric beam into a package 

box. This packaging box will reduce the power output according to Ref. [145], as 

demonstrated in Fig. 1-38.  

 

Fig. 1-38. The performance of piezoelectric energy harvester under atmospheric 

packaging box [145] 
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1.6. OBJECTIVES 

As a general objective, this Ph.D. thesis aims to progress the state-of-the-art in 

piezoelectric energy harvesting. By this project, the following objectives are 

elaborated: 

1. Modeling of piezoelectric energy harvesters (PEHs): 

a. Presenting a comprehensive finite element model by which a wide range of 

piezoelectric harvester configurations can be analyzed. 

b. Accommodating the advanced plate theories with shear-stress considerations 

in the FE model. 

c. Accommodating the viscous and structural damping mechanisms in the FE 

modeling. 

d. Presenting a layered model for the piezoelectric multi-layer composite 

materials. 

e. Developing a unified electromechanically coupled equation for the voltage 

output toward better electrical and mechanical modulations of piezoelectric 

energy harvesters. 

f. Demonstrating the correlation between the simple spring-damper-mass, 

distributed beam, and FE methods. 

 

2. Parameter investigation for the PEHs 

a. Clarifying the role of substrate and bonding layer on the power generation 

b. The tip-mass effect on the power output, resonant frequency, and viscous air 

damping 

c. Developing straightforward methods for the determination of damping in a 

simple experimental setup 

d. Illustrating the role of different damping mechanisms on the total damping 

e. Demonstrating the role of structural damping 

f. Investigating the viscous air damping under different piezo-beam excitations 

 

3. Applications of the PEHs 

a. Exploring the possible vibration energy sources for the PVEH 

b. Investigation of piezoelectric energy harvesters with simple configurations 

that can be easily adopted into motors 

c. Comparing the performance of different materials in the energy harvesting 

d. Developing and investigating the remote condition monitoring as a 

significant possible application of the PVEH 

e. Investigating different approaches for the resonant frequency matching 

method. 

f. Analyzing and developing power management systems so the output power 

by PEH can power small electronic devices. 

g. Optimizing PEHs from composite material toward better power generation 

performance. 
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h. Improving the power generation from practical vibration sources by 

geometry and material modulations. 

 

1.7. THESIS OUTLINE 

The thesis is structured with the following chapters. 

Chapter 2 presents these thesis contributions to the modeling techniques for the 

piezoelectric energy-harvesting beams. The SDOF method with an equivalent beam 

approach for structural modeling of unimorph and bimorph is reported. The 

distributed beam model is revisited to present a unified electromechanically coupled 

equation for the voltage, which is then the transient response under the harmonic 

motion is reported for the beam model. Finally, a comprehensive FE method for non-

uniform variable thickness beams using the advanced plate theories is reported. A 

sideline subsection is dedicated to the layer-wised modeling of the MFC. 

Chapter 3 presents this thesis's contributions to the sensitivity analysis of different 

elements in a piezoelectric beam. The substrate structure, the added tip mass, and the 

contact layer are studied. 

Chapter 4 contributes to the damping determination methods in piezoelectric 

harvesters from only the voltage measurement outputs. Moreover, the contributions 

of different mechanisms in energy dissipation are investigated. 

Chapter 5 presents the contributions of this thesis to the design of practical 

piezoelectric energy harvesters. One application of piezoelectric energy harvesting, 

the autonomous condition monitoring system, is studied in detail. The resonant 

matching design is investigated. Moreover, a multi-beam trapezoid configuration with 

improved strain contours is presented as a way for broadband power generation. 

Chapter 6 summarizes the thesis's main contributions and comments on future 

research directions. 
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CHAPTER 2. PIEZOELECTRIC ENERGY 

HARVESTER (PEH) MODELS 

This chapter aims to present the methods for modeling piezoelectric energy 

harvesters. Two of the typical 31-mode energy harvesters are unimorph and bimorph 

energy beams. In the unimorph harvester, one piezoelectric layer is attached to a 

substrate shim, as shown in Fig. 2-1 (a); in the bimorph harvester, two piezoelectric 

layers are attached to the substrate shim, as shown in Fig. 2-1 (b). A proof mass may 

be added to the beam tip to generate more power output in either of them. 

(a) 

 

(b) 

Fig. 2-1. Typical energy harvesting beams, (a) unimorph [161] and (b) bimorph [4] 

This chapter presents different models for modeling piezoelectric energy harvesters 

derived from the previously published papers. Single-Degree-of-Freedom (SDOF) 

method is rewritten from Ref. [161], the beam distributed model is rewritten from Ref. 

[4], [162], finite element model is rewritten according to Ref. [163], and the modeling 

for Macro-fiber Composite (MFC) energy harvester is rewritten according to Ref. 

[164]. 

2.1. THE DESCRIPTION OF BENCHMARK EXAMPLE  

Throughout this section, for validation and sensitivity analysis, a benchmark example 

is used. The experimental data for this benchmark example has been reported by 

Erturk and Inman [165]. Researchers have extensively used this benchmark example 

for the model validations [32], [162], [163]. 
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The benchmark example is a bimorph piezoelectric beam with 0.012 kg added tip 

mass, consisting of two PZT-5A piezo layers with a brass center shim. Table 2-1 

presents the benchmark example's geometries and the material properties for the piezo 

layers and the substrate brass shim. 

Length of the beam (mm) 50.8 Width of the beam (mm) 31.8 

Tip mass, (kg) 0.012 Damping (experimentally measured) 2.7% 

Substrate shim (brass) 

density (kg/m3) 9000 Young's modulus (GPa) 105 

thickness (mm) 0.14   

Piezoelectric layer (PZT-5A) 

Density (kg/m3) 7800 thickness- each layer (mm) 0.26 

𝑐1̅1
𝐸 (GPa) 66.0 𝑒13 (C/m

2) -15.9 

Permittivity (F/m) 1.593×10-8   

Table 2-1. The geometries and material properties for the benchmark example [165]. 

2.2. SINGLE-DEGREE-OF-FREEDOM MODEL (SDOF) 

This section deals with the Single-Degree-of-Freedom (SDOF) model for 

piezoelectric beams. DuToit model is employed as the base method for this section. 

However, this method has some limitations, which will be discussed during the 

method presentation. Some tips will be provided during the model derivation to 

overcome the method limitations. 

DuToit model is an electromechanically coupled model that represents a piezoelectric 

beam with an SDOF vibration system. In the DuToit model, electrical and mechanical 

equations are not separated and assumed coupled. The electromechanical-coupled 

model is the correct model for piezoelectric materials [83], as piezoelectricity is a 

material characteristic. DuToit model [77], as shown in Fig. 2-2 (a), comprises a 

piezoelectric mass with internal resistance Rp connected to a load resistor Rl. In this 

model, the entire structure is piezoelectric and, therefore, electromechanically 

coupled. 

This model has the following advantages and disadvantages. 

Advantages: 

 Simple method requiring a small number of variables and easy to implement 

 Representing the proper electromechanical behavior of piezoelectric 

materials 

 Useful for both 31 and 33 mode energy harvesters 
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 Considered the backward piezoelectric effect; able to demonstrate the open-

circuit and short-circuit condition effects on the structural response 

 Giving analytical function for the output voltage and power facilitate finding 

the optimum electrical load 

 Can accommodate the added tip mass 

Disadvantages: 

 Too much simplification for the structural modeling (material, layup, and 

geometry) 

 Not applicable to complex structures of the PVEHs 

 A rough estimation of the natural frequency 

 

For the electrical equivalent circuit, the piezoelectric material is modeled as 

capacitance (𝐶𝑃) and resistance (𝑅𝑃) in series connection, see Fig. 2-2 (b). The scale 

of internal piezoelectric resistance is >109, which is large to the external load 

(𝑅𝑙<1MΩ); therefore, it can be neglected. According to DuToit et al. [77], [82], the 

capacitance of a piezoelectric layer is defined as a function of the permittivity constant 

휀𝑠, piezoelectric surface area 𝐴𝑝, and the piezoelectric thickness ℎ𝑝 by: 

𝐶𝑝 = 휀31
𝑠 𝐴𝑝/ℎ𝑝  (2.1) 

 

(a)    

(b)   

 

Fig. 2-2. (a) DuToit SDOF model for PVEHs and (b) electrical circuit for the PVEH 

The DuToit model can be used for 31 (bending) and 33 (extension) mode energy 

harvesters. Therefore, the piezoelectric coefficient "𝑑" should be inserted according 

to the mode of vibration. In this section, the 31-mode harvester is considered, thus, 

𝑑31 is inserted into the model. 
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The vibration equation for a non-piezoelectric SDOF vibration system is [166]: 

�̈�(𝑡) + 2휁𝑚𝜔𝑛�̇�(𝑡) + 𝜔𝑛
2𝑥(𝑡) = −�̈�𝐵(𝑡)  (2.2) 

Wherein mechanical viscous damping coefficient and natural frequency are 

respectively 휁𝑚 and 𝜔𝑛. 휁𝑚 usually is extracted from experiments, but 𝜔𝑛 can be 

extracted either by experiment or analytical modeling. Different methods estimate 𝜔𝑛 

with different accuracies.  

However, if the vibrating element is piezoelectric, a backward piezoelectric effect 

should be added to the mechanical vibration equation due to piezoelectricity. DuToit 

et al. estimate the coupling effect with θ = 𝜔𝑛
2𝑑31 [77], [82].  

Ref. [77], [82] assumed that the piezoelectric element is the only vibrating element, 

while in many practical cases, the piezoelectric element is attached to a substrate. To 

accommodate the unimorph design, α coefficient is introduced as the ratio of the 

piezoelectric layer mass to the total beam mass, i.e., 𝛼 = 𝑚piezo/𝑚beam. If the energy 

harvester is only piezoelectric layer, then α=1. 

Consequently, the equations of motion for this system under base excitation can be 

expressed [77], [161]: 

�̈�(𝑡) + 2𝜔𝑛휁𝑚�̇�(𝑡) + 𝜔𝑛
2𝑥(𝑡) − 𝛼θ𝑉(𝑡) = −�̈�𝐵(𝑡)  (2.3) 

𝑅𝑙𝑚effθ�̇�(𝑡) + 𝑅𝑙𝐶𝑝�̇�(𝑡) + 𝑉(𝑡) = 0 (2.4) 

𝑥, 𝑉 and �̈�𝐵 represent the displacement field, output voltage, and base acceleration, 

respectively. Besides, the effective harvester mass and piezoelectric coupling factor 

for the harvester are respectively 𝑚eff and 𝑑. 𝑚eff is the effective mass of the 

piezoelectric layer because of the electromechanical coupling. 𝑚eff and 𝜔𝑛 are given 

by [77]: 

𝑚eff = 𝑚piezo/3 + 𝑀𝑡 (2.5) 

𝜔𝑛 = √𝐶31
𝐸 𝐴𝑝/𝑚effℎ𝑝 (2.6) 

wherein 𝐶31
𝐸  is the elastic modulus in the 31 direction under the constant electric field. 

By solving the first-order differential equation for voltage (Eq.(2.4)), it can be shown 

that generated voltage can be expressed as: 
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𝑉(𝑡) = −
𝑚effθ

𝐶𝑝
𝑒
−
𝑡

𝐶𝑝𝑅𝑙∫𝑒
𝑠

𝐶𝑝𝑅𝑙

𝑡

0

�̇�(𝑠)𝑑𝑠 (2.7) 

As can be seen from Eq. (2.7), the voltage output has a time constant of 
1

𝐶𝑝𝑅𝑙
 analogous 

to RC circuits, and a dependency to the velocity because of �̇�(𝑠). However, �̇�(𝑠) is 

coupled with voltage output because of the backward piezoelectric effect, see Eq. 

(2.3). Therefore, these equations should be solved simultaneously. 0 

If the base excitation is a harmonic signal �̈�𝐵(𝑡)  = �̈�𝐵𝑒
𝑗𝜔1𝑡, then the steady-state 

displacement is also a harmonic function with the same frequency but with complex 

magnitude such as x(𝑡) = X𝑒𝑗𝜔1𝑡. By substituting these expressions into Eq. (2.3) and 

(2.7), the output voltage per acceleration unit is 

𝑉(𝑡)

�̈�𝐵
=

𝑗𝑅𝑙𝑚eff𝜔1휃

(1 + 𝑗𝑅𝑙𝜔1𝐶𝑝)(𝜔𝑛
2 −𝜔1

2 + 𝑗2휁𝑚𝜔1𝜔𝑛) + 𝑗α𝑅𝑙𝑚eff휃
2𝜔1

𝑒𝑗𝜔1𝑡 (2.8) 

Because of the capacitance in the piezoelectric electrical circuit, the voltage output is 

a complex parameter, and the measured voltage is the magnitude of this complex 

parameter. Besides, from Eq. (2.8), 𝑒𝑗𝜔1𝑡 indicates that the steady state voltage is 

harmonic, similar to the base excitation. The voltage magnitude per unit acceleration 

can be expressed by: 

|
𝑉(𝑡)

�̈�𝐵
| =

𝑅𝑙𝑚eff𝜔1휃

√
(𝜔𝑛

2 − 𝜔1
2 − 2휁𝑚𝜔𝑛𝜔1

2𝑅𝑙𝐶𝑝)
2
+

(2휁𝑚𝜔1𝜔𝑛 + 𝑅𝑙𝜔1𝐶𝑝(𝜔𝑛
2 −𝜔1

2) + α𝑅𝑙𝑚eff휃
2𝜔1)

2

 

(2.9) 

By defining a new electromechanical coupling factor 𝑘𝑒
2=

𝑒31
2

𝐶31
𝐸

31
𝑠 , a dimensionless 

frequency Ω = 𝜔1/𝜔𝑛, and 𝑟 = 𝑅𝑙𝐶𝑝𝜔𝑛 [77], the displacement, voltage, and power 

(|𝑝(𝑡)| =
1

𝑅𝑙
|𝑉(𝑡)|2) normalized to the acceleration can be expressed with: 

|
𝑥(𝑡)

�̈�𝐵
| =

√1 + (rΩ)2

𝜔𝑛
2√[1 − (1 + 2휁𝑚𝑟)Ω

2]2 + [(1 + α𝑘𝑒
2)𝑟Ω + 2휁𝑚Ω − 𝑟Ω

3]2
 

(2.10) 
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|
𝑉(𝑡)

�̈�𝐵
| =

𝑚eff𝑅𝑙𝑑31𝜔𝑛Ω

√[1 − (1 + 2휁𝑚𝑟)Ω
2]2 + [(1 + α𝑘𝑒

2)𝑟Ω + 2휁𝑚Ω − 𝑟Ω
3]2

 
(2.11) 

|
𝑃(𝑡)

�̈�𝐵
2 | =

(1/𝜔𝑛)𝑚eff𝑟𝑘𝑒
2Ω2

[1 − (1 + 2휁𝑚𝑟)Ω
2]2 + [(1 + α𝑘𝑒

2)𝑟Ω + 2휁𝑚Ω − 𝑟Ω
3]2

 (2.12) 

 

DuToit model estimates the harvester's natural frequency in the simplest way, which 

is only valid for a single piezoelectric layer, not for unimorph and bimorph harvesters. 

This inaccurate natural frequency estimation can lead to inaccurate power estimations, 

as 𝜔𝑛 appears in both voltage and power equations, see Eq. (2.11) and (2.12). There 

are two ways to eliminate this issue. One is to extract the natural frequency from 

experiments, and the other is to estimate the natural frequency using the Equivalent 

Beam Method (EBM), as demonstrated in subsection 2.2.1. 

As shown from power output in Eq.(2.12), apart from a piezoelectric harvester's 

physical properties, output voltage depends on load resistance and excitation 

frequency for a given excitation magnitude. Therefore, it is of great interest to find 

the optimum load (𝑅opt) and resonant frequencies (𝜔reson.) that give the maximum 

power. The optimal conditions can be extracted by differentiating the power output 

equation. 

 For obtaining the optimum electrical load: 
𝜕

𝜕𝑅𝑙
(|𝑝(𝑡)|) = 0  𝑅𝑙 = 𝑅opt. 

𝑅opt =
1

𝐶𝑝𝜔𝑛

Ω4 + (4휁𝑚
2 − 2)Ω2 + 1

Ω6 + (4휁𝑚
2 − 2(1 + 𝑘𝑒

2))Ω4 + (1 + 𝑘𝑒
2)2Ω2

 
(2.13) 

The optimum load not only depends on the piezoelectric electrical features (𝑘𝑒
2 and 

𝐶𝑝), it depends on the mechanical properties (𝜔𝑛 and 휁𝑚) and excitation frequency 

(Ω).  

The optimum load is plotted against the excitation frequency (Ω) and the mechanical 

damping (휁𝑚) in Fig. 2-3. Four damping coefficient values, i.e. 휁𝑚=1%, 2.5%, 5%, 

and 10%, and a range of excitation frequencies 0.2< Ω<2 is plotted. As it can be seen 

from Fig. 2-3, the optimum load has a great dependency on the excitation frequency 

over the whole range. On the other hand, the damping coefficient influence on the 

optimum load is prominent at two peak frequencies, but the rest of the frequency range 
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does not considerably influence the optimum load. These frequencies will be 

described in detail in the next paragraph. As these frequencies lead to the highest 

power generation, then it can be concluded that the damping coefficient has a 

considerable effect on the optimum load selection. 

 

Fig. 2-3. Optimum load as a function of excitation frequency and damping coefficient 

in SDOF DuToit model. 

 For obtaining the resonant excitation frequency: 
𝜕

𝜕Ω
(|𝑝(𝑡)|) = 0  Ω = Ωreson.. 

After the partial differential, it can be shown that the resonant frequency depends 

on the electrical load (because of the backward piezoelectric effect). Therefore, 

there is a coupling between the optimum resonant frequency and the optimum 

load. Here two special load conditions are considered, i.e., short-circuit and open-

circuit.  

At short-circuit condition: 𝑅𝑙0, 

Ω𝑠𝑐 = 1, 𝜔1 = 𝜔𝑛 = √𝐶31
𝐸 𝐴𝑝/𝑚effℎ𝑝. 

 

At open-circuit condition: 𝑅𝑙∞, 

Ω𝑜𝑐 = √1 + 𝑘𝑒
2 = √𝐶31

𝐷 𝐴𝑝/𝑚effℎ𝑝.  

(𝐶31
𝐷 : elastic modulus in the presence of electrical displacement) 

According to these resonant frequencies, the coupling coefficient also can be 

calculated by: 

𝜔𝑛=31.3 Hz 

𝑑=593×10-12m/V 

휀𝑠=1.137×10-8m/V 

𝑀𝑝=0.0075kg 

𝑀𝑡=0.01kg 

ℎ𝑝=0.01m 

𝐴𝑝=0.0001m2 

𝑘𝑒=1.134 

10.8kΩ 

1.1MΩ 

376.8kΩ 

34MΩ 
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𝑘𝑒
2 = (Ω𝑜𝑐/Ω𝑠𝑐)

2 − 1 (2.14) 

Power output over the excitation frequency range of 0.2< Ω<2 is shown in Fig. 2-4 

for a range of small to large electrical loads. When the electrical load is in the 

range of hundred to kilo Ohms, the peak power is at a frequency range Ω𝑠𝑐 ≅ 1, 

which is close to the pure structural natural frequency of the beam. While the load 

increases to Mega Ohms, the peak power occurs at Ω𝑜𝑐 ≅ 1.52. Therefore, it can 

be concluded that the frequency at which the power is maximum depends on the 

electrical load. 

  

Fig. 2-4. The power output versus the excitation frequency and load in the SDOF 

DuToit model. 

2.2.1. EQUIVALENT BEAM METHOD (EBM) FOR NATURAL FREQUENCY 
APPROXIMATION 

As described before, the DuToit model uses a simple approach for natural frequency 

estimation. The Equivalent Beam Method (EBM) is introduced to improve the natural 

frequency estimation. The EBM method was introduced by Yi et al. [167]. An 

advantage of the Yi approach is that it also accommodates the added tip mass effect 

on the natural frequency.  

According to Yi et al. [167], the beam's natural frequency can be estimated by 

estimating the piezoelectric beam's effective stiffness and mass. They linked the 

effective stiffness to the effective spring constant at the beam tip, which can be 

𝜔𝑛=31.3 Hz 

𝑑=593×10-12m/V 

휀𝑠=1.137×10-8m/V 

𝑀𝑝=0.0075kg 

𝑀𝑡=0.01kg 

ℎ𝑝=0.01m 

𝐴𝑝=0.0001m2 

𝑘𝑒=1.134 

 

Ω𝑠𝑐=1 Ω𝑜𝑐=1.51 
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expressed by the bending stiffness, width, and length of the beam given by Eq. (2.15). 

The effective mass is also estimated from the effective beam mass at bending and the 

added tip mass, as given in Eq. (2.16). 

𝐾eff =
3𝑏𝒟𝐵
𝐿3

 (2.15) 

𝑀eff = 0.236𝑀beam +𝑀𝑡 (2.16) 

wherein 𝒟𝐵 is the bending stiffness. 

Consequently, the natural bending frequencies can be obtained by: 

𝜔𝑛
2 = 𝜆𝑛

2√0.236/3√
𝐾eff
𝑀eff

 (2.17) 

wherein 𝜆𝑛 is the eigenvalue constant for the bending modes. Specifically, 𝜆𝑛 are the 

roots for the equation: cos(𝜆𝑛) cosh(𝜆𝑛) = −1. For the first five modes, these 

coefficients are: 𝜆1=1.875, 𝜆2=4.694, 𝜆3=7.855, 𝜆4=10.996, and 𝜆5=14.137 [168]. 

The bending modulus per unit length can be expressed with: 

  For piezoelectric only sheet 

𝒟𝐵 = ∫ 𝑄11
𝐸
𝑝
𝑧2𝑑𝑧

ℎ𝑝/2

−ℎ𝑝/2

=
1

12
𝑄11
𝐸
𝑝
ℎ𝑝
3  

𝑀beam = 𝜌𝑝𝐿𝐵ℎ𝑝 

(2.18) 

 

 For unimorph harvester (piezoelectric layer and substructure shim) 

𝒟𝐵 = ∫𝑄11𝑠(𝑧 − 𝑧𝑛𝑡)
2𝑑𝑧

0

−ℎ𝑠

+∫ 𝑄11
𝐸
𝑝
(𝑧 − 𝑧𝑛𝑡)

2𝑑𝑧

ℎ𝑝

0

=
𝑄11
𝐸
𝑝

2
ℎ𝑝
4 + 𝑄11𝑠

2ℎ𝑠
4 + 2𝑄11

𝐸
𝑝
𝑄11𝑠ℎ𝑝ℎ𝑠(2ℎ𝑝

2 + 2ℎ𝑠
2 + 3ℎ𝑝ℎ𝑠)

12 (𝑄11𝑠ℎ𝑠 + 𝑄11
𝐸
𝑝
ℎ𝑝)

 

𝑀beam = 𝐿𝐵(𝜌𝑠ℎ𝑠 + 𝜌𝑝ℎ𝑝) 

(2.19) 
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 For bimorph harvester (two piezoelectric layers and substructure shim) 

𝒟𝐵 = ∫ 𝑄11
𝐸
𝑝
𝑧2𝑑𝑧

−
ℎ𝑠
2

−ℎ𝑝−
ℎ𝑠
2

+ ∫ 𝑄11𝑠𝑧
2𝑑𝑧

ℎ𝑠
2

−
ℎ𝑠
2

+ ∫ 𝑄11
𝐸
𝑝
𝑧2𝑑𝑧

ℎ𝑠
2
+ℎ𝑝

ℎ𝑠
2

=
1

12
(𝑄11

𝐸
𝑝
(8ℎ𝑝

3 + 6ℎ𝑝ℎ𝑠
2 + 12ℎ𝑝

2ℎ𝑠) + 𝑄11𝑠ℎ𝑠
3) 

𝑀beam = 𝐿𝐵(𝜌𝑠ℎ𝑠 + 2𝜌𝑝ℎ𝑝) 

(2.20) 

 

2.3. DISTRIBUTED BEAM MODEL 

In the distributed beam model, the piezoelectric beam is analyzed using beam theories, 

and an analytical model can be obtained for the mechanical and electrical responses. 

Here, the beam equation of motion based on the Euler-Bernoulli beam theory is 

employed.  

2.3.1. MECHANICAL VIBRATION EQUATION 

Fig. 2-5 presents the piezoelectric beams and the associated parameters. The presented 

method here considers both unimorph and bimorph beams. These two configurations 

are shown respectively in Fig. 2-5 (a) and (b). The beam shall be investigated as a 

bending problem, requiring the neutral axis to be determined, as the z distance is 

measured from this axis. The front-view and thicknesses are shown in Fig. 2-5 (c). 
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(a) (b) (c) 

 

Fig. 2-5. The piezoelectric beams with added tip mass and their parameters for 

developing distributed beam model, (a) unimorph, (b) bimorph, and (c) thicknesses in 

front-views. (𝐿: length, 𝑏: width, ℎ: thickness, 휀𝑥𝑥: axial strain, 𝐸𝑧: electrical field, 

𝑌𝐵(𝑡): base excitation) [162]. 

Fig. 2-6 shows the steps for deriving the distributed beam model. It starts with the 

equation of motion (based on Euler-Bernoulli theory), followed by stresses-strain and 

strain-deformation relationships. These relationships transform the equation of 

motion to a differential equation between the beam deformation, external acceleration, 

and material properties. To solve this differential equation for the beam deformation, 

the physical coordination is transformed to the modal coordination, and the beam 

deformation is expressed as the summation of the vibration modes. The modal 

expression will give a series of the decoupled second-order differential equation, 

which their solution is known.  

 

Fig. 2-6. Five steps for obtaining the distributed beam model. 

The motion equation can be obtained using the beam's free diagram (see Timoshenko 

[168]). By considering the Euler-Bernoulli beam theory, the beam equation of motion 

can be given by [96]: 
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∂2M(𝑥, 𝑡)

∂x2
+ 𝒞𝑎

∂w(𝑥, 𝑡)

∂t
+ 𝑚∗

∂2w(𝑥, 𝑡)

∂t2
= −(𝑚∗ +𝑀𝑡)

d2Y𝐵(𝑡)

dt2
 (2.21) 

wherein M(𝑥, 𝑡) is the bending moment, 𝑚∗ is the effective mass per unit length, and 

𝒞𝑎 is the viscous damping coefficient. The bending moment, created by the axial stress 

due to the beam deformation, can be expressed by: 

M(𝑥, 𝑡) = ∫(T: axial stress)𝑑𝐴 (2.22a) 

If the beam width is constant, then 𝑑𝐴 = 𝑏𝑑𝑧, and the bending moment yields to; 

constant width
⇒          M(𝑥, 𝑡) = 𝑏 ∫ (T: axial stress)𝑑𝑧

thickness
2

−
thickness

2

 (2.22b) 

The bending moment for the unimorph and bimorph then can be given by [162]: 

M(𝑥, 𝑡) = −𝑏 (∫ 𝑇𝑥𝑥
𝑠

−𝒵𝑏

−𝒵𝑎

𝑧𝑑𝑧 + ∫ 𝑇𝑥𝑥
𝑝

0

−𝒵𝑏

𝑧𝑑𝑧 + ∫ 𝑇𝑥𝑥
𝑝

𝒵𝑐

0

𝑧𝑑𝑧) 

(2.22c) 

Unimorph 

M(𝑥, 𝑡) = −𝑏(∫ 𝑇𝑥𝑥
𝑝

−
ℎ𝑠
2

−ℎ𝑝−
ℎ𝑠
2

𝑧𝑑𝑧 + ∫ 𝑇𝑥𝑥
𝑠

ℎ𝑠
2

−
ℎ𝑠
2

𝑧𝑑𝑧 + ∫ 𝑇𝑥𝑥
𝑝

ℎ𝑠
2
+ℎ𝑝

ℎ𝑠
2

𝑧𝑑𝑧) 

(2.22d) 

Bimorph 

The superscripts "𝑝" and" 𝑠" represent the piezoelectric and substrate properties, 

respectively. 

The constitutive equations will relate the stress in piezoelectric and substrate layers 

and the strain. As the strain is linked to the beam curvature, it can only be directly 

estimated from the beam deformation. The constitutive equation for piezoelectric and 

substrate (non-piezoelectric) layers are different because electromechanical coupling 

exists in piezoelectric materials. The constitutive equations for piezoelectric and 

substrate layers are given by [162]: 
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𝑇𝑥𝑥
𝑝
= 𝑐1̅1

𝐸 휀𝑥𝑥 − �̅�31𝐸𝑧 ; 𝑇𝑥𝑥
𝑠 = 𝑌𝑠휀𝑥𝑥 (2.23) 

By applying the base excitation 𝑌𝐵(𝑡), the beam will deform with the deformation 

shape 𝑤(𝑥, 𝑡), as shown in Fig. 2-7. Using Euler-Bernoulli beam theory, in the linear 

framework, the axial strain can be expressed by the beam curvature, as given by: 

휀𝑥𝑥 = −𝑧
∂2w(𝑥, 𝑡)

∂x2
 

(2.24) 

 

Fig. 2-7. Beam deformation and axial strains because of the beam base excitation. 

By substituting the constitutive equations Eq. (2.23) and strain-curvature equation Eq. 

(2.24) into the equation of motion, the beam equation of motion can be expressed with 

the beam deformation and material properties as given by Eq. (2.25) [162]: 

𝑌𝐼
∂4w(𝑥, 𝑡)

∂x4
+ 𝒞𝑎

∂w(𝑥, 𝑡)

∂t
+ 𝑚∗

∂2w(𝑥, 𝑡)

∂t2

+ 𝒫VR(𝑡) (
𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥 − 𝐿)

𝑑𝑥
)

= −(𝑚∗ +𝑀𝑡)
d2Y𝐵(𝑡)

dt2
 

(2.25) 

𝑌𝐼 is the beam stiffness, and 𝒫 is the piezoelectric coupling factor. These parameters 

are summarized in Table 2-2 for both unimorph and bimorph beams. 

For solving the partial differential equation in Eq. (2.25), the method of variable 

separation will be assumed. The generalized coordination is assumed the modal 

modes because they are known for a wide range of problems and have physical 

meaning. It is considered that the beam deformation is a summation of all vibration 

휀𝑥𝑥

= −𝑧
𝜕2𝑤

𝜕𝑥2
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modes, but their contributions in the solution are unknown, which should be solved 

through the differential equation. The beam deformation is given by: 

∑ϕ𝑖(𝑥)η𝑖(𝑡)

∞

𝑖=1

 (2.26) 

wherein ϕ𝑖(𝑥) are the modal modes and η𝑖(𝑡) are their contributions in the 

summation. Until now, no assumption regarding the boundary conditions has been 

made. The boundary conditions are introduced to the solution by assuming suitable 

modal modes, i.e. ϕ𝑖-s. Therefore, the modal modes ϕ𝑖 should satisfy the cantilevered 

boundary conditions and also accommodate the added tip mass effect. The four 

boundary conditions are given by: 

(i) 𝑤(𝑥 = 0, 𝑡) = 0 ϕ𝑖(𝑥 = 0)=0 

(ii) 𝑤′(𝑥 = 0, 𝑡) = 0 ϕ𝑖
′(𝑥 = 0)=0 

(iii) 𝑤′′(𝑥 = 𝐿, 𝑡) = 0 ϕ𝑖
′′(𝑥 = 𝐿)=0 

(iv) 𝑤′′′(𝑥 = 𝐿, 𝑡) = 0 ϕ𝑖
′′′(𝑥 = 𝐿)=0 

(2.27) 

The cantilevered beams' mode shapes have been previously presented, as shown in 

Eq. (2.28) [169]. 

ϕ𝑖(𝑥) = 𝜒𝑖 [𝑐𝑜𝑠ℎ
𝜆𝑖
𝐿
𝑥 − 𝑐𝑜𝑠

𝜆𝑖
𝐿
𝑥 + 𝛼𝑖 (𝑠𝑖𝑛ℎ

𝜆𝑖
𝐿
𝑥 − 𝑠𝑖𝑛

𝜆𝑖
𝐿
𝑥)] 

(2.28) 

wherein  

𝜆𝑖 is the root of 1 + cos 𝜆𝑖 cosh 𝜆𝑖 + 𝜆𝑖
𝑀𝑡

𝑚∗𝐿
(cos 𝜆𝑖 sinh 𝜆𝑖 − sin 𝜆𝑖 cosh 𝜆𝑖) = 0 and 

𝛼𝑖 is given by 𝛼𝑖 =
sin 𝜆𝑖−sinh 𝜆𝑖+𝜆𝑖

𝑀𝑡
𝑚∗𝐿

[cos 𝜆𝑖−cosh 𝜆𝑖]

cos 𝜆𝑖+cosh𝜆𝑖−𝜆𝑖
𝑀𝑡
𝑚∗𝐿

[sin 𝜆𝑖−sinh 𝜆𝑖]
. 

Because mode shapes are not unique, it is of interest to normalize them to the mass. 

This mass normalization is achieved by setting the coefficient 𝜒𝑖  to a value that 

satisfies ∫ 𝑚∗𝜙𝑖
2(𝑥)

𝐿

0
𝑑𝑥 +𝑀𝑡𝜙𝑖

2(𝐿) = 1. 

Therefore, using the modal coordination, the equation of motion yields to: 
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𝑌𝐼 ∑ ϕ𝑖
(4)(𝑥)η𝑖(𝑡)

∞
𝑖=1 + 𝒞𝑎 ∑ ϕ𝑖(𝑥)η̇𝑖(𝑡)

∞
𝑖=1 +𝑚∗ ∑ ϕ𝑖(𝑥)η̈𝑖(𝑡)

∞
𝑖=1 +

𝒫VR(𝑡) (
𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥−𝐿)

𝑑𝑥
) = −(𝑚∗ +𝑀𝑡)Ÿ𝐵(𝑡). 

(2.29) 

From Eq. (2.28), ϕ𝑖
(4)(𝑥) = (

𝜆𝑖

𝐿
)
4

ϕ𝑖(𝑥). Eq. (2.29) is multiplied by ϕ𝑗(𝑥) from the 

right-hand side, and integrated from 0 to L, as given by: 

𝑌𝐼 ∑ [∫ (
𝜆𝑖

𝐿
)
4

ϕ𝑖(𝑥)ϕ𝑗(𝑥)𝑑𝑥
𝐿

0
]  η𝑖(𝑡)

∞
𝑖=1 +

𝒞𝑎 ∑ [∫ ϕ𝑖(𝑥)ϕ𝑗(𝑥)𝑑𝑥
𝐿

0
] η̇𝑖(𝑡)

∞
𝑖=1 +

𝑚∗ ∑ [∫ ϕ𝑖(𝑥)ϕ𝑗(𝑥)𝑑𝑥
𝐿

0
] η̈𝑖(𝑡)

∞
𝑖=1 + 𝒫VR(𝑡)

𝑑ϕ𝑗(𝑥)

𝑑𝑥
−
𝑑ϕ𝑗(𝑥−𝐿)

𝑑𝑥
|
0

𝐿

=

−(𝑚∗ ∫ ϕ𝑗(𝑥)𝑑𝑥
𝐿

0
+𝑀𝑡 ∫ ϕ𝑗(𝑥)𝑑𝑥

𝐿

0
) Ÿ𝐵(𝑡). 

(2.30) 

The modal orthogonality characteristic states that ∫ ϕ𝑖(𝑥)ϕ𝑗(𝑥)
𝐿

0
𝑑𝑥 = 𝛿𝑖𝑗. 

Therefore, Eq. (2.30) is simplified to: 

𝑌𝐼

𝑚∗
(
𝜆𝑛

𝐿
)
4

η𝑛(𝑡) +
𝒞𝑎

𝑚∗
η̇𝑛(𝑡) + η̈𝑛(𝑡) + 𝒫

𝑑ϕ𝑛(𝑥)

𝑑𝑥
|
0

𝐿

VR(𝑡) =

−(𝑚∗ ∫ ϕ𝑛(𝑥)𝑑𝑥
𝐿

0
+𝑀𝑡ϕ𝑛(𝐿)) Ÿ𝐵(𝑡),   where 𝑛=1 to ∞. 

(2.31) 

The definition of natural frequency and damping coefficient, as given by Eq.  (2.32), 

is applied to standardize the formulation. 

𝜔𝑛 = (
𝜆𝑖

𝐿
)
2

√
𝑌𝐼

𝑚∗
     ,    

𝒞𝑎

𝑚∗
= 2휁𝑛𝜔𝑛 

(2.32) 

With these definitions, along with the new defined coupling coefficient Υ, and the 

excitation coefficient σ (see Table 2-2), the electromechanical vibration equation 

becomes: 

η̈𝑛(𝑡) + 2휁𝑛𝜔𝑛η̇𝑛(𝑡) + 𝜔𝑛
2η𝑛(𝑡) + ΥVR(𝑡) = −σ𝑛Ÿ𝐵(𝑡), 𝑛=1 to ∞ (2.33) 
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Parameter Unimorph Bimorph 

𝑌𝐼 𝑏
3⁄ [𝑌𝑠(𝒵𝑏

3 − 𝒵𝑎
3) + 𝑐1̅1

𝐸 (𝒵𝑐
3 −𝒵𝑏

3)]. 2𝑏
3⁄ [𝑌𝑠

ℎ𝑠
3

8
⁄ + 𝑐1̅1

𝐸 ((ℎ𝑝 +
ℎ𝑠
2⁄ )
3

−
ℎ𝑠
3

8
⁄ )]. 

𝒫 −
�̅�31𝑏

2ℎ𝑝
[𝒵𝑐
2 − 𝒵𝑏

2] 
�̅�31𝑏

2ℎ𝑝
[
ℎ𝑠
2

4
⁄ − (ℎ𝑝 +

ℎ𝑠
2⁄ )
2

] 

𝑚∗ 𝑏(ℎ𝑝 + ℎ𝑠) 𝑏(2ℎ𝑝 + ℎ𝑠) 

σ𝑛 𝑚∗∫ 𝜙𝑛(𝑥)𝑑𝑥
𝐿

0

+𝑀𝑡𝜙𝑛(𝐿) 

Υ𝑛 𝒫 (
𝑑𝜙𝑛(𝑥)

𝑑𝑥
|
𝑥=𝐿

) 

Table 2-2. Summary of the defined parameters for the vibration equation of 

piezoelectric beams 

2.3.2. ELECTRICAL CIRCUIT EQUATION 

For assessing the electrical equations, it should be noted that only the electrical 

displacement in z (or 3) directions is non-zero due to the poling direction, see Fig. 

2-5. According to Gauss's law, the current through each piezoelectric layer is given 

by: 

I(𝑡) =
d

dt
∯𝐷3(𝑡)𝑑𝐴 = ΣVR(𝑡) (2.34) 

wherein 𝐷3 is the electrical displacement in 3-direction, and Σ is the circuit 

admittance. As only a purely resistance is connected to the piezoelectric layer, the 

admittance is Σ = 1/R𝑙. 

𝐷3 can be related to the mechanical stress and electric field using the piezoelectric 

constitutive equation, as given by [96]: 

𝐷3(𝑡) = �̅�31휀𝑥𝑥(𝑡) + 𝜖3̅3𝐸3(𝑡) (2.35) 

wherein 𝜖3̅3 is the permittivity constant at constant strain (the plane-stress), which is 

obtained from the permittivity constant (𝜖33
𝑇 ) at constant stress by 𝜖3̅3 = 𝜖33

𝑇 −
𝑒31
2 /(𝑐1̅1

𝐸 )2[165]. 

𝐸3 can be estimated by assuming a constant electrical field through the piezoelectric 

thickness, as can be expressed with: 

𝐸3(𝑡) = −
VR(𝑡)

ℎ𝑝
  (2.36) 
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휀𝑥𝑥 in Eq. (2.35) is the average strain on the piezoelectric layer. 휀𝑥𝑥  is obtained from 

Eq. (2.24) and assuming 𝑧 to be the mid-plane of the piezoelectric layer. For the 

bimorph 𝑧𝑝 = (ℎ𝑠 + ℎ𝑝)/2, and for the unimorph 𝑧𝑝 = 𝒵𝑐, see Fig. 2-5. 

Substituting the axial strain and the electrical field, the derivative of Eq. (2.35) is given 

by: 

d𝐷3(𝑡)

dt
= −𝑧𝑝�̅�31

∂3w(𝑥, 𝑡)

∂t ∂x2
−
𝜖3̅3
ℎ𝑝

𝑑VR(𝑡)

𝑑𝑡
 (2.37) 

Substituting Eq. (2.37) into Eq. (2.34), the electrical equation becomes: 

VR(𝑡)

𝑅𝑙
= −𝑏∫ [𝑧𝑝�̅�31

∂3w(𝑥, 𝑡)

∂t ∂x2
+
𝜖3̅3
ℎ𝑝

𝑑VR(𝑡)

𝑑𝑡
] 𝑑𝑥

𝐿

0

 

Or 

VR(𝑡)

𝑅𝑙
+
𝜖3̅3𝑏𝐿

ℎ𝑝

𝑑VR(𝑡)

𝑑𝑡
= −𝑏𝑧𝑝�̅�31∫

∂3w(𝑥, 𝑡)

∂t ∂x2
𝑑𝑥

𝐿

0

⏞          
𝐴

 

(2.38) 

Now, term A is approximated using the modal expansion (presented in Eq. (2.26)), as 

given by: 

𝐴 = ∫
∂3w(𝑥, 𝑡)

∂t ∂x2
𝑑𝑥

𝐿

0

=∑(
𝑑𝜙𝑛(𝑥)

𝑑𝑥
]
0

𝐿

) 휂̇𝑛(𝑡)

∞

𝑛=1

 (2.39) 

Thus, the electrical equation yields to [4] 

VR(𝑡)

𝑅𝑙
+
𝜖3̅3𝑏𝐿

ℎ𝑝⏟  
𝐶𝑃

𝑑VR(𝑡)

𝑑𝑡
= −𝑏𝑧𝑝�̅�31∑(

𝑑𝜙𝑛(𝑥)

𝑑𝑥
]
0

𝐿

) 휂̇𝑛(𝑡)

∞

𝑛=1⏟                    
𝐼𝑝(𝑡)=∑ Λ𝑛 ̇𝑛(𝑡)

∞
𝑛=1

 
(2.40) 

Eq. (2.40) is analogous to Kirchhoff's current equation for an RC circuit. Therefore, 

the term associated with the voltage derivative is called the capacitance 𝐶𝑃 and the 

right-hand side of the equation is similar to a current source 𝐼𝑝(𝑡) due to piezoelectric 

effect.  

 Eq. (2.40) is derived for only one piezoelectric layer. If the energy harvester consists 

of more than one layer, an effective circuit can be found for either series or parallel 
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connections. Khazaee et al. [162] presented the effective circuit for bimorph under the 

parallel and series connections, as shown in Fig. 2-8 (a) and (b), respectively. The 

effective electrical resistances for the series and parallel connections are 𝑅eff=𝑅𝑙 and 

𝑅eff=2𝑅𝑙, respectively. Besides, the effective capacitance for the series and parallel 

connections are 𝐶p,eff=𝐶𝑝/2 and 𝐶p,eff=𝐶𝑝, respectively [165]. Therefore, the general 

electrical equation yields 

VR(𝑡)

𝑅eff
+ 𝐶p,eff

𝑑VR(𝑡)

𝑑𝑡
= ∑Λ𝑛휂̇𝑛(𝑡)

∞

𝑛=1

 (2.41) 

(a) 

 

(b) 

(c) 

Fig. 2-8. (a) The electrical circuit for bimorph in parallel connection, (b) electrical 

circuit for bimorph in series connection, and (c) effective circuit for vases (a) and (b) 

[162]. 

Table 2-3 presents the summary of the defined variables for the electrical equation 

Eq. (2.41). 

Parameter Unimorph Bimorph 

Λ𝑛 −𝒵𝑐�̅�31𝑏(
𝑑𝜙𝑛(𝑥)

𝑑𝑥
]
0

𝐿

) −
(ℎ𝑠 + ℎ𝑝)

2
�̅�31𝑏 (

𝑑𝜙𝑛(𝑥)

𝑑𝑥
]
0

𝐿

) 

C𝑃,eff 
𝜖3̅3𝑏𝐿

ℎ𝑝
 

 series: 
�̅�33𝑏𝐿𝑇

2ℎ𝑝
 

 parallel: 
�̅�33𝑏𝐿𝑇

ℎ𝑝
 

𝑅eff 𝑅𝑙 
 series: 𝑅𝑙 

 parallel: 2𝑅𝑙 

Table 2-3. Summary of the defined parameters for the electrical circuit equation 
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2.3.3. STEADY-STATE SOLUTION 

The steady-state solution for the pair of electromechanical equations for piezoelectric 

beams is the focus of this subsection. These equations are given again here. 

η̈𝑛(𝑡) + 2휁𝑛𝜔𝑛η̇𝑛(𝑡) + 𝜔𝑛
2η𝑛(𝑡) + ΥVR(𝑡) = −σ𝑛Ÿ𝐵(𝑡), 𝑛=1 to ∞ (2.33) 

VR(𝑡)

𝑅eff
+ 𝐶p,eff

𝑑VR(𝑡)

𝑑𝑡
= ∑Λ𝑛휂̇𝑛(𝑡)

∞

𝑛=1

 (2.41) 

 

Harmonic base excitation 

Like SDOF steady-state solution, a base excitation of 𝑌𝐵(𝑡) = �̈�𝐵 cos(𝜔𝑡) is 

considered. In this excitation, the mechanical response will be η𝑛(𝑡) = 휂̅𝑛 cos(𝜔𝑡) 
and the voltage response will be VR(𝑡) = V̅R cos(𝜔𝑡). The only difference is that 휂̅𝑛 

and V̅R are complex variables because of the mechanical damping and the capacitance 

constant. Therefore, the steady-state responses have the following relationships. 

(ω𝑛
2 − 𝜔2 + 𝑗2휁𝑛𝜔𝑛𝜔)휂̅𝑛 + 𝛾𝑛V̅R = −σ𝑛Ÿ𝐵 (2.42) 

(
1

𝑅eff
+ 𝑗C𝑃,eff𝜔𝑟) V̅R = ∑𝑗𝜔Λ𝑛휂̅𝑛

∞

𝑛=1

 (2.43) 

By elimination method, the voltage and mechanical responses can be obtained, as 

given by: 

V̅R =
∑ 𝑗𝜔Λ𝑛𝜎𝑛𝛼𝑛
∞
𝑛=1

1
𝑅eff

+ 𝑗𝜔C𝑃,eff + 𝑗𝜔∑ Λ𝑛𝛾𝑛𝛼𝑛
∞
𝑛=1

Ÿ𝐵 
(2.44) 

휂̅𝑛 = 𝛼𝑛Ÿ𝐵 [𝜎𝑛 − 𝛾𝑛
𝜔∑ 𝑗Λ𝑛𝜎𝑛𝛼𝑛

∞
𝑛=1

1
𝑅eff

+ 𝑗𝜔C𝑃,eff + 𝑗𝜔∑ Λ𝑛𝛾𝑛𝛼𝑛
∞
𝑛=1

] (2.45) 

where 𝛼𝑛 the non-coupled frequency response function (FRF), which is given by 

[166]: 
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𝛼𝑛,𝜔 =
1

ω𝑛
2 − 𝜔2 + 𝑗(2휁𝑛𝜔𝑛𝜔)

 (2.46) 

The power output can be obtained by the  PR(𝑡) = (VR(𝑡))
2
/𝑅𝑙. 

The presented solutions in Eq. (2.44) and Eq. (2.45) contain an indefinite number of 

modes, i.e., 𝑛=1 to ∞. Using higher number of modes generates results that are more 

accurate even though the computational cost will be higher. It is common to present 

the single-mode approximation outputs [165] because less computational time is 

required and accurate. Fig. 2-9 shows the single-mode approximation accuracy in the 

benchmark example's voltage and power output performance. It can be seen that the 

single-mode approximation has good agreement with the multi-mode response, and 

the error does not exceed 1%. 

(a) 

 

(b) 

 

Fig. 2-9. Comparison between the single-mode and multi-mode voltage and power 

outputs from the distributed beam model for the benchmark example (differences 

between the solutions for the voltage and power are 0.5% and 1.0%, respectively). 

The benchmark example is investigated for the steady-state voltage and power outputs 

versus the excitation frequency and electrical load, as shown in Fig. 2-10 in a 

frequency range containing the natural beam frequency and an electrical range from 

small to large values. It can be seen that the voltage increases from 0 to open-circuit 

voltage at large loads. Besides, the voltage output is maximum at a specific frequency 

called "resonant frequency". This resonant frequency also depends on the electrical 

load due to the backward piezoelectric feature because the generated voltage will 
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induce additional stiffness to the piezoelectric beam. Fig. 2-10 (a) shows the shift in 

the resonant frequency due to the electrical load. The same behavior was also shown 

in Fig. 2-4 for the SDOF DuToit model. This shift in the resonant frequency becomes 

critically essential for the resonant matching design. 

The power output is shown in Fig. 2-11 (b) illustrates that two conditions should be 

met for the maximum power generation: the resonant frequency excitation and the 

optimum load connection. A significant result from the zoomed-in view in Fig. 2-10 

(b) is that the resonant frequency and the optimum load are linked to each other 

because of the dual coupling between the electrical and the mechanical physics in a 

piezoelectric beam. The same dependency was observed in Fig. 2-3 for the SDOF 

DuToit model. Subsection 2.3.4 will try to investigate this dual-way relationship with 

more details.  

(a) 

 

Resonant 

frequency 
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(b) 

 

Fig. 2-10. (a) Voltage and (b) power outputs versus the electrical load and excitation 

frequency for the benchmark example [162]. 

General (deterministic) base excitation 

Next, if it is considered that the input base excitation is not a pure harmonic load, 

however, it can be discretized into a series of harmonic functions using the Fourier 

Transform. Therefore, the input base excitation should be absolutely integrable, i.e. 

∫ |𝑌𝐵(𝑡)|𝑑𝑡
+∞

−∞
< ∞, or, for the discrete base excitation signals, ∑ |𝑌𝐵(𝑡)|

+∞
−∞ < ∞. 

Let assume that the base excitation is expressed by the Fourier Transform, given by, 

𝑌𝐵(𝑡) =
1

2𝜋
∫ �̂�𝐵(𝜔)𝑒

𝑗𝜔𝑡𝑑𝜔

∞

−∞

, �̂�𝐵(𝜔) = ∫ 𝑌𝐵(𝑡)𝑒
−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 (2.47) 

In practical vibration sources, �̂�𝐵(𝜔) has significant components in the frequency span 

for a wide range of frequencies, and each frequency excites the harvester beam, which 

will eventually generate a voltage. For instance, Fig. 2-11 shows the time domain and 

the Fast Fourier Transform (FFT) acceleration for a diesel car moving on the bumpy 

highway. In this example, the acceleration between 20 to 40 Hz is higher than the 

other frequencies and has a peak at 30Hz. 
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Fig. 2-11. Time domain and FFT of the car acceleration data for a Grande Punto car 

on a bumpy highway [170]. 

Then, by considering all frequencies' superposition effect, the voltage and power 

outputs from the piezoelectric beam can be extracted by summing the outputs from 

all the frequencies. Therefore, the mechanical response and voltage output, and power 

output can be obtained by: 

휂𝑛(𝑡) = ∫ 휂𝑛,𝜔(𝑡)𝑑𝜔

∞

−∞

= ∫ 휂̅𝑛,𝜔𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

≅ ∑ 휂̅𝑛,𝜔𝑟 .𝑒
𝑗𝜔𝑟𝑡

∞

𝑟=−∞

 

VR(𝑡) = ∫ 𝑉𝑅,𝜔(𝑡)𝑑𝜔

∞

−∞

= ∫ �̅�𝑅,𝜔𝑒
𝑗𝜔𝑡𝑑𝜔

∞

−∞

≅ ∑ V̅R,𝜔𝑟 . 𝑒
𝑗𝜔𝑟𝑡

∞

𝑟=−∞

 

(2.48) 

wherein 휂̅𝑛,𝜔𝑟 and V̅R,𝜔𝑟 are the mechanical and electric responses at each frequency 

step, obtained from the solutions in Eq. (2.44) and Eq. (2.45). Thus, the mechanical 

response and the voltage output for the general base excitation are given by: 

휂𝑛(𝑡) = ∑ 𝛼𝑛,𝜔�̂�𝐵(𝜔𝑟) [𝜎𝑛

∞

𝑟=−∞

− 𝛾𝑛
𝜔𝑟 ∑ 𝑗Λ𝑛𝜎𝑛𝛼𝑛,𝜔𝑟

∞
𝑛=1

1
𝑅eff

+ 𝑗𝜔𝑟C𝑃,eff + 𝑗𝜔𝑟 ∑ Λ𝑛𝛾𝑛𝛼𝑛,𝜔𝑟
∞
𝑛=1

] .𝑒𝑗𝜔𝑟𝑡 

(2.49) 

VR(𝑡) = ∑
�̂�𝐵(𝜔𝑟)𝜔𝑟 ∑ 𝑗Λ𝑛𝜎𝑛𝛼𝑛,𝜔𝑟

∞
𝑛=1

1
𝑅eff

+ 𝑗𝜔𝑟C𝑃,eff + 𝑗𝜔𝑟 ∑ Λ𝑛𝛾𝑛𝛼𝑛,𝜔𝑟
∞
𝑛=1

. 𝑒𝑗𝜔𝑟𝑡
∞

𝑟=−∞

 (2.50) 
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Fig. 2-12 shows the results of power estimation of the benchmark piezoelectric beam 

for the car vibration by applying Eq. (2.50).  Fig. 2-12 (a) consists of two curves, 

namely the car acceleration FFT and the power response function of the piezoelectric 

beam per square unit acceleration with 𝑅l=24kΩ. As can be seen from Fig. 2-12 (a), 

the car acceleration FFT has a peak at 30Hz while the piezoelectric energy harvester 

has a resonant peak around 47Hz. The output power can be obtained by multiplying 

the square acceleration FFT to the power frequency response, given in Fig. 2-12 (b). 

As can be seen from Fig. 2-12 (b), there are two maximums in the output power. One 

is due to the car acceleration peak, while the other is due to the piezoelectric resonant 

frequency. Because the beam dimensions have not been optimized for the frequency 

matching, two weak peaks exist in the power spectrum. However, if one designs the 

energy-harvesting beam for a specific application, there will be one strong peak in the 

power spectrum. This PVEH design will be demonstrated in Chapter 5. 

(a)

 

(b) 

 

Fig. 2-12. The power analysis for the benchmark example by assuming the car 

vibration data from Fig. 2-11, (a) the power frequency response function (FRF) and 

the acceleration FFT of the car vibration, and (b) the estimation of power output for 

the benchmark example by the car vibration simulation. 

2.3.4. A UNIFIED ELECTROMECHANICAL COUPLED VOLTAGE 
EQUATION 

As described previously, the voltage is dependent on the load and the excitation 

frequency. For the maximum power generation, the harvester should be excited by the 

resonant frequency, and an optimum load shall be connected. Previous models present 

two coupled equations, one for the mechanical vibration and one for the electrical 

circuit. In this section, a unified voltage equation will be presented that has the 

electromechanical coupling effect. This equation has been reported in Ref. [162]. This 

unified voltage equation presents the transient harmonic response in subsection 2.3.5 

and damping determination in subsection 4.2. The single-mode approximation will be 

employed (shown in Fig. 2-9 that this will not influence the accuracy). 

Car 

acceleration 

peak 

PVEH 

resonant 

frequency 
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For obtaining a unified voltage equation, a relationship between the mechanical 

response η𝑛(𝑡) and the voltage output VR(𝑡) should be found from Eq. (2.41). The 

mechanical response should then be replaced by the voltage output, which makes Eq. 

(2.33) an equation that contains only the voltage. 

Finding a relationship between η𝑛(𝑡) and VR(𝑡) (from Eq. (2.41)) is not possible 

generally because of the time derivatives in this equation. However, under certain 

circumstances, this direct link can be found. These two conditions are 1) open-circuit 

condition, 2) harmonic excitation with any electrical load. 

1) Open-circuit condition (𝑅𝑙 → ∞,): As there is no current flow in the piezoelectric 

in open-circuit condition, the term (1/𝑅eff) vanishes in the Eq. (2.41), and therefore,  

𝐶𝑃
𝑑VR(𝑡)

𝑑𝑡
= ∑Λ𝑛휂̇𝑛(𝑡)

∞

𝑛=1

∫𝑑𝑡

→  𝐶𝑃VR(𝑡) = ∑Λ𝑛휂𝑛(𝑡)

∞

𝑛=1

 

single−mode
→         휂𝑛(𝑡) =

𝐶p,eff

Λ𝑛
VOC(𝑡) 

(2.51) 

By substituting Eq. (2.51) into the mechanical vibration equation Eq. (2.33) [162], the 

unified voltage equation can be given by, 

V̈OC(𝑡) + 2휁𝑛𝜔𝑛V̇OC(𝑡) + (𝜔𝑛
2 +

Υ𝑛Λ𝑛

𝐶p,eff
)

⏟        
𝜔nc
2 : coupled resonant

frequency

VOC(𝑡) = σ𝑛
Λ𝑛

𝐶p,eff
�̈�𝐵(𝑡). 

(2.52) 

The beam natural frequency is now replaced by the coupled resonant frequency 𝜔nc
2  

in Eq. (2.52), which has the electromechanical coefficients of the harvester. 

2) Harmonic excitation with 𝑅𝑙 load: In this case, the term 𝑅𝑙 remains, but using the 

harmonic excitation assumption, the time derivatives in Eq. (2.41) can be analytically 

applied. Therefore, the relationship between the mechanical response η𝑛(𝑡) and the 

voltage output VR(𝑡) can be shown by: 

η(𝑡) =
VR(𝑡)

Γ𝑛(𝜔)
 (2.53) 

wherein Γ(𝜔) is given by, 
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Γ𝑛(𝜔) =
Λ

√(
1

𝑅eff𝜔
)
2

+ 𝐶𝑃
2

 

(2.54) 

Consequently, the unified voltage equation can be shown to be, 

V̈R(𝑡) + 2휁𝑛𝜔𝑛V̇R(𝑡) + (𝜔𝑛
2 + Υ𝑛Γ𝑛(𝜔))⏟          

𝜔nc
2

V𝑅(𝑡) = σ𝑛Γ𝑛�̈�𝐵(𝑡) (2.55) 

Thus, an electromechanical-coupled natural frequency is defined by: 

𝜔nc = √𝜔𝑛
2 + Υ𝑛Γ𝑛(𝜔), 𝜔: excitation frequency (2.56) 

Eq. (2.52) is valid for all the excitation types in the open-circuit condition, but Eq. 

(2.55) is valid for only harmonic excitations but in connection with any electrical load. 

To validate the correctness of the electromechanical-coupled natural frequency, the 

natural and the open-circuit resonant frequencies using this method are compared with 

the experimental values in Ref [165]. The considered energy harvester is the 

benchmark example. Table 2-4 presents these comparisons, which shows a good 

agreement between the results, and therefore, the unified voltage equation can predict 

the resonant variation concerning the electrical load.  

 𝜔𝑛 (Hz) 𝜔nc at open-circuit (Hz) 

Present method 45.74 48.2 

Erturk and Inman experiments [165] 45.6 48.4 

Difference +0.2% -0.4% 

Table 2-4: Comparing the natural frequency and the open-circuit resonant frequency 

for the benchmark example (experiment by Erturk and Inman [165]). 

Fig. 2-13 illustrates the coupled resonant frequency sensitivity concerning the 

excitation frequency and the electrical load. The typical optimum range of the 

electrical loads and the resonant excitation is indicated in Fig. 2-13. Fig. 2-13 (a) 

shows that the ratio 
𝜔nc

𝜔n
 increases by increasing the electrical load, which is correct 

for all the excitation frequencies. According to Fig. 2-13 (b), the  ratio 
𝜔nc

𝜔n
  is close to 

1 in the small loads and reaches to a maximum at large load. Fig. 2-13 (b) shows that 
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the  ratio 
𝜔nc

𝜔n
 is frequency-insensitive for small and large loads. However, for the 

typical optimum load ranges, there is sharp jump in the 
𝜔nc

𝜔n
 curves. Typical 

𝜔nc

𝜔n
 value 

for the practical electrical loads in the resonant excitation design is 1.025 [162]. 

(a)

 

(b)

 

Fig. 2-13. The coupled resonant frequency is a function of the excitation frequency 

and the electrical load connection for the benchmark example [162]. 

2.3.5. TRANSIENT RESPONSE TO A HARMONIC EXCITATION 

The transient response of the voltage equation to a harmonic excitation will be 

developed in this subsection. The transient voltage response has some beneficial 

characteristics for the piezoelectric damping extraction and the power output 

estimation under the varying excitation signals. This method is presented by Khazaee 

et al. [162]. 

A harmonic excitation is considered as the base excitation �̈�𝐵(𝑡) = �̅�𝐵𝜔
2 cos(𝜔𝑡). At 

harmonic excitations, Eq. (2.52) is a particular case (open-circuit) for the general case 

Eq. (2.55). Therefore, the focus will be on developing the transient solution for Eq. 

(2.55), and the presented solution will be valid for Eq. (2.52) as well. 

Eq. (2.55) is a non-homogeneous second-order differential equation, which its 

solution is well known. The solution for Eq. (2.55), as given in Eq. (2.57), contains a 

general (transient) solution and a particular (forced or steady-state) solution.  

𝑉R(𝑡) = 𝑉trans𝑒
− 𝑛𝜔𝑛𝑡𝑠𝑖𝑛(𝜔dc𝑡 + 𝜙) + 𝑉steady cos(𝜔𝑡 − 휃) (2.57) 

where the parameters for this solution are given by [162]: 

Resonant excitation 

Typical optimum 

Rl range 
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𝑉trans = −𝜅𝑉steady, 𝜙 = tan−1
𝜔𝑑 cos

𝑛𝜔𝑛 cos +𝜔 sin
, (2.58a) 

𝑉steady =
σΓ�̅�𝐵𝜔

2

√(𝜔𝑛
2+ΥΓ−𝜔2)

2
+( 𝑛 𝜔𝑛𝜔)

2

, 휃 = tan−1
2 𝑛𝜔𝑛𝜔

𝜔𝑛
2+ΥΓ−𝜔2

. (2.58b) 

wherein 𝜅 =
cos

sin𝜙
. 

Besides, 𝜔dc is the damped coupled resonant frequency, and given by: 

𝜔dc = 𝜔𝑛√1 − 휁𝑛
2 +

ΥΓ

𝜔𝑛
2 . (2.59) 

The angles 휃 and 𝜙 and coefficient 𝜅 are plotted against the frequency ratio for 2.7% 

and 10% damping coefficients. 𝜙 and 휃 have a 90º shift. For under resonant excitation 

Ω<1 𝜙 = 90 − 휃 and for over resonant excitation 𝜙 = −90 − 휃. The ratio between 

the transient and the steady-state solution, i.e., 𝜅, depends on 휃 and 𝜙. 𝜅 is plotted in 

Fig. 2-14 against the frequency ratio for 2.7% and 10% damping coefficients. 

According to Fig. 2-14, 𝜅 is 1 for Ω≤1 and is -1 for Ω>1. Therefore, the harmonic 

transient response in Eq. (2.57) can be simplified to [162]: 

𝑉R(𝑡) ≅ 𝑉steady(−𝒻(Ω)𝑒
− 𝜔𝑛𝑡𝑠𝑖𝑛(𝜔dc𝑡 + 𝜙) + cos(𝜔𝑡 − 휃)). (2.60) 

wherein 𝒻(Ω) = {
1        Ω ≤ 1
−1     Ω > 1

. 

(a)

 

(b)

 

Fig. 2-14. The coefficients 𝜅, 휃 and  𝜙 for different excitation  
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To investigate the unified voltage equation, the output voltage for the benchmark 

example using the unified voltage equation is plotted in Fig. 2-15 against the 

experimental data [165] for 𝑅𝑙=1 kΩ and 6.7 kΩ. A good agreement can be seen 

among the analytical and the experimental data for both electrical loads. 

 

Fig. 2-15. The experimental validation of the voltage versus frequency (the 

experiment by Erturk and Inman [165]) for the benchmark example [162]. 

2.4. FINITE ELEMENT (FE) MODEL 

This section presents the finite element (FE) model for the piezoelectric beams 

developed by Khazaee et al. [163]. This FE model has the following advantaging 

features: 

 High order deformation theory is considered for relating the strains to the 

deformations. 

 Carrera's advanced formulation (CUF) is employed for the displacement fields, 

which means that the deformation through the thickness is not constant. 

 Shear stresses are considered. 

 Two-dimensional formulations with variable thickness are obtained. 

 The energy harvester can be non-uniform with partially covered by piezoelectric 

layers. 

 Contact layer effect and a viscous-structural combined damping model are 

proposed.  

 Added mass connected to the harvester is considered. 

 The model is electromechanically coupled considering the backward 

piezoelectric effect. 

 The model is general for any type of excitation. However, the formulations are 

also presented for the base excitation as the most applicable condition.  

Fig. 2-16 shows a general non-uniform piezoelectric beam with added tip mass under 

the base excitation. 



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

100 

 

Fig. 2-16. The illustration of a typical piezoelectric beam is considered for the FE 

model [163].  

The derivation of the FE model has five steps, which are: 

1. Constitutive equations: It will be derived by considering the orthotropic material 

model for the piezoelectric and substrate layer. 

2. Strains and displacements relationships: The Carrera's Unified Formulation (CUF) 

and the Third Shear Deformation Theory (TSDT) will be used to find the 

relationships between the strains and beam displacements. 

3. Finite discretization and spatial approximation: The energy harvester domain will 

be discretized into small elements, and the spatial approximation for each element 

will be given. 

4. The equation of motion: It will be derived according to the extended Hamilton's 

principle. 

5. Differential equations' derivation: The differential equations will be obtained for 

each small element. Numerical methods for the element matrices' calculations will 

be given. 

The nomenclature for the parameters used in this formulation can be found in Appendix 

E. 

2.4.1. CONSTITUTIVE EQUATIONS 

It is considered that the material model for the piezoelectric and the substrate is the 

orthotropic material, while for the contact layer is the isotropic material. In the 

orthotropic material model, transformations in the principal coordination are assumed, 

as shown in Fig. 2-17. The linear material model is considered for all three material 

types. 
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Fig. 2-17. The transformation of principal coordination for the piezoelectric and 

substrate layers [163].  

The constitutive equation (the stress-strain relationship) for the piezoelectric material 

as a linear orthotropic material, for the substrate layer as a linear orthotropic material, 

and the contact layer as linear isotropic material are [163] 

𝑇𝑝 = [�̅�]𝑝𝑆 − [�̅�]ℰ     Piezoelectric layer 

𝑇𝑠 = [�̅�]𝑠𝑆     Substrate shim 

𝑇𝑐 = [𝑄]𝑐𝑆     Contact layer 

(2.61) 

where 𝑇 is the stress tensor, 𝑆 is the strain tensor, ℰ is the electric field, [�̅�] is the 

stiffness matrix, and [�̅�] is the piezoelectric coupling matrix. The components of these 

matrices and tensors are: 

𝑇 =

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}
 
 

 
 

, 𝑆 =

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

, ℰ = {

ℰ𝑥
ℰ𝑦
ℰ𝑧

}, 

[�̅�] =

[
 
 
 
 
 
�̅�11 �̅�12 0        0 �̅�16
�̅�12 �̅�22 0        0 �̅�26

0
0
�̅�16

0
0
�̅�26

�̅�44    �̅�45 0

�̅�45    �̅�55 0

0         0 �̅�66]
 
 
 
 
 

 , [�̅�] =

[
 
 
 
 
0 0 �̅�31
0 0 �̅�32
0
�̅�14
�̅�15

0
�̅�24
�̅�25

�̅�36
0
0 ]
 
 
 
 

. 

(2.62) 

wherein 𝜎𝑖 are the axial stresses,  𝜏𝑖𝑗 are shear stresses, 𝑄𝑖𝑗  are the stiffnesses, 휀𝑖 are 

the axial strains, 𝛾𝑖𝑗 are the shear strains, 𝑒𝑖𝑗 are the piezoelectric coefficient, and ℰ𝑖 

are the electric field.  
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The electric constitutive equation for the piezoelectric material is given by [163] 

𝐷 = {

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [
0
0
�̅�31

 
0
0
�̅�32

 
�̅�14
�̅�24
0
 
�̅�15
�̅�25
0
 
0
0
�̅�36

]

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

+ [

𝜖1̅1 𝜖1̅2 0
𝜖1̅2 𝜖2̅2 0
0 0 𝜖3̅3

] {

ℰ𝑥
ℰ𝑦
ℰ𝑧

}, 

𝐷 = [�̅�]𝑡𝑆 + [𝜖̅𝑠]ℰ. 

(2.63) 

wherein the permittivity matrix in physical coordination is denoted by [𝜖 ̅𝑠]. 

The overbar symbol indicates that the material properties are in physical coordination. 

The relationship between the principal coordination (1-2 coordination) and the 

physical coordination (x-y coordination) can be found in Appendix E. 

For the 3-1 mode energy harvester, the poling direction is only in the z-direction, and, 

therefore, the electrical field can be estimated from the voltage between the two 

electrode surfaces, which is: 

ℰ = {

0
0

−𝑉/ℎ𝑝

} = [

0
0
−1

ℎ𝑝

] 𝑉 = {𝐴𝑒}3×1𝑉. (2.64) 

2.4.2. STRAINS AND DISPLACEMENT RELATIONSHIPS 

In the FE model for a piezoelectric beam, the beam area is divided into small elements. 

The 31-mode energy harvester undergoes bending, and therefore each element has a 

2-D deformation shape. According to the assumption for the plate deformations, there 

are different plate theories. Fig. 2-18 presents different plate theories' characteristics, 

and Fig. 2-19 illustrates different deformation shapes. The present FE model uses the 

advanced theories with the TSDT plate model.  
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Fig. 2-18. Different plate theories, classical (CLPT, FSDT, and TSDT) and advanced 

(CUF) plate theories.  

(a)

 

(b)

 

Fig. 2-19. (a) The plate deformations for classical plate theories, and (b) the present 

model based on Carrera's unified formulation and the TSDT approximations [163]. 

According to the assumptions, the displacement field for an element can be given by: 

𝑟 = {

𝑟𝑥(𝑥, 𝑦, 𝑧, 𝑡)

𝑟𝑦(𝑥, 𝑦, 𝑧, 𝑡)

𝑟𝑧(𝑥, 𝑦, 𝑧, 𝑡)

} = {
0
0
𝑤
} + 𝑧 {

5

4
𝜙𝑥 +

1

4
𝑤,𝑥

5

4
𝜙𝑦 +

1

4
𝑤,𝑦

𝒲

}− 𝒞1𝑧
3 {

5

4
𝜙𝑥 +

5

4
𝑤,𝑥

5

4
𝜙𝑦 +

5

4
𝑤,𝑦

0

}. (2.65) 

where 𝒞1 =
4

3ℎ
2 (ℎ is the total beam thickness). Moreover, 𝑧 is the distance to the neutral 

axis. The above formulation is a general formulation that can accommodate all the advanced 

and classical theories, including CLPT, FSDT, and TSDT. 

