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Résumé 

L’hypertension est une maladie qui affecte plus d’un milliard de personnes dans le monde. 

Il s’agit d’une des principales causes de décès; le suivi et la gestion de cette maladie sont 

donc cruciaux. La technologie de mesure de la pression artérielle la plus répandue, utilisant 

le brassard pressurisé, ne permet cependant pas un suivi en continu de la pression, ce qui 

limite l’étendue de son utilisation. Ces obstacles pourraient être surmontés par la mesure 

indirecte de la pression par l’entremise de l’électrocardiographie ou de la photo-

pléthysmographie, qui se prêtent à la création d’appareils portables, confortables et peu 

coûteux. 

Ce travail de recherche, réalisé en collaboration avec le département d’ingénierie 

biomédicale de l’université de Lund, en Suède, porte principalement sur la base de données 

publique Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset 

de PhysioNet, largement utilisée dans la littérature portant sur le développement et la 

validation d’algorithmes d’estimation de la pression artérielle sans brassard pressurisé. 

Puisque ces données proviennent d’unités de soins intensifs et ont été recueillies dans des 

conditions non contrôlées, plusieurs chercheurs ont avancé que les modèles d’estimation 

de la pression artérielle se basant sur ces données ne sont pas valides pour la population 

générale. Pour la première fois dans la littérature, cette hypothèse est ici mise à l’épreuve 

en comparant les données de MIMIC à un ensemble de données de référence plus 

représentatif de la population générale et recueilli selon une procédure expérimentale bien 

définie. Des tests statistiques révèlent une différence significative entre les ensembles de 

données, ainsi qu’une réponse différente aux changements de pression artérielle, et ce, 

pour la majorité des caractéristiques extraites du photopléthysmogramme. De plus, les 

répercussions de ces différences sont démontrées à l’aide d’un test pratique d’estimation 

de la pression artérielle par apprentissage machine. En effet, un modèle entraîné sur l’un 

des ensembles de données perd en grande partie sa capacité prédictive lorsque validé sur 

l’autre ensemble, par rapport à sa performance en validation croisée sur l’ensemble 

d’entraînement. Ces résultats constituent les contributions principales de ce travail et ont 

été soumis sous forme d’article à la revue Physiological Measurement. 

Un volet additionnel de la recherche portant sur l’analyse du pouls par décomposition (pulse 

decomposition analysis ou PDA) est présenté dans un deuxième temps. La PDA est une 

technique permettant de séparer l’onde du pouls en une composante excitative et ses 
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réflexions, utilisée pour extraire des caractéristiques du signal dans le contexte de 

l’estimation de la pression artérielle. Les résultats obtenus démontrent que l’estimation de 

la position temporelle des réflexions à partir de points de référence de la dérivée seconde 

du signal donne d’aussi bons résultats que leur détermination par la méthode traditionnelle 

d’approximation successive, tout en étant beaucoup plus rapide. Une méthode récursive 

rapide de PDA est également étudiée, mais démontrée comme inadéquate dans un 

contexte de comparaison intersujet. 
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Abstract 

Hypertension affects more than one billion people worldwide. As one of the leading causes 

of death, tracking and management of the condition is critical, but is impeded by the current 

cuff-based blood pressure monitoring technology. Continuous and more ubiquitous blood 

pressure monitoring may be achieved through simpler, cheaper and less invasive cuff-less 

devices, performing an indirect measure through electrocardiography or photo-

plethysmography. 

Produced in collaboration with the department of biomedical engineering of Lund University 

in Sweden, this work focuses on public data that has been widely used in the literature to 

develop and validate cuffless blood pressure estimation algorithms: The Multiparameter 

Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset from PhysioNet. 

Because it is sourced from intensive care units and collected in absence of controlled 

conditions, it has many times been hypothesized that blood pressure estimation models 

based on its data may not generalize to the normal population. This work tests that 

hypothesis for the first time by comparing the MIMIC dataset to another reference dataset 

more representative of the general population and obtained under controlled experimental 

conditions. Through statistical testing, a majority of photoplethysmogram based features 

extracted from MIMIC are shown to differ significantly from the reference dataset and to 

respond differently to blood pressure changes. In addition, the practical impact of those 

differences is tested through the training and cross validating of machine learning models 

on both datasets, demonstrating an acute loss of predictive powers of models facing data 

from outside the dataset used in the training phase. As the main contribution of this work, 

these findings have been submitted as a journal paper to Physiological Measurement. 

Additional original research is also presented in relation to pulse decomposition analysis 

(PDA), a technique used to separate the pulse wave from its reflections, in the context of 

blood pressure estimation. The results obtained through this work show that when using the 

timing of reflections as part of blood pressure predictors, estimating those timings from 

fiducial points in the second derivative works as well as using the traditional and 

computationally costly successive approximation PDA method, while being many times 

faster. An alternative fast recursive PDA algorithm is also presented and shown to perform 

inadequately in an inter-subject comparison context.  
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Introduction 

Hypertension is one of the greatest threats to health of our time. Statistics from the Center 

for Disease Control (CDC) in the United States provide a glimpse at the extent of the issue. 

According to the CDC, 45% of the adult population suffer from hypertension, and only 24% 

of those with hypertension have their condition under control [1]. Worldwide, it is estimated 

that close to 1 billion people have hypertension. High blood pressure (BP) is known to be an 

independent risk factor for cardiovascular diseases such as heart attack, stroke, and kidney 

disease; all leading causes of death in the United States [2], [3], where hypertension also 

ranks second amongst the preventable causes of death, second only to cigarette 

smoking [4]. 

Blood pressure is measured using the millimeter of mercury (mmHG), and the pressure 

varies through the cardiac cycle. Systolic blood pressure (SBP) is the maximum pressure, 

which happens when the heart is contracting. Diastolic blood pressure (DBP) is the lowest 

pressure between two heart beats, when the heart is at rest [5]. Individuals can be classified 

into different categories, as shown in Table 1, which are defined by different thresholds in 

blood pressure [6, p. 21]. A meta-analysis comprising data from more than 1 million adults 

has shown that the risk of cardiovascular disease can more than double for an increase of 

20 mmHG of systolic pressure or 10 mmHG of diastolic pressure above normal, depending 

on age [7].  

 

Accurate blood pressure measurement and monitoring is therefore critical to the well-being 

of the population. For reasons that will be covered in Chapter 1, there is currently a shift in 

practice towards fully automated and cuffless ambulatory blood pressure monitoring. Those 

devices would rely on indirect BP measurement through other biological signals such as 

through electrocardiography (ECG) or photoplethysmography (PPG), with the latter being 

Table 1: Categories of blood pressure ranges according to the 2017 
Clinical Practice Guideline of the American College of Cardiology and the 
American Heart Association 

Category DBP (mmHg) SBP (mmHg) 

Normal < 80 < 120 

Elevated < 80 120-129 

Stage 1 Hypertension 80-89 130-139 

Stage 2 Hypertension ≥ 90 ≥ 140 
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seen as the most promising way to make cheap and practical BP monitoring devices. Over 

the last decade, many methods and algorithms have been proposed to estimate BP from 

those other signals and reported various degrees of success. However, the use of different 

datasets collected with different acquisition platforms and comprising of different sub-groups 

of the population prevents comparing the performance of published solutions [8, p. 159]. 

The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset from 

PhysioNet is a large public database that has been widely used to develop and validate BP 

estimation algorithms. However, because it is sourced from intensive care units with patients 

under the effect of drugs and in critical conditions, it is suspected that models created from 

the data would not generalize to the normal population. 

While this project started with the objective of improving BP estimation methods, the 

challenges of accessing quality human data as a basis for the development and validation 

of BP estimation models made the use of public data necessary. The potential issue posed 

by the MIMIC dataset then became clear and pressing, thus the focus of the project pivoted 

to investigating that issue, which had only been a hypothesis until now. 

Research objectives 

The purpose of this research project is therefore twofold. First, it aims to investigate the 

concerns voiced in the literature about using MIMIC, and by extension ICU data, for 

developing PPG based BP estimation models: 

- Determine if significant differences exist between MIMIC and reference data more 

representative of the general population for: 

o BP data and morphological PPG features of interest. 

o The relationship between morphological features and BP data. 

o The relationship between different morphological features. 

- Determine if the use of MIMIC to create data-driven models may impair their 

generalization to the general population. 

Second, it aims to improve upon existing methods used in BP estimation: 

- Evaluate different algorithmic or signal processing methods used in the context of 

BP estimation and implement changes improving processing speed or accuracy. 
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Structure of the thesis and contributions 

Chapter 1 presents a literature review of the wide field of cuffless BP estimation, with a 

strong focus on the algorithmic component. 

The main scientific contribution of this work, which has been submitted as a journal paper 

to Physiological Measurement, is presented in Chapter 2. It consists of the investigation into 

the clinical implications of using the MIMIC dataset in the development and validation of BP 

estimation algorithms using PPG. Chapter 2 demonstrates that the MIMIC PPG data differs 

significantly from a reference dataset obtained under controlled conditions, and that features 

extracted from MIMIC responds differently to blood pressure changes compared to the 

reference. In addition, the practical impact of those differences is tested through the training 

and cross validating machine learning models on both datasets, demonstrating an acute 

loss of predictive powers of models when facing data from outside the dataset used to 

generate the model. 

Chapter 3 presents additional contributions related to pulse decomposition analysis, a 

technique used to identify the timing and contribution to the PPG pulse of the reflections in 

the arterial system. In that chapter, two published methods are compared in the context of 

blood pressure estimation. Results show that using timings estimated from the second 

derivative, as proposed in Chapter 2, results in similar or better estimation performance than 

when using timings extracted using more complex alternatives. 

Following is a short discussion positioning the results against remaining challenges and 

discussing possible directions for future work. The thesis then concludes with a summary of 

the results and their significance. 
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1 Literature review 

1.1 Historical perspective 

The circulatory system has been studied since antiquity, but it is not until the 18th century 

that the concept of, and interest in, blood pressure surfaced [9]. In 1733 Reverend Stephen 

Hales published Haemastaticks describing the first recorded blood pressure measurements, 

wherein the elevation of blood was observed in a glass tube connected to the left crural 

artery of a live horse [10]. In the early 19th 

century, Hales’ experiments inspired Jean 

Léonard Marie Poiseuille, a medical student, 

to improve upon his method and measure 

blood pressure using a mercury manometer, 

which he called an hæmodynameter [11]. In 

his doctoral thesis, Poiseuille proposed that 

blood pressure is related to the force of the 

heart and the radial area of the artery, and 

also introduced the millimeter of mercury 

(mmHg) as a unit of blood pressure [9], [12, 

pp. 26, 43].  

The second half of the 19th century brings a revolution with the development of non-invasive 

blood pressure measurement devices. In 1854, Karl von Vierordt builds the first device 

capable of measuring blood pressure non-invasively, the sphygmograph. This device, 

depicted in Figure 1, was imprecise and cumbersome with long protruding parts. However, 

it successfully demonstrated that blood pressure can be estimated from the external 

pressure needed to stop transmission of the pulse in the artery [9], [13]. When the weights 

were adjusted properly, the movement of the artery would be transmitted to a lever, which 

could be used to trace the pulse 

contour on paper [11]. In 1860, 

Etienne-Jules Marey created a 

new sphygmograph, shown in 

Figure 2, small enough to be 

attached to the wrist [14]. By 

replacing the weights with 

Figure 1: Karl Von Vierordt's sphygmograph 

(K. Vierordt,1855) 

Figure 2: Marey’s sphygmograph (E.-J. Marey, 1863) 
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springs and thus eliminating the inertia, his device could show details of the pulse contour, 

as shown in Figure 3, which were not clearly visible on Vierordt’s recordings [15, pp. 182–

184]. However, physicians found the device hard to use and several improved versions were 

produced by a variety of people over the next decade. Frederick Akbar Mahomed’s design, 

which could not only trace the pulse contour but also quantify the pressure in ounces, 

became popular for clinical use [11, pp. 18–22], [16]. Diederik Korteweg and Adriaan Isebree 

Moens published their work on the propagation of waves in elastic tubes in 1878, 

establishing the well-known Moens-Kortweg equation, which set the foundations for 

modeling the pulse wave in relation to physical parameters [17]. In 1879, with the use of his 

improved device, Mahomed was the first to identify a form of hypertension without any 

secondary cause, today called essential hypertension, and to describe many of its 

characteristics [16], [18]. Two years later, in 1881, Samuel Siegfried Karl von Basch created 

the sphygmomanometer. The device was simple: in essence a water filled bag connected 

to a mercury manometer. However, the arm of the patient needed to be clamped on the 

device and the water filled bag incrementally pressed against the radial artery using an 

adjustment screw, until the physician felt the pulse disappear at a distal point by 

palpation [19]. Even though it was more precise than any previous device, use of the 

sphygmomanometer did not become widespread until it was simplified and improved on by 

Scipione Riva-Rocci in 1896. Riva-Rocci realised that taking the measure from the brachial 

artery would be more representative of the aortic pressure and built a device similar to those 

we use today: an inflatable cuff, which was wrapped around the patient’s arm, attached to a 

manometer. Because it applied pressure evenly around the arm, the measurements were 

more reliable than before, and its small size allowed physicians to provide bedside blood 

pressure measurements easily [19], [20]. Since it was based on the concept of finding the 

Figure 3: A typical record from Vierordt's device (left) compared to records from Marey's device 

(right). (E.-J. Marey, 1863) 
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pressure point at which the pulse wave is blocked, the sphygmomanometer was at first only 

successful at determining systolic pressure [9]. That changed in 1905, when Nikolai 

Korotkoff discovered that while deflating the pressurized cuff of the sphygmomanometer, 

the arteries emit an increasing and then decreasing murmur that can be heard with a 

stethoscope. He correctly observed that these sounds start when the manometer is at the 

systolic pressure and end at the diastolic pressure [19], [21]. Thus, it was from now on not 

only possible to find the diastolic pressure with the sphygmomanometer, but it was also no 

longer necessary to use palpation to find the obliteration of the pulse in order to find the 

systolic pressure. Those sounds, now known as Korotkoff sounds, are still used today, even 

by some automated BP measurement devices [9], [21].  

Most of the advances in the later part of the century did not result in any major changes in 

the way blood pressure was measured. There are however a few turning points that both 

improved understanding of hemodynamics and paved the way for modern research in the 

field of indirect measurement. In 1923, John Crighton Bramwell and Archibald Vivian Hill 

published a series of papers demonstrating the relationship between blood pressure, arterial 

extensibility, and the velocity of the pulse wave, based on post-mortem experiments on 

humans [22]. Around 1940, William Ferguson Hamilton published several articles 

developing the idea that the pulse contour is shaped by wave reflection in arteries. Through 

different experiments on dogs, he demonstrated and explained the appearance of reflections 

in relation to wall elasticity and changes in resistance in the arterial tree [23], [24]. Hamilton’s 

conclusions were not immediately accepted as relevant for humans, and several 

experiments published in the 1950s sowed doubt about their significance [25, p. 197], [26]. 

