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Abstract

Grid is a computational environment where heterogeneous resources are virtualized
and outsourced to multiple users across the Internet. The increasing popularity of
the resources visualization is explained by the emerging suitability of such technology
for automated execution of heavy parts of business and research processes. Efficient
and flexible framework for the access and usage control over Grid resources is a
prominent challenge.

The primary objective of this thesis is to design the novel access and usage con-
trol model providing the fine-grained and continuous control over computational
Grid resources. The approach takes into account peculiarities of Grid: service-
oriented architecture, long-lived interactions, heterogeneity and distribution of re-
sources, openness and high dynamics.

We tackle the access and usage control problem in Grid by Usage CONtrol
(UCON) model, which presents the continuity of control and mutability of authoriza-
tion information used to make access decisions. Authorization information is formed
by attributes of the resource requestor, the resource provider and the environment
where the system operates. Our access and usage control model is considered on
three levels of abstraction: policy, enforcement and implementation.

The policy level introduces security policies designed to specify the desired gran-
ularity of control: coarse-grained policies that manages access and usage of Grid
services, and fine-grained policies that monitor the usage of underlying resources
allocated for a particular Grid service instance. We introduce U-XACML and ex-
ploit POLPA policy languages to specify and formalize security policies. Next, the
policy level presents attribute management models. Trust negotiations are applied
to collect a set of attributes needed to produce access decisions. In case of mutable
attributes, a risk-aware access and usage control model is given to approximate the
continuous control and timely acquisition of fresh attribute values.

The enforcement level presents the architecture of the state-full reference monitor
designed to enforce security policies on coarse- and fine-grained levels of control.

The implementation level presents a proof-of-concept realization of our access
and usage control model in Globus Toolkit, the most widely used middleware to
setup computational Grids.
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Chapter 1

Introduction

Grid is designed to execute programs on shared computational resources. This
makes unsecured Grid a potentially fertile ground for attacks on machines donat-
ing these resources. This thesis explores advances in access and usage control to
protect computational Grids. It investigates security mechanisms to continuously
monitor a usage of Grid resources, to provide a sufficient granularity of control tak-
ing into account peculiarities of Grid environment and security implications of Grid
administrators and resource providers.

The first section of this chapter overviews Grid computing basics and Grid se-
curity implications. The second section outlines main concepts of access and usage
control. Section 1.3 focuses on open problems and challenging issues of access and
usage control in Grid. Section 1.4 provides a bird’s-eye view of main contributions
of this thesis and lists my publications. This Chapter ends with describing the
structure of this thesis (section 1.5).

1.1 Grid Computing

Web was originally designed to connect endhosts users. All data and applications
were stored and processed in these endhosts, and a network simply provided a transit
to share the data. But this scenario is no longer a case. Web becomes a computer.
Data is processed and applications are executed in the ‘virtual’ computer.

Grid is a technology which allows a seamless sharing, integration and usage of
underutilized computing resources of endhosts and makes these resources available
through Web. The most common resources donated to Grid are CPU cycles, mem-
ory, storage and networking. Outsourced resources to Grid can be exploited by
users to solve heavy computational tasks taking place in advanced scientific and
engineering applications [39]. The primary way to exploit Grid resources is to split
these tasks in separate parts and each part can be executed in parallel on different
machines involved in Grid. This allows to minimize the execution time of the appli-
cation and to occupy efficiently underutilized resources of Grid participants. Grid
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already has been successfully exploited for execution of real-world computationally
intensive applications with a very large scale simulations, e.g. earthquake simulation
[107], climate study [88].

Another important Grid computing feature is the ability to facilitate collabo-
rations among a wider audience. Grid users can dynamically organize a virtual
organization (VO). The VO is a set of individuals and institutions, companies, uni-
versities, research centers, industries, etc., engaged in sharing resources to tackle the
problems that require the combined efforts [37] (see Figure 1.1). Grid users can be
members of several real and virtual organizations.

Figure 1.1: Grid Computing

Grid Design

Grid represents hardware and software components used to interconnect different
Grid computers to achieve their collaborative goals. Users and resource providers
should install Grid middleware on their machines to enroll in Grid and to use and
donate Grid resources. As Grid grows, a degree of planning and management of
Grid resources is required.

Several industrial and research organizations like OGF, IETF, W3C and OASIS
are involved in planning and specifying Grid computing. OGF formulated capa-
bilities and requirements for Grid by presenting Open Grid Service Architecture
(OGSA) [41], a set of technical specifications that align Grid technologies with Web
service technologies. A basic premise of OGSA is that resources donated to Grid,
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i.e. processor cycles, storage, memory, network, and so on, can be combined and ex-
posed to Grid users as services. Grid services are accessed through a set of interfaces
(sometimes referred as portTypes) to exploit their functionality.

From architectural point of view, Grid is a generic infrastructural fabric manag-
ing a number of Grid services (see Figure 1.1). OGSA specifies core Grid services
which must be presented to have a fully functional Grid environment. They are [41]:

• Infrastructure services support naming and registration in Grid. Also their
manage technical specifications to deploy and built Grid services. In fact,
OGSA advises to exploit Web-Services foundations for Grid Services, such
as WSDL to describe service interfaces, and SOAP as the primary message
exchange format for Grid services;

• Execution management services give to Grid users a possibility to submit
and execute computational jobs in Grid on user’s behalf. These services also
address resources provisioning and lifetime management for scheduled and
running jobs;

• Data services concern with management, access and usage of data (storage)
resources along with the transfer of data between resources;

• Resource management services keep the track of all resources available in Grid
and allocate resources for execution management services;

• Security services facilitate the enforcement of security policies within Grid.
They also provide authentication, identification, credentials and trust man-
agement, authorization, audit and secure logging of security-relevant events in
Grid;

• Self-management services accelerate operating in Grid by reducing cost and
complexity of service level agreements, adopting dynamically to changes in
Grid, and tuning the Grid infrastructure to achieve the best efficiency;

• Information services hold information about services offered to Grid users,
and are responsible for services registration and discovery.

Grid Software

There are several initiatives which implement the functionality of core Grid services
specified by OGSA, such as Globus Toolkit (GT) [40, 38, 2], Gridbus [17], Legion
[29], WebOS [113], Avaki, DataSynapse, Entropia [37].

Indeed, GT is the most notable and used middleware to set up Grid. It fully cor-
responds to OGSA standards and provides a set of core Grid services as well as tools
to develop and deploy new Grid services with additional functionality. The main
GT components are Grid Security Infrastructure (GSI) (implements OGSA security
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services), Grid Resource Allocation Manager (GRAM) (implements OGSA execu-
tion management services), Monitoring and Discovery service (MDS) (implements
OGSA resource management and information services), Grid File Transfer Protocol
(GridFTP) (implements OGSA data services), and Grid services developer’s kit.

Grid Models

Grid models vary based on several factors, particularly topology and problems Grid
is designed to solve.

Figure 1.2: Grid Topology[37]

Grid can be built in all sizes ranging from just a few machines in a single orga-
nization to billions of desktop and mobile computers distributed over the world and
collaborating together in Grid. Based on topology, Grid models can be divided on
(see Figure 1.2) [37]:

• IntraGrid is an appropriate solution for organizations which want to utilize
their resources efficiently by scaling internal jobs. It is composed by several
machines within the organization providing a basic set of core Grid services.
The primary characteristics of intraGrid are a single security provider, the
number of Grid participants is permanent, and all participants have almost
the same software and hardware components;

• ExtraGrid relaxes single organization constrains, and bridges together two
or more intraGrids. The primary characteristics of extraGrid are multiple
organizations forming Grid, available Grid resources change dynamically, and
several security providers exist (e.g. one per organization). The number of
users is fixed, and collaborations inside extraGrid assume pre-existing trust
relationships between participating organizations;



1.1. GRID COMPUTING 7

• InterGrid combines dynamically all interested parties (i.e. organizations and
independent endhosts) to collaborate. The primary characteristics of interGrid
are heterogeneity of resources donated to Grid, openness since each partici-
pant can join and leave Grid freely, and existence of several security providers
without pre-existing trust relationships between them.

Besides the topology, there are different business problems Grid is designed to
solve. Some Grids are designed to take advantages of extra processing resources,
whereas some Grids are designed to support collaborations between various orga-
nizations. Depending on which core Grid services are more developed and prevail,
Grid models are divided on [37]:

• Data Grid focuses on providing secure access to distributed, heterogeneous
pools of data (storage). The data Grid federates several databases and func-
tions like a single virtual database;

• Computational Grid expands abilities and maximize the utilization of existing
distributed computational resources (mainly CPU cycles, memory and net-
work) through aggregation and sharing. A well-known example of a computa-
tional Grid is SETI@home used to analyze noisy radio transmissions received
from outer space. This type of Grid is primarily comprised of low powered
computers with a minimal storage capacity. Also the peculiarity of computa-
tional Grids is long-lived services.

Using Computational Grid

Secure computational Grids are main concern of this thesis, and this subsection
gives a typical usage scenario of a computational Grid. In this scenario, a Grid user
wants to execute a computational job on the “best” Grid computer, to monitor the
running job, and to store the results afterwards somewhere in Grid.

Figure 1.3: Computational Grid Usage Scenario

The Grid user should perform some steps to successfully fulfil this scenario. To
begin, a new Grid user should enroll into Grid, obtain Grid-user-ID, and generate



8 CHAPTER 1. INTRODUCTION

Proxy Certificate (temporal Grid-user-ID used for delegation of authority). Once
this is accomplished, the Grid user may request to find computational resources
where the computational job can be executed (step 1 in Figure 1.3). The choice is
made by the MDS service according to some metrics specified by the Grid user, e.g.
“the quickest execution time”, “the cheapest rate”, etc.

The Grid user (or the MDS service on the user’s behalf) queries the GRAM
service (selected in the previous step as the job executor) to determine availability
of resources. If this is confirmed, the Grid user requests the resources allocation (or
reservation) for the job execution (step 2).

Then, the Grid user should upload the job code and input data to Grid. This is
done by means of the GridFTP service (step 3). Invocation of the createManagedJob
interface of the GRAM service allows to start the job execution (step 4). It is worth
to notice, that jobs submitted for execution in Grid are usually long-lived activities
which might last hours or even days. The Grid user might be interested in monitor-
ing the execution status, e.g. to obtain preliminary results or terminate jobs which
behave erroneously (step 5). Actually, such checks do not require that the Grid user
is permanently attached to the GRAM service instance which executes the job. In
fact, the Grid user is able to disconnect form the job and then at a later time and
possibly from a different location reattach to it and monitor the execution process.

When the execution is over and it completes successfully, the Grid user is notified
and the results of the execution can be stored in Grid or downloaded to the Grid
user machine (step 6). This ends the computational Grid usage scenario.

In fact, this usage scenario of the computational Grid shows that the remote job
execution is not a single-step action, but a composition of several core Grid and more
important long-lived services. More comprehensive usage scenarios might imply an
execution of a job that requires resources at multiple sites, advanced scheduling and
reservation of resources, sophisticated job control options, etc.