The strain tensor now can be calculated from the displacement field by 
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𝑆 =

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

=

{
 
 

 
 

𝑟𝑥,𝑥
𝑟𝑦,𝑦

𝑟𝑦,𝑧
+ 𝑟𝑧,𝑦

𝑟𝑥,𝑧 + 𝑟𝑧,𝑥
𝑟𝑥,𝑦 + 𝑟𝑦,𝑥}

 
 

 
 

=

{
 
 

 
 

0
0

5

4
𝜙𝑦 +

5

4
𝑤,𝑦

5

4
𝜙𝑥 +

5

4
𝑤,𝑥

0 }
 
 

 
 

+

𝑧

{
  
 

  
 

5

4
𝜙𝑥,𝑥 +

1

4
𝑤,𝑥𝑥

5

4
𝜙𝑦,𝑦 +

1

4
𝑤,𝑦𝑦

𝒲,𝑦

𝒲,𝑥
5

4
𝜙𝑥
,𝑦
+
5

4
𝜙𝑦,𝑥

+ 1

2
𝑤,𝑥𝑦}

  
 

  
 

− 3𝒞1𝑧
2

{
 
 

 
 

0
0

5

4
𝜙𝑦 +

5

4
𝑤,𝑦

5

4
𝜙𝑥 +

5

4
𝑤,𝑥

0 }
 
 

 
 

−

𝒞1𝑧
3

{
  
 

  
 

5

4
𝜙𝑥,𝑥 +

5

4
𝑤,𝑥𝑥

5

4
𝜙𝑦,𝑦

+
5

4
𝑤,𝑦𝑦

0
0

5

4
𝜙𝑥,𝑦 +

5

4
𝜙𝑦,𝑥

+
5

2
𝑤,𝑥𝑦}

  
 

  
 

. 

(2.66) 

 

2.4.3. DISCRETIZATION AND SPATIAL APPROXIMATION 

By Finite Element Method (FEM) analysis, a complicated structure is divided into 

small elements, and therefore a finite element mesh is formed. Then the equations of 

motion are applied for each element. In a typical piezoelectric structure, there are 

layer-wised elements in the finite element mesh. One way to deal with this is to 

compute an equivalent element that contains all layers' structural stiffness properties. 

According to the plate theory that will be used, each node has six mechanical degrees 

of freedom (DOFs). Because of the piezoelectricity, each element has one voltage 

DOF. As there are six DOFs per node, a high number, element shapes with small node 

numbers can be used. Here, 4-node quadrilateral elements will be considered. Fig. 

2-20 shows the finite element mesh, the multi-layer element, and the equivalent 

element with its DOFs. 
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Fig. 2-20. The finite element mesh illustration, a typical layered element, and the 

equivalent element [163]. 

The DOFs for each node are given by 

DoF𝑝th node = [𝑤
𝑝 𝑤,𝑥

𝑝
 𝑤,𝑦
𝑝
 𝜙,𝑥
𝑝
 𝜙,𝑦
𝑝
 𝒲𝑝]

𝑡
. (2.67) 

Note the DOFs' order, as in matrix assembling for all the elements; this order should 

be kept. 

Similar to the modal expansion method in the distributed beam model, spatial 

approximations should be inserted instead of 𝑤(𝑥, 𝑦, 𝑡), 𝒲(𝑥, 𝑦, 𝑡), 𝜙𝑥(𝑥, 𝑦, 𝑡), and 

𝜙𝑦(𝑥, 𝑦, 𝑡). As in the strain equation in Eq. (2.66), there is the second derivation of 𝑤, 

the shape functions for 𝑤 should be continuous differentiable in the order of three. 

Besides, the shape functions for  𝒲, 𝜙𝑥, and 𝜙𝑦 need to be differentiable in the order 

of two. Therefore, the Hermite shape functions (𝛬𝑖(𝑥, 𝑦)) will be used for 𝑤, and the 

Lagrangian shape functions (𝜓𝑖(𝑥, 𝑦)) will be used for 𝒲, 𝜙𝑥, and 𝜙𝑦. These spatial 

approximations are given by: 

𝜙𝑥(𝑥, 𝑦, 𝑡) ≈ ∑ 𝑋𝑖
𝑒(𝑡)𝜓𝑖(𝑥, 𝑦)

4
𝑖=1 , 

𝜙𝑦(𝑥, 𝑦, 𝑡) ≈ ∑ 𝑌𝑖
𝑒(𝑡)𝜓𝑖(𝑥, 𝑦)

4
𝑖=1 , 

𝑤(𝑥, 𝑦, 𝑡) ≈ ∑ 𝛥𝑖
𝑒(𝑡)𝛬𝑖(𝑥, 𝑦)

12
𝑖=1 , 

𝒲(𝑥, 𝑦, 𝑡) ≈ ∑ 𝛯𝑖
𝑒(𝑡)𝜓𝑖(𝑥, 𝑦)

4
𝑖=1 . 

(2.68) 

The shape functions 𝜓𝑖(𝑥, 𝑦) and Λ𝑖(𝑥, 𝑦) can be given by [163]: 
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[𝜓] = [𝜓1⋯𝜓4] = {1  𝑥  𝑦  𝑥𝑦}⏟      
{𝑁}

[

1 𝑥1
1 𝑥2

𝑦1 𝑥1𝑦1
𝑦2 𝑥2𝑦2

1 𝑥3
1 𝑥4

𝑦3 𝑥3𝑦3
𝑦4 𝑥4𝑦4

]

⏟            
[𝑋]

−1

= {𝑁}[𝑋]−1, 
(2.69) 

[Λ] = [Λ1⋯Λ12] = {𝑃}[𝑍]
−1, where 

{𝑃} = {1  𝑥  𝑦  𝑥2  𝑥𝑦  𝑦2  𝑥3 𝑥2𝑦  𝑥𝑦2  𝑦3  𝑥3𝑦  𝑥𝑦3},  

[𝑍] = [[

{𝑃}

{𝑃},𝑥
{𝑃},𝑦

]

(𝑥1,𝑦1)

[

{𝑃}

{𝑃},𝑥
{𝑃},𝑦

]

(𝑥2,𝑦2)

[

{𝑃}

{𝑃},𝑥
{𝑃},𝑦

]

(𝑥3,𝑦3)

[

{𝑃}

{𝑃},𝑥
{𝑃},𝑦

]

(𝑥4,𝑦4)

]

𝑇

. 

(2.70) 

The displacement and the strain vectors in Eq. (2.65) and Eq. (2.66) shall be presented 

using these spatial approximations. Since a numerical integration shall be carried out 

on each element volume, the matrix relations for the displacement and strain vectors 

will be presented in a separate matrix form so the volume integration can be 

implemented separately for reducing the computation time.  

The displacement vector is given by 

𝑟(𝑥, 𝑦, 𝑧, 𝑡) =  

{
 
 
 
 

 
 
 
 5

4
(𝑧 − 𝒞1𝑧

3)∑𝑋𝑖
𝑒(𝑡)𝜓𝑖

4

𝑖=1

+ (
1

4
𝑧 −

5

4
𝒞1𝑧

3)∑Δ𝑖
𝑒(𝑡)Λ𝑖 ,𝑥

12

𝑖=1

5

4
(𝑧 − 𝒞1𝑧

3)∑𝑌𝑖
𝑒(𝑡)𝜓𝑖

4

𝑖=1

+ (
1

4
𝑧 −

5

4
𝒞1𝑧

3)∑Δ𝑖
𝑒(𝑡)Λ𝑖 ,𝑦

12

𝑖=1

𝑧∑Ξ𝑖
𝑒(𝑡)𝜓𝑖(𝑥, 𝑦)

4

𝑖=1

+∑Δ𝑖
𝑒(𝑡)Λ𝑖

12

𝑖=1 }
 
 
 
 

 
 
 
 

= [𝐴𝑚(𝑧)]3×6[𝐵𝑚(𝑥, 𝑦)]6×24{𝜒
𝑒(𝑡)}24×1 

(2.71) 

where the element DOF vector is 𝜒𝑒 and [𝐴𝑚] and [𝐵𝑚] are the two auxiliary matrices. 

These parameters are given by: 

{𝜒𝑒(𝑡)} = {𝑋1
𝑒  ⋯ 𝑋4

𝑒  𝑌1
𝑒  ⋯ 𝑌4

𝑒 Ξ1
𝑒⋯Ξ4

𝑒  Δ1
𝑒  ⋯ Δ12

𝑒  }𝑡, 
(2.72a) 

[𝐴𝑚(𝑧)] = [

5

4
(𝑧 − 𝒞1𝑧

3)

0
0

 
0

5

4
(𝑧−𝒞1𝑧

3)

0

   
0
0
𝑧
     
0
0
1
  
(
1

4
𝑧 −

5

4
𝒞1𝑧

3) 

0
0

 

0

(
1

4
𝑧 −

5

4
𝒞1𝑧

3)

0

] 
(2.72b) 
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[𝐵𝑚(𝑥, 𝑦)] =

[
 
 
 
 
 
 
 
[𝜓]

[0]

[0]
[0]
[0]

[0]⏟
1×4

  

[0]
[𝜓]

[0]
[0]
[0]

[0]⏟
1×4

  

[0]
[0]

[𝜓]

[0]
[0]

[0]⏟
1×4

 

[0]
[0]
[0]

[Λ]
[Λ],𝑥
[Λ],𝑦⏟
1×12 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 {𝑁}[𝑋]

−1

[0]
[0]
[0]

[0]
[0]

  

[0]

{𝑁}[𝑋]−1

[0]
[0]

[0]
[0]

  

[0]
[0]

{𝑁}[𝑋]−1

[0]

[0]
[0]

  

[0]
[0]
[0]

{𝑃}[𝑍]−1

{𝑃},𝑥[𝑍]
−1

{𝑃},𝑦[𝑍]
−1
]
 
 
 
 
 
 

 (2.72c) 

Similarly, the strain vector is presented as the product of two auxiliary matrices and 

the DOF vector, as given by 

𝑆(𝑥, 𝑦, 𝑧, 𝑡)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 5

4
(𝑧 − 𝒞1𝑧

3)∑𝑋𝑖
𝑒(𝑡)𝜓𝑖 ,𝑥

4

𝑖=1

+ (
1

4
𝑧 −

5

4
𝒞1𝑧

3)∑Δ𝑖
𝑒(𝑡)Λ𝑖 ,𝑥𝑥

12

𝑖=1

5

4
(𝑧 − 𝒞1𝑧

3)∑𝑌𝑖
𝑒(𝑡)𝜓𝑖 ,𝑦

4

𝑖=1

+ (
1

4
𝑧 −

5

4
𝒞1𝑧

3)∑Δ𝑖
𝑒(𝑡)Λ𝑖,𝑦𝑦

12

𝑖=1

𝑧∑Ξ𝑖
𝑒(𝑡)𝜓𝑖 ,𝑦 +

4

𝑖=1

5

4
(1 − 3𝒞1𝑧

2) (∑𝑌𝑖
𝑒(𝑡)𝜓𝑖

4

𝑖=1

+∑Δ𝑖
𝑒(𝑡)Λ𝑖,𝑦

12

𝑖=1

)

𝑧∑Ξ𝑖
𝑒(𝑡)𝜓𝑖,𝑥 +

4

𝑖=1

5

4
(1 − 3𝒞1𝑧

2) (∑𝑋𝑖
𝑒(𝑡)𝜓𝑖

4

𝑖=1

+∑Δ𝑖
𝑒(𝑡)Λ𝑖 ,𝑥

12

𝑖=1

)

5

4
(𝑧 − 𝒞1𝑧

3)∑𝑋𝑖
𝑒(𝑡)𝜓𝑖,𝑦

4

𝑖=1

+
5

4
(𝑧 − 𝒞1𝑧

3)∑𝑌𝑖
𝑒(𝑡)𝜓𝑖 ,𝑥

4

𝑖=1

+ 2(
1

4
−
5

4
𝒞1𝑧

3)∑Δ𝑖
𝑒(𝑡)Λ𝑖,𝑥𝑦

12

𝑖=1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

= [𝐴𝑘(𝑧)]5×13[𝐵𝑘(𝑥, 𝑦)]13×24{𝜒
𝑒(𝑡)}24×1 

(2.73) 

wherein the auxiliary matrices are presented below. 

[𝐴𝑘(𝑧)] =

[
 
 
 
 

0
0
0

5

4
(1−3𝒞1𝑧

2)

0

  

0
0

5

4
(1 − 3𝒞1𝑧

2)

0
0

   

5

4
(𝑧 − 𝒞1𝑧

3)

0
0
0
0

0
0
0
0

5

4
(𝑧−𝒞1𝑧

3)

    

0
0
0
0

5

4
(𝑧−𝒞1𝑧

3)

  

0
5

4
(𝑧−𝒞1𝑧

3)

0
0
0

 

 

0
0
0
𝑧
0

0
0
𝑧
0
0

0
0
0

1 +
5

4
(1 − 3𝒞1𝑧

2)

0

  1 +

0
0

5

4
(1 − 3𝒞1𝑧

2)

0
0

0
0
0
0

2 (
1

4
−
5

4
𝒞1𝑧

3)

(
1

4
𝑧 −

5

4
𝒞1𝑧

3)

0
0
0
0

0

(
1

4
𝑧 −

5

4
𝒞1𝑧

3)

0
0
0 ]

 
 
 
 

 

(2.74a) 

[𝐵𝑘(𝑥, 𝑦)] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[𝜓]

[0]

[𝜓],𝑥

[0]

[𝜓]

[0]

[0]

[0]
[0]

[0]

[𝜓],𝑦
[0]
[0]

[0]

[𝜓],𝑥
[0]

[𝜓],𝑦
[0]

[0]

[0]

[0]

[0]

[𝜓],𝑥
[𝜓],𝑦

[0]

[0]

[0]

[0]
[0]⏟
1×4

[0]

[0]

[0]

[0]
[0]⏟
1×4

[0]

[0]

[0]

[0]
[0]⏟
1×4

[0]
[0]

[0]

[0]

[0]

[0]

[0]

[0]

[Λ],𝑥
[Λ],𝑦
[Λ],𝑥𝑦
[Λ],𝑥𝑥
[Λ],𝑦𝑦⏟  
1×12 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 {𝑁}[𝑋]

−1

[0]

{𝑁},𝑥[𝑋]
−1

[0]

{𝑁}[𝑋]−1

[0]

[0]
[0]

[0]

[0]

{𝑁},𝑦[𝑋]
−1

[0]

[0]

[0]

{𝑁},𝑥[𝑋]
−1

[0]

{𝑁},𝑦[𝑋]
−1

[0]

[0]

[0]
[0]

[0]

{𝑁},𝑥[𝑋]
−1

{𝑁},𝑦[𝑋]
−1

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]
[0]

[0]

{𝑃},𝑥[𝑍]
−1

{𝑃},𝑦[𝑍]
−1

{𝑃},𝑥𝑦[𝑍]
−1

{𝑃},𝑥𝑥[𝑍]
−1

{𝑃},𝑦𝑦[𝑍]
−1
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(2.74b) 
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2.4.4. DERIVATION OF FE FORMULATION FOR ONE ELEMENT 

The equation of motion for the piezoelectric beam should now be developed. In the 

first step, the FE formulation is developed on one element. The equation of motion 

here is derived from Hamilton's principle.  

Hamilton's principle does not include electrical work and potential. Nevertheless, a 

generalized Hamilton's principle was developed for the piezoelectric domains [108]. 

According to the generalized Hamilton's principle, the definite integral  

𝐼 = ∫[(KE − PE +𝑊𝑒) +𝑊𝐸]𝑑𝑡

𝑡0

0

 (2.75) 

is stationary regardless of the path along with the integration is calculated. Therefore, 

the variation of 𝐼 is 0, i.e., 𝛿𝐼 = 0. This feature is used to derive the equation of 

motion. 

The kinetic energy, the inertial energy for all the layers in the piezoelectric beam, is 

given by: 

KE = ∫
1

2
�̇�𝑡𝜇𝑠�̇�𝑑𝒱𝑠

𝑉𝑠

+ ∫
1

2
�̇�𝑡𝜇𝑐�̇�𝑑𝒱𝑐

𝑉𝑐

+ ∫
1

2
�̇�𝑡𝜇𝑝�̇�𝑑𝒱𝑝

𝑉𝑝

 (2.76a) 

The potential energy, the elastic energy stored in the material, is given by: 

PE = ∫
1

2
𝑆𝑡𝑇𝑠𝑑𝒱𝑠

𝑉𝑠

+ ∫
1

2
𝑆𝑡𝑇𝑐𝑑𝒱𝑐

𝑉𝑐

+ ∫
1

2
𝑆𝑡𝑇𝑝𝑑𝒱𝑝

𝑉𝑝

 (2.76b) 

The electrical energy, the energy caused by electric charge transfer, is given by: 

𝑊𝑒 = ∫
1

2
ℰ𝑡𝐷𝑑𝒱𝑝

𝑉𝑝

 (2.76c) 

The external work by the external mechanical work and the electric charge is given 

by: 

𝑊𝐸 = 𝛿𝑟𝐸 . 𝑓𝐸 + δΦ𝑒𝑞𝑒 (2.76d) 

By inserting these expressions into Eq. (2.75), 𝛿𝐼 = 0 yiels to [163]: 
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𝛿𝐼 = ∫

[
 
 
 
𝛿{𝜒}𝑡 [∫[𝐵𝑚]

𝑡[𝐴𝑚]
𝑡𝜇𝑠[𝐴𝑚][𝐵𝑚]{�̈�

𝑒}𝑑𝒱𝑠
𝒱𝑠

+ ∫[𝐵𝑚]
𝑡[𝐴𝑚]

𝑡𝜇𝑐[𝐴𝑚][𝐵𝑚]{�̈�
𝑒}𝑑𝒱𝑐

𝒱𝑐

𝑡0

0

+ ∫[𝐵𝑚]
𝑡[𝐴𝑚]

𝑡𝜇𝑝[𝐴𝑚][𝐵𝑚]{�̈�
𝑒}𝑑𝒱𝑝

𝒱𝑝

+ ∫[𝐵𝑘]
𝑡[𝐴𝑘]

𝑡[�̅�]𝑠[𝐴𝑘][𝐵𝑘]{𝜒
𝑒}𝑑𝒱𝑠

𝒱𝑠

+ ∫[𝐵𝑘]
𝑡[𝐴𝑘]

𝑡[𝑄]𝑐[𝐴𝑘][𝐵𝑘]{𝜒
𝑒}𝑑𝒱𝑐

𝒱𝑐

+ ∫[𝐵𝑘]
𝑡[𝐴𝑘]

𝑡[�̅�]𝑝[𝐴𝑘][𝐵𝑘]{𝜒
𝑒}𝑑𝒱𝑝

𝒱𝑝

− ∫[𝐵𝑘]
𝑡[𝐴𝑘]

𝑡[�̅�][𝐴𝑒]𝑣𝑒𝑑𝒱𝑝
𝒱𝑝

− 𝑓𝐸]

+ 𝛿{Φ} [ ∫[𝐴𝑒]
𝑡[�̅�]𝑡[𝐴𝑘][𝐵𝑘]{𝜒

𝑒}𝑑𝒱𝑝
𝒱𝑝

+ ∫[𝐴𝑒]
𝑡[𝜖 ̅𝑠][𝐴𝑒]𝑣𝑒𝑑𝒱𝑝

𝒱𝑝

+ 𝑞𝑒]

]
 
 
 
𝑑𝑡

= 0 

(2.77) 

Setting 𝛿{𝜒}𝑡=0 and 𝛿{Φ}=0, two sets of equations will be obtained. The equation 

obtained by  𝛿{𝜒}𝑡=0 is the mechanical vibration equation and the one obtained by 

𝛿{Φ}=0 is the electrical circuit equation. Some standard definitions are employed in 

order to present the FE equations in the standard form. These standard matrix 

definitions are the mass matrix, the stiffness matrix, piezoelectric coupling matrix, 

capacitance scalar. These are given by [163]: 

Mass: [𝑚𝑒] = ∑ 𝜆ℴ ∫ [𝐵𝑚]
𝑡[𝐴𝑚]

𝑡𝜇ℴ[𝐴𝑚][𝐵𝑚]𝑑𝒱ℴ𝑉ℴℴ=𝑠,𝑐,𝑝  (2.78a) 

Stiffness: [𝑘𝑞𝑞
𝑒 ] = ∑ 𝜆ℴ ∫ [𝐵𝑘]

𝑡[𝐴𝑘]
𝑡[�̅�]ℴ[𝐴𝑘][𝐵𝑘]𝑑𝒱ℴ𝑉ℴℴ=𝑠,𝑐,𝑝  (2.78b) 

Electromechanical coupling: [𝑘𝑞𝜙
𝑒 ] = 𝜆𝑝 ∫ [𝐵𝑘]

𝑡[𝐴𝑘]
𝑡[𝑒̅][𝐴𝑒]𝑑𝒱𝑝𝑉𝑝

 
(2.78c) 

Capacitance scalar: 𝑘𝜙𝜙
𝑒 = 𝜆𝑝 ∫ {𝐴𝑒}

𝑡[휀 ̅𝑠]{𝐴𝑒}𝑑𝒱𝑝𝑉𝑝
 (2.78d) 

In Eq. (2.78a) to Eq. (2.78d), the coefficient 𝜆ℴ controls if a material is present in the 

multi-layered finite element mesh. 𝜆ℴ equals to one if the piezoelectric and contact 

layers are present in the multilayered element.  

Using the matrix definitions in Eq. (2.78a) to Eq. (2.78d), the equations for one 

nominal element can be given by: 
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[𝑚𝑒]{�̈�𝑒} + [𝑘𝑞𝑞
𝑒 ]{𝜒𝑒} − [𝑘𝑞𝜙

𝑒 ]𝑣𝑒 = {𝑓𝐸
𝑒} (2.79a) 

[𝑘𝑞𝜙
𝑒 ]

𝑡
{𝜒𝑒} + 𝑞𝑒 + 𝑘𝜙𝜙

𝑒 𝑣𝑒 = 0 (2.79b) 

{𝑓𝐸
𝑒} is the external vibration force acting on the piezoelectric beam. In this FE 

formulation, any mechanical force can be applied by inserting the force vector's proper 

DOF. One type of input force, which is very common in energy harvesting, is base 

excitation.  In the base excitation, the beam is attached to the piezoelectric base. The 

effective force under the base excitation is due to the structure inertia in the transverse 

direction (z).   

{𝑓𝐸
𝑒} = ∫[Λ]𝑡(−𝑚∗�̈�𝐵)𝑑𝐴

𝐴𝑝

+ [Λ]𝑡|@(𝐿,0)𝑀𝑡 (2.80) 

This effective force for the base excitation can also be approximated from the beam 

distributed model. This approach will be introduced when the global finite element 

matrices are obtained by assembling the element matrices.  

In Eq. (2.78a) to Eq. (2.78d), there are integrations over the element volume. 

According to the thickness properties of the layers, the volume element for different 

layers is given by: 

(𝑑𝒱𝑝)𝑙𝑜𝑤𝑒𝑟 = ∫ 𝑑𝑧
−ℎ𝑠
2
−ℎ𝑐

−ℎ𝑠
2
−ℎ𝑐−ℎ𝑝

∫ 𝑑xdy
𝐴p

 , 

(𝑑𝒱𝑐)𝑙𝑜𝑤𝑒𝑟 = ∫ 𝑑𝑧
−ℎ𝑠/2

−ℎ𝑠/2−ℎ𝑐
∫ 𝑑xdy
𝐴c

 , 

𝑑𝒱𝑠 = ∫ 𝑑𝑧
+ℎ𝑠/2

−ℎ𝑠/2
∫ 𝑑xdy
𝐴s

 , 

(𝑑𝒱𝑐)𝑢𝑝𝑝𝑒𝑟 = ∫ 𝑑𝑧
ℎ𝑠/2+ℎ𝑐
ℎ𝑠/2

∫ 𝑑xdy
𝐴c

 , 

(𝑑𝒱𝑝)𝑢𝑝𝑝𝑒𝑟 = ∫ 𝑑𝑧
ℎ𝑠/2+ℎ𝑐+ℎ𝑝
ℎ𝑠/2+ℎ𝑐

∫ 𝑑xdy
𝐴p

. 

(2.81) 

Obtaining analytical solutions for these integrations becomes time-consuming; 

instead, the numerical method as an alternative solution is preferred. One integration 

will be investigated as an example, and the rest of the integrations can be calculated 

accordingly. As in the matrix representations, matrices are break into z-only and x-y 

matrices; therefore, the volumetric integration can be break into an integration over 

the are times the integration over the thickness, as illustrated in Eq. (2.82). 
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∫[𝐵𝑚(𝑥, 𝑦)]
𝑡[𝐴𝑚(𝑧)]

𝑡𝜇𝑝[𝐴𝑚(𝑧)][𝐵𝑚(𝑥, 𝑦)]𝑑𝒱𝑝
𝑉𝑝

= ∫[𝐵𝑚(𝑥, 𝑦)]
𝑡 [ ∫ [𝐴𝑚(𝑧)]

𝑡𝜇𝑝[𝐴𝑚(𝑧)]𝑑𝑧

𝑧𝑝

−𝑧𝑝

] [𝐵𝑚(𝑥, 𝑦)]𝑑𝐴𝑝
𝐴𝑝

 

(2.82) 

The integration over the area for a quadrilateral element can be obtained using the 

Gaussian integration. However, the original Gaussian integration is for rectangular 

shapes. Thus, a modification should be made before applying the Gaussian numerical 

integration rule. To do so, Ref. [163] suggested that the element area become divided 

into three subdomains, and then the Gaussian integral can be applied easily. Fig. 2-21 

shows this element division for a general quadrilateral element. The details for the 

Gaussian integration rule can be found in Appendix E. 

 

Fig. 2-21. The illustration of the element area bifurcation into three subdomains [163]. 

2.4.5. MATRIX ASSEMBLING AND FE MODEL FOR THE WHOLE DOMAIN 

Once the FE matrices for all the elements have been calculated, the global FE matrices 

should be calculated by assembling the element FE matrices. This assembly should 

be carried out according to the degrees of freedom in the element (element DOFs). 

The global mass, stiffness, electromechanical coupling matrices are denoted by [𝑀], 

[𝐾𝑞𝑞], and [𝐾𝑞𝜙], respectively. The assembled external force vector is also denoted 

by [𝐹𝐸]. 

Some assumptions should be made to form the general matrix assembling process. 

These assumptions are: 

1. Damping matrix: The damping matrix is introduced in the general matrix 

equations. The proportional Rayleigh damping is one the most common damping 

model in vibration systems, which has been used by many studies in vibration 

and also in energy harvesting [108], [163], [171]. The source of damping can be 
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structural and viscous damping. Viscous air damping depends on the velocity, 

while structural damping is due to the material. Therefore, these two damping 

types are different, requiring different models to represent them. Here, both 

damping mechanisms are considered, but the structural and viscous damping's 

contribution shall be determined before extracting these damping coefficients. 

More information about the damping mechanisms contribution will be given in 

Chapter 4. The viscous and structural damping matrices are denoted by [𝐶] and 

[𝐻], respectively, and are given by: 

[𝐶] = 𝛽1[𝑀] + 𝛽2[𝐾𝑞𝑞] (2.83a) 

[𝐻] = 𝛾[𝐾𝑞𝑞] (2.83b) 

wherein 𝛽1, 𝛽2, and 𝛾 are the damping matrix coefficients, which should be 

determined based on the experimental data. Assuming that the viscous damping 

ratios at frequency f1 are 휁1, the viscous damping coefficient at frequency f2 is 

휁2, and the structural damping is 휂𝑛, then the damping matrix coefficients 

become: 

𝛽1 = 4𝜋𝑓1𝑓2
1𝑓2− 2𝑓1

𝑓2
2−𝑓1

2  , 𝛽2 =
1

𝜋

2𝑓2− 1𝑓1

𝑓2
2−𝑓1

2 , 휂𝑛 =  𝛾 (2.84) 

2. Special consideration for the electrodes: 

Commonly, the piezoelectric layers are covered by a negligible thickness 

electrode on both sides. These electrodes impose certain conditions on the global 

matrixes.r 

The voltage difference in all the elements is the same, which is equal to the 

voltage difference between the electrodes. Thus, a single value for piezoelectric 

voltage, denoted by 𝑉𝑝 is assumed.  

The coupling matrix [𝐾𝑞𝜙] should be modified into a new coupling matrix [𝐾𝑞𝜙] 

in order to consider the electrode coverage because the adjacent elements cannot 

have different voltages. All the coupling values at all electrode elements should 

be summed up for each mechanical DOF's coupling parameter. Thus,  

[𝐾𝑞𝜙] = [𝐾𝑞𝜙]{diag(𝐼𝑁𝑒)} or  (𝐾𝑞𝜙)𝒿∈[1,𝑛]
= ∑ (𝐾𝑞𝜙)𝒿𝓀

𝑁𝑒
𝓀=1   (2.85) 

 

The general capacitive coefficient is the summation of the capacitive for all the 

elements, as given by: 
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𝐾𝜙𝜙 = (∑ 𝑘𝜙𝜙
𝑒𝑁𝑒

𝑖=1 )  (2.86) 

 

3. Electrical load: 

The transferred charge from the piezoelectric element is introduced into the 

electrical equation. However, this transferred charge shall be related to the 

voltage. Therefore, the electrical equation, Eq. (2.79b), is differentiated 

concerning 𝑡, which is given by 

[𝑘𝑞𝜙
𝑒 ]

𝑡
{�̇�𝑒} + �̇�𝑒⏟

=𝑣𝑒/𝑅

+ 𝑘𝜙𝜙
𝑒 �̇�𝑒 = 0 (2.87) 

The time derivative of extracted charge is current, which according to Ohm’s 

law, can be expressed by �̇�𝑒 = 𝑣𝑒/𝑅. 

 

 

4. Parallel and series connections: 

 

The FE equations have been developed by considering only one piezoelectric 

layer. However, in the bimorph beams with two piezoelectric layers, these 

equations should be modified as two electrical connections are available. The 

electromechanical coupling and the capacitance should be modified for two 

piezoelectric layers as they have been calculated for a single piezo layer. 

In the parallel connection, the effective capacitance and coupling matrix are 

equal to the summation of that for the bottom and upper piezoelectric layers. On 

the other hand, in the series connection, the effective capacitance is half of the 

single-layer capacitance, and the effective coupling matrix is equal to that of a 

single piezo layer. In equation form  

Parallel: Kϕϕeff = Kϕϕlower + Kϕϕupper, [𝐾𝑞𝜙]eff = [𝐾𝑞𝜙]lower + [𝐾𝑞𝜙]upper (2.88a) 

Series: Kϕϕeff = Kϕϕlower/2, [𝐾𝑞𝜙]eff
= [𝐾𝑞𝜙]lower

 (2.88b) 

 

 

5. Added mass: 

The added mass can be easily accommodated by updating the mass matrix. Note 

that the stiffness matrix does not change provided that the added mass is stiff 

enough compared to the piezoelectric beam. If the added mass is placed at the 𝒾 
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-th node in the FE mesh, then the following matrix is added to the 𝒾-the node 

DOFs, 

6𝒾 − 5
6𝒾 − 4
6𝒾 − 3
6𝒾 − 2
6𝒾 − 1
6𝒾

⏞    
DOFs

[
 
 
 
 
 
𝑀𝑡
0
0
0
0
0

  

0
0
0
0
0
0

    

0
0
0
0
0
0

   

0
0
0
0
0
0

  

0
0
0
0
𝐼𝑥𝑥
0

  

0
0
0
0
0
𝐼𝑦𝑦]
 
 
 
 
 

   
𝑀𝑡: added tip mass                             
𝐼𝑥𝑥  and 𝐼𝑦𝑦: the moments of inertia

 (2.89) 

 

6. Force term: 

 

Various types of input forces can be applied to the FE problem using the force 

term. Overall, the force term for point loads can be expressed by [𝐹𝐸] = �̅�. {𝒯}, 
where �̅� is the total point load at a certain point on the beam surface, and the 

vector {𝒯} contains the DOF of this applying load.  

For the case of base excitation, the base excitation creates an inertial force at all 

the elements. Therefore, the force term for all the elements shall be calculated. 

Then, the element force vectors shall be assembled to form the general force 

term. There is another simple way to consider the base excitation. A single force 

replaces the force term for all the elements at the beam tip, and the single force 

term contains a sufficient mass of the beam 𝑚eff. For base excitation, the single 

point approximation is given by: 

�̅� = 𝑚eff�̈�𝐵 , where 𝑚eff = 𝜇1 (
𝑚beam

3
+𝑀𝑡)      (𝜇1 in [83]) (2.90) 

 

By considering the above discussions, the global FE equations for piezoelectric 

energy harvesters are given by: 

[𝑀]{�̈�} + [𝐶]{�̇�} + ([𝐾𝑞𝑞] + 𝑗[𝐻]){𝜒} − [𝐾𝑞𝜙]𝑉𝑝 = [𝐹𝐸] (2.91a) 

[𝐾𝑞𝜙]
𝑡
{�̇�} + 𝑉𝑝 /R + 𝐾𝜙𝜙�̇�𝑝 = 0 (2.91b) 
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2.4.6. STEADY-STATE SOLUTION 

The response to a harmonic load of [𝐹𝐸] = �̅�𝑒
𝑗𝜔𝑡 . {𝒯} (𝜔 is the frequency) is of 

interest. In this case, the mechanical and voltage responses are also harmonic 

functions with the same frequency, which can be expressed by {𝜒} = {�̂�}𝑒𝑗𝜔𝑡 and 

𝑉𝑝 = �̂�𝑝𝑒
𝑗𝜔𝑡. However, {�̂�} and �̂�𝑝 are complex values because of the capacitance and 

the damping in the equations of motion. The steady-state solution can be found by 

inserting these expressions into Eq. (2.91a) and Eq. (2.91b). The complex values of 

the mechanical and voltage responses are given by Eq. (2.92a) and (2.92b), 

respectively. 

{�̂�} = [𝒽(𝜔)][𝐹𝐸] (2.92a) 

�̂�𝑝 = 𝑗𝜔 (
1
𝑅⁄ + 𝑗𝜔𝐾𝜙𝜙)

−1
[𝐾𝑞𝜙]

𝑡
[𝒽(𝜔)]{�̂�𝑒}  (2.92b) 

In Eq. (2.92a) and (2.92b), [𝒽(𝜔)] is the coupled transfter function between the 

mechanical displacement and the mechanical force vector, as given by: 

[𝒽(𝜔)] = ((−𝜔2 + 𝑗𝜔𝛽1)[𝑀] + (1 + 𝑗(𝛾 + 𝜔𝛽2))[𝐾𝑞𝑞]

+ 𝑗𝜔(1 𝑅⁄ + 𝑗𝜔𝐾𝜙𝜙)
−1
[𝐾𝑞𝜙][𝐾𝑞𝜙]

𝑡
)

−1

 

(2.93) 

If the base excitation is the applying vibration, then �̅� = 𝑚eff�̈�𝐵 , thus, the amplitude 

of the mechanical response and the output voltage is given by: 

|
{�̂�}

�̈�𝐵
| = 𝑚eff[𝒽(𝜔)]{𝒯}.  (2.94a) 

 |
�̂�𝑝

�̈�𝐵
| = 𝑚eff𝑗𝜔 (

1
𝑅⁄ + 𝑗𝜔𝐾𝜙𝜙)

−1
[𝐾𝑞𝜙]

𝑡
[𝒽(𝜔)]{𝒯}. (2.94b) 

The output power can also be expressed with: 
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|
𝑃(𝑡)

(�̈�𝐵)
2|

=
𝑚eff
2

𝑅

(

 
 
 

|

| 𝑗𝜔(1 𝑅⁄ + 𝑗𝜔𝐾𝜙𝜙)
−1
[𝐾𝑞𝜙]

𝑡

(
(−𝜔2 + 𝑗𝜔𝛽1)[𝑀] + (1 + 𝑗(𝛾 + 𝜔𝛽2))[𝐾𝑞𝑞] +

𝑗𝜔(1 𝑅⁄ + 𝑗𝜔𝐾𝜙𝜙)
−1
[𝐾𝑞𝜙][𝐾𝑞𝜙]

𝑡 )

{𝒯}
|

|

)

 
 
 

2

 

(2.95) 

 

Once the steady-state response is obtained, one can extract the mechanical strain and 

stresses and the FE domain's electrical displacements. The following steps lead to the 

extraction of these parameters [163]: 

1. The element responses {�̂�𝑒} shall be extracted from the global responses {�̂�}. 
Afterward. 

2. The element deformation vector is calculated by: 

�̂�(𝑥, 𝑦, 𝑧) = {�̂�𝑥  �̂�𝑦  �̂�𝑧}
𝑡
= [𝐴𝑚(𝑧)][𝐵𝑚(𝑥, 𝑦)]{�̂�

𝑒} (2.96a) 

3. The strain vector is calculated by: 

�̂�(𝑥, 𝑦, 𝑧) = { 휀�̂�𝑥 휀�̂�𝑦  𝛾𝑦𝑧  𝛾𝑥𝑧  𝛾𝑥𝑦}
𝑡
= [𝐴𝑘(𝑧)][𝐵𝑘(𝑥, 𝑦)]{�̂�

𝑒} (2.96b) 

4. The electrical displacement vector is calculated by: 

�̂� = {�̂�𝑥  �̂�𝑦  �̂�𝑧}
𝑡
= [�̅�]𝑡  �̂�(𝑥, 𝑦, 𝑧) + [휀 ̅𝑠]{0  0  − 1/ℎ𝑝}�̂�𝑝 

(2.96c) 

5. The stresses for the piezoelectric, contact, and substrate layers are calculated by: 

�̂�𝑝 = [�̅�]𝑝�̂�(𝑥, 𝑦, 𝑧) − [�̅�]{0  0  − 1/ℎ𝑝}�̂�𝑝, 

 �̂�𝑠 = [�̅�]𝑠�̂�(𝑥, 𝑦, 𝑧), 

 �̂�𝑐 = [𝑄]𝑐�̂�(𝑥, 𝑦, 𝑧). 

(2.96d) 
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2.4.7. COMPARISON OF THE FE RESULTS 

This subsection presents the results from the presented FE model with the literature 

and the experimental data. Two cases are considered: One is the bimorph harvester 

without the tip mass, the other is the bimorph harvester with a tip mass. 

2.4.7.1 For a bimorph harvester 

This bimorph harvester was first presented by Erturk and Inman [5] for model 

validation. This example was later employed by Akbar and Curiel-Sosa [32] for model 

verification. Here this example is used for comparing the undamped natural 

frequencies and the open-circuit resonant frequencies using this study and the other 

modeling methods. 

This example is a bimorph piezoelectric beam with aluminum substrate and without 

tip mass. Table 2-5 presents the properties of this example. 

Description Piezoelectric Substrate 

Material PZT-5A Aluminum 

Length (mm) L= 30 

Width (mm) b=5 

Thickness (mm) 0.15 (each) 0.05 

Density (kg/m3) 

See Table 2-1 

2700 

Elastic modulus (GPa) 62.3 

Poisson’s ration 0.33 

Table 2-5. The geometries and material properties for the bimorph example. 

The comparisons between the natural and coupled resonant frequencies for the first 

three bending modes are given in Table 2-6 and Table 2-7. As shown in Table 2-6, 

the first mode's present FE results have a negligible difference from the other 

analytical models. However, for the 2nd and 3rd modes, this difference becomes 

immense. The FE model considers the shear stresses, and therefore, extra stiffness due 

to the shear stresses can be expected.  

Table 2-7 shows how the resonant frequencies can change due to the short and open 

circuit conditions. The short-circuit and open-circuit resonant frequencies are denoted 

by 𝑓𝑟
𝑠𝑐 and 𝑓𝑟

𝑜𝑐, respectively. There are good agreements between the present model 

with the analytical Erturk-Inman beam model. In both cases, due to the large electrical 

load connection, 𝑓𝑟
𝑜𝑐 is greater than 𝑓𝑟

𝑠𝑐. The ratio of 
𝑓𝑟
𝑜𝑐

𝑓𝑟
𝑠𝑐 for both modeling approaches 

are the same. One impressive result is that the ratio of 
𝑓𝑟
𝑜𝑐

𝑓𝑟
𝑠𝑐 for the 2nd and 3rd becomes 
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smaller, indicating that the effect of load on the resonant frequency for higher modes 

becomes negligible. 

Vibration mode 

Undamped natural frequency (Hz) 

Beam analytical  

Erturk-Inman [5] 

Akbar-Curiel Sosa [32] Present FE [163] 

Beam analytical Finite element TSDT approx. 

1st bending 185.1 185.1 187 185.9 

2nd bending 1159.8 1160.1 1162.3 1174.4 

3rd bending 3247.6 3248.3 3238.5 3356.4 

Table 2-6. Comparing the undamped natural frequencies for the bimorph example 

[163]. 

 1st bending 2nd bending 3rd bending 

 𝑓𝑟
𝑠𝑐 𝑓𝑟

𝑜𝑐 𝑓𝑟
𝑠𝑐 𝑓𝑟

𝑜𝑐 𝑓𝑟
𝑠𝑐 𝑓𝑟

𝑜𝑐 

Erturk-Inman [5] 185.1 191.1 1159.7 1171.6 3245.3 3254.1 

Finite Element [163] 185.9 191.3 1174.4 1186.4 3356.4 3368.0 

Difference between Erturk-Inman 

and present FE  
0.4% 0.1% 1.25% 1.25% 3.31% 3.38% 

𝑓𝑟
𝑜𝑐

𝑓𝑟
𝑠𝑐
≅ 1.03 1.01 1.004 

Table 2-7. Comparing the short-circuit resonant frequencies and open-circuit resonant 

frequencies for the bimorph example [163]. 

 

2.4.7.2 For the benchmark example (a bimorph harvester with tip mass) 

Here, the present FE results for the benchmark example are compared with the 

experimental data provided by Erturk-Inman [165]. The benchmark example is a 

bimorph energy harvester with a tip mass, and their properties were given in 

subsection 2.1. 

According to Table 6 in Ref. [163], the present FE model predicts the short-circuit 

fundamental natural frequency of 45.69 Hz, which is 0.2% greater than the 

experimental value of 45.6 Hz. 

The comparison between the natural frequencies from different plate theories is given 

in Table 2-8. In Table 2-8, the error (ER) in percent is calculated concerning the 

advanced CUF-TSDT method. Overall, the CLPT method's accuracy is lower than the 

other methods, in a way that the 3rd bending mode has a 13% difference compared to 

the CUF method. The difference between the classical method using the FSDT and 
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TSDT with the advanced method TSDT is slight, less than 0.5%. It can be concluded 

that the CLPT plate theory is not suitable for a comprehensive analysis, and at least 

the first shear deformation theory (FSDT) shall be employed. Besides, it can be settled 

that for the thin-layered piezoelectric energy harvesters, using the advanced method 

by high-order shear deformation theory generated similar results with the classic 

method considering the shear deformation theories. 

Mode number 

and type 

Classic method 

Advance 

method 

(CUF) 

CLPT ER (%) FSDT ER (%) TSDT ER (%) TSDT 

1st Bending 45.008 -1.49 45.703 0.03 45.687 0.00 45.687 

1st Torsion 318.841 -24.80 424.206 0.05 423.592 -0.09 423.987 

2nd Bending 500.121 -4.10 521.556 0.01 521.233 -0.05 521.482 

2nd Torsion 1138.693 -21.86 1458.357 0.08 1454.942 -0.15 1457.174 

3rd Bending 1286.336 -13.35 1486.863 0.16 1483.320 -0.08 1484.453 

4th Bending 2183.624 -6.42 2335.924 0.10 2332.049 -0.06 2333.486 

3rd Torsion 2444.333 -19.80 3052.329 0.15 3041.001 -0.22 3047.853 

5th Bending 2490.304 -22.05 3211.723 0.53 3190.174 -0.15 3194.821 

Table 2-8. The comparison between the natural frequencies in (Hz) from different 

plate theories [163]. 

The voltage response and the beam tip velocity from the present FE method are 

compared with the Erturk-Inman experiments, as depicted in Fig. 2-22 (a) and (b), 

respectively. These comparisons are given for three resistive loads, i.e., 1kΩ, 6.7 kΩ, 

and 100 kΩ. Overall, there are fair agreements between the experimental data and the 

FE model outcomes; however, some comments about the differences can be made.  

First, the correlation among the voltage data is better than among the tip velocity data. 

This fact can be due to the lower accuracy of the mechanical response measurements. 

Overall, the devices for measuring the voltage are capable of measuring in mV scales. 

However, the experimental error for the tip velocity measurements can be higher due 

to the senor error, stand error, and recording system error.  Besides, since the 

piezoelectric layer is covered with the electrode, the output voltage is a surface-

integration parameter, while the tip velocity is a local parameter, and therefore, more 

sensitive. 

Second, in both voltage and tip velocity curves, the electrical load increases the 

resonant frequency, and the FE model captures this effect well. 
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Third, in the tip velocity curve, increasing the electrical load first reduces the tip 

velocity; however, when the load becomes enormous, the tip velocity increases again, 

yet smaller than the short-circuit tip velocity. 

(a) 

 

(b) 

 

Fig. 2-22. The comparison of the (a) voltage and (b) beam tip velocity between the 

results from the present FE and the experimental data (Erturk and Inman [108]) [163]. 

 

2.5. MACRO-FIBER COMPOSITE ENERGY HARVESTER 
MODELING 

This subsection briefly presents the modeling of the macro-fiber composite (MFC). 

This approach for modeling the MFC is based on the FE and is derived from Ref. 

[164] (see Appendix F).  

In Ref. [164], a piezoelectric bimorph harvester with a composite substrate and two 

MFC layers is modeled with the high-order-advanced-element FE method. This 

biomorph is shown in Fig. 2-23 (a). The steps for discretization, spatial 

approximation, matrix derivation, and solution are the same as the FE approach 

described in subsection 2.4. The only difference here is to find the equivalent element 

for a layered MFC. The MFC has seven layers, one active layer, two electrode layers, 

two acrylic layers, and two Kapton layers, as shown in Fig. 2-23 (b). The substrate 

layer is usually a metal layer; however, as a general case, it is considered that the 
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substrate is also a composite layer with fiber orientation 휃𝑠, as shown in Fig. 2-23 (c). 

The active layer itself, shown in Fig. 2-23 (d), is a composite lamina with PZT 

rectangular cross-section fibers with a fiber orientation 휃𝑝. These rotations in the 

fibers for the substrate and the active layer are tools for modifying the resonant 

frequency and the power output. These will be discussed in the application section. 

(a)

 

(b)

 

(c)

 

(d)

 

Fig. 2-23. (a) a bimorph beam with two MFCs, (b) the MFC and its layers, (c) the 

composite substrate with a typical E-glass fiber, and (d) the active piezoelectric layer 

in the MFC [164]. 

Mixing and transformation rules for obtaining the material properties at different 

conditions should be presented. Besides, specific material properties for each layer in 

the MFC need to be reported. These pieces of information will be given in the 

following subsections.  

2.5.1. MIXING RULES FOR THE COMPOSITE LAMINATE 

The electrode layer and the active layer in the MFC and the substrate layer are 

composite laminate, for which the micromechanical equivalent properties can be 

obtained using the mixing rules. If “1” denotes the direction in length, “2” denotes the 

direction in width, the superscript “f” denotes the fiber, the superscript “m” denotes 

the matrix, and “𝓋𝑓” denotes the fiber volume fraction, the engineering material 

properties in the “1” and “2” direction are given by [172]: 
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𝐸1 = 𝓋𝑓𝐸1
𝑓
+ (1 − 𝓋𝑓)𝐸

𝑚 (2.97a) 

1

𝐸2
=
𝓋𝑓

𝐸2
𝑓
+
1 − 𝓋𝑓

𝐸𝑚
 (2.97b) 

𝑣12 = 𝓋𝑓𝑣12
𝑓
+ (1 − 𝓋𝑓)𝑣12

𝑚  (2.97c) 

1

𝐺12
=
𝓋𝑓

𝐺12
𝑓
+
1 − 𝓋𝑓

𝐺𝑚
 (2.97d) 

𝐺13 = 𝓋𝑓𝐺13
𝑓
+ (1 − 𝓋𝑓)𝐺

𝑚 (2.97e) 

1

𝐺23
=
𝓋𝑓

𝐺23
𝑓
+
1 − 𝓋𝑓

𝐺𝑚
 (2.97f) 

As the active layer is a composite material, assigning the PZT coupling material 

properties to the active layer coupling properties is not correct. The piezoelectric 

properties for the active layer can be extracted by the mixing rules, as given by [173]: 

𝑑31 =
1

𝐸1
𝓋𝑓𝑑31

𝑝
𝐸1
𝑝
 (2.98a) 

𝑑32 = −𝑑31
𝑝
𝑣12 + 𝓋𝑓𝑑31

𝑝
𝐸1
𝑝
(1 + 𝑣12

𝑝
) 

 
(2.98b) 

𝜖33 = 𝓋𝑓𝜖33
𝑝

 (2.98c) 

 

2.5.2. TRANSFORMATION RULES FOR THE MATERIAL PROPERTIES 

A fiber orientation different from zero will change the stiffness properties for all the 

layers and the active layer's piezoelectric properties. It should be noted that the fiber 

rotation in the PZT and substrate are arbitrary and denoted by 휃𝑝 and 휃𝑠. Besides, 

휃=90º for the MFC electrode layer according to the manufacturer's datasheet.  
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If [𝑄𝑖𝑗] and [�̅�𝑖𝑗] are the stiffness matrices in the principal and physical coordinates, 

respectively, the relationships between their components can be given by [103]: 

�̅�11 = 𝑄11 cos
4 휃 + 2(𝑄12 + 2𝑄66) sin

2 휃 cos2 휃 + 𝑄22 sin
4 휃 

�̅�12 = (𝑄11 + 𝑄22 − 4𝑄66) sin
2 휃 cos2 휃 + 𝑄12(sin

4 휃 + cos4 휃) 

�̅�22 = 𝑄11 sin
4 휃 + 2(𝑄12 + 2𝑄66) sin

2 휃 cos2 휃 + 𝑄22 cos
4 휃 

�̅�16 = (𝑄11 − 𝑄12 − 2𝑄66) sin 휃 cos
3 휃 + (𝑄11 −𝑄12 + 2𝑄66) sin

3 휃 cos 휃 

�̅�26 = (𝑄11 − 𝑄12 − 2𝑄66) sin
3 휃 cos 휃 + (𝑄11 − 𝑄12 + 2𝑄66) sin 휃 cos

3 휃 

�̅�66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) sin
2 휃 cos2 휃 + 𝑄66(sin

4 휃 + cos4 휃) 

�̅�44 = 𝑄44 𝑐𝑜𝑠
2 휃 + 𝑄55 𝑠𝑖𝑛

2 휃 

�̅�45 = (𝑄55 −𝑄44) 𝑐𝑜𝑠 휃 𝑠𝑖𝑛 휃 

�̅�55 = 𝑄55 𝑐𝑜𝑠
2 휃 + 𝑄44 𝑠𝑖𝑛

2 휃 

(2.99) 

The material properties for the piezoelectric layer due to the 휃-rotation are given by 

[103]: 

�̅�31 = 𝑒31 cos
2 휃 + 𝑒32 sin

2 휃 

�̅�32 = 𝑒31 sin
2 휃 + 𝑒32 cos

2 휃 

�̅�36 = (𝑒31 − 𝑒32) sin 휃 cos 휃 

�̅�14 = (𝑒15 − 𝑒24) sin 휃 cos 휃 

�̅�24 = 𝑒24 cos
2 휃 + 𝑒15 sin

2 휃 

�̅�15 = 𝑒15 cos
2 휃 + 𝑒24 sin

2 휃 

�̅�25 = (𝑒15 − 𝑒24) sin 휃 cos 휃 
(2.100) 

𝜖1̅1 = 𝜖11 cos
2 휃 + 𝜖22 sin

2 휃 

𝜖2̅2 = 𝜖11 sin
2 휃 + 𝜖22 cos

2 휃 

𝜖1̅2 = (𝜖11 − 𝜖22) sin 휃 cos 휃 

𝜖3̅3 = 𝜖33 

 

2.5.3. MATERIAL PROPERTIES FOR THE MFC SUBLAYERS 

Accurate MFC modeling is a challenge because there are many sublayers that their 

material properties shall be inserted into the model. Many of these material properties 

are not given explicitly by the manufacturer's datasheet. Therefore, the equivalent 

properties for the sublayers shall be calculated from the raw material properties. The 
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seven sublayers' properties are derived from Ref. [173]–[175] and are given in Table 

2-9. The small fiber volume fraction in the electrode layer can be due to the light 

weightiness and flexibility design criteria. On the other hand, the high volume fraction 

in the active layer should be due to the necessity for high power generation; yet 0.14% 

epoxy volume creates flexibility in the active layer.  

Properties Active layer Electrode layer Acrylic layer Kapton layer 

Fiber volume fraction 𝓋𝑓 0.86 0.24 — — 

Layer thickness (µm) 177.8 17.78 12.7 25.4 

Fiber material PZT-5A Copper — — 

Matrix material Epoxy Epoxy — — 

Table 2-9. The MFC sublayers’ properties [173]–[175]. 

Six different materials are used in the MFC, ranging from PZT to viscoelastic epoxy. 

The PZT material is considered orthotropic, while epoxy, copper, acrylic, and Kapton 

are considered isotropic materials. Material properties for these six materials are given 

in Table 2-10.  

Properties PZT fibers Epoxy Copper Acrylic Kapton 

Young’s modulus (GPa) 
E1=53 

E2=61 
3.378 117.2 2.7 2.5 

Shear modulus (GPa) 

G12=12 

G23=22.6 

G13=22.6 

1.33 44.7 1.0 0.93 

Poisson’s ratio 
v12=0.384 

v23=0.35 
0.27 0.31 0.35 0.34 

Density (g/cm3) 7.75 1.4 8.96 1.185 1.42 

Coupling charge constants (pC/N)  d31=-167.28 

d32=-167.28 
— — — — 

Dielectric constants (nF/m) 1850ε0 — — — — 

Table 2-10. The material properties for the materials in the MFC sublayers [164]. 

2.5.4. COMPARISON WITH THE EXPERIMENTS 

Using the mixing rules and the sublayer material properties, the FE model outcomes 

adopted for the MFC are compared with the experimental results. Fig. 2-24 (a) shows 

the experimental setup, an unimorph piezoelectric harvester with the MFC undergoing 

harmonic base excitation. Fig. 2-24 (b) shows the natural frequency comparison 

between the FE model and the experiment, 205.7 Hz and 197.5 Hz. A 4% error exists 

in the natural frequency comparison. The power output is compared with the 



CHAPTER 2. PIEZOELECTRIC ENERGY HARVESTER 

125 

experiments Fig. 2-24 (c) as a frequency ratio function, where the frequency ratio is 

the excitation frequency divided by the natural frequency. The FE model results are 

given in two states, one undamped without damping matrix and the other with the 

damping model. The proportional damping coefficients are extracted using the 

model's correlation to the experiment based on the peak power. Fig. 2-24 (c) shows 

that the resonant occurs at approximately Ω≈1.016 for both the experiments and the 

FE results. The undamped FE model's peak power is substantially overestimated, 

while the FE power curve matches perfectly with the experimental data using the FE 

damped model.  

(a) (b) 

 

 

 1st natural frequency 

(Hz) 

Experiment [161] 197.5 

FE model [164] 205.7 

Difference +4% 
 

(c) 

 

Fig. 2-24. (a) Experimental setup: A cantilevered unimorph piezoelectric beam with 

the MFC, (b) the comparison of the natural frequencies, and (c) the comparison of 

output power between the FE model in undamped and damped model with the 

experiments [164]. 

2.5.5. COMPARISON WITH FE COMMERCIAL SOFTWARE 

In this subsection, the current FE model's output is compared for a trapezoid 

piezoelectric bimorph beam. These results are given from Ref. [164]. 
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The trapezoid energy harvesting beam has two PZT-5A piezo layers attached to an E-

glass fiber unidirectional composite with 50µm epoxy contact layers. Fig. 2-25 shows 

this piezoelectric beam. The material properties for the substrate composite and the 

contact layers are given by t. The piezoelectric active layer's layerwise characteristics, 

the substrate composite, and the contact layers are given in Table 2-12. 

 

Fig. 2-25. The trapezoid piezoelectric bimorph with E-glass unidirectional substrate 

and two PZT-5A piezo layers [164]. 

Properties E-glass fibers Contact layer 

Young’s modulus (GPa) E=30 1.05 

Shear modulus (GPa) G=30 0.40 

Poisson’s ratio v=0.32 0.3 

Density (g/cm3)  2.540 1.4 

Table 2-11. The properties of the E-glass fibers and the contact layer for the bimorph 

shown in Fig. 2-25. 

Properties Active layer Substrate layer Electrode layer Contact layer 

Length (mm) 100 

Width (mm) 100 

Fiber direction θ (deg) 휃𝑝=10 휃𝑠=30 90 — 

Layer thickness (µm) 177.8 150.0 17.78 50.0 

Fiber material PZT-5A 
E-glass 

𝓋𝑓=60% 
Copper — 

Matrix material Epoxy Epoxy Epoxy — 

Table 2-12. The layerwise characteristics considered for the bimorph shown in Fig. 

2-25. 

The first three modes for this bimorph harvester are shown in Fig. 2-26 (a). The first 

mode is the bending mode, and the second and third modes are bending-torsion 

modes. The 1st mode, which is the bending mode, does not considerably vary 

concerning the element numbers. In contrast, the 2nd and third modes require a fine 

mesh to generate accurate natural frequencies. There is good agreement between the 

present FE model and the COMSOL® software results in all three modes. Note that 

=-5º 
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for an accurate FE model in all the modes, approximately 300 elements are required. 

Nevertheless, for energy harvesting applications, the bending mode is of great interest. 

Therefore, for energy harvesting applications, Khazaee et al. [164] only used a 24-

element mesh, which is accurate enough for the 1st bending mode. 

(a) 

 

(b) 

 

Fig. 2-26. (a) the first three modes using COMSOL®, and (b) The natural frequency 

comparisons for the first three modes between COMSOL® and the FE model at 

different element numbers [164]. 

2.6. COMPARISON BETWEEN THE SDOF, DISTRIBUTED AND FE 
METHODS 

The natural frequencies and the output voltage and power for the benchmark example 

are compared against each other for comparing the Single-Degree-of-Freedom 

(SDOF), analytical beam, and the finite element methods.  

Table 2-13 illustrates the first and second mode natural frequencies using the SDOF, 

beam, and FE models and the first experimentally obtained natural frequency. In the 

first mode, the FE natural frequency is the closest value to the experiment. 

Nevertheless, the error for the first mode is less than 1%. For the second mode, 

however, the SDOF model gives an incorrect value, and the beam model result has a 

3.7% error. Therefore, the SDOF and beam models are not accurate for estimating the 

natural frequencies in higher modes.  
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 SDOF 

𝜔𝑛(Hz) 

Beam 

𝜔𝑛(Hz) 

FE 

𝜔𝑛(Hz) 

Experiment 

𝜔𝑛(Hz) [108] 

Mode I 

(Variation) 

45.17 

(0.43Hz) 

45.73 

(0.13Hz) 

45.69 

(0.09Hz) 

45.6 

Mode II 282.27 541.24 521.73 - 

Table 2-13. The comparison of the first and second mode natural frequencies between 

SDOF, Beam, and FE methods. 

The voltage and power outputs from the SDOF, beam, and FE models under the 

resonant excitation are compared in Fig. 2-27 (a) and Fig. 2-27 (b). Overall, while the 

beam and FE method results are similar, the SDOF behavior has considerable 

differences. From Fig. 2-27 (a), the open-circuit voltage of the SDOF, for instance, is 

notably lower than the other methods' results. The optimum load for the maximum 

power in Fig. 2-27 (b) shows that the SDOF method will give an inaccurate optimum 

load, even though the peak power can be similar to the beam and FE peak power. 

Thus, estimation of the optimum load based on SDOF is not accurate. Besides, the 

output voltage from the FE method is slightly lower than the beam model. 

Nevertheless, this difference becomes smaller in the electrical load range of 104 to 105 

Ω. This range of loads is within the optimum loads for many piezoelectric beams. 

Therefore, the beam model gives accurate results in the optimum conditions, even 

though the open-circuit and short-circuit conditions slightly overestimate the power. 

(a) 
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(b) 

 

Fig. 2-27. (a) Voltage and (b) power outputs versus electrical load under the resonant 

excitation using the SDOF, beam, and FE models.  

2.7. LARGE DEFLECTION NON-LINEARITY 

In the linear framework, the beam tip deflection is also doubled by doubling the base 

excitation amplitude. The voltage is doubled, and the output power is multiplied by 

22 for all three models in Chapter 2. Also, in the linear framework, the beam's natural 

frequency is independent of excitation magnitude. However, this independence is not 

valid in reality, and for the large beam deflections, the large deflection non-linearity 

will occur.  

Ref. [176] carried out tests on a small unimorph beam with a single MFC. The voltage 

output from the unimorph was measured over a range of frequencies for three different 

excitation amplitudes. Fig. 2-28 shows the experimental setup from Ref. [176]. 

 

Fig. 2-28. The experimental setup on a small MFC unimorph for illustrating the large 

deflection nonlinearity [176]. 



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

130 

The power output for three different excitation amplitudes, 0.1, 0.2, and 0.25V shaker 

input signal, is shown in Fig. 2-29. Each test is repeated two times. As expected,  Fig. 

2-29 shows that the output power increases by increasing the base excitation 

amplitude. Besides, Fig. 2-29 indicates that the resonant frequency reduces by 

increasing the base excitation, from 219 Hz to 214 Hz. Since the electrical load is 

constant at all the tests, the resonant frequency reduction is due to the damping 

increase or the natural frequency reduce, because 𝜔𝑑 = 𝜔𝑛√1 − 휁𝑚
2 . The damping 

increase should be extremely high to cause such a reduction in the resonant frequency, 

which is not realistic. Therefore, the resonant frequency reduction is due to the natural 

frequency reduction. 

 

Fig. 2-29. The output power for three different harmonic excitation amplitudes with a 

31.5kΩ resistance load (the test setup shown in Fig. 2-28 [176].) 

Fig. 2-30 shows how the natural frequency reduces by increasing the base excitation. 

As can be seen, at 
𝑌

𝑌0
= 2.5, the natural frequency is reduced by a factor of 0.972. This 

natural frequency reduction illustrates that this unimorph has a softening behavior.  
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Fig. 2-30. The natural frequency and power output variation as a function of base 

excitation amplitude [176]. 
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CHAPTER 3. FURTHER 

INVESTIGATION OF SOME PEHS’ 

CHARACTERISTICS 

A piezoelectric beam has some sub-components, substrate shim, the added mass, and 

the contact layer, as depicted in Chapter 2, that affect the system's vibration 

characteristics (modal parameters) and the output power. This chapter introduces 

investigations about these parameters’ effects on the natural frequency and power 

generation. 

3.1. SUBSTRATE SHIM 

The purpose of adding a substrate shim in the piezoelectric beam is to provide a 

substructure for the piezoelectric layers, which are often fragile and substantially stiff. 

These subsection results are derived from Ref [16], where a piezoelectric MFC 

unimorph is subjected to shock-based base excitations for the vibration and power 

performance analyses. Further details about the test configurations can be found in 

Ref. [16]. 

The substrate shim changes the natural frequency as it adds stiffness to the system. 

Fig. 3-1 compares the first bending mode between the No-Shim and Alu-Shim 

samples over a range of different base excitations. In this example, the substrate shim 

and contact layer increase the natural frequency by a factor of 20%, from an average 

of 16 Hz to 22 Hz.  

 

Fig. 3-1. The substrate's effect on the first bending mode for the piezoelectric MFC 

unimorph [16]. 
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The voltage generation from a single MFC layer and a unimorph consisting of a MFC 

and an aluminum substrate is compared. The MFC has a thickness of 0.3mm, and the 

substrate shim is 0.12mm aluminum. 

Fig. 3-2 compares the voltage outputs under a shock-excitation for the piezoelectric 

beam with and without the substrate shim. The Alu-Shim sample's peak voltage is 

approximately 1.6V, which is four times greater than the 0.4V for the No-Shim 

sample, illustrating the positive effect of the aluminum shim on the voltage 

generation. The zoomed-in view in Fig. 3-1 an interesting outcome because high-

frequency (over 100Hz) fluctuations can be seen in the No-Shim sample, while these 

variations are not visible for the Alu-Shim sample. Besides, the voltage response in 

the Alu-Shim is damped out faster than the No-Shim sample. 

 

Fig. 3-2. The voltage response of a piezoelectric MFC unimorph under the 1.77g0 

(g0=9.81m/s2) shock-based excitation with and without a substrate shim [16]. 

Fig. 3-3 illustrates the effect of substrate shim on the voltage generation under the 

stochastic DC motor vibration. The With-Shim sample generates the voltage two 

times larger than only the MFC layer. According to Fig. 3-2 and Fig. 3-3, the substrate 

shim increases the voltage output in both shock-based and stochastic vibration 

excitations. 
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Fig. 3-3. The voltage response comparison between the No-Shim and With-Shim 

samples under the vibration from a DC motor [177] 

In the piezoelectric MFC sample, the substrate shim increases the voltage generation 

substantially for both shock-excitation and practical stochastic vibration, proving that 

the substrate layer has a substantial positive effect. The same results about the positive 

effect of the substrate layer have been observed by Hong and coworkers [178]. The 

reason behind this is due to the neutral axis position in the bender [178]. As shown in 

Fig. 3-4, adding the substrate shim will deviate the neutral plane from the piezoelectric 

mid-plane, which will affect the charge distributions so that the resultant charge output 

becomes large. 

 

Fig. 3-4. The neutral axis position for (a) a piezoelectric layer without the substrate 

shim and (b) a piezoelectric layer with the substrate shim [178] 

3.2. ADDED TIP MASS 

A tip mass is often added to the piezoelectric energy harvester in the piezoelectric 

energy harvester design. This subsection investigates the effect of the added mass on 

the systems’ vibration. 

DC motor starts 
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Table 3-1 shows the natural frequency variations when a 4.2g added tip mass is 

introduced, 80% mass of the No-Shim sample, and 58% mass of the Alu-Shim sample. 

It can be seen that the added tip mass reduces the first natural frequency by 50%, 

which is a substantial reduction. The added tip mass causes a 72% reduction for the 

second-mode natural frequency, which is even more significant than the first mode's 

natural frequency reduction. 

Description 𝜔𝑑(Hz) 
Frequency ratio 

 no tip mass 4.2g tip mass 

No-Shim sample 

- first mode 

- second mode 

 

16.2±0.4 

108.6±3.5 

 

8.2±0.2 

78.0±3.6 

 

0.51 

0.72 

Alu-Shim sample 

- first mode 

 

21.3±0.7 

 

10.8±0.5 

 

0.51 

Table 3-1. The natural frequencies’ variation due to the added tip mass [16]. 

It has been shown by many researchers that the added tip mass enhances the voltage 

generation by piezoelectric harvesters. The outcomes of the experiments, as shown in 

Fig. 3-5, also prove this statement. The tip mass increases the output voltage 

considerably in both No-Shim and Alu-Shim samples. This increase for the Alu-Shim 

sample is from 0.9V to 1.4V, while for the No-Shim sample is from 0.1V to 0.6V. 

Thus, the added tip mass increases the No-Shim sample's voltage more prominent 

because the No-Shim sample is less stiff, and the tip mass causes more significant tip 

deflection than the Alu-Shim sample. Since the No-Shim sample is more flexible than 

the Alu-Shim, the added tip mass vibration endures for a longer time, as shown in Fig. 

3-5. 
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(a)

 

(b)

 

Fig. 3-5. The effect of added tip mass on the voltage for the piezoelectric MFC 

unimorph subjected to a 0.88g0 shock excitation (a) with substrate shim and (b) 

without substrate shim [16]. 

Fig. 3-5 only compares the voltage output for one shock excitation. The comparison 

between the voltages is repeated for a range of different shock excitations, shown in 

Fig. 3-6. It is still valid that the added tip mass increases the peak voltage considerably 

for both the No-Shim and Alu-Shim samples.  
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Fig. 3-6. The tip mass effect on the voltage (peak voltage) for No-Shim and Alu-Shim 

samples over a range of shock base excitations [16]. 

Under the shock excitation, the RMS of the output power is more important than the 

peak power. Thus, the power RMS plotted in Fig. 3-7 compares the power RMS to 

add tip mass. Overall, by increasing the shock excitation amplitude, the effect of tip 

mass becomes more significant. Besides, the increase in the power for the No-Shim 

sample is more significant than the Alu-Shim sample. The tip mass induces extra tip 

deflection due to its inertia, and if the beam is less stiff, the extra tip deflection 

becomes more extensive, which consequently increases the output power. In the No-

Shim sample, the vibration damps out slower, and therefore, the power RMS will also 

be more prominent. 

 

Fig. 3-7. The tip mass effect on the power RMS for Alu-Shim and No-Shim samples 

over a range of shock excitations [16]. 
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3.3. CONTACT LAYER 

The contact layer is an inseparable part of a piezoelectric beam because the 

piezoelectric beam is made of different layers, which need to be joined. However, the 

contact layer effects are often neglected. In this subsection, the numerical and 

experimental results are presented for pointing out the contact layer effect. 

First, numerically, the contact layer's effect in an energy harvester with two 

piezoelectric layers is investigated using the presented FE model in subsection 2.4. 

The geometries of the energy harvester are given in Fig. 3-8. The power output versus 

the harmonic excitation frequency is shown in Fig. 3-8. The contact layer 0µm, which 

is not valid in a real case, leads to the highest power output. However, by increasing 

the thickness of the contact layer, the peak power output drops. The contact layer 

shifts the resonant frequency to the right because it adds stiffness to the beam. 

 

Fig. 3-8. The effect of contact layer thickness on the power output under harmonic 

excitations using the FE model [163]. 
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For further investigation, the experimental voltages from the unimorph beams with 

different contact layers from Ref. [16] are presented in Fig. 3-9. The base excitation 

is shock excitation; therefore, the voltage response has a peak voltage and then damps 

out. Thus, for comparisons, both voltage peak and RMS are plotted in Fig. 3-9. The 

sample with the thinnest contact layer generates the highest voltage peak and the 

voltage RMS. The sample with a 1200µm contact layer, on the other hand, generates 

the smallest voltage output.  