By the 1960s, thanks to evidence resulting from frequency domain analysis, the concept of 

pulse wave reflections gained acceptance. There was, however, still no consensus about 

the mechanisms causing the reflection, nor of the reflection sites [27, pp. 156–159], [28]. In 

1967, Michael F. O'Rourke identified two discrete reflection sites affecting the pulse wave in 

dogs, and finally in humans in 1980, effectively ending the debate [29], [30]. Meanwhile, 

1976 brings the introduction of the first automated oscillometric blood pressure meter called 

Dinamap, an acronym for “Device for Indirect Non-invasive Mean Arterial Pressure”. In 1978 

a new version is released, capable of measuring systolic and diastolic blood pressure, as 

well as the heart rate [31]. The oscillometric method used by those devices is based on the 

observation of oscillations during the decompression of the sphygmomanometer’s cuff, first 
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demonstrated by Marey in 1876 [32]. It has now become the clinical standard for non-

invasive measurement [33]. 

1.2 State of the art 

1.2.1 Current measurement methods 

This section summarizes the blood pressure measurement methods currently used in 

clinical or research environments. 

Catheterization is the modern version of the direct arterial manometric measurement 

method. It is still invasive, but the tools used have changed significantly since Poiseuille’s 

experiments in the 19th century. Using a strain gauge placed at the tip of a catheter, which 

is inserted into one of the patient’s arteries, the method allows measuring instantaneous 

(also called beat-to-beat) blood pressure [34]. When paired with a Millar semiconductor 

catheter-tip micromanometer, this method is considered the gold standard for high-fidelity 

blood pressure wave recording [25, p. 141]. 

Auscultation, the method devised by Korotkoff in 1905, is still considered the gold standard 

for non-invasive measurement. Its usage is however in decline due to the ban of mercury 

sphygmomanometers, and the inadequate performance of their replacement [32]. The 

method remains unchanged and consists of deflating the sphygmomanometer cuff slowly 

while listening for the Korotkoff sounds with a stethoscope. The pressure on the manometer 

at their onset is the systolic pressure, while the diastolic pressure is indicated when they 

disappear [34]. The method has been used in automated devices with the use of a 

microphone to detect the Korotkoff sounds [25, p. 143].  

Ultrasounds can be used in combination with a sphygmomanometer cuff and rely on the 

Doppler effect to determine when the systolic and diastolic pressure readings should be 

taken. An emitter-receiver is applied over the brachial artery under the cuff, which is then 

deflated as in the auscultation method. The reflected ultrasounds display a phase shift at 

the systolic pressure caused by induced motion in the arterial walls. The diastolic pressure 

is recorded when a reduction of arterial motion is detected. This can be helpful in patients 

with weak Korotkoff sounds where auscultation would be difficult [32]. 

The oscillometric method has become very popular since the use of mercury in 

sphygmomanometer has progressively been banned in many countries. Because of its 
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simplicity of use, low cost and low maintenance required by the equipment, the oscillometric 

method has become the clinical standard for both home and medical office settings [33]. 

This method also uses a pressurized cuff placed around a limb, which is slowly deflated. 

The particularity of the method is that during deflation, the system monitors small oscillations 

in the internal pressure of the cuff. These are caused by vibrations of the arterial walls, 

induced by the pulsatile blood flow in the partially occluded artery. The oscillations increase 

as the cuff is deflated and reach a maximum at the mean arterial pressure. There is however 

no specific oscillometric pattern directly related to SBP and DBP. The algorithms for 

estimating those metrics are proprietary and differ from one device to another [25, p. 144], 

[33]. Nonetheless, studies have shown that commercial oscillometric devices approved for 

medical use provide sufficient accuracy, as their measurements fall within 5 mmHg of error 

of an intra-arterial measurement [25, p. 144], [32]. Some medical conditions, such as 

diabetes and atrial fibrillation, may negatively affect accuracy of the device using this 

method, and care should be taken to use a device appropriate for the patient [25, p. 144], 

[33]. 

Vascular unloading, also called volume clamping or method of Peňáz after its inventor Jan 

Peňáz, is a non-invasive method that has the advantage of being able to measure beat-to-

beat blood pressure. In this system, a photoplethysmogram measures the blood volume 

under a pressurized finger cuff. The PPG signal is then used as feedback to regulate the 

pressure in the cuff in order to keep a constant blood volume throughout the cardiac cycle. 

Thus, the pressure applied to the cuff is directly correlated to the arterial blood pressure and 

can be measured easily [25, pp. 145–146], [32]. This method can track beat-to-beat 

variability in arterial blood pressure, but the measured pressure level differs from that 

measured in the arteries. With proper filtering and calibration, the instantaneous arterial 

pressure wave can however be reconstructed from the finger reading with sufficient 

accuracy [35]–[37]. While devices using this method once lacked the precision needed for 

clinical use [38], the more recent devices generally compare favorably to invasive intra-

arterial measurements, and can meet the performance requirements for medical grade BP 

measurement devices [37], [39]–[42]. The method is however not a universal replacement 

for intra-arterial pressure measurement, as results have been shown to differ significantly in 

certain situations, such as during intense exercise [41], in elderly comorbid patients [43], 

and in critically ill patients [44]. 
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Applanation Tonometry is another non-invasive method, capable of recording the beat-to-

beat pressure wave. It consists of applying a micromanometer over a superficial artery to 

sense its expansion and retraction during the pulse cycle. A difficulty lies in flattening the 

artery so that its wall tension is perpendicular to the sensor. It has been used mostly in 

research for observation and analysis of pressure waveforms  [25], [34, p. 146]. This method 

is otherwise impractical for actual non-invasive quantification of blood pressure, as it has 

been shown that it can only provide acceptable accuracy when calibrated against an 

invasive BP measurement device [45], [46]. 

1.2.2 Towards cuffless continuous ambulatory monitoring 

Since 1940, it has been known that some otherwise normotensive patients, that is patients 

with normal blood pressure, show elevated pressure when having it measured at the 

doctor’s office [47]. It is however not until 1988 that Tomas Pickering et al. quantified the 

prevalence of the phenomenon and coined the term “white coat hypertension” [48]. Pickering 

et al. then proceeded to attract attention to the inverse phenomenon, where hypertensive 

patients show normal pressure when measured at the doctor’s office, and coined the term 

“masked hypertension” [49]. It is estimated that white coat hypertension affects between 15 

to 30 percent of patients who show a high blood pressure at the doctor’s office [50], while 

masked hypertension is estimated to occur in 9 to 23 percent of patients with normal 

pressure readings at the doctor’s office [51]. 

Since the discovery of those phenomenon, there has been mounting evidence from 

prospective studies that home blood pressure monitoring (HBPM) and ambulatory blood 

pressure monitoring (ABPM) are much better predictors of risk than office blood pressure 

measurements [32]. As a result, the national blood pressure measurement guidelines now 

recommend HBPM or ABPM in many cases, either to rule out white coat hypertension and 

masked hypertension, or to help the patients monitor their condition [6, pp. e26–e28], [52, 

pp. 599–602].  

To this day, ABPM and HBPM is done through cuff-based automated devices using the 

oscillometric or auscultatory method, taking readings periodically through the day. While this 

has improved ability to diagnose and monitor the patient’s condition, the current methods 

still have major limitations. Since the readings are discontinuous, they do not provide 

information about the entire dynamic range and patterns of BP fluctuations of the patient. 

Moreover, the pressurized cuff may be uncomfortable, which is particularly problematic for 
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nocturnal BP measurement, as it can disturb sleep and may interfere with measuring 

pressure during the night  [8, pp. 9–11]. This last point is of particular importance as 

nocturnal high blood pressure has been shown by a large-scale systematic review to be a 

significant risk factor for mortality, not only in hypertensive, but also in otherwise 

normotensive individuals. That review also suggested that, for treated hypertensive patients, 

nocturnal blood pressure is the main risk determinant, while the risk associated with daytime 

BP becomes insignificant once adjusted for nighttime BP [53]. Another risk factor now 

associated with increase in mortality is lack of the normal pressure drop during the night, 

which also affects otherwise normotensive individuals [53], [54]. Finally, current limitations 

of night time BP measurement also hinder research on important issues, such as on the link 

between sleep apnea and hypertension, and on why strokes and heart attacks happen 

mostly during sleep [8, p. 11].  

For the reasons explained above, there is now interest in developing cuffless BP measuring 

devices, and technological advancements have brought us to a turning point. The ideal 

cuffless BP monitor would offer high accuracy, be comfortable for long term use, be easy to 

use without medical supervision, allow continuous monitoring, and automated data storage 

[25, p. 11], [55]. While a variety of transducers have been used in the development of 

cuffless blood pressure monitors [8, p. 40], most efforts have turned towards PPG and ECG 

as they can be used without medical supervision and be implemented in a comfortable, low 

cost device [55]. 

1.3 Blood pressure modeling for cuffless devices 

The principal BP estimation methods used in conjunction with ECG and PPG signals will be 

presented in this section. It should be noted that some of the techniques that will be 

presented can also be used with other types of signals, though adjustments may be needed, 

and performance may vary. 

1.3.1 The ECG and PPG signals 

To understand how blood pressure is modeled around the ECG and PPG signals, a brief 

description of those signals is first necessary. 

The ECG signal is a measure of the electrical activity of the heart. It is the sum of three 

discrete waveforms: the P wave associated with the depolarization of the atria, the QRS 

complex associated with depolarization of the ventricles, and the T wave associated with 
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their repolarization. The morphology changes depending on the recording location, but the 

sequence is always in the P-QRS-T order, as illustrated in Figure 4 [56].  The QRS complex 

has a duration of about 100 ms and is itself composed of distinct waves, some of which are 

not always present. The Q wave is any negative deflection before the central positive R 

wave, and the S wave is any negative deflection after it [57, p. 26,27]. The most common 

ECG systems use ten electrodes, six placed on the chest and one on each of the arms and 

legs. From these electrodes, a set of 12 signals, also called leads, are usually recorded by 

looking at the potential difference between two or more electrodes [57, pp. 15–19]. 

The PPG signal is a measure of changes in blood volume in the tissues. It is acquired non-

invasively by placing a light source against the skin and a receptor to capture the optical 

signal modulated by the vascular system. The receptor can either be placed nearby the 

emitter to capture the reflection, or on the opposite side of the body to capture the light that 

passes through it.  Reflection PPG is more often used on the thicker parts of the body such 

as the forehead, chest, or wrist, where light cannot go through; while transmission PPG can 

be used on thinner parts, such as the finger or ear lobe for example. Infrared (940 nm) and 

red (660 nm) are often used for transparency application due to their greater penetration 

depth and stability at different oxygen blood saturation levels. Green (530 nm) is often used 

for reflectance, because its lower penetration depth provides a stronger response to the 

changes in blood flow near the skin surface. The PPG signal has an important quasi-DC 

component linked to respiration, thermoregulation, skin, fat, tissues and non-pulsatile blood. 

The part of interest is however a smaller pulsatile AC component linked to the changes in 

blood volume in the vasculature [8, p. 45,46], [58]. A typical PPG wave, as shown in Figure 5, 

is usually separated in a rising anacrotic phase associated with the systole, and a catacrotic 

Figure 4: Parts of the ECG pulse wave 
Figure 5: Main fiducial points of the PPG pulse 
wave 
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phase associated with the diastole and wave reflections from the periphery. In healthy 

individuals, it is usually possible to see a small deflection, or hollow, called the dicrotic notch 

between the two phases. The systolic peak is defined as the signal’s maximum point in the 

cardiac cycle. The diastolic peak can be defined as the point corresponding to the second 

negative zero crossing of the first derivative of the signal. If no clear second peak is present 

in the signal, the diastolic peak may be defined as an inflection point in the signal, which can 

be inferred from the second derivative  [59]. 

1.3.2 Pulse Wave Velocity based models 

The pulse wave velocity (PWV) is the speed at which the pulse wave travels through the 

arteries. The relationship between PWV and blood pressure has been well studied and 

demonstrated empirically. It is based on two models: the arterial wall model associating BP 

with arterial elasticity, and the arterial wave propagation model associating arterial elasticity 

to PWV. Those relationships can be seen through the Moens-Korteweg (1) and 

Frank/Bramwell-Hill (2) equations [34], [60]. The empirical Hughes equation (3) is also often 

used in conjunction with the Moens-Korteweg equation (1) to establish a relation with blood 

pressure [8, p. 65], [60]. 

 

 PWV = √
Eh

2ρr
  (1) 

 

 PWV =√
A

ρ

dP

dA
 (2) 

 E = E0eyP (3) 

Where E is the elastic modulus of the artery, h the wall thickness, ρ the blood density and r 

the arterial radius, P the arterial blood pressure, A the arterial cross-sectional area, E0 the 

elastic modulus at zero pressure, and y a material coefficient of the artery. 

This direct relationship implies that, in theory, an accurate measurement of PWV would allow 

a more precise and robust blood pressure estimation than the oscillometric or auscultatory 

methods, which rely on less direct relationships [8, p. 4]. 
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For estimating blood pressure, the average PWV over a certain distance is used. It can be 

derived by measuring the pulse transit time (PTT), the time necessary for the pulse wave to 

travel from the heart to a distal point at a distance L, as follow [8, p. 66]: 

 
PWV=

L

PTT
 (4) 

Isolating P from the combination of (1) and (3) results in a logarithmic relationship. The 

equation can then be rephrased by combining all the patient specific physical parameters 

into the α1 and β1 coefficients [8, p. 66]: 

 
 P = (-

2

y
) ln(PTT) + (

1

y
) ln (

2ρrL2

hE0

) = α1⋅ ln(PTT) + β
1
 (5) 

Several linear and nonlinear variations on the model have been proposed. Those models 

make various assumptions about the biological characteristics, and the range of variations, 

or approximate the model by series expansion. Of all the variations, a very simple linear 

approximation model (6) has been widely used due to its low computational cost [8, p. 67], 

[55]. It has also been observed that addition of the Heart Rate and other metrics relating to 

arterial stiffness as additional terms in the equation could improve the correlation to blood 

pressure [61]. 

  P = α2⋅PTT+β
2
 (6) 

More recently, it has been shown that the relationship between BP and PWV in humans only 

follows the Moens-Korteweg equation at very low blood pressures. It has been proposed 

that the relationship between PWV and BP is  better represented as follow [60]: 

  P = α3⋅PWV 2+ β
3
 (7) 

 

The physical parameters of the subject, represented by the alpha and beta coefficients in 

the model, have several implications. First, the accuracy of the BP estimation is highly 

dependent on determination of those unknown parameters by calibration of the model [55]. 

Since most of those parameters are patient specific, calibration needs to be performed on a 

per patient basis for good results. Moreover, several of those parameters change with age 

and time, which means that the models need periodic recalibration to maintain accuracy [8, 

p. 64], [55]. 
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1.3.2.1 Limitations and challenges of PVW based models 

 

The PTT cannot be easily calculated from ECG and PPG signals, as the R-peak used as 

reference for the start of the pulse on the ECG does not correspond to the start of the 

mechanical pulse creating the pressure wave. This unwanted delay is called the pre-ejection 

period (PEP). As a result, the Pulse Arrival Time (PAT), defined as the sum of PTT and PEP, 

is widely used as a surrogate of PTT [34]. The PAT is easily extracted by measuring the 

delay between the R-peak of the ECG signal with a specific point in the PPG signal, usually 

the foot of the main wave, the peak, or the maximum point of the slope [55]. 