1.1.1 Grid Security

There are many benefits of exploiting underutilized resources setting up the Grid
environment. However, advantages of Grid computing are valuable if security impli-
cations of Grid users, administrator and resource providers are treated adequately.

Grid user refers to the process attempting to access Grid resources. Grid ad-
ministrator is a Grid-aware entity responsible for the overall functioning of Grid.
Grid resource provider donates actual computational resources to Grid and host
Grid services.

Grid User Security Implications

A Grid user security might be compromised by stealing user’s confidential data
submitted along with a job in Grid, as well as the job itself and results of the
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execution. Secure interactions and trust relationships between Grid users and Grid
resources (services) might assure that Grid is trusted to keep user’s data secret.

Another security implication arises from the fact that Grid users usually delegate
some authority to Grid services to operate on the user’s behalf (e.g. in the step 2
in Figure 1.3, the MDS service is allowed to allocate resources on the user’s behalf).
The least-privilege delegation of access rights model is required to promote the
efficient collaborations within Grid from one side and prevent abuse of authority
from another.

Grid users might also concern with a reliable enforcement of user’s access policies
over resources created in Grid. For instance, the running job created by the Grid
user may be accessed and monitored by other parties. In this case, the Grid user
decides who is granted to access the running job while the enforcement of the access
decision is performed at the Grid resource provider site.

Grid Administrator Security Implications

The most fundamental security issue addressed by a Grid administrator is provid-
ing an infrastructure for identity and credentials management. A Grid-wide identity
should be assigned for each Grid participant (e.g. Grid users and Grid resource
providers) and this identity should be verifiable by other entities involved into col-
laborations.

The Grid administrator manages also the access and usage control of all Grid
resources (services). This includes setting permissions for Grid users to access Grid
services as well as tracking the resource usage and implementing a corresponding
accounting system. Grid-central access policies impose a better coordination of Grid
resources. For example, the security policy might require that the GridFTP service
and the GRAM service, participating in the job execution scenario, should locate
in the same security domain, i.e. hosted by the same resource provider. Another
security policy might set a quota of jobs a particular Grid user is allowed to submit
for execution in Grid.

Grid-central access policies might base on credentials issued by Grid-level Cer-
tification Authorities and by local security authorities to which the Grid entities
belong. The Grid administrator should facilitate interoperability between different
security mechanisms and metrics of Grid participants.

A decision on granting access to a Grid service is performed by Grid-central secu-
rity services while the enforcement of this decision is a duty of the resource provider
who serves as the last point of control. The Grid administrator needs to establish
trust relationships with resource providers to guarantee that access decisions are
enforced correctly.
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Grid Resource Provider Security Implications

Grid resource providers should be able to authenticate requests from Grid users
and enforce security policies of different stockholders regarding the requested re-
source. Native security policies of the resource provider might base on contractual
agreements with Grid (e.g. a quota and type of donated resources and how Grid
is allowed to use them) and as well as on bilateral trust relationships between the
resource provider and the Grid user requested the resource.

For computational Grids, the resource provider should address what can be ex-
pected of jobs submitted by Grid users. The best approach is to implement a
protective sandbox around the submitted job so that it cannot cause any disruption
to the donating machine. In fact, the resource provider should be able to terminate
jobs behaving abnormally. The job is determined as abnormal if it consumes more
resources that expected or allowed.

Grid Security Approach

Grid security Infrastructure (GSI) is the initial approach which addresses the secu-
rity implications of Grid users, administrators and resource providers. GSI encom-
passes different security services and provides an infrastructure that supports secure
interactions, identity and credentials management, delegation of access rights, and
access control in Grid environment. GSI is implemented in GT and its approaches
are based on existing security standards like X.509 certificates, TLS, SAML, etc.

GSI secure interactions model implements WS-Security and WS-Secure Conver-
sation specifications and provides confidentiality and integrity protection mecha-
nisms for SOAP-messages (SOAP is the message protocol used for communications
between Grid entities).

GSI supports identity and credentials management and delegation of access rights
through the use of X.509 Certificates and public key encryption. X.509 End Entity
Certificate (X.509 EEC) provides each Grid entity with a unique distinguished name
issued by the Grid-central Certification Authority. GSI supports delegation of access
rights through the use of X.905 Proxy Certificates. The X.509 Proxy Certificate
is short-term and substitutes the long-term X.509 EEC to delegate access rights
temporally to another Grid entity.

The OGSA security model enhances GSI and introduces new approaches to Grid
security. This model proposes to outsource security functionality to specialized Grid
security services which should support well-defined interfaces and protocols and to
fit security needs of all Grid participants. OGSA specifies following security services
(see Figure 1.4):

• Credential Validation Service evaluates security credentials used for identity
management, delegation of access rights, and access control;

• Attribute Service manages Grid-central credentials of Grid participants;



1.1. GRID COMPUTING 11

Figure 1.4: Grid Security Overview

• Trust Service serves as a Grid-central Certification Authority and issues se-
curity credentials (e.g. X.509 EEC) to Grid participants. Also, this service
establishes trust relationships with native authorities of Grid users and re-
source providers;

• Authorization Service evaluates Grid-central access and usage policies and
answers whether the Grid user is allowed to access the specified Grid resource
(service). It is expected that the resource provider which hosts the accessing
Grid resource (service) will enforce the access decision of the Grid authoriza-
tion service;

• Bridge/Translation Service facilitates interoperability between different secu-
rity mechanisms of Grid participants. For instance, this service transforms
security credentials issued in the Grid user security domain to the Grid-central
credentials. Then, the converted credential can be used by the authorization
service to evaluate the Grid-central access policy;

• Audit Service tracks security-relevant events in Grid environment (e.g. en-
rolling to Grid, submitting a job, etc.).
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Grid Access Control Approach

This subsection explains how a Grid user is allowed to access Grid resources. Imag-
ine the simplified usage scenario, where the Grid user requests the GRAM service
to execute a computational job. Grid receives the request and processes it by for-
warding to Grid Gateway (step 1 in Figure 1.4). Grid Gateway is a part of Grid
middleware running of the resource provider machine hosting the GRAM service.
Grid Gateway is the trusted process by the resource provider and is allowed to
handle all communications with entire Grid.

After authentication of the received request, Grid Gateway contacts Grid se-
curity services to establish whether the Grid user is allowed to use Grid resources
(services) hosted on the resource provider machine. In fact, Grid Gateway asks
Grid Authorization Service to produce the access decision (step 2). Grid Autho-
rization Service manages all Grid-central and other stakeholders security policies,
and interacts with other Grid security services (e.g. Credential Validation Service,
Trust Service, etc.) to produce a credible access decision. When the access decision
is ready, it is sent back to Grid Gateway (step 3). This level of control is called
coarse-grained .

If the access decision is positive, Grid Gateway proceeds the Grid user initial
request by invoking the Grid service factory and creating the actual service instance
which will execute the submitted job (step 4-5). This service instance is the process
attempting to run on the resource provider machine, thus, it should be also autho-
rized by the local security manager called Grid Resource Gateway. Grid Resource
Gateway is the last point of control which enforces local security policies and usage
agreements with Grid on donated resources (step 6). The local policies might be
a Grid user-centric, but the common practice is that the local policies are more
restrictive then the Grid-central security policies. If local policies are satisfied, Grid
Resource Gateway allows to access the resources by the service instance (step 7).
This level of control is called fine-grained .

The very initial approach of access control proposed by GSI and implemented in
GT is called GridMap Authorizarion. Grid Gateway and Grid Resource Gateway
as well as Grid-central and local security policies coincide accordingly in this autho-
rization scenario. There is only one point of control and security policy to enforce.
The Grid administrator adds entries in the security policy called grid-map-file which
maps Grid users IDs to specific local users IDs on the resource provider machine.
When a Grid user requests a Grid service, a resource gateway checks if there is in a
grid-map-file a local user ID counterpart for the requesting Grid user. If it is true,
the resource gateway creates the Grid service instance which runs on behalf of the
local user and is controlled by legacy access control mechanisms.

More sophisticated access control models for computational Grids are surveyed
in Chapter 2. These models assume two-levels of control performed by both, local
resource managers (i.e. Grid Resource Gateway) using legacy security mechanisms
and local policies - fine-grained control, and by Grid-central security services (i.e.
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Grid Gateway and Grid Authorization Service) - coarse-grained control.
Although, these approaches introduce viable solutions for intra- and extraGrid

models, they are inadequate to handle security implications of computational inter-
Grids. This will be shown in section 1.3, while the next section gives some basic
definitions of access and usage control concepts.

1.2 Access and Usage Control: Main Definitions

Access control aims to assure that only trusted principals are granted to access a
resource [7]. Usage control is in charge to guarantee that principles remain trusted
also when the access is in progress, i.e. when these principles use the resource.

A security policy defines what is a trusted principal. The security policy is
analogous to a set of laws and typically it is defined in terms of high-level rules and
requirements.

Security mechanisms are access and usage control machinery that enforces se-
curity policies. These mechanisms work by intercepting each request to a resource,
determining whether the request is trusted in accordance with security policies, and
enforcing the access decision by executing or aborting the request. During the ac-
cess, the security mechanisms work by continuously deciding whether the principal
issued the request remains trusted, and if not (i.e. the security policy is violated)
the security mechanisms should be able to terminate the access and release the re-
source. A collection of security mechanisms, sufficient to enforce security policies,
is referred in the sequel as a reference monitor.

The idea to separate security policies and mechanisms underlies in design of
access and usage control. In fact, this thesis adheres to the PEI design model
proposed by R. Sandhu et al. [66] that suggests to explore access and usage control
on three levels of abstraction: policy, enforcement and implementation.

Policy Level

The policy level introduces means to express security policies and mechanisms to
produce access decision.

The first step toward expressing a security policy is to give a basic system abstrac-
tion specifying objects to be protected, subjects accessing resources, and security-
relevant events which should be intercepted and authorized by a reference monitor.

tryaccess(user,GRAMservice,createManagedJob)

is an example of the security-relevant event, called access request, where the subject
user requests the object GRAMservice to start execution of the subject’s job in Grid
by invoking createManagedJob portType.

Besides this basic system abstraction, auxiliary information could be required to
produce the access decision. For example, in attribute-based access control [89, 104]
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each access request is accompanied by a set of attributes. Attributes are assertions
done by trusted peers about subjects and objects participating in access control.
Attributes and other information about the system state used to produce access
decision is named as authorization information.

The second step is to introduce a policy specification language served to express
authorization information and to program security policies. The language states
mainly syntax to determine which collection of symbols are correct expressions ac-
cepted by a reference monitor. The language is usually a high-level and user-friendly,
application-independent, general and flexible, suitable to express a wide range of
security policies and authorization information in different computational environ-
ments. XACML is the most widely-used XML-based policy specification language
to express attribute-based access control [25, 119].