In addition to the peak voltage changes due to the contact layer, the voltage RMS 

varies substantially with different contact layers. Therefore, it can be concluded that 

the contact layer not only changes the peak voltage but also changes the decaying 

response. 

 

Fig. 3-9. Experimental investigation for the contact layer effect on the voltage output 

from the large unimorph with the MFC under the shock-based base excitation [16]. 

The numerical and experimental results prove that the contact layer effect is not 

negligible if the thickness is not small. The contact layer effect depends on its 

thickness and material. Less contact layer thickness gives better power generation 

performance. Nevertheless, the manufacturing process affects the contact layer 

thickness substantially. For instance, Fig. 3-10 shows two different energy harvesters; 

one built in the laboratory, Fig. 3-10 (a), while the other is a commercially 
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manufactured product, Fig. 3-10(b). As can be seen, the unimorph built in the 

laboratory has a considerable contact layer thickness because controlling a thin 

thickness of the epoxy is difficult. 

On the other hand, in the commercial bimorph beam, the contact layer has a negligible 

constant. Thus, for the energy harvester manufacturers by advanced treatment, the 

contact layer thickness may be eliminated. However, if the piezoelectric composite 

beam is built in the laboratory and by hand, the contact layer thickness will be 

inevitably in the range of 100µm, which affects the piezoelectric performance. The 

damping effect of the contact layer is investigated in detail in Chapter 4. 

(a) (b) 

 

Fig. 3-10. (a) A unimorph beam without substrate and a unimorph beam with substrate 

and contact layer manufactures in the Aalborg University laboratory and (b) a 

bimorph beam commercially manufacture. 

 



 

CHAPTER 4. DAMPING IN PEHS 

The power output from piezoelectric energy harvesters also depends on the damping, 

among other factors. A piezoelectric beam is a composite beam vibrating in the 

surrounding fluid, often has mechanical support. Energy dissipation in such a 

piezoelectric beam can have different reasons. These different energy dissipation 

sources, as shown in Fig. 4-1, are: 

 Viscous airflow force: When the beam is vibrating in the air, the airflow force 

resistance applies a resistance force against the beam surface.  

 Squeeze force: The force created by the airflow against a fixed wall generates a 

squeezing force against the beam vibration. 

 Internal energy dissipation: Any energy dissipation inside the piezoelectric beam 

due to acoustic emissions, heat flux, and viscoelasticity, is categorized as internal 

energy dissipation. 

 Support loss: When the piezoelectric beam is clamped or has mechanical 

supports, energy will be lost through the support. 

 Damage damping: If any imperfection occurred between the piezoelectric beam 

layers, this damage could cause energy dissipation.  

 

Fig. 4-1. Energy dissipation sources in a piezoelectric beam during the vibration [161] 

These energy dissipation sources depend on many parameters and can be different for 

different piezoelectric beams. Quantifying these energy dissipation sources can help 

to understand the nature of damping in piezoelectric energy harvesters. The following 

subsections try to present methods for determining the damping coefficient and 

quantify different damping mechanisms.  

4.1. SUPPORT LOSS AND DEBONDING DAMPING MECHANISMS 

This subsection presents the support loss damping and the debonding damping results, 

which have been derived from Ref. [161]. 
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4.1.1. EXPERIMENT SETUP 

The experimental setup for obtaining the power output response over the frequency is 

given in Fig. 4-2 [161]. The piezoelectric sample, clamped by a clamp box, is 

subjected to harmonic excitations by the V201 shaker controlled by the NI 9215 

module. The NI 9263 module measures the output voltage. Consequently, the output 

power is measured using Ohm’s law. 

 

 

Fig. 4-2. Experimental setup for the support and damage damping mechanisms [161] 

Fig. 4-3 shows the piezoelectric samples’ dimensions in this study. Piezoelectric 

beams are unimorph beams with MFC and 0.12mm-thickness aluminum substrate, 

which are joined together with epoxy adhesive. Besides, there is a thickness difference 

between the pristine and the debonded samples due to the bonding layer, affecting the 

damping coefficient. Typically, having greater thickness can cause a structural 

damping increase. For debonding effect study, the MFC size was selected to be large 

so that the debonding effect can be seen clearly. 
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Fig. 4-3. The piezoelectric samples (pristine and debonded) were tested with the 

dimensions [161]. 

Fig. 4-4 (a) shows the experimental samples used for assessing the support loss 

damping. Again, the piezoelectric beams are unimorph samples with the MFC and the 

0.12-mm-thickness aluminum substrate. Fig. 4-4 (b) and (c) show the piezoelectric 

sample connected to two different clamp boxes, one aluminum clamp box, and one 

plastic clamp box. In both of these boxes, four screws are used to clamp the beam.  

(a)  

(b)  
(c)  

Fig. 4-4. The piezoelectric sample tested at different support conditions for measuring 

the support loss, (a) sample with the dimensions, (b) the aluminum clamp box, and (c) 

the plastic clamp box [161]. 
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4.1.2. ANALYSIS METHOD 

The analysis method relies on the SDOF method and model correlation. It has the 

following steps: 

a. The piezoelectric beam is modeled using the SDOF method. The power output 

then will be: 

|
𝑃(𝑡)

�̈�𝐵
2 | =

(1/𝜔𝑛)𝑚eff𝑟𝑘𝑒
2Ω2

[1 − (1 + 2휁𝑚𝑟)Ω
2]2 + [(1 + α𝑘𝑒

2)𝑟Ω + 2휁𝑚Ω − 𝑟Ω
3]2

 (2.12) 

The power output model in Eq. (2.12) is based on the SDOF simple model. 

However, some critical parameters are extracted based on the experiments so 

that the model becomes accurate.  

b. Natural frequency (𝜔𝑛) will be obtained through the experimentally obtained 

frequency response function, e.g., power output FRF. 

c. A model correlation is performed between the analytical SDOF model and the 

experimental so that the damping coefficient is updated until the resonant power 

outputs from the experiment and the model match. 

Fig. 4-5 shows the SDOF model correlation using the resonant peak difference 

minimization by model correlation using the above steps (a)-(c). As can be seen from 

Fig. 4-5, there is good agreement between the analytical and experimental data after 

the correlation; however, there are some differences in the power response bandwidth 

of the experimental data and the analytical SDOF model. This SDOF model is simple, 

but the model updating using the SDOF is less time-consuming and more effortless. 

Besides, this study aims to track the damping variation relatively due to the support 

loss and damage damping, so having an acceptable accurate damping model is not the 

critical need in this study.  
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Fig. 4-5. The SDOF model correlation using experimental data by updating the 

damping coefficient [161]. 

4.1.3. SUPPORT LOSS DAMPING 

Fig. 4-6 illustrates the variation of power over frequency for different clamp boxes 

with different tightening torques. If the torque for the clamp box is varied, the output 

power is also changed. The clamp box material also affects the output power; using 

the plastic clamp box leads to higher power generation.  

 

Fig. 4-6. The power output over the frequency range for the aluminum and plastic 

clamp boxes with different tightening torques [161]. 

The natural frequencies between the plastic and aluminum clamp configurations for a 

torque range of 0.5-0.8N.m are presented in Fig. 4-7. The sample's natural frequency 

with a plastic clamp is 8.2% higher than that for the sample with an aluminum clamp.  
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Fig. 4-7. The natural frequency comparison between the aluminum and plastic clamp 

configurations with different tightening torques [161]. 

The power output for different support clamp conditions is shown in Fig. 4-8 (a). 

There is an evident variation in the power output between the plastic and aluminum 

clamp box; the piezoelectric sample with plastic clamp has higher power generation. 

Besides, for both clamp boxes, by increasing the tightening torque, the power output 

reduces. The tightening torque is increased from an initial value to the final value and 

then reduced to its initial value for the plastic clamp box to ensure that the variation 

is repeatable. There is a good agreement between the power outputs in changing the 

tightening torque despite some minor variations. 

Fig. 4-8 (b) illustrates the identified damping coefficient that the model correlation 

approach has obtained. Overall, it can be concluded that applying more pressure on 

the clamp box by the screws will increase friction in the support and therefore increase 

the damping coefficient. It also indicates that the aluminum clamp box leads to higher 

support loss. 
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(a)

 

(b)

 

Fig. 4-8. (a) The power outputs from different clamp support conditions and (b) the 

identified damping for different clamp support conditions [161]. 

4.1.4. DEBONDING DAMPING 

Debonding in the contact layer can be a phenomenon that occurs during 

manufacturing techniques or aging. Here, the performance of a piezoelectric beam is 

investigated due to the debonding in the contact layer. Fig. 4-9 shows the sample with 

the debonding area. This debonding area was created without any control on its 

boundaries to resemble a real debonding. 
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Fig. 4-9. The deboned sample with the debonding area [161]. 

The power output FRFs for the pristine and the debonded samples are shown in Fig. 

4-10. There are two peak frequencies in the power FRF. It can be seen that the resonant 

power drops significantly due to the debonding with more than 40% power drop in 

the first bending mode frequency. Moreover, the peak frequencies are also reduced by 

approximately 20%. Hence, this debonding has a significant effect on both the 

resonant frequency and the power output; therefore, the piezoelectric beam 

performance would considerably change. In this clamped-free boundary condition, 

the strains close to the clamp box are substantially larger than other areas. Therefore, 

most of the power output in a piezoelectric cantilever is generated from the clamp line 

regions. This debonding area is located in the region close to the clamp line, leading 

to significant influences on the piezoelectric beam performance.  

 

Fig. 4-10. The power FRF for the pristine (undamaged) and debonded samples [161]. 

As discussed in the analysis method, the analytical model power will be updated by 

updating the damping coefficient so that the peak power outputs match, and it is 

assumed that this identified damping is the correct damping value for the piezoelectric 

beam. Fig. 4-11 shows the performance of the model correlation. It can be seen that 

the analytical model power is matched with the experimental peak power for the 

updated damping coefficient. The resultant identified damping is also shown in Fig. 

4-11 for the undamaged and the debonded samples. The damping coefficient in the 
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debonded sample is considerably greater than that of the undamaged sample. 

Therefore, this debonding will increase the damping coefficient.  

 

Fig. 4-11. The identified damping coefficient for the undamaged and deboned samples 

using the power output correlations [161]. 

* The fluid-structure damping is different between the undamaged and debonded samples because of their 

different thicknesses. 

Table 4-1 summarizes the comparisons of the performance parameters between the 

undamaged and debonded samples. Overall, the debonding reduces the power output 

by 41%, reduces the natural frequency by 23%, and increases the damping coefficient. 

The damage-induced damping coefficient is almost responsible for one-third of the 

total damping.  

Parameter Undamaged  Debonded  

Active area (cm2) 20.58 17.49 

RMS resonant power (µW) 132 77.9 

Resonant frequency (Hz) 30 23 

zm (Correlated value) 4.83E-02 7.65E-02 

zFluid-Structure
* [161] 7.90E-04 1.24E-03 

zStructural [28] 5.00E-07 5.00E-07 

zSupport (=zm-zFluid-Structure-zStructural) 4.75E-02 4.75E-02 

zDamage (=zm-zFluid-Structure-zStructural-zSupport) - 2.78E-02 

* The fluid-structure damping is different between the undamaged and debonded samples because of their 

different thicknesses. 

Table 4-1. Comparing power output, resonant frequency, and the damping coefficient 

between the undamaged and debonded sample [161]. 
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4.2. HTVR METHOD FOR DAMPING DETERMINATION 

The damping is a sensitive parameter depending on many influential parameters, 

including the boundary conditions and the manufacturing process. Therefore, it is of 

great interest to present simple methods to quickly and reliably determine the damping 

coefficient. One method for the damping determination for the piezoelectric beams is 

the harmonic transient voltage response (HTVR) method [162], which uses only the 

voltage measurements made on piezoelectric beams; no pre-knowledge about the 

system is needed. This subsection presents the HTVR method and its performance for 

the damping determination according to Ref. [162]. 

4.2.1. HTVR METHOD PRESENTATION 

HTVR has four main steps, as shown in Fig. 4-12. 

 

Fig. 4-12. The four main steps for the HTVR method [162]. 

The first step is to apply a harmonic base excitation to the piezoelectric beam and 

measure the transient voltage response. It is critically important that the voltage 

response be measured from the zero conditions. A sample of the measured transient 

voltage is shown in Fig. 4-12. 

The second step is to apply the Fast Fourier Transform (FFT) to the measured signal. 

By this, the excitation frequency and the damped natural frequency can be obtained. 

Because the voltage is measured from the zero conditions, the response also contains 

the natural frequency information because it is evident in the transient response. Fig. 

4-13 shows that how the FFT can reveal the dominant frequencies in the voltage 

response. 
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Fig. 4-13. The FFT of the voltage signal determines the excitation and the damped 

natural frequency [162]. 

The third step is to obtain the envelope curves for the transient voltage response. The 

transient voltage response equation was investigated in subsection 2.3.5. The transient 

voltage response has specific patterns for specific excitation frequency ratios. In two 

specific excitations, a straightforward analytical equation can be derived for the 

voltage envelope curve. These two conditions are (I) resonant excitation, Ω=1 and (II) 

under or near-resonant excitations, Ω<1 or Ω ≈1. The voltage transient response and 

the envelope curve for these two categories are shown in Fig. 4-14. In these two cases, 

the envelope curves are given by: 

Case one (Ω=1) g(𝑡) = 𝑉steady(1 − 𝑒
− 𝜔𝑛𝑡), for all 𝑡 (4.1) 

Case two (Ω<1 or Ω ≈1) g(𝑡) = 𝑉steady(1 + 𝑒
− 𝜔𝑛𝑡)𝑠𝑖𝑛 (

𝜔dc−𝜔

2
𝑡), for t <

1

𝜏
 (4.2) 

 

Fig. 4-14. The envelope curves for the transient voltage response at the two excitation 

cases [162]. 
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The last step is to select the transient peaks and the steady-state value, and by using 

the envelope curve equations, calculate the damping coefficient. Fig. 4-15 shows the 

transient peaks and the steady-state value for a resonant excitation case. The damping 

coefficient can be determined from the ratio of the peaks. If 𝛽𝒿 is the ratio of the 

transient peak at a time 𝑇𝒿 to the steady-state value, as given by: 

𝛽𝒿 =
𝑉peak|@𝑇𝒿

𝑉steady
 

(4.3) 

, then the damping coefficient can be given by: 

Case one (Ω=1) 휁 =
−𝑙𝑛(1 − 𝛽𝒿 )

𝜔𝑛𝑇𝒿
 (4.4) 

Case two (Ω<1 or Ω ≈1) 
휁 = −

ln
𝛽𝒿 − 1

|𝑠𝑖𝑛 (
𝜔dc − 𝜔
2

𝑇𝒿)|

𝜔𝑛𝑇𝒿
 

(4.5) 

One should note that for case two, the transient peak should be located in the early 

stage no later than 𝜏 = 휁𝜔𝑛, e.g., 𝑇𝒿 <
1

𝜏
. 

 

Fig. 4-15. The illustration of the transient peaks and the steady-state value [162]. 

4.2.2. EXPERIMENTAL VERIFICATION FOR THE HTVR METHOD 

Experimental data is used to assess the performance of the HTVR method for the 

damping determination. The experiments are carried out on a unimorph piezoelectric 

beam with the MFC. Fig. 4-16 (a) to (c) illustrate the experimental setup and the 

piezoelectric sample dimensions. 
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(a)  

(b)  

(c)  

Fig. 4-16. (a) the experimental setup, (b) the piezoelectric sample with its dimension, 

and (c) the devise setup for the excitation and the measurement [162]. 

The piezoelectric sample is excited with 14-Hz and 15-Hz sinusoidal base excitations, 

and the HTVR method is applied to the voltage response for the damping 

determination. 

The voltage transient response and the FFT transform of the voltages are shown in 

Fig. 4-17 (a) and (b), respectively. The transient and the steady-state zones are also 

given in Fig. 4-17 (a). Besides, the dominant frequencies in the voltage response can 

be seen from the FFT plots in Fig. 4-17 (b) 
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(a) 

 

(b) 

 

Fig. 4-17. (a) The transient voltage response under the 14Hz and 15Hz harmonic 

excitations and (b) applying the FFT on the transient voltage responses [162]. 

By applying the HTVR method to the transient voltage responses, the damping 

coefficients can be determined. Table 4-1 shows the parameters associated with 

applying the HTVR and the identified damping coefficient. According to the HTVR 

results, the identified damping in 14Hz and 15Hz excitations are in good agreement 

with each other.  

 𝑇1 (ms) 𝑉(𝑇1) (V/g) 𝑉steady (V/g) 
𝑉(𝑇1)

𝑉steady
 휁 (%) 

ω = 14 Hz 95.6 8.629 5.95 1.45 4.38 

ω = 15 Hz 171.0 13.29 10.1 1.32 4.82 

Table 4-2. The identified damping coefficients from the 14Hz and 15Hz harmonic 

excitations using the HTVR [162]. 

Having the damping from the HTVR, the optimum electrical load is obtained from 

the analytical formula given by [179]: 

𝑅L
opt
=

1

𝜔𝐶𝑃

2휁

√4휁2 + (
�̅�31

2

𝑐1̅1
𝐸 휀3̅3

)
2
 

(4.6) 

For the understudy MFC unimorph, the analytical and experimentally obtained 

optimum load is given in Table 4-3. The difference between the experiment and the 

optimum analytical load is 25kΩ. However, this difference maybe is less in reality 

because the selective loads in the experiments are discrete. 
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 Analytical by Eq.(4.6) Experiment [162] Difference 

𝑅L
opt

 25 kΩ 27 kΩ 7.4% 

Table 4-3. The comparison of the optimum analytical load with the experiments. 

4.2.3. ACCURACY EVALUATION FOR THE HTVR METHOD 

This subsection assesses the HTVR method's accuracy under different circumstances 

and compares the HTVR against other damping determination methods. The 

benchmark example in subsection 2.1 is used for the investigations.   

4.2.3.1 Comparison with the other methods 

Here, the benchmark example is investigated by the HTVR method, and the HTVR 

results are compared with the results from the half-power bandwidth [180] and 

logarithmic decay [166] methods.  

The half-power bandwidth method needs the steady-state FRF response (see Fig. 4-18 

(a)), while the logarithmic decay curve needs the transient response to an impact or 

shock excitation (see Fig. 4-18(b)).  

The damping coefficient from the half-power bandwidth method is: 

휁 ≅
Δ𝜔

2𝜔𝑑𝑐
=

2.4

2 × 48.25
= 2.49% 

Besides, the damping coefficient from the decay curve method using the first two 

peaks is: 

휁 =
1

√1 + (
2𝜋

1
𝑁
ln
𝑉peak−1
𝑉peak−𝑁

)

2

= 2.37% 
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(a) 

 

(b) 

 

Fig. 4-18. (a) The steady-state voltage response for the half-power bandwidth method 

and (b) the transient response for the logarithmic decay method [162]. 

Table 4-4 presents the identified damping coefficients from the HTVR, half-power 

bandwidth, and the logarithmic decay methods. According to the results in Table 4-4, 

the HTVR method gives the best damping coefficient values. 

Method 
Determined damping 

coefficient 

Exact damping 

coefficient 
Error (%) 

HTVR method (Ω ≈ 1) 2.71% 

2.7% 

0.0 

HTVR method (Ω = 0.9) 2.64% 2.2% 

half-power bandwidth method 2.49% 7.8% 

logarithmic decay method- N=2 2.37% 12.2% 

logarithmic decay method- N=3 2.98% 10.4% 

Table 4-4. The damping coefficient determination using different methods [162]. 

4.2.3.2 Effect of the excitation frequency 

The HTVR method requires that the structure be excited with a harmonic force. Then, 

it will be essential to explore the effect of the excitation frequency on the HTVR 

damping results. Therefore, the transient responses for the benchmark example under 

different harmonic excitations are considered inputs to the HTVR, as shown in Fig. 

4-19. 
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Fig. 4-19. The transient voltage responses for the benchmark example under different 

harmonic excitations [162]. 

The analysis of these transient voltages using the HTVR is given in Table 4-5. 

According to the HTVR results, the HTVR has the most accurate results for resonant 

excitations. Besides, the near-resonant excitations leave the accurate results with a 

2.2% error. Nevertheless, the HTVR error for the damping determination never 

exceeds 5%, which is a low accuracy compared to the other damping methods [181]. 

 𝑇1 (ms) 
𝑉(𝑇1)  

(V/g) 

𝑉steady  

(V/g) 
휁 

Exact 휁 

value 
Error 

Ω = 0.4 52.01 13 7.8 2.57% 

2.7% 

4.8% 

Ω = 0.7 30.81 22.53 12.82 2.82% 4.4% 

Ω = 0.8 52.21 30.07 18.06 2.58% 4.4% 

Ω = 0.9 93.41 49.04 33.41 2.64% 2.2% 

Ω = 1.0 502.9 125.30 127.83 2.71% 0.3% 

Table 4-5. The effect of the excitation frequency on the identified damping coefficient 

using the HTVR method [162]. 

4.2.3.3 Effect of the added white noise 

As the HTVR investigates the time voltage responses, the noise can pollute the data 

and hinder HTVR performance. Thus, the effect of adding 2% and 5% white noise to 

the transient voltage response is investigated here.  

Fig. 4-20 illustrates the identified damping coefficient from the time voltage signals 

polluted with the white noise. As can be expected, adding the white noise will increase 

the damping identification error. However, the HTVR method still accurately 

identifies the damping for the near-resonant or low-frequency excitations.  
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Fig. 4-20. The effect of adding white noise to the identified damping by the HTVR 

method [162]. 

4.3. MODIFIED STFR METHOD FOR DAMPING DETERMINATION 

The modified STFR (Short-Term Fourier transform and Resampling) is derived based 

on the STFR method in Ref. [182] that has been used for the modal analysis of non-

piezoelectric structures. Some modifications have been added to the primary STFR 

method so that the modified STFR has more capabilities to filter unwanted data and 

provide a more accurate curve fitting process. 

In the STFR (main and the modified versions), the structure response to an impulse, 

shock, or shock-based excitation is required. In the primary STFR method, the 

response should be measured from the structure by a sensor. Nevertheless, in the 

modified STFR, which is derived for the PVEHs, there is no need for extra response 

measurements, and only the decaying voltage response is measured. Fig. 4-21 shows 

a typical decaying voltage response made on a piezoelectric sample.  

 

Fig. 4-21. A typical decaying response of the PVEH to a shock-based excitation [16]. 
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Fig. 4-22 shows the modified STFR process for the damping determination. The 

approach has five main steps, which will be discussed in detail. 

Step 1. Response measurement and segmentation 

The voltage response is measured after an excitation, impulse, or shock-based type 

applied to the beam. It is considered that the voltage is measured with a sampling rate 

of Fs with the total data points of Ns. Thus, the duration of the measured voltage signal 

is 
𝑁𝑠

𝐹𝑠
. The voltage sequence 𝑉[𝑘] is denoted by 

𝑉[𝑘] = 𝑉(𝑡 = 𝑘Δ𝑇)   for  0 ≤ 𝑘 ≤ 𝑁𝑠 − 1 (4.7) 

wherein Δ𝑇 = 1/𝐹𝑠 is the time-step and 𝑘 is the sample number.  

An impulse force excites the structure in all the frequency range from zero to infinity 

(in ideal condition). Therefore, the measured response 𝑉[𝑘] contains the effects of not 

only the first mode but also from higher modes. Therefore, ideally, the STFR method 

can be applied to extract higher mode modal parameters, e.g., 𝑉[𝑘] = ∑ 𝑉𝑖[𝑘]𝑁
𝑖=1 . 

According to the transient voltage response presented in subsection 2.3.5, the voltage 

response to an initial impulse condition can be given by:  

𝑉𝑖[𝑘] = 𝐴𝑖𝑒
− 𝑖𝜔𝑛,𝑖(𝑘Δ𝑇) sin(𝜔𝑑,𝑖(𝑘Δ𝑇) + 휃𝑖) (4.8) 

Therefore, the envelope curves have an equation of 𝐴𝑖𝑒
− 𝑖𝜔𝑛,𝑖(𝑘Δ𝑇), and the peaks lye 

in this envelope curve. 

The original sequence 𝑉[𝑘] is divided into U segments to form a decay curve from 

these segments. As the result of segmentation, the number of data points at each 

segment is 𝑁𝑤 = 𝑁𝑠/𝑈. The segmented voltage signal is expressed by: 

𝑉𝑢[𝑤] = 𝑉(𝑡 = (𝑢𝑁𝑤 + 𝑤)Δ𝑇)ℋ(𝑤,𝑁𝑤),        0 ≤ 𝑤 ≤ 𝑁𝑤 − 1 (4.9) 

ℋ(𝑤,𝑁𝑤) is the symmetric Hann function of 𝑁𝑤 length to ensure smooth corners in 

the segmented signal.  

An average time is assigned to each segment, as given by: 

𝑡𝑚[𝑢] = 𝑢𝑁𝑤Δ𝑇 +
𝑁𝑤
2
Δ𝑇 (4.10) 

The FFT on the segmented signal is denoted by: 
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�̂�𝑢[𝑛] = ∑ (𝑉(𝑡 = (𝑢𝑁𝑤 + 𝑤))Δ𝑇)𝑒
−𝑗2𝜋

𝑛𝑤
𝑁𝑤

𝑁𝑤−1

𝑤=0

 (4.11) 

Step 2. Resampling and Short-Term FFT 

Reducing the total data points by segmenting will reduce the frequency resolution, 

and therefore the accuracy for the natural frequency determination becomes less. A 

resampling and zero-padding process are carried out to improve the frequency 

resolution. The resampling is performed by a factor of 𝑑, and the zero-padding with a 

factor of 𝑏. Thus, the frequency resolution becomes Δ𝜔𝑛,𝑑 =
2𝜋𝐹𝑠𝑈

𝑏𝑑𝑁𝑠
. 

The decay curve in the modified STFR is formed based on the peaks obtained from 

applying the FFT on all the samples, Short-Term Fourier Transform (STFT). 

Therefore, the FFT should be applied on each resampled segmented signal, as 

expressed by: 

�̂�𝑢,𝑑[𝑛] = ∑ (𝑉(𝑡 = (𝑢𝑁𝑤 + 𝑤))𝑑Δ𝑇)𝑒
−𝑗2𝜋

𝑛𝑝
𝑁𝑏

𝑁𝑏−1

𝑝=0

 (4.12) 

A scaling process shall be carried out to scale up the resampled FFT (�̂�𝑢,𝑑[𝑛]) to the 

original segmented FFT (�̂�𝑢[𝑛]) because the resampling and zero-padding change the 

number of data points. 

Step 3. Extract peak from the STFT 

For the frequency range of interest, at each resampled segment, the (local) maximum 

is searched in the FFT signal �̂�𝑢,𝑑[𝑛]. The local maximum for the i-th modal mode is 

denoted by �̂�max,𝑖[𝑢]. In other words, �̂�max,𝑖[𝑢]-s are the peaks in the �̂�𝑢,𝑑[𝑛] for the 

i-th mode. The location of the peaks (resonances) in the frequency span is also stored 

in the 𝜔𝑑,𝑖[𝑢]. 

Step 4. Curve fitting on the peaks 

After extracting the local maximums at each resampled segmented signal, the peak 

values can be plotted over the segmented time 𝑡𝑚[𝑢] to form the decaying curve. 

According to the exponential form of the envelope curves (𝐴𝑖𝑒
− 𝑖𝜔𝑛,𝑖(𝑘Δ𝑇)), the peak 

values have the exponential scale representation. Rather than performing an 

exponential curve fitting, a linear curve fitting between the segment time and the peak 

logarithmic value will be performed so that all the peak data points have the same 

weight in the least-square curve fitting. The linear relationship between the 

logarithmic peak values over the times is given by: 
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log(�̂�max,𝑖[𝑢]) = log 𝐴𝑖 − 𝛿𝑖𝑡𝑚[𝑢] (4.13) 

Therefore, 𝛿𝑖, the slope of the logarithmic peak values over time is obtained from the 

STFR method. 

Step 5. Modal parameter extraction 

The damped natural frequency for the i-th mode is calculated by averaging the 𝜔𝑑,𝑖[𝑢], 

as expressed by: 

�̅�𝑑,𝑖 =
1

𝑢𝑙
∑ 𝜔𝑑,𝑖[𝑢]

𝑢𝑙−1

𝑢=0

 (4.14) 

From the damped natural frequency and the fitting slope 𝛿𝑖, the damping coefficient 

is estimated by [16]: 

휁𝑖 =
𝛿𝑖 𝜔𝑑,𝑖⁄

√(1 + (𝛿𝑖 𝜔𝑑,𝑖⁄ )
2
)

 
(4.15) 

These steps are briefly discussed in this subsection. More information about the STFR 

practical tips can be found in Appendix G. 
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Fig. 4-22. Step-by-step guide for the modified STFR [16]. 
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4.4. VISCOUS AND STRUCTURAL DAMPING CONTRIBUTIONS 

As the damping mechanisms discussed, the sources of damping can be different in the 

PVEHs. This subsection tries to quantify the contribution of the viscous and structural 

damping in PVEHs with different configurations. First, using the “modified STFR” 

for damping coefficient determination, a technique to separate the viscous and 

structural contributions is introduced. Effect of the bonding layer added tip mass and 

additive adhesive tape on the damping coefficient would also be presented. The 

methods and the results of this subsection are derived from Ref. [16].  

4.4.1. TECHNIQUE FOR SEPARATING THE VISCOUS AND 
STRUCTURAL CONTRIBUTIONS 

According to the experimental tests [183], a proper damping model has two 

components: structural and viscous. The structural damping part has a negligible 

dependency on the vibration amplitude [146], [184]; therefore, the damping 

coefficient is considered to be a combination of the structural and viscous parts, as 

given by [16]: 

휁𝑚  = 휁struc + 𝛼휁𝑎 (4.16) 

If 𝛼 and 휁struc are experimentally determined, the damping model is quantified, and 

the structural and viscous damping parts are differentiated. The piezoelectric harvester 

is subjected to shock-based excitation with a series of increasing excitation amplitudes 

to achieve this. Then, by fitting a line to the experimental damping coefficients and 

extrapolating back to the zero amplitude point, the structural part 휁struc Moreover, the 

slope 𝛼 can be determined. 

(a) (b) 

 

Fig. 4-23. (a) The piezoelectric beam under the shock-based impulse with the 

decaying voltage response and (b) the line fitting and extrapolating back for obtaining 

the structural 휁struc and the slope 𝛼 [16]. 
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4.4.2. EXPERIMENTAL SETUP 

Seven piezoelectric samples are tested for the damping determination. All the samples 

have one MFC 8528-P2 type serving as the piezoelectric layer. Then, different 

configurations are considered, with and without substrate shim, different bonding 

layers, and with and without tip mass. Tests are categorized into three groups, as 

described in Table 4-6. There are various factors that the damping coefficient for them 

should be determined; therefore, each sample is tested for a specific objective. Fig. 

4-24 shows the objectives for carrying out tests on these seven samples.  

Group 

No. 

Sample 

No. 

Piezoelectric 

layer 
Substrate shim 

Bonding layer 
Tip mass 

(g) Material 
Thickness 

(µm) 

I 

1 
MFC 

𝑡MFC=300µm 

- - - 0 and 4.2g 

2 
𝑡𝑠=120µm 

aluminum 
Epoxy rapid 332 𝑡𝑐=260 0 and 4.2g 

II 

3 

MFC 

𝑡MFC=300µm 

𝑡𝑠=100µm 

brass 
Epoxy 3430 𝑡𝑐=300 0 and 9.2g 

4 

𝑡𝑠=100µm 

brass+ Tesa® 

adhesive tape 

Epoxy 3430 𝑡𝑐=300 0 and 9.2g 

III 

5 

MFC 

𝑡MFC=300µm 

𝑡𝑠=100µm 

copper 

3M Company 

double-sided tape 
𝑡𝑐=100 - 

6 
𝑡𝑠=100µm 

copper 

3M Company 

double-sided tape 
𝑡𝑐=300 - 

7 
𝑡𝑠=100µm 

copper 

Tesa® adhesive 

tape 
𝑡𝑐=1200 - 

Table 4-6. The seven tested piezoelectric beams for the damping determination tests 

[16]. 
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Fig. 4-24. The objectives for performing experimental tests on each sample [16]. 

The boundary condition for the piezoelectric samples is clamped-free. Fig. 4-25 (a) 

shows a typical energy harvester with a tip mass. The tip mass is made of steel and is 

attached to the top of the harvester by double-sided tape, as shown in Fig. 4-25 (b). 

Adding an adhesive tape for exploring the structural damping effect is shown in Fig. 

4-25 (c). Besides, Fig. 4-25 (d) to (f) illustrate the piezoelectric samples with different 

bonding layers.  

• Structural damping ⇒ for MFC

• Viscous damping ⇒ α and effect of 4.2g tip mass
sample 1

• Structural damping ⇒ for epoxy bonding layer 

• Viscous damping ⇒ α and effect of 4.2g tip mass
sample 2

• Structural damping ⇒ for epoxy bonding layer 

• Viscous damping ⇒ effect of 9.2g tip mass
sample 3

• Structural damping ⇒ for adhesive damping tape

• Viscous damping ⇒ effect of 9.2g tip mass
sample 4

• Structural damping ⇒ for the bonding layer of 3M 
100µm double-sided tapesample 5

• Structural damping ⇒ for the bonding layer of 
300µm double-sided tapesample 6

• Structural damping ⇒ for the bonding layer of 
Tesa® 1200µm double-sided rubber-type tapesample 7
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 (a) 

 

(b) (c) 

 

(d) (e) (f) 

 

Fig. 4-25. (a) The dimensions for a typical sample with an added tip mass, (b) the tip 

mass connection, (c) adding an adhesive tape to the bottom of the substrate shim, (d)-

(f) the piezoelectric samples with different bonding layers [16]. 

The experimental setup and the devices employed for measuring the acceleration and 

the piezoelectric responses are shown in Fig. 4-26. The cantilevered piezoelectric 

sample connected to the shaker is shown in Fig. 4-26 (a) and (b). The data acquisition 

systems for measuring the acceleration, force, and piezoelectric voltage response are 

also shown in Fig. 4-26 (c). 
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(a) 

 

 

(b) 

 

(c) 

 

Fig. 4-26. The cantilevered piezoelectric sample in connection with the shaker for (a) 

Group I tests, (b) Group II tests, and (c) the data acquisition systems [16]. 

4.4.3. ADDED TIP MASS EFFECT ON THE DAMPING 

In samples 1 and 2, a tip mass of 4.2g is added to the beam tip. The damping 

coefficient for samples 1 and 2, extracted by the modified STFR, is shown in Fig. 4-27 

(a) and (b), respectively. Overall, it can be concluded that due to the presence of tip 

mass, the damping coefficient increases, or in other words, the voltage response 

decays faster. 
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(a) (b) 

  

Fig. 4-27. The variation of damping coefficient due to the 4.2g added tip mass for (a) 

sample 1 (No-Shim sample) and (b) sample 2 (Aluminum substrate shim) [16]. 

In total, samples 1 to 4 have been tested with and without tip mass. Table 4-7 shows 

how the natural frequency and the damping coefficient vary because of the added tip 

mass. In all the samples, adding tip mass reduces the natural frequency significantly. 

Besides, the damping coefficient overall increases by adding tip mass; the decaying 

voltage response vanishes faster. The variation in the natural frequency is identical 

between the samples; nevertheless, the damping coefficient variations are not in the 

same range because the tip mass changes the beam tip deflection according to the 

beam stiffness. 

In the first sample, where no substrate shim is present, the harvester is the most 

flexible case so that the tip mass increases the beam tip deflection significantly, and 

therefore, the damping coefficient increases more substantially than in other cases. In 

sample 2, with the thickest substrate shim (120µm aluminum shim), the beam is the 

stiffest sample, and therefore the damping increase is less than the other samples. 

Samples 3 and 4, with 100µm brass shim, have an increase of around 40% to 70%. 

tip mass (g) 0 4.20 9.20 Variation (%) 

Sample No. 𝜔𝑛 (Hz) 휁𝑚 (%) 𝜔𝑛 (Hz) 휁𝑚 (%) 𝜔𝑛 (Hz) 휁𝑚 (%) 𝜔𝑛 휁𝑚 

1 16.20 0.78 8.20 1.59 - - -49.38 103.85 

2 21.30 3.34 10.80 3.59 - - -49.30 7.49 

3 23.42 2.31 - - 9.84 3.31 -57.97 43.73 

4 23.14 3.79 - - 10.14 6.52 -56.2 72.13 

Table 4-7. The variation of natural frequency and damping due to the tip mass [16]. 

4.4.4. A MEASUREMENT OF THE STRUCTURAL DAMPING 

As a measurement of the structural damping, an adhesive strip with 60×20×1.2 mm3 

dimensions, Tesa® rubber-type adhesive tape, is attached to the harvester with 100µm 

brass and the MFC. These samples are sample 3 (No adhesive tape) and sample 4 

(With adhesive tape). 
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An adhesive tape is added because the damping increase due to the extra adhesive 

tape can be related to the structural damping because this adhesive tape will not 

change the beam's stiffness properties. Therefore, any variation in the damping 

coefficient can be related to the adhesive tape's structural damping. 

Fig. 4-28 (a) shows the voltage-time responses made on piezoelectric samples 3 (no 

adhesive tape) and 4 (with adhesive tape) with and without a tip mass. In both no-tip-

mass and tip mass cases, adding adhesive tape reduces the peak voltage generation 

and leads to faster voltage depredation. Therefore, the effect of adhesive tape can be 

substantial concerning power generation. Fig. 4-28 (b) compares the samples' peak 

voltage without and with the adhesive tape. As can be seen from Fig. 4-28 (b), the 

peak voltage is reduced because of adding the extra adhesive tape to the substrate.  

 

 

Fig. 4-28. (a) Comparing the voltage responses with the adhesive tape attachment and 

(b) the peak voltage comparison between the samples with no adhesive and with 

adhesive tape [16]. 
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For further investigating the effect of the adhesive tape, the modal parameters from 

the modified STFR method are compared in Fig. 4-29. Fig. 4-29 (a) shows that the 

adhesive tape does not change the natural frequency, meaning that the beam stiffness 

properties remain relatively unchanged. However, from Fig. 4-29 (b), the damping 

coefficient is increased by adding the adhesive tape. This increase in the damping is 

sole because of the structural damping of the adhesive tape. Therefore, it can conclude 

that the structural damping contribution is not negligible. 

(a) (b) 

 

Fig. 4-29. (a) The natural frequency and (b) damping coefficient variations due to 

adhesive tape [16]. 

4.4.5. THE EFFECT OF BONDING LAYER ON THE DAMPING 

The shock-based excitation tests three samples with different bonding layers, and the 

damping coefficient is extracted by the STFR method. Fig. 4-30 shows the details 

about the contact layers in these three samples.  

 

Fig. 4-30. The detail of the different bonding layers for samples 5, 6, and 7. 

Fig. 4-31 compares the damping coefficient between the samples with different 

bonding layers. The apparent differences can be seen among the damping coefficients 

for these samples. The smallest damping ratio is for sample 5 with a 100µm-tape 

bonding layer. The bonding layer for sample 6 is made of three attached layers of the 

1

3

5

7

9

1 2 3 4

z
m

(%
)

Applied force (N)

no tip mass-no
adhesive tape

no tip mass-with
adhesive tape

9.2g tip mass-no
adhesive tape

9.2g tip mass-with
adhesive tape5

10

15

20

25

1 2 3 4

w
d

(H
z)

Applied force (N)

M
F

C

br
as

s

M
F

C

b
ra

ss

M
F

C

b
ra

ss

1
2

0
0
µ

m
 T

es
a 

ta
pe

100µm 3M 

company

3× 100µm 

3M company

Sample 5 Sample 6 Sample 7



CHAPTER 4. DAMPING IN PEHS  

171 

100µm-tape. Therefore, the adhesion force between these layers is strong, and 

therefore, the damping coefficient for sample 6 is the highest value. The damping 

coefficient for sample 7 lies between these two samples’ damping coefficient. Table 

4-8 summarizes the damping coefficient obtained from samples with the different 

bonding layers. 

 

Fig. 4-31. The identified damping for three samples with different bonding layers [16]. 

Sample No. Bonding layer ζm (%) Variation 

Sample 5 100µm tape 3.6 - 

Sample 6 300µm tape 6.0 68% 

Sample 7 1200µm Tesa® tape 4.1 13% 

Table 4-8. The variation of the damping coefficient for the samples with different 

bonding layers [16]. 

The structural damping coefficient can be estimated for the different bonding layers 

by separating the structural and air damping mechanisms. Fig. 4-32 shows the 

estimated structural damping for four bonding layers. Generally, the double-sided 

tapes have a lower damping ratio compared to the epoxy viscoelastic bonding-layer. 

Besides, the thinner double-sided tape (3M Company tape) has less damping 

coefficient, showing that it is better to use less flexible materials for the bonding layer 

from a damping point of view. 
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Fig. 4-32. The identified structural damping for four different bonding layers [16]. 

4.4.6. THE CONTRIBUTION OF VISCOUS AND STRUCTURAL DAMPING 

According to the damping coefficient results, the damping has a constant part and an 

amplitude-dependent part. The amplitude-dependent part changes with the excitation 

amplitude because the tip deflection will change the fluid-structure forces. Therefore, 

the amplitude-dependent part is called viscous air damping. The resistance air force 

causes the viscous air damping against the beam, and as the air resistance force has a 

functionality of the velocity, the air damping is influenced by the velocity [146]. On 

the other hand, the structural damping shows no dependency on the excitation 

frequency [185]. Hence, these two damping mechanisms should be differently 

accounted for in the vibration equation, as given by [186] 

( ) ( )2 2

31( ) 2 1 ( ) ( )m n n mass n p Bx t x t j x d V t x tz w w  a w    =  . (4.17) 

In Eq. (4.17), ζm, the viscous air damping, depends on the velocity, while η, the 

structural damping coefficients, depends on the displacement. The total mechanical 

damping is the combination of ζa and η, but these coefficients' contribution in the total 

damping should be investigated. As can be seen from Fig. 4-33, different assumptions 

about the viscous and air damping contributions greatly influence the peak power 

output. If only the viscous air-damping model is employed, the power generation is 

underestimated considerably. If the total damping is assumed structural damping, the 

peak power output will be overestimated. Thus, an appropriate model for the viscous 

and structural damping mechanisms is needed.  

1.0

1.5

2.0

2.5

3.0

3.5

3
M

d
o

u
b

le
-

sid
e

d
 ta

p
e

T
e

sa
®

d
o

u
b

le
-

sid
e

d
 ta

p
e

E
p

o
x

y
3

4
3

0

E
p

o
x

y
ra

p
id

 3
3

2

z
(%

)

The structural damping for the bonding layers



CHAPTER 4. DAMPING IN PEHS  

173 

 

Fig. 4-33. The effect of different viscous and structural damping contributions on the 

power output [186]. 

The viscous air damping's influence becomes more extensive by increasing the 

excitation amplitude, as shown in Fig. 4-34. The contribution of the viscous and 

structural damping depends on the bonding layer as well. Therefore, as can be seen 

from Fig. 4-34, for the sample with the substrate shim and bonding layer, the viscous 

air damping is accountable for less than 20% of the total damping, showing that the 

structural damping contribution is higher than 80%, and is more significant due to the 

epoxy bonding layer. Nevertheless, if the 100µm 3M double-sided tape is used as the 

bonding layer, the structural damping contribution is 34% [16], which is remarkably 

lower than the samples with epoxy contact layers. 

 

Fig. 4-34. The contribution of the viscous air damping as a function of the excitation 

amplitude [16]. 
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CHAPTER 5. DIFFERENT PEH DESIGNS 

AND APPLICATIONS 

This section discusses the applications, different designs, and optimization processes 

for the piezoelectric vibration energy harvester (PVEH) toward a better performance 

harvester. 

First, a series of piezoelectric beams are attached to a practical vibration source (DC 

motor), and the power output from these beams is measured.  

Next, an energy-harvesting box is designed based on resonant matching for a moving 

car as a practical vibration source. 

Afterward, as an application of piezoelectric energy harvesting, the feasibility and 

functionality of an autonomous condition monitoring for a water pump are 

investigated by a resonant-matched bimorph harvester. 

Later on, it has been observed that the narrowband power can be an issue for practical 

piezoelectric energy harvesters. Therefore, some initiative designs in the geometrical 

configuration and the material layup are proposed to enhance the power density 

generation  

5.1. ENERGY HARVESTING FROM A PRACTICAL VIBRATION 
SOURCE (DC MOTOR) 

This subsection’s results are derived from Ref. [177] (See Appendix J). 

As a practical source of vibration, a DC motor is selected as a kinetic energy source, 

and it has been tried to estimate the amount of power that a piezoelectric energy 

harvester can produce. The DC motor is a V88.57 type motor from DRIVE 

SYSTEMS, with 1.7kW power (maximum supply voltage 24V and maximum current 

85A) and a maximum 1500 Rpm. The motor's output shaft is connected to an 

intermediate bearing connected to a coupling and brake system. While the motor 

rotates in the ideal condition, the bearing vibration amplitude is the lowest value. 

However, an energy-harvesting box is attached to the main bearing to estimate the 

power generation in an ideal condition. The setup for this DC motor test is shown in 

Fig. 5-1 (a). The energy-harvesting box is designed in a way that can accommodate 

multiple piezoelectric harvesters. Fig. 5-1 (b) shows one configuration of a energy 

harvesting box consisting of two piezoelectric beams: the MFC unimorph (with 8528-

P2 MFC from the Smart Materials) and the other is the PZT bimorph (T215-A4-

503Y). A B&K accelerometer measures the acceleration in the R- and Z-directions. 
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Fig. 5-2 (a) and (b) show the measured acceleration in the R and Z directions, 

respectively. The R-direction acceleration level is 35% larger than the Z-direction. 

Therefore, both R and Z-direction accelerations can be employed for power 

generation.  

(a)   

(b)  

Fig. 5-1. (a) The DC motor experimental setup, and (b) the energy harvesting box with 

two piezoelectric beams with tip mass [177]. 

(a)

 

(b)

 

Fig. 5-2. The measured acceleration from the DC motor in 24V supply [24.65Hz or 

1480 Rpm rotation speed], (a) radius, and (b) Z directions [177]. 
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Three configurations are testes, MFC unimorph without tip mass, PZT bimorph 

without tip mass, and PZT bimorph with 13.8-g tip mass. When the motor starts, the 

piezoelectric harvesters start generating power. However, the initial power generation 

is not the same as the steady-state condition. Therefore, the voltage output values will 

be reported for the steady-state condition. 

Fig. 5-3 illustrates the output open-circuit voltage from the DC motor working at an 

ideal condition. The PZT bimorph generates 0.5 V, which is approximately double the 

MFC sample voltage output according to Fig. 5-3 (a). This higher voltage generation 

is expected because the PZT sample has two piezo-layers while the MFC sample has 

one MFC layer. Adding the tip mass to the PZT bimorph enhances the voltage 

generation in both transient and steady-state parts. The steady-state voltage is around 

1.1 V in the open-circuit condition, which is 120% higher than the no-tip-mass 

configuration. The orientation of tip mass is also explored, and it has been 

demonstrated that the width-wise tip mass attachment generates higher power, see 

Fig. 5-3. 

(a)  

(b)  

Fig. 5-3. The open-circuit voltage from the DC motor in ideal condition for (a) MFC 

unimorph and PZT bimorph without tip mass and (b) PZT bimorph with 13.8g tip 

mass [177]. 
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Next, artificially, a 1.5% shaft misalignment is created to assess the piezoelectric 

power generation in the shaft misalignment condition. A PZT bimorph (Quickpack 

Q220-H4BR-2513YB) with 8.6g tip mass is served as the energy harvester in the shaft 

misalignment condition. Fig. 5-4 (a) shows the method for creating the shaft 

misalignment, and Fig. 5-4 (b) shows the PZT harvester.  

(a)  

(b)   

Fig. 5-4. (a) 1.5% Shaft misalignment applied to the DC motor setup and (b) PZT 

sample (Quickpack Q220-H4BR-2513YB) with the accelerometer [177]. 

Fig. 5-5 shows the DC motor measured acceleration with shaft misalignment fault 

working with different supply voltage values. When the DC motor’s supply voltage 

increases, the rotation speed also increases, which consequently increases the level of 

the DC motor’s vibration, as can be seen from Fig. 5-5. By comparing acceleration 

signals in ideal and misalignment conditions in Fig. 5-2 and Fig. 5-5, it can be clearly 

seen that the bearing acceleration is considerably increased due to the shaft 

misalignment. Thus, the output voltage in the shaft misalignment condition is 

expected to be higher.  
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Fig. 5-5. The R-direction acceleration from the DC motor in shaft-misalignment 

condition with different supply voltage [177]. 

The output voltage made on the PZT bimorph from the shaft misaligned DC motor is 

measured under different DC motor supply voltage. The FRF of the voltage signal is 

calculated to extract the motor’s rotational speed at each supply voltage. The voltage 

responses, time, and FRF signals, made from the piezoelectric harvester are plotted in 

Fig. 5-6. 

The piezoelectric voltage generation under the motor excitation in shaft misalignment 

condition is considerably higher than in the ideal working condition. This 

considerable difference implies that the voltage output from piezoelectric harvesters 

can be treated as an indicator for damage detection in high-speed rotatory machines. 

The acceleration increases by the supply voltage, and therefore the voltage generation 

increases, see Fig. 5-6. However, the voltage generation growth is much more 

significant than the acceleration increase; by increasing the motor’s supply voltage, 

the motor rotational frequency increases, and hence the base excitation frequency 

increases. This frequency increase in the base excitation acts like an influential 

positive factor in the voltage generation. Therefore, it can be concluded that by 

increasing the motor supply voltage, the motor’s rotational speed becomes closer to 

the harvester’s natural frequency. 
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Fig. 5-6.  The PZT sample open-circuit voltage responses, time and FRF, from the 

shaft-misaligned DC motor in different rotational speeds [177]. 

The power normalized to the square input acceleration is plotted in Fig. 5-7 against 

the rotation speed to investigate further the relationship between rotation speed and 

power generation. The motor’s rotation speeds are 9.5 Hz, 11.5 Hz, 14.9 Hz, 18.3 Hz, 

20.75 Hz, and 22.95 Hz. For both 56-kΩ and 110-kΩ electrical loads, the power 

generation is maximum at the 18.3-Hz rotation frequency, showing that the PZT 

sample natural frequency is matched to the 18.3-Hz rotation speed.  

Voltage time signals Voltage FRF signals 
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Fig. 5-7. Power normalized to square input acceleration for different rotation speeds 

[177]. 

As observed in Fig. 5-7, the power generation with fr=18.3 Hz excitation leads to 

higher power generation. However, if the excitation frequency is slightly decreased to 

fr=17.8 Hz, the power generation drastically enhances. The 0.5-Hz difference in the 

excitation frequency increases the power by 90%, demonstrating the high sensitivity 

of power to the excitation frequency (or DC motor’s rotation frequency). It can also 

conclude that the 17.8-Hz is closer to the resonant frequency than the 18.3Hz. 

Observing the beating phenomenon in the 17.8-Hz base excitation can also 

demonstrate that the rotation speed of 17.8-Hz approaches the harvester’s natural 

frequency; however, it is not precisely the harvester’s natural frequency.  
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Fig. 5-8. The demonstration of the power generation's high sensitivity to the excitation 

frequency in the DC motor (R=110kΩ) [177]. 

In a simple vibrating system, DC motor in this study, the electrical load also has a 

considerable effect on the power generation. By increasing the electrical load, the 

voltage increases; however, the current flow decreases. Thus, there is an optimum 

point for power generation. In this study, the optimum load is 110kΩ. The voltage and 

power with 110-kΩ load are 8 V and 520 µW/g2, sufficient to be fed into a wide range 

of commercial power management systems. The power density is 5200 µW/cm3 per 

1g2 acceleration for the DC motor vibration (with 18V motor supply power). 

Beating phenomenon 
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Fig. 5-9. Finding the optimum electrical load for the best power generation [177]. 

5.2. FREQUENCY MATCHING DESIGN FOR CAR VIBRATION 

As observed in subsection 5.1, power output highly depends on the excitation 

frequency. Therefore, one way to deal with this high sensitivity is to use the frequency 

matching design. In this design, the energy harvester's resonant frequency is designed 

to be as close as possible to the vibration source's dominant frequency. This subsection 

presents a resonant-based harvester design for energy harvesting from a moving car. 

This subsection’s results are derived from Ref. [187] (See Appendix I). 

The acceleration measured from a Grande Punto diesel car moving in an urban road 

is shown in Fig. 5-10. The car vibration data is retrieved from the Real Vibration 

database [170]. Fig. 5-10 (b) also shows the FFT signals from the car vibration data. 

From Fig. 5-10, neither the acceleration levels nor the dominant frequencies in the x, 

y, and z-direction are the same. Therefore, for each direction, one piezoelectric 

harvester is considered. The dominant frequencies for the x, y, and z directions are 

19.3Hz, 31.2Hz, and 12.1Hz. 
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(a)  

(b)  

Fig. 5-10. Car vibration data for a car on the urban road from Real Vibration dataset 

[170] (a) time signals and (b) FFT signals in x, y, and z axes [187]. 

Fig. 5-11 shows the energy-harvesting box layout with three harvesters. PHx, PHy, and 

PHz are excited from the acceleration in the x, y, and z directions, respectively. With 

this configuration, the vibration in the width and length directions will have negligible 

effects because the excitation frequencies are on a low-frequency scale. 

 

Fig. 5-11. The energy harvesting box with three harvesting beams; each beam is 

excited with the acceleration in one direction [187]. 

For each piezoelectric beam, the material properties from a PZT bimorph are 

employed, but the harvester length is considered the tuning parameter for the resonant 

frequency matching. Table 5-1 shows the material properties, thicknesses, and beam 

width for this PZT bimorph. 
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Properties Values 

Piezoelectric stiffness at the constant field, c_11E, GPa 66.7 

Piezoelectric density, ρp, kg/m3 7870 

Electromechanical coupling coefficient, e31, C/m2 -35.5 

Piezoelectric layer thickness (each), t, mm 0.19 

Piezoelectric permittivity constant, ε 3̅3, F/m 3800×ε0 

Substrate Young's modulus, Ys, GPa 100 

Substrate thickness, h, mm 0.13 

Substrate density, kg/m3 8300 

Piezoelectric beam length, L, mm 57.2 

Table 5-1. Material properties of bimorph piezoelectric energy harvester (QP220-

H4BR-2513YB)) [187]. 

This bimorph harvester's power generation performance is estimated using the FE 

method and employing the viscous-structural damping model. Fig. 5-12 (a) and (b) 

show the bimorph model and the FE model verification experimental setup. The 

experimental power output is plotted in Fig. 5-12 (c) against the FE model results for 

two damping models, namely pure viscous damping and combined viscous-structural 

damping models. The contribution of structural damping is considered 40% based on 

the results developed by Ref. [16]. The pure viscous damping model underestimates 

the resonant power while the FE output results agree with the experimental data. Thus, 

it can be concluded that the combined viscous-structural damping model has better 

accuracy for the power estimation. 
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(a)

 

(b)

 

(c) 

 

Fig. 5-12. (a) The FE method for modeling the Quick Pack piezo-bimorph, (b) the 

experimental setup for FE verification, and (c) correlation between experimental data 

and FE model with viscous and viscous-structural damping models [187]. 

Now, the validated FE model is used for the analysis and frequency matching design. 

For the frequency matching design, the objective function is defined as the difference 

between the car vibration’s dominant frequency and the harvester's natural frequency. 

Fig. 5-13 shows that the harvester length can change the natural frequency 

considerably; therefore, the beam length is considered the tuning parameter. For the 

PHx, PHy, and PHz harvesters, the objective functions are (�̂�1,PH𝑥 − 19.3)
2
, 

(�̂�1,PH𝑦 − 31.2)
2

 and (�̂�1,PH𝑧 − 12.1)
2
, respectively. Fig. 5-14 shows the optimization 

history for the PHx, PHy, and PHz harvesters. The beam length for the PHx, PHy, and 

PHz harvesters are 111.3 mm, 87.6 mm, and 140.6 mm. 

Furthermore, the power output is plotted in Fig. 5-15 for these optimal length values 

against the electrical load to determine the optimum electrical load. 
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Fig. 5-13. The effect of harvester’s length on the fundamental resonant frequency 

[187]. 

(a)  

(b)  

(c)  

Fig. 5-14. Optimization history as a function of the beam length for (a) PHx, (b) PHy, 

and (c) PHz [187]. 
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Fig. 5-15. Finding the optimum electrical load for the PHx, PHy, and PHz harvesters 

[187]. 

The acceleration level over the 0-100 Hz frequency span for the moving car is 

illustrated in Fig. 5-16 (a). The acceleration in the y-direction is more than five times 

larger than the acceleration in x and z directions. Hence, the voltage output will be 

considerably higher in the y-direction, as can be seen from Fig. 5-16 (b). The peak 

voltage output from the PHy is 0.05V, six times larger than the PHx and PHz harvester. 

The peak power for the PHy is 0.55µW, which is considerably higher than 0.03µW 

for the other harvesters. Thus, these results imply that designing an energy harvester 

in the direction with the highest acceleration level is much better than having multi-

directional harvesting beams.  

The power generation in the frequency span of 30-35 Hz is substantial for the PHy 

harvester. By summing the power generation over the frequency span, the total power 

output is 407 µW for the PHy harvester and 7.34 µW and 9.35 µW for the PHx and 

PHz harvesters, respectively. 
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(a) 

 

(b) 

  

(c) 

  

Fig. 5-16. (a) The acceleration level for the moving car in different directions, (b) the 

voltage, and (c) power output with Ropt electrical load in different directions [187]. 
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5.3. TOWARD REMOTE AUTONOMOUS CONDITION 
MONITORING: WATER PUMP CASE STUDY 

In subsection 5.1, it has been demonstrated that the shaft misalignment will 

considerably increase the voltage generation. This conclusion then becomes the 

central idea for applying the piezoelectric energy harvesting; remote condition 

monitoring for the high-speed rotating machinery. This subsection’s results are 

derived from Ref. [4] (See Appendix D). 

The idea for remote condition monitoring is that an RF transmitter, which is being 

powered by a piezoelectric harvester, sends a pulse signal to an RF receiver, and by 

investigating the time elapse between pulses, one can assess the machine state. 

Because piezoelectric power generation depends on the vibration level and frequency, 

if any fault changes the vibration amplitude or shifts the dominant frequencies, the 

pulses' elapsed time will alter. Fig. 5-17 shows the protocol for this approach for 

remote condition monitoring. Ref. [4] suggest the PIC16F676 microcontroller, which 

consumes 17µW (8.5µA at 2.0V).  The RF transmitter consumes 23.1mW (7mA at 

3.3V) during the transmission data and 330nW (100nA at 3.3V) in standby mode. 

 

Fig. 5-17. The protocol for remote condition monitoring using the piezoelectric energy 

harvester [4]. 

When the water pump works normally, the piezoelectric harvester, designed based on 

the normal working condition, charges the energy storage. After the energy reaches a 

specific value, the microprocessor will be activated. After this point, the 

microprocessor permits one RF signal transmission when the capacitor voltage 

reaches a designed value. Sending RF signal will discharge the capacitor; 

nevertheless, the piezoelectric harvester charges the capacitor repeatedly. Fig. 5-18 

(a) is the condition monitoring performance under normal conditions. If a defect 

increases the acceleration level, then the charging process is faster, while the RF 

power consumption is the same. Thus, sending the RF pulses will be faster. By 

analyzing the elapsed time between the RF pulses, water pump condition monitoring 

can be obtained. If the effect of each specific defect on the acceleration signal in terms 

of vibration amplitude and frequency domain signals can be determined, the defect 

type can also be determined [4]. More details about the pulse condition monitoring 

approach can be found in Ref. [4]. 
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Fig. 5-18. The pulse system performance at (a) defect-free and (b) defected condition 

[4]. 

Fig. 5-19 (a) shows the conceptual design for the energy-harvesting unit and the RF 

transmitter. The energy harvesting unit is directly attached to the bearing's external 

box as the bearing is sensitive to damages (the Ref. [188]). The energy-harvesting 

beam is a bimorph (T226-A4-503X from Piezo Systems) with tip mass in the 

clamped-free boundary condition. The harvesting beam will undergo base excitation 

from the bearing acceleration. The harvester output wires are connected to an 

electrical load and then to a rectifier-conditioner-storage circuit. Fig. 5-19 (b) shows 

the energy harvesting unit. To create the AC output to an always-positive output and 

scale-up the output voltage, a five-stage Multistage Dickson Charge Pump (MDCP) 

is used, as shown in Fig. 5-19 (c). 
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(a)  

(b)  

(c)  

Fig. 5-19. (a) The conceptual design for the water pump remote condition monitoring, 

(b) the piezoelectric beam with the harvesting circuit, and (c) the five-stage Multistage 

Dickson Charge Pump (MDCP) [4]. 

The acceleration data is measured from an actual water pump during working, as 

shown in Fig. 5-20 (a). The acceleration data is recorded at three conditions: defect-

free, shaft misalignment, and shaft looseness, as shown in Fig. 5-20 (b). Fig. 5-20 (b) 

shows that the shaft looseness and misalignment faults increase the vibration level; 

nevertheless, the shift in the dominant frequencies does not occur, see Fig. 5-20 (c). 
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(a)  

(b)  

(c)  

Fig. 5-20. (a) Measuring the acceleration from the water pump bearing, (b) the 

measured acceleration at defect-free, shaft looseness and shaft misalignment 

conditions, (c) the contribution of the FFT peaks [4]. 

The piezoelectric beam is designed so that the piezo-beam natural frequency matches 

49.5Hz, the 1X rotation speed of the water pump. The frequency tuning is 

accomplished by tunning the tip mass, so the piezoelectric geometry is unchanged. 

Fig. 5-21 (a) shows the tip mass tuning process. An 8-gr tip mass, shown in Fig. 5-21 

(b), is found to match the natural frequency to 49.5Hz. Therefore, the designed energy 

harvester is a bimorph (T226-A4-503X from Piezo Systems) with an 8-gr tip mass. 

The voltage frequency responses for different load resistances are shown in Fig. 5-21 

(c). The power output versus the electrical load is shown in Fig. 5-21 (d). As discussed 
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in subsection 2.3.4, the resonant frequency will change by the resistance connection, 

and because the uncoupled harvester’s resonant frequency is matched to the 49.5Hz, 

the harvester’s coupled resonant frequency will be slightly higher than 49.5Hz. In the 

electrical load range of 50kΩ, the coupled resonant frequency is 50.1Hz. 

Consequently, the power output for 49.5Hz excitation is less than the power for 

50.1Hz excitation. Similarly, the optimum load for the 49.5Hz and the 50.1Hz 

excitations is slightly different. Nevertheless, the optimum load for the 49.5Hz shall 

be selected because the measured excitation source (water pump) has the 49.5Hz 

dominant frequency. 

(a)

 

(b)

 

(c)

 

(d)

 

Fig. 5-21. (a) Resonant matching using tuning tip mass, (b) the tip mass for the 

matched resonant, (c) the voltage frequency response over different loads, and (d) 

power versus the electrical load [4]. 

Because the water pump acceleration is different at different conditions, the voltage 

and power output from the piezoelectric beam would be different as Fig. 5-22 (a) 

shows the direct voltage and power from the piezo-beam per cm3 for different working 

conditions. The capacitor voltage under different working conditions would be higher 

than the original piezo-beam voltage output by considering the five-stage VM circuit. 

Fig. 5-22 (b) shows the capacitor voltage, which is charged by the piezo-beam and the 

five-stage MDCP circuit, in the absence of the RF transmission. It can be seen that the 

defect-free condition leads to the lowest voltage output. 
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The capacitor’s voltage from the starting point is shown in Fig. 5-22 (c) when all the 

energy harvesting and power management circuit elements are active. After the initial 

point, the voltage reaches a level that the microprocessor is activated. Afterward, an 

RF signal is transmitted when the capacitor voltage reaches 8V (pre-defined by the 

designer). Again, as the water pump is working, the capacitor will be re-charged until 

the subsequent RF transmission. However, the charging process at different working 

conditions is not the same as the vibration level is different at different working 

conditions. Therefore, the time elapsed between the RF pulses becomes shorter when 

a shaft looseness or shaft misalignment occurs in the water pump. The elapsed time 

between the RF pulses transmissions under different working conditions are shown in 

Fig. 5-22 (d) and (e). 

Thus, this concept can be used for assessing the condition of a machine. By defining 

a state parameter according to the elapsed time, the machine state is monitored 

continuously. Fig. 5-23 illustrates the performance of this remote condition 

monitoring for the water pump's acceleration signals. A transition period is added 

between the defect-free and shaft-misalignment condition to resemble real damage. 

In the first 8 seconds, where the machine is working at defect-free condition, the 

elapsed time is constant, so the state parameter is 1. While the abnormal condition 

starts, the elapsed time becomes shorter so that the state parameter deviates from 1, 

showing that a fault occurs in the system. 
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(a)

 

(b) 

 

(c)  

(d) 

 

(e) 

 

Fig. 5-22. The harvesting unit and the RF system performance at different water pump 

conditions. (a) voltage and power without adding the power management circuit, (b) 

the capacitor’s voltage without sending RF pulses by considering the VM circuit, (c) 

the capacitor’s voltage with sending RF pulses and by considering the VM circuit, (d) 

the elapsed time between the RF pulses at defect-free condition, and (e) the elapsed 

time between the RF pulses at defected conditions [4]. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

E
la

p
se

d
 T

im
e 

(s
)

Time (s)

Defect-free

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

E
la

p
se

d
 T

im
e 

(s
)

Time (s)

Shaft looseness

Shaft misalignment

activating 

microprocessor 

charging RF transmission 



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

196 

(a)  

(b)  

Fig. 5-23. (a) The acceleration signal from a defect-free condition to a shaft-

misalignment condition, and (b) the elapsed time between the pulses and the machine 

state [4]. 

5.4. ENERGY HARVESTERS WITH VARIABLE THICKNESS PIEZO 
LAYER AND COMPOSITE SUBSTRATE 

This section’s results are derived from Ref. [163] (See Appendix E). The analysis of 

this proposed energy harvester is carried out based on the FEM, presented in 

subsection 2.4. 

Toward enhancing the power generation, a non-uniform energy harvester with 

variable-thickness piezoelectric sheets and the composite substrate is proposed. In this 

design, the piezoelectric sheets partially cover the substrate layer so that the beam 

becomes less stiff and has a low natural frequency. The substrate shim is a composite 

lamina with E-glass fibers so that by changing the fiber orientation, the harvester 

performance can be improved. Besides, variable thicknesses of piezoelectric sheets 

are considered for the analysis. Fig. 5-24 shows the understudy piezoelectric energy 

harvester. The dimensions and material properties for this example are given in Table 

5-2. 



CHAPTER 5. DIFFERENT PEH DESIGNS AND APPLICATIONS 

197 

 

Fig. 5-24. A non-uniform piezoelectric harvester with variable thickness piezo-layers 

[163]. 

Description 
Piezoelectric  

(PZT-5A) 

Substrate 

(E-Glass composite) 

Contact layer 

(Epoxy adhesive) 

Length (mm) 100 200 100 

Width (mm) 25 50 25 

Added tip mass (kg) 0.01 

Thickness (mm) 
ℎ𝑝 = 0.3 (each layer) 

ℎ′𝑝 is variable 
ℎ𝑠 = 0.2 ℎ𝑐 = 0.02 

Density (kg/m3) 7800 1759 2750 

Structural constants 

𝑄11 (GPa) 

𝑄22 (GPa) 

𝑄12 (GPa) 

𝑄44 (GPa) 

𝐺55 (GPa) 

𝐺66 (GPa) 

 

66.0 

66.0 

20.46 

22.8 

22.8 

22.8 

휃=10º (standard configuration) 

56.4 

18.0 

3.6 

9.0 

9.0 

9.0 

𝐸 = 1.05 (GPa) 

𝜈 = 0.3 

Table 5-2. The material properties and the dimensions for the non-uniform variable-

thickness harvester [163]. 

Using a variable thickness will increase the power generation, as shown in Fig. 5-25. 

Besides, the natural frequency will slightly change, about 1.5Hz, when ℎ𝑝 < ℎ′𝑝 <
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2.5ℎ′𝑝. The natural frequency change can be positive or negative depending on the 

thickness increase ratio. Overall, the variable piezoelectric thickness enhances the 

power output, which is a positive effect. 

 

Fig. 5-25. The effect of variable thickness on the harvester power output [163]. 

Changing the fiber orientation in the substrate composite lamina will initially increase 

the power output and decrease the power, as can be seen from Fig. 5-26. The 

harvester's natural frequency reduces from 16 Hz to 13 Hz with θ=40º. The natural 

frequency variation by tuning the fiber orientation can be used as an approach for 

frequency matching design, positively affecting the power output. 

 

Fig. 5-26. The effect of changing the fiber orientation in the composite substrate on 

the harvester power output [163]. 

As a measure to find the optimal power generation condition, Fig. 5-27 illustrates the 

power versus the fiber orientation and the thickness increase ratio. As shown in the 

zoomed-in view, the maximum power output is obtained with θ=20º and ℎ′𝑝=2.75ℎ′𝑝. 

The power output is 104.7mW/g2 at the optimal condition, which is 50% higher than 
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the standard design power output. Nevertheless, by the variable thickness design, the 

harvesting device volume is increased by 33.7%. 

 

Fig. 5-27. Power sensitivity (with optimum load connection) to the thickness 

variability and fiber orientation [163]. 

5.5. A BROADBAND PERFORMANCE IMPROVED COMPOSITE 
ENERGY HARVESTER WITH CAR VIBRATION CASE STUDY 

A conceptual design for a broadband energy harvester with higher power generation 

performance will be proposed and investigated in this subsection. Afterward, the 

power generation using this proposed harvester will be simulated under the car 

vibration input by the FEM modeling in subsection 2.4 and 2.5. These subsection 

results are derived from Ref. [164] (SeeAppendix F). 

In a common clamped-free boundary condition, the stresses near the clamped line are 

considerably higher. Fig. 5-28 shows the von Mises stress for a clamped-free 

piezoelectric beam. Thus, in the piezoelectric cantilever beam, the high-stress regions 

generate considerably higher power than the other regions. Therefore, a large portion 

of the piezoelectric sheet does not contribute to power generation.  
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Fig. 5-28. The von Mises stress along the beam length for a piezoelectric harvester 

vibrating with its resonant frequency [189], the stress near the clamped region is high, 

so the power generation around the clamped regions is considerably larger than other 

regions. 

