200 research outputs found

    On Usage Control for GRID Systems

    Get PDF
    This paper introduces a formal model, an architecture and a prototype implementation for usage control on GRID systems. The usage control model (UCON) is a new access control paradigm proposed by Park and Sandhu that encompasses and extends several existing models (e.g. MAC, DAC, Bell-Lapadula, RBAC, etc). Its main novelty is based on continuity of the access monitoring and mutability of attributes of subjects and objects. We identified this model as a perfect candidate for managing access/usage control in GRID systems due to their peculiarities, where continuity of control is a central issue. Here we adapt the original UCON model to develop a full model for usage control in GRID systems. We use as policy specification language a process description language and show how this is suitable to model the usage policy models of the original UCON model. We also describe a possible architecture to implement the usage control model. Moreover, we describe a prototype implementation for usage control of GRID computational services, and we show how our language can be used to define a security policy that regulates the usage of network communications to protect the local computational service from the applications that are executed on behalf of remote GRID users

    Fine Grained Access Control for Computational Services

    Get PDF
    Grid environment concerns the sharing of a large set of resources among entities that belong to Virtual Organizations. To this aim, the environment instantiates interactions among entities that belong to distinct administrative domains, that are potentially unknown, and among which no trust relationships exist a priori. For instance, a grid user that provides a computational service, executes unknown applications on its local computational resources on behalf on unknown grid users. In this context, the environment must provide an adequate support to guarantee security in these interactions. To improve the security of the grid environment, this paper proposes to adopt a continuous usage control model to monitor accesses to grid computational services, i.e. to monitor the behaviour of the applications executed on these services on behalf of grid users. This approach requires the definition of a security policy that describes the admitted application behaviour, and the integration in the grid security infrastructure of a component that monitors the application behaviour and that enforces this security policy. This paper also presents the architecture of the prototype of computational service monitor we have developed, along with some performance figures and its integration into the Globus framework

    Access and Usage Control in Grid

    Get PDF
    Grid is a computational environment where heterogeneous resources are virtualized and outsourced to multiple users across the Internet. The increasing popularity of the resources visualization is explained by the emerging suitability of such technology for automated execution of heavy parts of business and research processes. Efficient and flexible framework for the access and usage control over Grid resources is a prominent challenge. The primary objective of this thesis is to design the novel access and usage control model providing the fine-grained and continuous control over computational Grid resources. The approach takes into account peculiarities of Grid: service-oriented architecture, long-lived interactions, heterogeneity and distribution of resources, openness and high dynamics. We tackle the access and usage control problem in Grid by Usage CONtrol (UCON) model, which presents the continuity of control and mutability of authorization information used to make access decisions. Authorization information is formed by attributes of the resource requestor, the resource provider and the environment where the system operates. Our access and usage control model is considered on three levels of abstraction: policy, enforcement and implementation. The policy level introduces security policies designed to specify the desired granularity of control: coarse-grained policies that manages access and usage of Grid services, and fine-grained policies that monitor the usage of underlying resources allocated for a particular Grid service instance. We introduce U-XACML and exploit POLPA policy languages to specify and formalize security policies. Next, the policy level presents attribute management models. Trust negotiations are applied to collect a set of attributes needed to produce access decisions. In case of mutable attributes, a risk-aware access and usage control model is given to approximate the continuous control and timely acquisition of fresh attribute values. The enforcement level presents the architecture of the state-full reference monitor designed to enforce security policies on coarse- and fine-grained levels of control. The implementation level presents a proof-of-concept realization of our access and usage control model in Globus Toolkit, the most widely used middleware to setup computational Grids

    Usage Control, Risk and Trust

    Get PDF
    Abstract. In this paper we describe our general framework for usage control (UCON) enforcement on GRID systems. It allows both GRID services level enforcement of UCON as well as fine-grained one at the level of local GRID node resources. In addition, next to the classical checks for usage control: checks of conditions, authorizations, and obligations, the framework also includes trust and risk management functionalities. Indeed, we show how trust and risk issues naturally arise when considering usage control in GRID systems and services and how our architecture is flexible enough to accommodate both notions in a pretty uniform way

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Security for Service-Oriented On-Demand Grid Computing