The next step is to provide a formal model of expressions written in a policy
specification language. It includes a formal semantics of expressions plus a set of
axioms and inference rules used to derive an access decision and some additional
consequences. A component of a reference monitor which computes access decision is
named as a Policy Decision Point (PDP). OGSA Authorization Service implements
PDP functionality on the coarse-level of control.

PDP consumes a security-relevant event to authorize (e.g. the access request),
authorization information and a security policy and returns an access decision (either
permitaccess() or denyaccess()/revokeaccess()) and some additional informa-
tion. In access control the decision is evaluated only once, while in usage control -
continuously.

Attributes-based access control usually has a logic-based formalization [104, 7,
89, 57]. Such approaches assume that an access request, authorization information,
and security policy are modeled as logical formulas. The access is permitted if the
logical implication of the security policy from the access request and authorization
information could be drawn. Otherwise, the access is usually immediately denied.

History-based access control (where authorization information encodes a history
of all security-relevant events occurred in the system so far) often assumes automata-
based formalization [18, 103, 80, 76]. An access request is presented as an input to
the automaton, authorization information - as the automaton state, and a security
policy serves as the automaton transition function. The access is granted if the
automaton accepts the access request. Besides making the access decision, PDP
also updates authorization information accordingly to the taken access decision.

Notice, that the same policy specification language might have different underly-
ing formalizations. For example, the XACML policy language was formalized using
a logic-based approach [57] as well as using process calculi [25].

The policy specification language and policy formal model formulate together
access and usage control model. Models vary based on scenarios they are capable to
express. The most popular attribute-based models are DAC [47], MAC, RBAC [100],
UCON [90, 124, 92]). Our particular interest in this thesis is dedicated to Usage
CONtrol (UCON) model introduced by R. Sandhu and J. Park. The UCON
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model considers long-lived access requests (e.g. the GRAM service instance executing
subject’s job) and assumes that authorization information might change during the
access execution. In fact, the continuous control and mutability of attributes are
main novelties of the UCON model.

Also, the policy level might introduce some enhancements. The policy level en-
hancements address mathematical models of all security mechanisms serving to facil-
itate the enforcement of security policies. For example, these enhancements might
describe how authorization information is collected and kept up-to-date? What
supplementary information could be generated with access decision?

Enforcement Level

Figure 1.5: Reference Monitor Architecture

The policy level gives mathematical models of security mechanisms. The enforce-
ment level encompasses all security mechanisms and draws an overall architecture
of a reference monitor. The enforcement level handles a specification of interac-
tions between security mechanisms and answers how these mechanisms collaborate
to enforce access and usage control policies.

On the coarse-grained level of control in Grid, the architecture of the reference
monitor is formed by components which corresponds to OGSA security services (see
Figure 1.5).

Usual components (i.e. security mechanisms) to enforce a security policy are
[114]:

• Policy Enforcement Point (PEP), a component which operates as a guard
giving or denying a real access to a resource;
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• PDP (was discussed on the policy level);

• Policy Information Point (PIP), a component which manages an authorization
information, i.e. provides facilities for its storing, updating, retrieving, delivery
to PDP;

• Policy Administrative Point (PAD), a component which provides and manages
security policies.

Interactions between security mechanisms presented in Figure 1.5 are the same
as discussed in Grid access control approach subsection (just with a slight difference
in syntax).

Implementation Level

The implementation level presents a low-level implementation of security mecha-
nisms. It provides the cheapest and fastest solution and cares on the efficiency and
performance of the reference monitor.

For instance, the access decision making is often computationally complex and
heavy procedure. The implementation level could provide the optimization and
minimize security overhead by caching some requests and instead of security policies
reevaluation when a new request arrives - returns the cached access decision.

1.3 Problem Statement

The main purpose of this thesis is to explore security advances in protecting com-
putational interGrids.

Identity-based vs Attribute-based Access Control

By default, access control in Grid is realized for a service-level invocation and im-
plies an identity-based access control. Authorization information consists of Grid
user identifiers (e.g. public keys), and a security policy (GridMapFile in Globus
toolkit [2]) maps these identifiers to local accounts of resource providers hosting
Grid services. Access control based on GridmapFile is very coarse and faces a scal-
ability problem due to openness of Grid. InterGrid, by its nature, is a large-scale
open system which includes enormous number of entities. These entities may belong
to different administrative domains with potentially unknown (trust) relationships
among them. It is difficult to estimate and identify its participants which usually
are unknown and can freely join/leave Grid. Moreover, assigning permissions based
solely on peers’ identity becomes a risky business since an unknown peer should be
treated as untrusted and potentially malicious. An access decision should be based
on attributes of an entity requesting access to a particular resource, rather than its
identity.
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Recently, advantages of attribute-based access control in Grid has been shown
[56, 111, 110, 78, 3]. Authorization information in attribute-based access control
consists of requestor’s attributes (e.g. Grid membership, requestor’s reputation),
resource’s attributes (e.g. a type of applications what a service is able to execute)
and environmental attributes (e.g. time, CPU load). When an access request ap-
pears, PDP checks validity of presented attributes and grants or denies access based
on a security policy which defines mapping between attribute values and access
rights.

Establishing Trust Between Grid Participants

Most of access control frameworks mentioned above assume that the requester has
some preliminary knowledge about attributes required to access the resource. These
attributes later are pushed or pulled to PDP which replies with boolean grant or
deny. This approach is not expressive and flexible enough to work in an open and
dynamic environment like Grid.

Trust negotiation [117, 118] is a promising technique that was proposed for ac-
cess control in open environments. Trust negotiation allows to authorize peers which
do not have complete knowledge about each other, belong to different administra-
tive domains, and may have never interacted before. Trust negotiation is a policy-
based technique that provides entities with the right to protect their own credentials
(signed attributes) and to negotiate with other entities access to those credentials.
Trust negotiation allows two entities to establish requirements to access a resource
by mutually requesting each other sensitive credentials until a sufficient trust is
established.

The next step in evolution of access control in Grid is the incorporation of a
trust negotiation capability.

Continuous Usage Control of Long-lived Services

Usually, an access decision in Grid is evaluated only once before starting a service,
and no further control is preformed while the service is executing, i.e. the access is
in progress. Widely known authorization frameworks that have been integrated in
Globus Toolkit, such as CAS, VOMS, PERMIS and Akenti [32] support this scenario
and assume that attributes, used to produce the access decision, remain invariable
in time. Therefore, the access decision can be checked only once before granting the
access and the security policy will also hold when the access is in progress. But,
high dynamics of Grid imposes a high mutability of attributes as a result of Grid
participants activity. The peer’s location and reputation are examples of attributes
which might evolve in time. Access rights that have been granted once on the basis
of attribute values at a given time, could authorize an access that lasts even when
attributes changed and do not satisfy a security policy anymore.

This problem becomes more urgent especially for long-lived services which are
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the peculiarity of computational Grids and can last hours or even days. Indeed,
one of the fundamental Grid functionality is the ability of clients to execute their
applications on remote resources allocated by Grid. For instance, imagine that
access to a computational service is granted if requestor’s reputation is above a given
threshold. During the application execution, the reputation can be lowered as the
result of other activities of the requestor. Meanwhile, one-time authorization is
inadequate to affect granted permissions and can not terminate the service execution
when the security policy is violated. Hence, a shift from access to usage control
should be done to protect Grid services. The control should be continuously kept
and a policy should be reevaluated continuously during a service execution.

The best candidate model to respond this issue is UCON [92]. UCON is capable
to express comprehensive access and usage control scenarios and it handles both -
continuity of control and mutability of attributes.

UCON introduces a security policy for a continuous control of resources and
states how attributes can be affected and modified as a result of the policy enforce-
ment. More precisely, continuous control means that an access decision is made not
only before allowing access a service, but also when the access is in progress, i.e. the
service is used by the requestor. If during ongoing access a security policy is not
satisfied anymore, a reference monitor terminates the service execution and releases
resources.

Assume the following scenario to highlight advantages of usage control:

security policy allows the usage of a Grid service instance s1 created by an user u1
only for 20 minutes and if the user u2 in the meanwhile never tries to access the

service s2 and his reputation remains above the given threshold.

An effective usage control system should interrupt the execution of the service in-
stance s1 and release corresponding resources as soon as the security policy for
running this service does not hold anymore. The current state-of-the-art in Grid
authorization is inadequate neither to express in a precise way a usage control policy,
nor to enforce it. As a matter of fact, implementation of usage control in Grid is
also missed.

Security Mechanisms for Continuous Control

A continuous policy enforcement poses new problems which have never been ad-
dressed in access control. Particulary, they concern when to perform access decision
checks, and how to terminate ongoing accesses if a usage policy has been violated?

Access decision checks should be triggered when attributes change. Also, a ‘pure’
continuous enforcement stipulates that attributes should remain unchangeable until
an access decision is taken and enforced. This synchronization between the access
decision making and updating of attributes is needed to assure that the access
decision is never falsified by possible concurrent attribute updates and the policy is
enforced correctly.
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If all attributes are local and reside under control of a reference monitor, the
system is aware when these attributes are going to be modified and Grid participants
can follow some sort of a locking protocol to achieve a continuous enforcement [104].
For instance, the system suspends an ongoing access before updating attributes,
and awaits until all updates are executed. The updating actions have privilege of
the exclusive access to attributes and the policy reevaluation is done only when
no updates are being present in the system. When all updates are performed, the
system unlocks attributes, reevaluates the access decision using new attribute values
and resumes the suspended access.

Due to heterogeneity and hight dynamics of Grid, attributes are rarely under a
full control of an administrative domain which enforces a security policy. Attributes
reside in different places and are managed and updated by several principals. There
may be a case when new attribute values are emitted constantly and, consequently,
can not be locked by the system (requestor’s reputation and location are examples of
such attributes). Thus, the question when and how attributes are changed becomes
very difficult to answer. As a result, a continuous policy enforcement is cumbersome
or even unfeasible in Grid and needs some approximations.

Such approximation can be achieved through a timely-scheduled inquiring of
all attributes repositories and, if attributes change a policy reevaluation is initiated
[126]. Frequent checks pose a security overhead, whereas rare checks lead to possible
policy violations. In any case, the system is not aware about attribute changes
happened in-between of adjacent checks. For example, if a security policy grants
access rights to users resided in a certain location, there is no any evidence that
mobile users remained in the same location and never left it in-between of adjacent
policy checks. As a matter of fact, an access decision is made taking into account
some uncertainties associated with attributes.

By the way, there are several peculiarities of Grid which contribute and enhance
uncertainties associated with attributes. Heterogeneous, distributed, and open na-
ture of Grid assumes lack of a central administration and therefore of a central trust.
Attributes arrive from trusted and untrusted sources, and the impact of untrusted
information should be calculated and tolerated. Also, a system faultiness (e.g., revo-
cations of attributes may get lost, update actions delayed) and a malicious activity
(e.g., a man-in-the-middle, eavesdropping and impersonating of data) contribute
to the trustworthiness of attributes. Further, freshness of attributes is affected by
delays occurred during delivery due to a distributed nature of Grid and a network
latency.