An energy harvesting beam has been proposed in Ref. [164] with a composite 

substrate and two composite MFCs, see Fig. 5-29 (a). The substrate and the piezo-

MFC, fiber rotations of θs and θp are considered, and the power generation variation 

is studied. As can be seen from, the piezoelectric fiber orientation θp will substantially 

increase the power output and with more influence than the substrate fiber orientation 

θs. This piezoelectric fiber orientation will also reduce the harvester's natural 

frequency. These two conclusions can be seen in Fig. 5-29 (b) and (c). 

The piezoelectric fiber orientation improves the stress (or strain) contour, increasing 

the power output [164]. When 휃𝑝=0˚, there are uniform displacement, strain and 

electrical displacement contours, as can be seen from Fig. 5-30 (a)-(d). On the other 

hand, when 휃𝑝=35˚, there are non-uniform contours for the displacement and strain 

contours. While the displacement field is due to pure bending motion for 휃𝑝=0˚, the 

beam deformation is a mix bending-torsion motion for 휃𝑝=35˚.   

In addition to the uniform contour distortion, the beam stiffness in the x-direction will 

be reduced by rotating the piezo-fibers because their Young’s modulus in the length 

direction is greater than the width direction, leading to more significant displacement 

and strain values.  
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(a) 

  

(b) 

 

 

 

 

(c) 

Fig. 5-29. (a) The composite energy harvester, (b) power output, and (c) natural 

frequency variations by changing the piezoelectric and substrate fiber orientation  

[164]. 

without fiber rotations 



DESIGN, MODELING, AND ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTERS 

202 

 

 

(a) 

(b) 

(c) 

Fig. 5-30. (a) Beam deformation, (b) normal strain, and (c) electrical displacement for 

0º and 35º piezoelectric fiber orientation [164]. 

It is known that the trapezoid configurations, Fig. 5-31 (a), can lead to better power 

generation, as can be seen from Fig. 5-31 (b). The trapezoid configurations can have 

another important feature; they can vary the natural frequency substantially. The 

power and power density of trapezoid (extended and tapered) configurations are 

compared with the reference beam model in Fig. 5-31 (a) and (b). The extended 

configuration generates higher power output, see Fig. 5-31 (b); however, its volume 

is larger than the reference configuration. On the other hand, the tapered beam power 

density is larger than the reference configuration because of its smaller volume. The 

tapered beam has a greater natural frequency, while the extended beam’s natural 

frequency is smaller than the reference configuration. 
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(a)  

(b)  

(c)  

Fig. 5-31. (a) The reference, extended, and tapered configurations, (b) power output 

for trapezoid configurations, and (c) power density trapezoid configurations [164]. 

Increasing the piezoelectric fiber orientation enhances the power output up to an 

optimum value, which afterward, the power drops sharply. The same trend can be seen 

for the power density. The natural frequency also decreases until the optimum fiber 

orientation. The optimum range for the piezoelectric fiber orientation, shown in Fig. 

5-32, has a peak power generation performance with a reduced natural frequency that 

is merit for low-power energy harvesting applications. 
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(a)  

(b)  

(c)  

 

Fig. 5-32. The sensitivity analysis to the fiber orientation and beam tapered angle, (a) 

power output, (b) power density, and (c) natural frequency [164]. 
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By introducing two optimizing parameter, one material, and one geometry, a design 

performance envelope are obtained. Table 5-3 presents the variation study for these 

parameters.  The natural frequency can be varied from -45% to 24% of the reference’s 

natural frequency, giving a wide design range for the resonant matching design 

approach. The power output and power density can be enhanced by a proper selection 

of these two optimizing parameters. 

Parameter Natural frequency Power Power density 

 Value 

(Hz) 

Variation  

(%) 

Value  

(µW/m2.s-4) 

Variation*  

(%) 

Value  

(µW.cm-3/m2.s-4) 

Variation 

 (%) 

#α=0, θp=0 37.81 - 440.03 - 56.41 - 

α=-15, θp=0 33.11 -12.43 457.50 3.97 38.19 -32.31 

α=15, θp=0 46.73 23.59 399.22 -9.27 110.28 95.49 

α=0, θp=θopt 24.06 -36.37 518.24 17.77 66.44 17.77 

α=-15, θp=θopt 20.40 -46.05 524.64 19.23 43.79 -22.37 

α=15, θp=θopt 30.31 -19.84 521.31 18.47 144.01 155.27 

Table 5-3. The variation study for the fiber orientation parameter and taper angle 

[164]. 

As the case study, the car vibration data is taken from Chapter 2, and an energy 

harvester with multiple beams is proposed for this case study. The time-domain and 

FFT of the car vibration are shown below. The acceleration between 26Hz to 35Hz is 

always higher than 0.011g (g=9.81m/s2). Therefore, the car acceleration is 

considerable in a 9Hz range, while the power frequency response of a piezoelectric is 

extremely narrowband, approximately 1-2 Hz. Thus, for obtaining the best power 

generation from the car vibration, a multiple-beam energy harvester will be analyzed. 

The multiple-beam harvester for covering the 9 Hz range can be designed in two ways: 

a standard way by having multiple beams with different beam length values and using 

the taper angle as a tuning parameter considering the optimum fiber orientation. Fig. 

5-33 (a) and (b) demonstrate the proposed and the standard designs. 
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Fig. 2-11. Time domain and FFT of the car acceleration data for a Grande Punto car 

on a bumpy highway [170]. 

(a)

 

(b)

 

Fig. 5-33. Multiple-beam energy harvester for broadband energy harvesting, (a) the 

proposed design by the taper angle as the tuning parameter, and (b) standard design 

by the beam length as the tuning parameter [17]. 

Fig. 5-34 (a) shows that the proposed harvester's power frequency response has a 

larger amplitude than the standard design. The proposed harvester power response has 

fewer fluctuations with a smoother trend in addition to the larger amplitude. By 

multiplying the power frequency response to the FFT acceleration square, the 

generated power by the car vibration can be determined. The power generated by the 

proposed and the standard designs is shown in Fig. 5-34 (b). Fig. 5-34 (b) shows that 

the proposed generated power is considerably higher than the standard design. The 

generated peak power is 120 µW for the proposed design with a 23.7 cm3 volume, 

comparing with the 50 µW peak power with a 44.9 cm3 volume for the standard 

design.  
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(a)   

(b)  

Fig. 5-34. (a) Power frequency response, and (b) power output for the proposed and 

common designs [17]. 

 

 



 

CHAPTER 6. CONCLUDING REMARKS 

6.1. REMARKS ON THE MODELING TECHNIQUES 

Chapter 2 presents the modeling approaches for analyzing the piezoelectric energy 

harvesters. Three kinds of models have been presented: the SDOF model, analytical 

beam model, and the FE method. These modeling techniques will be used to analyze, 

optimize, and design the energy harvesters for different applications in the following 

chapters. 

The SDOF method replaces a piezoelectric beam with a single mass-spring-damper 

system with an electromechanically coupled term due to the piezoelectricity. The 

SDOF method does not accurately estimate the natural frequency, leading to 

inaccurate power output estimations. The Equivalent Beam Method (EBM) is 

introduced to estimate the natural frequencies in the unimorph and bimorph 

configurations with a tip mass. The EBM improves the 1st mode natural frequency 

accuracy; nevertheless, the higher modes' inaccuracies exist. Besides, the optimum 

load obtained by the SDOF method is not accurate. 

The analytical beam model is suitable for single or double piezoelectric beams, with 

contact thickness layers and rectangular configurations. The beam model has good 

accuracy in the first resonant frequency in the constant cross-section and rectangular 

shape. However, the natural frequency estimation accuracy drops for the higher 

modes, yet with considerably better performance than the SDOF method. The beam 

model has good agreement with the FE method over the optimum load selection, while 

it slightly overestimates the power. However, for the load range around the optimum 

load, the power overestimation is smaller than the extremely large or small loads. 

The FE model developed and presented covers a wide range of analysis for 

piezoelectric energy harvesters, including the non-uniform, variable thickness, non-

rectangular, multi-layered, and composite designs. The FE method considers high-

order shear elements suitable for thick-layer and bulk configurations. The FE model 

is also modified to accommodate Micro-Fiber Composite (MFC) piezo-layers 

modeling in a multi-layered manner. The FE model is validated for various cases, 

namely the bimorph without tip mass, bimorph with a tip mass, unimorph with the 

MFC, and trapezoid bimorph beams. 

The modeling techniques for the PEHs are derived in the linear framework. However, 

it is shown that by increasing the amplitude of the base excitation, the resonant 

frequency shifts backward. This resonant frequency shift can be around 3%. By 

increasing the base excitation amplitude, the beam tip deflection also increases, and, 

eventually, due to the large deflections, the beam's natural frequency becomes smaller. 
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6.2. REMARKS ON PARAMETER INVESTIGATIONS 

In Chapter 3, some of the characteristics of piezoelectric energy harvesters are 

investigated to understand the harvesters’ behavior better. 

The substrate shim will positively increase the output power for piezo-beams because 

it will distance the beam’s neutral axis from the center of the piezoelectric layer, and 

therefore, the piezoelectric layer generates higher power under the bending. Besides, 

the substrate layer affects the natural frequency. 

As a general rule, added tip mass increases the beam deflection, and therefore the 

output power will be increased. Tip mass also shifts the natural frequency to the left 

substantially. The tip mass inertia will make the voltage damped out slower under 

shock excitations and lasts longer. If the beam is less stiff, the tip mass increases the 

output voltage more considerably than for a stiff beam. 

The contact layer is an inevitable part of a piezoelectric beam, as the piezoelectric 

layers are joined to a substructure. For the commercially manufactures samples, this 

contact layer can have a negligible thickness; nevertheless, for the samples built by 

hand, controlling the contact layer thickens is difficult. The laboratory samples may 

have influential contact layer thickness. The contact layer can change the natural 

frequency and the power generation performance of the energy harvester. 

6.3. REMARKS ON DAMPING MECHANISMS 

In Chapter 4, damping in the piezoelectric energy harvesters was studied. Two 

methods were presented for the damping coefficient determination, namely the HTVR 

and modified STFR. Numerical and experimental results were presented about each 

method. Both methods are derived for the piezoelectric beams, and only the voltage 

responses are required, without the need for extra sensor installation and structural 

response measuring. Therefore, these methods can be used for in-situ damping 

measurement using only the piezoelectric beams' voltage recording. 

Moreover, by testing different piezoelectric harvesters, it has been tried to quantify 

the damping coefficient at different configurations, with and without substrate shim, 

with and without the tip mass and different bonding layers. The contribution of the 

viscous and structural damping mechanisms was also presented.  

6.4. REMARKS ON APPLICATIONS FOR THE PIEZOELECTRIC 
ENERGY HARVESTERS 

The focus of Chapter 5 is the applications of piezoelectric energy harvesting. The 

vibration from the moving car, water pump, and DC motor is assumed to excite the 

piezoelectric beams. 
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In the DC-motor tests, the power generation depends on the motor rotation speed; 

even a 0.5-Hz difference in the rotation speed considerably changes the power output. 

In the actual application, experiments show an optimum load leading to the maximum 

power generation. It has been also demonstrated that the shaft misalignment in the DC 

motor would vary the piezoelectric voltage generation considerably. 

For a moving car with vibration in three-axes, an energy-harvesting box consisting of 

three harvesting beams is analyzed for power generation. Resonant frequency 

matching was carried out by tuning the beam length values. It has been demonstrated 

that the energy generation from one axis is considerably higher than the other two 

axes. 

Using the conclusion from the DC-motor tests, remote condition monitoring is 

developed, and its performance is studied for a water pump acceleration.  The method 

is based on the RF pulse transmission, and the machine condition is investigated by 

analyzing the elapsed time between the RF pulses. It has been shown that the 

piezoelectric energy harvester can provide power for a microprocessor and an RF 

transmitter for sending limited-time pulses. 

One geometry parameter and one material parameter are introduced that can improve 

the power generation by piezoelectric beams. The material factor, the piezoelectric 

fiber orientation in a composite harvester, will increase the strain contours over the 

beam surface to increase the power generation. The geometry parameter, tapered or 

extended angle, leads to trapezoid configurations that will improve the power 

generation. The geometry parameter can also be used as a tuning factor for frequency 

matching. Using these two parameters, an energy-harvesting system with multiple 

beams is proposed for broadband energy harvesting from a car vibration. 

Three tuning parameters have been investigated for the resonant matching method, 

namely beam length, added mass, and tapered angle. The beam length is the least 

practical among these tuning parameters because the natural frequency is sensitive to 

the beam length, so the tuned beam length cannot be manufacturing accurately. 

Tuning added mass is the most practical method; however, one should be careful 

because it may increase the viscous air damping and reduce the harvester's fatigue 

life. The taper angle is the best from a power generation perspective; however, 

manufacturing trapezoid configuration can be challenging.  

6.5. FUTURE WORKS 

The thesis structure has been categorized into modeling, sensitivity analysis, and 

applications. According to these categories, the direction of further research in the 

PEH can be suggested as follows:  

 On the modeling techniques. 
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 Developing nonlinear finite element model. 

 Estimate the power under random vibrations.  

 Estimate the power by solving the equations time-dependent, especially for 

non-harmonic excitations. 

 

 On the sensitivity analysis 

 Further investigation of the added mass effect on the output power with 

changing the added mass's location and dimensions. 

 Employing different shim materials with a particular focus on the flexible 

substrates. 

 Further investigation of the contact layer effect by employing controlled 

thickness layers and exploring new bonding processes like UV adhesives.  

 Further investigation of the viscous air damping by testing the harvester 

performance in different air pressures and under different air temperatures.  

 Further investigation of the tip-mass effect on the damping with a focus on 

harmonic excitations.  

 

 On the application 

 Experimental testing on the composite piezoelectric harvesters with variable 

fiber directions. 

 Focusing on the optimum electrical load for calculating the optimum load 

quickly and time-dependent for practical applications. 

 Exploring the long-term performance of piezoelectric harvesters. 

 Exploring the power variation due to the packaging and under variable 

surrounding conditions.  

 Further exploration for broadband energy harvesting so that the power output 

is less dependent on the excitation frequency. 
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Effect of damage and support damping
mechanisms on unimorph piezoelectric
energy harvester

Majid Khazaee, Alireza Rezania and Lasse Rosendahl

Abstract

Damping plays a critical role in power generation by piezoelectric energy harvesting, and yet there is a lack of sensitivity

studies on different sources of damping. In this paper, two damping sources in unimorph piezoelectric energy harvesters,

namely support loss and damage damping mechanisms, are experimentally investigated. Variations of the power gener-

ation are evaluated with respect to the sources of damping. Accordingly, the power generation model is developed

according to the experimental results in this work and using a single degree of freedom analytical model. This study

focuses on the debonding effect, as an internal damping source, and support loss, as a critical source of external energy

dissipation. The results show that the debonding reduces the output power dramatically at resonance and, particularly,

at anti-resonance frequencies. Moreover, investigation of the support loss shows that the material of clamp as well as

installation torque have an impact on the support loss and, consequently, affect the output power.

Keywords

Piezoelectric energy harvesting, unimorph, damping effect, debonding effect, support loss

1. Introduction

With the recent developments in electronics, for exam-
ple, the decrease in power consumption (Khaligh et al.,
2010), low power energy harvesting from thermal and
kinetic sources of energy is being widely considered as
an essential tool to introduce self-powered devices for
elaborating system abilities in terms of life time and
accessibility of remote systems (Ahmed et al., 2017).
Furthermore, energy harvesting systems can be manu-
factured using additive manufacturing techniques
(Mortazavinatanzi et al., 2018) for flexible ink-based
nonflat surfaces (Qing et al., 2018; PiezeTech Arkema
Group, n.d.). Among the energy harvesting mechan-
isms, piezoelectric energy harvesters (PEHs) have
drawn much attention due to structure simplicity and
ease of integration into the host structure (Khazaee
et al., 2019). Piezoelectric materials can be grouped
into three types: ceramic; polymer; and composite
(Ahmed et al., 2017). Macro-fiber composite (MFC)
with ceramic fibers is a composite material with excel-
lent electromechanical properties of ceramics as well as
polymeric flexibility (Khazaee et al., 2019), that makes
it an ideal material for long-endurance kinetic energy
harvesting.

Unimorph geometry is one of the most widely used
configuration for PEHs (Li et al., 2014), in which one
piezoelectric layer is bonded into a nonpiezoelectric
substrate shim with clamped-free boundary condition.
A number of researchers used MFC materials for PEH
in unimorph configuration (Sodano et al., 2006; Erturk
et al., 2008; Shan et al., 2015; Khazaee et al., 2019).
Shan et al. (2015) used a bonded beam from MFC
and polyvinyl chloride layers in the clamp-free bound-
ary condition. The beam was subjected to water ver-
texes induced from an upstream cylinder for PEH
and obtained a maximum output power of 1.32mW.
Moreover, by an experimental study. Sodano et al.
(2006) compared the maximum instantaneous power
of three types of materials in unimorph geometry,
including the MFC material, over 12 bending modes
and obtained 11.714 mW at third bending mode.
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Obtaining maximum power from vibration sources is
the main research subject within PEHs. Reddy et al.
(2016) introduced a cavity inside the substrate beam
in order to enhance harvested power from PEHs. In
the context of power estimation, it is a well-known
fact that damping has a critical role on the output
power by PEHs (Roundy et al., 2003). Four factors
contribute into energy dissipation of unimorph PEHs,
namely energy dissipation from air resistance force,
squeeze force, internal energy dissipation, and support
loss (Hosaka et al., 1995).

Internal energy dissipation in composite structures is
a parameter influenced by five factors, namely matrix
or fiber viscoelasticity, interphase, damage, viscoplastic,
and thermoelastic (Chandra et al., 1999; Bhattacharjee
and Nanda, 2018). In almost all numerical and experi-
mental studies on PEHs, a perfect bonding has been
assumed, while adhesion loss or debonding due to the
aging or improper manufacturing process is a major
concern about adhesive joints (Pazand and Nobari,
2017). Saravanos and Hopkins (1996) showed that
delamination cracks between layers of a composite
beam increases modal damping of the beam.
Although debonding can have a substantial effect on
damping (Khazaee et al., 2018) and consequently will
change the PEH power dramatically, there is currently
no investigation on the effect of this damage on the
output power.

Support loss, also called clamping loss, is the energy
dissipated from a vibrating structure through its sup-
port. As the structure undergoes flexural vibration, it
excites its support both by shear and moment forces
causing elastic wave propagating into the support,
which consequently leads to energy absorption by the
support (Hao et al., 2003). Chen et al. (2017) looked at
the support loss in micro-electromechanical systems
and introduced it as the inverse of quality factor,
which can be obtained through elastic wave propaga-
tion through the support. Although all the cantilever
clamps are created by screw joints, the studies by Hao
et al. (2003) and Chen et al. (2017) did not consider the
effect of joint characteristics on the support loss. If the
joints are used to provide clamps, then friction regions
due to the bolted joints may cause slipping, which is a
source of damping (Goyder, 2018). An important
source of energy dissipation in bolted joints is joint
tightness. High clamping pressure produces greater
penetration forces (Ibrahim and Pettit, 2005). Since
unimorph geometry is built by clamping the piezoelec-
tric harvester with the screw, any source of energy dis-
sipation in the clamps, including joint tightness, should
be considered for investigation of power generation by
a piezoelectric layer.

Within the energy harvesting research area, which is
highly dependent on the different aspects of vibrational

characteristics of the device, there is a lack of studies
investigating the dependency of the power to vibra-
tional features within the system such as damage and
support damping mechanisms. Thus, in this paper a
series of experimental studies are carried out to inves-
tigate the effect of debonding, as one of the regular
defects in adhesive layers, and support loss on output
power of a composite beam with MFC piezoelectric
layer. In addition, using a single degree of freedom
method, change of the power with respect to debonding
and support loss is modeled as the damping variation
within the system.

2. A modeling technique for
unimorph harvester

There are various techniques for modeling of PEHs
ranging from simple one degree of freedom (1D) to
two-dimensional multi degree of freedom methods.
While 1D methods require fewer parameters to model
the system, other methods require more parameters to
be defined and are computationally time consuming.
Moreover, as proposed by Erturk and Inman (2008),
a 1D method that considers electro-mechanical cou-
pling can be a suitable method for assessment behavior
of piezoelectric harvesters. 1D methods were previously
used for studying PEHs (Roundy et al., 2003; DuToit
et al., 2005; DuToit and Wardle, 2007). In this study,
the experimental data and analytical model are corre-
lated to obtain the damping coefficient in many case
studies in order to keep the model as simple as possible
but still accurate. Hence, a 1D model with electro-
mechanical coupling is created in a suitable form for
the investigation by elaborating the damping coefficient
in this model. In the result section, the accuracy of the
model is presented to predict the experimental data.
Figure 1 presents the schematic of the model, which
comprises a piezoelectric mass with internal resistance
of Rp, and a proof mass simply connected to a load
resistor, Rl. This model is valid for the case in which
there is no substrate shim. In order to comprise the
effect of the substrate, a coefficient, �m, which is the
proportion of piezoelectric mass to device mass, is
added. Therefore, the equations of motion for a piezo-
electric harvester with the substrate and piezoelectric
layer can be shown as (DuToit et al., 2005)

€x tð Þ þ 2�m!n _x tð Þ þ !2
nx tð Þ � �m!

2
nd31Vp tð Þ ¼ � €xB tð Þ ð1Þ

ReqCp
_Vp tð Þ þ Vp tð Þ þmeffReqd31!

2
n _x tð Þ ¼ 0 ð2Þ

where €xB [m=s2] is the base excitation acceleration, x
[m] is the relative displacement of harvester tip in
respect to the base, xn [1=rad] is the undamped natural
frequency of harvester defined as

ffiffiffiffiffiffiffiffiffiffiffi
k=mb

p
, �m is the
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mechanical viscous damping ratio, Vp [V] is the output
voltage, and meff ¼Ma þmp=3 [kg] (DuToit et al.,
2005) is the effective mass of piezoelectric layer contrib-
uted to shunt damping effect. The overhead dot indi-
cates the time derivative. In addition, d31 [C=N] is the
piezoelectric coupling coefficient in 3�1 mode, Req [�]
is the equivalent electric resistance, Cp is the capaci-
tance of the piezoelectric coupling. The capacitance is
defined in terms of dielectric constant K, the permittiv-
ity of free space (e0¼ 8.9 nF/m), piezoelectric area Ap

[m2] and thickness tp [m] with Cp¼K e0 Ap/tp.
If the base excitation is assumed to be harmonic,

€xB tð Þ ¼ �XBe
j!t, then the displacement and voltage will

be a harmonic function with the same frequency but
with different phase, for example, Vp tð Þ ¼ Vpe

j!tþ’

and x tð Þ ¼ �Xe j!tþ’. By defining magnitude of power
to be �Pout ¼ Vp

� �2
=Req, it can be expressed as (DuToit

et al., 2005)

�Pout

�XB

����
���� ¼

1=!nð Þmeffr k
2
e Req=Rl

� �
31

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ 2r�mð Þ�2
� �2h

þ 2�m�ð Þ þ r�� r�3
� �

þ �mrk
2
e�

� �2i
vuuut

ð3Þ

where r ¼ Req!nCp is dimensionless resistance term,
� ¼ !=!n is dimensionless frequency, and ke is the
electromechanical coupling factor defined with k2e ¼
k231= 1� k231

� �
. As can be seen in equation (3), as well

as physical properties of the piezoelectric harvester, the
output voltage depends on load resistance and excita-
tion frequency for a given excitation magnitude. The
output power from the piezoelectric harvester is max-
imum at an optimum load resistance called optimum
load, Ropt. Moreover, plotting the maximum power at
short-circuit and open-circuit conditions versus the fre-
quency shows that two frequencies, called short-circuit,
!sc, and open-circuit resonant frequencies, !oc, respect-
ively, are assigned to the maximum power. According
to these values, one can calculate the electromechanical
coupling factor,ke, of the piezoelectric harvester with

k2e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!oc=!scð Þ

2
� 1

q
.

The presented model is a simple 1D model.
However, because the output power obtained by this
method is expressed in terms of coefficients obtained
experimentally, see equation (3), the model presents
accurate data compared to the experimental data, as
shown in DuToit and Wardle (2007). For instance, !n

can be obtained through experimental tests. By evalu-
ating !oc and !sc through measurements of the power
over a wide frequency range, ke can be calculated.
However, the damping coefficient needs to be investi-
gated. The analytical model is assigned a single
coefficient, for example, �m, for considering energy
dissipation in the energy harvesting system in the can-
tilever configuration. This study aims to capture the
effects of two sources of damping mechanisms, for
example, damage damping and support loss, which
have different natures. Thus, to make the damping
model closer to the actual one, all sources of energy
dissipation in the system are identified, and all the
other damping mechanisms are evaluated analytically
while the damage and support loss damping are
extracted according to the measurements.

The energy dissipation consists of internal energy
dissipation, fluid-structural viscous damping and sup-
port loss due to the cantilever boundary condition. For
the case of the debonded sample, a damaged damping
term is considered. The sources of energy dissipation
are shown in Figure 2. Thus, �m can be expressed by
equation (4)

�m ¼ �Structural þ �Fluid-Structure þ �Support þ �Damage ð4Þ

The fluid-structural damping, �Fluid-Structure, is due to
airflow force by vibration of beam in free air and
squeeze force by airstream from the near fixed bound-
ary wall. Internal energy dissipation, �Structural, is the
energy dissipated inside the material, which is an
energy dissipation source inside the beam. Calculation
of the fluid-structural damping terms are straightfor-
ward as analytical formulas were reported, such as in
Hosaka et al. (1995). These authors estimated the resist-
ance force against beam transverse vibration induced

Figure 1. Single degree of freedom electromechanical model (DuToit et al., 2005).
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from the surrounded fluid. On the other hand, damage
(�Damage) and support loss (�Support) mechanisms are
difficult to deal with and are often measured with
experimental data. In the current research, fluid-
structural and internal energy dissipation mechanisms
are calculated according to analytical expressions in
equation (5) (Hosaka et al., 1995), and the support
loss and damage damping mechanisms are evaluated
based on experimental data

�Fluid-Structure ¼
�b2

2�bg
3
0h!n

þ

3
4�b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�air�!n

p

2�bhbl!n

�Structural ¼ �=2

ð5Þ

where � and �air are dynamic viscosity and density of
air. In addition, g0 is distance between the fixed wall
and beam outer surface as shown in Figure 2 and � is
the structural damping coefficient. In this study a value
of 0.5� 10�6 is considered for � (Blom et al., 1992).

Due to the presence of damping in the equation for
output power, equation (3), damping will have a sig-
nificant effect on the output power in a unimorph
energy harvester. This work aims to investigate the
effect of changing the damping coefficient, �m, through
debonding and the support tightness, on the output
power while four damping mechanisms are considered
(see equation (4)). In Section 4, the support loss damp-
ing is evaluated from the defect-free state, which can be
used for the debonded state to evaluate the actual
damage damping.

3. Experimental procedure

The effects of the debonding and support loss on the
output power were investigated through experiments.
The experiments were carried out with piezoelectric
samples in unimorph geometry. The piezoelectric sam-
ples were clamped with a clamp box on one end. Then,
they were excited with a magnetic vibration shaker by
sinusoidal input signal, where their response in terms of
output voltage and current were recorded. Figure 3
shows the configuration of the PEHs throughout
the study.

The piezoelectric layer is an MFC with elastic
modulus of 30.336GPa and 15.857GPa in x- and
y-directions, respectively, and Poisson’s ratios of 0.31
in xy and 0.16 in yx and shear modulus of 5.515GPa.
Thickness of the MFC is 0.30mm while the thickness
of the lead zirconate titanate fibers are 190mm with
a density of active area of 5.44 g/cm3. The electromech-
anical properties of the piezoelectric layer are
d33¼ 460 pC/N, and d31¼�210 pC/N. The center
shim is made of aluminum with thickness of 0.12mm,
elastic modulus of 68.9GPa, and density of 2.7 g/cm3.
The piezoelectric layer is bonded to the center
shim with epoxy rapid 332 adhesive with density of
1.16 g/cm3. For investigation of the debonding effects
in Section 4, thickness of the bond layer in perfect and
poorly cured bond conditions are 400 and 189�m,
respectively. In Section 5, where effect of the support
loss damping is investigated, the bond layer thickness is
equal to 245 mm.

Figure 2. Different sources of energy dissipation considered in this study.

Figure 3. Piezoelectric energy harvester configuration.
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The aforementioned unimorph energy harvester is
excited with a VSD 201 Shaker while its input voltage
and electrical power are measured. Signal generation
and data recording were carried out with National
Instrument modules. For signal generation, NI 9263
module, a 4-channel� 10V 16-Bit Analog Voltage
Output, which is adjusted by LabVIEWTM 2013 is con-
nected to a Kepco AC power generation and the output
from Kepco power supply is wired to the shaker. A NI
9215 module with 4-channel� 10V 16-Bit Analog
Voltage Input is used for recording the voltage output
of the piezoelectric harvester. A National Instrument
Compact data acquisition system (cDAQ) type 9172
is used as the medium between the modules and experi-
mental components, for example, the shaker and piezo-
electric samples. Figure 4 shows the experimental setup.

4. Debonding effects

During the model derivation for the PEH from vibra-
tion, mostly cantilever configuration is considered
with the perfect bonding between piezoelectric and
metal substrate. In practice, the perfect bonding
assumption may be degraded over time during oper-
ation or during the manufacturing process in the first
stage (Pazand and Nobari, 2017). In particular, as the
loading condition is dynamic and the harvester mostly
vibrates close to its fundamental natural frequency, it is
likely to observe debonding between the substrate and

the piezoelectric layer. The debonding might have two
influences on the output power. An obvious effect is
that it prevents the vibration of a part of the energy
harvester, so it will reduce the active area for power
generation. Moreover, the debonding may increase
the damping ratio of the device, which results in less
power generation. This increment in the damping
depends on the vibration mode (Khazaee et al., 2018).
In this section, an experimental verification of the
debonding effect on the output power is presented.

Two samples are tested with the same length and
width, each consisting of a 0.3mm thickness MFC piezo-
electric layer. The samples are bonded to an aluminum
substrate with 0.12mm thickness by epoxy rapid 332
adhesive. Figure 5 shows the pristine and debonded sam-
ples with capacitance of Cp¼ 177.07nF/m for an active
length of 85mm. The piezoelectric harvester is connected
to a 31500-V resistance load. The unimorph is excited
over a frequency range of 5 to 100Hz with 1Hz fre-
quency step with the same excitation amplitude. Three
replications are used to show the repeatability of tests.

As can be interpreted from Figure 5, thickness of the
adhesive layer for one sample was considered 211mm
less than the other sample to make it vulnerable to
debonding due to inappropriate debonding thickness.
Then, the sample was excited by the shaker on its
natural frequency until a debonding area is initiated
and developed. It is worth mentioning that after initi-
ation of the debonding, the propagation was quick.

Figure 4. Setup for measuring voltage output.
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The samples were scanned using Acoustic Microscope
KSI V8 from the aluminum substrate and from MFC
layer down to the other front side to find out the layers
within them in which debonding occurred. Figure 6
shows the Acoustic Microscope KSI V8 for scanning
the samples from the aluminum side.

Figure 7 shows the scanned pictures of the samples
in depth with ultrasonic waves. Areas with different
colors in Figure 7 represent the regions with different
densities. In order to recognize debonding regions,
similar regions with different colors should be observed
at different depth levels. It has been observed that, the
debonding was initiated between aluminum shim and
adhesive layer, as the color scattering in the surface can
be seen from Figure 7 (b)–(c). Since the dark color
regions exist at different depths, from Figure 7 (a)–(e),
this area is the likelihood-debonding region. This
region is marked with a white box in Figure 6. In add-
ition, there are two regions with distinctive colors in
Figure 7 (e)–(f) on the pristine sample, which based
on thickness measurements is found to be the result
of higher density of adhesive in these regions.

Figure 8 shows the frequency spectrum of root
mean square (RMS) of the power generation for three
replications. Firstly, the results obtained from the
duplications are identical, showing that the experiments
are repeatable. As it can be seen from the frequency
spectrum, there are two peaks for the output power
at frequencies of 30Hz and 49Hz. The first peak fre-
quency is related to the device fundamental bending
natural frequency, while the second peak is a result of
the anti-resonance frequency of the device. Anti-reso-
nance frequency is the result of electromechanical cou-
pling. At this frequency, the voltage and current are
considerably different from resonance frequency even
though the power is similar (DuToit et al., 2005).

The debonding reduces the active area in the device,
which is an important factor in the power generation,
and it increases the internal structural. Figure 9 shows
the output power from the pristine and debonded sam-
ples as a function of frequency. Table 1 shows the vari-
ation of peak frequencies and output power between
pristine and debonded samples. The debonding reduces

the device stiffness and, hence, decreases the resonance
and anti-resonance frequencies by 23% and 18%,
respectively. Reductions in the peak frequencies are in
the same order, showing the stiffness reduction of the
beam. Moreover, the presence of the debonding area
causes a dramatic reduction in the output power at res-
onance and anti-resonance frequencies. There are two
reasons for reduction of the power generation due to
the debonding: reduction of the active area; and incre-
ment in the damage damping. To measure the real
debonding area, the debonded sample is exploited and
the debonding region is marked, as shown in Figure 10.
The debonding area is measured to be 15% of the
active area. If a uniform generation of power is
assigned to the whole area, 15% active area reduction
will reduce output power by 15%. Hence, the rest of the
power reduction is due to increment of the damage
damping. In addition, it can be noted from Figure 9

Figure 6. Pristine and debonded samples scanned with

Acoustic Microscope KSI V8.

Figure 5. Macro-fiber composite pristine and debonded dimensions and unimorph configuration with clamp box screws.
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that degradation of the output power is two times at the
anti-resonance compared to at the power reduction at
the resonance frequency, proving that the power at
anti-resonance is much more sensitive to the debonding
effect.

By applying the model presented by equation (3) and
by updating the �m through an error-minimization pro-
cess, the analytical output power is correlated with

respect to the experimental output power. This process
is then repeated for the case in which the debonding
occurs by reduction of the active area. Figure 11
shows the comparison of the resonance power between
the undamaged and bonded states based on the analyt-
ical and experimental results, and variation of the
mechanical damping obtained after the model updating
process. Figure 11 (a) shows that the power is

Figure 7. Pristine (top sample) and debonded (bottom sample) samples scanned with ultrasonic waves through depth from the

aluminum shim side (a)–(f).

Figure 8. Frequency spectrum of power for three replications on macro-fiber composite sample.
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successfully correlated at resonance by updating damp-
ing in the presented model. The presented model with
the correlation factor has better accuracy at resonant
frequency compared to the other frequencies. However,
as maximum available power is of interest in energy
harvesting applications and this maximum power is
obtained at resonance, the presented model can be
used for maximum power correlation. Moreover,
Figure 11 (a) shows that correlation for the pristine
sample is more accurate than for the debonded
sample. This is due to the nonlinearity that is intro-
duced into system due to debonding. As shown in
Figure 11 (b), correlated mechanical damping for
the debonding sample shows that the debonding
caused to increase the �m from 0.0483 to 0.0765. �m
comprises the support loss, fluid-structural and internal
friction damping mechanisms for defect-free state
and damage damping for the case of debonded state.
Fluid-structural damping is the same for both cases and
is evaluated using equation (5). Since during the tests
the boundary conditions remained unchanged, the sup-
port loss is identical for both pristine and debonded
states. However, the thickness of samples was slightly
different for pristine and debonded samples, and the
viscous damping coefficient was calculated for each

condition. The damage damping was calculated by sub-
tracting the calculated fluid-structural damping and the
structural damping and, moreover, the experimentally
obtained support loss damping from the correlated
mechanical damping.

Table 2 summarizes the obtained results from this
section. As was shown, the debonding area reduces
15% of the active area responsible for the power gen-
eration. This reduction decreased the RMS resonant
power density 20.53% from 60.83 to 48.34 mW/cm3.
The support loss, which is obtained by subtracting the
fluid-structure and structural damping from the corre-
lated damping coefficient, has a great contribution in
the total damping proving that the support loss damp-
ing is an important part of the energy dissipation in the
system. Hence, the next section is dedicated to this sup-
port loss. The damage damping in the debonded sample
is responsible for 27% of the total damping mechan-
isms, showing that the debonding can strongly affect
the damping coefficient.

The nature of the damping variation due to delam-
ination in the composite materials has been investigated
by Khazaee et al. (2018). The variation in damping
depends on the vibrating mode, which causes penetra-
tion motion or slip motion between layers near the
delamination (Khazaee et al., 2018). Fundamental
mode shape of the unimorph harvester is shown in
Figure 12. In this mode, if a debonding region is pre-
sent, layers on top and bottom of the debonding area

Figure 9. Comparison between power for pristine and debonded samples over different frequencies.

Table 1. Comparison between pristine and debonded samples.

Parameter Pristine Debonded

Variation

(%)

Resonance frequency

(Hz)

30 23 �23.3

Anti-resonance fre-

quency (Hz)

49 40 �18.4

Root mean square

(RMS) of power at

resonance

132.0 77.9 �41.0

RMS of power at

anti-resonance

152.7 30.5 �80.0

Figure 10. Debonded area within adhesive and aluminum layer.
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have a penetration motion in a perpendicular direction
which causes an extra energy dissipation mechanism
inside the harvesting material.

5. Support loss damping

Unimorph or bimorph is among the most applicable
configurations of PEHs, where one end is clamped
and the other end is free. To create the clamp, often a
part of the energy harvester is clamped within a clamp
box in which screws are tightened to provide a nonmov-
ing area. Due to this clamp, an extra loss is introduced

into the system, called support loss (Hosaka et al.,
1995). In this section, output powers from a unimorph
PEH under a clamp-free boundary condition with dif-
ferent clamp box configuration are compared to each
other in order to study the effect of the clamp charac-
teristics on the output power.

Figure 12 (a) shows the sample for testing the sup-
port loss effect on the output power. The thickness of
the MFC piezoelectric, adhesive and substrate layers
are 300, 245, and 120 mm, respectively. The clamp box
consists of two 60� 30mm blocks with four screws
placed symmetrically in the corners with 6mm center-

Figure 11. (a) correlated data versus experimental data; and (b) comparison between maximum power at resonance and damping

increase due to debonding.

Table 2. Variation of output power, mechanical damping and structural damping due to improper bonding.

Parameter Undamaged sample Debonded sample

Active area (cm2) 20.58 17.49

Root mean square resonant power

density (�W/cm3)

60.83 48.34

zm (correlated value) 4.83E-02 7.65E-02

zFluid-Structure (equation (5)) 7.90E-04 1.24E-03

zStructural (equation (5)) 5.00E-07 5.00E-07

zSupport (¼ zm� zFluid-Structure�zStructural) 4.75E-02 4.75E-02

zDamage (¼ zm�zFluid-Structure� zStructural- zSupport) – 2.78E-02

Figure 12. Mechanical damping increases due to debonding in the first bending mode.
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to-edge distance and one center hole for the shaker
attachment. To observe the effect of the support loss,
two types of materials were used for clamp box made
by plastic and aluminum, as shown in Figure 13. The
weight of clamp box set with screws for aluminum and
plastic types are 59.09 g and 25.86 g, respectively.
Moreover, the screws of the clamp box were tightened
with different torques, and for each set of torques the
power was measured over a frequency range close to its
natural frequency.

Figure 14 shows the output power density in mW/g
over a frequency range including the resonant fre-
quency of the PEH, where g¼ 9.81m/s2, from the
MFC sample with the aluminum and plastic clamp
boxes at different levels of tightening torques. The ver-
tical axis shows the output power normalized to input
base acceleration in terms of RMS, when the MFC
sample was excited by a harmonic excitation with the
maximum force of 17.8N. For each case of excitation
with the specific frequency, the output voltage and cur-
rent were measured with 31500 V resistance load and
then the power was calculated by product of the voltage
and current. Tightening torque, N.m., was the torque
used for fastening the four screws of the clamp box
as well as the shaker attachment screw, as shown in

Figure 13 (a). A sample of the measured voltage, cur-
rent, and output power is shown in Figure 15 for a
plastic clamp box with tightening torque 0.5N.m and
excitation frequency of 220Hz. The immediate conclu-
sion to be drawn from Figure 14 is that, the output
power spectrums represent different values for different
clamp box materials and tightening torques. Therefore,
the clamping characteristics play an important role in
the energy harvesting by cantilevered piezoelectric
beams. The resonant frequency, as displayed in
Figure 16, for plastic clamp lies between 212.1Hz and
220.4Hz with an average value of 215.8Hz that is
higher than the resonant frequency for the aluminum
clamp with an average of 199.5Hz lying in the interval
198:4, 202:1Hz. It can be seen that the tightening
torque on the clamp box changes the output power
of the energy harvester as well as slightly altering the
resonant frequency of the piezoelectric harvester. The
output RMS power at resonance is 0.39mW/g for
T¼ 0.5N.m, while it is 0.26mW/g for T¼ 0.8N.m
when an aluminum clamp box is used. Therefore, the
output power reduces 33% due to the tightening
torque. This power reduction for the plastic clamp
box is 14%, showing a lower dependency of the
power to the tightening torque. In addition, the

Figure 13. (a) macro-fiber composite (MFC) harvester dimensions and unimorph configuration with clamp box screws; (b) alumi-

num; and (c) plastic clamp boxes clamping the MFC harvester.
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Figure 15. Voltage, current and power from piezoelectric harvester with plastic clamp with T¼ 0.5 N.m at 220 Hz excitation.

Figure 14. Power frequency spectrum for sample 3 over changing torque T of aluminum clamp boxes.

Figure 16. Resonant frequency of piezoelectric harvester for different tightening torques on plastic and aluminum clamps.
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resonant frequency varies maximum 3.7% in the case of
the plastic clamp while this variation is maximum 1.7%
with the aluminum clamp.

Output current signals over a 1.5 seconds period
from the piezoelectric harvester with plastic clamp
vibrating at its resonant frequency for different tighten-
ing torques are displayed in Figure 17. The RMS of the
output currents for tightening torques of 0.5, 0.6, 0.7,
and 0.8N.m are 23.8, 22.2, 21.9, and 21.7�A, respect-
ively. Therefore, increasing the tightening torque on
the cantilever clamp box reduces the output current.
Increasing tightening torque from 0.5 to 0.6N.m
reduced the current by 6.7 % while this drop is 1.4%
for 0.6 to 0.7N.m, and 0.9 % for 0.7 to 0.8N.m tighten-
ing torque. Figure 18 shows the power at the resonance
at different levels of tightening torque for the aluminum
and plastic clamp boxes. Since the plastic clips have a
degree of flexibility, to prove that the trend is recipro-
cal, the tests were performed from the lowest torque,
T¼ 0.5N.m, to the highest torque, T¼ 0.8N.m and
vice versa. The results show that the harvester with

the aluminum clamp box produced lower power.
On the other hand, by increasing the tightening
torque of the screws of the clamp box, RMS of the
maximum power decreases, for both the aluminum

(a)

(b)

(c)

(d)

Figure 17. Comparison between current measurements at resonant frequency excitation for plastic clamp at tightening torque: (a)

0.5 N.m; (b) 0.6 N.m; and (c) 0.7 N.m and 0.8 N.m.

Figure 18. Variation of power versus torque applied on clamp

screws for different clamp box.
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and plastic clamps. Figure 18 implies that the plastic
clips, which are more flexible than the aluminum, can
provide higher output power and lower support loss
compared to that with the aluminum clamp.

Similar to the previous section, using the developed
model for the unimorph harvester, and with the mini-
mization of the error between the maximum resonance
powers, the mechanical damping ratios are identified
for different clamp boxes at different tightening levels.
These identified damping ratios are shown in Figure 19.
Overall, the aluminum clamp introduces higher energy
dissipation, which in turn causes to reduce the damped
natural frequency in Figure 14. Therefore, in compari-
son with the aluminum clamp box with higher support
damping, the lower resonance frequency of the
harvester with the plastic clamp box is due to lower
support damping. However, with increasing the clamp
pressure by higher tightening torque, the support loss
increases for both clamp boxes, independent of clamp
material.

6. Conclusions

This study presented an experimental investigation of
the effect of damage and support losses damping mech-
anisms on the output power of PEHs in unimorph
geometry. The results show that by using a simple,
but practical, single degree of freedom model, the
power variation can be modeled with the mechanical
damping variation. The debonding, as an internal
source of damping inside the harvester, is investigated
in this study. It is concluded that the debonding
increases the damping and reduces the output power
dramatically. Moreover, the support loss, as an external
damping source, has an effect on the output power in
such a way that the clamp material as well as clamp
pressure will change the output power.
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A PROORF FOR LOOKING DIFFERENTLY INTO DAMPING 
MODELING IN PIEZOELECTRIC ENERGY HARVESTING SYS-
TEMS 
Majid Khazaee, Alireza Rezaniakolaei and Lasse Rosendahl 
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Modelling of piezoelectric energy harvesting systems from vibration point of view is of interest of 
many researchers and plays an important role in the estimation of power output for these systems. 
This paper deals with the dilemma of damping modelling in piezoelectric harvesters as in most of 
modelling techniques only the viscous damping is considered. A discussion is firstly presented about 
the effect of damping modelling on the power output. Then a modelling approach for different damp-
ing mechanisms is presented by which energy dissipation in the piezoelectric harvester can accurately 
be modelled. Finally, based on this damping model, an analytical model is derived for power output 
estimation of piezoelectric energy harvesters. 

Keywords: Damping Mechanisms, Piezoelectric, Energy Harvesting, Structural Damping, 
Viscous Damping. 

 

1. Introduction 

Modelling of piezoelectric energy harvesting systems from vibration point of view is of interest of 
many researchers and plays an important role in the estimation of output energy for these systems. There 
are a vast number of studies focused on vibrational modelling of piezoelectric bimorph (or unimorph) 
harvesters. All of these studies mentioned the effect of damping on the power output of the harvester. 
The less mechanical damping leads to the higher power output [1]. In the spite of great impact of damping 
on power output, as far as the authors are aware of, there is no deep study about different damping mech-
anisms in piezoelectric energy harvesters. 

For energy harvesting applications, mostly researchers used viscous damping model in their approach 
for single-degree-of-freedom models, and for multi-degree-of-freedom modelling, they extended the 
concept of viscous damping and used Rayleigh proportional damping. Based on the literature [1]–[3], 
damping modelling techniques used for energy harvesting applications are viscous damping, which is 
proportional to the velocity. DuToit et al. [3] used a formulation for damping ratios from a previous study 
by Hosaka et al. [4], which internal friction, air-damping, squeeze force, and support loss had been re-
ported as energy dissipation mechanisms of a cantilever beam. In DuToit formulation just the viscous 
damping is modelled, which is proportional to the velocity of vibrating mass. In the Finite Element for-
mulation presented by Junior et al. [2], proportional Rayleigh damping matrix was considered. 
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Except one study that recently compared the structural and viscous damping [5], there is no research 
that taken the structural damping into account as a separate term in the vibrational equations of motion 
for the harvester. Just in the recent short paper by Cooley et al. [5], the role of structural damping in the 
modelling of piezoelectric energy harvesting has been mentioned. In the experimental work by Sodano 
et al. [6], they investigated the power output from PZT and MFC materials bonded to an aluminium shim 
with double sided tape. They mentioned the role of tape damping into decreasing power output, but no 
correction factor or modelling has been presented to consider damping. Crandall [7] mentioned the acous-
tic radiation and internal damping mechanisms as for damping in vibration of a beam. Crandall [7] stated 
that internal damping is a frequency-dependent factor and is a function of the material, So, it is not correct 
to consider a general constant value for friction damping, as considered by Hosaka model [4]. Also, 
Crandall [7] mentioned the dependency of air damping to frequency. 

In this research, the role of damping mechanisms in output energy from piezoelectric energy harvest-
ing are studied as not previous studies addressed this issue. Afterwards, a model for damping in piezoe-
lectric harvesters will be presented that considers viscous and structural damping mechanisms. Moreover, 
a more comprehensive discussion about different mechanisms in structural damping is presented as in 
the previous studies this has not been studied. Section 2 gives a current 1-D modelling approach for 
piezoelectric harvesters. In section 3, the drawbacks of this methods are reviewed and a new model con-
sidering different damping mechanisms are presented. Section 4 presents a numerical error to emphasis 
on the effect of damping mechanisms for output power from the harvester. 

2. Current 1-D Modelling 

Error! Reference source not found. presents the schematic of 1-D model [3], which comprises of a 
piezoelectric mass with internal resistance Rp with a proof mass simply connected to a load resistor Rl. 
In this model, the entire structure is electromechanically coupled, unlike unimorph beams in which a part 
of the harvester is metal substrate. 

 

Figure 1: 1-D electromechanical model [3] 

The coupled equations for the system shown in Fig. 1 can be derived from equations in [3] as 
2 2

31( ) 2 ( ) ( ) ( ),         m n n n p Bx t x t x d V t x t  (1) 

2
31( ) ( ) ( ) 0,   eq p p p eff eq nR C V t V t m R d x t  (2) 

where is the base excitation acceleration, x is the relative displacement of harvester tip respect to the 
base, Vp is the output voltage, n is the undamped natural frequency of harvester, m is the mechanical 
damping ratio, d31 is the piezoelectric coupling coefficient in 3-1 mode, Req is the equivalent electric 
resistance, Cp is the capacitance of the piezoelectric, and meff is the effective mass of piezoelectric layer. 
The overhead dot indicates the time derivative. The capacitance is defined in terms of dielectric constant 
K, the permittivity of free space ( nF/m), piezoelectric area Ap and thickness tp with  Cp=K  Ap/tp. 
In general, if only viscous damping is considered for energy dissipation from the system, energy dissi-
pation can be modelled as 
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  ,C x  (3) 

where  is the velocity vector. 
In the concept of finite element, proportional damping matrix is a linear combination of mass and 

stiffness matrices with constant coefficients. If [M] and [K] are global mass and stiffness matrices of a 
multi-degree-of-freedom vibrating system, then proportional damping matrix considered for modelling 
in cantilever piezoelectric energy harvesting system will be presented as 

     ,  C M K  (4) 

where and  are Rayleigh damping coefficients [2]. This damping matrix will act as a viscous 
damper as it is proportional to velocity. Rayleigh damping coefficients should be determined with exper-
imental vibration tests. In the study by De Marqui Junior et al. [2], no discussion about these coefficients 
has been presented, just these figures presented as the known variables. 

3. Proposed model 

In the study by DuToit et al. [3], the piezoelectric layer has just been considered, without any substrate 
layer or contact layer, so the Hosaka damping model may be applicable for their case study. However, 
as in most piezoelectric energy harvesting, a piezoelectric layer is attached at a substrate surface to form 
a unimorph or similarly bimorph. In these configurations, damping model presented in Eq. (3) will not 
be useful anymore, as the viscoelastic damping from the contact layer should be considered. In addition, 
in the Eq. (1), the vibrating system is only the piezoelectric material. However, in most piezoelectric 
harvesters, the piezoelectric layer is attached onto a substrate surface. Thus, the model by Eq. (1) and Eq. 
(2) cannot be used for these cases as there is a proportion of the device which does not contribute to the 
power generation. So, a model is needed to distinguish the portion of mass, which contributes to vibrating 
motion, and the portion for power generation. 

By adding the effect of substrate using a mass coefficient and a general form of damping, the equations 
of motion for a piezoelectric harvester with substrate and piezoelectric layer can be shown as  

31( ) ( ) ( )    b d mass p Bm x t f kx kd V t f t  (5) 

2
31( ) ( ) ( ) 0   eq p p p eff eq nR C V t V t m R d x t  (6) 

, where mass= mp/ mb is the compensation factor, mb is the device mass, mp is the piezoelectric element 
mass, fd is the energy dissipation, and fB is the base excitation force. The energy dissipation can be related 
to air resistance against beam vibration, fd-air , and internal structural damping, fd-str. Air-damping force 
can be estimated based on viscous damping model, as it has been done by [7] and [4]. However, the 
internal damping is much more complex for piezoelectric harvesters, as the beam is a composite beam 
with materials exhibiting elastic and viscoelastic behaviours at the same time. In the following, the tools 
for appropriate energy dissipation for a piezoelectric harvester will be presented. 

When a cantilever oscillator vibrates in the air, there is an air-resistance force, which cause to dissipate 
energy from the dynamic system. This energy dissipation is proportional to velocity and hence, as it can 
be modelled as a dashpot, it is emerged as a viscous damping term. Hosaka et al. [4] investigated the 
energy dissipation of a macro oscillator in the air with the assumption that beam length is much larger 
than the other dimensions and also width is much larger than thickness. By these assumptions, fd-air can 
be expressed as 

 1/22
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where µ is the air dynamic viscosity, w is the beam width, h is the overall beam thickness, m is the 
viscous damping coefficient,  b and a are the density for beam and air, respectively. 

For internal energy dissipation, the energy dissipation is often introduced as the complex term of 
stiffness and is defined as [8] 

, d str bf jk m x  (8) 

where  is the structural damping coefficient. Here, the aim is to extract an expression for  
 Overall composite materials represent a higher energy dissipation due to the viscoelasticity of the 

polymeric matrix [9]. Chandra et al. [10] mentioned four main factors for energy dissipation in compo-
sites, which are viscoelasticity, interphase, viscoplastic, and thermoelastic. Viscoelastic nature of matrix 
or fiber creates viscoelastic damping. The region adjacent to the fibres along the length will create inter-
phase damping. In the case of applying high vibration or stress a degree of non-linear damping due to 
the present of high stress is evident, which is called viscoplastic damping. Thermoelastic damping is due 
to the heat flow from compression stress zone to the tensile stress zone. Thermoelastic damping depends 
to the amplitude and frequency of applied load, sample thickness and number of cycles and is more 
important for metal composites [10]. A piezoelectric energy harvester consisted of one or two orthotropic 
piezoelectric layers, an isotropic substrate layer, and an adhesive viscoelastic layer. Due to the nature of 
the harvester, viscoelastic and interphase damping mechanisms are evident in the model. In addition, due 
to cyclic loading and the presence of metal in the harvester, thermoelastic damping should be taken into 
the account. So, the internal structural damping coefficient can be shown as 

,     visc phas thermo  (9) 

where visc, phas and thermo are difficult coefficients, which it is not easy to evaluate an analytical ex-
pression for them. So, it is recommended to simulate  as 

ˆ,     (10) 

where ̅ is the structural coefficient count as energy dissipation for the material and ̂  is the damping due 
to the interphase and thermoelastic mechanisms. Here, in this modelling method, ̅ is estimated for the 
materials and then ̂  is tuned in such a way that the experimental data match the output from the analyt-
ical method. It is worth mentioning that tuning ̂  should be regarded as an iteration process. 

Internal energy dissipation for homogenous metal materials was proved that does not depend to the 
stress level but to the frequency , although some small dependency observed for glass/epoxy composites 
[11]. If the stress-dependency of structural damping is ignored, it can be shown that internal energy 
dissipation is identical to the theoretical loss factor due to transverse heat flow [7]. Hence, the internal 
structural coefficient can be estimated as [7] 

 

2
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E T

c
 (11) 

where  is thermal expansion coefficient, T is temperature, E is modulus of material, cv is specific heat, 
and  is vibrating frequency, and  0 is the material relaxation frequency, which is given as 

0 2
,

2

 
v

k

c h
 (12) 

where  is material conductivity. 
To sum up, the equations of motion shown by equations (5) and (6) can now be given by 

   2 2
31( ) 2 1 ( ) ( ),            m n n mass n p Bx t x t j x d V t x t  (13) 
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2
31( ) ( ) ( ) 0,   eq p p p eff eq nR C V t V t m R d x t  (14) 

where n is defined as / . 
If a harmonic excitation is assumed, , then the displacement and voltage will be a 

harmonic function with the same frequency but with complex magnitude, e.g.  and 
. By substituting these expression into equations (13) and (14),  

    2 2 2 2
312                

j t j t
n m n n mass n p Bj X d V e X e  (15) 

  2
311 0    j t

eq p p eff eq njR C V jm R d X e  (16) 

Then, by defining the dimensionless frequency and load with Ω ω/ω  and , the steady 
state solutions for output voltage as a function of input frequency can expressed as: 

           
31

2 2
2 3 2 3

311 2 2 1



     




                 

p eff eq n

B
m m mass eff eq n

V m R d

X
r r r m R d

 
(17) 

Using the calculated voltage from Eq.(17), the magnitude of output power from piezoelectric harvester 

can be calculated with . By defining a new electromechanical coupling coefficient  [3], 

power can be estimated from Eq. (18). 

             
2 2

2 2 2
2 2 21 2 2 1     




                

p eff e

B n m m mass e

P m r k

X r r r k
 (18) 

As it can be seen from Eq.(18), the energy dissipation term is 2 Ω , which has two parts, one is 
constant at all frequencies and the other changes with Ω. 

4. Numerical example 

Now, to clear the role of damping mechanisms, a numerical example is presented. This numerical 
example is the analysis of a bimorph piezoelectric energy harvester with dimension 120×30 mm. Piezo-
electric layer is a PZT-5A Piezoceramic with elastic modulus of 66.0 GPa, Poisson’s ratio of 0.33 and 
density of 7.75 g/cm3 with the thickness of 0.27 mm. The electromechanical coupling properties of the 
piezoelectric layer are as follows: d33=374 pC/N, d31=-171 pC/N, and Cp=177.07 nF/m. Centre shim is 
made of brass with thickness of 0.14 mm, elastic modulus of 105 GPa, Poisson’s ratio 0.3 and density of 
9.0 g/cm3. In order to estimate the natural frequency for this harvester, COMSOL Multiphysics software 
under license number 12073023 was used. As it was shown in Fig. 2, the piezoelectric beam is meshed 
with Tetrahedral elements and the natural frequency of the harvester was obtained n=23.1 Hz.  

 

 
Figure 2: Finite Element analysis of bimorph for natural frequency 
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Now based on the presented method in Eq. (18), output power from piezoelectric harvester is com-
pared for different cases. Three different systems in terms of energy dissipation were considered which 
are denoted with lightly, medium and highly damped system according to their damping coefficient. In 
lightly, medium and highly damped system mare 0.02, 0.04 and 0.1, respectively. Moreover, load 
resistances were considered to be 1e3 or 1e6 Ω for all these three cases. At each case, three combination 
of damping mechanisms were considered, namely structural damping only, viscous damping only or half 
combination of both damping mechanisms. Power ration for lightly, medium and highly damped systems 
are shown in Fig. 3, Fig. 4 and Fig. 5, respectively. It is worth mentioning that power ratio is the power 
normalized with the case of viscous damping only. As it can be seen from Fig. 3, the output power in the 
case of structural damping only is 4 times and in the case of combined damping mechanisms are 1.8 
times higher than the viscous only case, independent of the load resistance. These figures are approxi-
mately the same for medium and highly damped systems in Fig. 4 and Fig. 5. There is only a slight shift 
in the resonant frequency due to increasing damping, as can be seen by comparing Fig. 3 and Fig. 5.  

 
Figure 3: Effect of different damping mechanisms on power for lightly damped system 

 

 
Figure 4: Effect of different damping mechanisms on power for medium damped system 
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Figure 5: Effect of different damping mechanisms on power for highly damped system 

The variation of power respect to damping mechanisms emphasis that it is important to select the 
correct form of damping mechanisms unless the viscous only damping model will underestimate output 
energy by piezoelectric energy harvester. DoToit et al. [12], presented a model for predicting output 
power from piezoelectric only by considering viscous damping and their experimental verification sho-
wed that output power in the resonant was underestimated with this model. Fig. 6 shows the output power 
from their piezoelectric harvester using analytical model and experimental data. It is obvious that their 
model could not predict output power close to resonance. This can be due to inappropriate consideration 
of only viscous damping mechanisms. 

 
Figure 6: A comparison between experiment and analytical model with only viscous damping mod-

elling m=0.0178 [12] 

5. Conclusion 

This paper dealt with the problem of proper damping modelling in piezoelectric energy harvesters. 
After reviewing current popular damping modelling approach, viscous only damping mechanism, a 
damping model was presented that considers both viscous and structural damping mechanisms. Viscous 
damping was related to the energy dissipation from the system by air resistance while structural damping 
comprises of energy dissipation through elastic waves inside material, interphase and thermoplastic 
mechanisms. An analytical estimation for structural damping also was presented. A numerical example 
was presented that showed the role of different damping mechanisms in output power from piezoelectric 
harvester. It was shown that if only viscous damping is taken into the account, then output power at 
resonance will be underestimated considerably. 
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ON THE EFFECT OF DRIVING AMPLITUDE, FREQUENCY 
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In this paper, an experimental study on effects of frequency, amplitude and frequency-amplitude in-
teraction of base excitation on vibration piezoelectric energy harvesters is presented. To do so, a 
unimorph piezoelectric harvester made from macro fiber composite (MFC) piezoelectric layer is 
tested. A two-factor factorial design with two replications is considered, in which frequency and am-
plitude of driving vibration are the treatment factors. For changing treatment factors, an appropriate 
frequency range is considered to include the device fundamental frequency and three excitation levels 
are considered. In order to investigate the effects of treatment factors on the power output, a linear 
model is considered. Results show that increasing amplitude of excitation vibration causes a stiffness 
softening behavior of the piezoelectric oscillatory beam leading to reduction in the harvester natural 
frequency. In addition, from the frequency-amplitude interaction analysis, output power is much more 
sensitive to vibration amplitude for driving frequencies near the harvester natural frequency compared 
to frequencies far away from the harvester natural frequency. 

Keywords: Piezoelectric Harvester, Driving Frequency, Vibration Amplitude, Nonlinear Be-
haviour, Frequency-Amplitude Interaction 

 

1. Introduction 

In order to enhance system performance in terms of life time and accessibility for remote systems [1], 
piezoelectric energy harvesting (PEH) has become an important part of energy harvesting techniques 
because of its simplicity, easy  integration [2] and availability of vibration in any environment [3]. In 
PEH, frequency and amplitude of vibration source have great effects on output power. Consequently, 
researchers focused on the study of influential parameters on the output power from PEH [4], [5]. 

Excitation frequency is the most critical parameter in PEH, as frequency matching to the natural fre-
quency of harvester is essential in order to obtain suitable amount of power in practice. Therefore, two 
types of harvesters exist, namely linear and nonlinear generators [3]. In linear generators, there are two 
optimum frequencies for operating a piezoelectric harvester, namely fundamental natural frequency of 
the device and the anti-resonance frequency [6], depending on electrical and mechanical properties of 
the device. Roundy et al. [5] investigated the dependency of power output versus driving frequency, 
added mass, and piezoelectric coupling coefficient based on simulations. In the previous studies, only a 
one-factor analysis has been carried out that only considered one parameter in each study. 
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Amplitude of vibration is another important factor affecting generated power. Wei and Jing [7] and 
Roundy et al. [8] using a general linear and inertial-based generator, Erturk and Inmarn [9] using a beam-
type model, and De Marqui Junior et al. [10] using a two-dimensional finite element model  showed that 
for harmonic base excitation, the power is dependent to the square of external vibration magnitude. On 
the other hand, in the nonlinear framework, natural frequency of the harvester as a dynamical system can 
experience a minor change due to high amplitude vibration [11] or due to other parameters such as pre-
load [4]. Evensen [11] showed that by increasing the vibration excitation on a beam, a degree of nonlin-
earity in fundamental frequency will emerge. This nonlinear effect is much more prominent for the 
boundary conditions those that are more flexible [11]. In the spite of the nonlinear effect of vibration 
amplitude on the beam resonance frequency and the fact that piezoelectric harvesters are mostly clamped-
free flexible beams, there is no previous studies presented this effect on piezoelectric power output. 

PEH is a research area, which has close connection to harvester vibration characteristics and yet there 
are many vibrational phenomenon that should be addressed. To investigate the interactions of driving 
frequency and amplitude on piezoelectric generated power, a two-factor factorial design is considered 
for the experimental test, in which frequency and amplitude of driving vibration are two treatment factors. 
Then with two replications, a set of runs with different treatment factor levels is carried out. Using an 
experimental model for the designed tests, main effects of frequency and amplitude as well as frequency-
amplitude interaction are investigated. 

2. Experimental Setup 

Excitation frequency and magnitude can cause important changes in the power generated by piezoe-
lectric materials. To track these changes at different frequencies, a set of experiments are designed to 
investigate the effect of excitation frequency and amplitude of excitation on piezoelectric harvester. 

Unimorph geometry as one the commonest configuration of piezoelectric harvesters was used in this 
study. Piezoelectric sample comprises of a Macro Fiber Piezoceramic-Composite (MFC M2814 P2) from 
Smart Materials Corporation [12] bonded to an aluminium substrate with epoxy rapid 332 adhesive with 
the density of 1.16 g/cm3. Centre shim is a 0.12-mm thickness aluminium shim with elastic modulus of 
68.9 GPa and density of 2.7 g/cm3. Piezoelectric harvester was clamped at one end with a clamp box as 
shown in Figure 1 and then was connected to a VSD 201 shaker for base excitation. VSD 201 shaker is 
fed by a Kepco AC power generation. National Instruments modules NI 9263 and NI 9215 were con-
nected to a National Instrument Compact data acquisition system (cDAQ) type 9172 for performing sig-
nal generation and data recording, respectively. LabVIEWTM 2013 was used as the graphical interface 
between computer and experimental equipment. Figure 1 shows the experimental setup. 

 
Figure 1: Experimental Setup and piezoelectric harvester 
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It is aimed to investigate the dependency of harvested power to excitation magnitude over a range of 
frequencies containing device natural frequency. Since there are frequency and amplitude of excitation 
as input factors, a two-factor factorial design should be used. The response is the RMS of output power 
when the piezoelectric harvester is connected to a 31500-Ω resistance load. Frequency factor is named 
Factor A and is a continuous parameter rather than a factor with discontinuous levels, hence a random 
sampling technique will be used. Factor B is the levels of excitation and is a level-based factor. Two 
replications are considered for the test as well as 40 frequencies with three amplitude levels of 0.1, 0.2, 
and 0.25 V for shaker input. Therefore, in total, 240 runs will be tested. 

3. Results and Discussion 

In this section, outcomes of this paper will be presented. It is categorized into three subsections. The 
first part presents the primarily assessment of experimental data. The next two subsections deal with the 
investigation of the trend in changing output power with respect to the magnitude and frequency of ex-
citation. 

3.1 Primarily Experimental Data 
Figure 2 shows the RMS of generated power at different frequencies and with different levels of am-

plitude excitation, e.g. 0.1, 0.2 and 0.25 V. Power responses for two replications in Fig. 2 show that the 
experimental runs are met with each other. A well-known fact also is proven here; output power is max-
imum at the resonance frequency for all three excitation amplitudes. However, by comparing power re-
sponses for three different amplitudes, it can be observed that resonance frequency was decreased by 
increasing excitation amplitude. This behaviour shows that another factor will play a role in piezoelectric 
power generation. 

 
Figure 2: RMS of power obtained from experiments at different amplitude levels versus frequency 

3.2 Nonlinear Behaviour of Unimorph 
From vibration theory for a viscous damped single degree of freedom system, oscillatory frequency 

will be 1  [13], where  /  is the undamped natural frequency and is the vis-
cous damping coefficient. The reduction in oscillatory frequency in Fig. 2 can be due to reducing 	or 
increasing . Using the relation between damped and undamped natural frequencies, one can concluded 
that  should increase from 0.01 to 19.1% in order to cause a decrease in  from 219 Hz at 0.1 V to 
214 Hz at 0.2 V provided that  remain constant. This increase in mechanical damping ratios is not 
realistic, and hence a reduction in  is necessary to occur during increase in excitation amplitude for 
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causing a decrease in . As the harvester mass remained unchanged during tests, it can be concluded 
that stiffness of the piezoelectric harvester decreased when it is subjected to higher excitation amplitudes. 

If the test with excitation amplitude of 0.1 V is considered as standard and denoted with 0, one can 
compare the fundamental natural frequency, , and resonant power output,  with respect to the 
standard state, as shown in Fig. 3. From Fig. 3, it is observed that as excitation magnitude increases, the 
fundamental frequency of the device nonlinearly decreases, while maximum power increases. The power 
increase due to vibration amplitude will be thoroughly investigated in the next section. Here, the main 
focus is the change of piezoelectric resonance frequency due to excitation magnitude. Since piezoelectric 
resonance frequency decreases with excitation magnitude increase, a softening stiffness behaviour is 
present in piezoelectric unimorph harvester. 

 
Figure 3: The effect of excitation amplitude on oscillatory frequency and resonant power 

3.3 Sensitivity of Interaction Analyses 
In this section, it is aimed to perform an appropriate sensitivity investigation on excitation magnitude 

and frequency. Hence, a statistical model is needed to describe the experimental data for the sensitivity 
analysis. To do so, a well-known linear model for two-factor factorial design will be used for data treat-
ment. Based on two-factor factorial design, the linear model for these experiments can be expressed as 
[14], 

,        1,… , 40, 1,2, 3, 1,2 
(1) 

where i associated to frequency level, j to amplitude level and k is the replicates. In Eq. (1),  is the 
RMS of output power, µ is the grand mean of RMS power,  is the effect of frequency,  is the effect 
of excitation amplitude,  is the interaction effect of frequency-amplitude  and  is the experi-
mental error. It is assumed that the experimental errors are independent and normally distributed with 
zero mean and standard deviation of , e.g. ~ 0, . This assumption later on will be evaluated. 

The model in matrix form can be represented as [14], 

∥ ∥ 	 (2) 

where  is the 12 1 response matrix,	  is the 12 12 coefficient matrix, Ψ  is the 12 1 ma-
trix containing grand mean, main effect, and interactions, and ϵ  is the 12 1 error matrix. In order to 
solve Eq. (2) for Ψ , one can easily state that ′  should not be singular. As ′  is singular, a 
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method should be used in which  cell mean is made the standard and consequently Ψ  will be 
changed to Ψ  , by dropping the first level of factors in the main effect [14]. By this transformation, 
treatment effect and the error sum of squares (ssE) can be expressed with equations (3) and (4). 

	 ′ ′  (3) 

′ ′	  (4) 

As it was mentioned, it is assumed that the residuals are independent and normally distributed. Figure 
4 (a) shows the experimental residuals versus frequency. It can be seen that residuals scattered randomly 
for different frequencies, emphasizing residuals’ independency. Moreover, as it can be seen from normal 
Q-Q plot in Fig. 4 (b), experimental data are located close to the fitted line, showing that the residuals 
can be considered normally distributed figures. 

	
	

(a) (b) 

Figure 4: (a) Experimental residuals versus frequency and (b) Norm Q-Q plot 

Figure 5 shows residuals of experimental units at different treatment levels. For first experimental 
unit, frequency, Fig. 5 (a) shows a randomly distributed residuals over frequency range. However, for 
the second experimental unit, residuals increase with the increase in excitation amplitude. This shows 
that generated power by piezoelectric harvester is not a linear factor of excitation amplitude. This con-
clusion is already known from literature, such as Roundy et al. [8]. 