However, PAT does not correlate as strongly with blood pressure as PTT, because of the 

variability of PEP, which can be between 10 to 35% of PTT [34]. Despite those difficulties, 

there are a few medical-grade wearable systems based on PAT [8, pp. 56, 57]. They are not 

fully ambulatory as they rely on cables to connect a chest ECG sensor and a finger PPG 

sensor to a wrist worn unit, which, as a whole, would be in the way of daily life activities [62], 

[63]. Although some completely wrist worn ECG/PPG based systems, relying on PVW for 

BP measurement exist, none have been validated and approved as medical devices [8, pp. 

56, 57]. The wrist may not be a suitable location for a PPG sensor in the context of a PVW 

based system, as the small surface vessels from where PPG is taken are prone to 

vasodilation and vasoconstriction. This can not only cause morphology changes but can 

also affect timing, which is critical in the context of PVW based models [8, p. 46].  

1.3.3 Pulse Wave Analysis 

Pulse wave analysis (PWA) is an analysis of the pressure pulse contour to extract features 

correlated to physical properties of the arterial system. It has been used with tonometry since 

the 1960’s but has recently been gaining traction in conjunction with PPG for the purpose of 

estimating blood pressure [8, p. 107]. The pulse volume waveform of PPG has similarities 

to the blood pressure waveform, both in its morphology and in the changes it undergoes in 

diseased patients, and has good potential for extracting cardiovascular diagnostic 

information [58, p. 8], [64]. The foray in use of the combination of PPG and PWA for BP 

estimation was traced to a small study by Teng & Zeng in 2003 [65]. They showed that a 

correlation between BP and the PPG signal could be established, and thereby paved the 

way for subsequent studies. 
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To estimate BP from the features extracted from the PPG signal, multilinear or nonlinear 

regression models have been used. Those allow mapping the non-linearities of the features 

extracted from peripheral vessels to central blood pressure. A user specific calibration step 

is usually necessary to initialize the translation model, but efforts are being made towards 

generalizing the calibration step so that a single model can be used for a large part of the 

population [8, p. 119]. 

1.3.3.1 Common PWA features 

 

This section will briefly describe the most common PWA features encountered in the 

literature and their reported link to physical properties. Some of those features were first 

defined in relation to the pulse pressure wave. To better fit the current purpose, they will 

here be described only in relation to the PPG signal. 

The Augmentation Index, abbreviated AI, or AIx, was first described by Kelly et al. in 1989. 

It is a measure of the contribution of the first pulse wave reflection to the maximum pressure 

point in the pressure waveform. In the PPG signal, the measurement points used in the 

pressure wave correspond approximately to the systolic peak and diastolic peaks [66]. It is 

an indicator of the elastic compliance of the artery, as reduced compliance causes early 

reflections and a higher contribution to the systolic peak [59]. It has also been shown to be 

correlated to age [66]. To follow Kelly’s definition, the AI in PPG can be defined as 

equation (8). There is however confusion in the literature and the augmentation index is 

often confused with reflection index, which is closely related [59].  

The Reflection Index or RI is a variation on AI. It has been shown to be linearly correlated 

to AI [67]. 

 AI = 
x-y

y
 (8) 

 RI = 
y

x
 (9) 

where x is the amplitude of the systolic peak and y is the amplitude of the diastolic peak. 

The Stiffness Index or SI, also called Large Artery Stiffness Index or LASI, is a measure of 

arterial stiffness proposed by Millaseau et al. in 2002. Based on the concept of PWV and 

the idea that it is related to arterial stiffness, it aims to measure the velocity between the 
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pulse and its reflection. To do so, one simply divides the height of the patient h by Δt, the 

time delay between the systolic and diastolic peak. Millaseau also showed that SI is 

correlated to PWV and age, and weakly correlated to blood pressure. Moreover, after 

administration of Nitroglycerin, the change in SI was more correlated to the change in PWV 

and mean arterial pressure (MAP) than the change observed in RI, which could make it a 

more robust predictor than AI and RI in relation to changes in the tone of small arteries [68]. 

In many publications, the subject’s height is omitted, and the stiffness index is simply defined 

as being equal to the time delay, to which it is inversely proportional according to the original 

definition. The inflection point between the dicrotic notch and the diastolic peak is also 

sometimes used instead of the diastolic peak as a reference point to calculate the delay, 

such as in [69]–[71]. No information could however be found as to how omitting the height 

affects the useful information carried by the metric, or its direct correlation to BP. 

 
SI =

h

Δt
 (10) 

The Inflection Point Area Ratio or IPA seems to have been first designed by Wang et al. in 

2009 as a measure of total peripheral resistance for the purpose of calculating the cardiac 

output. It was defined as the ratio between the area under the curve of the first and second 

peak of the PPG signal, separated at the dicrotic notch [72]. The idea has been reused for 

blood pressure measurement, sometimes with ratios between additional zones defined by 

other inflection points in the signal, such as by Kachuee et al. [71]. 

 
IPA =

𝐴1

𝐴2
 (11) 

where A1 and A2 are the areas under the curve before and after the dicrotic notch, 

respectively. 

The Heart Rate or HR, Peak to Peak Interval, and Pulse Interval are all metrics that carry 

information about the duration of a cardiac cycle. The peak to peak interval is defined as the 

delay between two systolic peaks, the pulse interval is the delay between the beginning and 

the end of the pulse wave, and the heart rate is defined as the number of cardiac pulsations 

per second or minute [55], [59]. The heart rate has been shown to correlate with BP and to 

contribute to better results when added to some BP estimation algorithms [8, p. 67], [55].  
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The Pulse Width, usually defined by the width of the pulse wave at 50% of its height, has 

been shown to be correlated to systemic vascular resistance and to blood pressure [73]–

[75]. The width of the wave from the foot to the systolic peak, also called crest time or systolic 

time, has been known to be longer in hypertensive patients since the 1940’s [76]. Some 

small scale studies have suggested a better correlation with BP in the diastolic time, which 

is the width of the second half of the wave after the systolic peak, respectively [65], [77]. 

The Normalized Pulse Volume (NPV) has been proposed as an indicator of vascular tone. 

It is defined as the ratio of the amplitude of the pulsatile component of the PPG signal Δ𝐼𝑎𝑐 

to its slowly drifting DC component 𝐼𝑑𝑐, as shown in equation (12). Based on the Beer-

Lambert law of light attenuation, it allows measuring the pulse volume as an absolute value 

rather than as the relative measure given by the PPG signal [78].  NPV has also been 

derived from the modified Beer-Lambert law to take into account light-scattering, and named 

modified NPV or mNPV, but the resulting equation is exactly the same as NPV [79]. It has 

recently been proposed that BP can be estimated from the heart rate and NPV through their 

relationship to cardiac output and total peripheral resistance, using equation (13), without 

any individual calibration [80]. 

 NPV =ΔIac/Idc (12) 

 P =exp(a⋅ln(HR)+b⋅ln(NPV)+c) (13) 

Finally, a set of features known as second 

derivative PPG, acceleration PPG or APG 

has been used extensively in the literature 

[8, p. 118]. In 1998, Takazawa et al. 

identified a group of fiducial points in the 

second derivative of the PPG signal, shown 

on Figure 6, whose amplitude ratios were 

shown to correlate to vascular aging and 

arterial stiffness. Through a “second 

derivative aging index” computed from 

those points, Takazawa et al. also reported 

an association to hypertension [81]. The 

ratios are usually formed in respect to the a-point (b/a, c/a, d/a and e/a). It should also be 

Figure 6: The PPG pulse aligned with its first two 
derivatives (scaled) with the second derivative 
fiducial points indicated 



 

18 

noted that the e-point is aligned with the dicrotic notch, which is sometimes used to locate it 

in the PPG signal [8, p. 118].  

1.3.4 Pulse Decomposition Analysis 

A weakness of PWA models is that it can be hard to extract the desired parameters from the 

signal if it differs too much from the ideal PPG waveform [71]. The morphology of real-world 

PPG signals is rarely ideal. For example, it has been said that 80% of the PPG signals from 

the popular PhysioNet MIMIC II database from ICU patients are non-ideal and inappropriate 

for direct parameter extraction [82]. To palliate this issue, pulse decomposition analysis 

(PDA) can be used to identify the position of important points in non-ideal waveforms [83], 

or to extract information about hemodynamic parameters directly [8, p. 76].  

The circulatory system is still sometimes modeled as a resistor-capacitor system, referred 

to as the Windkessel model, which does not allow modeling the wave reflections observed 

in reality. Thus, more complex models of wave propagation have now largely replaced the 

old Windkessel model [25, pp. 278–282]. Based on this concept, PDA is the decomposition 

of the observed PPG waveform into its different components: the main pulse wave 

generated by the heart and its reflections from different locations in the arterial tree. Two 

main reflection sites are recognized, one at the junction between the aorta to the renal 

arteries, and one at the branching to the iliac arteries. Other minor reflection sites also exist 

but are not well defined. The PPG signal is thus usually modeled as the sum of the main 

pulse wave and up to five reflections, represented as either Gaussian, Rayleigh or 

Logarithmic Normal functions [83]. Fitting the model to the signal is usually done by 

expressing the system as an optimization problem, and the optimal parameters found 

through various means, such as successive approximation [83]–[85]. While that method can 

yield optimal fitting, they may not be suitable for real-time applications. A lighter method has 

been proposed that consists of fitting one component at a time. That is however based on 

the assumption that the components do not overlap for more than fifty percent of their width, 

which may increase the fitting error if the assumption is not true [86]. That method has been 

implemented as a recursive algorithm [87], [88], which may be suitable for real-time 

processing. Those two methods will be detailed in Chapter 3. 

The development of PDA has largely happened around a finger cuff based blood pressure 

monitor, the CareTaker [8, pp. 102–104]. The basis of the CareTaker PDA model is the 

Moens-Korteweg equation (1), which relates blood pressure to the velocity and amplitude of 
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the reflections, based on elasticity of the arteries. The main publication supporting the model 

made two interesting demonstrations. First, the amplitude ratio of the renal reflection wave 

to the main wave is closely linked to systolic pressure. Second, the time delay between the 

third reflection wave and the main wave is correlated to the pulse pressure. While 

methodological details are missing, the general relations upon which the CareTaker PDA 

model is built and a validation study have been published [89], [90].  

1.3.5 Data driven and non-parametric models 

Several blood pressure estimation models that do not use physical based parameters have 

been proposed and are often called “non-parametric”. They rely on more generic time-

frequency features and signal processing techniques, as well as machine learning. Many of 

the proposed methods claim to offer better accuracy than parameter based models, as well 

as calibration-free operation, but they can be computationally complex [55]. With its ability 

to learn complex models and incorporate concealed factors not included in the analytical 

model, data-driven machine learning holds great promise in the field of BP estimation [8, p. 

143]. More recently, recurrent neural network (RNN) in a long-short-term-memory (LSTM) 

architecture has been shown to provide better performance than traditional machine learning 

[8, p. 148]. It has been suggested that such an architecture is better suited to provide long 

term recalibration-free accuracy [91]. While most BP estimation studies with machine 

learning have used handcrafted features and ECG [8, p. 154], some have also used the raw 

signal, also called the “whole-based” method, and sometimes supplemented it with ECG 

signal information [71], [82]. In addition to its algorithmic complexity, there are other 

objections to using machine learning for BP estimation. A well-trained machine learning 

model performs well within the scope of the problem presented to it, but is hard to generalize, 

as quality data representing all the sub-groups of the population would need to be included 

in the training set. In addition, the resulting model is opaque, uninterpretable, and thus 

harder to review and trust for regulators, scientists and patients [8, p. 146,147,158,159].  

Beyond machine learning, Millasseau et al. have proposed using a transfer function to 

estimate instantaneous blood pressure from the finger PPG signal. By using Fourier analysis 

and looking at the first ten harmonics of the signal, they established a generalized transfer 

function matching the frequency content of the PPG signal to that of the pressure wave. An 

estimation of the pressure waveform was then produced using a transfer function on the 

spectrum of the PPG signal and recovering the time domain signal via an inverse Fourier 

transform. Good results were reported on normotensive and hypertensive patients, as well 
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as for normotensive patients after administration of nitroglycerin [92]. The method seems to 

have been largely eclipsed by machine learning as only a few subsequent publications were 

found on the subject [93], [94]. 

1.4 Regulations and standards 

Since this review is not focused on the hardware aspect of blood pressure monitoring, the 

standards and regulations governing the hardware aspect of medical devices will not be 

touched here. Instead, this section will focus on the aspects of regulations touching the 

performance requirements for blood pressure monitors, and thus the underlying algorithms. 

There is currently no standard covering all aspects of cuffless blood pressure monitors, 

especially not in relation to differences compared to traditional monitors, such as continuous 

measurements during daily activities, calibration, and temporal stability. A new standard, 

ISO/CD 81060-3, is being developed by the ANSI/AAMI/ISO working group for that purpose 

[8, pp. 203–209]. In the meantime, researchers have relied mostly on existing standards 

designed for traditional cuff-based monitors. 

The British Hypertension Society (BHS) protocol for the evaluation of blood pressure 

measuring devices [95] is often used in the literature for evaluating performance of BP 

estimation algorithms. It uses a three-tier grading system illustrated in Table 2 below. 

Table 2: BHS performance requirements for BP measuring devices 

Grade Minimum percentage of samples with error smaller than… 

  5 mmHg 10 mmHg 15 mmHg 

A 60% 85% 95% 

B 50% 75% 90% 

C 40% 65% 85% 

 

To receive a grade, the cumulative error percentage of all measurement made with the 

device during the trial must meet the three requirements for that grade. For example, 

obtaining an A grade means that at least 60 % of the measurement had an error of 5 mmHg 

or less, that 85 % had an error of 10 mmHg or less and that 95 % had an error of 15 mmHg 

or less. To be recommended for clinical use, the device must obtain an A or B grade for both 

SBP and DBP measurements. 
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For the main validation phase, the BHS protocol requires a minimum of 85 subjects, wherein 

sex and age distribution is left to chance. The protocol also defines five pressure groups, 

that must include a minimum of 8 to 20 subjects depending on the group. Three 

measurements must be taken from each subject for a total of 255. An additional validation 

phase with 30 subjects can also be done, to include subgroups of the population such as 

pregnant women or the elderly, if the device is intended for their use. Finally, if the device is 

intended for use in special circumstances, such as during exercise, a final validation test 

should be done under those circumstances.  

The ANSI/AAMI SP10 standard, or its replacement the AINSI/AAMI/ISO 81060, are also 

frequently used in the literature. The full text could unfortunately not be obtained for this 

review, but the most important parts are discussed by Solà et al. [8, pp. 206–221]. Validation 

under the standard requires a minimum of three measurements on 85 subjects, with at least 

30 % of either sex, for a total of 255 measurements. Under the AINSI standard, grading is 

dichotomous. To obtain a “pass” grade, the accuracy criterion only requires the mean error 

of the measurements to be below 5 mmHg with a standard deviation under 8 mmHg, while 

any values above those result in a “fail” grade. If the device is intended for use in special 

subgroups of the population, additional tests on 35 subjects of each sub-group should be 

performed. 