As better uncertainties associated with attributes are estimated, the better ap-
proximation of a continuous enforcement could be implemented in Grid. Authoriza-
tion framework should knows as good as possible how and when attributes change
to tackle this issue.
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Granularity of Control

Access and usage control in Grid should be realized from several perspectives to
satisfy security requirements of its participants: a coarse-grained level of control
that manages accesses to service instances and service workflows, and a fine-grained
level of control that monitors the usage of underlying resources allocated for the
service instance.

Most of existing authorization solutions for Grid have granularity to manage
access to a service invocation (i.e. coarse-grained control). Grid computational ser-
vices might execute remote and potentially malicious jobs on a platform of a resource
provider. If it is hard to inspect these jobs in advance, what poses serious security
threats to breach a system functionality. Currently, a job submitted for execution
in Grid is assigned to a local account of a resource provider host and has all per-
missions granted to this account. Such approach compromises the principle of least
privilege [100]. Grid computational services require additional monitoring facilities
and continuity of control on a level of a resource provider for better protection of
computational resources.

Leveraging Existing Standards

There issue concerns the implementation of access and usage control in Grid. In
fact, current authorization solutions [32] are inadequate to revoke an ongoing ac-
cess and terminate a Grid service instance when a security policy protecting this
service is violated. Moreover, authorization in Grid is often done through custom
implementations, but standardized solutions for writing policies, performing and en-
forcing access decisions, etc. might eliminate time and cost paid during the design
and deployment of authorization framework. Existing standards for authorization
(e.g. XACML and SAML) should be exploited and extended to capture new func-
tionalities.

1.4 Summary of Contributions

The ultimate objective of this thesis is to address problems pointed in the previous
subsection and to propose a novel trustworthy, reliable, and flexible authorization
framework providing a fine-grained and efficient access and usage control over com-
putational Grid services. In order to tackle this issue, we adopt the usage control
(UCON) model on the policy level, propose an architecture of a state-full server-side
reference monitor on the enforcement level, and present on the implementation level
a realization of our authorization framework in Globus Toolkit. In the following,
contributions done on each level are described in more details.
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Policy Level

The policy level allows to express comprehensive access and usage control scenar-
ios. Our model is based on the Usage CONtrol (UCON) model proposed by R.
Sandhu and J. Park. UCON is an attribute-based access and usage control model
suitable for highly dynamic, heterogeneous and open computing environments like
Grid. UCON covers scenarios where a continuity of control is needed and mutabil-
ity of attributes exists. Access decision is based on evaluation of authorization and
condition predicates, and fulfillment of obligation actions. UCON also assumes up-
dating of attributes as a result of a policy enforcement. This thesis presents several
examples of UCON policies to protect Grid services on both coarse- and fine-grained
levels. POLPA [82, 16] language was chosen as an underlying formalism to express
security policies. The policy level contributes our authorization framework also by
providing U-XACML policy specification language [33]. The U-XACML language
enhances the XACML language with usage control features.

The coarse-grained level of control is enhanced with trust negotiation. Trust
negotiation preserves security threat of unauthorized disclosure of sensitive creden-
tials and security policies. It preserves peer’s privacy and reveals minimum of peer’s
information needed to succeed coarse-grained authorization.

Fine-grained control protects a Grid node from threats of a malicious behavior
of jobs submitted for execution. A fine-grained reference monitor observes traces of
actions performed by jobs and terminates those executions which violate security
policies. Our model integrates two levels of control, coarse- and fine-grained, through
sharing attributes between these two levels.

A continuous policy enforcement requires a scheduler telling when the access
reevaluation should be taken. This scheduler is given in scope of a risk-aware access
and usage control model. This model computes uncertainties associated with each
attribute, while a security policy states a threshold of the acceptable uncertainties.
We name this threshold as a risk, and more precisely it specifies a probability of a
failure of policy statements, which use the uncertain attribute value, multiplied on
the impact of this failure. The main purposes of the risk is to reason how trustworthy
are attributes, and how better to approximate a continuous policy enforcement.

Enforcement Level

The enforcement level revises functionalities of authorization components and autho-
rization protocol to handle a continuous policy enforcement. It provides an architec-
ture of a server-side reference monitor which enforces security policies. Monitoring
of Grid services is assumed on two levels of control: a coarse-grained - that manages
accesses to a service instance, and a fine-grained - that monitors a usage of underly-
ing resources allocated for the service instance. We constitute state-full interactions
between authorization components which form the reference monitor.
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Implementation Level

The proof-of-concept implementation of coarse- and fine-grained levels of control is
done in Globus Toolkit, the most used middleware to setup computational Grids.
The coarse-grained level is assumed for any Globus service, while the fine-grained
level is realized for the GRAM service only. Our implemented prototype shown good
performance results and could be easily plugged into the existing Globus authoriza-
tion infrastructure. The main novelties of our implementation are a continuous
policy enforcement, efficient management of attributes and possibility to terminate
ongoing accesses to services whose security policies have been violated.

To resume, the coherent outcome of this thesis is the full design of access and
usage control model in Grid from specification till implementation.

1.4.1 List of Publications

The following is a list of publications of conference and journal papers, where I am
a co-author, produced during my PhD studies. The list consists of two parts. The
first part enumerates publications used to write this thesis:

[30] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. Controlling the usage of
grid services. International Journal of Computational Science, 3(4):373–387,
2009

[31] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. On usage control for grid
services. In proceedings of International Joint Conference on Computational
Sciences and Optimization: CSO’09, pages 47–51, Washington, DC, USA,
2009. IEEE Computer Society

[32] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. Handbook of Informa-
tion and Communication Security, chapter Access and Usage Control in Grid
Systems, pages 293–308. Springer, 2010

[33] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. A proposal on enhancing
XACML with continuous usage control features. In proceedings of CoreGRID
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management extended with weights on mobile devices. Electron. Notes Theor.
Comput. Sci., 244:53–65, August 2009

[60] H. Koshutanski, A. Lazouski, F. Martinelli, and P. Mori. Enhancing grid se-
curity by fine-grained behavioral control and negotiation-based authorization.
International Journal of Information Security, 8(4):291–314, 2009
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[66] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Influence of
attribute freshness on decision making in usage control. To appear in pro-
ceedings of 6th International Workshop on Security and Trust Management:
STM’10, 2010

[67] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-aware
usage decision making in highly dynamic systems. International Conference
on Internet Monitoring and Protection: ICIMP’10, pages 29–34, 2010

[68] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-based
usage control for service oriented architecture. In proccedings of 18th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Processing: PDP’10, pages 641–648. IEEE Computer Society, 2010

[73] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security:
A survey. Computer Science Review, 4(2):81–99, 2010

The second part lists other papers not included in the thesis:

[34] G. Costa, N. Dragoni, A. Lazouski, F. Martinelli, F. Massacci, and I. Mat-
teucci. Extending security-by-contract with quantitative trust on mobile de-
vices. In proceedings of International Conference on Complex, Intelligent and
Software Intensive Systems: CISIS’10, pages 872–877, Washington, DC, USA,
2010. IEEE Computer Society

[35] G. Costa, A. Lazouski, F. Martinelli, I. Matteucci, V. Issarny, R. Saadi,
N. Dragoni, and F. Massacci. Security-by-contract-with-trust for mobile de-
vices. Journal of Wireless Mobile Networks, Ubiquitous Computing and De-
pendable Applications, 1(4):75–91, 2010

[65] L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Us-
age control, risk and trust. In proceedings of 7th international conference
on Trust, privacy and security in digital business: TrustBus’10, pages 1–12,
Berlin, Heidelberg, 2010. Springer-Verlag

1.5 Structure of the Thesis

Each chapter of the thesis corresponds to the particular contribution highlighted in
the previous section. In order to make the thesis self-contained, the introductory to
the usage control (UCON) proposed by R. Sandhu and J. Park as well as the survey
of existing access and usage control approaches in Grid are outlined in Chapter
2. Moreover, each chapter contains a brief and specialized state-of-the-art related
entirely to the discussed issues.

Chapter 2 provides fundamental background information on access and usage
control in Grid [32, 70]. It outlines the Usage CONtrol (UCON) model proposed by
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R. Sandhu and J. Park. Furthermore, Chapter 2 surveys the existing implementa-
tions of access and usage control in Grid: CAS, PERMIS, VOMS, Cardea, PRIMA,
etc.

Chapter 3 outlines the policy level of our access and usage control model for
Grid services. It introduces the conceptual policy model, U-XACML policy spec-
ification language, the policy formal model based on POLPA, and gives several
examples of security policies on coarse- and fine-grained levels of control.

Chapter 4 presents the enhancements on the policy level and introduces models
of attributes management and continuous policy enforcement. Trust negotiations
schema is proposed to acquire the initial set of needed attributes. A risk-aware
access and usage control model is proposed to facilitates a continuous and reliable
policy enforcement in distributed environment.

Chapter 5 proposes the enforcement level of our framework. It gives the model
of the state-full reference monitor, its component-based architecture, functionality
of main components and the message-flow between them.

Chapter 6 presents the implementation level of our framework. It proposes
the integration of trust negotiations in Globus Toolkit. The coarse-grained level
of control is realized to monitor any Grid service, while the fine-grained level is
implemented for Grid computational services only. The performance evaluation is
given to estimate the security overhead.

Chapter 7 briefly recalls the main achievements and results of the thesis, draws
final concluding remarks, and points to future investigations in the area.
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Background and State of the Art

This chapter outlines the Usage CONtrol (UCON) model proposed by R. Sandhu and
J. Park [91, 101, 90, 92, 70]. UCON is the attribute-based access and usage control
model suitable for highly dynamic, heterogeneous and open computing environments
(section 2.1).

Furthermore, this Chapter surveys the existing access and usage control ap-
proaches in Grid [32]: CAS, PERMIS, Akenti, Shibboleth, VOMS, Cardea, PRIMA,
Sandhu’s approach (section 2.2). Whereas these approaches go far beyond the first
generation of access control in Grid based on the GridMapFile (see section 1.1.1),
they are still inadequate to express and enforce usage control in a precise way.

2.1 Usage CONtrol (UCON)

This section presents a novel promising access and usage control model proposed
by R. Sandhu and J. Park and called UCON. UCON enhances attribute-based ac-
cess control models (e.g. DAC, MAC, RBAC [100]) in two novel aspects [92]: 1)
mutability of attributes, and 2) continuity of control. Mutability of attributes
means that attribute (used to produce access decision) are not static and can change
in time. Moreover, changes of attributes mights be caused as the result of the entire
security policy enforcement. Continuity of control means that access decision should
be evaluated before granting access to a resource and also when the requestor exe-
cutes access rights on the resource. If attributes change when access is in progress
and the security policy is not satisfied anymore, the reference monitor revokes the
granted access rights and terminates the resource’s usage. This section describes
UCON following the PEI model [66]. Subsection 2.1.4 presents the policy level of
UCON, while subsection 2.1.3 focuses on the enforcement level. Subsection 2.1.4
ends this section by listing existing implementations of UCON.
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2.1.1 Policy Level Specification

Policy level states what authorization information is used to make access decisions,
how access decisions are made, and what scenarios can be expressed by means of
the UCON model.