	 	

(a) (b) 

Figure 5: Distribution of residuals at different levels of experimental units 

Figure 6 shows the main effects, α and β, in the model presented by Eq. (1), with respect to the mar-
ginal average of the other factor. As it can be seen from Fig 6 (a), generated power is maximized at a 
specific frequency, which is equal to resonant frequency of the harvester with that excitation amplitude. 
In addition, Fig. 6 (b) shows that increasing the excitation level will lead to dramatic increase in the 
output power. This conclusion with the analysis of residuals in Fig. 5 (b) proved that the increase in the 
power with respect to excitation amplitude is exponential rather than linear. 
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(a) (b) 

Figure 6. Main effects of treatment factors (a) frequency ( ) and (b) excitation amplitude ( ) effects 

Figure 7 shows the interaction effects of frequency-amplitude on generated power. Each curve repre-
sents output power over different excitation levels with the same excitation frequency. As it was shown 
in Fig. 6 (a), power is maximum at 214 Hz. In order to observe interaction effects at different frequencies. 
A set of frequencies ranging from far away from natural frequency, for instance 206, 210, and 222 Hz, 
to the natural frequency is considered. Figure 7 shows that frequency-amplitude interaction is much more 
prominent at frequencies close to the natural frequency. For instance, curves assigned to frequencies 213 
and 214 Hz having the highest dependency to excitation amplitude while the interaction effect will be 
lesser for frequencies far away from natural frequency. 

	

Figure 7: Frequency-amplitude interaction ( ) on average of RMS power 

4. Conclusion 

This paper dealt with an experimental investigation of driving amplitude, frequency and frequency-
amplitude interaction on piezoelectric output power from a MFC piezoelectric harvester in unimorph 
geometry. Varying excitation frequency showed that the output power is maximum while the device is 
vibrating at its natural frequency. On the other hand, increasing amplitude of vibration will lead to the 
exponential increase of power output. By considering frequency-amplitude interaction, two main con-
clusions were made. Firstly, piezoelectric harvester in unimorph geometry represented a nonlinear stiff-
ness softening behaviour in such a way that resonance frequency will decrease as excitation amplitude 
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increases. Furthermore, the sensitivity of output power to driving amplitude is different for different 
driving frequencies in such a way that output power is much more sensitive to the driving amplitude at 
frequencies near resonance frequency. 
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a  b  s  t  r  a  c  t

This  paper  presents  a novel  autonomous  method  for  condition  monitoring  of rotating  machines  during
operation  based  on radio  frequency  (RF)  pulse  transmission  using  energy  harvesting  from operational
vibration.  An  energy  harvesting  unit  is  designed  to generate  and  rectify  the energy  harvested  from  the
machine  vibration  using  Voltage  Multiplier  (VM)  circuit  and  to store  the  energy  into  a capacitor.  Then,
this  energy  harvesting  unit  runs  a smart  system  consisting  of  a microcontroller  and  the  RF  transmitter
designed  to send  a  pulse  at specific  capacitor  voltage.  A pulse-based  condition  monitoring  approach  is
introduced  which  monitors  the  state  of  the  machine  during  the operation.  In  order  to estimate  power
output  of the  piezoelectric  harvester  for a realistic  vibration  signal,  the  Fourier  Transform  concept  for  sig-
nal decomposition  is incorporated  into  the well-known  electromechanical  distributed  parameter  model.
Using experimental  data,  performance  of this  autonomous  condition  monitoring  system  is  tested  for
a  water  pump  at different  conditions.  To  do so,  acceleration  data  from  a centrifugal  water  pump  are
acquired  with  an accelerometer,  which  then  decomposed  into  a series  of  harmonics  using  Fast  Fourier

Transform.  Then  using  analytical  distribute  model,  a bimorph  energy  harvester  with  two  Piezoceramic
layers  is  optimized  to generate  maximum  power  from  the  water  pump  vibration.  Consequently,  the  con-
dition  monitoring  of the  water  pump  is performed  using  the presented  pulse-based  approach.  Results  of
this study  show  that,  the  fault diagnosis  can be performed  autonomously  by  applying  the  pulse-based
method  presented  in  this  work,  and  by using  the  piezoelectric  harvesting  device  as  an  energy  source.

© 2019  Elsevier  B.V.  All  rights  reserved.
. Introduction

Online condition monitoring (CM) of machines during operation
s a key approach for reducing unscheduled downtime and main-
enance cost during useful life. CM of rotary machines is one of
he most successful and established method using so-called pat-
ern recognition in time or spectra responses [1]. There are vast
umber of studies for CM using different measurement sensors,
hich record one response of system during operation, and apply-

ng different analyses on the recorded data, such as Fourier or
avelet transforms. Regarding the connection type for sensors,

ontact and contactless sensors have been widely practiced for
M of rotating machines. For instance, accelerometer installed on

earing housing [2], accelerometer installed on machine outer case
nd current sensors on input wires [3], accelerometer installed
n bearing housing for shaft [4] and accelerometer on outer case

∗ Corresponding author.
E-mail address: alr@et.aau.dk (A. Rezaniakolaie).

ttps://doi.org/10.1016/j.sna.2019.05.016
924-4247/© 2019 Elsevier B.V. All rights reserved.
of a water pump [5] were employed for condition monitoring
applications. In recent years, to overcome difficulties related to
direct instrumentation of rotating components, some researchers
applied non-contact sensors for condition monitoring of rotating
machines using K-Band Doppler radar [6], laser sensors [7] and
vision-based non-projection fringe pattern [8]. Although using con-
tactless sensors helped the direct instrumentation complexities,
these methods still suffer from wiring, instrumentation complexi-
ties and battery-related problems.

All the aforementioned approaches used conventional mea-
surement methods which require wiring for sensors to transfer
data to a control room. For an industrial plant that includes many
rotating machines, the cost of wiring and regular inspection of
wires and their connections will be considerable. To eliminate
problems in conventional methods, e.g. wiring difficulties, setup
implementation and immobility [9], an outline for machine con-

dition monitoring was  presented using wireless sensor networks
(WSNs) [10]. Although WSNs improved common CM approaches,
those that are powered with batteries suffer from short lifetime due
to the battery lifespan [11]. In an attempt toward self-powered CM

https://doi.org/10.1016/j.sna.2019.05.016
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sna.2019.05.016&domain=pdf
mailto:alr@et.aau.dk
https://doi.org/10.1016/j.sna.2019.05.016
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ethods, energy harvesting (EH) has emerged as a source of energy
or powering batteries in CM applications [11].The energy har-
esting has seen a worldwide growing attention in academic and
ndustry during recently [12]. There are various methods to convert
ften-lost mechanical energy into electrical energy for motor or
enerator applications, including electromagnetic induction, elec-
rostatic induction and the piezoelectric effect [13]. In the recent
ears, the number of studies considering energy harvesting for
tructural health monitoring is rapidly increasing [11]. Energy har-
esting by piezoelectric materials provides higher energy density,
nd can be simply integrated into a system [13,14].

Recently, smart materials as sensors for system operational con-
ition and structural health monitoring were employed. In some
ases, these smart materials also acted as transducers that gen-
rate voltage according to the sensed vibration. This concept was
sed for bridge condition monitoring under forced vibration by
dopting piezoelectric energy harvester [15]. In cases, it has been
emonstrated that these sensors can provide enough energy for
hemselves and, hence, can be regarded as self-powered sensors
ithout the need for wiring [16,17]. Moreover, in some studies, it
as shown that a wireless connection can be powered by these self-

owered sensors for transferring data or sending a pulse [18,19]. In
he research by Lim et al. [20], piezoelectric patches were installed
n wind turbine blades to demonstrate that the patches can pro-
ide power for wireless connection from blade strain energy. In
he existence of a structural imperfection or a fault in the system,
ntroduced vibration on these smart materials will be different and,
ence, this concept can be used for condition monitoring or struc-
ural health monitoring. In another study, Lim et al. [21] showed
hat, by analyzing the time of sending discrete signals between
hree blades, blade state can be monitored. Patange et al. [22]
nstalled piezoelectric patches onto composite beams in defect-
ree and delaminated conditions to study output power from these
atches under low-frequency vibration excitation. They showed
hat delaminated beams will generate less energy compared to
efect-free ones by demonstrating that the energy harvesting can
e employed for health monitoring. However, they did not assess
hether this energy output could be enough for running a self-

owered system or how to manipulate output power differences
n order to perform health monitoring.

Most of state-of-the-art about fault detection and condition
onitoring using smart materials presented only the feasibil-

ty of such systems and have not adequately focused on power
anagement and system performance for self-powered condition
onitoring. On the other hand, studies that focused on electrical

ower management for these self-powered systems have not pre-
ented appropriate condition monitoring approaches. In addition,
n the self-powered condition monitoring systems, the design of
ibration energy harvester and related optimization process, as a
ignificant step, has not been addressed. Moreover, most of previ-
us studies about self-powered CM were carried out for structural

mperfections such as crack and delamination while there are, apart
rom the structural faults, some other faults that can occur in an
perating machine. One study reported the use of harvested energy
rom an electromotor for transferring acceleration data through

ireless connection [23]. In the presented study, all three essen-
ial sections for a vibration-based self-power condition monitoring,
amely, the design of energy harvester, power management and
ondition monitoring approach, are addressed. To the best knowl-
dge of the authors, such a study containing all these areas has
ot been presented. The presented study uses a new established
ethod based on pulse timing for fault detection of a complex rotat-
ng system in conjunction with cantilever piezoelectric beam for
enerating electrical power, which is easy to integrate in the sys-
em. By applying the presented energy harvester and pulse timing

ethod for CM,  power and data-transfer wires are no longer nec-
uators A 295 (2019) 37–50

essary. This system can be integrated into an industrial production
plant with many rotating machines in a cost effective manner. This
study will contribute to the elimination of the need for expensive
accelerometers, data acquisition unit with high sampling rate, sen-
sor and equipment, which are typically being used for condition
monitoring of high-speed rotary machines.

A robust self-power system is proposed for remote condition
monitoring in which elapsed times between RF transmissions are
investigated. In this study, experimental data from a real operating
water pump is used as self-vibration machine. Then, the vibra-
tion signals are considered as base excitation for a piezoelectric
harvester beam. Afterwards, using a well-known analytical model
based on distributed Euler beam theory, output power from a
bimorph with an added tip mass is optimized for maximum power
generation from the experimental vibration data. Lastly, a method
for remote condition monitoring is established that is relied on
pulse-sending times. In this framework, section 2 is dedicated to
propose the condition monitoring approach in system level, the
conceptual design of energy harvesting unit and pulse-based con-
dition monitoring method. The piezoelectric harvester contributes
to energy harvesting from piezoelectric direct effect. In section 3,
the energy harvester model is developed to estimate the output
voltage analytically from operational vibration using the Fourier
Transform of real vibration signals. Section 4 is dedicated to the
experimental test study with a primarily signal processing step
for the experimental signals. Finally, results of the applying the
proposed condition monitoring on the presented case study is pre-
sented in section 5.

2. Autonomous remote condition monitoring

The main objective of this study is to design an autonomous
condition monitoring system capable of remote health monitor-
ing for rotating machines during the operation. Therefore, at first,
components of the system are selected based on requirements that
should be met  to achieve online condition monitoring. Then, these
components are evaluated regarding power consumption which
is followed by an assessment that shows the required energy for
the condition monitoring can be provided by the energy harvest-
ing device and, therefore, the system is autonomous. This studs
introduces a novel method based on pulse transmission from RF
technology for remote condition monitoring. The method relies on
comparing the elapsed time between pulses from a continuous
operation machine generating vibration during operation. Since
vibration is an unavoidable phenomena in operational machines,
the focus for energy harvesting in this study is piezoelectric tech-
nology as the vibration of machines often contains high frequency
harmonics. This section is dedicated to demonstrate such a system
in terms of system design, power consumption, energy harvesting
unit and pulse condition monitoring approach.

2.1. System design and power consumption

According to the functionality of this novel CM approach, the
system should comprise a harvesting unit to generate, rectify and
store energy, a low-power microprocessor to control the signal
emitting, and RF transmitting unit for sending a binary signal when
microprocessor allows. The storage system should always main-
tain the energy for running microprocessor as well as providing the
energy for RF transmitter when it is enabled. Microprocessor can be
programmed to power RF circuits when the voltage in the storage
reaches to a specific value. This signal transmitting will repeatedly

continue after the harvested energy reaches to the defined value
each time. If the level of acceleration changes, the harvested energy
will be directly influenced and, consequently, the time of RF trans-
mitting is altered. Furthermore, a Failure Index is introduced in
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Fig. 1. The protocol for remote condition monitorings.
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Fig. 2. Energy harvesting unit comprises of piezoelectr

his work, which is defined based on the elapsed time between
ignal transmissions in operation compared to values recorded in
efect-free condition. The component in this system are shown in
ig. 1.

The units in the protocol Fig. 1, which consume energy,
re microprocessor and RF transmitter. Among these, the RF
ransmitter only consumes energy when it is activated by the

icroprocessor for signal transmitting. On the other hand, the
icroprocessor needs a permanent energy supply through running.

or this reason and to fulfill requirements for this CM method, the
icroprocessor should have low-power consumption, operate in

ow voltage, be capable to perform simple calculations and have at
east one comparator.

Microchip Technology Inc. [24] is a leading provider of low-
ower and high-speed flash technology microprocessors, which are
ppropriate selections for microprocessors in the wireless system
esign [19,25]. PIC16F676 as an 8-bit microcontroller is selected

or this system because of its low-power consumption, operating
t low voltage and very low standby current of 1 nA. It also has 1
omparator and 128 bytes of memory, which makes it suitable for
rogramming with one checking condition. According to [26], this
icrocontroller consumes 8.5 �A at typical 2.0 V during operating

t 32 kHz.
The RF module transmits the data from the Microprocessor

hen needed. The RF module stands in standby mode for the rest
f cycle. The RF module in this work, RTFQ1P [27], is a 9.6 Kbps data
ransmitter with transmitting range up to 250 m with low-power
onsumption operating with 3.0 V supply voltage in the standby
ode. This RF transmitter consumes 7 mA  at 3.3 V voltage supply

uring the transmission of date and requires a maximum current
f 100 nA in the standby mode [27].

.2. Energy harvesting unit

In this study, the piezoelectric based energy harvesting unit is
esponsible for providing continuous energy to run the micropro-
essor and RF transmitter request. The harvesting unit consists of

n energy harvester, a harvesting circuit and storage system as
hown in Fig. 1. The piezoelectric energy harvester is considered
s the source of energy production from the machine vibration.
he harvester is designed to generate adequate energy to power the
orph, resistance load, harvesting circuit and capacitor.

remote condition monitoring system. This device should accommo-
date two critical goals. At first, it should have capability to generate
enough electrical energy for continuous operation of the remote
condition monitoring system described in subsection 2.1. Secondly,
this device should be designed to be sensitive to occurrence of
faults. In many practical cases, the output voltage from the piezo-
electric harvester is less than the input voltage required for running
the electronic components. In addition, the generated voltage is an
A.C. signal while the end-users require D.C. Thus, it is essential to
provide a circuit for voltage enhancement as well as converting the
A.C. to D.C. In this work, therefore, the energy harvesting circuit pro-
vides power supply suitable for the end-users. The capacity of the
capacitor in the energy harvesting unit plays an important role in
the health monitoring. The energy capacity should be large enough
to provide energy in order to guarantee the system operation. On
the other hand, since the microprocessor can activate or deacti-
vate the RF transmitter based on voltage level of the capacitor, the
capacitor should be small enough to experience a sensible voltage
drop due to a short RF transmission. Fig. 2 shows these components
in the energy harvesting unit.

There are different types of piezoelectric harvesters and har-
vester’s configuration generally depends to the nature of available
load and its frequency. A typical piezoelectric energy harvester as
shown in Fig. 2 is made of a bimorph harvester. This bimorph struc-
ture is made of a thin substructure shim (usually a metal helping for
charge transferring) which is bracketed with two piezoelectric lay-
ers. Among piezoelectric harvesters, cantilever configuration is the
most widely used option, especially for vibration energy harvesting
from mechanical systems [13]. In addition, in some cases an added
mass ma is attached to the end of bimorph for frequency matching.
This typical configuration is popular since, in a reasonably small
volume, it delivers higher power density [13]. Piezoelectric ceram-
ics have the best piezoelectric characteristics in comparison with
the composites and polymers [28]. Among piezoelectric ceramics,
PZT is an important material because of its high Curie tempera-
ture and excellent energy harvesting potential. It is a well-known
fact that piezoelectric harvester generates the maximum voltage
when it is excited by an external force with frequency close to its

natural frequencies [14]. Generated power from bimorph piezo-
electric harvester at resonance is higher than other frequencies
even anti-resonance frequency [29]. Hence, in order to scavenge the
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Fig. 3. Optimum 5 stage MDCP circuit for use w
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ig. 4. Storing capacitor voltage outputs for an input magnitude of 1.85 V at 49.5 Hz.

aximum energy from piezoelectric bimorph, a configuration con-
aining PZT material as the piezoelectric layers should be designed
o be excited at its fundamental natural frequency.

One solution for the energy harvesting circuit to increase the
oltage and to convert AC to DC is so-called voltage multiplier
VM) or charge pump circuit [30], where a capacitor is charged in
ne-half of the A.C. input and then discharged into the next cir-
uit section during the second half cycle. Within the framework of
M,  Multistage Villard Voltage Multiplier (MVVM) and Multistage
ickson Charge Pump (MDCP) can be used in order to increase the
ower [31] as have been done by Torah et al. [26] and Galchev et al.
32]. In this study, a MDCP circuit is applied in order to amplify
he generated voltage. The MDCP circuit consists of diodes and
apacitors, where the stage of MDCP determines the number of
iodes and capacitors. In order to obtain the optimum staged of
he MDCP, a number of different circuits were compared using

ATLAB
®

Simulink. Siemens BAT760 diodes with a forward bias
oltage of 1̃00 mV  and current of 0.1 mA  were used due to the low
orward voltage drop and reverse leak current. For the energy stor-
ge, a capacitor with 150 �F was considered in the simulations and
he voltage of the capacitor is compromised at different MDCPs
n order to obtain the optimum VM circuit. Fig. 3 shows a 5 stage

DCP circuit with BAT760 diodes and the optimum values for the
apacitors. The storing output voltage of the capacitors for differ-
nt MDCP stage circuits and input of 1.85 V at 49.5 Hz are shown in
ig. 4. As can be seen, the 5 stage MDCP delivers the highest voltage
utput with fast charging time. Therefore, the configuration shown

n Fig. 3 is selected as the best design for amplifying the output volt-
ge from the piezoelectric harvester and it is used for the further
teps in this study as of the optimized VM configuration.

.3. Pulse condition monitoring

The presented method relies on the pulse timing method by
he RF transmitter for remote condition monitoring. As discussed,
he RF transmitter will be enabled by microprocessor to trans-
it  a signal whenever the level of energy in the storage device
eaches to the defined value. If the machine is working under nor-

al  conditions, no major changes in energy capacitor charging and,
onsequently, in the RF transmitting processes are expected. There-
ith the designed piezoelectric harvester.

fore, the pulse timing lies within a band. However, if any fault occurs
during machine operation, the immediate change in the acceler-
ation affects the energy storage charging and, consequently, the
pulse timing.

Fig. 5 shows the process of condition monitoring based on the
pulse timing method. In Fig. 5 (a), the system performance dur-
ing the normal operation is shown. On top, a typical acceleration
of the system is shown. Then, the stored energy is plotted and
finally, in the bottom, elapsed time of the pulses are shown versus
time. It is worth mentioning that plots do not contain specific
values since these figures are presented for showing the concept
of this approach rather than focusing on one specific application.
When the stored energy reaches to the limit for microprocessor, the
microprocessor will be activated through a voltage-level switch to
the circuit. Thus, the energy drops in the stored energy curve. This
process is before sending any pulses and is only for the start phase.
From this moment the microprocessor is active and tunes the RF
transmitting. After the energy in the storage device reaches to an
peak value, the microprocessor allows RF transmitter to send the
first pulse at time T ′. Sending pulses will continue each time after
the elapsed time, T , in the regular operation. In Fig. 5(b), the perfor-
mance of the system is shown when the fault occurs. The first and
second pulses are transmitted after T ′ and T elapsed times, respec-
tively, just similar to the normal operation. After a specific time, it
is assumed that a fault occurred in the machine causing increment
in the acceleration and, consequently, the charging process will be
faster. Therefore, the elapsed time reduces from normal T to a value
of Td where Td < T . It can be seen that if the fault occurred during
one of the charging phases, the elapsed time is not equal to T nor Td
as the capacitor has not been charged in none of healthy and dam-
age conditions. This charging phase is called transient interval and
its elapsed time is denoted with Ttr , where Td < Ttr < T . This tran-
sition phase is an indicator that machine state is being changed. It
is worthy to note fast charging of capacitor at abnormal condition.

One important assessment in this method is the statistical anal-
ysis of elapsed time as obviously the elapsed time of the pulses
undergoes minor differences due to the nature of experimental
errors. The elapsed time between the pulses can be modeled as:

Tij = � + �i + εij i = 1, . . .,  Ncnd, j = 1, . . . , Nexp (1)

where � is the average of elapsed times in defect-free condition, �i
is the effect of machine condition on the elapsed time, εij are the
experimental errors, Ncnd is the number of conditions considered
and Nexp is the maximum number of elapsed time figures obtained
experimentally for different conditions of the machine. The exper-
imental errors are independent and normally distributed due to
randomness of experiments, e.g. εij∼N

(
0, �2

i

)
, where �i is the stan-

dard deviation of errors. It is worth mentioning that i = 1 is the
defect-free condition while i > 1 corresponds to faulty conditions.
Based on these definitions, �1 = 0 while �i>1 /= 0.
Now, the pulse condition monitoring can be performed as fol-
lows:

Step 1: A set of data from the machine at different working con-
ditions including defect-free state is formed and then one should
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Fig. 5. Condition monitorin

e able to compute the statistical features in Eq. (1), e.g. �, �i and
i.

Step 2: After each pulse transmission, the elapsed time, called T̂,
etween the current pulse and previous pulse should be computed.

Step 3: Fault Index (FI) is defined as:

I =
(
T̂ ⁄� − 1

)2
(2)

FI is in the range of 0–1, where 0 means the machine is in defect-
ree condition while 1 means that the machine works abnormally.
n addition, a considerable change in the FI identifies a change in
he machine state. This FI has a confident limit (CL) of:

L = 1 − Dk⁄� + �k (3)

here Dk is the distance between elapsed time T̂ and the average
f elapsed time in k -th machine condition. In addition, k is the class

n which Dk =
∣∣T̂ − (� + �k)

∣∣ is minimum. By this definition, CL is
he certainty of FI, which demonstrates assurance of the identified

achine condition. The higher CL is, the more reliable the machine
ondition monitored.

Step 4: In order to detect type of the fault, a state parameter can
e defined as S:

S = min

{(
T̂

� + �S
− 1

)2
}

(4)

If S is equal to 1, the state of machine is normal, otherwise S is
he class of defined fault.

In order to show the performance of this CM method, a situation
s considered in which the state of a machine changes from “1” to
2” and then to “3”. State “2” has lower elapsed transmission time
hile elapsed transmission time of “3” is higher than “1”. Fig. 6(a)

hows the considered elapsed time between the transmissions over
ime. Based on these values, the FI and machine state S are calcu-
ated using Eqs. (2) and (4), respectively and graphically shown in
ig. 6(b). As shown, the FI is close to 0 until the elapsed time is
ithin the range of “1” state. After the system state changed to “2”,

 jumped to 2 and FI is no longer close to 0. Finally, in the second

hange of system state to “3”, S remains at 3 and a change in the FI
catter can be observed. Although this is a numerical example of the
ulse system performance, it shows that in the both cases whether
he elapsed time is lower or higher than the standard elapsed time,
d on pulse timing method.

this method can predict state of the machine and the FI value can
be an accurate indicator of the state.

3. Modeling of piezoelectric energy harvesting device

This work will model the piezoelectric bimorph harvester
with electromechanical distributed parameter model in which the
bimorph harvester is considered as a uniform beam with Euler-
Bernoulli beam assumptions according to the study by Erturk and
Inman [33]. A perfect bonding between substructure and piezo-
electric layers are considered. Moreover, it is assumed that the
piezoelectric layers are covered with negligible thickness contin-
uous electrode layers and are connected in series. In this study, it
is assumed that the base displacement induced from the machine
operation is only defined by translation and not rotation as the
vibration is in translation form. However, if rotation plays an impor-
tant role in base excitation, its effect can be added to the equations
but here only translational base excitation is considered.

As shown in Fig. 2, the base acceleration expressed with äB (t)
causes a relative transverse deflection of the beam to its base at
location x and time t shown with wrel (x, t). it is of interest to define
wrel (x, t) with modal expansion such as:

wrel (x, t) =
∞∑
i=1

�i (x)�i (t) (5)

where �i (x) is the beam mode shapes of the i -th vibration mode
and �i (t) is the mechanical response in modal coordinates. For the
clamped-free boundary conditions, beam mode shapes is given by
Eq. (6) [34]:

�i (x) = 	i [cosh
ix − cos
ix + ˛i (sinh
ix − sin
ix)] (6)

where ˛i is a constant given by Eq. (7) and 	i is a constant for satis-

fying mass normalization of the mode shapes, e.g.
∫ l

0
m∗�2

i (x)dx +
2
ma�i (L) = 1.

˛i =
sin 
i − sinh 
i + 
i

ma
m∗L [cos 
i − cosh 
i]

cos 
i + cosh 
i − 
i
ma
m∗L [sin 
i − sinh 
i]

(7)
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Fig. 6. An example for pulse condition monitoring, (

With the modal expansion defined and applying the modal
rthogonality conditions, the electromechanical coupling equa-
ions can be expressed with:

¨ i (t) + 2�iω̂i�̇i (t) + ω2
i �i (t) + YiVP (t) = fi (t)

PV̇P (t) +
(

1/Rl
)
VP (t) =

∞∑
j=1

i�̇i (t) (8)

here ω̂i is the undamped natural frequency of the beam in short
ircuit condition expressed with Eq. (9), �i is the mechanical damp-
ng ratio, fi (t) is the modal mechanical force given by Eq. (10), CP is
he internal capacitance given by Eq. (11) as a function of relative
ermittivity ε33 and piezoelectric layer geometry, Yi is the modal
lectromechanical term defined by Eq. (12) and i is the modal
lectrical coupling term expressed in Eq. (13):

ˆ i = (
il)
2
√
YI⁄m*L4 (9)

i (t) = −m*aB (t)

[∫ L

0

�i (x)dx + ma�i (L)

]
(10)

P = ε33bL⁄t (11)

i =
e31b

2t

[
h2⁄4 −

(
t + h⁄2

)2
]
.
d�i (x)
dx

∣∣∣
x=L

(12)

i = − e31 (t + h)b
2

.
d�i (x)
dx

∣∣∣
x=L

(13)

In Eq. (9) 
i is the characteristic number shown obtained from
olving Eq. (14), e31 is piezoelectric constant in 31 mode and ε33 is
he permittivity constant. Also, m∗ is the unit mass per length and
I is the bending stiffness given by Eq. (15) [33].

 + cos
icosh
i + 
i
ma
m*L

(cos
isinh
i − sin
icosh
i) = 0 (14)

I = 2b⁄3
[
Ysh

3⁄8 + cE11

((
t + h⁄2

)3
− h3⁄8

)]
(15)

here Ys is the Young’s modulus of substrate layer and cE11 is the
tiffness of piezoelectric material at constant electrical field.

If äB is presented with a series of harmonic functions using the
ourier Transform, Eq. (20), then by defining the sampled frequency

ith ωk = 2�k
N , the force term becomes fi (t) =

N−1∑
k=0

Fi (ωk) e+j ωkt ,
here Fi (ωk) is expressed as follows:

i (ωk) = −m*
(

1
N

∣∣Ä (ωk)
∣∣)[∫ L

0

�i (x)dx + ma�i (L)

]
(16)
sed transmission time and (b) FI and machine state.

By this harmonic representation of base excitation and super-
impose characteristic for linear systems, the resulting complex
voltage amplitude is also a series of harmonic functions shown as:

VP (t) =
N−1∑
k=0

VP (ωk) e
+j ωkt (17)

where VP (ω) is the magnitude of output voltage corresponding to
each frequency. By substituting Eqs. (16) and (17), the steady state
voltage response can be shown as:

VP (t) =
N−1∑
k=0

∞∑
i=1

jωkiFi(ωk)
ω̂2
i
−ω2

k
+j2�iωkω̂i

1
Rl

+ jωk
CP
2 +

∞∑
i=1

jωkiYi
ω̂2
i
−ω2

k
+j2�iωkω̂i

e+j ωkt (18)

Using the calculated voltage from Eq. (18), the magnitude of
output power from piezoelectric harvester can be calculated as Pp =∣∣Vp∣∣2

⁄Rl .

4. Experimental procedure and primarily signal processing

For the tests, a centrifugal pump with five vanes connected to an
electromotor was  equipped with an accelerometer type VMI-102,
as shown in Fig. 7. Vibration signals in time-domain were directly
measured from the water pump working under different conditions
at a constant rotation speed of 2970 rpm. The accelerometer has a
sensitivity of 100 mV/g and a resonant frequency of 30 kHz, was
mounted vertically on the water pump body.

The accelerometer was  connected to the signal conditioning unit
(X-Viber FFT analyzer), where the signal goes through a charge
amplifier. The software SpectraPro-4, which accompanies with the
signal conditioning unit, was  used for recording the signals directly
in the computer. The vibration signal for each pump condition
was acquired with an 8192-Hz sampling frequency at a duration
of 100 s. Each vibration signal was segmented into 50 smaller
vibration signals called data samples. Therefore, each data sam-
ple included a 2-s vibration signal with 16,384 data points. Each
data sample was  then transferred into frequency-domain by FFT
method.

Acceleration data in time domain from water pump in healthy,
shaft misalignment and shaft looseness conditions are shown in
Fig. 8. A rough look into these signals reveals that the amplitude
of the acceleration is different when water pump is working in
faulty conditions. Shaft looseness and misalignment enhanced the
acceleration sensed by the sensor, from a maximum of 8.11 ms−2

in defect-free condition to 13.00 ms−2 and 27.44 ms−2, respec-
tively. It can also note that not only the maximum acceleration was

increased by the faults, the dispersion of the data increased from
� = 2.51 m.s−2 in defect-free condition to � = 7.47 m.s−2 for shaft
misalignment and � = 3.72 m.s−2 for shaft looseness conditions
too.
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Fig. 7. The water pump connected to the accelerometer.
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Fig. 8. Time signals of the water pump in defect-f

In this work, a primary signal processing using the Fourier Trans-
orm is performed for two reasons. Firstly, frequency matching
etween fundamental frequency of the harvester and vibration
ource is essential for designing the harvester. Second, in order
o demonstrate which frequency from the vibration source is

ore sensitive to the faults, amplitude of the Fourier Transform
oefficients at dominant frequencies was compared. Since each
cceleration signal is a finite sequence of the data, Discrete Fourier
ransform (DFT) was applied. If ä (t) is the acceleration data which

s defined at N time sequences, DFT Ä (ω) and inverse of DFT ä (k)
re defined by Eqs. (19) and (20), respectively [35]:

¨ (ω) =
N−1∑
k=0

ä (k) e−j
2�
N ωk (19)

¨ (k) = 1
N

N−1∑
ω=0

Ä (ω) e+j
2�
N ωk (20)

Note that Ä (ω) is complex while ä (k) is real. From the inverse
FT and Euler formula for complex numbers, the contribution of

¨ (k) from Ä (ω) is expressed as:

äω (k) = 1
N

∣∣Ä (ω)
∣∣ e+j 2�

N ωk = 1
N

∣∣Ä (ω)
∣∣

sin
(

2�
N
ωk + �

2
+ Arg

{
Ä (ω)

})
(21)

Fast Fourier Transform (FFT) is a fast numerical method to apply
FT on signals [35]. FFT of acceleration signals from the water pump

t different working conditions are extracted by MATLAB

®
and are

hown in Fig. 9. To carefully consider frequencies of interest and for
etter view, a detailed view of FFT signals in 0–500 Hz range is plot-
ed in dB scale. Working under normal condition, the water pump
aft looseness and shaft misalignment conditions.

response has dominant frequencies of 49.5 Hz, 100.0 Hz, 148.0 Hz,
197.5 Hz, etc. These frequencies are the 1X, 2X, 3X, and 4X frequen-
cies of the water pump. When water pump is working under faulty
conditions, either shaft looseness or misalignment faults, dominant
frequencies experience no change in 1X and a minor change in 2 × .

By applying Eq. (21) on the FFT signals, contribution of the
eight dominant frequencies in the pump acceleration signals at
different working conditions is shown in Fig. 10. Unlike the res-
onant frequencies which slightly changed, the contribution of
the frequencies in the acceleration signals varied considerably
for different conditions. The contribution of 1X frequency 49.5 Hz
in the shaft misalignment and looseness conditions are 1.04
and 1.49 m.s−2, respectively, which are considerably higher than
0.49 m.s-2 for the defect-free condition. However, the mode con-
tribution is not always higher in defected conditions. For instance,
contribution of 2X frequency in shaft misalignment is less than the
value for the defect-free and shaft looseness conditions.

5. Condition monitoring results and discussion

For presenting the condition monitoring results for the water
pump based on the designed system in section 2, the acceleration
data from the experiments, presented in section 4, is used as the
base excitation for piezoelectric beam. The piezoelectric beam is
connected to the outer case of the water pump with a solid plate,
so the piezoelectric beam will be excited from the clamped end
with acceleration signal measured experimentally. Fig. 11 shows
a schematic of energy harvester attached to the water pump.
Afterwards, output power are estimated analytically by using the
distributed beam model with the measured base excitation sig-

nal at different pump conditions. Lastly, the state of the water
pump is monitored by applying the pulse-timing based method.
Piezoelectric beam optimization is performed with COMSOL®. All
other numerical simulations, including the output power estima-
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Fig. 9. Fast Fourier Transform (FFT) of time signals from water pump at different conditions with focus on 0–500 Hz range (a) defect-free, (b) shaft misalignment, and (c)
shaft  looseness conditions.

Fig. 10. Contribution of the eight dominant frequencies of the water pump acceleration at different working conditions.

Fig. 11. A schematic of possible assembling of the proposed system into outer case of the water pump.
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Fig. 12. (a) Convergence history of optimization, (b) objective function (c) the effect of added mass on the harvester fundamental natural frequency.

Table 1
Material properties of bimorph piezoelectric energy harvester (T226-A4-503X).

Properties Values

Piezoelectric stiffness at constant field, cE11, GPa 66.0
Piezoelectric density, �p , kg/m3 7750
Electromechanical coupling coefficient, e31, C/m2 −14
Piezoelectric layer thickness (each), t, mm 0.26
Piezoelectric permittivity constant, ε33, F/m 1800×ε0

Substrate Young’s modulus, Ys , GPa 105
Substrate thickness, h, mm 0.14
Substrate density, kg/m3 9000
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nitude of 1 m/s2 using Eq. (18), are plotted in Fig. 15(a) and (b),
Device length (active length as clamped), L, mm 55
Device width, b, mm 31.8

ion, voltage multiplier simulation and pulse-timing method are
arried out with MATLAB®.

Piezoelectric bimorph generates the maximum power when
ibrates at its resonance. Since the power generation has a square
actor of magnitude of the excitation acceleration [36], it is prefer-
ble that this frequency has a high mode contribution. Furthermore,
n order to satisfy the criteria for condition monitoring, the con-
ribution of this frequency should vary noticeably with respect to
ater pump condition. Thus, optimal design of the piezoelectric

arvester has a fundamental frequency close to one of the dominant
requencies in the water pump acceleration signals. By considering
hese guidelines and analyzing Fig. 10, the 1X frequency is selected
s the fundamental frequency of the piezoelectric harvester since
he contribution of the frequency 49.5 Hz is high at every working
ondition and is, moreover, sensitive to the pump working condi-
ions.

Maximum power from piezoelectric harvester is obtained when
ptimum load resistance is connected and the harvester natural fre-
uency matches to excitation frequency. In this research, with the
imorph topology shown in Fig. 2 and PZT-5A as selected piezo-
lectric material, the optimization process for frequency matching
as proceeded. Afterwards, using analytical modeling approach

n section 3, optimum load resistance was selected. Piezoelec-
ric harvesters are available in different geometries and therefore
he optimization can be performed for any combination of these
eometric parameters, such as length or thickness. In order to
arrow down optimization factors, a commercial piezoelectric
arvester with low natural frequency from Piezo Systems Inc.
T226-A4-503X) was selected and then by tuning the added mass,
requency matching was performed to match the fundamental nat-
ral frequency of the harvester to 49.5 Hz from the water pump
cceleration. This piezoelectric sample have been previously used
or energy harvesting by [33,37]. The bimorph sample consists of
wo oppositely polled PZT-5A layers embracing a brass substrate,
epresenting series connection between the piezoelectric elements.
eometric and material properties of this samples is presented in
able 1.
To optimize the energy harvester, an objective function is
efined as the square of difference between the fundamental nat-
ral frequency of the harvester, which is a function of added mass,
Fig. 13. Detail view of harvester beam with dimensions of the added mass and its
connection to the piezoelectric sheet.

and frequency of 49.5 Hz as the excitation frequency from the water
pump. The objective function shown by Eq. (22) is employed to find
the value of ma by minimizing the objective function.

� (ma) =
(
ω̂1 (ma) − 49.5

)2
(22)

Fig. 12(a)–(c) show the error versus iteration number, objective
function and the variation of the harvester first natural frequency
with respect to the added mass, respectively. Objective function in
Fig. 12(b) shows that, with an added mass of 7.3≤ ma ≤8.5 g, the
objective function is less than 2.5, which is equal to 3% error. As
can be seen from Fig. 12(c), with an added mass of 8 g, the funda-
mental natural frequency of the harvester matches to 49.5 Hz. For
structural steel with the density of 7850 kg/m3 for the added mass,
8 g will be equal to a solid block with 4 × 31.8 × 8 mm dimensions.
Hence, the volume of the energy harvester, including the piezoelec-
tric sheets, substrate layer and tip added mass, are 2.15 cm3. The
added mass block can be connected to the piezoelectric sheet with
an adhesive connection by an epoxy. For stronger connection, it is
recommend to cut a groove in the added mass in order to insert
the sheet and fill the gap with the epoxy. Fig. 13 shows added mass
features, e.g. material and dimensions, and its connection to the
piezoelectric sheet.

An analytical modal analysis was performed for this designed
bimorph configuration with 8 g added mass and the results are
shown in Fig. 14. It can be seen that the first natural frequency of the
beam is 49.5 Hz. Moreover Fig. 14 shows that, the other natural fre-
quencies do not match with the operational working frequencies of
the water pump. Hence, the contribution of other working frequen-
cies, e.g. 2X, 4X, is negligible. Therefore, in Eq. (18), ωk = 49.5 Hz.

The next step in the design of piezoelectric harvester is selec-
tion of load resistance Rl in order to obtain the maximum power.
The output voltage and power, considering a unit excitation mag-
respectively, for different resistance loads. As shown, by increas-
ing Rl , the voltage continuously increases while the output power
decreases when the applied load resistance is higher than the opti-



46 M. Khazaee et al. / Sensors and Actuators A 295 (2019) 37–50

Fig. 14. The first three bending modes for the optimum bimorph harvester.
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Fig. 15. (a) Voltage and (b) power for different resistance lo

al  resistance. In addition, resonance frequency is slightly changed
y increasing the load resistance due to the back piezoelectric
ffects. To find the optimum Rl , output power curves at resonance
nd at 49.5 Hz are shown versus the load resistance in Fig. 15(c).
ince the resonant frequency experiences a small change due to
ncrement of the load resistance, the power plots separate after a
pecific load resistance. The resonant output power is higher than
he power at 49.5 Hz, but power at 49.5 Hz is of interest because
f the dominant frequency of the water pump vibration. The max-

mum power is 320 �W/m2.s−4 at 49.5 Hz at load resistance (Rl)opt
quals to 44.6 k�.

If the designed harvester is attached on the accelerometer loca-
ion, as shown in Fig. 11, the measured vibration shown in Fig. 8 can
e applied as the base excitation for the harvester. Acceleration in
heory is a summation of indefinite number of harmonic functions.
n practice, the acceleration signal can be decomposed into a series
f defined harmonic functions, as shown in section 4, where the
FT is employed for decomposing the signal into harmonic func-
ions. However, since piezoelectric energy harvesters generate the

aximum power at its resonant frequency and the designed har-
ester has a natural frequency of 49.5 Hz, the significant harmonic
n the water pump acceleration is the main dominant frequency, e.g.
X = 49.5 Hz. According to Fig. 10, the magnitudes of 1X harmonic in
he water pump acceleration are 0.49, 1.04 and 1.49 m.s−2 in defect-
ree, looseness conditions and shaft misalignment, respectively.
sing these figures as the input acceleration, one can calculate out-
ut voltage and power for the optimum load resistance. Fig. 16(a)

nd (b) show the output voltage and power from one bimorph har-
ester over a frequency range. As stated, the important figure for the
utput voltage and power is that of frequency 49.5 Hz, which is plot-
ed for different water pump conditions. The output peak-to-peak
rsus frequency (c) power for resistance loads at resonance.

voltages from the water pump acceleration at the optimum load are
1.85, 3.93 and 5.63 V at defect-free, shaft looseness and shaft mis-
alignment conditions, respectively. The corresponding powers are
76.84, 343.12 and 710.45 �W,  respectively. If the power density
per device volume is divided into square of the input accelera-
tion, power density per square acceleration is 30.8 mW/cm3. g2 in
all operating conditions. The results does not depend to the input
acceleration and is only a function of geometries of the piezoelec-
tric harvester and its material. The voltage and power densities
per device volume for different working conditions are shown in
Fig. 16(c). The power density values are equal to 35.7, 160.99 and
330.4 �W/cm3 for defect-free, shaft looseness and misalignment,
respectively. Therefore, the power density is increased by 350% and
824% due to presence of the shaft looseness and shaft misalignment,
respectively. This high variation of the power density proves that
the storage capacitor will be charged faster in the faulty working
condition.

Using the optimum VM configuration with 150 �F capacitor,
the stored energy in the capacitor from the water pump vibration
was calculated. Since the pump acceleration is different at different
working conditions, the generated voltage and, hence, the stored
energy in the super capacitor are not similar. Fig. 17 shows volt-
age in the storage capacitor for various water pump conditions.
As expected, the voltage is distinctively higher in both shaft mis-
alignment and looseness than the voltage in defect-free condition.
Moreover, the capacitor voltage is significantly higher for the shaft
misalignment compared to the looseness condition.
The performance of this designed system is moreover investi-
gated for condition monitoring application. It is worthy to note the
microprocessor consumes 28.05 �W (8.5 �A and 3.3 V). By consid-
ering the capacitor constant, e.g. 150 �F, a voltage drop occurs in
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Fig. 16. (a) Voltage, (b) power from water pump acceleration versus frequency and 
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a
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for the defected conditions. Therefore, the first transmission time
ig. 17. Voltage outputs in the capacitor from the piezoelectric harvester at different
ump conditions.

he capacitor during operation of the microprocessor. Hence, a volt-
ge level switch is considered that enables the microprocessor after

.0 V to ensure the continuous operation of the microcontroller. As
dvantage of this level switch, Torah et al. [26] noticed the cold start
roblem during experiments, where PIC microcontroller drew sig-

Fig. 18. Voltage output from storing capacitor during fu
(c) voltage and power densities from the water pump acceleration at 49.5 Hz.

nificant power as the voltage reached to a specific value. This level
switch addresses the cold start problem. After the microprocessor
starts operating, the microprocessor enables the RF transmitter for
a period of time when the voltage reaches to a specific figure. Dur-
ing the transmission, the RF transmitter consumes 7 mA  current.
For this simulation, the PIC microcontroller enables the RF trans-
mitter when the storage capacitor reaches to 7 V for a duration of
0.02 s. By considering the voltage equation across the capacitor with
C = 150 �F, the voltage drop during the transmission time is calcu-
lated as 0.93 V. After the transmission period, the storage capacitor
is charged by the piezoelectric harvester. Nevertheless, the charg-
ing time to reach 8 V depends on the voltage generation by the
piezoelectric, which is different for different pump working condi-
tions. The storage capacitor voltage during the full operation from
the initial conditions are shown in Fig. 18. In this work, to include
unknown errors during the operation, 2% random error is added to
the capacitor voltage. As shown, due to less pump acceleration dur-
ing the defect-free condition, the charging process is slower than
the other conditions; so that the first RF transmission occurred at
1.18 s. On the other hand, the water pump acceleration is higher
and the time intervals between the transmissions are significantly
lower compared to the defect-free condition.

ll operation for different water pump conditions.
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Fig. 19. The elapsed time between the RF transmissions for (a) defect-free and (b) defected conditions.
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ig. 20. The process of condition monitoring for a simulated case from reconstruc
oltage  output from harvesting unit, (c) FI and CL and (d) Water pump state and ela

The elapsed times between the RF transmissions are shown
n Fig. 19 for different water pump conditions. While the first
ransmission for the defect-free occurs at 1.18 s, it happens after
77 and 177 ms  for shaft looseness and misalignment conditions,
espectively. More important than the first transmission is the
ime between the transmissions as it is directly proportional to
he charging process which is linked to the water pump acceler-
tion. The elapsed time values between the transmissions are 350,
9 and 25 ms  for the defect-free, shaft looseness and shaft mis-

lignment conditions, respectively. Therefore, if the water pump
ondition changes from the defect-free to one of these faults,
he elapsed time between the transmissions decreases immedi-
tely.
nals of the water pump. (a) Time signals, (b) 1X mode contribution from FFT and
times between transmissions.

To analysis the elapsed time data from Fig. 19, the parame-
ters in Eq. (1) are obtained as � = 0.350, �0 = 0, �1 = −0.311, �2 =
−0.326, �1 = 1.63E − 2, �2 = 1.39E − 3 and �3 = 9.98E − 4. Since
a statistical model for the elapsed time for the different operating
conditions was obtained, the state of water pump was  conditioned
by calculating the FI and S using Eqs. (2) and (4).

In order to demonstrate possibility of the procedure, one case is
considered in which the state of the water pump changes from the
defect-free to the shaft misalignment in a duration of 20 s. Fig. 19(a)

shows the reconstructed time signals. Here a 5% random noise is
added to the data in order to test the performance of the system in
case of noisy environment. For 2-second interval, the FFT is applied
on the signals and the contribution of 1X = 49.5 Hz in the signal is
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xtracted. This mode contribution is within the range of 0.50 m/s−2

n the defect-free condition to 1.53 m/s-2 in the shaft misalignment
ondition. The 1X contribution is fed into the bimorph piezoelec-
ric model, Eq. (18), with the calculated optimum load resistance
f (Rl)opt = 44,600 �.  Range of the piezoelectric voltage output is
rom 1.9 V in the defect-free to 5.8 V in the shaft-misalignment
onditions. Moreover, the voltage generation from the bimorph
s considered as the input for the optimum MDCP circuit and the
oltage outputs are obtained using simulation. The final voltage in
he storage capacitor ranges from 9.0 V to 28.3 V for the defect-free
nd shaft misalignment conditions, respectively. Fig. 19(b) shows
he 1X mode contribution, piezoelectric voltage and MDVM volt-
ge output over ten 2-second period intervals. According to the
mmediate capacitor voltage, the elapsed time between the trans-

issions are calculated upon which the FI, CL and machine state S
re obtained through Eqs. (2) to (4), respectively. Fig. 19(c) shows
he FI of the water pump and the CL for this index over 20 s period.
s shown for a duration of 8 s, from 1st to 4th 2-second inter-
als, the FI lies closely on 0 value. However, once the machine
ondition changes to the transition operation and the accelera-
ion increases, the FI tends to rise from 0. The FI further increases
ntil reaches to a symptom value for the shaft misalignment con-
ition. The CL, which is an accuracy indicator for the condition
onitoring process, is always close to 1 except for transition period
hich is dramatically less than the other values. Consequently, the
achine state S is shown in Fig. 19(d) with elapsed time over this

0 s time period. It can be seen that, the state of the water pump
s correctly identified as “3” state through the faulty operation,

hich corresponds to the shaft misalignment. However, during the
ransition period, the system identified “2” for the machine state
hich is not correct. By considering the CL values for transition

eriod, one can avoid from incorrect conditions of the machine
Fig. 20).

. Conclusions

In this study, a self-powered condition monitoring system is
esigned to perform operational condition monitoring based on
he RF transmission pulses. After design of the system, an energy
arvesting unit is proposed to provide sufficient energy and voltage

evel for this system. This energy harvesting unit comprises a piezo-
lectric bimorph harvester and Voltage Multiplier circuit. For this
tudy, input acceleration, which is a signal consisting of harmonics
rom a frequency range, is decomposed into a series of harmonic
unction using FFT. A distributed parameter model of piezoelectric
arvester was used to estimate the output voltage. For the machine
ondition monitoring, a pulse-based approach has been proposed
elying on the analysis of elapsed times between the RF transmis-
ion pulses. The performance of this system has been demonstrated
or condition monitoring of a water pump. The designed system has
een applied on experimental vibration signals captured from the
ater pump and shown that the water pump condition can be mon-

tored during the operation. This system can be applied on larger
etwork of machines for autonomous condition monitoring.
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Achieving high power densities through initiative designs of piezoelectric harvester in var-
ious geometries is a key point in vibration energy harvesting. State-of-the-art analytical
and finite element models (FEMs) ignore structural damping, inter-laminar continuity,
shear stresses, and contact layer effect between the substrate and piezoelectric layers
and in addition cannot predict the performance of many recently introduced piezoelectric
harvester configurations, such as non-uniform, thick piezoelectric patches, and variable
thickness beams. This paper presents a comprehensive finite element formulation to calcu-
late power generation by piezoelectric harvesters in a broader range of design cases. The
presented high-order shear FEM not only is suitable for thick composite-based harvesters
but also accommodates the drawbacks of the previous methods. The coupled finite element
approach is verified versus experimental and analytical results. The model developed in
this work is employed to analyze a non-uniform energy harvester with an E-glass fiber
composite substrate layer sandwiched between piezoelectric layers with variable thick-
ness. The numerical results show that, the advance formulation is capable of analyzing var-
ious piezoelectric harvesters including various influential parameters such as contact layer
and damping dissipation. The results, furthermore, indicate that variable piezoelectric-
layer thickness and an optimum fiber direction in composite substrate lamina can enhance
performance of the piezoelectric harvester.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration-based piezoelectric energy harvesting (VPEH) has been extensively employed as a mean to feed electrical
power to small electronic devices from available kinetic energy due to its high energy density, easy integration into the sys-
tem and the availability of unwanted vibration in many operational systems [1]. In many systems with low-power sensors,
piezoelectric energy harvester (PEH) has been integrated into system to harvest energy from the system kinetic energy in
order to provide self-power sensors [2,3] or wireless sensor networks [4,5]. The clamped-free cantilever beam configuration,
also known as the 3–1 mode PEH, is the most widely used boundary condition in VPEH with benefits including relatively low
natural frequency, large deformations and simplicity of design and integration [2]. In this configuration, the clamped end is
fixed to a vibration source and consequently vibration acts as a base excitation, causing transverse motion of the cantilever
that applies a significant normal strain to the piezoelectric element [6] in the length direction, i.e. 1-direction. The piezoelec-
tric layer in this configuration is poled through its thickness, i.e. 3-direction. Regarding the PEH material, Lead Zirconate
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Nomenclature

Abbreviation
CUF Carrera’s unified formulation
PEH piezoelectric energy harvester
FEM finite element method
VPEH Vibration-based piezoelectric energy harvesting
KE kinetic energy, J
PE potential energy, J
DoF degrees-of-freedom
CLPT classical laminate plate theory
FSDT first shear-order deformation theory
TSDT third shear-order deformation theory

Greek script
b, C dimensionless damping coefficients
c shear strains
D z-displacement at nodes in one element
�0 permittivity constant in free-space, F/m
� permittivity constant, F/m
e normal strains
E electric field, N/C
fn modal viscous damping coefficient
gn modal structural damping coefficient
h rotation angle of fibers, rad
k multiplier for material’s lay-up
K Hermite interpolation function
l density, kg/m3

v Poisson’s ratio
j1 mass correlation factor
P element area, m
r normal stress
s shear stress
T applied acceleration DoFs
U electrical potential
/x rotation of x-axis after deformation
/y rotation of y-axis after deformation
v nodal mechanical degrees of freedom
w Lagrange interpolation function
x driving excitation frequency, rad
xn natural frequency, rad
X frequency ratio
N nodal value ofW1

Latin script
A;B integration auxiliary matrices
€aB input base excitation acceleration, m/s2

b harvester active width, m
C1 high-order deformation coefficient
C viscous damping matrix
D electrical displacement, C/m2

E Elastic moduli, N/m2

e Piezoelectric coefficient, C/m2

f frequency, rad
f applied external load, N
G shear moduli, N/m2

g 9.81 m/s2

h frequency response function, m/N
h layer thickness, m
H structural damping matrix, N/m
I Moment of inertia
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Kqq general structural related stiffness matrix
Kq/ general piezoelectric related stiffness matrix
K// general dielectric related stiffness scalar
L harvester active length, m
meff effective mass of the harvester, kg
M general mass matrix
Mt added tip mass, kg
N; P;X; Z interpolation function auxiliaries
P instantaneous generated power, W
q extracted electric charge, C
Q plane stress-reduces stiffness
r displacement field vector
R electrical load, X
S strain vector
t time, s
T stress vector
V volume, m3

Vp total voltage of one piezoelectric layer, V
v voltage difference, V
w z axis displacement of mid-plane, m
W1 z axis displacement through thickness, m
W energy, J
X nodal value of/x
Y nodal value of/y

Subscript
c Contact layer
eff effective
e electrical
E external
p piezoelectric layer
r resonant
s Substrate layer
o layer type

Superscript
e related to element
oc open-circuit
sc short-circuit
t matrix transpose

Coordinates
1;2;3ð Þ principal coordinate (1 along fibers)
x; y; zð Þ physical coordinate (x along harvester’s length)
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Titanate (or PZT ceramic) has high piezoelectric coefficient compared to polymer and composite piezoelectric materials [7].
Morimoto et al. [8] obtained the normalized power density of 0.0345 mW/g2mm3Hz from a 4.88-mm3 PEH fabricated from
epitaxial PZT films. Hu et al [10] obtained a high power density of 0.166 mW/g2mm3Hz from a non-uniform PEH made of
thinned bulk PZT and proof mass. This high power density was due to the high average strain distribution [10]. Recently,
Muthalif and Nordin [9] designed a triangle piezoelectric beams with PZT-5H material that generates 2.9 V at resonant exci-
tation, which is 30% higher than a rectangular piezoelectric beam. According to these studies, non-conventional designs, such
as non-uniform and non-rectangular beams, generate higher output power relatively.

In order to model the coupling between mechanical and electrical physics in PEHs, various methods have been developed
to estimate electrical voltage from a piezoelectric beam. The analytical distributed models such as [12,13], provide closed-
form solutions for unimorph and bimorph piezoelectric energy harvesters, where configurations of the harvester are consid-
ered as rectangular beamwith constant thickness under clamp-free boundary condition. Adding more than two piezoelectric
layers requires the calculation of the neutral axis, the bending stiffness and the mode-shape coefficients. Consequently, the
equation derivation should be modified. In addition, for each boundary condition, the equation derivation needs to be
repeated due to the mode shapes change. The beam models are derived for the special case of rectangular constant cross-
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section with constant thickness. Therefore, many initiative designs, such as non-rectangular geometries [9], which can har-
vest more power compared to the rectangular configuration, cannot be studied by the models presented in [12,13].

Even though analytical modeling techniques can reach an impressive accuracy, the investigation of practically designed
piezoelectric structures requires developing of FEMs [14]. FEM provides a great capacity to model different harvester con-
figurations [15] by breaking the calculation domain into small domains. Each of these can be analyzed numerically with
one-dimensional beam [16] and two-dimensional plate/shell [17] elements. FEMs for smart structures can be broadly break
into two categories: (1) classical and (2) advanced theories [18]. In the classical theories, the out-of-plane deformation
through the thickness is constant and is equal to that of the mid-surface. While in the advanced theories, all the displace-
ment field components are considered variable through the thickness. In order to study potential of smart structure appli-
cations, Reddy [19] introduced classical laminate plate theory (CLPT) and shear deformation theories (FSDT and TSDT) as the
classical methods for multi-layered composites with embedded piezoelectric patches. The CLPT is not useful for multilayered
composite laminates where exhibits higher transverse normal and transverse shear stresses. Although the shear deformation
theories compensate these stresses, these theories do not satisfy the Cauchy theorem, where the out-of-plane stresses should
be continuous [20] due to discontinuity of the mechanical properties through the thickness. In order to satisfy the inter-
laminar continuity (IC), Robaldo et al. [14] presented advanced theories for piezoelectric adaptive plates in multilayered
composites. To model piezoelectric harvesters with FEM, mostly the CLPT theory in the classic framework has been applied
[21,22] even though the PEHs were multilayered beams and the IC was not satisfied in the classical methods. In addition, if
piezoelectric layers are embedded into structures such as aircraft wing structure or wind turbine blade, in which the thick-
ness is not necessarily small, using the CLPT, as considered in Marqui Junior’s model [21], is not appropriate. Therefore, for
the accurate modeling of the PEH for various applications, there is a need for developing a FE model that considers the higher
transverse normal and transverse shear stresses as well as satisfying the IC.

In addition, almost in all studies evaluating PEH, the damping mechanism was considered to be viscous damping as in
Marqui Junior’s model [21], while Cooley et al. [23] showed that using inappropriate damping model will lead to incorrect
estimation of harvested power. Furthermore, in approaches presented for modeling of piezoelectric energy harvesters, the
effect of contact layer between the substrate layer and piezoelectric sheets was ignored. Nevertheless, in practice, in order
to fabricate a piezoelectric harvester, it is necessary to use an adhesive layer for attaching piezoelectric material to the sub-
strate layer. According to Palosaari et al. [24], the thickness of passive layer has an influence on both tip displacement and the
harvester power and therefore the effect of contact layer also should be accommodated.

To overcome the critical issues in the analytical distributed models and FE models, and in order to analyze a wider range
of problems in piezoelectric harvesters, a comprehensive finite element formulation is proposed in the current study. The
TSDT and advanced plate theory, suitable for multilayered composite structures and thick plates, are employed for the pre-
sented FEM formulation. Energy dissipation model in this method is a combination of viscous and structural damping mech-
anisms. The proposed method is verified by analytical results presented in [11,25] and experimental data from [13] for
bimorph piezoelectric beams under the base excitation at different electrical conditions and excitation frequencies. More-
over, the electrical and mechanical analyses are carried out for an energy-harvesting beam with non-uniform and non-
constant piezoelectric sheets covering the E-glass orthotropic laminae. Furthermore, effects of variation of the piezoelectric
thickness and the fiber rotation in substrate layer on deformation of the beam and level of power generation are investigated.
Although the presented method employs high-order shear deformation theory, using a creative representation of finite ele-
ment matrices, global finite element matrices are expressed with separately function matrices easier for computer manip-
ulation. By using this model, performance of a wide range of piezoelectric beams, from simple standard configurations such
as unimorph and bimorph to non-uniform beams with variable piezoelectric thickness and thick piezoelectric patches, can
be investigated.

2. Finite element modeling of piezoelectric energy harvester

A typical piezoelectric harvester consists of a piezoelectric sheet and a substrate layer, which are joined together with a
contact layer. Conventional 3–1 mode PEH is clamped at one end and is free at the other end. The vibration acts on the har-
vester as base excitation and the free end experiences large-deflection vibration. Fig. 1 shows a typical 3–1 mode piezoelec-
tric energy harvester that generates electrical voltage from base excitation. The output wires from positive and negative
poles are connected to an electrical load of R for generating electrical power. In this section, a comprehensive finite element
model for modeling various types of materials for the substrate and piezoelectric layers and different geometrical configu-
rations is presented. The key features of this method can be summarized as follow:

� Both substrate and piezoelectric materials are defined as orthotropic materials with different rotations of principal
directions.

� The effect of contact layer with its damping effects is accommodated.
� High order deformation theory is used for displacement approximation, which is a proper approach for thick composite
plates that considers Shear stresses are considered. The energy harvesting beams are considered non-uniform, where the
piezoelectric sheet partially covers the substrate.

� Thickness of the piezoelectric sheet is variable.



Fig. 1. A typical 3–1 mode piezoelectric energy harvester comprises piezoelectric sheet, contact layer, substrate shim and added tip mass with base
excitation.
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� The damping mechanisms include viscous and structural mechanisms, which are frequency dependent and independent,
respectively.

� Added tip mass attached to the harvester is considered in the model.

In the following subsections, the developed finite model will be presented in details. First, due to different material
domains, constitutive equations for the piezoelectric, the substrate and contact layers are shown with presenting the equa-
tions for principal direction rotation. These constitutive equations will relate the mechanical strain to mechanical stress and
electrical voltage. In next step strain tensors are defined based on physical displacements with third-order shear deformation
element in Section 2.2; so that the stress vector and voltage are related to the displacement fields. In this study, the physical
displacements are approximated according to the finite element method in which the main domain is discretized into a
number of small domains and displacements are approximated using a spatial approximation for each discretized domain.
Section 2.3 presents the spatial approximation and the relationships between the displacement vector, as well as strain ten-
sor, and discretized degrees of freedom. Section 2.4 extracts the mechanical and electromechanical finite element matrices
for each discretized domain using extended Hamilton’s principle and considering the previous spatial approximation. Finally,
assembling the element matrices in form of global finite element matrices are presented for steady state solution for the har-
monic applied load in Sections and 2.6, respectively.

2.1. Constitutive relations

According to Fig. 1 showing the studied energy harvester, there are three different domains, where each one has its own
constitutive equations. These three domains are the piezoelectric, substructure and contact layer. It is assumed that both of
the piezoelectric and substrate layers are orthotropic materials meaning that, there are two orthogonal planes of the mate-
rials property symmetry. On the other hand, the contact layer is considered as an isotropic material. The piezoelectric
domain has electromechanically coupled constitutive relations, while the substructure and contact layer domains are only
mechanical relations. Since principal directions may not coincide with coordinate directions in orthotropic materials, a rota-
tion in principal directions is taken into the account for the piezoelectric and substrate domains.

The linear constitutive equations for an orthotropic material in two dimensions considering piezoelectric effect are:
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The plane stress stiffnesses can be related to engineering constants as:
Q11 ¼ E1

1� v12v21
; Q12 ¼ v12E2

1� v12v21
; Q22 ¼ E2

1� v12v21
; Q44 ¼ G23; Q55 ¼ G31; Q66 ¼ G12 ð2Þ
For the substrate layer, constitutive equations are the same as Eq. (1) without the piezoelectric effect, e.g. eij ¼ 0.
In addition, the constitutive equation for the contact layer as an isotropic material is as follows:
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Piezoelectric property is a two-way coupling between electrical polarization and mechanical strains. Hence, the effect of
strains on the electrical displacement vector can be shown as [19]:
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As stated, a general case is considered in which the principal directions do not coincide with the coordinate directions.
This case is shown in Fig. 2, where rotations of piezoelectric and substrate layers are not the same. In such case, in order
to calculate the stresses in coordinate system, the transformation of material properties should be considered.

In a general case, constitutive equations considering a transformation of principal coordinates to geometry coordinates
for the piezoelectric sheets, the substrate layers and contact layer can be shown as:
Tp ¼ Q
h i

p
S � e½ �E Piezoelectric sheets

T s ¼ Q
h i

s
S Substrate layer

Tc ¼ Q½ �cS Contact layers

ð5Þ
In Eq. (5), over-bar indicates that the parameter is presented in physical coordinate. So, Q
h i

and e½ � are stiffness and piezo-

electric matrices after the transformation. It is worth mentioning that, the transformation is not necessary for contact layer
since it is an isotropic material. In Eq. (5), T , S and E are stress, strain and electrical field vectors. These terms are tensors in
three dimensions and Eq. (6) shows components of these parameters:
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The relationship between components of the stiffness and the piezoelectric matrices in geometrical coordinates and prin-
cipal coordinates under h rotation is shown in Eq. (A.1) and (A.2) in Appendix A.
Fig. 2. Piezoelectric and substrate layers with þhp and �hs rotations, respectively.
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Similarly, the electrical displacement vector can be expressed in the geometric coordinates as follows:
Fig. 3.
study.
D ¼
Dx

Dy

Dz

8><>:
9>=>; ¼

0
0
e31

0
0
e32

e14
e24
0

e15
e25
0

0
0
e36

264
375

exx
eyy
cyz
cxz
cxy

8>>>>><>>>>>:

9>>>>>=>>>>>;
þ

�11 �12 0
�12 �22 0
0 0 �33

264
375 Ex

Ey

Ez

8><>:
9>=>; ¼ e½ �tS þ �s½ �E ð7Þ
where �s½ � is the permittivity matrix in physical coordinates and its components are related to the permittivity matrix in
principal coordinates with Eq. (A.3) in Appendix A.

In 3–1 mode energy harvesting applications, poling direction is along z-axis, so only the z part of the electric field com-
ponent is non-zero. Therefore, when the voltage between two electrode pairs is denoted by v , the vector of the electric field
becomes:
E ¼
0
0

�v=hp

8><>:
9>=>; ¼ Aef g3�1v ð8Þ
2.2. Displacement fields and strains

In Section 2.1, the mechanical stress and electrical displacement vectors were related to the strain vectors. However,
strains should be related to displacement fields since the fields are replaced with a series approximation in the FE approach.
The relationships between the displacement fields and the strains depend on to the theory of the considered plates. In the
classical plate theories the out-of-plane displacement is assumed constant in z-direction, while in the unified formulation,
such as CUF, the out-of-plane displacement is dependent to the z– direction. In the classical theories, there are various
approaches for estimation of the displacement field in x and y directions. For instance, in CLPT, which is based on the Kirch-
hoff plate theory, it is assumed that the lines perpendicular to the mid-surface rotate in such a way that they remain per-
pendicular after the deformation. In FSDT, the perpendicular lines to the mid-surface are not no longer perpendicular
after the deformation, but they still remains as line. In the third shear-order deformation theory TSDT, the perpendicular
lines to the mid-surface will not be perpendicular nor remain lines after the deformation [26]. These theories are shown
in Fig. 3 (a).

In the current formulation, a general case based on the CUF suggestions [27] with the TSDT is employed as shown in Fig. 3
(a). In this formulation, w ¼ w x; y; tð Þ, W1 ¼ W1 x; y; tð Þ, /x ¼ /x x; y; tð Þ and /y ¼ /y x; y; tð Þ are four independent functions for
representing the displacement fields.

Based on the geometry coordinates in Fig. 3, the displacement field vector, r, can be expressed as [28]:
r ¼
rx x; y; z; tð Þ
ry x; y; z; tð Þ
rz x; y; z; tð Þ

8><>:
9>=>; ¼

0
0
w

8><>:
9>=>;þ z

5
4/x þ 1

4w;x

5
4/y þ

1
4w;y

W1

8><>:
9>=>;� C1z3

5
4/x þ 5

4w;x

5
4/y þ

5
4w;y

0

8><>:
9>=>; ð9Þ
where C1 ¼ 4= 3h2
� �

and h is the thickness of plate, including all the layers, and z is the distance to the mid-surface. Subscript

‘‘,” represents the partial differential. Classical plate theories (CLPT, FSDT, and TSDT) consider W1 ¼ 0 while in CUFsW1–0. It
(a) Cross-sectional views of different classical theories for presenting the plate deformation and (b) the plate deformation theory considered in this
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is worth mentioning that, in this formulation if C1–0, each displacement component is a polynomial of third degree, while in
the CLPT and FSDT it is a straight line. Eq. (9) can be used for FSDT by setting C1 to 0. In addition, Eq. (9) can be used for the
CLPT by setting C1 ¼ 0, /x ¼ �w;x and /y ¼ �w;y.

The strain vector can be related to the displacement field vector through:
S ¼

exx
eyy
cyz
cxz
cxy

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

rx ;x
ry ;y

ry ;z þ rz ;y
rx ;z þ rz ;x
rx ;y þ ry ;x

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
: ð10Þ
By substituting the displacement vector from Eq. (9) into Eq. (10) and knowing that the derivative of /x, /y and w are zero
with respect to z, the strain vector can be related to the deformation by Eq. (11):
S ¼

0
0

5
4/y þ

5
4w;y

5
4/x þ

5
4w;x

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ z

5
4/x ;x þ 1

4w;xx

5
4/y;y þ

1
4w;yy

W1;y

W1;x
5
4/x ;y þ

5
4/y ;x

þ 1
2w;xy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
� 3C1z2

0
0

5
4/y þ

5
4w;y

5
4/x þ

5
4w;x

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
� C1z3

5
4/x ;x þ 5

4w;xx

5
4/y ;y

þ 5
4w;yy

0
0

5
4/x ;y þ 5

4/y ;x
þ 5

2w;xy

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð11Þ
Consequently, the stress vector can be related to the physical displacement field by using Eq. (5) and the relationship
between the strains and physical displacements in Eq. (11).

