68 research outputs found

    Beat-to-beat finger photoplethysmography in atrial fibrillation patients undergoing electrical cardioversion

    Get PDF
    Atrial fibrillation (AF)-induced peripheral microcirculatory alterations have poorly been investigated. The present study aims to expand current knowledge through a beat-to-beat analysis of non-invasive finger photoplethysmography (PPG) in AF patients restoring sinus rhythm by electrical cardioversion (ECV). Continuous non-invasive arterial blood pressure and left middle finger PPG pulse oximetry waveform (POW) signals were continuously recorded before and after elective ECV of consecutive AF or atrial flutter (AFL) patients. The main metrics (mean, standard deviation, coefficient of variation), as well as a beat-to-beat analysis of the pulse pressure (PP) and POW beat-averaged value (aPOW), were computed to compare pre- and post-ECV phases. 53 patients (mean age 69 ± 8 years, 79% males) were enrolled; cardioversion was successful in restoring SR in 51 (96%) and signal post-processing was feasible in 46 (87%) patients. In front of a non-significant difference in mean PP (pre-ECV: 51.96 ± 13.25, post-ECV: 49.58 ± 10.41 mmHg; p = 0.45), mean aPOW significantly increased after SR restoration (pre-ECV: 0.39 ± 0.09, post-ECV: 0.44 ± 0.06 a.u.; p 95th percentile) and short (< 5th percentile) RR intervals were significantly more irregular in the pre-ECV phases for both PP and aPOW; however, aPOW signal suffered more fluctuations compared to PP (p < 0.001 in both phases). Present findings suggest that AF-related hemodynamic alterations are more manifest at the peripheral (aPOW) rather than at the upstream macrocirculatory level (PP). Restoring sinus rhythm increases mean peripheral microvascular perfusion and decreases variability of the microvascular hemodynamic signals. Future dedicated studies are required to determine if AF-induced peripheral microvascular alterations might relate to long-term prognostic effects

    PHOTOPLETHYSMOGRAPHIC WAVEFORM ANALYSIS DURING LOWER BODY NEGATIVE PRESSURE SIMULATED HYPOVOLEMIA AS A TOOL TO DISTINGUISH REGIONAL DIFFERENCES IN MICROVASCULAR BLOOD FLOW REGULATION.

    Get PDF
    The purpose of this investigation was to explore modulation of the photoplethsymographic (PPG) waveform in the setting of simulated hypovolemia as a tool to distinguish regional differences in regulation of the microvasculature. The primary goal was to glean useful physiological and clinical information as it pertains to these regional differences in regulation of microvascular blood flow. This entailed examining the cardiovascular, autonomic nervous, and respiratory systems interplay in the functional hemodynamics of regulation of microvascular blood flow to both central (ear, forehead) and peripheral (finger) sites. We monitored ten healthy volunteers (both men and women age 24-37 ) non-invasively with central and peripheral photoplethysmographs and laser Doppler flowmeters during Lower Body Negative Pressure (LBNP). Waveform amplitude, width, and oscillatory changes were characterized using waveform analysis software (Chart, ADInstruments). Data were analyzed with the Wilcoxon Signed Ranks Test, paired t-tests, and linear regression. Finger PPG amplitude decreased by 34.6 ± 17.6% (p = 0.009) between baseline and the highest tolerated LBNP. In contrast, forehead amplitude changed by only 2.4 ± 16.0% (p=NS). Forehead and finger PPG width decreased by 48.4% and 32.7%, respectively. Linear regression analysis of the forehead and finger PPG waveform widths as functions of time generated slopes of -1.113 (R = -0.727) and -0.591 (R = -0.666), respectively. A 150% increase in amplitude density of the ear PPG waveform was noted within the range encompassing the respiratory frequency (0.19-0.3Hz) (p=0.021) attributable to changes in stroke volume. We also noted autonomic modulation of the ear PPG signal in a different frequency band (0.12 0.18 Hz). The data indicate that during a hypovolemic challenge, healthy volunteers had a relative sparing of central cutaneous blood flow when compared to a peripheral site as indicated by observable and quantifiable changes in the PPG waveform. These results are the first documentation of a local vasodilatation at the level of the terminal arterioles of the forehead that may be attributable to recently documented cholinergic mechanisms on the microvasculature