A request to access and use a resource is granted based on attributes of the
requestor, of the resource, and the environment. There are three decision factors in
UCON: authorizations, obligations, and conditions. Usage control policies specifies
24 core scenarios and vary depending on when an access decision is made, what de-
cision factor is used to produce the access decision, and when attributes are updated
as a result of the policy enforcement.

UCON Model Components

The primary step in the design of any access control model is to specify resources
(objects) to be protected, user (subjects) which issue requests to access and execute
some access rights on resources.

Subjects. A requestor or subject requests a resource, and executes granted
access rights on requested resources [90]. The subject is represented by subject’
attributes, ATT (S). Attributes are assertions on the subject properties, character-
istics and capabilities (e.g. subject’s id, affiliation, reputation, location) issued by
some trusted authorities.

Objects. Objects are resources, and subjects can access or use objects. Objects
can be of various types, e.g. high-level services, low-level computational resources
like CPU cycles, files, network sockets, etc. Objects in UCON are also characterized
by attributes, ATT (O). Examples of attributes are resource’s type, security label
assigned to the resource, etc.

Attributes. Besides subject’s attributes ATT (S) and objects’s attributes ATT (O),
the UCON model specifies environmental attributes ATT (E), system-central asser-
tions about the computational environment where the subject and the object oper-
ate. A system time is the most common example of the environmental attribute.

The main novelty of the UCON model is attributes might change in time. The
idea of attributes mutability is slightly and implicitly introduced in existing access
control models. For example, a status of roles in the RBAC model [22, 121] is
mutable (it can be passive or active) and depends on a current authorization context.
Also, the DRM system introduced in [67] defines mutable attributes (e.g. a number
of possible accesses to a digital content) which decrease iteratively when a new
request arrives.

Attribute mutability is a backbone of the UCON model since attribute changes
affect taken access decisions and might cause the reevaluation of security policies.
Attributes can be mutable by several reasons: 1) by the nature (e.g. the system
time), 2) by other activities of subjects and objects (e.g. the subject’s location, the
reputation of the object’s provider), 3) attributes can be modified as the result of
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access (e.g. an attribute - number of previous accesses - increases after each access).
Attribute changes, occurred as the result of access, are encoded into a security policy
and are named as attribute update actions. The UCON model implies updates before
the access is granted (encoded as preUpdate), during the access (onUpdate), and
after the access (postUpdate) [92].

There are many possible ways to classify attributes is UCON. Besides mutable
attributes, UCON also deals with immutable attributes . These attributes can be
modified by administrative actions only (e.g., subject’s identity is an immutable
attribute). Based on purposes of mutability, attributes are classified in [93] on:

• Exclusive/Inclusive attributes which are used to resolve conflicts of interests,
e.g. dynamic separation of duty;

• Consumable attributes, .e.g pre-paid credits, digital tickets. These attributes
usually are destroyed as the result of a security policy enforcement;

• Immediate revocation attributes, e.g. the system time. Access to a resource is
terminated exactly when time expires;

• Obligation attributes, e.g. a status of an agreement between a subject and
an object. These attributes are changes as the result of obligation actions
fulfillment (obligations will be presented in the next subsection);

Taking into account time validity, attributes may be temporary or local (valid
only for a single access) and persistent or global (valid for many access). The more
detailed classification of UCON attributes is given in [93].

Attributes in UCON can be of different types and can be issued by different
authorities. Originally, the UCON model implies that all attributes are created
and managed within one security domain. These attributes are neither transferable
nor understandable in other security domains. Definitely, this approach needs some
further improvements to handle scenarios which can happen in open systems, e.g.
collaborations in interGrid assume that a subject (a Grid user) and an object (a
Grid service) reside in different security domains. The approach in [102] examines
this issue and extends the original UCON model to address the dynamic aspects
of multi-domain dynamic interactions. The approach assumes that a subject is
mobile and traverses through multiple security domains accessing different objects
using same attributes. Attributes issued in one security domain should be properly
translated and used in another security domain. In [102] there are four possible
attribute combinations:

• Pre-defined Local Attributes are attributes defined in a local security domain
and which are used only in this local domain;

• Pre-defined Multi-domain Attributes are issued in some security domains but
understandable in all collaborating domains. This requires a priori agreements
between domains over semantics of such attributes;
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• Dynamic Local Attributes are created and destroyed dynamically (i.e. as a
result of executing access rights) by the system. These attributes are used in
the local security domain;

• Dynamic Multi-domain Attributes : are created and destroyed dynamically by
several domains. It could be a case, that an attribute is created in one domain,
but destroyed in another as a result of performing some activity by its holder.
To use such attributes an ad-hoc interpreter from one domain to another is
required.

Access Rights. UCON access rights are the same as access rights and per-
missions in traditional access control. Access rights denote permissions which can
be exploited by subjects on objects [92] (e.g. to read or write a file, to invoke a
particular interface of a Grid GRAM computational service). The main difference
is that UCON access rights imply long-lived accesses which can last hours or even
days.

Access Decision Making

Access decision in UCON is a function mapping current attributes either to grant or
deny. It is based on evaluation of authorizations and conditions, and fulfillment of
obligations. Authorizations are predicate which put constrains on subject’s and/or
object’s attributes. Conditions are environment restrictions that are required to
be valid before or during the usage. Obligations are actions that are required to
be performed by a subject [92] before, during or after the usage. Authorizations,
conditions, and obligations are called decision factors and are discussed in this
subsection.

Authorizations. Neither the UCON conceptual model nor the formal policy
model specify what formalism should be used to express attributes and reason on
authorization predicates validity. In fact, authorization predicates should be always
computable in a reasonable time and they validity should be proved by ordinal
mathematical reasoning.

Definition 1. (Authorization Predicate) Authorization predicate is a computable
boolean function which maps subject and object attributes to true or false:

PA : ATT (S) ∪ ATT (O) → {true, false}

As example, assume the authorization predicate which grants access to “.doc”
files only to users which are elder than 21 years and have name “John”:

PA : subject.name = John ∧ subject.age > 21 ∧ object.type = doc

In contrast with traditional access control models, UCON authorization pred-
icates are evaluated before granting access (pre-authorizations) and when access
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rights are executed (on-authorizations). On-authorizations should be valid all the
time when access is in progress.

Obligations. To the best of our knowledge, the term “obligations” was firstly
introduced by Minsky and Lockman [85]. They focused on the integrity protection
of a resource, rather than on the confidentiality usually imposed by authorizations.
The execution of access rights may violate integrity of the resource. Thus, some
obligation actions must be performed in a foreseeable future to recover the resource
integrity.

Obligations encoded as policy statements appear in access control to refer to some
actions associated with access rights [23]. Zhao et al. [130] discuss PERMIS RBAC
authorization infrastructure, where obligations are tasks and requirements fulfilled
together with the enforcement of access decisions. Further, in DRM solutions, a
payment procedure for usage of a digital resource can be identified as an obligation
action. Recently, several policy languages were enhanced to support the specification
of obligation requirements [51, 48].

Obligations in UCON have some specific features and present an active area of
research [51, 23, 43]. Obligations examine the accomplishment of mandatory tasks
that are relevant to the resource usage and must be fulfilled to grant the access.
As example, assume that to access a white paper of a company, a user is required
to sign a privacy policy, to watch an advertisement while reading the paper on-line
and, finally, to delete the paper from his PC within 10 days if he would download
the paper. Thus, obligations in UCON can be fulfilled before, during, and after
executing access rights [55].

UCON obligations are defined in [55] as a tuple of OBL = (OBS, OBO, OBA,
WHEN, DURATION).

OBS and OBO refer to an obligation subject (OBS ) and an obligation object
(OBO) respectively. The obligation subject is an entity that actually has to perform
an obligation action (the reference monitor itself could be OBS ). The obligation
subject and object may not be the same subject and object of the access request,
i.e. the requestor subject (S ) and the resource object (O). Relationships between
these components (i.e. between OBS and S and between OBO and O) are not
specified by the original UCON model, but depend on a specific scenario. Actually,
obligations specified by a security policy are based on S ’s and O ’s attributes and
access rights, while the fulfillment of obligations can be performed by additional
entities (e.g., OBS and OBO) [90]. It’s worth to mention, that in [55] attribute
update actions are considered as obligations performed by the reference monitor. In
the sequel, we adhere to the original UCON model and distinguish attribute update
actions from obligations.

WHEN addresses when obligations should be fulfilled: before the access (pre-)
or during the access (on- and sometimes are identified as provisions) or after when
the access is ended (post-obligations). Post-obligations is a concept widely used in
distributed usage control [48]. Distributed usage control protects access to digital
information copied and disseminated in the network.
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DURATION means that obligations should be fulfilled within a specific period
of time. For example, a user must watch an advertisement for the first 20 seconds
starting to use an object.

Conditions. Conditions are environmental constrains that are taken into ac-
count producing an access decision [92].

Definition 2. (Condition Predicate) Condition predicate is a computable boolean
function which maps environmental attributes to true or false:

PC : ATT (E) → {true, false}

“An object is available on working hours only” is an example of conditions:

PC : environment.currentT ime ∈ [Mon− Fri, 8a.m.− 6p.m.]

The evaluation of condition predicates can be done before granting the access to
an object (pre-conditions) and/or when the subject uses the object (on-conditions).
Conditions evaluation cannot result in update of subject, object or environmental
attributes. Environmental attributes can be changed intrinsically as a result of
environment modifications.

Usage Policy and Scenarios

The UCON reference monitor is modeled as a finite-state transition system and its
current state is characterized by current values of attributes. That is, the state is
a function on a set of subjects and their attributes, the set of objects and their
attributes, and the set of environmental attributes [124]. There is a special system
attribute to specify a status of a single access process. This attribute maps the
access process to initial, requesting, denied, accessing, revoked or end states [127].
The reference monitor transits from one state to another as the result of attributes
update actions, obligations fulfillment, predicate checks and usage control actions
execution.