2.3. Discretization and spatial approximation

This subsection deals with spatial approximation for the displacement fields, so that by expressing these physical dis-
placements, the stress vectors can be approximated with a series of estimations. As it can be observed from Eqs. (9) and
(11), the strain vector contains the first derivative of /x, /y and W1 and the second derivatives of out of plane displacement
with respect to x and y. Hence, /x, /y and W1 are approximated using the Lagrange interpolations functions, and w by the
Hermite interpolation functions. Fig. 4 shows a rectangular element having w;w;x;w;y;W1;/x;/y

� �
degrees of freedom (DoFs)

for each node and one electrical DoF, ve, for the element. The vector of degrees of freedom for each element is defined by Eq.
(12).
DoFe ¼ w1 w1
;x w1

;y W1
1 /1

x /1
y w2 w2

;x w2
;y W2

1 /2
x /2

y

n
w3 w3

;x w3
;y W3

1 /
3
x /3

y w4 w4
;x w4

;y W4
1 /4

x /4
y

ot
ð12Þ
It is assumed that /x, /y, W1 and w have the following approximations:
/x x; y; tð Þ �
P4

i¼1X
e
i tð Þwi x; yð Þ

/y x; y; tð Þ �
P4

i¼1Y
e
i tð Þwi x; yð Þ

w x; y; tð Þ �
P12

i¼1D
e
i tð ÞKi x; yð Þ

W1 x; y; tð Þ �
P4

i¼1N
e
i tð Þwi x; yð Þ

ð13Þ
Fig. 4. A rectangular plate element with 24 mechanical DoFs and 1 electrical DoF.
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where subscript i in Eq. (13) addresses the i-th node in a typical element. These interpolation functions can be expressed
with Eq. (14) [29].
w½ � ¼ w1 � � �w4½ � ¼ 1 x y xyf g

1 x1
1 x2

y1 x1y1
y2 x2y2

1 x3
1 x4

y3 x3y3
y4 x4y4

26664
37775

�1

¼ Nf g X½ ��1 K½ � ¼ K1 � � �K12½ � ¼ Pf g Z½ ��1

¼ 1 x y x2 xy y2 x3

x2y xy2 y3 x3y xy3

( ) Pf g
Pf g;x
Pf g;y

264
375

x1 ;y1ð Þ

Pf g
Pf g;x
Pf g;y

264
375

x2 ;y2ð Þ

Pf g
Pf g;x
Pf g;y

264
375

x3 ;y3ð Þ

Pf g
Pf g;x
Pf g;y

264
375

x4 ;y4ð Þ

264
375

�T

ð14Þ
wherein superscript �T means the transpose of the inverse matrix.
Substituting the spatial approximation from Eq. (13) into Eqs. (9) and (11), the displacement field vector is expressed by

the following matrix representations:
r x; y; z; tð Þ ¼

5
4 z� C1z3
� �P4

i¼1X
e
i tð Þwi þ 1

4 z� 5
4 C1z3

� �P12
i¼1D

e
i tð ÞKi ;x

5
4 z� C1z3
� �P4

i¼1Y
e
i tð Þwi þ 1

4 z� 5
4 C1z3

� �P12
i¼1D

e
i tð ÞKi ;y

z
P4

i¼1N
e
i tð Þwi x; yð Þ þ

P12
i¼1D

e
i tð ÞKi

8>><>>:
9>>=>>; ¼ Am zð Þ½ �3�6 Bm x; yð Þ½ �6�24 ve tð Þf g24�1 ð15Þ
The element DoF vector (ve) and auxiliary matrices Am½ � and Bm½ � are given by:
ve tð Þf g ¼ Xe
1 � � � Xe

4 Ye
1 � � � Ye

4 N
e
1 � � �N

e
4 D

e
1 � � � De

12

� �t Am zð Þ½ �

¼

5
4 z� C1z3
� �

0
0

0
5
4 z� C1z3
� �

0

0
0
z

0
0
1

1
4 z� 5

4 C1z3
� �

0
0

0
1
4 z� 5

4 C1z3
� �

0

264
375 Bm x; yð Þ½ �

¼

w½ �
0½ �
0½ �
0½ �
0½ �
0½ �|{z}

1�4

0½ �
w½ �
0½ �
0½ �
0½ �
0½ �|{z}

1�4

0½ �
0½ �
w½ �
0½ �
0½ �
0½ �|{z}

1�4

0½ �
0½ �
0½ �
K½ �
K½ �;x
K½ �;y|ffl{zffl}
1�12

266666666664

377777777775
¼

Nf g X½ ��1

0½ �
0½ �
0½ �
0½ �
0½ �

0½ �
Nf g X½ ��1

0½ �
0½ �
0½ �
0½ �

0½ �
0½ �

Nf g X½ ��1

0½ �
0½ �
0½ �

0½ �
0½ �
0½ �

Pf g Z½ ��1

Pf g;x Z½ ��1

Pf g;y Z½ ��1

26666666664

37777777775
ð16Þ
Similar to the displacement field vector, the strain vector can be expressed with:
S x; y; z; tð Þ ¼

5
4 z� C1z3
� �P4

i¼1X
e
i tð Þwi ;x þ 1

4 z� 5
4 C1z3

� �P12
i¼1D

e
i tð ÞKi ;xx

5
4 z� C1z3
� �P4

i¼1Y
e
i tð Þwi ;y þ 1

4 z� 5
4 C1z3

� �P12
i¼1D

e
i tð ÞKi ;yy

z
P4

i¼1N
e
i tð Þwi ;y þ 5

4 1� 3C1z2
� � P4

i¼1Y
e
i tð Þwi þ

P12
i¼1D

e
i tð ÞKi ;y

� �
z
P4

i¼1N
e
i tð Þwi ;x þ 5

4 1� 3C1z2
� � P4

i¼1X
e
i tð Þwi þ

P12
i¼1D

e
i tð ÞKi ;x

� �
5
4 z� C1z3
� �P4

i¼1X
e
i tð Þwi ;y þ 5

4 z� C1z3
� �P4

i¼1Y
e
i tð Þwi ;x þ 2 1

4 � 5
4 C1z3

� �P12
i¼1D

e
i tð ÞKi ;xy

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
¼ Ak zð Þ½ �5�13 Bk x; yð Þ½ �13�24 ve tð Þf g24�1 ð17Þ
where the auxiliary matrices are given by:
Ak zð Þ½ � ¼

0
0
0

5
4 1� 3C1z2
� �

0

0
0

5
4 1� 3C1z2
� �

0
0

5
4 z� C1z3
� �

0
0
0
0

0
0
0
0

5
4 z� C1z3
� �

0
0
0
0

5
4 z� C1z3
� �

0
5
4 z� C1z3
� �

0
0
0

26666664
0
0
0
z
0

0
0
z

0
0

0
0
0

1þ 5
4 1� 3C1z2
� �

0

1þ

0
0

5
4 1� 3C1z2
� �

0
0

0
0
0
0

2 1
4 � 5

4 C1z3
� �

1
4 z� 5

4 C1z3
� �

0
0
0
0

0
1
4 z� 5

4 C1z3
� �

0
0
0

37777775 ð18Þ
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Bk x; yð Þ½ � ¼

w½ � 0½ � 0½ � 0½ �
0½ � w½ � 0½ � 0½ �
w½ �;x 0½ � 0½ � 0½ �
0½ � w½ �;x 0½ � 0½ �
w½ �;y 0½ � 0½ � 0½ �
0½ � w½ �;y 0½ � 0½ �
0½ � 0½ � w½ �;x 0½ �
0½ � 0½ � w½ �;y 0½ �
0½ � 0½ � 0½ � K½ �;x
0½ � 0½ � 0½ � K½ �;y
0½ � 0½ � 0½ � K½ �;xy
0½ � 0½ � 0½ � K½ �;xx
0½ �|{z}

1�4

0½ �|{z}
1�4

0½ �|{z}
1�4

K½ �;y|ffl{zffl}
1�12

26666666666666666666666666666666664

37777777777777777777777777777777775

¼

Nf g X½ ��1 0½ � 0½ � 0½ �

0½ � Nf g X½ ��1 0½ � 0½ �

Nf g;x X½ ��1 0½ � 0½ � 0½ �

0½ � Nf g;x X½ ��1 0½ � 0½ �

Nf g;y X½ ��1 0½ � 0½ � 0½ �

0½ � Nf g;y X½ ��1 0½ � 0½ �

0½ � 0½ � Nf g;x X½ ��1 0½ �

0½ � 0½ � Nf g;y X½ ��1 0½ �

0½ � 0½ � 0½ � Pf g;x Z½ ��1

0½ � 0½ � 0½ � Pf g;y Z½ ��1

0½ � 0½ � 0½ � Pf g;xy Z½ ��1

0½ � 0½ � 0½ � Pf g;xx Z½ ��1

0½ � 0½ � 0½ � Pf g;yy Z½ ��1

266666666666666666666666666666666666664

377777777777777777777777777777777777775

ð19Þ
It is worth to note that, the displacement field and strain vectors are expressed with separately functioned matrices. In
the other words, Eqs. (15) and (17) help to decompose the displacement field and strain vectors as a product of the three
matrices for easier numerical integration in the next subsection. In addition, this type of matrix representation is a tool
for easy handling of various shell and plate elements, including the classical (CLPT, FSDT and TSDT) and the advancedmodels,
with one generic matrix formulation.

2.4. Finite element formulation for discretized domains

The Hamilton’s principle is a key tool in analytical mechanics in order to derive equations of motions for a dynamical sys-
tem. Generalized Hamilton’s principle states that for a holonomic system between time 0 and t0, the definite integral
I ¼
Z t0

0

KE� PEþWeð Þ þWE½ �dt ð20Þ
is stationary with respect to all arbitrary path variations, e.g. dI ¼ 0. In Eq. (18), We is the electrical energy caused by trans-
ferring electrical charge and WE is the external work done by both mechanical forces and electrical charges. The terms in the
integrant in Eq. (20) are defined with Eq. (21).
KE ¼
R
Vs

1
2
_rtls

_rdVs þ
R
Vc

1
2
_rtlc

_rdVc þ
R
Vp

1
2
_rtlp

_rdVp

PE ¼
R
Vs

1
2 S

tTsdVs þ
R
Vc

1
2 S

tTcdVc þ
R
Vp

1
2 S

tTpdVp

We ¼
R
Vp

1
2 E

tDdVp

WE ¼ drE:f E þ dUeqe

ð21Þ
f E is the external load applied on the element at rE location and qe is the charge that is extracted from the element by
conductive electrode on that element. By substituting these energy terms into Eq. (20) and applying the constitutive equa-
tions presented in Eqs. (5) and (8) on Eqs. (15) and (8), dI ¼ 0 will be as:
dI ¼
Z t0

0

d vf gt
Z
Vs

Bm½ �t Am½ �tls Am½ � Bm½ � €vef gdVs þ
Z
Vc

Bm½ �t Am½ �tlc Am½ � Bm½ � €vef gdVc þ
Z
Vp

Bm½ �t Am½ �tlp Am½ � Bm½ � €vef gdVp

""

þ
Z
Vs

Bk½ �t Ak½ �t Q
h i

s
Ak½ � Bk½ � vef gdVs þ

Z
Vc

Bk½ �t Ak½ �t Q½ �c Ak½ � Bk½ � vef gdVc þ
Z
Vs

Bk½ �t Ak½ �t Q
h i

p
Ak½ � Bk½ � vef gdVp

�
Z
Vs

Bk½ �t Ak½ �t e½ � Ae½ �vedVp � f E

	
þ d Uf g

Z
Vp

Ae½ �t e½ �t Ak½ � Bk½ � vef gdVp þ
Z
Vp

Ae½ �t �s½ � Ae½ �vedVp þ qe

" ##
dt ¼ 0 ð22Þ
by letting d vf gt = 0 and d Uf g ¼ 0, the electro-mechanical coupling equations for one element can be extracted as:
me½ � €vef g þ keqq
h i

vef g � keq/
n o

ve ¼ f E keq/
h it

vef g þ qe þ ke//ve ¼ 0 ð23Þ
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f E and qe are the external mechanical load vector and extracted charge, respectively. The element considered in Fig. 4
comprises all the piezoelectric, contact and substrate layers. However, in real applications, the harvester beam may have
the non-uniform configuration in which the piezoelectric layer only covers a fraction of the substrate layer as shown in
Fig. 5. Therefore, to accommodate these types of harvesters, ko multipliers are defined for each element showing whether
the piezoelectric, contact and substrate layers present in the element. o denotes material type and can be s (substrate layer),
c (contact layer) or p (piezoelectric layer). The value of 1 represents existence of the material while 0 is for the material
absence. For instance, in bottom of Fig. 5, in the zone that both of the piezoelectric and substrate layers exist,
kp; kc; ks
� �

¼ 1;1;1ð Þ while in the rest of the beam kp; kc; ks
� �

¼ 0;0;1ð Þ.
Considering the multipliers, the mass, mechanical stiffness, electro-mechanical coupling and the electric stiffness can be

defined as Eq. (24).
me½ � ¼
P

o¼s;c;pko
R
VQ

Bm½ �t Am½ �tlo Am½ � Bm½ �dVo

keqq
h i

¼
P

o¼s;c;pko
R
VQ

Bk½ �t Ak½ �t Q
h i

o
Ak½ � Bk½ �dVo

keq/
n o

¼ kp
R
Vp

Bk½ �t Ak½ �t e½ � Ae½ �dVp

ke// ¼ kp
R
Vp

Aef gt es½ � Aef gdVp

ð24Þ
For calculating the finite element matrices in Eq. (24), numerical integration over the element volume is carried out. For a
bimorph piezoelectric harvester with the thicknesses shown in Fig. 4, the volumes of different zones can be expressed as
follow:
dVp
� �

lower ¼
R �hs

2 �hc

�hs
2 �hc�hp

dz
R
Ap
dxdy

dVcð Þlower ¼
R�hs=2

�hs=2�hc

dz
R
Ac
dxdy

dVs ¼
Rþhs=2

�hs=2
dz
R
AS
dxdy

dVcð Þupper ¼
Rhs=2þhc

hs=2
dz
R
Ac
dxdy

dVp
� �

upper ¼
Rhs=2þhcþhp

hs=2þhc

dz
R
Ap
dxdy

ð25Þ
As it can be seen from Eq. (24), for calculating the finite element matrices, integration over the element volume is needed.
The analytical integration for these expressions is time consuming. Hence, an alternative approach using the Gauss quadra-
ture integration is proposed here. However, there are two issues to be addressed. The Gauss quadrature is valid for square
domains from �1 to +1, while, as Fig. 6 the quadrilateral elements are not essentially squares in range of �1 to +1. To over-
come these issues, the quadrilateral element is divided into three subdomains and a transformation is introduced to map the
Fig. 5. An example of non-uniform harvester beam with fractioned piezoelectric layer.



Fig. 6. Bifurcation of quadrilateral element Pe into three subdomains P1, P2 and.P3
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physical domain into a square [�1, +1] domain. Fig. 6 shows the bifurcation of a quadrilateral element into two triangle and
one trapezoid subdomains. For instance, if f x; y; zð Þ is the integrant function over the quadrilateral element volume, the inte-
gration can be divided into three integrals as shown in Eq. (26)
II ¼
ZQe

f x; y; zð ÞdV ¼
ZQ

1

f x; y; zð ÞdV þ
ZQ

2

f x; y; zð ÞdV þ
ZQ

3

f x; y; zð ÞdV ¼ I1 þ I2 þ I3 ð26Þ
In Eq. (24), each of I1, I2 and I3 can be numerically calculated by applying the Gaussian quadrature rule thrice. More infor-
mation about details of performing this numerical integration can be found in Appendix B.

2.5. Forming general finite element matrices

The general matrices for the harvester can be derived by assembling the element matrices and scalars in Eq. (24). In the
assembling element matrices, one should carefully consider the order of degrees of freedom in element matrix so that the
general matrices are formed in the correct form. For making the numerical integration in the element matrices about x, y,
and z attainable in reasonably fast executing time, by using an initiative order of the element degrees of freedom, the numer-
ical integrations were separated to z and x and y domains, as seen in Eq. (19). This initiative order of degrees of freedom is
different from what introduced in Eq. (12). Hence, it is necessary to rearrange the degrees of freedom in the element for
assembling into the general matrices.

Some mechanical and electrical considerations should be made in this vibrating system prior to the matrix assembling.
The first concern is about the damping mechanisms in the piezoelectric harvester. In a study by De Marqui Junior et al. [21], a
proportional viscous damping was considered for harvester energy dissipation mechanisms. However, it was shown by Coo-
ley et al. [23] and Khazaee et al. [30] that depending on types of the damping mechanisms, e.g. viscous or structural, the
output power from the piezoelectric cantilever harvester is different. To accommodate both of the damping mechanisms
in our model, a proportional damping for viscous and structural mechanisms is considered and denoted as C½ � and H½ �, respec-
tively. Secondly, piezoelectric harvesters commonly include a uniform electrode, which covered the piezoelectric layer.
Therefore, the voltage, denoted as Vp for piezoelectric layer, is identical in the all elements. Lastly, in order to link the charged
extracted from the piezoelectric layer to the piezoelectric voltage, a time derivative of electric equation in Eq. (24) is per-
formed. Since the total charge on the piezoelectric layer is denoted as Q and the connected load resistance is R, then
_Q ¼ Vp=R. Hence, the general form of the finite element model can be expressed with Eq. (27).
M½ � €vf g þ C½ � _vf g þ Kqq

 �

þ j H½ �
� �

vf g � Kq/

h i
Vp ¼ f Ef g Kq/

h it
_vf g þ Vp=R þ K//

_Vp ¼ 0 ð27Þ
where Kq/

h i
¼ Kq/

 �

diag INeð Þf g (INe is the Ne � Ne identity matrix), where Ne is total number of the elements. It is worth men-

tioning that now f Ef g is now the external mechanical load vector for the hole domain. Since the piezoelectric layers is covert

with a conductive layer, K// ¼
PNe

i¼1k
e
//

� �
.

This FEM can easily accommodate the added mass by updating the global mass matrix at the degrees of freedom asso-
ciated with the added mass node. Mass (Mt) and moments of inertia of the added mass (Ixx, Iyy) are added to the mass matrix
elements. This operation can be repeated if more than one added tip mass is present. Note that, stiffness matrix is remained
unchanged if the added mass is solid enough compared to the energy harvester. If the added mass is located at the i-th node,
then the following matrix at the mentioned DoFs is added to the global mass matrix.
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6i� 5
6i� 4
6i� 3
6i� 2
6i� 1
6i

zfflfflfflfflfflffl}|fflfflfflfflfflffl{DoFs

Mt

0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
Ixx
0

0
0
0
0
0
Iyy

266666664

377777775
ð28Þ
It is shown that, different mechanism will lead to considerably different output power [23]. Therefore, in this study, the
energy dissipation is broken into the structural and viscous damping mechanisms. The structural and viscous damping ener-
gies are modeled as proportional damping with H½ � ¼ C Kqq


 �
and C½ � ¼ b1 M½ � þ b2 Kqq


 �
, respectively. The relationships

between these constants and the viscous damping ratios and a constant structural damping ratio can be defined with [31]:
fn ¼ b1

2xn
þ b2xn

2
;gn ¼ c ð29Þ
Eq. (29) relates the Rayleigh damping coefficients to the modal damping ratios. Nonetheless, in many applications, it is
desirable to extract the Rayleigh coefficients from the experimentally obtained damping ratios. To do so, by substituting
damping ratios f1 at f 1 and f2 at f 2 in Eq. (29), after some basic calculations the Rayleigh coefficients can be shown to be
obtained with Eq. (30).
b1 ¼ 4pf 1f 2
f1f 2 � f2f 1
f 22 � f 21

; b2 ¼ 1
p

f2f 2 � f1f 1
f 22 � f 21

ð30Þ
In Eq. (27), the output voltage from all the elements reduces to only one output voltage because of the common electrical
electrode on the piezoelectric layers. However, a modification on the electromechanical coupling factors and on the electric
stiffness should be performed when there are two piezoelectric layers. The piezoelectric layers can be connected in parallel
for larger current or in series for higher voltage. In the case of parallel connection, effective electric capacitance is equal to the
summation of that for both piezoelectric layers (K//eff ¼ K//lower þ K//upper) and, similarly, Kq/


 �
eff ¼ Kq/


 �
lower þ Kq/


 �
upper. On

the other hand, for the series connection, the effective capacitance is half of one layer and the electromechanical coupling
matrix equals to that of one piezoelectric layer, e.g. K//eff ¼ K//lower=2 and Kq/


 �
eff ¼ Kq/


 �
lower [21].
2.6. Steady state solution

In order to estimate the output power from the piezoelectric harvester, the electro-mechanically coupled finite element
equations are solved for the output voltage and accordingly power.

A harmonic motion is considered as base excitation FEf g ¼ bFE

n o
ejxt . Therefore, the displacement field and output voltage

in steady state can be shown as harmonic functions showing with vf g ¼ bv� �
ejxt and Vp ¼ bVpejxt , where bv� �

and bVp are com-
plex values representing the magnitude of the mechanical displacement and electrical voltage, respectively, and the over hat
demonstrates the magnitude of the parameter in the steady state condition under the harmonic excitation at driving fre-
quency of x. Substituting these expressions into Eq. (27) relates the mechanical and the voltage response with respect to
the input force, as expressed in Eq. (31).
�x2 M½ � þ jx b1 M½ � þ b2 Kqq

 �� �

þ 1þ jcð Þ Kqq

 �� � bv� �

� Kq/

h ibVp ¼ bFe

n o
jx Kq/

h it bv� �
þ 1=Rþ jxK//

� �bVp ¼ 0 ð31Þ
After some basic mathematical simplifications in Eq. (31), the relationships between the mechanical force to the displace-
ment and electrical voltage can be shown as:
bv� �
¼ h xð Þ½ � bFe

n obVp ¼ jx 1=Rþ jxK//

� ��1 Kq/

h it
h xð Þ½ � bFe

n o
ð32Þ
The electromechanically coupled frequency response function between the displacement and mechanical force vectors
from Eq. (31) is defined as:
h xð Þ½ � ¼ �x2 þ jxb1

� �
M½ � þ 1þ j cþxb2ð Þð Þ Kqq


 �
þ jx 1=Rþ jxK//

� ��1 Kq/

h i
Kq/

h it� �1

ð33Þ
In Eq. (29), bFe

n o
can be replaced with a single load acting at one node in the finite element mesh according to the input

acceleration and the effective mass of the energy harvester as bFe

n o
¼ meff €aB Tf g, where Tf g is the vector representing degree

of freedom at which the acceleration is applied.meff is the effective mass of the beammass and the proof mass (if is present).
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The meff can be calculated with the beam mass, proof mass and a correlation factor of l1 [32,33]. It is worth mentioning that
Tf g has only non-zero element equal to 1 at the degree of freedom at which the input acceleration are exerting. By this def-
inition, the generated instantaneous power can be calculated as:
P tð Þ
€aBð Þ2

¼
m2

eff

R

jx 1=Rþ jxK//

� ��1 Kq/

h it
�x2 þ jxb1ð Þ M½ � þ 1þ j cþxb2ð Þð Þ Kqq


 �
þ jx 1=Rþ jxK//

� ��1 Kq/

h i
Kq/

h it�  Tf g

0BB@
1CCA

2

ejxt ð34Þ
Once the solution for all the mechanical degrees of freedom is derived from Eq. (32), one can extract the stress tensors and
electrical displacements for the discretized domain. To do so, with knowing bv� �

at the driving frequency, x, from Eq. (32),
the degrees of freedom, e.g. bve

� �
, can be extracted for each element. Then, at any point in the domain, the mechanical dis-

placements and strain tensors are obtained using Eqs. (35) and (36), respectively.
br x; y; zð Þ ¼ brxbrybrz� �t ¼ Am zð Þ½ � Bm x; yð Þ½ � bve
� �

ð35Þ

bS x; y; zð Þ ¼ bexxbeyybcyz
bcxz
bcxy

n ot
¼ Ak zð Þ½ � Bk x; yð Þ½ � bve

� �
ð36Þ
Finally, from the generated voltage generation and mechanical strain tensors, the electrical displacements and stress ten-
sors are evaluated from the constitutive equations:
bD ¼ bDx
bDy
bDz

n o
t ¼ e½ �tbS x; y; zð Þ þ es½ � 00� 1=hp

� �bVp
bT p ¼ Q

h i
p

bS x; y; zð Þ � e½ � 00� 1=hp
� �bVp; bT s

¼ Q
h i

s

bS x; y; zð Þ; bT c ¼ Q½ �cbS x; y; zð Þ ð37Þ
If the piezoelectric sheet thickness is not constant, in Eq. (37), hp is the thickness of the piezoelectric layer at the node
where the parameters are calculated.

3. Validation and comparison with state-of-art model and experimental data

This section deals with validation of the present finite element (FE) model and the computational procedure versus the
analytical and experimental results. In the first example, the resonant frequencies of the bimorph, without added tip mass
and in open-circuit and short-circuit conditions, are compared with the state-of-the-art analytical results. In the second
example, for a bimorph with added tip mass, the fundamental natural frequency, the generated voltage, and the beam-tip
velocity are compared with the experimental results. In addition, the FE results are compared with the analytical beam dis-
tributed model, and evaluation discussions are made between the present FE and distributed beam models.

3.1. Validation versus analytical results from a bimorph without tip mass

In this subsection, the results of studies from the Erturk and Inman [25] (Chapter 3) and Akbar and Curiel-Sosa [11] stud-
ies are compared with the results of the developed finite element model in this study. The analytical results by Erturk and
Inman’s [25] example has been used as a benchmark for validating models for bimorph piezoelectric harvesters under base
excitation. For instance, Akbar and Curiel-Sosa [11] used this example for validating their analytical model and FEM results
for both structural responses and energy harvesting evaluation. Here, first, the structural response is evaluated. Secondly, the
short-circuit and open-circuit resonant frequencies, f scr and f ocr , respectively, are compared with [25].

The benchmark is a bimorph piezoelectric energy harvester without added tip mass subjected to the base excitation with-
out consideration of the contact layer. The example includes isotropic model for the substrate and orthotropic model for the
piezoelectric layer. The piezoelectric layer is made from PZT-5A with the given material properties in Table 1. Table 2 shows
the dimensions and material properties in the validation example.

Table 3 shows the comparison between the undamped natural frequencies. The results show that, all the bending natural
frequencies are in a good agreement with<3.5% error. Nevertheless, for higher bending modes, the error between the beam
analytical model and this high-order shear deformation FEM model increases. This implies that, the shear stresses, that have
Table 1
Material properties for piezoceramic PZT-5A.

Density (kg=m3) 7800

QE
11;Q

E
22(GPa) 66.0 QE

12, Q
E
21 (GPa) 20.46

QE
44, Q

E
55, Q

E
66 (GPa) 22.8 e12; e32(C=m2) �15.9

e33(C=m2) 15.9 Permittivity (F=m) 1.593 � 10�8



Table 3
Comparison between undamped natural frequencies for the configuration in Table 2.

Vibration mode Natural frequency (Hz)

Erturk-Inman [25] Akbar-Curiel-Sosa [11] Present FE

Beam analytical Finite element TSDT approx.

1st bending 185.1 185.1 187 185.9
2nd bending 1159.8 1160.1 1162.3 1174.4
3rd bending 3247.6 3248.3 3238.5 3356.4

Table 2
The properties of the bimorph piezoelectric harvester [25].

Description Piezoelectric sheet Aluminum substrate

Length (mm) L ¼ 30
Width (mm) b ¼ 5
Thickness (mm) hp ¼ 0:15(each layer) hs ¼ 0:05
Density (kg=m3) See Table 1 ls ¼ 2700
Elastic modulus (GPa) E1ð Þs ¼ 62:3
Poisson’s ration 0:33

M. Khazaee et al. /Mechanical Systems and Signal Processing 145 (2020) 106927 15
not been considered in both of the studies by Erturk and Inman [25] and Akbar and Curiel-Sosa [11], becomemore significant
for higher bending modes. Even though the first mode natural frequency, obtained from the FE model, is almost identical
with that of the beam model, the second and third natural frequencies are higher than the analytical model. Therefore,
the results show that, considering the shear stresses makes the beam stiffer.

Due to the electromechanically coupled effects of the piezoelectric materials, the resonant frequency in the tip displace-
ment and power frequency functions slightly depends on the electrical load connected to the piezoelectric harvester. In par-
ticular, two special cases are of interest for reporting the results, namely, open-circuit and short-circuit frequencies, as their
proportion is a function of the piezoelectric constants [32]. Table 4 shows the comparison between the open-circuit and
short-circuit frequencies from the present FEM model and the results from [25]. As expected from [32], the open-circuit res-

onant frequency is higher than the short-circuit frequency in both of the methods. As can be seen from the fraction of f ocr
f scr
,

results of the both methods are in a good agreement for modeling the effect of the electrical load on resonant frequency.
3.2. Validation versus experimental data of a bimorph with tip mass

For a bimorph energy harvester with proof mass, the results from the presented FEM are compared with experimental
results in other studies. The experimental results are derived from a study by Erturk and Inman [13], where they conducted
experimental tests on a bimorph harvester with PZT-5A piezoceramic and a 0.012-kg proof mass under the harmonic base
excitation. Geometric properties are exactly copied from Erturk and Inman [13] as shown in Table 5.

Table 6 shows the fundamental frequencies without and with proof mass. The 0.012-kg proof mass, which is equal to
140% of the harvester beam mass, causes a 62% reduction in the fundamental frequency, namely from 119.8 Hz to
45.7 Hz. In addition, Table 6 compares fundamental frequency in short-circuit condition for the bimorph harvester. Results
of current FEM are in good agreement with the experimental data with an error 0.2%.

Table 7 shows the comparison of natural frequencies obtained from different FE models in this case study. The FE results
are presented in two sub-categories, namely classic and Carrera’s unified formulation (CUF). In the classical methods, three
plate theories (CLPT, FSDT, and TSDT) are analyzed while for the CUF approach only the TSDT is analyzed. As can be seen, the
classic CLPT results are less accurate compared to the other models especially in torsional modes and higher bending modes,
where the difference between them becomes considerable. There is a good agreement between the results from the FSDT and
Table 4
Comparison between short-circuit and open-circuit frequencies for configuration in Table 2.

Mode 1st bending (Hz) 2nd bending (Hz) 3rd bending (Hz)

Method f scr f ocr f scr f ocr f scr f ocr

Erturk-Inman [25] 185.1 191.1 1159.7 1171.6 3245.3 3254.1
Present finite element- TSDT approx. 185.7 191.3 1174.4 1186.4 3356.4 3368.0
f ocr
f scr

ffi 1:03 1.01 1.004



Table 5
Geometric properties of bimorph with added mass.

Length of the beam (mm) 50.8 Width of the beam (mm) 31.8

PZT thickness- each layer (mm) 0.26 Tip mass, (kg) 0.012
Substrate density (kg=m3) 9000 Young’s modulus (GPa) 105
Substrate thickness (mm) 0.14

Table 6
Fundamental frequency comparison for the bimorph with added tip mass given in Table 5.

no proof mass with proof mass

Present FE Present FEM Experiment [13]

Fundamental frequency (Hz) 119.8 45.69 45.6

Table 7
Comparison of natural frequencies between various FE approaches for the bimorph with added tip mass given in Table 5.

Mode number and type Classical methods CUF

CLPT FSDT TSDT TSDT

1st bending (Hz) 45.00778 45.70266 45.68668 45.68741
1st torsion (Hz) 318.84079 424.20583 423.59242 423.98667
2nd bending (Hz) 500.12100 521.55566 521.23325 521.48227
2nd torsion (Hz) 1138.69341 1458.35721 1454.94244 1457.17431
3rd bending (Hz) 1286.33597 1486.86323 1483.32038 1484.45300
4th bending (Hz) 2183.62439 2335.92377 2332.04895 2333.48623
3rd torsion (Hz) 2444.33313 3052.32948 3041.00076 3047.85320
5th bending (Hz) 2490.30352 3211.72280 3190.17430 3194.82131
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TSDT classical models for all the bending and torsional modes. Moreover, there is remarkable consistency between the nat-
ural frequencies obtained from the CUF and classic models in this example.

Fig. 7 compares the output voltage and the beam-tip velocity as a function of the excitation frequency for three different
resistive loads, namely 1 kO, 6.7 kO, and 100 kO. These values are normalized to the unit base acceleration of g, as reported
by [13]. As can be seen from Fig. 7 (a), the voltage estimated from the present FEM is in a good agreement with the exper-
iments at all the resistive loads. In compliance with the experimental data, the shift in the frequency of the voltage peak for
higher resistive loads can be also observed in the FEM. The present FEM also estimated the beam-tip velocity with reasonably
good accuracy. The FEM has better resonance simulation of the beam-tip compared to the FEM by Akbar and Curiel-Sosa
[11]. In their FEM [11], the accuracy of the resonant tip-displacement from the FEM was not satisfactory. Nonetheless,
the disparity between the simulated and experimental data in the tip velocity, Fig. 7 (b), are greater compared to the values
for the voltage generation. In the study by Erturk and Inman [13], the experimental and simulated correlation of the tip-
velocity was also weaker than that of for the voltage data. One reason for this difference can be due to experimental errors.
Based on the comparison results, the consistency between the FEM and experimental results are better for smaller resistive
loads (<100 kO). This can be due to the nonlinear piezoelectric properties, which can be more significant at higher voltages.
Priya et al. [34] previously reported the electromechanical nonlinearities for PZTs.

As a comparison of the power generation, the power output over a wide range of resistive loads from the present FEM
(classic and CUF models with TSDT approximations) are compared with the analytical beam distributed model by Erturk
and Inman [13], as shown in Fig. 8. The power generation is due to the resonant harmonic excitation. The FE classic and
CUF models results are the same for this example. The overall behavior of the output power are identical between the FE
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Fig. 8. Out power comparison between the present FEMs (Classic and CUF methods based on TSDT approximation) and the Erturk and Inman distributed
model [13] versus resistive load.
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and beam models. Both models point to an optimum electrical load associated with the maximum power output, but this
optimum value is slightly different in the results based on these models. The optimum load from the present FEM is 25
kO while it 23 kO for the distributed model. The power output around the optimum load has more consistency between
the models compared to the small or great resistive loads. As shown in the zoomed-in view in Fig. 8, the minimum difference
is 8%, and it occurs around the optimum resistive load. The difference of the output power between the models becomes
significantly greater in small loads (<100 O) and great loads (>100 MO) with the respective differences of 34% and 21%,
respectively. This indicates that, the beam-distributed model cannot accurately model the electromechanical coupling in
all range of electric loads.

As a further comparison, the voltage outputs with load of R = 25 kO are shown in Fig. 9 over a range of frequency ratios.
The frequency ratio is the excitation frequency divided by the natural frequency of the beam, e.g. X ¼ x=xn, wherexn is the
harvester natural frequency. With this definition, X ¼ 1 means that the energy harvester is subjected to a harmonic load
with the driving frequency equal to the beam natural frequency. It can be seen that, the voltage outputs obtained from
the models are in a good agreement around X ¼ 1. On the other hand, for the off-resonance excitations, the beam-
distributed model overestimates the voltage generation.

4. Application of the present method for non-uniform variable thickness piezoelectric beam

In this section, a numerical case study is presented to show ability of the presented model for estimation of the output
power in a bimorph piezoelectric harvester beam that previous method cannot be employed on this configuration. The
piezoelectric beam in this numeric example is a non-uniform bimorph piezoelectric beam with non-constant thickness of
the piezoelectric sheets. A composite substrate shim with rotated fibers is assumed to join the two piezoelectric sheets.
Moreover, the energy harvester includes a contact layer between the substrate shim and the piezoelectric sheets. First,
the role of optimum load on the output power is investigated in subsection 0 and the effect of the external input acceleration
Fig. 9. Comparison of the output voltage obtained from the present FEM and the Erturk and Inman distributed model [13] versus frequency ratio.
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on the optimum load is shown. In addition, the power generation with optimum load resistance over five bending modes is
calculated by considering the support loss, fluid-structure and the structural damping mechanisms. Deformations in differ-
ent driving frequencies for the harvester are reported in Section 4.3. Finally, Section 4.4 reports effects of the thickness vari-
ation of the piezoelectric sheet and the fiber rotation in the substrate layer on the output electrical power by a parametric
study.

4.1. Harvester description and characterization

Fig. 10 shows the bimorph energy harvester with non-uniform piezoelectric sheets. Unlike the previous studies, which
used metal substrates, the substrate layer in this study is an E-Glass composite material. This type of material provides
an opportunity to change the natural frequency of the beam and the tip displacement by rotating the fiber direction in
the substrate shim. The substrate layer is considered to have the E-Glass fiber with epoxy matrix and a volume fraction
of 60%. Fiber direction is h ¼10� for all cases except those that are mentioned separately. In addition, the thickness of the
piezoelectric sheet is not constant along the length and increases with a slight slope. Table 8 shows geometrical dimensions
and material properties of the piezoelectric beam in Fig. 10. Lines L1 to L3 are lines in the middle of the beam width at dif-
ferent x through the thickness from the top layer to the bottom layer. These lines demonstrate the displacements through the
thickness.

For modeling the damping mechanisms in this energy harvester with clamp-free boundary condition, two types of mech-
anisms are assumed. First, the fluid-structure damping mechanism, which is frequency dependent, is modeled with the vis-
cous FEM damping matrix C½ �. Secondly, the structural and support loss mechanisms, that are frequency independent, are
modelled with the structural FEM matrix H½ �. By using the damping ratios from previous study of the authors [35], and
Eqs. (29) and (30), the coefficients of the damping matrices are calculated as b1 ¼ 0:42, b2 ¼ 6:48� 10�7 and C ¼ 0:0475.

Two mesh densities, one with course elements and one with finer elements, are considered in this study, as shown in
Fig. 11. In mesh I, the piezoelectric sheet is divided into two divisions in width-wise, while in mesh II it is divided into four
divisions. In both meshes, there are two regions with different materials. The yellow region is the region where the piezo-
electric layers and adhesive contacts are present, kp; kc; ks

� �
¼ 1;1;1ð Þ, while in the purple region only the substrate material

exists, kp; kc; ks
� �

¼ 0; 0;1ð Þ.

4.2. Generated power spectrums

As it can be seen from Fig. 12, there is a considerable different between output power for resonant and off-resonance
input excitations for all the electrical loads. For each frequency ratio, an optimum electrical load resistance leads to a max-
imum power. This load is slightly dependent to the excitation frequency. For instance, Ropt is 83.1, 78.6 and 74.6 kO for fre-
quency ratios of 0.9, 1 and 1.1, with corresponding output power of 7.1, 7.7 and 96.1 mW/g2, respectively. The optimum load
for under-resonant excitations (X < 1) is greater that of for the resonant excitation (X ¼ 1). In addition, the optimum load for
over-resonant excitations is smaller than the resonant excitation. The curves for X ¼ 0:9 and 1:1 are almost identical, which
is due to symmetry of the structural response around the natural frequency. Nonetheless, this symmetry is deteriorated for
excitation cases of X ¼ 0:8 and 1:2. The output power with X ¼ 1:1 and 1:2 is slightly greater than that for their symmetric
frequency ratios, i.e. X ¼ 0:9 and X ¼ 0:8.
Fig. 10. A non-uniform energy harvester with two piezoelectric ceramic sheets attached on E-glass composite substrate with epoxy contact layer.



Fig. 11. Mesh for the numerical example with material distribution.

Table 8
Dimensions and material properties for the piezoelectric harvester shown in Fig. 10.

Description Piezoelectric (PZT-5A) Substrate (E-Glass composite) Contact layer (Epoxy adhesive)

Length (mm) 100 200 100
Width (mm) 25 50 25
Added tip mass (kg) 0.01
Thickness (mm) hp ¼ 0:3(each layer)

h0
p ¼ 0:6 (each layer)

hs ¼ 0:2 hc ¼ 0:02

Density (kg/m3) See Table 1 ls ¼ 1759 lc ¼ 2750
Structural constants
- Q11 (GPa)
- Q22 (GPa)
- Q12 (GPa)
- Q44 (GPa)
- G55 (GPa)
- G66 (GPa)

h ¼10�
56.4
18.0
3.6
9.0
9.0
9.0

E ¼ 1:05(GPa)
m ¼ 0:3
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If one selects a non-optimum load resistance, for instance R ¼ 10 kO, the output power at X ¼ 1 will be 25.7 mW/g2,
which is only 26.8% of the maximum available power. The results shown in Fig. 10 emphasize importance of selection of
optimum load resistance to enhance the output power. Since the optimum load resistance becomes different for different
frequencies and, on the other hand, the applied electrical load has an effect on the resonant frequency, as presented in
Table 4, selecting the precise optimum load resistance is an iterative process that needs more consideration than a simple
analysis. Furthermore, as shown by Khazaee et al. [30], amplitude of base excitation affects resonant frequency of the gen-
erated power, and therefore will influence optimum electrical load. Nevertheless, in the context of the presented paper, no
further action on optimum load is carried out because it is not in the scope.

Output power for electrical loads of 100X, 10MX and Ropt conditions in a range of 0–300 Hz are shown in Fig. 13. In addi-
tion, the output power in optimum load connection is calculated from both meshes II and I. The output powers in Ropt con-
dition are almost coincide for the both meshes at all frequencies with an intangible error < 2% at the bending peaks. As high-
order elements are employed in the present method, results with course elements (mesh I) have also reasonable accuracy.
Nonetheless, there is a small difference in the frequency range 50–70 Hz, which is the result of identifying a non-strong
mode around 57 Hz that is a mixed bending and torsion mode, as shown in Fig. 14. Since this mode has a negligible effect
on the energy harvesting by the piezoelectric beams, the effect of this mode can be ignored. Therefore, mesh I is selected over
mesh II because it has less elements and consequently less computation time while it has reasonable accuracy.



Fig. 12. Output power from the piezoelectric beam in Fig. 10 versus electrical load for different frequency ratios (X ¼ 0:8, 0:9, 1:0, 1:1 and 1:2).
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Fig. 14. The non-strong mode at 57 (Hz) frequency for mesh II.
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There are four bending modes in this frequency range, which power has local maximums at these frequencies. As can be
seen, the output power for the optimum load condition is considerably higher in all the resonant frequencies. At the opti-
mum load condition, the resonant frequencies are 15.4, 30.5, 114.5 and 221 Hz. According to Eq. (29), the modal viscous
damping coefficient is higher by increasing the frequency and, therefore, the power for higher bending modes become lower
than the power for the first bending mode.

4.3. Evaluation of displacements

Fig. 15 shows the displacement in z-direction at frequencies around the first bending mode as well as the second and
third bending modes. Because the piezoelectric sheets, with considerable thickness compared to the substrate layer, exist
until x = 0.1 m, there is small deflection before x = 0.1 m at the all frequencies. Fig. 15 (a) emphasizes on the fact that,
the beam deflection and, therefore, the output power is remarkably higher at the resonant frequency compared to other fre-
quencies even close to the resonance. For instance, if the excitation frequency changes 0.9 Hz from the resonance, the tip
beam displacement reduces 25%, reducing the output power significantly. Fig. 15 (b) shows the displacements in z-
direction for three bending modes under steady state solution. Since, the displacements in the second and third modes
are smaller than the first mode; these two modes are magnified by a factor of five in the figure. The displacement for these



Fig. 15. Displacement in z-direction for mid-surface at (a) around first bending mode and (b) first to third bending modes.
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three modes matches to the standard mode shapes of the clamp-free beam. Consequently, the results prove that the iden-
tified modes are the bending modes.

The curves in Fig. 16 show in-plane displacements, e.g. rx and ry, at three locations, lines L1 to L3, through thickness for
different bending modes. It is worth mentioning that, L1 and L2 are at x = 0.04 m and 0.1 m and the piezoelectric layers are
present at these lines, while L3 is at x = 0.2 m where the substrate layer is only present. In addition, the beam thickness at
these lines are not the same as can be seen in Fig. 10. Maximum thicknesses at lines L1 to L3 are 5.4E-4, 7.2E-4 and 1E-4 (m),
respectively. The positive displacement in x direction shows that, the point is in extension while the negative displacement
shows compression. When the beam has thin thickness, at L3 for example, in-plane displacements through the thickness are
very close to linear. While for lines L1 and L2, where the beam is thicker because of the piezoelectric sheets, the in-plane
displacements are cubic polynomials. Moreover, as the beam at L2 is thicker than the beam at L1, the displacement for L2
has larger curvature than the L1. Therefore, if the beam befits thicker, then the non-linear deformation through thickness
becomes more important and should be considered in design of piezoelectric system. The in-plane displacement at L3 is
overall larger than the other lines (L1 and L2), which is due to the flexibility of the thin substrate layer with a length of
0.2 m. Fig. 16 (b) shows comparison the in-plane displacements at line L2 for three bending modes. As can be seen, the dis-
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Fig. 16. Displacement through thickness in x- and y-directions for different lines and bending modes, (a) for first mode and lines L1 to L3 and (b) Line L2 for
three bending modes.
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placements in the first mode is larger than the displacement in the second mode, and it is larger in the second mode com-
pared to the third mode. This statement can be also concluded from Fig. 15 (b).

4.4. The sensitivity of power to piezoelectric variable thickness and substrate fiber rotation

In order to observe the effect of non-constant thickness in the piezoelectric sheet, the tip displacement and output power
are plotted in Fig. 17 in frequency range of 10–20 Hz under R ¼ 10 kO load resistance and fiber rotation h ¼ 0. The solid line
represents the constant thickness while dashed lines are for non-constant thicknesses. The thickness variation makes a shift
in the resonant frequency, which can be in positive or negative direction, depending on the slope of the thickness increment
along the length. Furthermore, the output power becomes greater with increment of the slope of the piezoelectric thickness.
Increasing the piezoelectric thickness causes an increase in the tip displacement as well as in the power generation. For
instance, the power generation by the non-constant thickness of the piezoelectric layer with h0

p ¼ 2:5hp is 1.74 mW/g2 that
is considerably higher than the power generation in the piezoelectric layers (0.76 mW/g2) with a constant thickness. There-
fore, the output power enhances by 130% only by increasing volume of the harvesting device by 31% when the tip displace-
ment increases from 4.5 mm to 5.9 mm

By rotating the fiber direction from the physical direction in a composite substrate shim, it is possible to alter the stiffness
matrix of the substrate beam without changing its overall geometry. This modification leads to a change in the natural fre-
quency and the beam deflection. Moreover, it changes the stress distribution in the piezoelectric sheets and, therefore, the
output power will be different. Fig. 18 shows the tip displacement and output power at four fiber angles, h= 0�, 10�, 20�, and
40�.As shown, the resonant frequency constantly plunges by increasing the fiber rotation. Nevertheless, the tip displacement
and output power increase up to h = 20� and then dramatically decreased as h increases. This variation indicates that, chang-
ing the fiber rotation is a trade-off for maximizing the power. A fiber rotation from h = 0� to h = 20� causes the power to
increase from 1.56 to 1.79 mW/g2, showing 15% increment in the power generation without adding more energy harvesting
material.

4.5. Practical comments on the PEH design for power optimization

The natural frequency and beam deformation are the most important vibrational parameters in the PEH. According to
numerous studies [1,2,32,36] PEHs generate the maximum voltage output when deformed with a driving frequency close
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Fig. 17. The effect of piezoelectric sheet thickness on (a) tip displacement and (b) output power with R ¼ 10 (kO) and fiber rotation h ¼ 0. h0
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to their fundamental frequency. In many practical cases, an added mass can be used to control the fundamental frequency
[3,37], enabling the structural deformation to be considerably amplified at the working frequency [38]. Therefore, in practice,
the fundamental frequency, matching and enhancing the output power, are important in the design of PEHs. This section
gives practical remarks about these two parameters.

The contact-layer thickness is a factor, which can cause variations in the output power and the natural frequencies
because it changes stiffness of the PEH, the mass and the damping properties. The damping effect of the contact layer is
not in the scope of the current study, where it is assumed unchanged. Neglecting the contact-layer damping effect, the con-
tact layer increases the harvester effective-mass slightly and, therefore, increases the inertial load acting at the harvester
base. On the other hand, the beam-tip deflection becomes smaller as the contact-layer adds stiffness to the beam’s stiffness.
These two consequences have contradictory effect on the output power. Fig. 19 shows variation of the PEH power spectrum
for contact-layer thicknesses of 0, 10, 20, 40 and 50 mm. By increasing the bonding-layer thickness, the resonant frequency
increases as the beam becomes stiffer. The peak resonant power is reduced by increasing the bonding-layer thickness. This
shows that, the bonding-layer thickness overall reduces the beam-tip deflection and the output power.

For the illustration of the power optimization, the output power from the harvester is plotted in Fig. 20 versus h
0

p=hps for
different fiber rotation (h) angles. The output power increases with respect to h until h ¼20� and after this point, it sharply
reduces. At this optimum h point, the substrate modulus of elasticity in x-axis becomes minimum and, therefore, the beam-

tip displacement becomes maximum allowing the maximum power generation. By increasing h
0

p=hp, the output power is
increased until a certain point, where it smoothly reduced eventually. The maximum output power is 104.7 mW/g2 and

is generated with h ¼20� and h
0

p ¼ 2:75hp. This power is more than 50% higher than the power by the PEH in common design,

i.e. h ¼0� and h
0

p ¼ hp.
The added tip mass reduces the natural frequencies and increases the beam-tip displacement, as shown in Fig. 21. There-

fore, if the kinetic energy source is low frequency vibration, the added tip mass can be used for matching to the vibration
source frequency. In addition to frequency reduction, the added tip mass increases the output power due to the higher
tip displacement.
Fig. 19. Contact-layer thickness effect on the output power with R ¼ Ropt (kO) and h0
p ¼ 2hp .

Fig. 20. Power analysis with R ¼ Ropt as a function of h0
p=hp and h.



Fig. 21. Natural frequency reduction and beam-tip displacement increase with added tip mass.
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5. Concluding remarks

In this study, a comprehensive finite element formulation is proposed within the framework of piezoelectric energy
harvesting for accurate structural and energy harvesting modeling of piezoelectric beams. The present approach is derived
from third-shear-deformation theory and considers the Carrera’s Unified Formulation for displacement fields. The method
also considers the contact layer thickness in the harvester beams, non-uniformity in the piezoelectric sheet, non-constant
thickness of the piezoelectric sheet and principal coordinate rotation. The proposed method is evaluated with some state-
of-the-art methods in various conditions in structural analysis and energy harvesting parameters. By considering these
features, the present method can be used for the design of high performance piezoelectric harvesters in different applica-
tions. With presenting the numerical results of a case study, effect of the variation in the piezoelectric sheet thickness and
the rotation of principal coordinates in the substrate layer is demonstrated. The results show that increasing the piezoelec-
tric thickness along the beam length enhances the piezoelectric output power. In addition, by changing the fiber direction
in the substrate layer, the energy harvester beam becomes less stiff leading to a lower natural frequency and higher out-
put power.
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Appendixes A. Transformation

In this study, a rotation between physical coordinates and principal coordinates was considered for orthotropic materials
in the piezoelectric harvester. Due to this rotation, the material properties in physical coordinates will be different from the
principal coordinates and, therefore, it is necessary to perform a transformation from physical to the principal coordinates.

Eq. (A.1) shows the structural stiffnesses in the physical coordinates for a rotation of h for both of the piezoelectric and
substrate materials.
Q11 ¼ Q11 cos4 hþ 2 Q12 þ 2Q66ð Þ sin2 h cos2 hþ Q22 sin
4 hQ12

¼ Q11 þ Q22 � 4Q66ð Þ sin2 h cos2 hþ Q12 sin4 hþ cos4 h
� �

Q22

¼ Q11 sin
4 hþ 2 Q12 þ 2Q66ð Þ sin2 h cos2 hþ Q22 cos4 hQ16

¼ Q11 � Q12 � 2Q66ð Þ sin h cos3 hþ
Q11 � Q12þ

2Q66

 !
sin3 h cos hQ26

¼ Q11 � Q12 � 2Q66ð Þ sin3 h cos hþ Q11 � Q12 þ 2Q66ð Þ sin h cos3 hQ66

¼ Q11 þ Q22 � 2Q12 � 2Q66ð Þ sin2 h cos2 hþ Q66 sin4 hþ cos4 h
� �

Q44

¼ Q44 cos2 hþ Q55 sin
2 hQ45 ¼ Q55 � Q44ð Þ cos h sin hQ55 ¼ Q55 cos2 hþ Q44 sin

2 h ðA:1Þ
The electromechanically coupled coefficients of the piezoelectric for a rotation of h are shown in Eq. (A.2). In addition, Eq.
(A.3) can calculate the permittivity coefficients in the physical coordinates.



Table B1
Gaussian points and weights for NG ¼ 5.

Index Gaussian point Weight

1 5.65222820508010E-03 2.10469457918546E-02
2 7.34303717426523E-02 1.30705540744447E-01
3 2.84957404462558E-01 2.89702301671314E-01
4 6.19482264084778E-01 3.50220370120399E-01
5 9.15758083004698E-01 2.08324841671986E-01
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e31 ¼ e31 cos2 hþ e32 sin
2 h

e32 ¼ e31 sin
2 hþ e32 cos2 h

e36 ¼ e31 � e32ð Þ sin h cos h
e14 ¼ e15 � e24ð Þ sin h cos h

e24 ¼ e24 cos2 hþ e15 sin
2 h

e15 ¼ e15 cos2 hþ e24 sin
2 h

e25 ¼ e15 � e24ð Þ sin h cos h

ðA:2Þ

�11 ¼ �11 cos2 hþ �22 sin
2 h

�22 ¼ �11 sin
2 hþ �22 cos2 h

�12 ¼ �11 � �22ð Þ sin h cos h
�33 ¼ �33

ðA:3Þ
Appendix B. Gauss quadrature integration

For evaluating the finite element matrices in Eq. (24) over a volume with trapezoid cross-sectional area, the Generalized
Gaussian Quadrature (GGQ) is proposed in this study. First, the domain is broken into smaller volumes with triangle cross-
sectional shapes, as illustrated in Eq. (26). Then the GGQ is applied for each smaller volumes with formulation in this appen-
dix derived from Ref. [39]. Thus, in this appendix the volume integral of I1 ¼

R
X1

f x; y; zð Þdv is evaluated numerically over

subdomain X1 with boundaries shown in Eq. (B.1).
I1 ¼
Z b

a

Z g2 xð Þ

g1 xð Þ

Z h2 x;yð Þ

h1 x;yð Þ
f x; y; zð Þdzdydx ðB:1Þ
In order to apply the GGQ on the subdomain X1 in xyz space, this subdomain should be transferred into a zero-one cube
Q1 in pqr space by transformation shown in Eq. (B.3).
X1 ¼ x; y; zð Þja 	 x 	 b; g1 xð Þ 	 y 	 g2 xð Þ; h1 x; yð Þ 	 z 	 h2 x; yð Þf gQ1

¼ p; q; r
� �

j0 	 p 	 1; 0 	 q 	 1;0 	 r 	 1
� �

ðB:2Þ

xP ¼ b� að Þpþ ayq ¼ g2 xp
� �

� g1 xp
� �
 �

qþ g1 xp
� �

zr ¼ h2 xp; yq
� �

� h1 xp; yq
� �h i

rþ h1 xp; yq
� �

ðB:3Þ
With these domain transformations, I1 can be numerically evaluated with the GGQ with NG Gaussian points and following
approximation:
I1 ¼
Z
X1

f x; y; zð Þdv �
XNG

i¼1

XNG

j¼1

XNG

k¼1

wi
1w

j

2w
k
3 Jj jf xPi

; yqj ; zrk
� �

ðB:4Þ
where Jj j is the Jacobi of the transformation, xPi
, yqj and zrk are the Gaussian point in (0,1) and wi

1, w
j

2 and wk
3 are their

corresponding weights. There are variety of the Gaussian points and weights with NG ¼ 5;10;20, etc. In this study, the Gaus-
sian points and weightsshown in Table B.1. were used. In addition, the transformation Jacobi can be extracted with Eq. (B.4).
Jj j ¼ b� að Þ g2 xPi
ð Þ � g1 xPi

ð Þ½ � h2 xPi
; yqj

� �
� h1 xPi

; yqj

� �h i
ðB:5Þ
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A B S T R A C T   

This paper presents an initiative concept in geometry and material lay-up toward energy conversion enhance-
ment of piezoelectric energy harvesters from wideband excitation signals. The energy harvester demonstrated in 
this work has Macro-fiber-composite (MFC) as active layers and composite laminate as the center shim. This 
concept utilizes variable cross-sectional area and rotating fiber orientation in the MFC active layer. The simu-
lation of the energy harvester is carried out using finite element (FE) method with high-order shear elements. 
Results of the FE mode is validated with experimental data and numerical results from COMSOL®. Effects of 
changing the cross-section, rotation of fibers in the substrate and the active piezoelectric layers on output power 
and natural frequency of the harvester are analyzed. The results point out the optimum piezoelectric fiber 
orientation, at which power and power density are, respectively, 20% and 60% higher compared to zero-fiber 
angle. In addition, taper angle, as a key parameter in shifting the harvester natural frequency, can be used for 
broadband energy harvesters. By a combination of the taper angle and optimum fiber orientation, a broadband 
energy harvester was optimally designed for a moving car. Power generation by the designed harvester is 84% 
greater than a common multi-beam design at a 47%-reduced volume resulting a 160% power density 
improvement.   

1. Introduction 

Low-power piezoelectric energy harvesting from wasted kinetic en-
ergy sources has drawn much attention during the past years [1]. There 
are several studies focusing on the design and fabrication of piezoelec-
tric energy harvesters (PEHs). To design PEHs, frequency and frequency 
bandwidth are of great importance parameters because PEHs have the 
best performance in their resonant frequencies in linear framework and 
base harmonic excitation [2]. From an energy harvesting perspective, 
the harvester performance is assessed with power density (the ratio of 
power generation over volume of the PEH). In order to achieve high 
power density and maximizing the volumetric power generation, me-
chanical damping should be minimized [3] to limit the frequency 
spectrum to a narrow bandwidth, i.e. typically few hertz [4]. On the 
other hand, as practical vibrational systems have a broadband frequency 
spectrum, the narrowband piezoelectric harvester wastes a large frac-
tion of the available kinetic energy deteriorating the energy conversion 
performance. As a result, for maximizing the overall performance of 
PEHs, enhancing power generation over a wide frequency range is of 

great significance. These improvements lead to higher conversion effi-
ciency for PEHs. 

For achieving better PEH performance, previous studied had focused 
mostly on only one design aspect including geometrical optimization 
[5], nonlinear boundary condition [6], coupling piezoelectricity with 
magnetic force [7,8], and material improvements [9]. Muthalif and 
Nordin [5] demonstrated an improved power performance of trapezoid 
and triangle harvesting beams. They also reported the greater natural 
frequency of a trapezoid beam in comparison with the same-length 
rectangular beam. Attaching beam-tip iron pieces and magnets around 
the beam-tip was used for broadband power generation from harmonic 
base excitation [7] and from impact driven forces [8]. Coupling the 
electromagnetic force with triboelectric nano generator was investi-
gated by Yang et al. [10,11] for obtaining a hybrid low-frequency energy 
harvester. Applying nonlinear boundary condition was investigated by 
Hu et al. [6], where they introduced nonlinear stiffness by placing 
stoppers in a two degree-of-freedom system. Their harvester design 
generated higher power in a larger bandwidth. The impact-based 
nonlinear boundary condition was also used for broadband energy 
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harvesting by Bhatia et al. [12]. The use of multi beams was investigated 
by researchers for obtaining the appropriate frequency response func-
tion in the frequency range of interest. Ramalingam et al. [13] used a 
two-beam design with an inner cavity for the illustration of wideband 
power output. Moreover, Qi et al. [14] employed a multi beam concept 
from Shahruz [15] in order to fabricate a multi resonant structure for 
hosting the piezoceramic fiber composite. They showed that, the output 
power is improved and its bandwidth has increased using this concept. 

In the clamped-free cantilever beam configuration, the most widely 
used boundary condition in energy harvesting [2], the normal strain is 
maximum in the clamped-end region and becomes zero in the free-end 
[16]. Thus, the regions around the clamped-line are accountable for 
most of the power generation leaving the major volume of the harvester 
ineffective. This becomes more significant if the available PEH volume is 
limited because the major PEH volume does not contribute to the power 
generation. In addition, developing flexible piezoelectric modules is of 
great interest for extending applications of energy harvesting toward 
flexible electronics [17]. One concept for changing strain contours over 
the harvester surface is to tailor the beam stiffness in desirable direction. 
Macro-fiber composites (MFCs) has the unique capacity that fiber 
orientation can be varied for changing the beam stiffness in different 
directions. MFCs were invented for delivering high-electromechanical 
coupling effects in PEH as well as offering great module flexibility (see 
Fig. 1 (a)). The MFC is a multi-layered composite having an active layer 
of piezoceramic with micro-scale rectangular cross-section fibers (see 
Fig. 1 (b)) [18]. The MFC has a moderate power density, approximately 
10.37 μW/cm3g0

2 where g0 ¼ 9.81 m/s2 [19], which is greater than that 
of Polyvinylidene Fluoride (PVDF) with 4 μW/cm3.g0

2 [20], still lower 
than the power density obtained from Lead Zirconate Titanate (or PZT 
ceramic) [20]. Using different fiber orientations, a bi-stable lamina en-
ergy harvester was fabricated by Lee and Inman [21] with two 
Macro-Fiber Composites (MFCs) in 0� and 90� fiber orientations. 

Increasing voltage generation over the whole harvester surface is an 
unmet goal that can lead to substantial increment in the power gener-
ation by nano generators. Moreover, although previous studied multi- 
beam harvesters increase the power bandwidth, the power spectrum 
still has sharp peaks at resonances due to the high sensitivity of power to 
the beam length. Thus, having a wideband power output is still needed 
to be investigated because of the wide frequency-band in practical vi-
bration signals. For modeling of energy harvesters with the MFC, there 
are few works focusing on finite element (FE) modeling of MFCs [22,23]. 
Nonetheless, there is a need for a layer-wised FE method (FEM) capable 
of modeling energy harvesters with MFC in various geometries and 
lay-ups. 

This study aims to improve the power conversion efficiency of 
piezoelectric nano generators by developing broadband strain- 
engineered piezoelectric composite harvesting beams. Using a combi-
nation of geometric and material modifications for a flexible composite 
MFC, a broadband PEH with improved power-density is developed. 
Strain contours over the beam area is modified toward better power 
generation using an innovative material modification in the MFC layer, 

which has not been studied yet. In addition, by combining the concept of 
trapezoid harvesting beam with the material modification, the model for 
improved broadband power generation is proposed. To analyze these 
modifications for a composite MFC harvesting beam, the shell formu-
lation by Khazaee et al. [24] is modified for precise layer-wised 
modeling of MFC harvesters in this study, as described in section 2. 
The presented structural FE model can be used for investigation of 
structural-electrical behavior of piezoelectric beams in micro to macro 
scales. Section 3 is dedicated to derivation of the MFC material prop-
erties and damping coefficients for a PEH with the MFC. Next, the 
sensitivity results of the power generation to the cross-section area and 
the fiber orientations are presented in section 4. The proposed harvester 
design is used for designing a wideband energy harvester with improved 
power density. 

2. Problem statement and FEM formulation 

A bimorph beam with the active length of l and the base width of b 
serves as the PEH in this study. The piezoelectric sample is clamped at 
one-end using a clamp box. The clamped-end is fixed to the vibration 
source causing transverse motion of the cantilever. The beam width is 
non-constant, as shown in Fig. 2, and increases (or decreases) with a 
positive (or negative) slope angle α. The electrical output wires are 
connected to a purely resistive electrical load (R). Two piezoelectric 
layers with thickness of hp are in ideal contact with the hs-thickness 
substrate shim. The contact layers has thickness of hc. In practice, each 
piezoelectric layer comes with two-side electrodes to collect the charge 
generation. Therefore, there is no necessity for the substrate shim of 
being metal. Thus, the substrate shim is assumed made of orthotropic 
composite laminae. The electrodes from the two piezoelectric layers are 
wired in series and, therefore, the piezoelectric layers are poled in the 
opposite direction, as shown in Fig. 2. A linear FE formulation based on 
the third-order shear deformation theory is derived for analyzing the 
bimorph. In the FE model, unknown parameters in the beam vibration 
equations are estimated using a spatial approximation for each param-
eter. To make the approximation errors smaller, the differential equa-
tions are solved for small-discretized domains. Thus, the harvester area 
is discretized into several small elements and electromechanically 
coupled equations are developed for each element. As shown in Fig. 2, 
each element has four nodes with five degrees-of-freedom per node, 
namely w, ∂w=∂x, ∂w=∂y, φx, and φy and one voltage value Ve for the 
element, where w is z-axis displacement of mid-plane, φx is the rotation 
of x-axis after deformation and φy is the rotation of y-axis after 
deformation. 

The general FE equations can be derived from the extended Hamil-
ton’s principle in absence of electromagnetic forces, as follows [24]: 

½M�f€χg þ ½C�f _χg þ
� �

Kqq
�
þ j½H�

�
fχg �

�
~Kqφ
�
Vp ¼ fFeg�

~Kqφ
�t
f _χg þ Vp 

�
Rþ Kφφ _Vp ¼ 0

(1)  

where fχg is the vector of total mechanical degree of freedom, Vp is the 

Fig. 1. (a) The flexibility of the MFC and (b) PZT micro-scale fibers in the MFC.  
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generated voltage, fFeg is the external mechanical load vector, ½~Kqφ� ¼

½Kqφ�fdiagðINe Þg and INe is the identity matrix (Ne is total number of el-
ements). In addition, ½M�, ½C�, ½H�, ½Kqq�, ½Kqφ� and Kφφ are FE parameters 
called as the general mass, viscous damping, structural damping, me-
chanical stiffness, electromechanical coupling matrices and electric 
capacitance. Structural and viscous damping mechanisms are modeled 
as proportional damping with ½H� ¼ γ½Kqq� and ½C� ¼ β1½M� þ β2½Kqq�, 
respectively, where γ, β1 and β2 are real positive dimensionless con-
stants. These FE parameters and matrices are presented in Refs. [24] by 
applying the concept of Shi’s high-order shear element [25] on elec-
tromechanically coupled equations of piezoelectric materials. Mass 

matrix ½M� 2 R5Ne�5Ne , mechanical stiffness matrix ½Kqq� 2 R5Ne�5Ne , 
electromechanical coupling matrix ½Kqφ� 2 R5Ne�Ne and capacitance 
Kφφ 2 R are obtained from density properties, material structural stiff-
ness properties, piezoelectric coupling coefficients and permittivity of 
piezoelectric material, respectively. More details about derivation of 
these matrices can be found in Refs. [24]. 

Fig. 3 (a) shows the layered bimorph energy harvester with two 
active MFCs. Different layers in the MFC are also shown in Fig. 3 (b). In 
order to investigate the harvester performance at different fiber orien-
tations in substrate and active layers, as shown in Fig. 3 (c) and (d), the 
substrate and PZT fibers are not aligned with physical coordinates ðx;yÞ, 

Fig. 2. Schematic of piezoelectric bimorph with piezoelectric layers connected to a composite substrate with contact layers and FE discretization.  

Fig. 3. (a) Layered bimorph energy harvester, (b) the MFC sub-plies, (c) rotation of substrate shim principal coordinates, and (d) rotation of PZT fibers.  
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having a rotation of θs and θp, respectively. These rotations change the 
material properties in these layers and, consequently, alter the natural 
frequency and output power. The active layer in MFC has rectangular 
PZT fibers aligned and fixed with epoxy matrix. It is worthy to note that, 
PZTs are not isotropic materials and have different material properties in 
different directions [26]. 

Khazaee et al. [24] developed FE matrices, where the active layers 
are made of a single piezoelectric material, which is different from the 
MFC. A MFC layer, as shown in Fig. 3, consists of an active layer sand-
wiched between the electrode layers, which are then protected from 
electrolyte and environmental conditions with an acrylic and a Kapton 
layer on both sides. The electrode and active layers are also composite 
layers made of copper and PZT fiber with epoxy, respectively. Material 
properties of the composite layers in the PEH are obtained using rules of 
mixture as suggested in Refs. [27]. Let’s use superscripts ‘f’ and ‘m’ 
referring the material properties of the fibers and matrix, respectively. 
Then, the material properties for the composite laminae in principal 
coordinates of ð1;2Þ, when fiber volume fraction is V f , can be shown as 
follows [28]: 

E1 ¼ V f Ef
1 þ

�
1 � V f

�
Em

1
E2
¼

V f

Ef
2
þ

1 � V f

Em

v12 ¼ V f vf
12 þ

�
1 � V f

�
vm

12

1
G12
¼

V f

Gf
12
þ

1 � V f

Gm

G13 ¼ V f Gf
13 þ

�
1 � V f

�
Gm

1
G23
¼

V f

Gf
23
þ

1 � V f

Gm

(2) 

Furthermore, considering the active layer with volume of V f , the 
piezoelectric properties can be calculated from Eq. (3) [27]:  

d31 ¼
1

E1
V f dp

31Ep
1

d32 ¼ � dp
31v12 þV f dp

31Ep
1ð1þ vp

12Þ

ε33 ¼ V f εp
33

(3) 

Eq. (2) and Eq. (3) present the material properties in the principal 
coordinates. Nonetheless, these material properties need to be trans-
formed to the physical coordinates. Note that the copper fibers in the 
electrode layer have a rotation of 90�. Let’s assume ½Qij� and ½Qij� as the 
structural stiffness in principal coordinates and physical coordinates, 
respectively, with a rotation of θ. The relationships between these pa-
rameters is shown in Eq. (4) [29]:  

Q11 ¼ Q11cos4 θ þ 2ðQ12 þ 2Q66Þsin2 θcos2 θ þ Q22sin4 θ
Q12 ¼ ðQ11 þ Q22 � 4Q66Þsin2 θcos2 θ þ Q12

�
sin4 θ þ cos4 θ

�

Q22 ¼ Q11sin4 θ þ 2ðQ12 þ 2Q66Þsin2 θcos2 θ þ Q22cos4 θ
Q16 ¼ ðQ11 � Q12 � 2Q66Þsin θcos3 θ þ ðQ11 � Q12 þ 2Q66Þsin3 θ cos θ
Q26 ¼ ðQ11 � Q12 � 2Q66Þsin3 θ cos θ þ ðQ11 � Q12 þ 2Q66Þsin θcos3 θ
Q66 ¼ ðQ11 þ Q22 � 2Q12 � 2Q66Þsin2 θcos2 θ þ Q66

�
sin4 θ þ cos4 θ

�

Q44 ¼ Q44cos2 θ þ Q55sin2 θ
Q45 ¼ ðQ55 � Q44Þcos θ sin θ
Q55 ¼ Q55cos2 θ þ Q44sin2 θ

(4) 

Similarly, due to a θ rotation, the piezoelectric material properties 
are expressed as follows [29]:  

e31 ¼ e31cos2 θ þ e32sin2 θ
e32 ¼ e31sin2 θ þ e32cos2 θ
e36 ¼ ðe31 � e32Þsin θ cos θ
e14 ¼ ðe15 � e24Þsin θ cos θ
e24 ¼ e24cos2 θ þ e15sin2 θ
e15 ¼ e15cos2 θ þ e24sin2 θ
e25 ¼ ðe15 � e24Þsin θ cos θ
ε11 ¼ ε11cos2 θ þ ε22sin2 θ
ε22 ¼ ε11sin2 θ þ ε22cos2 θ
ε12 ¼ ðε11 � ε22Þsin θ cos θ
ε33 ¼ ε33

(5) 

By combination of the mixing rules presented in Eq. (2) and Eq. (3), 
and the equations for the principal coordinate rotation, we are able to 
extract the FE matrices from the material properties. By having the FE 
matrices and assuming a harmonic input acceleration of €aB ¼ j€aBjejωt 

acting on fT g mechanical degree of freedom, the normalized power 
generation to the square of acceleration magnitude is derived as:  

where meff is the effective mass of the PEH. PðtÞ
ðj €aB jÞ

2 is the normalized power 

to the square of input acceleration, with unit of W
m2 :s� 4, and has no de-

pendency to the magnitude of the input acceleration. In the result sec-
tion of this paper, normalized power is demonstrated. 