The European Society of Hypertension (ESH) International Protocol for the validation of 

blood pressure measuring devices in adults [96] is not as widely used for validating 

algorithms in the literature as the BHS or ANSI standards. Validation under the ESH 

standard requires 33 subjects of at least 25 years of age, at least 10 of each sex. It defines 

three SBP and three DBP recruitment ranges, which should contain between 10 and 12 

subjects. Three measurements should be taken for each subject for a total of 99 

measurements. The performance criterion is similar to the BHS system: the error of a fixed 

number of measurements must be under 5, 10 and 15 mmHg. In addition, at least 24 

subjects must have the error of 2/3 of their measurements under 5 mmHg, and at most 3 

subjects can have the error of all of their measurements above 5 mmHg. Because of 

concerns regarding its statistical power, the ESH standard has been discontinued in favor 

of the international ISO standard currently in development [8, p. 214]. 

The IEEE 1708 Standard for Wearable, Cuffless Blood Pressure Measuring Devices [97] 

was published in 2014, in an attempt to provide some guidance for the development of 
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cuffless BP measurement devices. The latest amendment was released in 2019 [98], but 

the standard has not been widely used in the literature so far. Validation under the standard 

is a two-phase process, where the only difference between phases is the number of 

subjects. The first phase is composed of 20 subjects and the second phase of 65 subjects, 

who should be distributed evenly both between sexes and four pressure ranges. All subjects 

should be between 21 and 50 years of age. The IEEE standard mandates several types of 

tests, namely a static test, a test with BP change from the calibration point, and a third test 

after a time from the calibration. The standard does not define any minimum time period 

between re-calibrations, but states that the device should be re-tested after “a sufficient time” 

no longer than the recalibration time period indicated by the manufacturer. Three 

measurements are required per subject for each test. The performance criterion is simple 

and uses the mean absolute difference (MAD) between the device under validation and a 

reference. Grading is done on a scale from A to D, as presented in Table 3. Grades from A 

to C are acceptable under IEEE but must be obtained independently for all tests. 

Amendment 1 of the standard adds a new clause for ABPM, separating devices into four 

categories, and mandating additional tests for ambulatory and motion situations. It does not 

however provide any guidance regarding patient posture changes but do mention that this 

aspect will be covered in a later revision. 

Table 3: Overall accuracy requirement for the various IEEE 1708 grades 

Grade A B C D (fail) 

MAD range (mmHG) ≤ 5 5-6 6-7 ≥ 7 

 

1.5 Comparison of recent studies 

A comparison of recent studies is given in Table 4, where N is the number of subject and 

Calib. Is for calibration. While some studies presented algorithms without patient-specific 

calibration, few were truly generalized models. Those marked as no* in the calibration field 

indicate that patient overlap between their training and testing sets was suspected or 

confirmed, effectively calibrating the model to the subjects it was trained on. Studies using 

the subject’s biometrics in the algorithm were counted as requiring calibration, even though 

calibration against a reference device may not be necessary. When calibration was optional 

(Opt.), results without calibration are shown. 
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Table 4: Comparison of recent studies on blood pressure estimation with PPG and ECG. 

Year Author Signals Solver & features Calib. N 
ME ± SD  

SBP, DBP 
(mmHg) 

MAD ± SD  
SBP, DBP 
(mmHg) 

2017 
M. Kachuee 
et al. [71] 

PPG + 
ECG 

Adaboost with PAT, 
HR, LASI 

Opt. 942   
11.2 ± 10.1 
5.4 ± 6.1 

2017 
Miao et al. 
[99] 

PPG + 
ECG 

Subject-specific 
linear regression 
model with 
adaptative feature 
selection from 14 
morphological 
features 

Yes 73 
0.00 ± 3.4 
0.00 ± 2.47 

  

2018 
L. Wang et 
al. [100] 

PPG 

ANN with systolic 
time, diastolic time 
and 20 spectral 
features 

No* 72   
4.02 ± 2.79 
2.27 ± 1.82 

2018 
Y. Wang et 
al. [101] 

2x PPG 
Peripheral PTT 
calculated between 
two PPG sensors 

Yes 30   
7.61 
6.82 

2018 
Lin et al. 
[102] 

PPG 

Linear regression 
using 1 of 19 
morphological 
features 

Yes 22   
4.06 ± 9.16 
3.99 ± 5.24 

2018 
Simjanoska 
et al. [103] 

ECG 

Random forest with 
age and 5 generic 
signal processing 
features 

Yes 15   
8.64 ± 10.74 
18.20 ± 8.45 

2018 
Tanveer et 
al. [70] 

PPG + 
ECG 

LSTM neural 
network with 13 
PWA and PTT 
based features 

No* 39 
0.02 ± 1.26 
0.00 ± 0.73 

0.93 
0.51 

2018 
Yoon et al. 
[104] 

PPG + 
ECG 

Linear regression 
with PAT, HR, and 
11 PWA features 

Yes 23   
8.7 ± 3.2 
4.4 ± 1.6 

2019 
Mousavi et 
al. [82] 

PPG 

Adaboost with 43 
features from PCA 
of whole-based 
features 

No* 441 
0.19 ± 4.17 
-0.05 ± 8.90 

  

2019 
Yan et al. 
[105] 

PPG 
Subject-specific 
SVM using whole-
based features 

Yes 70 
0.04 ± 5.00 
0.01 ± 3.69 
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2019 
Xing et al. 
[106] 

PPG 

Random forest with 
19 features 
including biometric 
information, second 
derivative PPG, 
SVD of signal and 
its second 
derivative 

Yes 1249 
2.1 ± 13.6 
2.3 ± 9.5 

  

2019 
Baek et al. 
[107] 

PPG + 
ECG 

CNN using raw 
signals in time and 
frequency domain 

Opt. 942   
9.3 ± 8.85 
5.12 ± 5.52 

2020 
Hasanzadeh 
et al. [108] 

PPG 

Adaboost with HR, 
Pulse width, RI, 
LASI, IPA, mNPV, 
HRV 

No 1000   
8.22 ± 10.38 
4.17 ± 4.22 

2020 
Khalid et al. 
[109] 

PPG 

Stacked KNN and 
regression tree with 
16 morphologic 
features 

No* 272 
0.07 ± 7.10 
-0.08 ± 6.00 

  

2020 
Song et al. 
[110] 

PPG + 
ECG 

DNN with PAT, and 
PPG morphological 
features 

Yes 110   
4.8 ± 4.7 
4.8 ± 3.9 

2020 
Landry et al. 
[111] 

PPG + 
ECG 

Subject specific 
ANN with raw 
signal 

Yes 15   
<5 ± <8 
<5 ± <8 

2021 
Chakraborty 
et al. [112] 

PPG 

Learning-based 
regression with 
PVW extracted 
from two waves 
PDA model 

? 150   
2.50 ± 2.07 
2.12 ± 1.79 

 

1.6 Conclusion 

In July 2019, a PPG based wrist-worn cuffless blood pressure monitor was approved for the 

first time by the Food and Drugs Administration in the United States [113]. The device, from 

BioBeat, show performance within the acceptable margin of error of a cuff based 

sphygmomanometer [114]. It has however not been fully approved in relation to European 

standards for medical devices [115]. Another PPG based device from Aktiia is currently 

undergoing validation, and early published results show a good agreement between 

readings from the device and intra-arterial measurement [116]. 

These recent developments are certainly proof of concept for ambulatory cuffless blood 

pressure measurement devices. However, the proprietary algorithms and their underlying 

models have not been published, and a lot of uncertainty remains around the clinical 

potential of algorithms published in the literature. Most approaches to measuring blood 
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pressure through ECG and PPG are based on physical properties with inter-individual 

variability in their correlation to blood pressure [8, pp. 131, 164]. Thus, some form of 

calibration seems inevitable. The forms of calibration proposed in the literature vary greatly, 

ranging from training a machine learning model specifically for a subject such as in [105], to 

simply using the patient’s biometrics such as in [106]. Temporal stability of the calibration, 

an important aspect of an algorithm’s performance [8, p. 207], is rarely reported. Other 

critical aspects of the algorithms’ clinical performance, such as their stability in reaction to 

large or rapid pressure changes [8, pp. 207–208] and posture [117], are usually not 

investigated. In addition, the large variation in sample sizes and composition of data used 

to test algorithms, different ways of reporting performance, and lack of a complete and 

coherent regulatory backdrop make published algorithms for cuffless ambulatory devices 

difficult to evaluate. 

In conclusion, a relationship between BP and various features of the ECG and PPG signals 

has been demonstrated. How to reliably map those features to a subject’s blood pressure 

is, however, still not well defined. Many proposed methods show promise, but that they can 

be applied to a large and varied population, in a reliable and time-stable way, remains to be 

proven. 
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2 Intensive care photoplethysmogram datasets 

and machine-learning for blood pressure 

estimation: generalization not guarantied 

Reference: Guillaume Weber-Boisvert, Benoit Gosselin, Frida Sandberg, “Intensive care 

photoplethysmogram datasets and machine-learning for blood pressure estimation: 

generalization not guarantied", Physiological Measurement, 2022 (Pending review) 

2.1 Résumé 

Objectif : Le vaste ensemble de données MIMIC waveform dataset a été largement utilisé 

pour le développement d’algorithmes d’estimation de la pression artérielle à partir de la 

photopléthysmographie (PPG). Cependant, puisque les données proviennent de patients 

ayant de graves conditions médicales et étant souvent médicamentés, il est fréquemment 

mentionné que la relation entre le signal PPG et la pression artérielle n’est peut-être pas 

normale. Cet argument sera ici examiné. 

Approche : Un échantillon de 12 000 enregistrements provenant de MIMIC sont comparés 

aux 219 enregistrements de l’ensemble de données PPG-BP, un ensemble de données 

obtenu dans le cadre de conditions expérimentales contrôlées. Les distributions de la 

pression systolique et diastolique, ainsi que de 31 caractéristiques morphologiques du pouls 

sont d’abord comparées entre les ensembles de données. Ensuite, la corrélation entre les 

caractéristiques et la pression artérielle, ainsi que la corrélation entre les caractéristiques, 

est analysée. Enfin, des modèles de régression sont entraînés et validés pour chaque 

ensemble de données, puis validés de nouveau en utilisant l’autre ensemble n’ayant pas 

servi à l’entrainement. 

Résultats principaux : L’analyse statistique démontre des différences significatives 

(p < 0,001) entre les ensembles de données pour ce qui est de la pression diastolique et de 

20 des 31 caractéristiques, après ajustement pour la fréquence cardiaque. Les 

huit caractéristiques dont les coefficients de corrélation de rang sont les plus élevés 

(|ρ| > 0,40) relativement à la pression systolique pour PPG-BP ont une corrélation très faible 

(|ρ| < 0,10) pour MIMIC. Les tests de régression démontrent une capacité de prédiction de 

base deux fois plus élevée avec PPG-BP qu’avec MIMIC. Quant aux tests de régression 

entre les bases de données, ils révèlent une perte pratiquement complète de la capacité 

prédictive dans chacun des cas. 
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Signification : Les différences entre les ensembles de données MIMIC et PPG-BP 

démontrées dans cette étude indiquent que les modèles d’estimation de la pression 

artérielle se basant sur les données de MIMIC pourraient voir leur capacité prédictive réduite 

lorsqu’appliqués à la population générale. 

2.2 Abstract 

Objective: The large MIMIC waveform dataset, sourced from intensive care units, has been 

used extensively for the development of Photoplethysmography (PPG) based blood 

pressure (BP) estimation algorithms. Yet, because the data comes from patients in severe 

conditions – often under the effect of drugs – it is regularly noted that the relationship 

between BP and PPG signal characteristics may be anomalous, a claim that we investigate 

here.  

Approach: A sample of 12000 records from the MIMIC waveform dataset was stacked up 

against the 219 records of the PPG-BP dataset, an alternative public dataset obtained under 

controlled experimental conditions. The distribution of systolic and diastolic BP data and 31 

PPG pulse morphological features was first compared between datasets. Then, the 

correlation between features and BP, as well as between the features themselves, was 

analysed. Finally, regression models were trained for each dataset and validated against 

the other.  

Main Results: Statistical analysis showed significant (p < 0.001) differences between the 

datasets in diastolic BP and in 20 out of 31 features when adjusting for heart rate differences. 

The eight features showing the highest rank correlation (|ρ| > 0.40) to SBP in PPG-BP all 

displayed muted correlation levels (|ρ| < 0.10) in MIMIC. Regression tests showed twice 

higher baseline predictive power with PPG-BP than with MIMIC. Cross-dataset regression 

displayed a practically complete loss of predictive power for all models.  

Significance: The differences between the MIMIC and PPG-BP dataset exposed in this study 

suggest that BP estimation models based on the MIMIC dataset have reduced predictive 

power on the general population. 

2.3 Introduction 

Hypertension is one of the greatest challenges to public health of our time. According to the 

Centre for Disease Control, 45% of the adult population in the United States suffer from 
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hypertension, and only 24% of those with hypertension have their condition under control [1]. 

Hypertension is an independent risk factor for cardiovascular diseases such as heart attack, 

stroke, and kidney disease, and ranks second amongst the preventable causes of death in 

the U.S., trailing cigarette smoking only [2]–[4]. It is now widely accepted that home blood 

pressure (BP) monitoring and ambulatory BP monitoring are much better at predicting risks 

associated with hypertension than in-clinic BP measurements [32], with night time BP 

increasingly seen as an important risk determinant [53], [118]. Devices presently used for 

home BP monitoring utilize an inflatable cuff, which only provides intermittent readings 

instead of presenting the entire dynamic range and patterns of BP fluctuations. Moreover, 

the discomfort caused by cuff inflation is particularly problematic for nocturnal BP 

measurement, as it can disturb sleep and thereby interfere with measurements [8].  

Photoplethysmography (PPG) based BP estimation shows promises to be a low-cost and 

convenient technique that enables wearable designs and has the potential to replace cuff-

based devices [119]. However, the lack of open access, standardized PPG datasets for 

training and testing BP estimation algorithms is an obstacle to researchers in the field. Most 

studies are based on private databases where composition of the data and methods of 

acquisition vary considerably, making a direct comparison between the published BP 

estimation algorithms impossible [8].  

At the time of writing, several public datasets that include BP and PPG signal are available. 

There are two large datasets sourced from intensive care and surgical units: the 

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC) Waveform Dataset [120] 

from the Massachusetts Institute of Technology,  released on PhysioNet [121] in 2011, and 

the VitalDB from the Seoul National University Hospital [122] released in 2017. Several 

smaller datasets also exist, often with a focus on a specific condition. A few examples are: 

the University of Queensland Vital Sign Dataset [123], a 32 patient dataset focusing on 

anaesthesia acquired at the Royal Adelaide Hospital in Adelaide, Australia, released 

in 2012; the Bed-Based Ballistocardiography Dataset [124], a 40 patient dataset from the 

Kansas State University, released at the end of 2020; and the PPG-BP dataset [125], a 219 

patients dataset from the Guilin People's Hospital, released in 2018, with a focus on the 

screening of cardiovascular diseases (CVD) from PPG. 

The PPG-BP dataset can be considered a middle ground among the available datasets. It 

contains 657 short PPG segments three for each of the 219 patients and recorded at rest 
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under controlled experimental conditions. Each patient is associated with a single BP 

measurement, as well as patient biometric data and diagnosed CVD, if any. In contrast, 

MIMIC contains more than 25000 records of variable length and varying measurement 

types, at times including PPG and arterial blood pressure (ABP). The data was acquired 

from bedside monitoring devices at intensive care units (ICU), including surgery and cardiac 

care units, at the Beth Israel Deaconess Medical Center in Boston, USA. Among all the 

public datasets, MIMIC has been available the longest and has been used the most 

extensively in the field of BP estimation. The other datasets have seen little use in 

comparison, and some are not well suited for developing and validating BP estimation 

algorithms due to the limited number of subjects, the special conditions of data collection 

and the sporadicity of BP measurements.  