By default, the reference monitor remains in the initial state. A subject s re-
quests an access right r to use an object o by executing the tryaccess(s, o, r) action.
The reference monitor captures this request and moves to the requesting state. Fur-
ther, the reference monitor evaluates pre-authorization predicates and either denies
the access immediately by issuing denyaccess(s, o, r) action (if pre-authorization
predicates are not satisfied) or proceeds by executing the preupdate(s, o, r) action to
update attributes. Later on, the reference monitor grants the access to the resource
by performing the permitaccess(s, o, r) action. The subject s starts to execute
granted access rights r, and the reference monitor transits to an ongoing accessing
state and starts continuous control. The reference monitor continuously monitors
mutable attributes and reevaluate authorization and condition predicates each time
attributes change. Also, updates of subject’s/object’s attributes may be required by
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the security policy and this is performed by the onupdate(s, o, r) action. If at least
one among authorizations, conditions or obligations is violated when the access is
in progress, the reference monitor interrupts the access by the revokeaccess(s, o, r)
action. If the subject wishes to terminate the ongoing access from his side, the
endaccess(s, o, r) action is initiated. In both cases, the postupdate(s, o, r) action is
performed on subject’s and/or object’s attributes, but the result of these updates
varies whether the usage process was terminated by the reference monitor and it
transits to the revoked state, or by the subject and it transits to the end state.
For instance, such attribute like subject’s reputation can be updated differently. It
could be increased if the usage was ended normally, or decreased if the usage was
terminated by the reference monitor as the result of the policy violation. The usage
session and policy enforcement is over when the postupdate(s, o, r) action is executed
and the reference monitor moves to its initial state.

Definition 3. (UCON Model) UCON model is a 5-tuple M = (S; AT ; PA; PC ; PB)
[124]:

• S is a set of sequences of system states, where a single state is characterized
by current values of ATT (S), ATT (O), ATT (E);

• AT is a finite set of usage control actions AT = {tryaccess(s, o, r), endaccess(s, o, r),
permitaccess(s, o, r), denyaccess(s, o, r), revokeaccess(s, o, r), preupdate(attr),
onupdate(attr), postupdate(attr)};

• PA is a finite set of authorizations;

• PC is a finite set of conditions;

• PB is a finite set of obligation actions.

The UCON security policy is constructed from ingredients of the UCON model
and serves to specify acceptable sequences of system states, while the UCON refer-
ence monitor preserves that it behavior always adheres to the policy.

Each UCON security policy is paired with the following meta information ex-
pressing UCON novelties - attributes mutability and continuity of control [9]:

• Access continuity and decision timings specify when access decision is made. If
the decision to grant some access rights is made before the usage, the resulting
usage control scenarios are encoded with the prefix pre. Access decisions eval-
uated continuously during the execution of granted access rights are encoded
with the prefix on;

• Policy statement type a security policy can be stated using authorization pred-
icates only, obligation actions only, condition predicates only, or any of their
combinations. These policy statements are encoded with letters A, B, and C
respectively;
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• Attributes update timings subject’s and object’s attributes may require up-
dates before the access (these updates are done by preupdate(attr) action and
denoted with 1), when the access is in progress (onupdate(attr) action and
encoded with 2), or when access rights execution is revoked by the protection
system or terminated by the subject (postupdate(attr) action and encoded
with 3). If no attribute updates are assumed by the policy, the corresponding
usage scenarios are encoded with 0.

The UCON policy meta-information is shown in figure 2.1. It represents the
UCON scenarios on a time line highlighting a continuity of control. In the hatched
frame there is a meta-information usually used to express traditional access control
scenarios.

Figure 2.1: UCON usage scenarios

The UCON policy model identifies 24 core scenarios - pre,on × A,B,C ×
0,1,2,3 - depending on what elements of UCON model are used to build a policy:
pre and ongoing authorizations, obligations and conditions with attribute updates
that might be performed before, during, or after the access.

For example, a preA3 UCON policy, called as pre-authorization with post-
updates, represents a usage scenario where access decision is evaluated only once
before usage starts. The access decision is done by checking authorization predi-
cates only, and one or more attributes are updated after the resource usage ends.
The example of the preA3 policy given in [92] grants access rights to a subject who
possesses the attribute that proves his membership in a certain organization. The
subject has to present an approval with the initial request before using the resource.
Finally, the subject attribute ‘balance’ is charged when the usage is ended according
to the usage time.
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In [90] all 24 usage scenarios are described systematically and comprehensively.
Several examples of traditional access control particularly DAC, MAC, RBAC are
modeled there by means of UCON. Actually, traditional access control can be ex-
pressed entirely with preA0 (pre-authorizations without attribute updates) and
preA1 (pre-authorizations with attribute pre-updates) UCON policies. However,
complicated usage scenarios may require a combination of several core policy models.

2.1.2 Policy Level Formalization

The foremost innovation of UCON is continuity of control. UCON moves from
a single evaluation of the access decision (before the access starts) to its continuous
reevaluation during the access. This demands specific formal models to express
UCON security policy and enforcement mechanisms.

The formal model should be expressive enough to portray the UCON model com-
ponents and usage scenarios. Also, it should deal with concurrency. For example,
one might need to express a concurrent fulfilment of obligation actions, attribute
updates and access decision reevaluation in on-going usage scenarios, updates of
attributes shared between concurrent usage sessions, etc.

The UCON policy is formalized either as logical formulas in some kinds of tem-
poral logic, or as a process in process algebras. In this section, each group of models
is sketched. The rest of this subsection points to compare these models.

Logic-Based Formalization of UCON Policy

UCON in Temporal Logic of Action (TLA). To the best of our knowledge,
the UCON model was firstly formalized and analyzed using an extension of TLA
(temporal logic of actions in notation of Lamport [69]) by Zhang et al. [124, 128,
129, 127].

TLA was introduced as a method for describing and reasoning about concurrent
systems. Variables, values, actions, predicates, functions are basic concepts of TLA
[69]. The semantics of TLA is defined in terms of states. A state is an assignment of
values to variables. In the UCON model, a system state is a mapping from a set of
attribute names to the collection of attribute values. The usage control policy defines
a permitted sequence of system states. Enforcing the UCON policy, the UCON
reference monitor should transit only to states which satisfy policy statements.

The policy statement is represented in TLA as a logical formula built from pred-
icates and actions with logic connectors and temporal operators. A predicate maps
a state to a boolean value, and an action represents a relation between old and new
states. The logical formula in UCON is defined by the following grammar in BNF
[128]:

ø ::= a|p|(¬ø)|(ø ∧ ø)|(ø −→ ø)|¤ø|♦ø| © ø|øUø|¥ø|¨ø|Ä ø|øSø|
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where a is an action (e.g. tryaccess(s,o,r), permitaccess(s,o,r), denyaccess(s,o,r),
endaccess(s,o,r), revokeaccess(s,o,r)), p is a predicate (e.g. authorizations or con-
ditions), there are temporal operators ¤ “always”, ♦ “eventually”, © “next”, U
“until”, ¥ “has-always-been”, ¨ “once”, Ä “previous”, S “since” whose formal se-
mantics as well as TLA axioms can be found in [69].

The UCON preA0 usage scenario implies no attribute updates. The example
given in [124] considers the DAC protection system, where individual identities and
an access control list (ACL) are subject and object attributes, respectively. ACL is
a functional mapping of an object to multiple subject’s ids and rights r. This model
can be expressed in TLA as follows [124]:

permitaccess(s, o, r) → ¨(tryaccess(s, o, r) ∧ ((id(s), r) ∈ ACL(o)))

According to this policy, the UCON reference monitor performs the permi-
taccess(s,o,r) action which grants a permission to s and starts the execution of
r. The policy states that the permitaccess(s,o,r) action implies that authoriza-
tion predicates have to be true “before” this action is executed. The predicate
((id(s), r) ∈ ACL(o)) is true if the access control list (modeled as object’s attribute)
contains a mapping of subject’s id (modeled as subject’s attribute) and requested
rights. The predicate should have been true in the state when the request was
received from the user (the tryaccess(s,o,r) action).

In [127, 124] there is a detailed formalization of all UCON core models. By the
way, each core model can be expressed by instantiating formulae derived from the
fixed set of rules. Regarding to the completeness and soundness of the UCON policy
formal mode, Zhang et al. enlisted the fixed set of scheme rules (2 control rules (CR)
for pre (CR1) and ongoing (CR2) access decisions and 6 update rules (UR) for pre-
(UR1), ongoing (UR2, UR3, UR4) and post- (UR5, UR6) attribute updates) [124]:

• control rules are:

CR1 : permitaccess(s, o, r) → ¨(tryaccess(s, o, r)∧
(
∧

ni
pani

) ∧ (
∧

nk
pcnk

)) ∧ (
∧

nj
¨obnj

)

CR2 : ¤(¬((
∧

ni
pani

) ∧ (
∧

nj
(pbnj1 ∧ ... ∧ pbnjm → obnj

))∧
(
∧

nk
pcnk

)) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))

where 1 ≤ ni ≤ i, 1 ≤ nj ≤ j, 1 ≤ nk ≤ k, and pa1, ..., pai is a set of autho-
rization predicates; ob1, ..., obj is a set of obligation actions; pbnj1, ..., pbnjm are
predicates to determine when the ongoing obligations obnj

should be fulfilled;
pc1, ..., pck is a set of condition predicates;

• update rules are:

UR1 : permitaccess(s, o, r) → ¨preupdate(attr)
UR2 : permitaccess(s, o, r) → ♦(onupdate(attr)∧
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(endaccess(s, o, r) ∨ revokeaccess(s, o, r)))
UR3 : ¤((state(s, o, r) = accessing) → onupdate(attr))
UR4 : ¤((state(s, o, r) = accessing) ∧ pu1 ∧ ...puj → onupdate(attr))
UR5 : endaccess(s, o, r) → ♦postupdate(attr)
UR6 : revokeaccess(s, o, r) → ♦postupdate(attr)

where pu1, ..., puj are predicated that trigger an attribute update during the
access.

The example of the DAC protection system presented before can be expressed
by the CR1 control rule only.

Actually, the UCON formal model proposed by Zhang et al. has several assump-
tions. Firstly, policies are specified for positive access permissions only. Anything
not explicitly permitted by a security policy is prohibited. Further, the formal
model focuses on a specification of a single usage process, interactions between sev-
eral concurrent usage processes is not pointed. Then, the formal model requires
some background in TLA to write a policy for ongoing usage scenarios. Finally, the
logic-based specification is useful to check some properties of the system, if the sys-
tem and properties are given in the same formalism. Indeed, the UCON reference
monitor should enforce core UCON scenarios rather than to perform some kinds
of reasoning. Thus, the advantages of such formalization from the implementation
prospective are not clear.

UCON with Components Creation. To overcome the assumption of a sin-
gle usage session made in the initial formalization, Zhang et al. [124] introduced
a formal model with sequential usage sessions and components creation. Particu-
larly, the formal model specifies how to create and destroy objects, subjects, and
their attributes, and considers serialized usage processes. By serialization, Zhang et
al. assume that no interference between any two usage processes occurs, so that an
overall effect of the UCON policy enforcement is as though the individual usage pro-
cesses are executed sequentially one after another. The formal model was proposed
to analyze security properties and expressiveness of the UCON model. The formal
model does not focus on ongoing usage scenarios and consider only the overall effect
induced by a sequence of non-interfering usage processes in creating/destoying new
subjects/objects and updating attributes.