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Cuffless bood pressure estimation

    Get PDF
    L'hypertension est une maladie qui affecte plus d'un milliard de personnes dans le monde. Il s'agit d'une des principales causes de décès; le suivi et la gestion de cette maladie sont donc cruciaux. La technologie de mesure de la pression artérielle la plus répandue, utilisant le brassard pressurisé, ne permet cependant pas un suivi en continu de la pression, ce qui limite l'étendue de son utilisation. Ces obstacles pourraient être surmontés par la mesure indirecte de la pression par l'entremise de l'électrocardiographie ou de la photopléthysmographie, qui se prêtent à la création d'appareils portables, confortables et peu coûteux. Ce travail de recherche, réalisé en collaboration avec le département d'ingénierie biomédicale de l'université de Lund, en Suède, porte principalement sur la base de données publique Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Datasetde PhysioNet, largement utilisée dans la littérature portant sur le développement et la validation d'algorithmes d'estimation de la pression artérielle sans brassard pressurisé. Puisque ces données proviennent d'unités de soins intensifs et ont été recueillies dans des conditions non contrôlées, plusieurs chercheurs ont avancé que les modèles d'estimation de la pression artérielle se basant sur ces données ne sont pas valides pour la population générale. Pour la première fois dans la littérature, cette hypothèse est ici mise à l'épreuve en comparant les données de MIMIC à un ensemble de données de référence plus représentatif de la population générale et recueilli selon une procédure expérimentale bien définie. Des tests statistiques révèlent une différence significative entre les ensembles de données, ainsi qu'une réponse différente aux changements de pression artérielle, et ce, pour la majorité des caractéristiques extraites du photopléthysmogramme. De plus, les répercussions de ces différences sont démontrées à l'aide d'un test pratique d'estimation de la pression artérielle par apprentissage machine. En effet, un modèle entraîné sur l'un des ensembles de données perd en grande partie sa capacité prédictive lorsque validé sur l'autre ensemble, par rapport à sa performance en validation croisée sur l'ensemble d'entraînement. Ces résultats constituent les contributions principales de ce travail et ont été soumis sous forme d'article à la revue Physiological Measurement. Un volet additionnel de la recherche portant sur l'analyse du pouls par décomposition (pulse de composition analysis ou PDA) est présenté dans un deuxième temps. La PDA est une technique permettant de séparer l'onde du pouls en une composante excitative et ses réflexions, utilisée pour extraire des caractéristiques du signal dans le contexte de l'estimation de la pression artérielle. Les résultats obtenus démontrent que l'estimation de la position temporelle des réflexions à partir de points de référence de la dérivée seconde du signal donne d'aussi bons résultats que leur détermination par la méthode traditionnelle d'approximation successive, tout en étant beaucoup plus rapide. Une méthode récursive rapide de PDA est également étudiée, mais démontrée comme inadéquate dans un contexte de comparaison intersujet.Hypertension affects more than one billion people worldwide. As one of the leading causes of death, tracking and management of the condition is critical, but is impeded by the current cuff-based blood pressure monitoring technology. Continuous and more ubiquitous blood pressure monitoring may be achieved through simpler, cheaper and less invasive cuff-less devices, performing an indirect measure through electrocardiography or photoplethysmography. Produced in collaboration with the department of biomedical engineering of Lund Universityin Sweden, this work focuses on public data that has been widely used in the literature to develop and validate cuffless blood pressure estimation algorithms: The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset from PhysioNet. Because it is sourced from intensive care units and collected in absence of controlled conditions, it has many times been hypothesized that blood pressure estimation models based on its data may not generalize to the normal population. This work tests that hypothesis for the first time by comparing the MIMIC dataset to another reference dataset more representative of the general population and obtained under controlled experimental conditions. Through statistical testing, a majority of photoplethysmogram based features extracted from MIMIC are shown to differ significantly from the reference dataset and to respond differently to blood pressure changes. In addition, the practical impact of those differences is tested through the training and cross validating of machine learning models on both datasets, demonstrating an acute loss of predictive powers of models facing data from outside the dataset used in the training phase. As the main contribution of this work, these findings have been submitted as a journal paper to Physiological Measurement. Additional original research is also presented in relation to pulse decomposition analysis (PDA), a technique used to separate the pulse wave from its reflections, in the context of blood pressure estimation. The results obtained through this work show that when using the timing of reflections as part of blood pressure predictors, estimating those timings from fiducial points in the second derivative works as well as using the traditional and computationally costly successive approximation PDA method, while being many times faster. An alternative fast recursive PDA algorithm is also presented and shown to perform inadequately in an inter-subject comparison context