MIMIC has been used in many BP estimation studies. Kachuee et al. used a sample of 3663 

records from 942 subjects to estimate systolic blood pressure (SBP) using 10 PPG and ECG 

morphological features. Their best results were a mean absolute error (MAE) of 

11.17 mmHG without calibration and 8.21 mmHG with calibration, using AdaBoost for 

regression [71]. In 2020 Hasanzadeh et al. used a sample of about 1000 subjects to estimate 

SBP from one spectral and 18 morphological features using PPG only. Their best results 

were obtained with AdaBoost regression, giving a MAE of 8.22 mmHg [108]. In 2021, a 

subset of 200 subjects has been used by Esmaelpoor et al. to compare of 56 machine-

learned features generated by convolutional neural network (CNN) against a set of 27 

frequently used morphological features from PPG and ECG. Eight regression methods were 

tested and the best results were obtained with squared exponential Gaussian regression or 

Gaussian process regression depending on the test parameters, providing SBP with a MAE 

under 6 mmHg using morphological features, and under 3.5 mmHg using machine-learned 

features [126]. As in this last example, the dataset has been used many times with pulse 

transit time and pulse arrival time algorithms, despite that variability in the ECG sampling 

time makes it unsuitable for transit and arrival time calculation [119]. The breadth and 

variable quality of the dataset also resulted in uneven sampling by researchers, and as such 

hardly makes performance comparison easier, even between two studies using it. A more 

serious concern is the frequently mentioned hypothesis that because the data is sourced 

from ICU, with patients having received medication and being in varied critical conditions, 

the MIMIC population may exhibit abnormalities or a different relation between PPG and BP 
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than would be seen in a more controlled setting [71], [108], [127], casting doubt on the 

validity of results beyond the dataset itself. 

The aim of this study is to evaluate if the relationship between PPG pulse characteristics 

and BP in MIMIC is truly different from that in data acquired under controlled conditions. To 

achieve this goal a subset of MIMIC was compared to PPG-BP in a two-step approach. First, 

a statistical comparison of the datasets was performed. It comprised comparing the 

distribution of features characterizing PPG pulse morphology, as well as comparing the 

correlation between features on each dataset. Second, the correlation between BP and 

features was compared between datasets to see if similar morphological variations could be 

observed on both datasets in relation to BP changes. To illustrate the implication of the 

differences between the datasets, Support Vector Regression models were trained on each 

dataset and their cross-validated performance on the training set were compared to their 

performance on the other dataset, in order to assert whether predictive powers were 

retained. 

This research project was approved by the ethics committee of Université Laval, Canada 

(approval number: 2022-174). 

2.4 Material and methods 

2.4.1 Datasets 

A subset of the MIMIC database, prepared especially for BP estimation by Kachue 

et al. [128], is used in this study. Because it is hosted by the University of California, Irvine, 

the subset is sometimes called the “UCI” dataset, which will be used hereafter. This subset, 

which excludes segments with missing signals and abnormal values from MIMIC, contains 

12000 records of lengths varying between 8 seconds and 10 minutes. Each record is 

sampled at 125 Hz and contain fingertip PPG, electrocardiogram, and instantaneous ABP. 

No additional information about the subjects is provided. 

The PPG-BP dataset contains 657 fingertip PPG segments from 219 subjects of 21 to 86 

years of age. Each segment has a duration of 2.1 seconds and a sampling rate of 1 kHz. A 

single SBP and DBP measurement is provided for each subject, as well as the sex, age, 

height, weight, heart rate, and disease records. While also sourced from hospital patients, 

the PPG-BP data does not come from ICU and was acquired under controlled conditions 

following an experimental protocol. Data acquisition was conducted in private, following a 
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relaxation and adaptation period of 10 minutes, with the patients sitting in an office chair and 

their arms resting on a desk. The same acquisition devices were used for all subjects. 

Furthermore, a screening process excluded patients diagnosed with diseases other than 

cardiovascular diseases and diabetes. The data was also screened for abnormal and 

missing values, while a consistent signal quality was ensured by computing a signal quality 

index and excluding subjects with low values. [125] 

2.4.2 Pre-processing 

All signal processing was done in Python and references to functions are, otherwise noted, 

part of the standard library or of the SciPy scientific library [129]. 

For UCI, five evenly spaced segments of a duration of five seconds were first extracted from 

each of the records in the dataset. Records shorter than 25 seconds were rejected. SBP 

and diastolic blood pressure (DBP) were extracted from the continuous ABP signal by 

averaging all the peak values in the sequence, using function find_peaks. Records with less 

than three ABP peaks, due to non-pulsatile ABP segments, were rejected. Even though the 

UCI dataset had already been pre-processed to eliminate invalid or excessively noisy 

signals found in MIMIC, signal segments with   movement artefacts, as well as sequences 

with large variations in pulsatile amplitude remained. To eliminate those issues and ensure 

coherence between the datasets, the following pre-processing steps were applied to both 

UCI and PPG-BP. First, all segments had their mean removed and were then filtered using 

a 0.7-12 Hz zero-phase fourth order Butterworth bandpass filter. The resulting PPG signals 

of each segment x(n) and the corresponding first derivative x´(n) were then screened with 

the following three rejection criteria:  

max(|x´(n)|) > μ(x´(n))+ 5σ(x´(n)) (14) 

where σ is the standard deviations (STD) and μ the mean. This excluded signal segments 

with very rapid changes associated with signal artefacts such as those caused by body 

movements or device disconnection. 

( max(xi) - min(xi) ) > 1.5 (max(xj) - min(xj)) 

 for i,j ∈{1,2,3} and i ≠j 
(15) 
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where x1, x2 and x3 are three equally sized subdivisions of x(n). This ensures similar pulsatile 

amplitude throughout the segment. It was not applied to PPG-BP because of the shorter 

segment duration. 

𝑃𝑅 < 40 ∨ 𝑃𝑅 > 220 (16) 

where PR is the pulse rate in  beat per minute (BPM) estimated as the average first derivative 

x´(n) peak to peak interval, considering only peaks with a prominence greater than 60% of 

the maximum prominence. The prominence of a peak quantifies the difference between the 

peak amplitude and its bases, computed by function peak_prominences. This removed 

segments with extreme heart rate or with characteristics interfering with peak detection. 

Finally, to be able to compare the various time-based features, both datasets were 

resampled to a matching frequency of 250 Hz. 

2.4.3 Fiducial points extraction 

The fiducial points used for feature extraction are shown in Figure 7. The second derivative 

of the signal was first computed and low-pass filtered with a 12 Hz zero-phase sixth order 

Butterwort filter to obtain x´´(n), after which the third derivative x´´´(n) was computed. The 

PPG pulses peak positions np, and their maximum upslope positions nu were then 

established by finding the peak positions of x(n) and x´(n) with the find_peaks function, 

considering only peaks with a prominence greater than 60% of the maximum prominence. 

Boundaries for each pulse were established by finding the pulse onset, n0, associated with 

Figure 7: A typical PPG signal as well as its first and 
second derivatives with their most important fiducial 
points 
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each nu. The position of n0 was chosen as the first positive peak of x´´´(n) left of  nu, subject 

to  x´´´(n) > 0.4 max(x´´´(n)) to ignore minor peaks. If a positive zero crossing of x´(n) could 

be found between that point and nu, it was used instead. This strategy allowed a robust 

detection of onset even for pulses preceded with a slow rise before the onset. The end of 

the pulse, nz, was defined as the next pulse onset. Pulses with a marked difference between 

the amplitude at onset and end point, satisfying |x(n
0
)-x(n

Z
)| > 0.12 (x(n

P
)-x(n

0
)), were 

discarded. 

With pulse boundaries and peaks established, the remaining fiducial points were extracted 

from x´´(n). Five of those points are the a, b, c, d and e points described by Takazawa [81]. 

Since the e point also marks the position of the dicrotic notch, the same nomenclature was 

kept for the additionnal f, g and h points designating the second derivative estimates of the 

diastolic peak, early systolic peak and late systolic peak positions. To ensure robust 

extraction of the fiducial points, the following five step process was used: 

1. Set the position of a, na, to the point where x´´(n) is at its maximum and the position 

of b, nb, where it is at its minimum, subject to n < np. 

2. Set the position of the dicrotic notch e, ne as the earliest x´´(n) peak with n 

constrained by: nP < n <
2

3
(nz-n0) ∧ x(n)< 0.7 x(np) ∧ x´´(n) > 0.05 x´´(na). 

3. Set the position of the diastolic peak f, nf, as the earliest downward peak satisfying 

the condition ne < n < 
2

3
(nz-n0) ∧ x´´(n)< 0. 

4. Set the position of c and d, nc and nd, as the x´´(n) upward and downward peaks with 

the greatest difference between them, constrained by nb < n < ne. For pulses where 

those peaks did not exist, the positions were estimated as the position of the 

maximum inflection points of x´´(n), that is the maximum downward and upward 

peaks of the fourth derivative constrained by nb < n < ne. 

5. Estimate the position of the early and late systolic peak by setting ng=nb+
nc-nb

2
 and 

nh = nc+
nd-nc

2
. 

All peaks of x´´(n) and x´´´(n)  were extracted by detection of the zero-crossings of the next 

higher order derivative. 
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2.4.4 Features extraction 

All features were extracted on a pulse-by-pulse basis. The trend of the signal of each pulse 

was first removed by subtracting the linear slope connecting the start point of each pulse to 

its end point, as described in [130]. Thus, all pulses in the resulting detrended signal, y(n), 

have value of zero at their starting and ending point. The amplitudes of the detrended signal 

at various fiducial point are hereafter designated by the form y
i
 where y

i
 = y(ni). 

2.4.4.1 Amplitude ratios 

The reflection index (RI) along with the augmentation index (AI) measure the contribution of 

the peripheral wave reflections to the overall pulse [59]. As a measure of reflected waves, 

AI can also be computed in regards to the early and late systolic peaks as in eq. (19) and 

eq. (20) while Ygh defined in eq. (21) is an estimate of  amplitude ratio of the late to early 

systolic peak, which has been correlated with changes in systolic pressure [89].  
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Figure 8: Different types of measurements used in feature 
extraction 
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2.4.4.2 Area ratios 

The Inflection Point Area ratio (IPA) is the ratio of area under the curve up to the dicrotic 

notch and after it, and is an indicator of total peripheral resistance [59]. 

 

 
IPA=

∑ y(n)
ne
n=n0

∑ y(n)
nz
n=ne

 (22) 

 

2.4.4.3 Time spans 

Time spans all take the same general form, given in eq. (23), and can be visualised in 

Figure 8. The duration of the systolic phase, Δn0p, has been associated with hypertension 

[59], [76] while the duration of the diastolic phase, Δnpz, has been associated with DBP [77]. 

The time spans Δn0g, Δn0h, Δngh, and Δngf, are spans between reflected waves components, 

of which Δngf has been associated with pulse pressure (PP) [89]. Δnpf is the time between 

the peak and the diastolic peak. Δnup, Δnue, Δnuf are time spans in relation to the maximum 

upslope point, of which the last has been shown to have a strong correlation with SBP and 

DBP [131].  

 

 Δnij = nj-ni (23) 

 

The HR estimation used as a feature is also, in essence, a time span, and was calculated 

based on the pulse duration as shown in eq. (24), where fs is the sampling rate.  

 

 
HR =

60f
s

nz-n0 
 (24) 

 

2.4.4.4 Time ratios 

Three different time ratios have been included in this study, each representing the pulse 

duration ratio before and after a fiducial point, taking the form shown in eq. (25). Included 

are Np, in relation to the peak, Ne, in relation to the e point, and Nf, in relation to the f point. 

The time ratio of systole to diastole, Nf, was shown to be correlated to SBP [132]. 

 
Ni =

Δnoi

Δniz

 (25) 
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2.4.4.5 Acceleration PPG 

Acceleration PPG, or second derivative PPG, is a group of features extracted from the 

fiducial points in the second derivative of the signal. They have been associated with arterial 

stiffness and vascular aging [81]. The features b/a, c/a, d/a and e/a are amplitude ratios of 

the second derivative at those fiducial points, while the aging index (AX) is shown in eq. (26). 

 
AX = 

b-c-d-e

a
 (26) 

2.4.4.6 Slopes 

The slopes from the peak to the dicrotic notch, Spe, and to the diastolic peak, Spf, have been 

investigated as BP predictors. Spe was shown, although with low certainty, to have a weak 

correlation to DBP [131], and has also been associated with peripheral resistance [133]. 

Slopes used in this study are normalized, as in [131], in relation to the pulse peak value. 

 Spe = 
y

e
 - y

𝑝

y
𝑝

Δnpe

 

 
(27) 

 Spf = 
y

f
 - yp

y
𝑝

Δnpf

 (28) 

2.4.4.7 Widths 

Widths are conceptually the same as time spans, but they are not calculated from specific 

fiducial points in the pulse. Rather, the span is the width of the pulse at a certain percentage 

of its amplitude. It has been used as a BP predictor [75] and is associated with systemic 

vascular resistance [73]. In this study, the pulse width is measured at 30%, 50%, 70% and 

90% of yp for W30, W50, W70 and W90, respectively. 

2.4.4.8 Outlier exclusion and feature vector construction 

Outlier exclusion was performed on a per-pulse basis. Morphologically abnormal values for 

IPA were identified first and any values below 0.5, usually caused by an abnormal shape of 

the diastolic part of the pulse, were rejected. The feature vectors of both datasets were then 

temporarily joined to compute the global mean and the global STD, σglobal, of each feature. 

Pulses where any feature diverged more than 4 STD from the mean were considered 

outliers and rejected. 

The remaining feature vectors for pulses in the same segment were then averaged and 

saved. Since only a single BP measurement is provided per subject in the PPG-BP dataset, 
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features extracted from different segments but from the same subject were also averaged 

together. 

2.4.5 Statistical comparison of the datasets 

To characterise the differences between PPG-BP and UCI, the distribution of features and 

BP data compiled in Section 2.4.4.8 were first examined. 

For each feature, as well as SBP and DBP a two sample Kolmogorov–Smirnov (KS) test 

was performed with α=0.001 to determine if differences between distributions were 

significant. 

For each dataset, the mean and STD of each feature was calculated. For each feature, the 

difference between the mean value of the two datasets, was determined as per eq. (29). The 

same was also done for the STD value as in eq. (30). The results were computed as a 

percentage of σglobal to bring them on a comparable scale. This analysis was also done on 

SBP and DBP. 

 
μ

%
=

μ
uci

 - μ
ppg-bp

|σglobal|
⋅100 

(29) 

 σ%=
σuci - σppg-bp

|σglobal|
⋅100 

(30) 

 

Since many features are affected by the pulse duration, those tests were then repeated with 

HR compensation. That is to say that all time spans (Section 2.4.4.3) and widths (Section 

2.4.4.7) were multiplied by HR while slopes (Section 2.4.4.6) were divided by HR before 

recomputing σglobal, eq. (29) and eq. (30), yielding μadj% and σadj%. 