For the accurate power calculation, see Eq. (6), three coefficients β1, 
β2, and γ in the damping matrices ½C� and ½H� are estimated. Damping 
properties of an unknown system are often identified with the aid of 
FEM and experimental tests using model updating methods [30]. In 
model updating methods, a residual function is minimized by updating 
certain model coefficients. In this study, as the most important result for 
the PEH is the output power, the residual function is the difference of 
output power between the experimental test and the FE model. By 
expressing the updating parameters with bθ ¼ fβ1; β2; γg 2 R3, the re-
sidual function, εðbθÞ, is defined as: 

εðbθÞ¼ ðPmeas � PðbθÞÞ (7)  

where Pmeas is the measured power and PðbθÞ is the power calculated from 
the FE model. Moreover, if the updating parameters are restricted by 
upper and lower bands as L < bθ < U , the model updating problem 
leads to a constrained least square problem given by 

min
bθ2R3 ; L <bθ<U

jεðbθÞj2. This nonlinear least square problem has no closed- 

PðtÞ
ðj€aBjÞ

2¼
m2

eff

R

0

B
B
@

jω
�

1
=Rþ jωKφφ

�� 1�
~Kqφ
�t

�

ð � ω2 þ jωβ1Þ½M� þ ð1þ jðγ þ ωβ2ÞÞ
�
Kqq
�
þ jω

�
1
=Rþ jωKφφ

�� 1�
~Kqφ
��

~Kqφ
�t
� fT g

1

C
C
A

2

ejωt (6)   
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from solution and should be solved iteratively. 

3. Characterization of MFC layer and modeling of an PEH with 
MFC layer 

The MFC is a multi-layered composite comprising various materials. 
In the MFC, characterization of the geometrical dimensions and the 
material properties for each layer is essential to achieve a close-to-reality 
FE model. For the MFC characterization, the material properties are 
derived from the previous studies on the MFCs and then mixing rules are 
employed for obtaining final properties in the composite sub-plies. 
Moreover, comparison results between the present FE model and 
experimental data for the MFC harvester are reported. Additionally, the 
damping coefficients are extracted from the FE model-updating scheme. 
The damping coefficients are used for the analyses in section 4. 

Table 1 shows the characteristics of the MFC sub-plies. The thick-
nesses for these sub-plies, presented in Table 1, are derived from 
Ref. [31], while the fiber volume fractions are that estimations reported 
by Deraemaeker et al. [27]. Five different materials are used in the MFC 
sub-plies, namely PZT fibers, epoxy, copper, acrylic and Kapton. Solid 
properties of these materials are given by Williams [31]. In order to 
obtain realistic piezoelectric coupling properties, the constant d31 is 
derived from the experimental study on low-voltage ranges by Prasath 
and Arockiarajan [32], where they experimentally studied the relation 
between the strain and electrical field. Table 2 summarizes material 
properties derived from the aforementioned studies. 

Using the properties mentioned in Tables 1 and 2, the results of the 
presented FE formulation are compared with the experimental data from 
Khazaee et al. [34]. The piezoelectric sample used by them is a unim-
orph PEH comprising a 120-μm-thickness aluminum substrate with an 
M-2814-P2 MFC from Smart Material Inc. having the top surface area of 
37 � 18 mm2 in connection to an electrical load resistance of 31.5 kΩ. 
Fig. 4 shows the experimental setup used in Ref. [34]. More details about 
the experimental setup can be found in Refs. [34]. The fundamental 
natural frequency was 197.5 Hz according to the experimental results. 
From the present FE simulation, the fundamental natural frequency is 
205.7 Hz showing an error of �4%. Therefore, there is a good agreement 
between the present FE model and the experiment since many associated 

parameters in the MFC have been obtained from the mixing rules. 
Fig. 5 shows the electrical power measured experimentally from the 

unimorph MFC as a function of frequency ratio (Ω). The frequency ratio 
is the fraction of excitation frequency to the fundamental natural fre-
quency of the harvester. The output power from the present FE approach 
is presented in undamped and damped models. Due to electromechan-
ical coupling effects, the maximum power point is occurs slightly after 
the fundamental frequency, at Ω�1.016. The FE maximum power point 
in either damping models are in good agreement with the experimental 
result. The proportional damping coefficients from the model updating 
are β1 ¼ 4:886, β2 ¼ 1:243� 10� 5 and γ ¼ 0:824� 10� 2. Comparing 
the power generation from the FE model with the experimental data in 
Fig. 5 shows that, the none-damped model is extremely overestimated 
the resonant output power. On the other hand, in the damped model, the 
output power presents a good agreement with the experiments. In the 
next numerical analysis in section 4, these damping coefficients are used 
as the model inputs. 

4. Results and discussion 

In this section, performance of a typical PEH is investigated at 
different configurations using the FE model verified experimentally. 
From the FE model presented in Figs. 2 and 3, a sensitivity analysis is 
carried out focusing on variation of three parameters, namely the angle 
of changing cross-section area (α), piezoelectric fiber direction (θp) and 
composite substrate fiber direction (θs). First, the variations of the 
output power and resonant frequencies are analyzed by changing the α 
angle in the tapered and extended configurations. In this analysis, the FE 
natural frequencies at different α values are compared with the results 

Table 1 
Characteristics for sub-plies in a MFC from Smart Material Inc [33].  

Properties Active 
layer 

Electrode 
layer 

Acrylic 
layer 

Kapton 
layer 

Fiber volume fraction 
V f [27]  

0.86 0.24 – – 

Layer thickness (μm) 
[31] 

177.8 17.78 12.7 25.4 

Fiber material PZT-5A Copper – – 
Matrix material Epoxy Epoxy – –  

Table 2 
Material properties for materials used in a MFC layer from Smart Material Inc.  

Properties PZT fibers Epoxy Copper Acrylic Kapton 

Young’s modulus 
(GPa) [31] 

E1 ¼ 53 
E2 ¼ 61 

3.378 117.2 2.7 2.5 

Shear modulus (GPa) 
[31] 

G12 ¼ 12 
G23 ¼ 22.6 
G13 ¼ 22.6 

1.33 44.7 1.0 0.93 

Poisson’s ratio [31] v12 ¼ 0.384 
v23 ¼ 0.35 

0.27 0.31 0.35 0.34 

Density (g/cm3) [31] 7.75 1.4 8.96 1.185 1.42 
Coupling charge 

constants (pC/N) 
[32] 

d31 ¼ � 167.28 
d32 ¼ � 167.28 

– – – – 

Dielectric constants 
(nF/m) [27] 

1850ε0 – – – –  

Fig. 4. Experimental setup for the unimorph PEH [34].  

Fig. 5. Comparison between the experimental data [34] and the present finite 
element (FE) method in undamped and structural-viscous damped models. 
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from COMSOL Multiphysics® software. Secondly, the effects of varia-
tions of θp and θs on the resonant frequency and power are reported 
followed by presenting contours of the strain and electrical displacement 
field. These investigations are finally employed to design an optimum 
PEH with two MFC layers for a diesel car moving on a bumpy highway. 

4.1. Effect of cross-sectional angle on output power and natural frequency 

Three beam configurations are studied in this paper, as shown in 
Fig. 6, which are constant cross-sectional (reference configuration), 
tapered and extended configurations. The analyzed PEH has two MFC 
layers with the material properties presented in Tables 1 and 2. The 
composite substrate is unidirectional laminae made of E-glass fibers with 
epoxy matrix and 60% volume fraction. Two contact layers are assumed 
for joining the MFCs and the substrate layer. Table 3 shows material 
properties of the substrate and contact layers. A reference lay-up is 
regarded at which the tapered angle is zero but the fiber rotations in the 
substrate and active layer are non-zero. The layered properties for the 
reference configuration are presented in Table 4. 

Fig. 7 compares the natural frequencies from the present FE method 
with that of the modelling software at the reference lay-up but at 
different tapered angles (α). Fig. 7 (a) presents the first three natural 
frequencies versus the element numbers when α ¼ � 5�. According to the 
mode shapes, as shown in Fig. 7 (b), only the first identified mode is the 
bending mode, while the other two modes are torsional modes, which 
are not of interest in the present study because of negligible piezoelectric 
couplings at these displacements. While the first natural frequency does 
not differ considerably by increasing the element numbers, the second 
and third natural frequencies can be inaccurately estimated with low 

number of elements. Similarly, for the numerical results, while the first 
natural frequency demonstrates weak dependency to the element 
number, the second and third natural frequencies have strong de-
pendency to the element number. The present FE results using a high 
element number are in good agreement with the numerical results. 
Computation time plotted in Fig. 7 (a) soars exponentially by increasing 
the element number. Therefore, selection of the element number is a 
trade-off between the accuracy and computational time. In most appli-
cations of piezoelectric energy harvesting, the first bending mode is of 
interest for the PEH design. A total number of 24 elements has good 
accuracy for the natural frequency estimation at low computation time. 
This domain discretization, six divisions in length and four divisions in 
width, is selected as the optimal mesh in this study. The first natural 
frequency at different α angles, obtained by the 24-element FE model, 
agrees well with that of obtained by COMSOL®, as shown in Fig. 7 (c). 

Fig. 8 illustrates the resonant tip displacement and resonant power 
over electrical resistive load by varying α for the reference lay-up 
properties and θp ¼ θs ¼ 0�. The PEH device volumes corresponding to 
the taper angles α ¼ � 15�, 0�, and 15� are 119.8, 78.0, and 36.2 cm3, 
respectively. Fig. 8 (a) shows that, the extended beam has higher tip 
deflection and, hence, higher axial strain. Eventually, higher power 
output is achieved as can be seen in Fig. 8 (b). By comparing the reso-
nant power in Fig. 8 (b), it is furthermore found that, changing α has a 
small effect on the optimum electrical load resistance. Comparing the 
power outputs at α ¼ � 15� and α ¼ 0� cases furthermore shows that, the 
resonant power is increased by 6% in the case with α ¼ � 15�. The 
volumetric power in optimum electrical resistance load for α ¼ � 15�, 0�, 
and 15� are respectively 3.87, 5.56, and 11.41 μW/m2 s� 4 cm3. In the 
tapered configuration with α ¼ 15�, the power density is enhanced by 
105% compared with α ¼ 0�. 

The output power and the normalized power to the PEH volume are 
plotted in Fig. 9 for different αs with 5 kΩ electrical load. The extended 
configuration has smaller resonant frequency and generates higher 
electrical power. Both of these variations are desirable for the PEH 
performance. The natural frequency and resonant power for the PEH 
with α ¼ � 15� are respectively 13.6 Hz lower and 65-μW/m2.s� 4 higher 
in comparison with the case with α ¼ 15� showing a large reduction in 
the resonant frequency and increment in the power generation. How-
ever, if high power density is of interest, the tapered geometry with α ¼
15� generates 76 μW. cm� 3/m2.s� 4 more power than the extended case 
α ¼ � 15�, which is a drastic increment in the power density (see Fig. 9 
(b)). The results of Fig. 9 indicate that, the extended configuration is 
desirable for higher power output while the tapered configuration de-
livers higher power density even though the magnitude of the power is 
lower than the standard configuration. 

Apart from the power enhancement, the angle α can also be a tuning 
factor for matching the excitation dominant frequency to the PEH nat-
ural frequency. In many practical energy-harvesting applications, the 
PEH must be adapted to the changes of the input vibration character-
istics to provide the maximum possible power output. For instance, a car 
hood at 700 rpm has a highest peak power at 35.6 Hz with acceleration 
magnitude about 0.0744 m/s2 [35]. In this scenario, two different ap-
proaches for the power optimization are considered. The first approach 

Fig. 6. Geometries of the under study piezoelectric harvester in reference, tapered and extended cross-section configurations.  

Table 3 
Material properties of the substrate shim and contact layers.  

Properties E-glass fibers Contact layer 

Young’s modulus (GPa) E ¼ 30 1.05 
Shear modulus (GPa) G ¼ 30 0.40 
Poisson’s ratio v ¼ 0.32 0.3 
Density (g/cm3) 2.540 1.4  

Table 4 
Layered characteristic assumed for reference configuration.  

Properties Active 
layer 

Substrate 
layer 

Electrode 
layer 

Contact 
layer 

Tapered angle α 
(deg) 

0 

Length (mm) 100 
Width (mm) 100 
Fiber direction θ 

(deg) 
θp ¼ 10  θs ¼ 30  90 – 

Layer thickness 
(μm) 

177.8 150.0 17.78 50.0 

Fiber material PZT-5A E-glass 
V f ¼ 60%  

Copper – 

Matrix material Epoxy Epoxy Epoxy –  
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Fig. 7. (a) Comparison results between the present FE and COMSOL® software at standard configuration, (b) the first three bending modes at α ¼ � 5� in different 
element numbers, (c) the first natural frequency variation versus α with 24 elements. 

Fig. 8. The effect of beam trapezoid angle versus the electrical load on the (a) tip deflection, (b) power output in the first bending mode.  
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is to change α, while in the second approach, the PEH length is tuned. 
Fig. 10 shows the results for these two optimization approaches. The 
maximum power outputs in these two approaches are respectively 2.73 
μW for α ¼ 4� and 1.87 μW for L ¼ 0.101 m at 10 kΩ electrical load. The 
power output in the α-tuning approach is 45% greater than the power in 
the L-tuning approach. 

4.2. Variation of fiber rotation in active and substrate layers 

Contours shown in Fig. 11 present the PEH optimum resonant power 
and natural frequency with respect to the fiber orientations in the sub-
strate and piezoelectric layers for α ¼ 0� and � 15�. Overall, the natural 
frequency and the resonant power of α ¼ � 15� case are respectively 
lower and higher than that of the case with α ¼ 0�. In Fig. 11, the 
contours show that, θp has greater impact on the natural frequency than 
θs due to the smaller thickness of the substrate layer. As can be seen from 
the contours in Fig. 11 (a) and (b), the PEH optimal performance can be 
obtained by only optimizing θp and setting θs constant. For instance, in α 
¼ 0� configuration, changing θp from 0� to 40�, while θs ¼ 0�, increases 
the power generation from 440 to 514.6 μW/m2.s� 4, and decreases the 
natural frequency from 37.8 to 17.7 Hz. A similar trend can be also seen 
for α ¼ � 15�. Based on the aforementioned argument, only optimization 
of the θp can derive the practical optimal design. Therefore, further 
investigation of θs is not proceeded in this study. 

Fig. 12 shows the resonant power, the power density and the reso-
nant frequency versus θp. There is a symmetric line at θp ¼ 90� and, 
therefore, the same behavior can be seen between 90� and 180�. Starting 
from θp ¼ 0� to 90�, the power generation increases until the optimal 
fiber direction, θopt ¼ 35�. The second significant local maxima occurs at 

θp ¼ 75�. The maximum power output at θopt is identical for the α-15�, 
α0� and α15� cases. If the PEH volume is a significant design parameter, 
then the power density, Fig. 12 (b), will be of interest. The case with α15�

offers highest power density. The optimal power density for α15� is 117% 
higher than the α0� case. The natural frequency of the PEH is another 
important parameter. The resonant frequency, as shown in Fig. 12 (c), 
reduces until θp ¼ 45� and then increases, however one should be careful 
about the dramatic power drop after θp ¼ 40�. The PEH with α-15� has the 
lowest natural frequency. For instance, at θopt, the natural frequency for 
the cases with α-15� and α15� are 17% lower and 25% higher, respec-
tively, compared to the case with α0�. To sum up, an optimal region for 
the resonant power can be defined as θp 2 ½30�;40��, where α is viewed 
as a tuning factor for the natural frequency matching. 

In order to observe the influence of the piezoelectric fiber orientation 
on the performance of a PEH, out-of-place displacement rz, normal strain 
Sxx and electrical displacement Dz at the mid-plane of the active piezo-
electric layer are shown in Fig. 13. The base excitation for the results in 
Fig. 13 is 1 m/s2 at the fundamental natural frequency of each config-
uration. Therefore, as the natural frequencies for θp ¼ 0� and 35� are 
respectively 37.8 Hz and 24.1 Hz, the magnitude of the base excitation 
displacement reach 17.7 μm and 43.6 μm, respectively. In overall, uni-
form and symmetric contours are resulted from θp ¼ 0� fiber orientation, 
while the contours are distorted with circular patterns for θp ¼ 35�. This 
implies that, while the first mode in θp ¼ 0� is a pure bending mode, it is 
a mix bending-torsion mode in θp ¼ 35� case because of the non-uniform 
bending stiffness due to the fiber orientation. This bending-torsion mode 
at θp ¼ 35� causes non-uniform circular patterns in the normal strain and 
electrical displacement field in the piezoelectric layer. 

Improving the normal strain contour on the PEH surface area im-

Fig. 9. (a) Power and (b) power density versus excitation frequency for different taper angles.  

Fig. 10. Power generation from a car hood working at 700 rpm versus (a) extended angle and (b) PEH length.  
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proves the PEH power generation. This can be achieved by reducing the 
PEH stiffness in x-direction, which is equivalent to increment in θp. By 
looking into the strain and electrical displacement contours for θp ¼ 35�, 
the improvements of these parameters can be clearly seen in comparison 
with the θp ¼ 0� case. For instance, the maximum value of Sxx in θp ¼

0� and α ¼ 0� case is 4.5 � 10� 7 m/m while it is 8.0 � 10� 7 m/m in the 
case with θp ¼ 35� and α ¼ 0�. Moreover, the magnitude of Dz at the 
optimum fiber orientation is greater than that of the θp ¼ 0� case. The Dz 

in θp ¼ 0� is approximately � 1.3 � 10� 4 C m� 2 while this figure lies in 
[-1.45,-1.85] � 10� 4 C m� 2 in θp ¼ 35�. Due to the greater Dz at θopt, the 
power generation is greater than zero-fiber angle. This fact is valid for all 
the studied cases, α-15�, α0�, and α15�, as was shown in Fig. 12. 

For the case with θp ¼ 0�, Sxx and Dz has the greatest value near the 
clamped-line. These figures gradually reduce toward the beam free-end. 
Therefore, in this fiber orientation, a large portion of the piezoelectric 
layer has low contribution in the power generation. Nonetheless, these 
patterns distort for the θp ¼ 35� case, so that the regions close to the free- 
end generate more power than the regions close to the clamped-line. To 
quantify the power generation contributions of different surface regions, 
the beam is divided into seven equal regions, and then the average Dz 
over each partition area is calculated. Fig. 14 presents the average Dz 
values over the partition areas for different αs and θps. In the common 
PEHs with zero-fiber-orientation MFCs, the regions near the clamped- 
end generate more power compared to the free-end region. Neverthe-
less, in the optimal piezoelectric fiber orientation where θp ¼ 35�, the 
regions near the free-end have greater Dz value. In the other words, the 
role of unproductive surface regions near the free-end becomes more 
prominent by changing the strain contours in the piezoelectric layer. 
Consequently, the voltage potential in the whole PEH area is higher 
compared to the uniform strain contours. 

The electrical displacement field (Dz) in the poling direction for two 
cases, i.e. α-15� and α15�, at θopt are shown in Fig. 15 when the external 
electrical load is 6 kΩ. The Dz magnitude for α-15� is approximately 10% 
higher than the α15� case. This also can be interpreted from Fig. 14, 
which illustrates the greater average Dz in the all beam area for α-15�. 
However, one can observes resemble patterns by comparing the patterns 
in Fig. 15 for both α-15� and α15� cases, which are completely different 
from the uniform contours for the θp ¼ 0�. In a 3-1 mode piezoelectric 
harvester, the voltage generation is proportional to the normal strain. In 
the case θp ¼ θopt, the structural stiffness matrix differs from that of the 
case θp ¼ 0� and, therefore, the strains are not identical between these 
cases. It causes different patterns of the electric displacement field be-
tween the cases where θp ¼ θopt and θp ¼ 0�. 

5. Summary and discussion on the proposed design in practical 
cases 

In subsections 4.1 and 4.2, the variations of the output power and 
natural frequency were investigated with respect to the variations in the 
beam cross-section area and piezoelectric fiber orientation. It was shown 
that, changing the cross-section area causes a considerable shift in the 
natural frequency. In addition, setting the piezoelectric fiber orientation 
in the MFC to an optimum angle enhances the electrical displacement 
field over the surface so that the power generation increases consider-
ably. Table 5 presents summary of the results obtained through the 
sensitivity studies in sections 4.1 and 4.2. For cases that α < 0, both of 
the natural frequency and power density decrease while the power 
generation increases. These variations have opposite pattern for α > 0. 
The power density can be increased by 95% only with changing α from 
0� to 15�. The power density can be further increased by a factor of 

Fig. 11. Contours for optimum resonant power with R ¼ 6 kΩ and fundamental natural frequency for (a) α ¼ 0� and (b) α ¼ � 15�.  
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155% with setting θp ¼ θopt offering a remarkable change in the power 
density. In addition, changing the taper angle from � 15� to 15� results a 
variation in the natural frequency from � 12.4% to þ23%. By setting θp 

¼ θopt, the natural frequency can be further reduced by 46%. Moreover, 
if the PEH volume is not a critical design parameter and only the power 
generation is of interest, a design case with α ¼ -15� and θp ¼ θopt gives a 
19% increment in the power generation. Overall, the optimum design is 
the configuration with α ¼ 15� and θp ¼ θopt, which has the greatest 
power density and an 18%-increased output power. In this optimum 
design, the output voltage and current are respectively 1.77 V/m.s� 2 

and 294.8 μA/m.s� 2 resulting an output power of 521.31 μW/m2.s� 4. 
The studied parameters, fiber orientation and tapered/extended 

angles, provide a great suppleness in the PEH design so that a wide range 
of operation conditions can be covered with an identical design. 
Although the investigated example is in cm-scale, the optimum PEH 
design, with considerably greater power density, can also be used for 
small-scale energy harvesting. In particular, using fiber orientation to 
create the desirable strain contour is highly beneficial for small-scale 
PEH designs as it increases the power density noticeable by employing 
whole the harvester surface for power generation. In addition, the 
reasonably good flexibility of the MFC extends the applications of the 
current design toward small-scale flexible electronics. 

To show the application of the proposed PEH design in practice, an 
energy-harvesting device is designed for a practical wideband vibration 
source. In practice, the vibrational sources may have variable vibration 
emissions in terms of frequency spectrum or acceleration magnitude, 
depending on the operational condition. In addition, frequency of a vi-
bration signal from a practical vibration source does not only point out 
to a specific frequency, but normally the signal has high acceleration 
amplitudes over a frequency range. To clear this point, experimental 
vibration signals from a moving car, as a practical vibration source, was 

considered in this study. The experimental vibration data is retrieved 
from the real vibration data base [36]. The car under the study was 
Grande Punto diesel equipped with an accelerometer and a data 
acquisition system. The acceleration data was recorded for 60 s in three 
directions with the sample rate of 20 kHz. The time signal and Fourier 
transform, obtained using Fast Fourier Transform (FFT), are shown in 
Fig. 16 in g0 ¼ 9.81 m/s2 unit. The root mean square of the time signal is 
equal to 0.21g0 and the acceleration has a peak of 0.033g0 at 29.64 Hz. 
The frequency spectrum of the acceleration shows that, the acceleration 
is always higher than 0.011g0 in a frequency sweep of 9 Hz, between 26 
and 35 Hz. Using a single energy harvester with the matched natural 
frequency for the vibration of 29.64 Hz, will waste the vibrational en-
ergy available in the other frequencies. One solution for tackling this 
issue is to broaden the frequency bandwidth of the PEH. Using 
multi-resonant beam [14], placing a stopper along beam length [37] and 
tapered beam with cavity [13] can be named as some solutions for 
broadband power generation. In this study, it is considered that, a 
number of harvester beams with different α but the same θp are mounted 
on a base plate, so that each energy harvester covers a frequency range 
but, overall, all of these PEHs cover a broad bandwidth together. 

According to the FFT of time signals of the car vibration, the fre-
quency range of interest chosen to be [25,35] Hz, where the magnitude 
of the acceleration is high compared to the other frequencies. To cover 
this frequency range, we considered five harvester beams with θp ¼ θopt 
and different αs, i.e. α ¼ 3�, 7�, 11�, 15�, and 19�, while keeping the 
material properties as used through this study. Fig. 17 (a) shows a 
schematic of the proposed energy harvester. To show the superiority of 
the proposed method over the common multi-beam harvesters, a com-
mon harvester, as shown in Fig. 17 (b), with variable beam lengths, i.e. 
L ¼ 105, 110, 115, 120, and 125 mm, is furthermore investigated. In the 
proposed design, the power output has a broader bandwidth due to 

Fig. 12. (a) Resonant power, (b) power density and (c) fundamental natural frequency versus piezoelectric fiber orientation.  
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Fig. 13. Out-of-plane displacement (rz), normal strain (Sxx), and electric displacement field in poling direction (Dz) with R ¼ 6 kΩ versus fiber orientation (θp¼0� and 
θopt) for α ¼ 0�. 

Fig. 14. Average electric displacement field (Dz) with R ¼ 6 kΩ for different α and θp over the seven partition areas of the beam.  
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different αs while in the common design the power output is broadband 
due to the different lengths. The power generation curves with R ¼ 10 
kΩ over frequency of 10–50 Hz are shown in Fig. 17 (a) for the both 
designs. The power output for the present design has a maximum value 
of 111.3 mW/g0

2. Due to setting the fiber orientation to θopt, this value is 
approximately 50% higher than the maximum power with the common 
design. This power improvement can be seen over the whole frequency 

range. In addition, due to the very narrow power bandwidth from each 
beam in the common design, the power curve in the common design has 
a fluctuation pattern. In contrast, in the present design power has a 
smaller amplitude fluctuating pattern. 

According to Khazaee et al. [38], when the frequency spectrum of a 
practical signal is present, the power-frequency curve can be estimated 
by considering each point in the frequency domain as a single harmonic 

Fig. 15. Electrical displacement field in poling direction for mid-surface of the active layer with R ¼ 6 kΩ for θopt piezoelectric fiber orientation at α ¼ � 15� and 15�.  

Table 5 
Summary of the sensitivity results of α and θp on the natural frequency, power generation and power density when R ¼ 6 kΩ.  

Parameter Natural frequency Power Power densityb 

Value (Hz) Variationa (%) Value (μW/m2.s� 4) Variationa (%) Value (μW.cm� 3/m2.s� 4) Variationa (%) 

α ¼ 0, θp ¼ 0  37.81 – 440.03 – 56.41 – 
α ¼ � 15, θp ¼ 0  33.11 � 12.43 457.50 3.97 38.19 � 32.31 
α ¼ þ 15, θp ¼ 0  46.73 23.59 399.22 � 9.27 110.28 95.49 
α ¼ 0, θp ¼ θopt  24.06 � 36.37 518.24 17.77 66.44 17.77 
α ¼ � 15, θp ¼ θopt  20.40 � 46.05 524.64 19.23 43.79 � 22.37 
α ¼ þ 15, θp ¼ θopt  30.31 � 19.84 521.31 18.47 144.01 155.27  

a Variation is compared to the α ¼ θp ¼ 0 design case. 
b Power density is calculated based on the PEH device volume. 

Fig. 16. Time signal and Fourier transform of y-axis acceleration signal from Grande Punto diesel car moving on bumpy highway configurations [36].  
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excitation. Finally, in a linear time invariant system, the total power 
generation is the summation of the power generation for each frequency. 
By multiplying the power spectrums for the present and common de-
signs to the square magnitude of the car acceleration signal, shown in 
Fig. 16 (c), one can estimate the power output from the PEH devices. 
Fig. 18 presents the power output with R ¼ 10 kΩ in the considered 
range of frequency, where the acceleration amplitude is greater than the 
other frequencies. The power output for the proposed PEH is consider-
ably higher, compared with the commonly designed PEH. After imple-
menting the series summation of the power output at the all frequencies, 
the total power is obtained 5.26 and 2.85 mW for the proposed and 

common designs, respectively, showing a vivid increase of 84.6% in the 
total power generation. If only the harvesting beams are considered to 
calculate the volume of the device, the proposed energy-harvesting de-
vice has a volume of 23.7 cm3, while the common design PEH has vol-
ume of 44.9 cm3. Consequently, the power density in the proposed 
device is 222.1 μW/cm3 that is 160% higher than the power density in 
the common design. 

6. Conclusion 

In this paper, an initiative configuration for PEH with MFCs, as the 

Fig. 17. (a) Proposed harvester design, (b) a common multi beam with variable lengths, and (c) power generation for the PEH devices as a summation of all 
five beams. 

Fig. 18. Demonstration of power generation with car excitation for two harvesting devices proposed in Fig. 17 over 10–50 Hz frequency range.  
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active layers, was proposed for achieving higher energy harvesting 
performance. Three controlling parameters were introduced in the PEH 
design, namely taper or extended cross-section angles, piezoelectric 
fiber rotation and substrate fiber rotation. The results showed that, the 
taper or extended angle has a great impact on the natural frequency of 
the PEH and, at the same time, the taper angle causes a significant 
increment in the power density. Rotation of the substrate fiber has small 
impact, compared to rotation of the piezoelectric fiber because of the 
small substrate thickness compared to the piezoelectric layer. On the 
other hand, by changing the PZT fiber orientation in the MFC, the power 
generation increased dramatically due to the modification in the strain 
contours over the beam area. Finally, by using the proposed design 
method, a broadband energy harvester consisting of five harvesting 
beams was optimized for power generation from a moving car. The re-
sults showed that, the power output is 85% higher in 47% reduced 
volume, compared to the common design with five rectangular beams. 
The results of this study provide a guideline for geometry optimization 
of flexible PEH modules with MFCs for maximizing the energy har-
vesting performance. 
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The investigation of viscous and structural damping for piezoelectric 
energy harvesters using only time-domain voltage measurements 
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H I G H L I G H T S  

• A method for determining damping coefficient from voltage measurements presented. 
• Structural and viscous damping mechanisms differentiated. 
• Bonding layer has a significant effect on the damping. 
• Viscous air damping becomes more influential at higher beam deflection. 
• Tip mass increases viscous damping effect due to increasing the tip deflection.  

A R T I C L E  I N F O   

Keywords: 
Piezoelectric 
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Structural damping 
Bonding layer 

A B S T R A C T   

Knowing the nature of damping in piezoelectric energy harvesters can lead to proper damping and electrome-
chanical models and designing highly efficient harvesters with less damping. As an attempt toward a better 
understanding of damping in piezoelectric energy harvesters, this paper presents experimental results for 
structural and viscous air damping coefficients extracted directly from voltage measurements under shock- 
induced tests. Free-vibration excitations are analyzed using the modified Short-Term Fourier Transform and 
Resampling method. Seven cases are studied, namely Macro Fiber Composite with different substrate shims, 
different bonding layers, and with or without a tip mass. The damping coefficients can be reliably extracted using 
an up-chirp driving signal and analyzing the system’s decay curve, without the need for full measurement of 
harmonic response over a wide frequency range. The results also indicate that the damping coefficient is not 
independent of the base excitation amplitude and can increase up to 30%. The relative significance of viscous air 
damping and structural damping mechanisms is identified in each case. The dependency of viscous air damping 
on the base excitation amplitude is also evaluated. The experimental results highlight the significance of the 
bonding layer in structural damping, which can account for approximately 60% of the total damping. In the 
absence of a substrate shim and bonding layer, the main contribution to energy dissipation is viscous air 
damping. While an added tip mass increases the output power, it also escalates the viscous air damping to 
approximately 40% due to increased beam tip deflection.   

1. Introduction 

The recovery of wasted energy using energy harvesting technologies 
is now widespread due to the global energy crisis, rising power demand, 
and environmental pollution [1], leading to alternative ways to power 
electronic devices. Nowadays, microelectronic devices consume signif-
icantly less energy, thanks to rapid science and technology advances, 
enabling battery replacement or battery recharging [2]. This will enable 

electronic devices to be installed in remote areas using available natural 
energies, avoiding pollution, labor cost, and replacement cost [3]. The 
direct piezoelectric effect [4] has been widely used for vibration energy 
harvesting (VEH) applications [5], aiming to generate low power for 
small electronic components, such as autonomous sensors [6], or for 
large-scale power generation, such as smart pavement systems [7]. The 
essential vibrational parameters in piezoelectric VEH are the natural 
frequency, the damping ratio, and mode shapes. Piezoelectric energy 
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harvesters (PEHs) generate maximum voltage output when deformed 
with a driving frequency close to their fundamental frequency [8]. In 
many practical cases, an added mass can control the fundamental fre-
quency [8,9], enabling structural deformation to be considerably 
amplified at the working frequency [10]. Moreover, any source of en-
ergy dissipation, such as strain rate material damping or air resistance, 
reduces the generated power [11], and accordingly, efforts are made to 
keep the damping ratio as low as possible in harvester design [12]. 
Finally, mode shapes determine the mechanical strain pattern in the 
energy harvester (strain is proportional to the applied stress [13]) and 
consequently influence the electrical power output. 

Although damping affects the power output of PEHs [14], there 
appears to be no comprehensive study determining the damping sys-
tematically in a typical harvester. For instance, for modeling a multi-
layer piezoelectric harvester, the damping coefficients of different layers 
are often considered constant [7]. While studies calculate damping co-
efficients from measured responses, there are considerable differences in 
their results. For instance, DuToit and Wardle [15] reported mechanical 
damping of ζm = 1.78% for a PZT-5A bimorph from Piezo Systems, Inc. 
(T226-A4-503X), while Erturk and Inman [16] reported ζm = 2.7% for 
the same bimorph with 12 g added tip mass, and Kim et al. [17] reported 
ζm = 8.2% for the same bimorph with the same added tip mass. 

Energy dissipation sources comprise air resistance, support loss, and 
structural damping [18]. Typically, a cantilever PEH comprises several 
layers, with a piezoelectric layer bonded to other layers. The bonding 
layer may become a source of structural damping. In a hybrid material 
comprising two low damping materials, the viscoelastic contact layer’s 
damping effect can be substantial [19]. Zhou et al. [20] investigated 
viscoelastic damping materials. Khazaee et al. [21] showed that the 
bonding layer condition could significantly affect mechanical damping. 
Arafa and Baz [22] investigated the piezoelectric composites’ structural 
damping and showed that the composite internal structure would 
change the internal loss factor. Nevertheless, in many PEH studies, en-
ergy dissipation is assumed to be purely due to viscous damping [15], 
while, for instance, the damping source in a piezoelectric harvester can 
be due to the hysteresis behavior [23] and also internal material fric-
tions. In piezoelectric composites, the structural lay-up can amplify the 
material internal damping [24]. Khazaee et al. [25] employed a simple 
one-degree-of-freedom model to show how different proportions of 
structural and viscous damping could affect resonant electrical power 
estimation. In particular, they showed that the use of a purely viscous 
damping model could lead to inaccuracy. Cooley et al. [26] pointed out 
the importance of viscous and structural damping models, stating that 
experimental tests are required to clarify viscous and structural damping 
roles in each configuration. 

For the damping parameter determination in PEHs, the simple peak 
decay [27], the peak bandwidth [28], curve fitting [29], and the sub-
space system identification (SSI) [30] methods can be used. In the simple 
peak decay method, the damping parameter is estimated from the log-
arithmic decrement observed in the free-vibration response [31]. Due to 
noise in a measured time-domain signal, the decrement analysis is often 
accompanied by uncertainties. Moreover, the simple peak decay can 
only extract the fundamental vibration mode damping, not that for any 
higher modes. In the peak bandwidth method, the damping is extracted 
from the bandwidth of the frequency response function. In this method, 
the harvester needs to be excited in a wide range of frequencies for 
forming the frequency response function, which will be very time 
consuming because of the numerous test tries. Classical curve fitting or 
SSI methods, such as a circle or line fitting, require multi-sensory data 
obtained from various experimental tests followed by complex numer-
ical and optimization algorithms [32]. 

An inaccurate assumption about the damping mechanism contribu-
tions leads to inaccurate power output estimation. Therefore, there is a 
need for a systematic method to identify and measure the contributions 
of viscous and structural damping mechanisms. Both viscous damping 
[33] and structural damping [34] can be significant in each specific 

application due to the load conditions, boundary conditions, and ma-
terial lay-up. Banks and Inman [35] showed a combination model of the 
viscous air and the structural internal friction damping would have the 
best agreement with experimental results. Nonetheless, clarifying the 
contributions of viscous and structural damping mechanisms is still an 
unmet goal. Potentially, the bonding layer, as an inseparable part of 
piezoelectric energy harvesters, can be a source of damping; yet its 
damping effect has not been studied. Approaches for the damping co-
efficient extraction require many experimental tests, multi-sensory data, 
or complex numerical and optimization algorithms. Thus, deriving an 
objective approach applied directly on the piezoelectric voltage mea-
surements, capable of extracting modal parameters for different vibra-
tion modes, is an unmet goal. In this study, a modified Short-Term 
Fourier Transform and Resampling (STFR) approach is proposed for the 
damping determination that can be simply applied on the voltage 
measurements without any pre-knowledge or model about the 
harvester. The modified STFR is capable of extracting modal parameters 
for each mode of interest from one set of data. 

By testing piezoelectric harvesters at various base acceleration am-
plitudes and with different beam structures, the viscous air damping and 
the structural damping are determined. This systematic way of investi-
gating the damping is novel. Furthermore, the present study experi-
mentally separates the damping effects of the viscous air damping, the 
bonding layer’s structural damping, and the structural damping of the 
piezoelectric composite. Different bonding layers, as an essential struc-
tural part in PEHs, and their damped responses are analyzed. Besides, 
the effect of added tip mass on the damping is investigated. These novel 
research outcomes extend the current knowledge of damping mecha-
nisms in PEHs and enable accurate damping modeling in them. The 
approach presented here can be applied to different PEHs, and the 
identified viscous and structural damping coefficients can be used for 
accurate PEH modeling using a recently developed finite element model 
[36]. 

In this study, experimental investigations are carried out to find 
structural and viscous damping contributions to a piezoelectric 
harvester in conditions with and without added tip mass, with different 
substrate shims, and with different bonding layers. Macro Fiber Com-
posite (MFC), a flexible piezoelectric composite, is used as the active 
layer. As discussed in Section 2, experimental tests are carried out using 
a cantilever PEH in series with a resistive load and measuring only the 
load voltage to track the vibration of the cantilever. Observations of the 
decay of free-vibrations are used for extracting the damping coefficient, 
as in some previous studies [37]. However, in contrast to previous en-
ergy harvesting studies, here, the modified STFR, as discussed in Section 
3, is used. Section 4 presents air damping and structural damping data 
extracted for different configurations. The excitation acceleration effect 
on air-damping is also investigated for the bending modes in configu-
rations with a substrate shim and without. 

Comparison of different configurations shows that the structural 
damping coefficient for the bonding layer can be readily distinguished 
from viscous air damping, such that both may be quantified. The 
structural damping due to the bonding layer seems to be a substantial 
fraction of the total damping. It is shown that the viscous air damping 
depends on the harvester tip deflection and increases with tip deflection. 
The results also illustrate how the STFR method enables reliable 
extraction of damping parameters for different modes from a single 
decay curve. 

2. Experimental setup and piezoelectric samples 

The test rigs for all the experimental measurements are shown in 
Fig. 1 (a) and (b). An aluminum base plate is used to connect a B&K LDS 
V201 shaker to the piezoelectric sample as well as providing a site for 
the accelerometer. The piezoelectric sample is clamped to the base plate 
at one end using an aluminum clamp bar, tightened with two bolts. The 
amplifier is controlled with a National Instruments NI 9263 module, 
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which generates analog voltage signals. A KEPCO BOP 100-10MG 
amplifier and B&K LPA 100 amplifier are used to amplify the signals 
and power the shaker. The accelerometer measures the applied base 
excitation acceleration. Output wires from each electrode of the piezo-
electric harvester are connected across a purely resistive load of resis-
tance R. Two Data Acquisition (DAQ) systems are employed for reading 
the sensor and piezoelectric voltage outputs, as shown in Fig. 1(c). The 
first DAQ system is an 8-channel National Instruments NI 9201 module 
for reading the voltage across the resistive load (which is also the voltage 
across the harvester) and the DC accelerometer output for a two seconds 
duration with a sampling rate of Fs = 6 kHz. Both the NI 9263 and NI 
9201 modules are placed in an NI cDAQ 9172 chassis connected with a 
USB cable to the computer. Labview™ software is utilized for generating 
the desired signal and for recording data. The second DAQ system, B&K 
3676 stand-alone LAN-XI DAQ, is used for recording the B&K acceler-
ometer and the force transducer data. The BK Connect software directly 
controls this DAQ system. 

Seven samples are tested in this study; one comprises only the MFC of 
0.3 mm thickness, while the others comprise the MFC, a substrate shim, 
and a bonding layer. The bonding layer joins the MFC and substrate 
shim. The added tip mass is also considered in some configurations. 
Fig. 2 (a) shows the sample with the substrate shim and the tip mass. The 
Macro Fiber Composite (MFC) used is M-8528-P2 type, from Smart 
Material Inc. [38], which serves as a piezoelectric bending energy 

harvester. The MFC has seven sub-layers: two Kapton outer layers, two 
acrylic layers, two electrodes, and one central active piezoelectric layer. 
More information about the MFC can be found in Smart Material Inc. 
[38]. 

Six different variations of the bonding layer and the substrate shim 
are tested. Loctite epoxy rapid 332, Loctite epoxy 3430, 3M Company 
9084 double-sided tape, and Tesa® 4964 double-sided adhesive tape are 
the four bonding layer materials. The 120-µm aluminum, 100-µm brass, 
and 100-µm copper shims serve as substrates in the harvesters. Table 1 
lists the harvester materials and the thickness properties. In some har-
vesters, a steel tip mass is added to the beam. In Group I tests, the tip 
mass is cylindrical, while in the group II and III tests, the tip mass is a 
rectangular steel shim. Fig. 2 (b) shows the tip mass for group II and III 
tests. To ease comparison of results, the samples are categorized into 
three groups, as shown in Table 1. Group I tests are designed to separate 
the viscous and structural damping and isolate the bonding layer 
damping effect. In Group II tests, a 60-mm length Tesa® adhesive tape is 
attached to the substrate shim, as shown in Fig. 2 (c), and the structural 
damping effect of this tape is studies. In Group III tests, different bonding 
layer types and their damping effects are investigated. The three types of 
bonding layers are illustrated in Fig. 2 (d)-(f). The 3M Company’s 
double-sided tape is a 100 µm acrylic-type adhesive with 8.0 N/cm 
adhesion to Stainless Steel, while the Tesa® adhesive tape is a 1200 µm 
natural-rubber-type adhesive. The Tesa® adhesive tape is more elastic 

Fig. 1. (a) The piezoelectric sample with the cantilevered configuration attached to the shaker for Group I tests, (b) the cantilevered piezoelectric sample for Group II 
and III tests, and (c) data acquisition setup for recording the piezoelectric voltage, accelerometer, force transducer, and displacement laser sensor. 

M. Khazaee et al.                                                                                                                                                                                                                               



Applied Energy 285 (2021) 116427

4

than the 3M Company’s tape. 
For base excitation, two types of signals are used. First, a harmonic 

excitation with different driving frequencies is applied to extract the 
generated power spectrum over a frequency range. This is used at 
different electrical loads to identify the optimum load for maximum 
power extraction. Second, a linear up-chirp sweep signal is used in order 
to study the decay of the output voltage signal. This second signal is used 
to identify natural frequencies and damping parameters. The up-chirp 
signal y(t)is sinusoidal with linearly increasing frequency, given by 

y(t) = Y0sin(2πf (t)t ) (1)  

where Y0 is the amplitude, t is the current time, and f (t) is the variable 
frequency of chirp. For a linear up-chirp, the frequency is given by 

f (t) = f 0 +
f 1 − f 0

Tf
t (2)  

wherein f 0 is the initial frequency, f 1 is the target frequency, and Tf is 

Fig. 2. (a) The cantilevered-piezoelectric beam with a tip mass, (b) the steel tip mass, (c) the 60-mm length adhesive (damping) tape attached to the substrate shim, 
(d) 100 µm double-sided tape bonding layer from the 3M Company, (e) 300 µm double-sided tape bonding layer from the 3M Company, (f) 1300 µm double-sided 
foam tape bonding layer from Tesa®. 

Table 1 
The tested energy harvesters’ properties, dimensions, and material structure include the piezoelectric, bonding, and substrate layers.  

Group No. Sample No. Piezoelectric layer Substrate shim Bonding layer Tip mass (g) 

Material Thickness (µm) 

I 1 MFC 
tMFC = 300 µm  

– – – 0 and 4.2 g 
2 ts = 120 µm aluminum  Epoxy rapid 332 tc = 260  0 and 4.2 g 

II 3 MFC 
tMFC = 300 µm  

ts = 100 µm brass  Epoxy 3430 tc = 300  0 and 9.2 g 
4 ts = 100 µm brass + Tesa® adhesive tape  Epoxy 3430 tc = 300  0 and 9.2 g 

III 5 MFC 
tMFC = 300 µm  

ts = 100 µm copper  3M Company double-sided tape tc = 100  – 
6 ts = 100 µm copper  3M Company double-sided tape tc = 300  – 
7 ts = 100 µm copper  Tesa® adhesive tape tc = 1200  –  
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the target time. In this study, parameters are set toTf = 1 s, f 0=1 Hz, 
andf 1 = 1500 Hz. Comparing a chirp signal to an impulse, their power 
spectra are similar, but the phase spectra are distinct. The chirp signal 
excites a range of frequencies and is locally approximately periodic. The 
peak acceleration, Ac = (2πf 1)

2Y0, will be used as a measure of the 
chirp acceleration amplitude. A section of the chirp signal used in this 
study, along with its Fast Fourier Transform (FFT) and a typical system 
response, is shown in Fig. 3, where the system’s decaying free-vibration 
can be clearly seen. 

3. Method for extracting resonant frequencies and damping 
coefficients 

This section presents a method for calculating natural frequencies 
and damping coefficients using only the measured output voltage 
response during the free vibration stage. The method relies on analyzing 
the decay curve; only the system response to the chirp signal (or any 
impulse-like input) is needed. 

A method known as Short-Term Fourier transform and Resampling 
(STFR) has recently been developed for natural frequency and damping 
extraction in free vibration tests using the time response [39]. A series of 
modifications are applied to the method in order to increase its accuracy 
for this study. 

First, the STFR is developed, and the relationship between the 
damping and the decay of the voltage response is illustrated using a 
recently measured voltage response of a piezoelectric harvester [40]. 
Because piezoelectricity is a transducing property giving a linear rela-
tionship between mechanical strain and electric field, the measured 
voltage characterizes the response of the system. The natural fre-
quencies and damping ratios can be extracted from the voltage response 
without requiring displacements or strains to be measured [16]. This 
simplifies the estimation of natural frequency and damping coefficient. 
Second, a Hann windowing function is introduced in the modified STFR 
for the segmenting of the output voltage signal; this smooths the 
segmented signals and improves numerical stability. Third, a linear line 
fit on the logarithmic decay curve is introduced and compared with the 
exponential fit on the original STFR; this balances the contributions of 
the early peaks and the later peaks in the voltage response so that they 
contribute equally to the estimate of damping coefficient. Finally, in the 
presented STFR data, some optimization processes to maintain the curve 
fitting with the best possible accuracy are considered. These modifica-
tions will be described in detail in subsection 3.2. 

3.1. The damping coefficient in the decay voltage response 

Now consider how the damping coefficient can be found from the 
voltage response. Fig. 4 shows a measured free vibration response of 
sample 1 (No-Shim) harvester after an up-chirp base excitation. It can be 
seen that the response has a maximum in the early stage and the voltage 

output then decays away. Because the chirp excites a wide range of 
frequencies, the voltage response carries superimposed characteristics 
from several vibration modes. A zoomed-in view of the free voltage 
response in Fig. 4 shows high-frequency harmonics superimposed on the 
fundamental. As a result, modal characteristics from the higher fre-
quency modes can be extracted from a single decay curve. The response 
for a system with well-separated modes is modeled as the summation of 
independent responses from N vibration modes [41], and here we as-
sume the same linear superposition feature. Moreover, from the general 
transient response of a single degree of freedom system, the voltage 
response for i-th mode can be expressed as [40] 

Vi[k] = Aie− ζiωn,i (kΔT)sin
(

ωd,i(kΔT)+ θi

)

(3)  

where ωn,i, ωd,i and ζi are the undamped natural frequency, damped 
natural frequency, and mechanical damping coefficient for the i-th 

mode. The damped natural frequency is given by ωd,i = ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζi
2

√

. 
Furthermore, Ai and θi are the amplitude and phase constants that 
depend upon the initial conditions. The goal of the method in this study 
is to extract modal parameters, specifically ωni and ζi. First, ωd,i is esti-
mated, and then the decay curve is fitted to the functional form 
Aie− ζiωn,i (kΔT), enabling δi = ζiωn,i to be evaluated. Having estimated δi 

and ωd,i for the mode under consideration, the damping coefficient can 
then be expressed as 

Fig. 3. (a) Typical examples of chirp excitation in the time domain (showing the first 1000 samples), (b) FFT of the input signal, and (c) system response, starting 
from the end of the chirp. 

Fig. 4. A typical voltage response from a piezoelectric sample subjected to an 
up-chirp; the decay voltage response shows the effect of primary vibration 
mode and higher harmonics. 
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ζi =

δi

/

ωd,i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 +

(

δi

/

ωd,i

)2
√
√
√
√

) (4)  

3.2. Step-by-step guide for the STFR 

To extract the natural frequencies, the time response signal is divided 
into segments, and each segment is multiplied by a Hann function to 
perform smoothing at the cut-off edges. Next, each smoothed signal is 

transformed to the frequency domain using the Fast Fourier Transform 
(FFT). The results give a time-dependent frequency spectrum, the Short- 
Term Fourier Transform (STFT) with Hann windowing. In order to 
extract δi for the i-th mode, the STFT is used to form a peak decay curve. 
This approach enables a separate curve fitting for each mode. Seg-
menting the signal reduces the number of data points available in each 
FFT operation; to maintain resolution in frequency space, each segment 
was first zero-padded and then resampled as described in detail below. 
Fig. 5 shows the five main steps of the STFR method for extracting 
natural frequency and damping coefficients, which are as follows: 

Step 1. Consider the voltage signal measured with a sampling rate Fs, 

Fig. 5. Five main steps of the STFR process, (1) segmenting and windowing the voltage measured signal, (2) resampling and zero-padding the segmented signal, (3) 
Applying FFT on the segmented signal (STFT), (4) linear fit on the logarithm of the decay curve, (5) extracting the natural frequency and damping coefficient. 
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with Ns data points, specified as a data sequence V[k]: 

V[k] = V(t = kΔT) for 0 ≤ k ≤ Ns − 1 (5)  

where t, ΔT = 1/Fs, and k are, respectively, the time, time-step, and the 
sample number. 

By assuming a linear superposition characteristic for the voltage 
signal, all the vibration modes’ effect shall be seen in the voltage signal 
provided that their contribution to the voltage is significant. In other 
words, the voltage signal is a summation of all the modes, V[k] =
∑N

i=1Vi[k]. 
The original measured signal V[k] is divided into U segments, and 

each divided signal is multiplied by a Hann function. The segmented 
signal is denoted by Vu[w](0 ≤ w ≤ Nw − 1), where the number of data 
points in each segment is Nw = Ns/U. Each segment 0 ≤ u ≤ U − 1 can 
be expressed as 

Vu[w] = V(t = (uNw + w)ΔT )H (w,Nw), 0 ≤ w ≤ Nw − 1 (6)  

where w is an index number in each segment and H (w,Nw) is the 
symmetric Hann function with length Nw. In the segmented data, the 
average time within each segment is given by 

tm[u] = uNwΔT +
Nw

2
ΔT (7) 

To generate the frequency spectrum from each segment of voltage 
measurements, the FFT is applied to the segment, giving 

V̂ u[n] =
∑Nw − 1

w=0
(V(t = (uNw + w) )ΔT )e− j2π nw

Nw (8)  

wherein n is the spectral frequency line. The FFT frequency resolution 
equals to Δωn,U = 2πFs

Nw
= 2πFsU

Ns
. This shows that for a given total number 

of data points (Ns), by increasing the number of segments (U), Δωn,U 

increases, meaning that the accuracy of resonant frequency deteriorates. 
Step 2. In order to improve the frequency resolution, the segmented 

signal is resampled by decimation with a factor d and then is padded 
with zeroes by a factor of b. Thus, the total number of samples in the 
segmented signal is Nb = bNw and the sampling rate Fs reduces to Fs/d. 
With this resampling and zero-padding, the frequency resolution be-
comes Δωn,d = 2πFsU

bdNs
. It is also worth mentioning that the Nyquist- 

Shannon sampling theorem should be satisfied when the decimation 
factor d is being set in order to avoid aliasing. In this study, for instance, 
U = 40, and d = 10 is employed. 

Applying the FFT to the segment with resampling and zero-padding 
gives the spectrum 

V̂ u,d[n] =
∑Nb − 1

p=0
(V(t = (uNw + w) )dΔT )e− j2π np

Nb (9) 

Because the sampled data points in the segment are changed, the FFT 
peak value also changes, and therefore a scaling is performed to up-scale 
V̂u,d[n] to that for the FFT without zero-padding, e.g. V̂u[n]. 

Step 3. For each mode, a range of frequency is defined within which 
the natural frequency is expected to lie. Then, the FFT, V̂u,d[n], of each 
resampled segment is analyzed to find the maximum value within the 
range, V̂max,i[u]. 

Step 4. Plotting the peak values V̂max,i[u] as a function of time forms a 
decay curve. Since the decay curve for the i-th mode is expected to have 
the exponential form Aie− ζiωn,i (kΔT), the peak values are represented on 
a logarithmic scale; there is then an approximately linear relationship 
between segment number u and the peak value logarithm. This gives all 
the data points the same weight in a least-square straight line fit. From 
Eq. (3), for the i-th mode, a linear relationship between the peak values 
of the STFT signals over time is expected, with 

log
(

V̂ max,i[u]
)

= logAi − δitm[u] (10)  

where − δi is the slope of the logarithmic peak-value line obtained from 
the STFR process. 

Step 5. The modal parameters ωd,i and ζi are extracted as follows: 
From each STFR segment, the damped natural frequency ωd,i[u] is 
identified as the location of the peak value V̂max,i[u]. The average of the 
ωd,i[u] values is used as an estimate of the damped natural frequency for 
the i-th mode, given by 

ωd,i =
1
ul

∑ul − 1

u=0
ωd,i[u] (11) 

Finally, ζi is obtained from ωd,i and δi using Eq. (4). 
In practice, steps 1 to 4 were repeated for different U values in order 

to identify an optimum segment length. Choosing a large U value pro-
duces a greater number of data points for line fitting by Eq. (10), but also 
reduces the number of data points per segment, Nw, which can result in 
aliasing. Typically, U values of 20–40 were used. In addition, the 
V̂max,i[u] data points eventually deviate from a linear regression at high 
values of u. This happens because the signal to noise ratio decreases as 
the signal decays [32]. Therefore, for calculating the damping co-
efficients from voltage measurements, the noise ratio is considered a 
data truncation factor. The data was truncated at a u value, ul, chosen to 
ensure that the error in the estimation of δi was less than 5% and the 
signal to noise ratio was greater than 5. The optimum truncation limit ul 
varies from test to test. In some cases, the first data point of the first 
segment exhibited an impact transient, which adversely affected curve 
fitting. In these cases, the very first data point was excluded. 

3.3. Methodology for distinguishing the structural and viscous damping 
contributions 

The mechanical damping, ζm, comprises a structural part, ζstruc, and 
an air (or viscous) damping part, ζa. This damping representation 
demonstrates good agreement with experimental data [35]. According 
to two experimental studies by Woolam [42] and Baker et al. [43], 
material damping shows either no dependence or slight dependence on 
the amplitude of vibration. Therefore, the observed amplitude- 
dependency of ζm is due to amplitude-dependent increase in air damp-
ing. Baker et al. [43] showed experimentally that air damping varies 
approximately linearly with beam-tip deflection. Therefore, a combined 
damping model is considered as: 

ζm = ζstruc + αζa (12) 

The STFR method calculates the damping at each shock-induced base 
excitation from the voltage, as shown in Fig. 6 (a). The damping model 
assumes that the air damping will also change due to changing beam tip 
deflection. Each sample is tested over a range of excitation magnitude to 
distinguish the structural and air damping. As the tip deflection in-
creases, so also the viscous air damping increases. A line fit to the 
experimental damping coefficient data can be extrapolated back to the 
zero amplitude point to determine the structural damping contribution, 
see Fig. 6 (b). 

The process is applied to each sample for determining the structural 
damping effect of different materials, the amplitude-dependent part of 
the damping, and the investigation of the added tip mass effect on the 
damping. Fig. 7 presents the objectives of the experimental tests on the 
seven tested samples. By comparing the data from different samples, 
materials, and lay-ups, the relative structural and viscous damping 
contributions are studied. 
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4. Experimental results 

In this section, the modal parameters extracted using the STFR 
approach from seven sample types are reported. Results are reported in 
three groups; each aims to emphasize one or two particular objectives. 
Group I and II are designed to distinguish the structural and viscous 
damping and their contribution to the total damping. The effect of added 
tip mass is also investigated in these group tests. In Group III tests, the 
main objective is to explore different bonding layers. 

The electromechanical equations for a piezoelectric energy harvester 
are coupled equations relating mechanical vibration and electrical cir-
cuit parameters. In this work, the electrical load was optimized for 
maximum power output. For electrical load values close to the optimum 
load, the power output is insensitive to the electrical load [44] in an 
impact harvester, and therefore, it is not critical to precisely match the 
optimum load. Moreover, Erturk et al. [16] showed that the resonant 

frequency in short-circuit differs from the resonant frequency with a 
matched load by less than 0.5%. Hence, it is accurate to infer the har-
vester’s natural frequencies from the resonant frequencies extracted 
with the matched load present. The optimum load resistance was found 
to be 27 kΩ for all the harvesters used in this study. 

In order to test whether the choice of load resistor affects the 
damping parameters, decay curves were measured with a range of 
resistive loads: R = 100 Ω, 27 kΩ, and 10 MΩ. A half-sine-impulse force 
was applied as the base excitation, and the resulting normalized voltage 
output is shown in Fig. 8. Comparing the voltage responses at 100 Ω 
(similar to short-circuit condition) and 27 kΩ shows that they are almost 
identical, while for the 10 MΩ case (similar to open-circuit), a deviation 
in both frequency and decay rate is evident. Thus the modal parameters 
measured with the 27 kΩ optimum load in place are expected to match 
the short-circuit modal parameters. 

Fig. 6. (a) The deformed beam under a base excitation and the STFR method for extracting the damping coefficient, and (b) the process to distinguish the viscous and 
structural damping contributions in the total damping. 

Fig. 7. The present study objectives for seven samples concerning the structural and viscous air damping parameters.  
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4.1. Group I tests (the MFC without and with the aluminum substrate) 

The Group I tests aim to separate viscous and structural damping 
roles in a cantilevered piezoelectric harvester in standard configuration 
and with a tip mass. Throughout this subsection, the label “No-Shim” 
refers to the MFC sample without substrate shim (sample 1), while “Alu- 
Shim” refers to the sample with a bonding layer and aluminum substrate 
shim (sample 2). 

4.1.1. Energy harvesters without tip mass 
Fig. 9 shows measured voltages from harvesters with and without 

substrate shim for the first 0.5 s after applying chirp excitation with a 
maximum acceleration of 1.77 g0 (g0 = 9.81 ms− 2). Note that the Alu- 
Shim case generates considerably higher voltages compared to the No- 
Shim case. This shows that the substrate shim can positively affect 
power generation from an energy harvesting perspective despite losses 
in the bonding layer. Another interesting outcome can be seen in the 
zoomed view of the signals in Fig. 9. In the No-Shim sample, high fre-
quency (>100 Hz) voltage variations can easily be seen, unlike the Alu- 
Shim voltage response. This can be linked to the behavior of the bonding 
layer in the Alu-Shim sample, which strongly damps high frequencies in 
the voltage response. 

As a preliminary illustration of the resonant behavior of the energy 
harvesters, the FFT was applied to voltage responses measured after 
chirp excitation with varying acceleration. Fig. 10 shows that the No- 
Shim sample exhibits two clearly defined resonances, while in the Alu- 
Shim sample, only the first mode resonance is clearly visible. The first 
and second resonant frequencies for the No-Shim sample are 17 Hz and 
106 Hz, respectively. Meanwhile, the first resonant frequency is 
approximately 20 Hz for the Alu-Shim sample. Another local maximum 
is at approximately 38 Hz due to anti-resonance [45], similar to the 
observation in Khazaee et al. [46]. The natural frequencies and the 
corresponding modes of the harvester were estimated using the finite 
element method by Khazaee et al. [36]. This showed a torsional mode 
around 160 Hz and a bending mode around 190 Hz in the Alu-Shim case; 
the corresponding resonant peaks can be seen in Fig. 10 (b). 

Next, the STFR approach is applied to free-vibration voltage re-

sponses in order to extract the resonant frequencies and damping ratios. 
Fig. 11 shows how the resonant frequency changes with respect to chirp 
acceleration amplitude (Ac) for both No-Shim and Alu-Shim samples. 
The first mode resonant frequency of the Alu-Shim sample is approxi-
mately 20% greater than that of the No-Shim sample. The first resonant 
frequency of the No-Shim sample reduces as chirp acceleration in-
creases, perhaps due to amplitude dependence of the MFC layer stiffness. 
Khazaee et al. [47] have previously observed similar softening effects in 
an energy harvester. Nonetheless, the other natural frequencies shown 
in Fig. 11 are relatively independent of chirp acceleration. 

The curve fitting results of STFR are used to extract mechanical 
damping, ζm, for the Alu-Shim and No-Shim samples. The resulting ζm 
values for two bending modes in the No-Shim sample and the first 
bending mode in the Alu-Shim sample are shown in Fig. 12, as a function 
of chirp acceleration Ac. By comparing the damping coefficients in 
Fig. 12, mechanical damping increases monotonically with amplitude in 
an approximately linear way. Greater Ac values lead to increased beam- 
tip deflection, and this, according to Woolam [42], increases mechanical 
damping. Similarly, as shown in Fig. 12, the damping has a linear de-
pendency on base chirp acceleration, hence on beam-tip deflection, 
assuming linearity. 

The structural damping ζstruc can also be evaluated from Fig. 12, 
extrapolating to Ac = 0. This indicates similar ζstruc values for both 
modes in the No-Shim sample, but a much greater ζstruc value for the Alu- 
Shim sample. Crandall [48] showed that adding a strip of viscoelastic 
damping tape to an aluminum plate can substantially increase the 
structural damping. An equivalent role is played here by the epoxy 
bonding layer in the Alu-Shim sample. The contribution of the 
aluminum shim to the structural damping is expected to be small [48]. 

4.1.2. Effect of added tip mass 
Tests were carried out with an added tip mass in the form of a 4.2 g 

cylindrical mass with 10 mm diameter and 4 mm height affixed to the 
upper surface of each harvester, with its centre 5 mm from the free end. 
Note that the No-Shim and Alu-Shim samples have 5.2 g and 7.2 g mass, 
respectively. Chirp base excitation with chirp acceleration amplitudes 
ranging from 0.8 g0 to 2.4 g0 was applied. 

Fig. 13 illustrates the voltage variation due to an added tip mass for 
the No-Shim and Alu-Shim samples, using a 0.88 g0 chirp amplitude. In 
both samples, the maximum voltage output is increased by adding the 
tip mass. The added tip mass creates a significant transient in the voltage 
variation, which can be easily seen for both cases in Fig. 13 (a) and (b). 
After approximately 0.09 s in the Alu-Shim sample, this transient van-
ishes but decays less rapidly in the Alu-Shim sample. A reason for this 
can be the greater stiffness contributed by the additional layers in the 
Alu-Shim sample. 

Fig. 14 compares the maximum voltage measured in the Alu-Shim 
and No-Shim samples with and without added tip mass at various Ac 
values. Greater chirp excitation generally causes a greater voltage. As 
expected from the state-of-art [49], the maximum voltage is increased 
by adding tip mass. Fig. 14 shows that this is so, regardless of the 
presence or absence of the substrate shim. Meanwhile, the fractional 
voltage increase is greater for the No-Shim sample. This is partly because 
of a greater ratio of the added tip mass to the total harvester mass for the 
No-Shim sample. Another aspect is that the No-Shim sample is less stiff. 
The average generated power is of significance from an energy har-
vesting perspective. The root mean square (RMS) generated power 
during the first 1 s after chirp excitation is shown in Fig. 15 for all the 
configurations tested. The RMS power for the No-Shim sample is 
significantly increased by adding the tip mass at all Ac values. However, 
adding tip mass to the Alu-Shim sample did not change the RMS power 
significantly unless Ac > 1.8g0. 

As a preliminary illustration of the tip mass effect on the resonant 
behavior, the FFT is applied to the harvester voltage signals of Fig. 13, 
and the results are shown in Fig. 16. The FFT is shown in the frequency 
range of 0–120 Hz for clarity. While two resonances are clearly visible 

Fig. 8. Comparison of piezoelectric voltage outputs subjected to half-sine- 
impulse at different electrical loads. 

Fig. 9. Piezoelectric voltage outputs for sample 1 (No-Shim) and sample 2 (Alu- 
Shim) at 1.77 g0 chirp excitation amplitude with R = 27 kΩ. 
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for the No-Shim samples, only one resonance can be seen for each Alu- 
Shim sample. In both sample types, adding tip mass decreases the first 
mode resonant frequency. However, the resonant peak value in the Alu- 
Shim sample remains almost constant with added tip mass while the 
peak value is sharply reduced for the No-Shim sample. Notice that the 
second-mode resonant peak increases considerably due to the tip mass 
for the No-Shim sample, indicating the effect of high-frequency har-
monics induced by the tip mass. The appearance of these higher har-
monics was also evident in the voltage-time signal of the No-Shim 
sample in Fig. 13 (b). In order to check the consistency of these trends 
across a range of excitation amplitudes, the resonant peak values are 
shown in Fig. 17 as a function of chirp acceleration amplitude Ac. This 
shows that the patterns of behavior observed in Fig. 16 remain valid for 
all the excitation amplitudes. 

Fig. 10. Effect of increasing base chirp amplitude on STFT voltage responses for (a) sample 1 (No-Shim) and (b) sample 2 (Alu-Shim).  

Fig. 11. Variation of resonant frequencies with respect to the base excitation amplitude (a) first bending mode for No-Shim and Alu-Shim samples, and (b) second 
bending mode for No-Shim sample. 

Fig. 12. Mechanical damping versus chirp base acceleration for the piezo-
electric sample 1 (No-Shim) and sample 2 (Alu-Shim). 

Fig. 13. Voltage output for samples with and without tip-mass and Ac/g0 =

0.88 (a) Alu-Shim and (b) No-Shim. 
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The averaged resonant frequencies, extracted using the STFR pro-
cess, are shown in Table 2 for both No-Shim and Alu-Shim samples with 
and without tip mass when the 0.88 g0 chirp amplitude was applied. For 
both samples, added tip mass reduces resonant frequencies, as expected. 

Fig. 18 shows how the damping coefficients, extracted by the STFR 
method, vary with chirp amplitude and added tip mass for both samples. 
In all cases, the damping coefficient shows an increasing trend with 
chirp excitation amplitude. Added tip mass increases the tip deflection, 

and consequently, the contribution of air damping becomes greater. This 
can be seen in Fig. 18, for both No-Shim and Alu-Shim samples, as an 
increase in the total mechanical damping, ζm. However, this air damping 
increase is not the same when comparing the No-Shim and Alu-Shim 
samples. For an identical added tip mass, the No-Shim sample has 
greater deflection than the Alu-Shim sample, which has the greater 
stiffness. As a result, there is a more significant air damping increase in 
the No-Shim sample. 

4.2. Group II tests (the brass-substrate MFC with and without adhesive 
tape) 

Group II tests are designed to clarify the structural damping effect of 
adhesive layers. As in Crandall’s study [48], by adding an adhesive 
damping tape to the beam, the adhesive tape’s structural damping can 
be clarified. The adhesive tape is a strip of Tesa® rubber-type adhesive 
tape with the dimensions 60 × 20 × 1.2 mm3. Two samples in this group 
are tested; sample 3, which does not have the adhesive damping tape, 
and sample 4, to which the adhesive damping tape is attached. The 
substrate for both samples is a 100 µm brass shim. The samples are also 
tested with an added tip mass of 9.2 g. 

Fig. 19 illustrates the time signals for samples 3 and 4 with and 
without the 9.2 g tip mass. The 9.2 g added tip mass adversely affects the 

Fig. 14. Maximum voltage for Alu-Shim and No-Shim samples against excita-
tion chirp amplitude. 

Fig. 15. Root mean square power for Alu-Shim and No-Shim samples against 
excitation chirp amplitude. 

Fig. 16. FFT comparisons between signals with tip mass in (a) sample 1 (No-Shim) and (b) sample 2 (Alu-Shim) at 0.88 g0 base chirp excitation.  

Fig. 17. Variation of resonant peak values for sample 1 (No-Shim) due to the added tip mass, (a) the first mode and (b) the second mode.  

Table 2 
Resonant frequencies for sample 1 (No-Shim) and sample 2 (Alu-Shim) with and 
without tip mass.  

Description ωd(Hz) Frequency ratio 

no tip mass 4.2 g tip mass 

No-Shim sample    
- first mode 16.2 ± 0.4 8.2 ± 0.2 0.51 
- second mode 108.6 ± 3.5 78.0 ± 3.6 0.72 
Alu-Shim sample    
- first mode 21.3 ± 0.7 10.8 ± 0.5 0.51  
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harvester voltage generation performance reducing the peak voltage 
magnitude. Regardless of the tip mass, when the adhesive tape is added 
to the substrate, the output voltage is decreased. The tests are repeated 
for different excitation amplitudes, and the peak voltage is shown in 
Fig. 20 versus the applied force. Fig. 20 shows that adding the adhesive 
tape reduces the peak voltage for all excitation amplitudes. Exploring 
the root of these voltage variations is possible by extracting the modal 
parameters in the different configurations because the piezoelectric 
layer is identical in all these configurations. 

Fig. 21 (a) and (b) respectively present the natural frequencies and 
damping coefficients in the case with adhesive tape and a 9.2 g tip mass. 
As expected, the tip mass decreases the natural frequency, while the 
adhesive tape has a negligible effect on the natural frequency. Fig. 21 (b) 
shows that the adhesive tape and the tip-mass increase the damping 
coefficient. The adhesive tape has a more substantial effect on the 
damping increase than the 9.2 g added tip mass, which is a reasonable 
choice of the tip-mass. These damping increases are consistent with the 
reduction of peak voltage due to the adhesive tape and the tip mass 
observed in Fig. 19 and Fig. 20. The adhesive tape’s structural damping 
can be obtained by subtracting the damping coefficient of sample 3 (no 
adhesive tape) from sample 4 (with adhesive tape). 