    Pulssiaaltoanalyysimenetelmät sydän- ja verisuonitautikohtauksien ennakoimisessa

    Get PDF
    As cardiovascular diseases are the leading cause of death in the world with approximately 17.9 million related deaths in 2016 alone, there is a great need to improve the diagnosis of these diseases and to prevent the following events. This problem is particularly important as 85% of these cases could be preventable. Pulse wave analysis has been studied for finding markers or risk of various abnormalities including overall cardiovascular risk and peripheral artery disease. Arterial pulse wave analysis is based on measuring and evaluating arterial pulse waves that are pulsatile changes of the blood pressure caused by pumping of the heart. These methods could be utilized to improve the diagnosis of cardiovascular diseases and thus result in lowered number of events. This is based on the fact that these methods are non-invasive and have the potential to be widespread. In this thesis, arterial pulse wave analysis methods were evaluated for their impact on relieving this issue by evaluating the different variables and methods in question and their actual clinical relevance. Also, a brief overall look to commercial measurement devices was implemented. The study was performed by carrying out a thorough literature survey from the related study fields. Based on the literature, carotid-femoral Pulse Wave Velocity (cfPWV) was found to be the most prominent variable for predicting overall cardiovascular risk. Cardiovascular risk is the overall risk to have any cardiovascular disease and it also pertains to the risk of cardiovascular mortality. cfPWV has essential reliability and reproducibility with competent guidelines, devices and standardization process in place. However, the standardization still needs further efforts for effective and comparable widespread clinical use. The need for standardization is mainly caused by the fact that the methods and devices are still not uniformly used. Utilization of pulse wave analysis variables for improving the diagnosis of peripheral artery disease specifically was found to be worthwhile but further studies are still needed. One important aspect related to this is that until these methods are included into peripheral artery disease guidelines, there is no relevant clinical benefit available from them. As a whole, pulse wave analysis methods are intensively studied as a tool for diagnosis, but the varieties in measurement and on analysis methods at clinical circumstances as well as lack of validation continue to be major obstacles that prevent these methods from breaking through

    Clinical evaluation of a new optical fibre method of measuring oxygen saturation using photoplethysmograph signals reflected from internal tissues

    Get PDF
    MD (Res)Traditional methods of measuring oxygen saturation, e.g. pulse oximetry, depend on an adequate peripheral circulation and have a 20–30 second lag time before readings are obtained. This was a series of evaluations of novel optical probes, designed to measure oxygen saturation using fibreoptic technology directly from internal organs including the brain, oesophagus and organs with splanchnic circulations. A series of pilot studies were proposed and research ethics approval obtained to carry out studies in humans, under general anaesthesia, using these probes. Innovative reflectance probes were designed specifically for each of the four applications, so as to obtain potentially useful signals needed for signal processing, analysis and evaluation. Signals were successfully obtained from the brain, oesophagus and splanchnic region in almost all of the patients recruited. Good quality photoplethysmograph signals were recorded and these were translated into clinically meaningful values of oxygen saturation comparable to traditional methods of pulse oximetry. Overall, the signals were prone to movement artefacts as well as occasional interference from surgical diathermy and other sources. Nonetheless, the probes could prove to be a useful alternative to conventional external transmittance pulse oximetry methods as well as providing useful information regarding regional perfusion and oxygenation. The success of these pilot studies will form the basis of more research in the area and further development of such probes on the medical engineering front
    • …
    corecore