Finally, the feature correlation matrix was computed: for each feature, the Pearson 

correlation coefficient (r) was calculated against every other feature. The difference between 

the correlation matrix of each dataset was then produced to highlight their discrepancies.  

2.4.6 Response to BP variations and shared predictive power 

2.4.6.1 BP correlation test 

The Spearman rank correlation coefficient (ρ) was computed to assess correlation between 

each feature and SBP as well as DBP, respectively. Spearman correlation was selected 

here instead of Pearson for its ability to identify both linear and non-linear relationships. The 
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difference between the datasets was then computed to reveal any divergence in BP-features 

relationship. 

2.4.6.2 BP estimation test 

For this section, the Scikit-Learn machine learning library was used [134]. Using the svm.svr 

module, a support vector regression (SVR) model with a radial basis function (RBF) kernel 

was trained for SBP estimation on the PPG-BP dataset and another on UCI, keeping one 

random sample per subject. Therefore, when splitting a dataset into a training and testing 

set, data from one subject was never included into both the training and testing set. 

To account for non uniformity of the sample distribution, sample weights were passed to the 

model for training and also in subsequent evaluation of performance. Samples were first 

split into 12 equally spaced bins based on their BP value. The weight g of each sample was 

g
i
 = kmax/ki where kmax is the number of samples in the bin with the most samples and ki is 

the number of samples in the current sample’s bin. 

The features were centered to zero mean and scaled to unit variance before being handed 

to the model. 

The model regularization parameter C, controling penalization of estimation errors during 

training,  and the kernel function scale parameter γ, were optimized first through a coarse 

then a fine parameter grid search, as described in [135]. A leave-one-out cross-validation 

strategy was used to maximize the ammount of useable data for training. 

Backward feature elimination was used to find the optimal feature set for each dataset, 

following this method: 

1. Using 10-fold cross validation, sequentially train and test the SVR using all features 

but one, until all features have been left out once. 

2. Compare the results and save the reduced feature set with the best cross-validated 

performance. 

3. Restart from step one using the reduced feature set until only 4 features remain. 

4. Select the optimal feature set, that is the one that had the best performance 

throughout the entire process. 
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At every step, performance was evaluated using the weighted coefficient of determination 

R2, as defined in eq. (31), where i is the sample index, g
i
 is the sample weight, ui is a 

sample’s true BP, ûi is a sample’s estimated BP, u̅ is the weighted mean of the true BP of 

all samples defined in eq. (32), and k is the number of samples.  

 

R2 = 1-
∑ g

i
(ui - uî)

2k
i=1

∑ g
i
(ui - u̅)2k

i=1

 (31) 

 

u̅ = 
∑ g

i
ui

k
i=1

∑ g
i

k
i=1

 (32) 

  

The Pearson correlation coefficient between the estimated BP and true BP, as well as the 

MAE of the estimated BP were used as secondary metrics. Final performance evalution with 

the optimised model parameters was carried out through  leave-one-out cross-validation on 

the training dataset. The models were then retrained separately on their entire respective 

training dataset without leaving out any samples, but keeping the same set of features and 

the same C and γ values. Those retrained models were then validated against the other 

dataset to see if the predictive power would be retained. 
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2.5 Results 

2.5.1 Pre-processing and feature 

extraction 

For PPG-BP, 16 of the dataset’s 657 segments 

were rejected by criterion (14) before feature 

extraction. No segments were rejected due to 

criterion (15) while criterion (16) did not apply 

to PPG-BP because of the short segment 

duration. From the remaining segments, 

742 pulses were identified, of which 22 (3%) 

were rejected as outliers based on extracted 

feature values. Among the outliers, 10 had out-

of-bounds IPA values, while other feature 

values were out-of-bounds in at most three 

pulses each. Averaging the remaining pulse 

features per segment yeilded 533 valid 

segments with complete feature vectors, for an 

overall segment rejection rate of 19%. After 

averaging per subject, the dataset had 211 

feature vectors. 

For UCI, 2376 records were too short to 

generate the segments and were ignored. The 

remaining records yielded 48120 segments, of 

which 1791 were rejected due to non-pulsatile 

ABP signals, 1228 because criterion (14), 

2663 because of criterion (15) and 78 because 

of criterion (16). From the remaining segments, 

83903 pulses were identified, of which 

7104 (8%) were rejected as outliers based on 

extracted feature values. Again, IPA values 

were out-of-bound in 4069 or 5% of the total 

pulses, while other features had out-of-bound 

values in less than 1% of the pulses each. 

Figure 9: The difference in mean (μ%) and 
standard deviation (σ%) between the datasets, 
given as a percentage standard deviation of the 
joined datasets. The HR adjusted forms (μadj%) 
and (σadj%), compensate for the different HR 
distributions affecting time sensitive features. 
Negative values indicate that the mean or STD 
values for UCI are lower than for PPG-BP. 
Values in bold indicate significantly different 
distributions (p < 0.001) according to the 
Kolmogorov-Smirnov test. 
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Averaging the valid pulses per segment yeilded 21698 valid segments with complete feature 

vectors, for an overall segment rejection rate of 55%. 

2.5.2 Statistical comparison 

Results of the statistical comparison of the datasets are aggregated in Figure 9. 

According to the KS-test, the differences between feature distributions were significant 

(p < 0.001) for 22 out of 31 features for the original features and 21 out of 31 features for 

the HR adjusted features. 

 

Looking at μ% the difference in mean original feature values between the datasets, c/a stood 

out among all features, registering a difference of -100% of the standard deviation on UCI 

compared to PPG-BP. Several other features displayed a large difference, the second 

highest being Δngh (-93%), followed by the width features all showing at least -75% 

difference, Spe (-74%), AI (68%) and RI (-68%). The difference between HR distributions 

(46%) is worth noting because of its direct physiological implication and its effect on other 

features. As shown in Figure 10, the UCI HR distribution is bimodal with a first peak 

positioned around 75 BPM, similar to PPG-BP, and a second peak close to 90 BPM. The 

average HR was 6.2 BPM higher in UCI and 28% of segments had a HR above 90 compared 

to 8% in PPG-BP. 

Because HR directly affects the value of many features, looking at the HR corrected 

difference in mean μadj% reveals what part of μ% is not explained by the difference in HR 

Figure 10: Comparison of the HR distribution for the 
PPG-BP and UCI datasets 
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distribution, and highlights fundamental differences in the pulse shapes. Values significantly 

higher on UCI were AI (68%), Nf (68%), AIgf (62%), Δngf (59%), Δnpf (51%), Δnuf (49%), 

HR (46%),  Δn0g (45%), IPA (31%), AX (28%) and d/a (14%). Values significantly lower on 

UCI were c/a (-100%), RI (-68%), Δngh (-61%), W90 (-45%), W70 (-42%), Spe (-41%), 

W30 (-40%), W50 (-39%) and b/a (-30%). 

The five features with the highest STD difference were c/a (41%), AX (38%), d/a (37%), 

IPA (31%) and Spe (30% or 29% adjusted for HR), all  higher on UCI. In fact, STD was higher 

Figure 11: (A) Pulse from PPG-BP with characteristics representative of the dataset. (B), (C) and (D) 
Pulses from UCI illustrating some of the differences observed with PPG-BP. In general, the pulse 
shape was more pointed and narrower, dropping sharply after the peak. The amplitude of the PPG 
signal was usually lower at the e and f points, and the f point was often encountered later in the 
pulse. The second derivative showed a lot of variability, but compared to PPG-BP, the b point had 
usually a lower amplitude and the c and d points were often not well-defined peaks in the second 
derivative and were thus estimated from the inflection points. This resulted in highly variable but 
general lower amplitude values for the c point especially, compared to PPG-BP where it more 
consistently appears as a peak with a value closer to zero. Note that the pulse duration is normalised 
in all four pulses of this figure. 
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in UCI for 87% (or 80% adjusted for HR) of features, indicating a greater variability in pulse 

morphology within the dataset.  

The relation of those differences to differences in pulse morphology between UCI and PPG-

BP are illustrated in Figure 11. For example, the PPG-BP pulse with typical values (A) had 

a well defined second derivative peak for the c point with c/a = -0.15 while the depression at 

the c position for the bottom two pulses, (C) and (D), gave lower values of c/a = - 0.40 and 

c/a = -0.68. The g and f points were also positioned later in the pulse for (C) and (D), resulting 

in larger time spans. Pulse (C) had Spe = -0.022, Δn0g = 36,  Δnuf = 83, Δnpf = 69 and 

Nf  = 1.22 which can be directly compared to the values of (A), Spe = -0.012,  Δn0g = 32,   

Δnuf = 76, Δnpf = 50 and Nf  = 0.90, since both had similar heart rates. Pulse (C) also had a 

very narrow peak section with W90 = 14 while the PPG-BP pulse (A) had a wider one with 

W90 = 30. The heart rate of the UCI pulse (B) was 20 BPM lower than the PPG-BP pulse (A) 

but still only had W90 = 15. Pulse (B) also had AI = 0.76 because of the larger amplitude 

difference  between p and f as well as a lower b/a = -1.26 caused by its more pronounced b 

peak in the second derivative. In comparison the PPG-BP pulse (A) had AI = 0.50 and 

b/a = -0.79. The variability of c/a in UCI is also illustrated in Figure 11, where the amplitude 

of c can be seen fluctuating between zero and the amplitude of b in the three UCI pulses. 

 

In regards to BP, the SBP distribution was similar on both datasets and close to normality. 

However, the DBP distributions had significant differences. The average DBP value for UCI 

was lower at 64.3 mmHG, compared to 71.8 mmHG for PPG-BP, or a difference equivalent 

Figure 12: Comparison of the DBP distribution of the 
PPG-BP and UCI datasets 
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to -64% of the global sandard deviation. The DBP distribution of UCI was also found to 

deviate significantly from normality, as shown in Figure 12, with a slightly leptokurtic shape 

and a significant skew towards lower values. 

Overall, the datasets had a similar degree of internal correlation, with mean(|r|) = 0.36 

compared to mean(|r|) = 0.35 for PPG-BP. UCI had 61% of feature pairs with |r|>0.25 and 

28% of feature pairs with |r|>0.50, as compared to 57% and 25%, respectively, for PPG-BP. 

As for the correlation between features, the largest differences between datasets were 

observed with Spe, a feature that also displayed a significant mean and STD differences 

between the datasets. Compared to PPG-BP, the correlation level |r| of Spe increased on 

average by 0.40 with seven other features in UCI: b/a, d/a, AX, Δnup,  Δn0p,  Ygh and AIgh. 

Another important difference was e/a, which had a correlation of r = -0.42 with d/a for 

PPG-BP, while that correlation fell to r = 0.02 for UCI. 

The differences observed between the datasets were in large part associated with the 

presence of particularily pointed pulses in UCI and rare in PPG-BP. Those pulses hold a 

different relationship between features compared not only to most pulses in PPG-BP, but 

also to other types of pulses in UCI, increasing variability. Their caracteristics can be seen 

in the UCI Pulses of Figure 11. In general their c and d points were not well defined peaks 

in the second derivative, but inflection points in a curve between b and e. The amplitude of 

d tended to be higher as e also got higher and the Spe slope became more pronounced. AX, 

which is calculated from the amplitude of the second derivative fiducial points, was in turn 

affected. Those pulses were also associated with a quick pulse onset with shorter 

Δnup,  Δn0p and a proportionnaly narrower pulse wave. Finally the g point also tended to be 

situated around the peak while the h point came later at a much decreased PPG amplitude, 

wherea in PPG-BP the amplitude at g and h was not related to Spe due to their more varied 

positions around a generally flatter pulse peak. 

2.5.3 Response to BP variations and shared predictive power 

2.5.3.1 Correlation to BP 

The Spearman rank correlation coefficient (𝜌) of each dataset’s features against SBP and 

DBP is presented in Figure 13. 
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For SBP, significant correlation could be 

established for 15 features in PPG-BP. The 

three most correlating features 

were AIgh(ρ = -0.50),  Ygh(ρ = 0.50), 

Spf(ρ = -0.48), and a total of 14 features had 

a correlation of |ρ| > 0.25. For UCI, the three 

most correlating features were 

c/a (ρ = 0.24),  W90 (ρ = 0.22) and 

Δngh (ρ = 0.20). It should be noted that 

those features all had major mean and STD 

differences with PPG-BP (see Section 

2.5.2). In total, significant correlations with 

SBP could be established for 22 features in 

UCI, although coefficients were lower at 

|ρ| ≤ 0.25 for all features. 

Stronger correlation with SBP in one dataset 

was not associated to a stronger correlation 

with SBP in the other dataset. For example, 

the three most correlating features of 

PPG-BP, AIgh, Ygh and Spf (|ρ| ≥ 0.48) were 

not among the higest in UCI, where their 

SBP correlation reached at most |ρ| = 0.09. 

As for the most correlating features in UCI, 

W90 obtained ρ = 0.36 in PPG-BP, Δngh was not significant and c/a had a stronger but 

opposite correlation of ρ = -0.28. Two other features showed significant but reversed 

correlation, although to a lesser degree: Spe with ρ = -0.23 for PPG-BP and ρ = 0.11 for UCI, 

and AX with ρ = 0.42 for PPG-BP and ρ = -0.05 in UCI. 

A similar pattern was observed for DBP. Significant correlations were established for ten 

features for PPG-BP.  Those with the highest correlation were Δnpf (ρ = -0.42),  

Spf (ρ = -0.36),  and d/a (ρ = -0.35). For UCI, significant correlations were established for a 

total of 28 features. Those with the highest correlation were Δnpz (ρ = -0.25), HR (ρ = 0.24),  

and Ne(ρ = 0.23). In addition, relatively strong correlation (for UCI) was shared with one of 

Figure 13: Feature-BP Spearman correlation 
test results. The top value is the correlation 
coefficient for PPG-BP, the bottom value the 
correlation coefficient for UCI, while the colour 
and intensity show by how much UCI differs 
from PPG-BP. Values in bold indicate that the 
correlation is significant (p < 0.001) 
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the most correlating features of PPG-BP: Δnpf (ρ = -0.21). Again for DBP, correlation levels 

of |ρ|>0.25 were only reached on PPG-BP, and that for nine of the ten features where 

significance was attained. 

2.5.3.2 BP estimation 

Sampling one feature vector per subject in UCI for the BP estimation test yielded a total 

of 7087 vectors. Parameter selection for the PPG-BP trained model resulted in C = 75, 

γ  = 0.1 while selected parameters for UCI were C = 0.25, γ  = 0.03. For PPG-BP, eight 

features were retained during feature selection: Ne, Spf, W90, Δngf, Δngh, Δnpf, AX and HR. 

For UCI, sixteen features were retained: AIgf, Nf, Spf, W30, W50, W90,  Δn0g, Δn0h, Δnuf, Δngh, 

HR, AX, RI, b/a, c/a and d/a.  

SBP estimation results for the PPG-BP trained model are presented in Figure 14 for cross-

validated tests on PPG-BP. During cross-validated tests, the model tended to overestimate 

samples with low BP values and underestimated samples with high BP. Nonetheless, it 

showed significant predictive power over the entire range of BP values, as shown by the R2 

score of 0.63. Secondary metrics were r = 0.63 and MAE = 13.96 mmHg with an STD of 

10.50 mmHg. When applied to predict SBP for the UCI dataset, a model with the same 

parameters trained with the entire PPG-BP did not retain any predictive power, as shown in 

Figure 15, giving worse results than a mean predictor, as shown by the R2 score of -0.07. 