UCON policies proposed in [124] define mainly pre-authorization and pre-obligation
usage scenarios with post-updates (e.g. the preA3 and the preB3 usage scenar-
ios). Instead of the usage control actions tryaccess(s,o,r), endaccess(s,o,r), permi-
taccess(s,o,r), denyaccess(s,o,r), revokeaccess(s,o,r), the formal model introduces
the permit(s, o, r) predicate and a set of new primitive actions: createObject() (gen-
erates a new object or subject within the system), destroyObject() (removes a object
or subject from the system) and updateAtt() (updates a value of an attribute). Prim-
itive actions cause the state transition of the protection system, and normally the
createObj() action is followed by the updateAtt() action to initialize attributes of the
object/subject just created by the system.



36 CHAPTER 2. BACKGROUND AND STATE OF THE ART

The usage control policy consists of two parts [124]: a condition and body :

policy name(s, o) :
(condition) : p1 ∧ p2 ∧ ... ∧ pn → permit(s, o, r)
(body) : act1; act2; ...; actk

The condition part contains access rules. Access rules determine the access
decision and are represented as a conjunction of authorization, condition predicates
and obligation actions. If the conjunction is true the access rule grants a certain
access right to a subject. The condition part is assumed to be computable by means
of ordinary mathematical reasoning.

The second part of the policy, body, is a sequence of primitive actions. If the
conditional part of the policy is satisfied, the UCON reference monitor enforces the
second part executing these primitive actions.

The example of the usage policy proposed in [124] considers the following sce-
nario. Suppose that an object (an electronic document, doc) can be issued by a
subject whose attribute ‘role’ equals to ‘scientist ’. For anonymous users this docu-
ment can be read online no more than 10 times. This statement is managed by the
object attribute ‘readTimes ’. Each time the anonymous user is allowed to read the
document, the object’s attribute is decreased by one. The usage control policies are
as follows [124]:

• Creating policy :

createDoc policy(s, doc) :
(s.role = scientist) → permit(s, doc, create)
createObj(doc); updateAtt : doc.readT imes = 10

• Reading policy :

readDoc policy(s, doc) :
(s.role = anonymous) ∧ (doc.readT imes > 0) → permit(s, doc, read)
updateAtt : doc.readT imes = doc.readT imes− 1

The formal model addresses some very important issues and ideas to analyze
safety of the UCON model [129]. As limitation, it does not specify all 24 basic
UCON usage scenarios while dealing with pre-usage scenarios with post-updates
mainly.

UCON in Interval Temporal Logic (ITL). An alternative approach to for-
malize the UCON model is documented in [53]. The approach deals mostly with
continuous on-going usage scenarios. It redefines the semantics of the usage process
and request. The proposed formal model assumes several usage requests within one
usage process, while the original UCON model implies a single usage process for
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each usage request. For example, consider the usage of a personal mailbox though
a web-interface. A user starts the usage process by performing the login action
(e.g. tryaccess(s,o,r)), and further is allowed to perform additional usage requests
(e.g. mail browsing, mail sending) within the same usage process. The user termi-
nates the usage process by logging out (e.g. endaccess(s,o,r)). Thus, Janicke et al.
[53] concern about subject’s behavior, i.e. a sequence of semantically related usage
requests placed into one usage process. Notice, that generally the order of usage
requests is formed dynamically and arbitrary by the subject. Moreover, the usage
process is accompanied with the attribute updates concurrent to subject’s behavior.

The formalization is based on ITL and presents the usage control policy as a
set of logical formulas. The semantics and syntax of ITL can be found in [53].
A key notion of ITL is the interval. The interval is a (in)finite sequence of system
states. A usage process is formed by a sequence of intervals constructed using a set of
operators. For instance, (i) int* - “star” operator - denotes an interval decomposable
into a set of a (in)finite number of intervals int, (ii) int1; int2 - “chop” operator -
implies that a last state of int1 coincides with an initial state of int2. For instance,
the model assumes that the final state of the tryaccess(s, o, r) action is pared with
the initial state of denyaccess(s, o, r) and preupdate(attr) actions. The specification
of the usage process in terms of intervals is defined as follows [53] (the operator ⊕
denotes the logical exclusive-or):

usage(s, o, r) ::= tryaccess(s, o, r);
(denyaccess(s, o, r)⊕

(preupdate(attr) ∧ permitaccess(s, o, r);
(((usage(s, o′, r′)⊕ idle(s))⊕ do(s, o, r))∗∧

onupdate(attr));
(revokeaccess(s, o, r)⊕ endaccess(s, o, r));
postupdate(attr)))

ITL extends the original UCON model in several ways. Firstly, an explicit state-
ment is given when the access should be denied. This makes possible to express in
the same policy positive and negative authorizations. Secondly, if the access is per-
mitted, a subject can initiate other usage requests within the main one. Generally,
the choice of the action to execute is non-deterministic and made by the subject. A
security policy concerns the order of subject’s actions, and an action is permitted
depending on the subject behavior, i.e. the history of previous usage requests. The
subject behavior is indicated by ((usage(s, o′, r′) ⊕ idle(s)) ⊕ do(s, o, r)). do(s,o,r)
refers to the execution of the requested action, idle(s) denotes that the subject does
not perform any actions, and usage(s, o′, r′) indicates a new usage request within
the main usage process. In the example of using of the personal mailbox though
a web-interface. The main usage process usage(s, o, r) = mail box is started by
performing the login action, and further a particular sequence of usage requests
can be initiated within the main process. usage(s, o′, r′) = compose mail and than
usage(s, o′′, r′′) = send mail is an example of such sequence.
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The UCON formal model based on ITL assumes also a separate attribute up-
date policy for each usage process [53]. preupdate(attr) denotes all update ac-
tions that must be performed before the usage, and similarly onupdate(attr) and
postupdate(attr) during and after the usage. Thus, the model states that a subject
behavior goes concurrently with attribute updates.

Distributed Usage Control. The term “distributed usage control” was in-
troduced by Hilty et al. [48]. It addresses specific issues on protecting of digital
information released by a provider to a remote consumer. The distributed usage
control ensures that digital information is used by the remote user according to the
security policy defined by the provider. It is powerful to enforce various security re-
quirements, e.g. “do not redistribute an object”, “delete an object within 30 days”,
etc. Actually, the distributed usage control is relevant to DRM models. More-
over, the obligation specification language (OSL), distributed usage control policy
language, can be partly translated into DRM rights expression languages such as
XrML, ODRL [48].

The distributed usage control model intersects with the original UCON model
but uses different definitions and terms [48]. Actually, it also deals with the con-
tinuous enforcement of usage decisions, but is less suitable to specify attribute up-
dates. Moreover, the distributed usage control approach is able to formalize post-
obligations. Post-obligations are mandatory tasks expected to be fulfilled in the
future after the usage process terminates. Usually, post-obligations must be fulfilled
in a specific time point, e.g. “an object must be deleted within 7 days”. Neither
TLA-based nor ITL-based UCON formal models deal with post-obligations.

The formal model of the distributed usage control is logic-based. The semantics
of the formal model is defined over traces with discrete time steps. At each time
step, a set of events can occur. Each event corresponds to the execution of an ac-
tion. An example of an event is (play, {(object,m)}), i.e. the object m is played.
If the time step is 3 minutes and the subject has been playing (using) the object
for 2 minutes, resulting events in the trace are ((play, {(object, m)}),start), ((play,
{(object, m)}),ongoing), ((play, {(object, m)}),ongoing). The protection system al-
lows a set of traces according to the security policy. The security policy consists
of declarations of events and a set of obligational (logical) formulas. Obligational
formulas contain usage restrictions which prohibit certain usages under given cir-
cumstances, and mandatory actions that must be executed either unconditionally
or after the specified usage has been performed. A security policy is specified in
the OSL language. Syntax and semantics of OSL were formalized in Z, a formal
language based on typed set theory and first-order logic with equality [48]. OSL
operators are modified and generalized operators of a linear temporal logic. Since a
concept of attributes and update actions are not defined explicitly in the distributed
usage control, OSL operators are used to synthesize the expressiveness obtained by
exploiting mutable attributes. As example, repmax(5, Eall(play, {(object,m)})) us-
ing operator Eall requires that an object m must be played no more than 5 time
steps.
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The distributed usage control is an active area of research. Beyond the formal-
ization, the distributed usage control studies offer models for the policy refinement
[97], enforcement [96], negotiations [98], architectural solutions [21, 49].

UCON in Process Algebra

The process algebra is a perfect candidate for describing open distributed systems
which deal with time and concurrency. Process algebra models operate with pro-
cesses by algebraic means. A process describes the behavior of a system, i.e. all
events or actions that a system can perform, the order in which they can be per-
formed and possibly some other aspects such as timings, probabilities, etc. The
process algebra lays down axioms on processes composition to describe a complex
behavior of a system.

UCON in POlicy Language based on Process Algebra (POLPA). The
POLPA language specification can be found in [16, 81, 82, 83, 58] and generally
it presents a variant of Milner’s Calculus of Communicating Systems (CCS). In
POLPA, the UCON security policy is modeled as a process that defines the order
in which usage control actions, authorization and condition predicates, obligation
actions and attribute updates must be performed and when. Thus, the security
policy is represented as a sequence of actions and POLPA offers several operators
on sequences composition using the following grammar:

P ::= ⊥|>|α(−→x ).P |p(−→x ).P |−→x := −→e .P |P1orP2|P1parα1,...,αnP2|{P}|Z|
where P is a policy, α(−→x ) is an action, p(−→x ) is a predicate, −→x is a variable, and Z
is a constant process definition.

The formal semantics of POLPA is given in [82]. Informal semantics is the
following:

• ⊥ is deny-All operator;

• > is allow-All operator;

• α(−→x ).P is a sequential operator, and represents the possibility of performing
an action α(−→x ) and then behave as P ;

• p(−→x ).P behaves as P if a predicate p(−→x ) is true;

• −→x := −→e .P assigns to variables −→x the values of the expressions −→e and then
behaves as P ;

• P1orP2 is an alternative operator, and represents a non-deterministic choice
between P1 and P2;

• P1parα1,...,αnP2 is a synchronous parallel operator. It expresses that both P1

and P2 must be simultaneously satisfied. This is used when two policies deal
with actions in α1, ..., αn;
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• {P} is an atomic evaluation, and represents the fact that P is evaluated in an
atomic manner, indeed once started must be completed. P here is assumed to
have at most one action, predicates, and assignments. It allows the testing or
update of variables prior or after an action;

• Z is the constant process, and there is a specification for the process Z
.
= P

and Z behaves as P ;

Several derived operators may be defined:

• P1; P2 is a sequential operator, allows to behave P1 and P2 in a sequence;

• i(P ) behaves as the iteration of P zero or more times;

• r(P ) behaves as P running in parallel zero or more times;

• P1parP2 is a parallel operator, and represents the interleaved execution of P1

and P2;

As a basic example, lets consider a security policy shown in Table 2.1 and which
specifies the preA0 core UCON scenario. This policy describes a process that starts
with the tryaccess(s, o, r) action executed by the subject, and if the pA predicate
is satisfied, the tryaccess(s, o, r) action is followed by the permitaccess(s, o, r) ac-
tion which grants the access to the object. If the authorization predicate pA is not
satisfied, the execution of the permitaccess(s, o, r) action is denied by the policy,
and consequently, the system does not allow to access the object and terminates the
policy enforcement. Otherwise, the endaccess(s, o, r) action end the policy enforce-
ment.

tryaccess(s,o,r). line 1
Pa. line 2
permitaccess(s,o,r). line 3
endaccess(s,o,r) line 4

Table 2.1: preA0 policy example

The POLPA language is expressive to model basic usage scenarios. They are dis-
tingue by positioning attribute update actions, obligations actions and predicates
checks respectively to other predicates and actions. Before-usage (pre-authorization)
policy statements are placed in between tryaccess(s, o, r) and permitaccess(s, o, r)
action. Actions and predicates stated in between permitaccess(s, o, r) and endaccess(s, o, r)
(or revokeaccess(s, o, r)) correspond to the ongoing usage. Actions occurred after
endaccess(s, o, r) (or revokeaccess(s, o, r)) are post-updates of attributes and these
actions end the policy enforcement.