4.3. Group III tests (the copper-substrate MFC with different bonding 
layers) 

Group III tests investigate the effect of the bonding layer on voltage 
generation and damping coefficient. Samples 5, 6, and 7 with three 
different bonding layers, as described in Table 1, are tested in this group. 
The bonding layer for samples 5 and 6 is made of the same material but 
with different thicknesses, while the sample 7 bonding layer has the 
greatest thickness, with an elastic rubber-type material. 

Fig. 22 (a) and (b) respectively show the maximum and RMS voltage 
outputs for different bonding layers. The 1200 µm Tesa® bonding layer 
results in 17% lower maximum voltage and 32% lower RMS voltage 
than that of the 100 µm bonding layer. The RMS voltage variations are 
thus more significant than the maximum voltage variations. To further 

investigate this, the damping coefficients were calculated in each case. 
The identified damping coefficients shown in Fig. 23 indicate that 

the contact layer substantially influences damping, while no significant 
natural frequency variations are observed. The 100 µm and 300 µm 
double-sided tape bonding layers have the lowest and the highest 
damping coefficients, while the 1300 µm rubber-type bonding layer 
damping between them. Fig. 23 shows that apart from the bonding layer 
thickness, the bonding layer damping also depends on the bonding layer 
material. Khazaee, Rezania, and Rosendahl [21] also demonstrated that 
the bonding layer state could change the damping coefficient. Therefore, 
the bonding layer damping is categorized as structural damping in this 
study, as it depends on the material dimensions and the material type. 
Table 3 gives the average variation of the damping coefficient due to 
different bonding layers. The bonding layer damping can vary up to 68% 
only due to adding two extra 100 µm bonding layers, while the rubber- 
type tape bonding layer increases the damping by 13%. 

The damping coefficient rise causes the decaying voltage output to 
decay more rapidly, leaving a smaller RMS voltage. Therefore, the RMS 
voltage variations can be attributed to increased damping coefficient. 

5. Discussions and application notes 

5.1. The contribution of viscous and structural damping 

Experimental results show that the air damping varies as the base 
excitation amplitude increases. This subsection gives a detailed sum-
mary of the contributions for all the tested samples. 

Fig. 24 shows the percentage contribution of viscous air damping to 
the total damping for the first two bending modes of sample 1 (No-Shim) 
and the first bending mode of sample 2 (Alu-Shim). The total damping 
comprises a structural component and a viscous air damping compo-
nent. Thus the percentage contribution of structural damping is 100% 
minus that of viscous air damping. Overall, with increasing chirp ac-
celeration amplitude (Ac), the beam-tip deflection increases, and the 
percentage contribution of air damping increases accordingly. There is a 

Fig. 18. Damping coefficient variations of first-mode due to adding 4.2 g tip mass for (a) sample 1 (No-Shim) and (b) sample 2 (Alu-Shim).  

Fig. 19. The comparison of time signals for samples 3 (no adhesive tape) and 4 
(with adhesive tape) with and without the 9.2 g tip mass. 

Fig. 20. Peak voltage for samples 3 (no adhesive tape) and 4 (with adhesive 
tape) versus base excitation amplitude (equivalent to applied force). 
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corresponding reduction in the percentage contribution of structural 
damping. Nonetheless, even though the role of structural damping re-
duces with greater amplitude excitations, more than 80% of the total 
damping in the Alu-Shim sample is due to the structural damping. This is 
because of the bonding layer. By contrast, approximately 70% of the 
total damping in the first mode is due to air damping for the No-Shim 
sample. In the No-Shim sample, air damping dominates when 
Ac/g0 > 1.3. This highlights the necessity of accounting for both struc-
tural and air damping, depending on the design of an energy harvester. 

The viscous and structural damping contributions are different for 
different energy harvesters and depend on the bonding layer material, 
bonding layer thickness, and tip deflection. Table 4 presents the average 
of viscous and structural damping for all the test samples. Overall, the 

structural damping contribution is considerable compared to the viscous 
air damping, which can be approximately 37% to 85%, depending on 
the design. The MFC structural damping effect is much smaller than the 
bonding layer damping effect; for instance, there was only 0.3% struc-
tural damping for the MFC itself, compared with 2.8% for the epoxy 
bonding layer. In a typical energy harvester with a substrate shim and an 
epoxy bonding layer, the structural damping can contribute 75% or 
more of the total damping. 

5.2. The effect of added tip mass on the viscous damping 

As was shown in Fig. 18, the added tip mass on samples 1 and 2 
increases the effective damping. The results for samples 3 and 4 in 

Fig. 21. The comparisons of (a) the natural frequency and (b) damping coefficient for samples 3 (no adhesive tape) and sample 4 (with adhesive tape) with and 
without a 9.2 g tip mass. 

Fig. 22. (a) The maximum and (b) the RMS voltage for three different bonding layers (sample 5, 6, and 7) versus base excitation amplitude.  

Fig. 23. The bonding layer’s effect on the damping for the 100 µm, 300 µm, and Tesa® tape bonding layers (samples 5, 6, and 7, respectively).  
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Fig. 21 illustrate that added tip mass again increases the damping. 
Table 5 shows that when the piezoelectric harvester is more flexible 
(sample 1 with no substrate) the damping increase due to the tip mass is 
more significant than for the stiffer harvesters with substrate shim. The 
increased damping can be attributed to an increase in air damping due to 
increased vibration amplitude. Thus, in all the harvesters with a sub-
strate, the damping increases due to the added tip mass. Consequently, 
the addition of a tip mass may not necessarily enhance the piezoelectric 
power generation performance in shock-type base excitation. 

To assist understanding of the resonant behavior of the harvester 
with an added tip mass, a simple two-degree of freedom (2DOF) system 
is considered, which comprises two masses M1,M2, two springs, k1, k2, 
and one damper, c1, as shown in Fig. 25 (a). Parameters are chosen for 
the standard system (System A) without tip-mass to fit the first and 
second mode resonant frequencies and the damping coefficients 
observed in the No-Shim sample. In System B, an added tip mass is 
appended to the free end of the 2DOF system. The damper in System B 
may be increased by a factor α to represent the observed damping in-
crease due to air damping when a tip mass is added. In Fig. 25 (b), two 
bending modes in the beam and their analogs in the 2DOF system are 
shown. In a 3-1 mode piezoelectric harvester covered by electrodes on 
both sides, the generated voltage is proportional to the integral of 
normal strain over the length. This, in a bending beam, is proportional to 
the curvature integral, which implies that the generated voltage is 

proportional to the cantilever end rotation θ. Hence V∝θ as indicated in 
Fig. 25 (b). In the 2DOF analogue, the equivalent measure is the 
extension of spring k2, given by x2 − x1. 

For a given harmonic base excitation amplitude, Y, the trans-
missibility function relating the measured voltage amplitude V toY is 

proportional to 
⃒
⃒
⃒
⃒
X1
Y − X2

Y

⃒
⃒
⃒
⃒, where 

[
X1/Y
X2/Y

]

=

([
k1+k2 − k2
− k2 k2

]

− ω2
[

m1 0
0 m2

]

+jω
[

c1 0
0 0

])− 1([k1
0

]

+jω
[

c1
0

])

(13) 

Fig. 26 (a) compares |V/Y| for the 4.2 g added mass with that for no 
tip mass (System A) for various degrees of air damping increase, α. Note 
that the second-mode resonance peak value increases due to added tip 
mass for all α. On the other hand, depending to the α value, the first- 
mode resonant peak value may increase or decrease when tip mass is 
added. Added tip mass increases the tip deflection while greater 
damping reduces the tip deflection. These two opposing effects balance 
each-other at a threshold value, α= αthr. If α<αthr the effect of added tip 
mass increases the resonant peak, but when α>αthr the added tip mass 
decreases the resonant peak value. The ratio of resonant peak values of 
the system with tip mass to that without tip mass is shown in Fig. 26 (b), 
as functions of α. The ratio of the second-mode peak values is always 
greater than unity while the first mode peak value crosses unity when 
α 2. The simple analogue 2DOF system has behavior similar to the 
experimental results given in Fig. 17. The experimental results show that 
the first mode peak value is not increased after adding tip mass, whereas 
the second-mode peak values increased by adding tip mass. It can be 
concluded that added tip mass, which increases beam tip deflection, also 
affects the viscous air damping that should be considered in designing an 
energy harvester. 

5.3. The role of the bonding layer 

The bonding layer in the piezoelectric energy harvesters is a thin 
layer that joins the piezoelectric and supporting structure. In modeling, 
the bonding layer is often neglected due to its low thickness. Experi-
mental results in group II and III tests showed that the bonding layer has 
a small effect on the natural frequency, and therefore, from a stiffness 
perspective, it seems logical to neglect the bonding layer. However, the 
experimental tests illustrate the substantial damping and power output 
variations due to different bonding layers. Thus, the bonding layer can 
affect the piezoelectric power generation performance because of the 
damping change. From an energy-harvesting perspective, the less the 
damping, the higher the power output is. Thus, knowing the bonding 
layer’s damping effect can lead to higher efficient energy harvesters 
which minimizing structural energy loss. 

The measured structural damping coefficients for four different 
bonding layers are shown in Fig. 27, namely 3M Company double-sided 
tape, Tesa® double-sided tape, Epoxy 3430, and Epoxy rapid 332. Two 

Fig. 24. Percentage contribution of viscous air damping in sample 1 (No-Shim) 
and sample 2 (Alu-Shim) versus acceleration excitation amplitudes. 

Table 4 
The contribution of the viscous and structural damping for all the group tests.  

Sample 
No. 

Piezoelectric Substrate Contact layer Total 
damping (%) 

Structural 
damping (%) 

Viscous 
damping (%) 

Structural damping contribution in 
the total damping (%) 

1 MFC – – 0.81 0.31 0.50 37.9 
2 120 µm aluminum 260 µm Epoxy 3.34 2.84 0.50 85.0 
3 100 µm brass 300 µm Epoxy 2.31 2.10 0.21 91.0 
4 100 µm brass+1 Tesa® 

adhesive layer 
300 µm Epoxy 4.87 3.79 1.08 77.7 

5 100 µm copper 100 µm 3M Company 
double-sided tape 

3.58 1.22 2.36 34.0 

6 100 µm copper 300 µm 3M Company 
double-sided tape 

6.01 3.65 2.36 60.7 

7 100 µm copper 1200 µm Tesa® double- 
sided tape 

4.05 1.69 2.36 41.7  

Table 3 
The comparison of the damping for the 100 µm, 300 µm, and Tesa® tape bonding 
layers (samples 5, 6, and 7).  

Sample No. Bonding layer ζm (%) Variation 

Sample 5 100 µm tape 3.6 – 
Sample 6 300 µm tape 6.0 68% 
Sample 7 1200 µm Tesa® tape 4.1 13%  
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of these bonding layers are the double-sided tapes, and two others are 
the cured epoxy bonding layers. The Tesa® double-sided layer is rubber- 
based and more elastic than the 3M Company double-sided tape. Results 
show that the rubber-type double-sided tape has a more significant 
damping effect than the 100 µm-thickness 3M Company double-sided 
tape. Besides, overall, the double-sided tapes have less damping effect 
than the epoxy bonding layers. 

Crandall [48] suggested that the structural damping can be due to 
the transverse heat flow from the regions under compression to the 
tensile regions and the acoustic radiation from the vibrating beam. 
Therefore, if a bonding layer has a greater capacity to emit acoustic 
radiations or creates greater heat flow, the structural damping may be 
expected to be higher. The experiments also suggest that that thicker 
bonding layers provide greater capacity to absorb mechanical energy. 
Thus, the relatively thick epoxy bonding layers have the highest 
damping coefficient, while the thin 3M double-sided tape has the lowest 
damping. 

5.4. The application notes for the design of piezoelectric harvesters 

There is a wide range of vibration sources for the VEH, with different 
vibration levels and vibration types. The vibration sources for energy 
harvesting can be continuous, ranging from 0.1 g to 2 g, or shock- 
induced, typically >1 g, as shown in Table 6. Usually, the shock- 

induced and impact-based sources have greater peak amplitudes, as 
their acting time is small, in the order of milliseconds. This study’s 
shock-induced vibrations range from 0.5 g0 to 3.5 g0, a low-to-medium 
range of accelerations. As in the shock-induced vibrations, the structure 
vibrates with its fundamental natural frequency; this shock-based beam 
vibration can be analogous to the resonant excitations; however, the 
continuous-type acceleration counterpart would be different, depending 
on the harvester quality factor [50]. This continuous-type acceleration 
range would be approximately 0.03 g0 to 0.3 g0 at the resonant fre-
quency, which lies within industrial applications such as a water pump 
[51]. Therefore, the presented experimental results can be beneficial for 
a low-to-medium range of accelerations in shock-induced and contin-
uous vibration sources. 

A typical PEH contains two piezoelectric layers attached to a sub-
strate [49] known as bimorph as it generates higher power output in 
almost the same volume as a one layer piezoelectric beam. In these 
typical PEHs, bonding layers are an essential part of the structure. Since 
the piezoelectric harvester is undergoing dynamic motion for energy 
harvesting applications, two damping energy dissipation sets occur. The 
kinetic motion of the structure creates air friction, and the material in-
ternal friction creates structural damping. The combined viscous and 
structural damping model presented here can benefit the study of all 
types of piezoelectric beams. The results suggest a structural damping 
contribution of about 40% in the 100 µm bonding layer and 60% in the 

Fig. 25. (a) Representing the harvester transverse-vibration with an analog 2DOF system. (b) The first two bending modes of the cantilever beam and their analog 
modes in the 2DOF system. 

Table 5 
The variations of the natural frequency and the damping versus the tip mass.  

Tip mass (g) 0 4.20 9.20 Variation (%) 

Sample No. ωn (Hz)  ζm (%)  ωn (Hz)  ζm (%)  ωn (Hz)  ζm (%)  ωn  ζm  

1 16.20 0.78 8.20 1.59 – – − 49.38 103.85 
2 21.30 3.34 10.80 3.59 – – − 49.30 7.49 
3 23.42 2.31 – – 9.84 3.31 − 57.97 43.73 
4 23.14 3.79 – – 10.14 6.52 − 56.2 72.13  
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300 µm bonding layer. 
The average power generation is also vital in shock-induced energy 

harvesters. As the average generated power is adversely affected by the 
damping, the damping should be minimized. Therefore, the harvester 
configuration should be designed for power maximization. The results 
suggest that the bonding layer should have a low thickness. In addition, 
the results highlight the importance of additional viscous damping, 
indirectly due to the tip mass, which can adversely affect the energy 

conversion efficiency. If the additional damping due to the tip mass is 
less than about 40% of the original damping, then the tip mass can 
positively affect the power generation. 

6. Concluding remarks 

In this paper, modal parameters are extracted using the Short-Term 
Fourier Transform and Resampling method for piezoelectric energy 
harvesters with clamped-free boundary conditions. The emphasis is on 

Fig. 26. (a) The comparison of |(x2 − x1)/Y | between no tip mass and with tip mass (system B) with different damping constants and (b) ratios of peak values of the 
System B to the System A against α = c’1/c1 ratio. 

Fig. 27. The structural damping for the different bonding layers (3M Company 
double-sided tape, Tesa® double-sided tape, Epoxy 3430, and Epoxy 
rapid 332). 

Table 6 
Different continuous and shock-induced vibration sources with potential appli-
cations for piezoelectric energy harvesting.  

Vibration source Vibration 
type 

Peak amplitude (m/s2) [g0] Reference 

Car engine 
compartment 

Continuous 12 [1.22 g0] [12] 

Blender casing Continuous 6.4 [0.65 g0] [12] 
Clothes dryer Continuous 3.5 [0.36 g0] [12] 
Microwave oven 

top 
Continuous 1.11 [0.11 g0] [45] 

Microwave oven 
side 

Continuous 4.21 [0.43 g0] [45] 

Water pump Continuous 8.11 [0.83 g0] (0.49 m/s2 for 
50 Hz harmonic) 

[51] 

Sheep heart Shock 
induced 

Peak-to-peak: 17.7 [1.8 g0] [50] 

Car tire Shock 
induced 

Peak-to-peak: 1570 [160 g0] [52]  
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the extraction of damping coefficients, using only the voltage response 
of the harvester to a shock base-excitation. The contributions of struc-
tural damping and viscous damping to the total damping are identified. 
This enables the damping effects of a bonding layer and shim to be 
interpreted, as well as providing an interpretation of the indirect effects 
of tip mass on damping. The method further enables the modal pa-
rameters to be separately extracted for each mode of vibration. Overall, 
the Short-Term Fourier Transform and Resampling method provides a 
promising route for assessing modal parameters, especially damping, in 
energy harvesters. The results demonstrate the prominent effect of a 
bonding layer on the structural damping but also indicate the need to 
include the more subtle effects of air damping when designing energy 
harvesters. Investigating different bonding layers shows that the 
bonding layer material and thickness significantly affect the structural 
damping. An important aspect is that the viscous air damping is not 
constant with respect to input excitation acceleration, becoming more 
influential at higher excitation (and hence higher power) levels. Adding 
tip mass also increases the viscous damping effect due to increasing the 
tip deflections. For energy harvesting applications, the voltage peak and 
root mean square will reduce in shock-induced excitations when the 
damping increases; therefore, the piezoelectric harvester performance 
will be reduced. The results provide essential guidance for energy 
harvester design. 
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A B S T R A C T   

Toward the accurate electrical and mechanical modulations of the piezoelectric harvester, this paper presents a 
unified electromechanical-coupled voltage equation and a damping determination method. A single differential 
equation for the voltage is obtained that accommodates mechanical and electrical physics for which the exact 
transient solution is presented. In addition, the fully coupled relationship between the voltage output, the driving 
vibration frequency, and the resistive electrical load is clarified. A simple method is devised to determine the 
damping coefficient from only the voltage time-domain measurements based on the harmonic transient voltage 
response (HTVR). The HTVR uses the transient characteristics of the voltage measurements. The results showed 
that the electromechanical-coupling effect on the harvester resonant frequency is influential for the kilo Ohm 
scale electrical loads. This finding is contributed to the piezoelectric harvester’s frequency-matched design by 
calculating the accurate coupled natural frequency. The results also proved the ability of the HTVR in the ac-
curate determination of the damping coefficient without prior modeling and using only the voltage measure-
ments made on the piezoelectric harvester. The results also demonstrate the HTVR ability for characterizing the 
piezoelectric harvester by accurate damping determination under any arbitrary-frequency harmonic excitation 
even with noisy, polluted voltage measurements.   

1. Introduction 

The direct piezoelectric effect [1] has been widely used for vibration 
piezoelectric energy harvesting (VPEH) applications [2,3], aiming to 
generate power ranging from small rain impact forces [4] to large-scale 
power generation such as smart pavement system [5]. Zou et al. [6] 
recently reported the different mechanical modulations for the kinetic 
energy sources to improve energy harvesting. Three of these mechanical 
modulations are excitation conversion, frequency-up conversion, and 
force/motion amplification. In these modulations, the harvester is 
modulated by either tuning the PEH resonant frequency, increasing the 
driving frequency (for frequency matching), amplifying the source 
amplitude, or minimizing the damping factor. In the energy-harvesting 
prospect, the electrical modulation is also important as the main goal is 
to optimize the electrical power generation. Different electrical modu-
lations have been proposed, including purely resistive [7,8], complex 
impedance [8], resistive-capacitive [9], and synchronous switched 
extraction [10] circuits. An essential factor in these electrical modula-
tions is the resistive load. According to the state-of-the-art [9,11,12], the 
optimal resistive load depends on the mechanical factors, such as the 

driving frequency, the natural frequency, and the damping factor. 
Therefore, the mechanical and electrical modulations cannot be 
accomplished separately as, in piezoelectric materials, mechanical and 
electrical physics are electromechanically coupled. Fig. 1 shows the 
different electrical and mechanical modulations for improving the per-
formance of PEHs. 

Two prominentand influential factors in improving energy harvest-
ing are frequency matching [13,14] and electrical load matching [15]. 
Many studies have been carried out for providing a better frequency 
matching [16] or matching over a broader range of frequencies [17]. As 
a practical example, Khazaee et al. [12] matched a bimorph beam’s 
resonant frequency to a water pump’s operating frequency for designing 
a PEH. They showed that the PEH resonant frequency could be different 
from the PEH natural frequency because of the damping and electro-
mechanical coupling factors [12]. Some studies have tried to obtain the 
optimum resistive load. DuToit et al. [18] obtained the optimum load in 
a simple circuit with only a resistive load by differentiating the analyt-
ical power equation. A similar approach for obtaining the optimum load 
resistance, differentiating the analytical power, has been taken in 
different circuits [7–10]. Kong et al. [8] showed that a purely resistive 
load has good efficiency around the resonant compared to complex 
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impedance. Liao et al. [9] showed that in the resistive-capacitive cir-
cuits, the optimum resistive load is independent of the optimum 
capacitance and therefore the resistance load can be optimized inde-
pendently. Therefore, the role of finding the optimum resistance load in 
all the electrical modulations is essential. All the resistive load optimi-
zation studies point out to the fact that the optimum load depends on the 
driving frequency, the natural frequency, and mechanical damping 
factor. 

Damping coefficient, which can be defined as any source of energy 
dissipation, affects the resonance generated power [19] and the opti-
mum resistive load [11]. In the cantilevered configurations, the energy 

dissipation can be mainly due to air resistance force, squeeze force, in-
ternal energy dissipation, and support loss [20]. These energy dissipa-
tion sources are very influential and dependent to the load and boundary 
conditions. For instance, the tightening torque of the clamping box bolts 
[21] or the excitation amplitude [16] can vary the damping and, 
consequently the output power. The nonlinear air damping coefficient 
was also investigated by Dayou et al. [22]. There are approaches to 
extract damping coefficient from the experimental data such as the 
decay free-vibration [23], the frequency–response peak-based (peak 
picking and peak bandwidth [24]), the curve fitting [25], and the energy 
dissipation method [26]. In these methods, a sensor records the 

Nomenclature 

Abbreviations 
FFT Fast Fourier Transform 
PEH Piezoelectric energy harvester 
VPEH vibration piezoelectric energy harvesting 

Latin letters 
b beam width 
C a damping coefficient, m/s 
CP Piezoelectric capacitance, F 
cE

11 Piezoelectric stiffness, Pa 
e31 Piezoelectric coefficient, C/m2 

Ez z-direction electric field, N/C 
g envelope curve 
h thickness, m 
H Heaviside function 
I Piezoelectric current, A 
L beam length 
m* beam mass per unit length, kg/m 
M internal bending moment, N.m 
Mt added tip mass, kg 
N Nth peak value in decrement voltage response 
P Piezoelectric coupling factor 
RL electrical resistive load, Ω 
t time, s 
Txx stress in x-direction, Pa 
V voltage, V 
v0, v̇0 initial voltage conditions, V 
YI beam bending stiffness, N.m3 

Ys substrate stiffness, Pa 
w beam transverse deformation, m 
YB base displacement, m 
z level from the neutral axis, m 

Greek letters 
ε33 permittivity constant, F/m 
εxx axial strain 
ϕ the beam mode shape 
η the mechanical response in the modal coordinate 
ζ dimensionless damping coefficient 
ω driving frequency, rad/s 
ωnc coupled natural frequency, rad/s 
ωdc coupled damped natural frequency, rad/s 
ωn undamped natural frequency, rad/s 
Y, Λ Piezoelectric coupling factor in modal representation 
σ base excitation inertial factor, kg 
Ω frequency ratio 
Γ frequency coupling factor 
θ, ϕ phase angles, rad 

subscripts 
eff effective 
OC open-circuit 
peak peak voltage value 
s substrate shim 
steady steady-state 
p piezoelectric layer 
R with resistive load 
trans transient state  

Fig. 1. Mechanical and electrical modulations for improving the performance of PEHs.  
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structure response to a controlled input force or environmental forces 
and by analyzing the data, the damping factor is determined. These 
methods are apply to all the structures, including piezoelectric har-
vesters. In the decay free-vibration method, the transient time domain 
response to an initial impact is analyzed. In the frequency–response 
based methods, the steady response from harmonic excitations over a 
range of frequencies is analyzed and the damping is extracted from the 
location of the peak in the frequency response function. Dayou et al. 
[22] applied the logarithmic decay free-vibration method and FFT on 
the beam’s displacement measurements for obtaining the damping co-
efficient in piezoelectric beams. Ju and Ji [27] used a similar logarith-
mic free-vibration method for the damping determination of 
piezoelectric beams. Yang and Upadrashta [16] used the experimental 
velocity measurements and energy dissipation method for obtaining the 
damping factor in PEHs at different load conditions. 

To accomplish both the electrical and mechanical modulations, un-
derstanding the exact relationship between the PEH resonant frequency 
and electromechanical coupling is mandatory because the optimum load 
and frequency matching are interdependent. Some previous studies 
numerically reported the PEH resonant frequency dependency to the 
resistive load [28,29]. However, these studies have not derived a precise 
relationship between the PEH natural frequency, driving frequency, and 
electrical load, as the mechanical and electrical physics is coupled. 
Consequently, simultaneous electrical and mechanical optimizations 
cannot be undertaken, and, instead, step-by-step optimization shall be 
taken, which was shown is not efficient for a practical case [12]. 
Moreover, state-of-the-art damping determination methods have some 
limitations. If the method requires an attached sensor, the sensor weight 
alters the vibration response and thus the identified damping will not be 
accurate. Moreover, the noise effect can be significant if non-contact 
sensors are employed for measuring the decay vibration response 
because the structure experiences free vibration at small beam de-
formations. In the logarithmic decay methods, the magnitude of the 
initial impact is not controllable and as the damping has nonlinearity 
[16], the identified damping may be different for different impact 
magnitudes. Therefore, the logarithmic decay method is often accom-
panied by uncertainties. Many measurements with adequate frequency 
steps are needed in the frequency-response peak-based methods, making 
them costly in experimental tests and data analysis. Classical curve 
fitting, such as the circle or line fitting, require multi-sensory data ob-
tained from various experimental tests followed by complex numerical 
and optimization algorithms. Practically, it will be of great interest if the 
damping coefficient can be simply determined using system-specific 
methods [16]. 

In the present paper, toward a better electrical and mechanical 
design of PEHs, a unified voltage analytical equation will be derived that 
accommodates the electromechanical relationship between the driving 
frequency, the PEH natural frequency, and the electrical load. This 
unified voltage equation will facilitate simultaneous mechanical and 
electrical modulations. A damping determination method is derived 
based on only voltage measurements made on PEHs without any 
requirement for sensory data or pre-modeling. The damping determi-
nation method is based on the transient voltage response to the har-
monic excitation and only relies on the experimental data with no need 
for prior knowledge of the system. Using the transient harmonic voltage 
response for the damping determination is novel. The current study 
contributes to the VPEH knowledge by providing a robust tool for 
evaluating the damping coefficient at any harmonic load and boundary 
condition and a better understanding of the PEH electromechanical 
coupling, which can be used for the optimal PEH design. This study also 
provides a simple and accurate method for the correct damping coeffi-
cient determination at any harmonic excitation, which can be used for 
the PEH characterization and modulations. 

In the presented study, the coupled transient solution of the PEH is 
developed and investigated for the unimorph and bimorph piezoelectric 
beams. First, Section 2 reviews the mechanical and electrical equations 

for the unimorph and the bimorph (parallel and series connections). 
Section 2 is a review of the analytical modeling for the piezoelectric 
energy harvester and is a base for the formulation in the next sections. 
Section 3 deals with developing a unified electromechanically coupled 
equation for voltage, which also presents the relationship between the 
PEH resonant frequency, the resistive electrical load, and the driving 
vibration frequency. In Section 4, the approach for the damping deter-
mination using the transient harmonic voltage response. Verification of 
the presented electromechanical voltage equation and the damping 
determination approach is given in Section 5. Section 6 presents the 
results and discussions. The results emphasizes the electromechanical 
coupling effect of the resistive load and the driving frequency on the 
power generation. Numerical studies prove that the presented simple 
method determines the damping coefficient from the transient voltage 
response at any driving frequency and any resistive load, which will 
significantly facilitate the damping coefficient determination. 

2. Review of mechanical and electrical coupled differential 
equations 

In this section, a model for PEH is presented. The presented method 
for the PEH vibration can be used for energy harvesters in 3–1 mode 
with one or two piezoelectric layers, which are respectively called 
unimorph and bimorph harvesters. Modelling of the harvesting beam is 
based on the analytical distributed beam. It is considered that the 
piezoelectric harvester vibrates around its fundamental natural fre-
quency, thus, the fundamental vibration mode has the main contribution 
in the analytical beam model. This assumption was proved to be true in 
many practical applications [30]. 

2.1. Mechanical vibration equation 

A substrate shim is considered in both unimorph and bimorph har-
vesters. The PEHs is subjected to the base excitation YB(t) causing the 
transverse motion of the cantilever beam. This transverse motion creates 
an axial strain (εxx) and the axial strain creates an electrical field through 
the thickness (Ez) due to the direct piezoelectric effect. A purely resistive 
load of RL is considered as the external electrical load. Fig. 2(a) and (b) 
show respectively the unimorph and bimorph harvesters in the 3–1 
mode. Fig. 2(c) shows the front views and the neutral axis location of the 
harvesting beams. 

The general equation of motions for a bending beam based on Euler- 
Bernoulli beam theory can be expressed as [31]: 

∂2M(x, t)
∂x2 +C a

∂w(x, t)
∂t

+m*∂2w(x, t)
∂t2 = − (m* +Mt)

d2YB(t)
dt2 (1) 

wherein the internal bending moment, M(x, t), due to the axial stress 
for the multi-layered harvester is given by 

unimorph ⇒ M(x, t) = − b
(∫ − Z b

− Z a

Ts
xxzdz +

∫ 0

− Z b

Tp
xxzdz +

∫ Z c

0
Tp

xxzdz
)

(2)  

bimorph ⇒ M(x, t) = − b

⎛

⎜
⎝

∫ −
hs
2

− hp −
hs
2

Tp
xxzdz +

∫ hs
2

−
hs
2

Ts
xxzdz +

∫ hs
2 +hp

hs
2

Tp
xxzdz

⎞

⎟
⎠

wherein Z (the distances from the neutral axis) and h (thicknesses) 
are shown in Fig. 2. 

The base excitation YB(t) deforms the piezoelectric beam with the 
deformation shape of w(x, t). In the linear framework of a pure bending 
beam, the axial strain at a certain level z from the neutral axis can be 
obtained from the beam curvature, as given by 

εxx = − z
∂2w(x, t)

∂x2 (3) 
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The axial strain relates to the normal stresses in the piezoelectric and 
substrate layers by the constitutive equations that are respectively given 
by [32] 

Tp
xx = cE

11εxx − e31Ez (4a)  

Ts
xx = Ysεxx (4b) 

By substituting Eqs. (3), (4a), and Eq. (4b) into Eq. (2), the beam 
bending stiffness is given by: 

M(x, t) = YI
∂2w(x, t)

∂x2 +P VR(t)
(
H (x − xi) − H

(
x − xf

) )
(5) 

wherein the Heaviside function term 
(
H (x − xi) − H

(
x − xf

) )
en-

sures that the piezoelectric layer starts from xi to the xf . In our case 
studies, xi = 0 and xf = L. 

Employing Eq. (2) for the unimorph and the bimorph, the bending 
stiffness YI and the coupling factor P can be obtained. Table 1 presents 
YI and P for both the unimorph and bimorph. Substituting YI and P 

into the Eq. (1), the differential equations of motion can be expressed as 
a function of the relative beam deflection, as given by: 

YI
∂4w(x, t)

∂x4 +C a
∂w(x, t)

∂t
+m*∂2w(x, t)

∂t2 +P VR(t)
(

dδ(x − xi)

dx
−

dδ
(
x − xf

)

dx

)

= − (m* +Mt)
d2YB(t)

dt2

(6) 

The beam deformation is expressed with a modal approximation for 

solving the beam differential equation. In other words, physical coor-
dination is transferred to modal coordination. In this study, where only 
the fundamental mode of the beam is of interest, the beam deflection is 
assumed: 

w(x, t) = ϕ(x)η(t) (7) 

wherein ϕ(x) is given in Appendix A. 
Integrating Eq. (6) from 0 to L and using the modal orthogonality 

characteristic [33], the following equation of beam motion is obtained: 

η̈(t) + 2ζωnη̇(t) +ω2
nη(t)+YVR(t) = σŸB(t) (8) 

wherein ωn, σ, and Y are respectively given in Table 1. 

2.2. The electrical equation for voltage output 

For obtaining the electrical equation, the piezoelectric layer is 
replaced with a capacitance (CP) and a current source denoted with IP(t)
[30]. The current source is defined by Eq. (9). 

IP(t) = Λη̇(t) (9) 

wherein Λ for the unimorph and bimorph harvesters is given in 
Table 1. 

An effective electrical circuit is needed for all electrical connections 
to present a unified formulation for the electrical equation. Fig. 3(a)–(c) 
show the unimorph, the bimorph in parallel connection, and the 
bimorph in series connection, respectively. The equivalent capacitance 
and resistive load for the effective electrical circuit shown in Fig. 3(d) 
are reported in Table 1. 

Fig. 2. Piezoelectric energy harvesters in connection with the electrical resistive load RL under the base excitation YB (a) unimorph, (b) bimorph, and (c) front-views 
with thicknesses. 

Table 1 
Modal electromechanical parameters associated with vibration and electrical equations.   

Unimorph Bimorph 

YI  
b/3
[

Ys
(
Z 3

b − Z 3
a
)
+cE

11
(
Z 3

c − Z 3
b
)
]

.  2b/3
[

Ysh3
s /8+cE

11

((
hp + hs/2

)3
− h3

s /8
)]

.  
P  

−
e31b
2hp

[
Z 2

c − Z 2
b
] e31b

2hp

[
h2

s /4 −
(
hp + hs/2

)2
]

m*  b
(
hp +hs

)
b
(
2hp +hs

)

ωn  
(λL)2

̅̅̅̅̅̅̅̅̅̅̅
YI

m*L4

√

σ  m* ∫ L
0 ϕ(x)dx + Mtϕ(L)

Y  
P

(
dϕ(x)

dx

⃒
⃒
⃒
⃒
x=L

)

Λ  
−

e31
(
hp + hs

)
b

2

(
dϕ(x)

dx

⃒
⃒
⃒
⃒
x=L

)

−
e31bZ c

2

(
dϕ(x)

dx

⃒
⃒
⃒
⃒
x=L

)

CP  ε33bL
hp  

Series connection ε33bL
2hp  

Parallel connection ε33bL
hp  

Reff  RL  Series connection RL  

Parallel connection 2RL   
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For the effective electrical circuit shown in Fig. 3(d), the current 
circuit equation is given by: 

CPV̇R(t)+
(
1/Reff

)
VR(t) = Λη̇(t) (10)  

2.3. The need for a revisit to the coupled equations 

The Eqs. (11) and (12), which respectively describe the mechanical 
vibration and electrical output voltage, are dependent on each other and 
therefore need to be solved simultaneously. 

η̈(t)+ 2ζωnη̇(t)+ω2
nη(t)+YVR(t) = σŸB(t) (11)  

CPV̇R(t)+
(
1/Reff

)
VR(t) − Λη̇(t) = 0 (12) 

Like a typical way of dealing with these coupled series of equations, 
researchers elaborate the steady-state solution under a harmonic exci-
tation [28,34,35]. The steady-state power output per square base ac-
celeration under a harmonic input of YB(t) = YBcos(Ωωnt) is:  

The steady-state response of piezoelectric harvesters provides a 
direct and easy expression for the voltage output; however, it will 
camouflage some essential voltage output signal characteristics. For 
instance, the damping and electrical output influences on the mechan-
ical frequency cannot directly be interpreted from the steady response. 
Moreover, if the input vibration input has variations in either the 

amplitude or the frequency, time-dependent power variations cannot be 
studied by the steady-state formulation. Therefore, here, the analytical 
beam formulation will be elaborated toward:  

• A unified equation for the voltage accommodating both electrical 
and mechanical characteristics. Thus, instead of dealing with two 
coupled differential equations, a single equation for voltage should 
be dealt with. This unified equation investigates power generation 
dependencies on the design parameters such as input frequency and 
electrical load.  

• A straightforward transient solution of voltage to investigate time- 
dependent characteristics.  

• An innovative approach to extract the damping coefficient only by 
the transient voltage measurements. 

3. Revisit of the voltage equation 

3.1. A unified voltage equation 

To develop the unified voltage equation, two scenarios are consid-
ered: the open-circuit and the electrical-load conditions. 

In open-circuit condition, where RL→∞, inserting Eq. (12) into Eq. 
(11) is more straightforward than the load conditio because the term 

(
1/

Reff
)
VR(t) approaches to 0. Then, by integrating Eq. (12) over time, the 

Fig. 3. Piezoelectric energy harvesters with their equivalent circuits, (a) Unimorph, (b) bimorph in parallel connection, (c) bimorph in series connection, and (d) the 
effective circuit for all the cases (a) to (c). 

PR
(

ŸB

)2 =
ReffCPω2

nΩ2Λ2σ2

CP

[
ω2

n

(
1 − Ω2( 1 + 2ζReffCPωn

) )2
+
(
ReffCPωn(1 − Ω2) + Ω(2ζωn + ΛY)

)2
] (13)   
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relationship between mechanical displacement and open-circuit voltage 
simplifies to 

η(t) = CP

Λ
VOC(t) (14) 

Substituting Eq. (14) into Eq. (11) for open-circuit voltage, the dif-
ferential equation becomes 

V̈OC(t) + 2ζωnV̇OC(t)+
(

ω2
n +

YΛ
CP

)

VOC(t) = σ Λ
CP

ŸB(t) (15) 

Eq. (15) will proceed in Section 4 for the determination of ζ from the 
open-circuit voltage. Eq. (15) is not only valid for the harmonic exci-
tation but also any arbitrary base excitation. 

Similarly, Eq. (12) can be simplified for the electrical-load condition, 
when the piezoelectric harvester is subjected to a harmonic load with 
the frequency ω, as given by: 

η(t) = VR(t)
Γ(ω)

(16) 

wherein the coefficient Γ is 

Γ(ω) = Λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
Reff ω

)2

+ CP
2

√ (17) 

Consequently, the differential voltage equation across the resistor is 
given by 

V̈R(t) + 2ζωnV̇R(t)+
(
ω2

n +YΓ(ω)
)
VR(t) = σΓŸB(t) (18) 

Eq. (18) is similar to the forced vibration equation for a damped one- 
degree-of-freedom system. However, as can be seen from Eq. (18), the 
natural frequency has an extra electromechanically coupling term, i.e., 
YΓ(ω). This coupling term is frequency and electrical-load dependent. 
Therefore, a coupled natural frequency (ωnc) is defined by 

ωnc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
n + YΓ(ω)

√

(19) 

It is a well-known fact that the natural frequency of piezoelectric 
beams are electrical-load dependent [18], but the natural frequency- 
driving frequency relationship needs to be elaborated [12]. The 
coupled natural frequency introduced in this study accommodates both 
the frequency and electrical-load effects. 

Having ζ from experiments, optimum resistive load for maximum 
power can be obtained by setting the electrical damping equal to the 
mechanical damping. The optimum load resistive can be given by [36] 

Ropt
L =

1
ωCP

2ζ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4ζ2 +

⎛

⎝ e31
2

cE
11ε33

⎞

⎠

2
√
√
√
√
√

(20)  

3.2. The transient response of voltage under harmonic excitations 

The unified voltage differential equation (either Eqs. (15) or (18)), is 
a non-homogeneous second-order differential equation that its general 
solution is well known. Considering a harmonic base excitation given by 
ŸB(t) = YBω2cos(ωt), the solution of the Eq. (18) can be expressed with 

VR(t) = Vtranse− ζωntsin(ωdct+ϕ)+Vsteadycos(ωt − θ) (21) 

The first term in Eq. (21) is related to transient behavior, while the 
second term points to the steady-state condition. 

Both the damping factor and electromechanical coupling influence 
the frequency of oscillations in the transient period. ωdc, given by Eq. 
(22), is the coupled-damped natural frequency of the harvester, which 
has the characteristics of damping and electromechanical coupling, and 
therefore it can mimic the harvester behavior in the damped as well as 

the electromechanical coupling conditions. The concept of using the 
coupled-damped natural frequency for piezoelectric energy harvesters is 
novel. 

ωdc = ωn

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2 +
YΓ
ω2

n

√

(22) 

Parameters for the transient and steady solutions with initial con-
ditions v0 and v̇0, are respectively given by 

Vtrans =
v0 − Vsteadycosθ

sinϕ
,ϕ = tan− 1 ωdc

(
v0 − Vsteadycosθ

)

v̇0 + ζωn
(
v0 − Vsteadycosθ

)
− ωVsteadysinθ

(23a)  

Vsteady =
σΓYBω2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ω2

n + YΓ − ω2
)2

+ (2ζωnω)2
√ , θ = tan− 1 2ζωnω

ω2
n + YΓ − ω2 (23b) 

In open-circuit condition with zero initial condition, the transient 
and steady-state parameters can be simplified, as expressed in Eqs. (24a) 
and (24b). 

Vtrans = − κVsteady,ϕ = tan− 1 ωdcosθ
ζωncosθ + ωsinθ

(24a)  

Vsteady =
σ Λ

CP
YBω2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

ω2
n +

YΛ
CP

− ω2

)2

+ (2ζωnω)2

√ , θ = tan− 1 2ζωnω
ω2

n +
YΛ
CP

− ω2 (24b)  

κ =
cosθ
sinϕ 

Phase angles θ and ϕ and κ for different frequency ratios are shown in 
Fig. 4. Frequency ratio is the ratio of excitation frequency to the coupled- 
damped natural frequency, i.e., Ω = ω/ωdc. According to Fig. 4, κ can be 
either − 1 or + 1 depending on the Ω. While the transient response is in 
the same phase as the steady-state response for Ω < 1, it is in the 
opposite phase for Ω > 1. In zero initial condition case, Eq. (21) can be 
simplified to Eq. (25) for both Ω ≤ 1 and Ω > 1 cases. 

VR(t) ≅ Vsteady( − f (Ω)e− ζωntsin(ωdct + ϕ)+ cos(ωt − θ) ) (25) 

wherein f (Ω) =

{
1 Ω ≤ 1
− 1 Ω > 1 . 

3.3. The approximate transient response 

Approximate transient responses under different excitations are 
given in this section. These approximate responses are needed in the 
damping determination method. 

3.3.1. Resonance excitation 
Under the resonant excitation, the following approximations can be 

assumed according to Fig. 4: θ ≅ π
2, ϕ ≅ 0 and κ ≅ 1. Therefore, the 

open-circuit voltage for the resonant excitation is given by 

VR(t) ≅ Vsteady(1 − e− ζωnt)sinωdct (26) 

Eq. (26) contains both transient and steady solutions. Initially, where 
e− ζωnt is significant, the solution is dominated by the transient behavior, 
while for t→∞, transient part becomes insignificant, and the solution is 
the steady-state response. 

Fig. 5 presents the resonant voltage outputs obtained from the exact 
coupled solution (Eqs. (11) and (12)) and the simplified equation (Eq. 
(26)). The solution is carried out with the resistive load of RL = 10MΩ. 
A good agreement exists between these two resonant open-circuit 
voltage solutions throughout the time. Therefore, the simplified reso-
nant voltage equation is valid in the transient stage as well as the 
steady-state. 
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3.3.2. Under and near-resonant excitations 
In these cases, it is not as straightforward as the resonance case to 

express the general solution form with a single harmonic function Eq. 
(26). However, in the early response after the excitation, the transient 
response can be approximately derived. Assuming the phase angles to be 
θ ≅ 0, ϕ ≅ π

2 and by applying the sum to product trigonometric for-
mula, Eq. (25) can be break into transient and steady-state solution, as 
given by Eq. (27). 

VR(t) ≅

⎧
⎪⎪⎨

⎪⎪⎩

Vsteady(1 + e− ζωnt)sin
(ωdc + ω

2
t
)

sin
(ωdc − ω

2
t
)
, t <

1
τ

Vsteadycos(ωt − θ), t≫
1
τ

(27) 

wherein τ = ζωn. 
Fig. 6 (a)-(d) show the comparisons between the exact and the 

simplified (Eq. (27)) solutions at the different under-resonant excita-
tions, i.e., Ω = 0.4, 0.7, and 0.8, and near resonance, i.e., Ω = 0.9. As can 
be seen from Fig. 6 (a)–(d), the simplified solution in Eq. (27) provides 
the accurate estimations of the output voltage at all the non-resonant 
excitations. In particular, the exact and simplified solutions demon-
strate excellent consistency in voltage peaks. The accurate peak voltage 
estimations are of great importance for the correct damping estimation. 

4. The harmonic transient voltage response (HTVR) method for 
the damping coefficient determination 

This section presents the harmonic transient voltage response 
(HTVR) method for the damping determination from only the voltage 
measurements during a harmonic base excitation. This method does not 
need any prior knowledge about the system or pre-modeling relying on 
the data processing from only the transient measured voltage made on a 
piezoelectric harvester. The HTVR does not require sensors for 
measuring the structural response of the harvester, as it needs only the 
voltage output signal. No structural modeling in the HTVR is needed. In 
addition, since the system response to a harmonic excitation is 
employed, the measured response is a forced-vibration response, and 
therefore the noise to signal ratio in the voltage is smaller compared to 
the free-vibration decrement responses. The harmonic function with any 
arbitrary frequency can be used as the base excitation in the HTVR 
method. However, some requirements are linked with the HTVR for an 
accurate damping determination. Piezoelectric harvester should un-
dergo harmonic base excitation; thus, it needs a mechanism to excite the 
harvester by a harmonic motion. The voltage response of the harvester 
should be measured from the initial (zero) condition. The HTVR uses the 
peak values of the transient voltage response, and therefore it requires 
the accurate measurements of the time-domain voltage response. Hence, 
the sources of environmental noise should be kept as low as possible. 
Additionally, a high sampling rate is required for precise peak selections 
in the voltage response. 

Fig. 4. Phase angles and κ = cosθ
sinϕ versus frequency ratio for (a) light damping and (b) high damping coefficients.  

Fig. 5. The comparison between the exact coupled and simplified solutions at the resonant excitation.  
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Fig. 7 shows the flowchart of the HTVR damping determination 
approach. The method requires the recorded time-domain voltage data 
and Fast Fourier Transform (FFT) of the voltage data. Now, each step in 
Fig. 7 will be elaborated in detail. 

4.1. Recording the voltage signal 

The first step is to record the time domain voltage signal made on a 
piezoelectric harvester under any harmonic load. According to Eq. (25), 
the decaying term e− ζωnt in the transient part carries the damping effect 
and thus theoretically the damping factor can be determined from the 
transient solution. Therefore, it is critical to record the voltage output 
from initial condition, as the transient response is of significance in this 
method. In general, one is free to excite the piezoelectric harvester with 
any harmonic load and in connection with any electrical load. 

Exciting the harvester with resonant frequency gives a straightfor-
ward process for obtaining the damping coefficient. Nonetheless, for the 

resonant excitation case, the harvester should be excited with the exact 
coupled-damped natural frequency so that a pre-knowledge about the 
system natural frequency is needed. For removeing the need for the 
natural frequency pre-knowledge, the method is also developed for the 
harmonic excitation at an arbitrary driving frequencies (under or around 
resonant cases). 

4.2. Applying FFT on the voltage signal 

Applying FFT to the voltage signal reveals the dominant fre-
quencies. As shown in Eq. (25), two harmonic functions exist in the 
transient voltage signal, one transient with the coupled-damped nat-
ural frequency (ωdc) and one steady-state with the excitation fre-
quency (ω). These two dominant frequencies are theoretically 
discernible in the voltage signal and can be extracted by the FFT. Fig. 8 
shows the FFT results from voltage output signals in different excita-
tion frequencies, i.e., Ω = 0.4, 0.9, 1, and 1.1. ωdc and ω are obvious in 

Fig. 6. The comparison between the exact and approximated transient solution for the under-resonant and near-resonant excitations.  

Fig. 7. The flowchart of the proposed method for damping using the transient voltage measurements.  
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the FFT signals. If only one dominant frequency exists in the FFT 
signal, then ωdc = ω or Ω = 1. 

4.3. Envelope curves of the voltage signal 

As the peak magnitude variations are dependent onthe damping, 
remember the term e− ζωnt, the envelope curve (g(t)) of the transient 
voltage response is needed. The envelope curve does not have the same 
formulation for different Ωs. Therefore, the envelope curve is given for 
two cases, case one Ω = 1 and case two Ω < 1 (or Ω ≈1). Fig. 9 shows the 
harvester voltage outputs under two harmonic cases with their envelope 
curves. As can be seen, the type of envelope curves is different in these 
two cases. In the first case, the envelope curve is a strictly increasing 
function, while in the second case, the envelope curve has an overshoot 
and then converges to a constant value. 

The envelope curve equations are derived from the approximate 
transient responses given in subsection 3.3. 

For case one (the resonant excitation) and case two (under or near- 
resonant excitations) the envelope curve are respectively given by: 

Case one (Ω = 1) : g(t) = Vsteady(1 − e− ζωnt), for all t (28)  

Case two (Ω < 1 or Ω ≈ 1) : g(t)

= Vsteady(1 + e− ζωnt)sin
(ωdc − ω

2
t
)
, for t <

1
τ (29)  

4.4. Peak selections and damping determination 

In the envelope curve equations, the exponential decaying term 
(e− ζωnt), which has a damping coefficient, is present. This exponential 
term has a substantial effect in the early times but vanishes at suffi-
ciently large time. Thus, the damping coefficient will be determined by 
comparing the transient peaks (the exponential term is significant) to 
the steady-state value (exponential term vanishes). 

Steady-state value is that the value of voltage peaks becomes un-
changing in time. On the other hand, transient peaks are the peak values 
changing considerably, either ascending or descending. The relative 
time from the initial condition for the transient peaks is also of great 
significance. These parameters are shown in Fig. 10 for two voltage 
responses at different frequency ratios. 

The ratio of the transient peak at Tj to the steady-state value is 
defined by: 

βj =
Vpeak

⃒
⃒
@Tj

Vsteady
(30) 

According to the envelope curves given by Eq. (28) and Eq. (29), this 
βj is related to the damping factor, as shown in Eq. (31) and Eq. (32) for 
cases one and two, respectively. 

Case one (Ω = 1) : βj ≅ (1 − e− ζωnt), for all t (31)  

Case two (Ω< 1 or Ω≈ 1) : βj ≅ (1+ e− ζωnt)sin
(ωdc − ω

2
t
)
, for t<

1
τ (32) 

From Eq. (31) and Eq. (32), the damping coefficient can be deter-
mined from the βj ratio, as for cases one and two are given by Eq. (33) 
and Eq. (34). 

Case one (Ω = 1) : ζ =
− ln
(
1 − βj

)

ωnTj

(33)  

Case two (Ω < 1 o rΩ ≈ 1) : ζ = −

ln βj − 1⃒
⃒
⃒sin

(
ωdc − ω

2 Tj

)⃒
⃒
⃒

ωnTj

(34) 

In Eq. (33) and Eq. (34), ωn is needed, which can be assumed 
approximately equal to ωdc, where ωdc can be directly obtained from the 
voltage response from the signal FFT (see Fig. 8). 

5. Verification of the proposed models 

This section verifies the presented unified voltage equation and the 
damping determination approach in separate subsections, respectively. 

Fig. 8. Applying Fast Fourier Transform reveals the dominant frequencies in 
the voltage response. 

Fig. 9. The output voltage from harmonic excitations at different frequency 
ratios, Ω = 0.95, and Ω = 1. 

Fig. 10. The peak and steady-state values for two cases at different frequency 
ratios, Ω = 0.95 and Ω = 1. 
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5.1. Verification of the electromechanical voltage equation 

As a benchmark example, a bimorph with added tip mass is consid-
ered. The bimorph harvester comprises two PZT-5A piezoelectric layers 
and a brass substrate shim with a 0.012-kg proof mass. First, the pre-
sented model is verified against the experimental results by Erturk and 
Inman [30]. As reported by Ref. [30], geometric and material properties 
are shown in Table 2. Second, the fully mechanical-electromechanical 
sensitivity analysis of coupled-damped natural frequency, voltage, and 
power as function of the driving frequency and resistive load is inves-
tigated. Finally, the transient response of voltage and the damping co-
efficient identification for this example is reported. 

According to Eq. (22), the damped-electromechanical natural fre-
quency, ωdc, is a function of electrical load (RL) and excitation frequency 
(ω). Table 3 compares the undamped natural frequency and the ωdc at 
open-circuit (large RL) and RL = 1kΩ (small RL) conditions with the 
experimental results from Erturk and Inman [30]. The good agreement 
between the results in both small and large RLs shows that the intro-
duced damped-electromechanical natural frequency can capture the 
electromechanical coupling between mechanical and electrical 
parameters. 

The output voltage at two different electrical loads are compared in 
Fig. 11 with Erturk and Inman experiments [30]. The excellent 

consistency between the voltage results can prove the appropriate 
electromechanical coupling model in the presented model for the output 
voltage. 

5.2. Verification of the damping determination method 

This section presents the experimental results from a unimorph 
piezoelectric harvester and applies the presented model for the transient 
response, damping coefficient identification, and optimum load 
extraction. 

The test rig for experimental tests and the piezoelectric sample for 
the damping determination are shown in Fig. 12(a)–(c). The piezoelec-
tric sample is a unimorph consisting of only a 0.3-mm-thickness MFC 
from Smart Material [37]. The unimorph is clamped at one end using an 
aluminum clamp bar. The dimensions of the unimorph are shown in 
Fig. 12(a). The clamped-free boundary condition, the unimorph-shaker 
connection, and the accelerometer are shown in Fig. 12(b). The piezo-
electric sample is harmonically excited from the base using a vibration 
shaker. The transient voltage response from the piezoelectric sample is 
recorded. National Instrument modules 9172 and 9263 are respectively 
used for the harmonic signal generation and voltage response recording. 
Fig. 12(c) shows the setup for applying the desirable harmonic excita-
tion and recording the piezoelectric output response and accelerometer 
output. Labview™ software is utilized for generating the desired signal 
and for recording data. 

The measured voltage responses with RL = 27 kΩ at ω1 = 14 Hz and 
ω2 = 15 Hz driving frequencies are shown in Fig. 13(a). The output 
voltage with ω2 excitation is greater than ω1 excitation showing that ω2

ωn 

> ω1
ωn

. Because of the shape of the envelope curve (as discussed in sub-
section 4.3), it can be concluded that Ω1<Ω2 < 1. The transient response 
is expected to have an overshoot voltage from the analytical transient 
model and then converges to a steady-state voltage. The maximum 
transient voltage is distinguishably greater than the steady-state voltage 
and therefore is easy to spot. In this experimental study, the transient 
stage lasts for approximately 0.5 s. Applying the FFT transform reveals 
the coupled-damped natural frequency (ωdc) to be 16 Hz, as presented in 
Fig. 13(b). Having ωdc from Fig. 13(b) and the maximum transient peak 
as well as the steady-state voltage from Fig. 13 (a), damping coefficient 
can be extracted using Eq. (34). Table 4 presents the identified damping 
coefficients in both 14 Hz and 15 Hz excitations. The identified damping 
coefficients are similar in both cases illustrating that the damping results 
from the presented method are consistent. 

For the optimum electrical load selection, the harmonic excitation 
with the first resonant frequency of the beam (ωdc = 16) is applied to the 
unimorph base, and the generated power outputs are measured with 
various electrical loads. The electrical circuit used in this experiment, 
Fig. 14(a), is a full-bridge rectifier connected to the electrical load RL. 
The voltage and power made on the unimorph are measured at 20 
different resistive loads ranging from 100Ω to 650kΩ. Two examples of 
measured voltages and currents at electrical load 14.7 and 27 kΩ are 
also shown in Fig. 14 (b). The generated voltage will increase by 
increasing electrical load until it reaches to open-circuit voltage while 
the current will decrease from the maximum current at short-circuiting 
to zero at the open-circuit condition. The output power can be calculated 
from the output voltage and current measurements. Fig. 14 (c) shows 
how root mean square (rms) of the generated power from the unimorph 
sample varies as a function of electrical load. At an electrical load of 27 
kΩ, the power generation is maximum with a power rms of 18.4 µW. 

Analytically, when the electrical damping becomes equal to the 
mechanical damping [38], power generation is maximum. For calcu-
lating this optimum load point, see Eq. (20), the mechanical damping is 
required. For the damping determination validation against the exper-
imental data, the optimum analytical resistance is compared with the 
experimentally found optimum load, 27 kΩ. The optimum analytical 
load using Eq. (20) and setting the damping coefficient to the mean 

Table 2 
Geometric and material properties of bimorph with 0.012-kg added mass.  

Length of the beam (mm)  50.8 Width of the beam (mm)  31.8 

Tip mass, (kg)  0.012 Damping 2.7% 
Substrate shim 
density (kg/m3)  9000 Young’s modulus (GPa)  105 

thickness (mm)  0.14   
Piezoelectric layer (PZT-5A) 
Density (kg/m3)  7800 thickness- each layer (mm)  0.26 

cE
11(GPa)  66.0 e13(C/m2)  − 15.9 

Permittivity (F/m)  1.593 × 10− 8    

Table 3 
The comparisons of the undamped natural frequency, the coupled-damped 
natural frequency, and the steady-state voltage with 1kΩ resistive load.   

ωn(Hz)  ωdc at open- 
circuit (Hz)  

Vsteady(V/g) with 
RL = 1kΩ  

Present model  45.7  48.2  1.598 
Erturk and Inman 

experiments [30]  
45.6  48.4  1.57 

Difference  +0.2%  − 0.4%  +1.7%  

Fig. 11. The comparison between the presented model results with the 
experimental data [30] 
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value of damping coefficients in Table 4 becomes 25.0 kΩ. This optimum 
analytical load is very close to the experimentally identified optimum 
load proving that the identified damping coefficient is reasonably 
accurate. 

6. Results and discussions 

In this section, the benchmark example used for the model verifi-
cation in subsection 5.1 will be further investigated. 

Fig. 12. Experimental setup and MFC dimensions, (a) the MFC dimensions, (b) the energy harvester in the clamped-free boundary condition attached to the VSD-201 
shaker with the Bruel and Kjær 4573 accelerometer for measuring the applied acceleration, and (c) the experimental setup for applying base excitation and measuring 
the responses. 

Fig. 13. The experimental voltage responses for the MFC under different harmonic excitations (a) time-domain signals and (b) frequency-domain signals after 
applying the FFT. 
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6.1. The electromechanically coupled natural frequency 

As discussed in the voltage output equation, due to electromechan-
ical coupling, the hatvester’s coupled natural frequency is a function of 
the resistance load and the driving frequency. Fig. 15(a) and (b) show 
the coupled natural frequency changes with these two factors. Greater 
ωnc
ωn 

means greater electromechanical coupling effects. As can be seen 
from Fig. 15(a), greater electrical loads increase the ratio ωnc

ωn 
meaning 

that the electromechanical coupling becomes stronger with greater 
electrical load. The ωnc

ωn 
variation holds the same trend for all the different 

ωs. In the energy harvesting applications, the optimum load lies in the 
range of 10kΩ-100kΩ, and the frequency is matched to the natural 
frequency so that ω ≈ ωnc. In these conditions, the coupled natural fre-
quency can be roughly from 1.01 to 1.04 of the uncoupled natural 
frequency. 

To further investigate the driving frequency effect on the coupled 
natural frequency, ωnc

ωn 
is plotted in Fig. 15 (b) over the frequency ratio 

(Ω) at different electrical loads. In small electrical loads, ωnc
ωn 

is linear 
function of the frequency ratio, while for the greater loads becomes a 
nonlinear function. In addition, a greater excitation frequency causes a 
stronger coupling as it makes the ωnc

ωn 
greater. In the small electrical loads 

(<1kΩ), ωnc
ωn 

is always smaller than 1.003 presenting a negligible de-
pendency on the driving frequency in the small electrical loads. How-
ever, at large electrical loads (>40kΩ), ωnc

ωn 
becomes more important, for 

instance, it is approximately 1.025 around the resonant excitation. Ac-
cording to the plots presented in Fig. 15(a) and (b), one may use ωnc =

1.025ωn for the frequency matching in the mechanical modulations for 
the electrical loads in the range of (20-60kΩ). Although this ωnc fre-
quency variation seems small, it can have substantial effect on the 
output power, as the output power is narrowband due to the high me-
chanical quality factor of the piezoelectric energy harvester. 

6.2. Voltage and power generation 

The electrical load and driving frequency change the ωdc and 
therefore the output voltage-load curve will be different for different 
excitation frequencies. The output voltage under the harmonic excita-
tions with short-circuit (45.7 Hz) and open-circuit (48.2 Hz) resonant 
frequencies are shown in Fig. 16. Even though these two driving 

Table 4 
The estimation of the damping coefficient for the experimental study.   

T1(ms) V(T1)(V/g) Vsteady(V/g) V(T1)

Vsteady  

ζ(%)  

ω =

14Hz   
95.6  8.629  5.95  1.45  4.38 

ω =

15Hz   
171.0  13.29  10.1  1.32  4.82  

Fig. 14. Experimental extraction of the optimum load resistance using harmonic base excitation with different electrical resistive loads, (a) the electrical circuit for 
maximum-power load determination, (b) two examples of the voltage and current measurements, and (c) the output power versus resistive load. 

Fig. 15. The ratio of the coupled to the uncoupled natural frequency for (a) the resistive load and (b) driving frequency.  
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frequencies are close to each other, the output voltage curves are not 
identical and have considerable differences. Before the resistive load 
reaches 50kΩ, the 45.7 Hz-driving frequency generates a greater 
voltage, while the 48.2 Hz-driving frequency generates a greater voltage 
after this resistive load, emphasizing that the selection of the resistive 
load is also a function of the driving frequency. From the zoomed-in 
view in Fig. 16, a slight difference in the ωdc can be seen between the 
two different driving frequencies. The analytical model in Eq. (22) 
showed this dependency. According to the findings above in Fig. 16, the 
output voltage and the power generation are simultaneously dependent 
on the driving frequency and resistive load. 

The voltage and power dependencies to the electrical load (RL) and 
driving frequency (ω) are respectively shown in Fig. 17 (a) and (b). The 
voltage increases substantially by the RL-increase and reaches to the 
open-circuit voltage, VOC, at great resistive loads. The frequency at 
which voltage is maximum shifts forward by increasing RL demon-
strating a strong coupling between the mechanical vibration and the 

connected electrical load. In the maximum power condition, the output 
voltage and current are 91.12 V/g and 1.14 mA/g, respectively corre-
sponding to the maximum output power of 103.9 mW/g2. As shown in 
Fig. 17 (b), the power has a strong dependency on the driving frequency, 
and, for each resistive load, a driving frequency associated with the 
maximum power exists. Because of the electromechanically coupled 
equations, the optimum resistive load is different for different driving 
frequencies. 

6.3. Evaluation of the approach for damping determination 

This section investigates the damping determination method and its 
relevant setting parameters. 

6.3.1. Effect of the excitation frequency 
The excitation frequency can affect the results of the current damp-

ing determination method. Therefore, the method is applied to the 
transient responses from different excitation frequencies, and the 
damping coefficients will be compared. 

The voltage outputs made on the piezoelectric bimorph are shown in 
Fig. 18 for Ω = 0.4, 0.7, 0.8, and 0.9 harmonic excitations. These voltage 
responses are employed for the damping identification process. All the 
responses reach a steady-state harmonic after 0.4 s applying the har-
monic excitation. During the transient stage, i.e., 0 to 0.4 s, the voltage 
response has a maximum peak value. The time associated with the 
maximum transient voltage, the maximum transient voltage, and the 
steady-state voltage is called T1, V(T1) and Vsteady, respectively. By 
substituting these parameters into Eq. (33) and Eq. (34), the damping 
coefficients can be obtained. Table 5 presents the transient peak times 
and values and the identified damping coefficients for the mentioned 
harmonic excitations. The damping coefficient is identified with <5% 
error in all excitation cases. The 5% error in damping identification 
using this simple approach, which does not require any pre-knowledge 
about the system, is a good accuracy as damping extraction is a com-
plex process requiring numerical curve fittings and optimizations [25]. 
It can also be seen that the method can calculate the damping coefficient 
accurately in any harmonic excitation frequency and is not limited to the 
resonant case. The damping coefficient identification error is smaller if 
the energy harvester is subjected to a resonant or near-resonant har-
monic excitation than off-resonant excitations. Therefore, one should 
excite the harvester with the frequency as close as possible to its reso-
nant frequency for the most accurate damping determination. 

6.3.2. Comparison with the other methods 
The half-power bandwidth [39] and logarithmic decay [33] methos 

are also applied to the bimorph example for comparing the current study 
results. 

The half-power bandwidth method is based on the steady voltage 
responses over a range of frequencies. Without installing any additional 
sensor, the voltage output is needed to be measured in different fre-
quency steps. Then, by plotting the voltage-frequency curve, the 
damping coefficient can be measured. Fig. 19 (a) shows the voltage 

Fig. 16. Steady-state voltage and ωdc for 45.7 and 48.2 Hz driving frequencies 
corresponding to the harvester coupled natural frequency in short-circuit and 
open-circuit conditions, respectively. 

Fig. 17. The steady-state (a) voltage and (b) power versus the resistive elec-
trical load (RL) and the excitation frequency (ω). 

Fig. 18. The voltage responses for the bimorph under the harmonic excitation 
at different frequency ratios. 
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responses over the 45–55 Hz frequency range with a 0.25 Hz frequency 
step. The damping coefficient is then calculated as: 

ζ ≅
Δω
2ωdc

=
2.4

2 × 48.25
= 2.49% 

In the logarithmic decay method, the time-domain voltage response 
to an impact excitation is recorded. Fig. 19(b) shows the voltage 
response of the bimorph to a 1 g impact force. The damping coefficient is 
calculated based on the value of any two successive positive peaks, as 
given by: 

ζ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

⎛

⎜
⎜
⎝

2π
1
N ln

Vpeak− 1
Vpeak− N

⎞

⎟
⎟
⎠

2
√
√
√
√
√
√
√

(35) 

The comparison of the damping coefficient with three different 
methods are given in Table 6. In either of Ω ≈ 1 or Ω = 0.9 cases, the 
current method has considerably better accuracy than the other 
methods. The current method can have an accuracy of 2% with the 
harmonic excitation around the resonance, while the accuracy for the 
half-power and logarithmic decay methods are respectively 7.8% and 
10.4%. 

6.3.3. Effect of added white noise 
As the present approach uses the time-domain voltage responses, the 

noise effect on the HTVR performance should be determined since the 
experimental data is always polluted with noise. The damping deter-
mination method is tested with 2% and 5% white noise data. Fig. 20 
presents the identified damping coefficients in the presence of noise. 
Added noise increases the damping identification error; yet the method 

calculated the damping coefficient with reasonable accuracy. The most 
significant estimation error is for Ω = 0.7 excitation, while low fre-
quency and near-resonant harmonic excitations have identified the 
damping very accurately, even with the added noise. This finding rec-
ommends the low frequency or near-resonant excitations for the 
extraction of the damping coefficient. 

7. Conclusion 

In the presented study, the transient voltage response of unimorph 
and bimorph piezoelectric harvesters are presented. The model con-
siders a fully electromechanical coupling and the Euler beam theory. 
The dependencies of the energy harvester resonant frequency and the 
output power to the resistive load and the driving frequency are shown. 
A simple method for the determination of damping coefficient, the 
harmonic transient voltage response (HTVR), is presented that can be 
applied on only the voltage measurements made on piezoelectric har-
vesters at any harmonic excitation and resistive load. The main out-
comes of this study can be summarized as: 

Table 5 
The estimation of damping coefficient at different harmonic excitations for the 
bimorph example.   

T1(ms) V(T1)(V/g) Vsteady(V/g) ζ  Exact ζ  
value  

Error  

Ω =

0.4   
52.01 13  7.8  2.57% 

2.7%  

4.8%  

Ω =

0.7   
30.81 22.53  12.82  2.82%  4.4%  

Ω =

0.8   
52.21 30.07  18.06  2.58%  4.4%  

Ω =

0.9   
93.41 49.04  33.41  2.64%  2.2%  

Ω =

1.0   
502.9 125.30  127.83  2.71%  0.3%  

Fig. 19. (a) The steady-state voltage response versus frequency for the half-power bandwidth method (b) the impact transient voltage response for the logarithmic 
decay method. 

Table 6 
The comparison of the present study results with half-power bandwidth and 
logarithmic decay method for the bimorph example.  

Method Determined  
damping  
coefficient 

Exact damping 
coefficient 

Error 
(%) 

present method (Ω ≈ 1)   2.71% 2.7%  0.0 
present method  

(Ω = 0.9)   
2.64%  2.2% 

half-power bandwidth 
method  

2.49%  7.8% 

logarithmic decay  
method- N = 2  

2.37%  12.2% 

logarithmic decay  
method- N = 3  

2.98%  10.4%  

Fig. 20. The identified damping from the transient voltage response at 
different excitations considering added white noise. 
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• The electromechanical-coupled natural frequency should be used for 
frequency matching of a piezoelectric harvester instead of the 
uncoupled natural frequency. A factor of 1.025 can be used for 
considering the electromechanical effects on the natural frequency 
for around resonant excitations and the electrical load in the range 
10-60kΩ.  

• The present damping determination method calculates the damping 
coefficient accurately from only the transient voltage responses 
without any limitation on the excitation frequency.  

• The accuracy of the damping determination method is higher for 
around the resonant excitations. 

• Noise on the transient signal can decrease the damping determina-
tion performance by 3.5%. 
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Appendix A. . 

For the clamped-free boundary conditions, beam mode shapes is given by Eq. (A1) [40]: 

ϕi(x) = χi[coshλix − cosλix+αi(sinhλix − sinλix) ] (A1) 

where λi is the solution of Eq. (A2), αi is a constant given by Eq. (A2), and χi is a constant for satisfying mass normalization of the mode shapes, e.g. 
∫ l

0 m*ϕ2
i (x)dx + maϕ2

i (L) = 1. 

1+ cosλicoshλi + λi
ma

m*L
(cosλisinhλi − sinλicoshλi) = 0 (A2)  

αi =
sinλi − sinhλi + λi

ma
m*L [cosλi − coshλi]

cosλi + coshλi − λi
ma

m*L [sinλi − sinhλi]
(A3)  
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Appendix I. Paper 9: Reference [187] 

 

An optimum practical piezoelectric energy-
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Appendix J. Paper 10: Reference [177] 

 

Power generation from a DC motor at defect-free 

and misaligned shaft conditions by piezoelectric 
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