Secondary metrics were r = 0.09 and MAE = 21.03 mmHg with an STD of 16.95 mmHg. 

Cross-validated results for UCI, shown in Figure 16 were considerably worse than for PPG-

BP, achieving only R2 = 0.31, with secondary metrics r = 0.42 and MAE = 16.56 mmHg with 

an STD of 12.82 mmHg. Applying the UCI trained model to PPG-BP resulted again in a loss 

of predictive power, as shown in Figure 17, although not as dramatic as for the PPG-BP 

trained model applied to UCI. It resulted in an R2 score of 0.12, barely better than a mean 

predictor. Secondary metrics were r = 0.45 and MAE = 16.61 mmHg with an STD of 11.91 

mmHg. The model can in fact be said to almost act as a mean predictor, as the produced 

BP values always remain close to the mean BP, with an STD of 5.74 mmHg. 
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Figure 14: Cross validated results for the PPG-BP trained model 

Figure 15: Results of the PPG-BP trained model tested with the UCI data. A 
random sample of the BP estimations are shown but the metrics are for the entire 
dataset. 
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Figure 16: Cross validated results for the UCI trained model. A random sample of 
the BP estimations are shown but the metrics are for the entire dataset. 

 

Figure 17: Results of the UCI trained model tested with the PPG-BP data. 
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2.6 Discussion 

Analysis of the BP and features distributions showed fundamental differences between 

datasets. For several features, the difference can be partly attributed to the higher mean HR 

in UCI which results in narrower pulses. That characteristic of UCI and more specifically the 

large portion of data associated with a HR above 90, could be linked with stress or poor 

health. It supports the idea that differences in the conditions in which the data was obtained, 

or in the condition of the subject, has an influence on the data. 

However, even when scaled by the heart rate, the difference in mean values between the 

datasets remained significant. That remainder was linked to morphological variations 

between the datasets, notably to the UCI pulse types illustrated in Figure 11. Those have a 

more pointed peak, more of their energy concentrated early in their period, and often lack 

well defined c and d peaks in the second derivative. 

The loss of correlation between d/a and e/a on UCI may give some insight into the 

physiological origin behind the differences. The e/a ratio is associated with an increased 

inflection at the dicrotic notch while the d/a ratio is associated with inflection at the late 

systolic peak. A lower d/a ratio often equates to a flatter PPG peak with a sharp drop, as 

compared to a pointier PPG peak with a more progressive decline for higher ratios. In the 

wave-reflection based PPG model, this can be seen as the effect of timings and amplitude 

between the main systolic peak and the renal and iliac reflections [89]. The correlation 

between those features in the PPG-BP indicates that relatively uniform parameters in the 

circulatory system of the subjects define both reflections, while the loss of correlation on UCI 

indicates less uniformity, since the renal and iliac reflections appear modulated by different 

parameters. The d/a and e/a ratios have been shown to change independently with the 

administration of vasodilators or vasoconstrictors [81], which hints at possible differences in 

subject or environmental conditions between UCI and PPG-BP. 

The relatively high degree of linear correlation between features was expected, as many 

features are similar in nature and are influenced in the same way by the pulse 

characteristics. For example widths and timings are all expected, to a certain degree, to vary 

together with the pulse duration. 

The BP correlation test showed a different relationship between features and BP for each 

dataset. The higher correlation coefficients generaly found on PPG-BP indicated a more 
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uniform response between the subjects, which is coherent with the controlled data collection 

and subject selection methodology of PPG-BP, whereas the data from UCI lacks any control 

over environmental and subject conditions. For UCI, two of the features correlating the most 

with SBP were c/a and Δngh, features that also had the most difference between the 

datasets. Since those features had an opposite or null correlation on PPG-BP, the difference 

points to possible clusters of patients or conditions in UCI where consistant BP changes 

accompany those morphological changes. In fact, 35% of the pulses had a c amplitude lower 

than d in UCI, while it is the case for only 5% of pulses in PPG-BP. In UCI, those pulses 

were associated with an average SBP lower by 10.7 mmHg and average DBP lower by  3.8 

mmHg compared to pulses with well defined second derivative peaks where c > d. 

Of the features retained by the SBP estimation model for PPG-BP, four out of eight (Spf, 

W90, Δnpf and AX)  had significant correlation to SBP. Some of the feature that showed 

among the strongest correlation were not retained, which may be attributed to information 

redundance due to the generally strong correlation between features. For UCI, the large 

sample size allowed establishing significance at lower correlation levels, despite the 

increased variability of the data. The three features with the highest correlation to SBP 

(W90, Δngh and c/a) were retained for estimation, the latter two also being the two features 

with the largest difference in mean value between datasets. Despite significant SBP 

correlation being present for b/a, c/a  and d/a, no second derivative ratios were retained for 

PPG-BP. The fact that those three ratios were retained for UCI, and especially c/a with its 

opposite correlation profile compared to PPG-BP, maybe related to the aforementioned 

presence of clusters of patients with significant differences in the second derivative. It is also 

interesting to note that HR was retained for both datasets despite the absence of direct 

correlation to SBP, which suggests that scaling of some features in relation to the pulse 

duration played an important part in the estimation process. 

Performance of BP estimation algorithms are extremely difficult to compare. The absence 

of a standard test dataset and the tradition of reporting the results in mmHg mean error or 

MAE make the results very sensitive to sample selection and BP range. Sample size, 

preprocessing and sampling methods vary widely, and are not always clearly described in 

published studies. Comparison with a few other calibration free studies can be made but 

should not be seen as decisive. Kachuee et al. obtained an MAE of 11.17 ±10.09 mmHG 

and r = 0.59 on UCI using Adaboost, but also making use of ECG [71]. Slapnicar et al. 
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obtained an MAE of 15.41 mmHg on 510 MIMIC subjects with a deep neural network on the 

raw PPG signal and the two first derivatives, while 18.34 mmHG was obtained when using 

a random forest algorithm with hand crafted features [136]. As a last example, Maqsood et 

al. tested the same algorithms on both PPG-BP and MIMIC (although without cross-dataset 

tests) and reported an MAE of 5.32 ± 4.26 mmHG for PPG-BP and 5.59 ± 5.92 mmHg for 

MIMIC with a bidirectional long short-term memory neural network (Bi-LSTM) and time 

domain features, while they obtained 15.48 ± 3.52 mmHG for PPG-BP and 12.14 ± 6.67 

mmHG with an SVR [137]. 

While the use of more complex models such as Bi-LSTM may potentially bring uncalibrated 

BP estimation closer to medical device requirements, optimal performance was not the goal 

of this study and a simpler model was prefered to illustrate the impact of observed 

differences. The present results are thus more in line with those of other simpler models. 

More importantly, the present results clearly show that what was learned on one dataset 

does not apply, or applies only weakly, to the other. It is interesting to note that with fewer 

features, the cross-validated model of PPG-BP obtained an R2 twice as that of UCI. The fact 

that less features and thus less information is necessary to get those results in PPG-BP 

indicates a more uniform response in the subjects, which may be due to the more controlled 

data collection conditions. This would also explain why the PPG-BP trained model retains 

no predictive power at all with UCI, since it would not cover the wider variety of patients and 

recording conditions present in UCI, while the UCI trained model, having knowledge of a 

wider variety of conditions, may be able to retain some power, even though very weak, when 

applied to PPG-BP. 

Absolute values of the PPG signal can vary greatly depending on the recording conditions 

and equipment calibration. To ensure a consistent comparison between the different 

records, and especially between datasets possible, no raw amplitudes were used as 

features, neither was the DC component of the signal. Thus, a part of the signal information, 

which could potentially improve performance, was not used. The added benefit of this 

information in the case of UCI is however doubtful, as amplitudes were uneven between 

segments, with the pulsatile amplitude actually following a strict bimodal distribution with a 

wide separating gap. 

Although not presented here, two pulse decomposition algorithms were evaluated to extract 

the g and h points: The recursive algorithm described by Kontaxis et al. [88] and the 
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Gaussian fitting algorithm described by Couceiro et al. [83]. The first one gave very 

inconsistant results for pulses with different shapes, such as more pointed or wider top 

pulses and may not be appropriate to compare between subjects with such differences. R2 

estimation results were also lower by as much as 0.18 with that method compared to the 

estimation method based on the second derivative described in Section 2.4.3. For the 

Gaussian fitting method, R2 estimation results were similar while computation time for 

feature extraction was several times longer. The observation that some points in the second 

derivative were highly correlated with the position of the fitted Gaussian components 

resulted in using those points directly, as described in Section 2.4.3. 

To conclude, the various private datasets used in the indirect BP measurement literature 

make comparing the published algorithms difficult, and researchers have called for the 

creation of a standardised dataset suitable to compare and validate BP estimation 

algorithms [8]. MIMIC, and by extension UCI, are publicly available and contain a large 

quantity of data, which may seem like a good basis for comparison. However, results 

presented in this paper reinforces suspicions of many researchers: that data sourced in 

intensive care units, under unknown conditions, may have a skewed response to BP and 

impair the generalisation of BP estimation algorithms. While the results do not postulate that 

a general model is impossible, they highlight significant differences in the relationship 

between BP and pulse features between the UCI data in contrast to data obtained under 

more controlled conditions. 
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3 Pulse decomposition analysis in the context of 

blood pressure estimation 

3.1 Introduction 

Pulse Decomposition Analysis (PDA) was introduced in Section 1.3.4 as the concept of 

decomposing the PPG pulse wave into an initial forward pulse wave and its reflection in the 

circulatory system. Notably, the first reflection, corresponding to the late systolic component 

of the pulse, is caused by the renal reflection site; while the second main reflection, 

appearing after the dicrotic notch, is caused by the iliac reflection site [83]. Two PDA 

methods were also briefly discussed: the Gaussian fitting method, a successive 

approximation method; as well as a lighter recursive method better suited for real-time 

applications. In Chapter 2, the early and late systolic components are also estimated through 

another method: a second derivative estimate of the position of those components. This 

chapter expands on this subject by presenting experiments comparing the three methods in 

the context of blood pressure estimation as well as supporting the use of the second 

derivative estimate in Chapter 2. At the time of writing, no comparison of these methods in 

the context of blood pressure estimation could be found in the literature. 

3.2 Methodology 

3.1.1 Gaussian fitting 

The Gaussian fitting PDA method models the detrended PPG signal y(n) as the sum of Z 

Gaussian functions, resulting in its approximation y̌(n). This summation is expressed by 

eq. (33), where i is the index of the Gaussian; e is Euler’s number; and ai, bi,, and ci are the 

Gaussians’ amplitude, location, and width, respectively. The optimal values of ai, bi,, and ci 

can then be found by minimizing the error function defined as eq. (34), where N is the length 

of the signal. 

y̌(n, β) = ∑ aie
-
(n+bi)

2

2ci
2

𝑍

i=1

  for β={ai, bi, ci} (33) 
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f
error

(β) = 
1

𝑁
∑[y(n)-y̌(n, β)]2

𝑁

n=1

 (34) 

 

 
Figure 18: Position and size of the PDA components in relation to the PPG pulse with pre-
optimization values (left), optimised values (center), and optimised values with the two first 
components combined (right) 

The implementation for this project used Z=5, which has been shown to adequately 

approximate PPG [85]. The optimization was performed using Python function 

optimize.minimize with the sequential least square solver and a limit of 500 iterations. Initial 

values were set in relation to the pulses’ fiducial points, as shown in Table 5; while 

boundaries and constrains are shown in Table 6 and Table 7. As suggested in [83], the first 

component was designed as an early and low amplitude component to improve fitting of the 

systolic rise, which is otherwise not approximated well by a Gaussian function. Thus, the 

first two components were merged after fitting to form the early systolic component to be 

used for feature extraction. The components and their sum, the PDA estimate, is visualized 

in Figure 18 in relation to the PPG signal prior to optimization, after optimization, and after 

merging the components.  

Table 5: Parameter values used to initialize the Gaussian PDA model 

Parameter Initial values for components 

 #1 #2 #3 #4 #5 

ai 0.7y(na) 0.9y(np) 0.5y(np) 0.4y(nf) 0.2y(nf) 

bi na nb nd nf nf + (nf - nz) / 2 

ci na / 3 nb / 3 nd / 3 nf / 6 (nf + (nf - nz) / 2) / 6 
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Table 6: Boundaries applied to the parameters during optimization of the Gaussian PDA model 

Parameter Boundaries for components 

 #1 #2 #3 #4 #5 

min(ai) 0.1y(na) 0.3y(np) 0.2y(np) 0.1y(nf) 0 

max(ai) y(na) y(np) 0.8y(np) y(nf) y(nf) 

min(bi) na na nc ne nf + (nf - nz) / 4 

max(bi) nb nc nd + (ne - nd) / 2 nz nz 

min(ci) 0.01 na / 3 nb / 3 0.01 0.01 

max(ci) nb / 3 nd / 3 nd + (ne - nd) / 6 nf / 2 nf / 2 

 

 

 

Table 7: Inequality constrains applied to the parameters during optimization of the Gaussian PDA 
model 

Parameter Constrains for components 

 #1 #2 #3 #4 #5 

ai < a3 - < 0.9a2 < a3 < 0.3a4 

bi < b2 < b3 < b4 < b5 - 

ci - - - - - 

 

 

3.1.2 Recursive pulse decomposition 

The recursive method is a low computational complexity variation of PDA. The approach 

detailed in this section was first described in [88]. With this method, the detrended PPG 

signal y(n) is approximated as per eq. (35) as the sum of Z components yi(n), where i is the 

index of the component, resulting in the approximation of the signal y̌(n). Components are 

determined sequentially by running the computation recursively on a running residual of the 

signal y
ĩ
(n) defined as eq. (36). A component is defined in two equal-length parts: the first 

is equal to the running residual y
ĩ
(n) from its slope onset n0i

 to its local maximum nmi
, while 

the second part consists of a symmetrical reflection of the first part centered on nmi
, as 

expressed by eq. (37). To avoid false detection of nmi
 in ripples often present early in y

ĩ
(n), 

valid nmi
 positions were constrained to positions beyond the maximum upslope point of y

ĩ
(n). 
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y̌(n) = ∑ y
i
(n)

𝑍

i=1

 (35) 

  

y
ĩ
(n) = {

y(n) i = 1

ỹ
i-1

(n) - y
i-1

(n) i > 1
  (36) 

  

y
i
(n) = {

ỹ
i
(n), n ∈ [n0i

, nmi
]

ỹ
i
(-n + 2nmi

), n ∈ [nmi
, 2nmi

- n0i
]

0,  otherwise

 (37) 

 

 

Figure 19: Illustration of the recursive PDA process. One component is identified from the running 
residual (left) and subtracted to create a new running residual (right) passed on to the next step 
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Figure 20: PDA for a PPG pulse produced with the recursive PDA algorithm with three components 

 

Since determination of each component is not influenced by subsequent components, and 

the features analyzed called only for the first three components, Z=3 was chosen. The pulse 

decomposition process can be visualized in Figure 19, while an example of the results 

compared to the PPG pulse are shown in Figure 20. This technique results in an estimation 

error that is practically null over the zone of interest, while the residuals leave a rather large, 

but in the present case inconsequential, error at the end of the pulse. If needed, that error 

could be eliminated by adding more components. 