    Get PDF
    Grid Computing ist mittlerweile zu einem etablierten Standard für das verteilte Höchstleistungsrechnen geworden. Während die erste Generation von Grid Middleware-Systemen noch mit proprietären Schnittstellen gearbeitet hat, wurde durch die Einführung von service-orientierten Standards wie WSDL und SOAP durch die Open Grid Services Architecture (OGSA) die Interoperabilität von Grids signifikant erhöht. Dies hat den Weg für mehrere nationale und internationale Grid-Projekten bereitet, in denen eine groß e Anzahl von akademischen und eine wachsende Anzahl von industriellen Anwendungen im Grid ausgeführt werden, die die bedarfsgesteuerte (on-demand) Provisionierung und Nutzung von Ressourcen erfordern. Bedarfsgesteuerte Grids zeichnen sich dadurch aus, dass sowohl die Software, als auch die Benutzer einer starken Fluktuation unterliegen. Weiterhin sind sowohl die Software, als auch die Daten, auf denen operiert wird, meist proprietär und haben einen hohen finanziellen Wert. Dies steht in starkem Kontrast zu den heutigen Grid-Anwendungen im akademischen Umfeld, die meist offen im Quellcode vorliegen bzw. frei verfügbar sind. Um den Ansprüchen einer bedarfsgesteuerten Grid-Nutzung gerecht zu werden, muss das Grid administrative Komponenten anbieten, mit denen Anwender autonom Software installieren können, selbst wenn diese Root-Rechte benötigen. Zur gleichen Zeit muss die Sicherheit des Grids erhöht werden, um Software, Daten und Meta-Daten der kommerziellen Anwender zu schützen. Dies würde es dem Grid auch erlauben als Basistechnologie für das gerade entstehende Gebiet des Cloud Computings zu dienen, wo ähnliche Anforderungen existieren. Wie es bei den meisten komplexen IT-Systemen der Fall ist, sind auch in traditionellen Grid Middlewares Schwachstellen zu finden, die durch die geforderten Erweiterungen der administrativen Möglichkeiten potentiell zu einem noch größ erem Problem werden. Die Schwachstellen in der Grid Middleware öffnen einen homogenen Angriffsvektor auf die ansonsten heterogenen und meist privaten Cluster-Umgebungen. Hinzu kommt, dass anders als bei den privaten Cluster-Umgebungen und kleinen akademischen Grid-Projekten die angestrebten groß en und offenen Grid-Landschaften die Administratoren mit gänzlich unbekannten Benutzern und Verhaltenstrukturen konfrontieren. Dies macht das Erkennen von böswilligem Verhalten um ein Vielfaches schwerer. Als Konsequenz werden Grid-Systeme ein immer attraktivere Ziele für Angreifer, da standardisierte Zugriffsmöglichkeiten Angriffe auf eine groß e Anzahl von Maschinen und Daten von potentiell hohem finanziellen Wert ermöglichen. Während die Rechenkapazität, die Bandbreite und der Speicherplatz an sich schon attraktive Ziele darstellen können, sind die im Grid enthaltene Software und die gespeicherten Daten viel kritischere Ressourcen. Modelldaten für die neuesten Crash-Test Simulationen, eine industrielle Fluid-Simulation, oder Rechnungsdaten von Kunden haben einen beträchtlichen Wert und müssen geschützt werden. Wenn ein Grid-Anbieter nicht für die Sicherheit von Software, Daten und Meta-Daten sorgen kann, wird die industrielle Verbreitung der offenen Grid-Technologie nicht stattfinden. Die Notwendigkeit von strikten Sicherheitsmechanismen muss mit der diametral entgegengesetzten Forderung nach einfacher und schneller Integration von neuer Software und neuen Kunden in Einklang gebracht werden. In dieser Arbeit werden neue Ansätze zur Verbesserung der Sicherheit und Nutzbarkeit von service-orientiertem bedarfsgesteuertem Grid Computing vorgestellt. Sie ermöglichen eine autonome und sichere Installation und Nutzung von komplexer, service-orientierter und traditioneller Software auf gemeinsam genutzen Ressourcen. Neue Sicherheitsmechanismen schützen Software, Daten und Meta-Daten der Anwender vor anderen Anwendern und vor externen Angreifern. Das System basiert auf Betriebssystemvirtualisierungstechnologien und bietet dynamische Erstellungs- und Installationsfunktionalitäten für virtuelle Images in einer sicheren Umgebung, in der automatisierte Mechanismen anwenderspezifische Firewall-Regeln setzen, um anwenderbezogene Netzwerkpartitionen zu erschaffen. Die Grid-Umgebung wird selbst in mehrere Bereiche unterteilt, damit die Kompromittierung von einzelnen Komponenten nicht so leicht zu einer Gefährdung des gesamten Systems führen kann. Die Grid-Headnode und der Image-Erzeugungsserver werden jeweils in einzelne Bereiche dieser demilitarisierten Zone positioniert. Um die sichere Anbindung von existierenden Geschäftsanwendungen zu ermöglichen, werden der BPEL-Standard (Business Process Execution Language) und eine Workflow-Ausführungseinheit um Grid-Sicherheitskonzepte erweitert. Die Erweiterung erlaubt eine nahtlose Integration von geschützten Grid Services mit existierenden Web Services. Die Workflow-Ausführungseinheit bietet die Erzeugung und die Erneuerung (im Falle von lange laufenden Anwendungen) von Proxy-Zertifikaten. Der Ansatz ermöglicht die sichere gemeinsame Ausführung von neuen, fein-granularen, service-orientierten Grid Anwendungen zusammen mit traditionellen Batch- und Job-Farming Anwendungen. Dies wird durch die Integration des vorgestellten Grid Sandboxing-Systems in existierende Cluster Scheduling Systeme erreicht. Eine innovative Server-Rotationsstrategie sorgt für weitere Sicherheit für den Grid Headnode Server, in dem transparent das virtuelle Server Image erneuert wird und damit auch unbekannte und unentdeckte Angriffe neutralisiert werden. Um die Angriffe, die nicht verhindert werden konnten, zu erkennen, wird ein neuartiges Intrusion Detection System vorgestellt, das auf Basis von Datenstrom-Datenbanksystemen funktioniert. Als letzte Neuerung dieser Arbeit wird eine Erweiterung des modellgetriebenen Softwareentwicklungsprozesses eingeführt, die eine automatisierte Generierung von sicheren Grid Services ermöglicht, um die komplexe und damit unsichere manuelle Erstellung von Grid Services zu ersetzen. Eine prototypische Implementierung der Konzepte wird auf Basis des Globus Toolkits 4, der Sun Grid Engine und der ActiveBPEL Engine vorgestellt. Die modellgetriebene Entwicklungsumgebung wurde in Eclipse für das Globus Toolkit 4 realisiert. Experimentelle Resultate und eine Evaluation der kritischen Komponenten des vorgestellten neuen Grids werden präsentiert. Die vorgestellten Sicherheitsmechanismem sollen die nächste Phase der Evolution des Grid Computing in einer sicheren Umgebung ermöglichen