3.1.3 Comparative tests 

Using the PPG-BP dataset, the methodology previously described in Chapter 2 was used to 

re-extract features, with the difference that the g, h, and f fiducial points positions were set 

to the center point of the first, second, and third PDA component respectively. For each of 

the g, h, and f points, and for the two PDA methods, the Pearson correlation coefficient, as 

well as the mean absolute difference, was computed between the positions obtained from 

PDA and those obtained from the second derivative estimate. Spearman correlation for the 

PDA related features (AIgf, AIgh, Ygh, Δn0g, Δn0h, Δngf, Δngh, and Δnpf) was then computed 

against SBP and DBP. The results were then compared to those obtained in Chapter 2, from 

features computed with the g, h, and f points obtained from the second derivative. Again, 

using the methodology described in Chapter 2, a SVM was optimized and cross validated 

for each of the PDA methods, and compared to the results previously reported. Finally, visual 
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analysis was performed on different pulse types to explain the statistical differences 

observed. 

3.2 Results 

3.2.1 Correlation of component positions against the second derivative estimate 

As shown in Table 8, the position of components generated through Gaussian fitting showed 

almost perfect correlation to the second derivative estimates, the weakest coefficient being 

r = 0.998 for the third component. The recursive method also displayed lower, albeit very 

strong, correlation with r ≥ 0.960 for all components. The mean absolute time difference 

between the positions were overall lower with Gaussian fitting, especially for the second 

component, which had an MAD of 17 ms compared to 92 ms for the recursive method. The 

third component showed approximately the same difference for both methods, with 

Gaussian fitting resulting in a MAD of 63 ms compared to 62 ms for the recursive method. 

Considering the average pulse duration of 791 ms, this represents up to 11.6% of the pulse 

duration, and up to 7.9% of the pulse duration for the largest mean error with the recursive 

and Gaussian fitting methods respectively. The close to perfect correlation of the Gaussian 

fitting component positions with those of the second derivative estimate implies that despite 

the rather large time difference it produces, the second derivative estimate can be used to 

track changes in the position of Gaussian fitted components with high accuracy from one 

pulse to the other. 

Table 8: Correlation and mean absolute time difference between the position of PDA components 
and their second derivative estimates 

Method 
Pearson correlation coefficient 

for components (p < 0.001) 

Mean absolute time difference 

for components (ms) 

 #1 #2 #3 #1 #2 #3 

Gaussian fitting 0.999 0.999 0.998 30 17 63 

Recursive 0.960 0.960 0.974 40 92 62 
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3.2.2 Correlation of features with BP 

Correlation between the PDA related features and SBP is presented in Table 9, and their 

correlation to DBP is presented in Table 10. Overall, correlation to both SBP and DBP was 

stronger with Gaussian fitting. Similarities exist between the Gaussian fitting and second 

derivative method for both SBP and DBP. All features computed from the g and h points 

have similar correlation levels, except for Δn0g, which has significant correlation with SBP 

with the second derivative method but not with Gaussian fitting. Significantly correlated 

features also all share the same sign, indicating that features vary in the same direction in 

relation to BP changes. Differences were however present in features using the f point, 

where the second derivative method generally showed lower correlation levels compared to 

Gaussian fitting. The f point corresponds to the third component, which also displayed lower 

correlation and higher MAD between the two methods in Section 3.2.1. 

The recursive method exhibited an important difference compared to the other methods for 

both SBP and DBP: the sign of the correlation coefficient of all shared significant features 

was opposed. Thus, if a variation in BP causes features produced through the second 

derivative or Gaussian fitting method to increase, those same features would decrease if 

computed through the recursive method. Another difference is that the recursive method 

produced significant correlation levels for more features with SBP than the two other 

methods. However, those correlation levels were overall lower, with a maximum for SBP of 

| r | = 0.39, while the other methods had maximums of | r | ≥ 0.50. For DBP, the recursive 

method had only two significant correlating features, with a maximum | r | = 0.23, while the 

other methods had at least four significant features with maximums of | r | ≥ 0.40. 

Table 9: Spearman correlation of features against SBP for different PDA methods. Results in bold 
are significant (p < 0.001) 

Method Spearman correlation coefficient against SBP 

 AIgf AIgh Ygh Δn0g Δn0h Δngf Δngh Δnpf 

Second derivative -0.05 -0.50 0.50 -0.26 -0.15 0.07 0.02 -0.39 

Gaussian fitting -0.29 -0.50 0.50 0.15 0.10 -0.45 0.04 -0.53 

Recursive 0.31 0.35 -0.35 0.39 0.39 0.20 0.38 0.17 
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Table 10: Spearman correlation of features against DBP for different PDA methods. Results in bold 
are significant (p < 0.001) 

Method Spearman correlation coefficient against DBP 

 AIgf
 AIgh Ygh Δn0g Δn0h Δngf Δngh Δnpf 

Second derivative -0.16 -0.28 0.28 -0.18 -0.21 -0.25 -0.12 -0.42 

Gaussian fitting -0.26 -0.31 0.31 -0.01 -0.09 -0.40 -0.13 -0.39 

Recursive 0.12 0.23 -0.23 0.17 0.17 0.06 0.17 0.06 

 

 

3.2.3 Effect of the PDA method on BP estimation 

For each of the two PDA methods, the SVR model parameter selection process produced 

the same optimal parameter values as those produced for the second derivative method: 

C = 75, γ  = 0.1.  The features retained during backward feature elimination however differed 

based on the PDA method, and are given in Table 11. Among the three methods, only Spf, 

AX, and HR are constant. All of the methods retained several features computed from the 

g, h, and f points, indicating that some usable information was carried by each of the PDA 

methods. The Gaussian fitting method obtained optimal results with ten features, similar to 

the second derivative method, which had eight. The recursive method however required 16 

features to reach optimal results. 

Table 11: Features retained during backward feature elimination for each PDA method 

Method Feature count Retained features 

Second derivative 8 Ne, Spf, W90, Δngf, Δngh, Δnpf, AX and HR 

Gaussian fitting 10 AIgh, Np, Spf, W70, W90, Ygh, Δn0g, Δnpf, AX and HR 

Recursive 16 
b/a, AIgh, Np, Spf, W30, W70, Ygh, Δn0h, Δngf,  

Δngh, Δnpf, Δnpz, Δnuf, Δnup, AX and HR 

 

  



 

61 

As shown in Table 12, similar results were obtained by the Gaussian fitting and the second 

derivative method in the BP estimation test. For the Gaussian fitting method, the similar r 

value, lower MAE, slightly lower weighed R2, and higher STD compared to the second 

derivative method indicates that estimation were more precise towards the mean BP value; 

while more variability was present at the extremes of the BP range. Thus, the second 

derivative provided a slightly better fit over the entire BP range. 

The recursive method produced worse BP estimation results compared to the two other 

methods by all metrics. R2 was lower by up to 0.18 points; r was lower by up to 0.12 points, 

while the MAE was up to 3.15 mmHg higher with an STD slightly higher than all other 

methods. 

Table 12: BP estimation results for each PDA method 

Method R2 r MAE (mmHg) STD (mmHg) 

Second derivative 0.63 0.63 13.96 10.50 

Gaussian fitting 0.61 0.64 12.95 11.08 

Recursive 0.45 0.52 16.10 11.14 

 

3.2.4 Variability of recursive method results in relation to pulse shape 

Because the Gaussian fitting method is constrained by the second derivative fiducial points, 

positions of the components cannot diverge widely from expected positions. The recursive 

method is however unconstrained, and the central position of a component is only the result 

of the position of the next local maximum nmi
 in the running residual y

ĩ
(n), while the width of 

a component is the result of the distance between the slope onset n0i
 and nmi

. As a result, 

the components often diverged widely from expected positions, based on subtle variations 

in the pulse shape, such as the skewness of the systolic pulse wave. As shown in Figure 

21, a peak skewed to the left would tend to compress the components early in the pulse, 

with the third component often present before the dicrotic notch. As previously mentioned, 

this third component, representing the second major reflection and coming from the iliac 

arteries, is known to contribute to the diastolic peak past the dicrotic notch. Figure 21 also 

illustrate another limitation of the recursive method: even though the positions of the two first 

components are similar to the Gaussian fitted positions, the amplitudes and widths imposed 
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on the components by the running residual prevent correct positioning of the third 

component. 

 

Figure 21: Comparison of PDA methods for a pulse with a left skewed systolic pulse. Results for the 
recursive method are shown on the left while the results for Gaussian fitting are shown on the right 

 

Pulses skewed to the right display the opposite effect, where components are pushed to the 

right, and the second component is sometimes found after the dicrotic notch. This was also 

observed in systolic pulses with little or no skew, as shown in Figure 22: if the downstroke 

was relatively symmetrical to the upstroke, the next slope onset n0i
 in the running residual 

could be delayed, pushing other components to a later point in the pulse. 

 

Figure 22: Comparison of PDA methods for a pulse with a certain symmetry in the upstroke and 
downstroke part of the systolic pulse wave. Results for the recursive method are shown on the left 
while the results for Gaussian fitting are shown on the right 
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3.3 Discussion 

 

The general good concordance between the second derivative method and the Gaussian 

fitting method at all levels led to its use in the work described in Chapter 2. Surprisingly, the 

BP estimation results for the second derivative method are even better according to R2, the 

main performance metric. The higher weighted R2 indicates a better tracking of BP changes 

far from the population mean. This indicates that the second derivative points may carry 

additional useful information not provided by the Gaussian fitting method. Those better 

results with the second derivative estimate were also obtained, despite the better correlation 

of the f point features to SBP produced by Gaussian fitting, and the use of Δnpf in the BP 

estimation model for both methods. 

Although not used in the features presented here, amplitude of individual or combined 

Gaussian components (as opposed to the PPG amplitude at their center point) has been 

used to compute features correlated to physiological information, such as in [83]. Using 

those amplitudes might be beneficial for BP estimation. Further experimentation would be 

needed to determine if it provides an advantage over using the PPG signal amplitude, and 

if so, whether those amplitudes can somehow be estimated from the second derivative. The 

use of an estimation method instead of progressive approximation is desirable not only for 

real time applications, but also for large databases as the fitting time can take several 

seconds per pulse, rendering the extraction time impractical. Additionally, a better position 

estimation of the f point from the second derivative might also bring performance 

improvements, but no robust way of providing a better estimate was found in the context of 

this work. 

The recursive method was found to be an inadequate alternative in the present context. 

Relatively small differences in PPG pulse shape types could position components outside 

of their expected range, differing greatly from the two other methods. This resulted in lower 

correlation levels of features with BP, and significantly reduced BP estimation performance. 

The recursive method is limited by the fact that the components are never allowed to overlap 

by more than half their width, limiting the range of possible positions. In contrast, a larger 

overlap is often observed when using the Gaussian fitting method. A secondary effect of 

that limitation is that the amplitude of individual components is always equal to the PPG 

signal at their center point, and thus does not provide the additional potentially useful 

information that is provided by Gaussian fitting. The recursive method does deliver its 
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promise of being light weight, with extraction times similar to the second derivative method. 

While the method was unhelpful for comparing pulse component positions between different 

individuals, where the type of pulse shape varies greatly, it may be valid and useful in 

detecting changes in a single individual with a known baseline level. 
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Discussion 

The results presented in Chapter 2 provided, for the first time, evidence that the use of ICU 

data for the development of BP estimation algorithms may prevent them from generalizing 

to the normal population. The results also added weight to the calls from the research 

community for the creation of a standardized public database for comparing and validating 

BP estimation algorithms. Unfortunately, the currently limited nature of publicly available 

data imposed some limitations on the present work. Notably, because of the single BP 

record per subject available in the PPG-BP dataset, the comparison could only be done in 

the context of population-wide BP estimation. Calibration is however often seen as a 

necessary step to achieve acceptable accuracy for indirect BP measurement methods, a 

step that may also make models adapt better to different subgroups in the population. 

Therefore, future work could further investigate this topic by comparing public ICU data to 

another reference datasets with multiple records per subject, thus allowing calibration. One 

thing is however clear from the present results: The clinical potential of algorithms should 

not be judged based on their results obtained on ICU data alone. 

Chapter 3 investigated the viability of two PDA methods and justification for instead estimate 

component timing through the second derivative. The second derivative method proposed 

in this work presents several advantages compared to the other methods, such as simplicity, 

speed and BP estimation performance. While the method works well for tracking component 

timing changes between pulses, it is poor at providing accurate absolute timings, especially 

for the f point, which may be an issue for some applications. The second derivative method 

also doesn’t provide the amplitude of the individual PDA components and generating an 

estimate in a similar way has yet to be attempted. That additional information, characterizing 

the subject’s arterial system, could potentially bring improvement in BP estimation 

performance and would be worth investigating in future work. 

Other research opportunities also abound in the field. The temporal stability of calibration is 

an important topic that has been touched on by only a few published studies. Calibration 

methods without a reference device, such as through biometrics or additional sensors, have 

also yet to be proven effective, but would make future devices much easier to initialize. 

At this time, the first PPG-based BP monitors are seeking medical certification and will be 

heading to market. Little is known of their internal working principles, and the current 
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regulatory void surrounding those new ambulatory devices may not give enough confidence 

to the medical community to replace the trusted cuff-based devices. But with time, additional 

research, transparency, and thorough testing, they may one day become the new standard. 
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Conclusion 

The first objective of this research project was to investigate if the concerns were warranted 

regarding the use of ICU-sourced data, such as the MIMIC dataset, for the development of 

BP estimation methods. That topic was investigated in Chapter 2, which compared the 

MIMIC dataset to the PPG-BP dataset representing the general population. The analysis 

revealed significant differences in the distribution of diastolic BP and 20 out of 31 PPG 

morphological features, as well as significant differences in the response of features to BP 

changes. Furthermore, it was shown that data-driven models created following the same 

methodology and using the same features, with either MIMIC or the PPG-BP dataset, lost 

most of their predictive power when applied to predicting BP on the other dataset. While this 

does not ascertain that a model created with ICU data will not perform well on the general 

population, it shows that the peculiarity of ICU data may prevent generalization and that 

results obtained from ICU data should not be used as a benchmark of performance for the 

wider population.  

As the main scientific contribution of this work, the content of Chapter 2 was submitted as a 

journal article to Physiological Measurement and should provide some much-needed clarity 

on the question of the use of ICU data in the field. 

Guillaume Weber-Boisvert, Benoit Gosselin, Frida Sandberg, “Intensive care 

photoplethysmogram datasets and machine-learning for blood pressure estimation: 

generalization not guarantied", Physiological Measurement, 2022 (Pending review) 

The second objective of this work was to evaluate and improve upon existing methods used 

in the field of BP estimation. That aspect was covered Chapter 3, which compared the 

benchmark Gaussian fitting method and the recursive method to a new method estimating 

the PDA timings from the second derivative fiducial points. The results demonstrated that 

the recursive method provides inconsistent results when comparing pulses with marked 

morphology differences and performs poorly in regression tests. In contrast, the second 

derivative method was shown to track component timing changes with high accuracy, while 

performing as well as the much slower Gaussian fitting method in the BP regression test. 

Therefore, the new method opens the door to accessing component timing information in 

situations where the complexity of the Gaussian fitting method is prohibitive. That could and 

will hopefully be beneficial for enabling more accurate BP estimation on wearable devices.  
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