    DRIVE: A Distributed Economic Meta-Scheduler for the Federation of Grid and Cloud Systems

    No full text
    The computational landscape is littered with islands of disjoint resource providers including commercial Clouds, private Clouds, national Grids, institutional Grids, clusters, and data centers. These providers are independent and isolated due to a lack of communication and coordination, they are also often proprietary without standardised interfaces, protocols, or execution environments. The lack of standardisation and global transparency has the effect of binding consumers to individual providers. With the increasing ubiquity of computation providers there is an opportunity to create federated architectures that span both Grid and Cloud computing providers effectively creating a global computing infrastructure. In order to realise this vision, secure and scalable mechanisms to coordinate resource access are required. This thesis proposes a generic meta-scheduling architecture to facilitate federated resource allocation in which users can provision resources from a range of heterogeneous (service) providers. Efficient resource allocation is difficult in large scale distributed environments due to the inherent lack of centralised control. In a Grid model, local resource managers govern access to a pool of resources within a single administrative domain but have only a local view of the Grid and are unable to collaborate when allocating jobs. Meta-schedulers act at a higher level able to submit jobs to multiple resource managers, however they are most often deployed on a per-client basis and are therefore concerned with only their allocations, essentially competing against one another. In a federated environment the widespread adoption of utility computing models seen in commercial Cloud providers has re-motivated the need for economically aware meta-schedulers. Economies provide a way to represent the different goals and strategies that exist in a competitive distributed environment. The use of economic allocation principles effectively creates an open service market that provides efficient allocation and incentives for participation. The major contributions of this thesis are the architecture and prototype implementation of the DRIVE meta-scheduler. DRIVE is a Virtual Organisation (VO) based distributed economic metascheduler in which members of the VO collaboratively allocate services or resources. Providers joining the VO contribute obligation services to the VO. These contributed services are in effect membership “dues” and are used in the running of the VOs operations – for example allocation, advertising, and general management. DRIVE is independent from a particular class of provider (Service, Grid, or Cloud) or specific economic protocol. This independence enables allocation in federated environments composed of heterogeneous providers in vastly different scenarios. Protocol independence facilitates the use of arbitrary protocols based on specific requirements and infrastructural availability. For instance, within a single organisation where internal trust exists, users can achieve maximum allocation performance by choosing a simple economic protocol. In a global utility Grid no such trust exists. The same meta-scheduler architecture can be used with a secure protocol which ensures the allocation is carried out fairly in the absence of trust. DRIVE establishes contracts between participants as the result of allocation. A contract describes individual requirements and obligations of each party. A unique two stage contract negotiation protocol is used to minimise the effect of allocation latency. In addition due to the co-op nature of the architecture and the use of secure privacy preserving protocols, DRIVE can be deployed in a distributed environment without requiring large scale dedicated resources. This thesis presents several other contributions related to meta-scheduling and open service markets. To overcome the perceived performance limitations of economic systems four high utilisation strategies have been developed and evaluated. Each strategy is shown to improve occupancy, utilisation and profit using synthetic workloads based on a production Grid trace. The gRAVI service wrapping toolkit is presented to address the difficulty web enabling existing applications. The gRAVI toolkit has been extended for this thesis such that it creates economically aware (DRIVE-enabled) services that can be transparently traded in a DRIVE market without requiring developer input. The final contribution of this thesis is the definition and architecture of a Social Cloud – a dynamic Cloud computing infrastructure composed of virtualised resources contributed by members of a Social network. The Social Cloud prototype is based on DRIVE and highlights the ease in which dynamic DRIVE markets can be created and used in different domains
    • …
    corecore