The formalization of UCON in POLPA has several benefits comparing to logic-
based approaches. The POLPA policy states rigorously how the policy enforcement
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should go and avoids ambiguity in the order of usage control actions, obligation and
update actions executions, and predicates evaluation. Further, the POLPA language
is very suitable to express the ongoing usage scenarios thanks to parallel composi-
tion operators. For instance, one might easily express in POLPA the execution of
obligation actions, undate actions, and predicate checks running in parallel.

Timed Constrained Programming (TCP). Jagadeesan et al. presented a
policy algebra in the timed concurrent constraint programming paradigm [52]. The
formal model presented there is not compliant with the original UCON model but
expressive enough to formalize usage control scenarios with pre- and ongoing autho-
rization checks. Authorization predicates are considered as constrains on variables
and tokens. The formal model addresses the history-based access control, and can
express the explicit denial of access . It imposes temporal constrains on the evolution
of the system depending on the past behavior and supports equational reasoning on
security policies. The complete model details and specification are given in [52].
Details are omitted here, since the model can be potentially used for usage control,
but yet is too far to capture UCON core models.

Comparing Models Expressiveness

The expressive power of the UCON model was greatly enhanced by the access de-
cision continuity and attribute mutability comparing to traditional access control
models. Table 2.2 examines UCON formal models presented in subsection 2.1.2 for
compliance with these novelties. The symbol “+” denotes that the given formalism
is qualified to express a concept, while “-” denotes the opposite. A formal model
is compliant with the original UCON, if it is expressive enough to formalize the 24
UCON core scenarios. Continuous usage decision and attributes updates correspond
to the novelties of usage control and both are a part of the original UCON model.
Specific post-obligations management refers to formal models which formalize post-
obligations. These are actions which must be fulfilled after the usage is terminated.
Comprehensive usage scenarios may require the formal specification of concurrent
usage sessions. Explicit subject behavior means that a formal model is capable to
constrain subject’s behavior explicitly by defining a sequence of actions allowed to
execute on an object, i.e. to express a history-based access control. Certainly,
subject’s behavior can be modeled using attributes, but this approach essentially
complicates the policy. Explicit denial shows whether a formalism can express not
only permitted but also prohibited accesses explicitly.

2.1.3 Enforcement Level

Enforcement level answers how to facilitate a security policy enforcement. It aims to
present an architecture of the UCON reference monitor, its components interfaces
and authorization protocol.
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Table 2.2: UCON formalization models

Compliant
with orig-
inal
UCON

Continuous
usage de-
cision

Attribute
updates

Specific
post-
obligations
manage-
ment

Concurrent
usage ses-
sions

Explicit
subject
behavior

Explicit
denial
policy

TLA + + + - - - -
UCONA

with
creation

- - + - + - -

ITL + + + - + + +
OSL - + - + - + +
POLPA + + + - + + -
TCP - + - - - + +

As proposed in [101], the UCON reference monitor consists of a usage decision
facility (UDF/PDP) and a usage enforcement facility (UEF/PEP). In contrast with
the reference monitor used in traditional access control, communications between
the UDF/PDP and the UEF/PEP are not a state-less ‘request-response’. In UCON,
the UDF/PDP is always active and interactions between the UEF/PEP and the
UDF/PDP are state-full. Thus, if the security policy is violated during the resource
usage, the UDF/PDP generates a revocation event, and this event is enforced by
the UEF/PEP terminating the usage process.

The UDF/PDP contains three basic components [90]: an authorizations module,
a conditions module and an obligations module. The authorizations module and the
conditions module control that authorization and condition predicates specified in
the security policy are satisfied respectively. The obligations module is detailed in
[55] and decides which obligation actions have to be fulfilled before or during the
usage. The access decision is a conjunction of decisions evaluated by each module.

The UEF/PEP consists of three components too [90]: a customization module,
a monitoring module, and an update module. The monitoring module is designed
to monitor the fulfilment of obligation actions performed by an obligation subject,
whereas the result of such monitoring is analyzed by the update module. The update
module is responsible also for updates of subject’s and object’s attributes. The
access decision received from the UDF/PDP can be either ‘yes’ or ‘no’, or contains
a metadata information authorizing just a subset of requested access rights. This
metadata information is forwarded to the UEF/PEP and customizes access rights
in the customization module.

To classify UCON reference monitors, a number of factors can be taken into
account. Some of them are enlisted below:

• Location: client- and server-side reference monitor (CRM and SRM). Here,
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the server is the entity that provides the resource while the client requests and
uses this resource. The SRM resides within the server system environment
and mediates all accesses to the object. The CRM is settled on the client
environment and controls accesses to copied digital objects (particularly digital
information, e.g. text, media) on behalf of the server [101]. The SMR and the
CRM may coexist to provide a better usage control. A location of the reference
monitor is the most essential issue since it characterizes various usage scenarios
and enforcement mechanisms;

• Attribute acquisition: push and/or pull models. Since the UCON access deci-
sions are based on attributes, a crucial issue of the model enforcement is an
obtaining of trusted and fresh attribute values. As a matter of fact, certain
attributes can be either pushed by a subject with the initial request to the
reference monitor, or the reference monitor pulls attributes from the system
repository itself.

2.1.4 Implementation Level

Implementation level addresses real implementation of the UCON model which
achieve the UCON security goals and is unfeasible to brake in a reasonable time.

Currently, the UCON model is not widely implemented in various computer
environments. Although, there are several approaches in P2P, Grid computing (see
subsection 2.2.8), operating systems, data base management systems, and mobile
devices [120, 68, 8, 125, 82, 109, 126, 84, 79, 49, 115, 21, 77, 44].

2.2 State-of-the-art: Access and Usage Control in

Grid

This section outlines the existing approaches of access and usage control in Grid.

The first generation of access control in Grid, the GridMapFile, pairs local ac-
counts at the Grid resource provider machine to distinguished names (DN) of Grid
users. In this case, the security policy is defined by the privileges paired with the
local account and is enforced by the operating system running on the Grid resource
provider host. The GridMap Authorization is a viable solution for intraGrid topol-
ogy.

GridMap Authorization requires local accounts for possibly large number of Grid
users. To relax these drawbacks, GSI also provides some other simple security mech-
anisms to make access control in Grid more flexible. These alternative mechanisms
work out as a specific PDP and are classified to [37]:

• None: all requests are granted;
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• Self : access is allowed if the requestor’s identity equals to the resource’s owner
identity;

• GridMapFile: access control list mapping;

• Host authorization: access is allowed if the requestor presents a host credential
that matches a specified hostname;

• SAML Callout authorization: allows to plug in an external third-party PDP.
This PDP serves as the OGSA Authorization Service (see Figure 1.4) and
support SAML assertions and protocol to specify and enforce access control
policies.

Since the Globus Toolkit allows the adoption of external PDPs by means of
SAML Callout authorization, many solutions have been emerged to improve access
and usage control in Grid, and this section describes the main ones. These models
vary on what information is used to produce an access decision, on a policy granular-
ity and expressiveness. Whereas these models go far beyond the first generation of
access control in the Globus Toolkit based on GridMapFile, they are still inadequate
to address problems identified in the introduction chapter of this thesis.

2.2.1 CAS

The Community Authorization Service (CAS) [42, 94] is a Virtual Organization
(VO) wide authorization service that has been developed by the Globus team. The
main aim of CAS is to simplify the management of user authorization in Grid, i.e., to
relieve the Grid resource providers from the burdens of updating their environments
to enforce the VO security policies. CAS is a Grid service that manages a database of
VO security policies, i.e., the policies that determine what each Grid user is allowed
to do as a VO member on the Grid resources. In particular, the VO security policies
stored by the CAS service consist of:

• the VO security policies about the Grid resources: this policies determine
which access rights are granted to which Grid users;

• the CAS service’s own access control policies, such as who can delegate access
rights or maintain groups within the VO;

• the list of the VO members.

The local policies of the Grid resource providers, instead, are stored locally on the
Grid nodes. Hence, the CAS service can be considered as a trusted intermediary
between the VO users and the Grid resources. To transmit the VO policies to
the Grid resources where they should be enforced, the CAS service issues to Grid
users credentials embedding CAS policy assertions that specify the users’ rights on
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the Grid resources. The CAS assertions can be expressed in an arbitrary policy
language. The Grid user contacts the CAS service to request a proper assertion to
request a service on a given resource. The credentials returned by the CAS server
will be presented by the Grid user to the service it wants to exploit. This requires
that resource providers participating in a VO with CAS will deploy CAS-enabled
service, i.e., services that are able to understand and enforce the policies expressed
in the CAS assertions.

The CAS system works as follows:

1 The user authenticates himself to the CAS server, using his own proxy cre-
dential. The CAS server establishes the user’s identity and the rights in this
VO using its local database.

2 The CAS server issues a signed policy assertion containing the user identity
and rights in the VO. On the user side, the CAS client generates a new proxy
certificate for the user that embeds the CAS policy assertion, as non critical
X.509 extension. This proxy is called restricted proxy because it grants only
a restricted set of right to the user, i.e., the rights that are described in the
CAS assertion it embeds.

3 The user exploits the proxy certificate with the embedded CAS assertion to
authenticate on the Grid resource. The CAS-enable service authenticates the
user using the normal authentication system. Then it parses the CAS policy
assertion and takes several steps to enforce both VO and local policies:

– Verifies the validity of the CAS credential (signature, time period, etc.);

– Enforces the site’s policies regarding the VO, using the VO identity in-
stead of the user one;

– Enforces the VO’s policies regarding the user, as expressed in the signed
policy assertion in the CAS credential;

– Optionally, enforces any additional policies concerning the user (e.g., the
user could be in the blacklist of the site).

Hence, the set of rights that are granted to the user is the intersection of the rights
granted by the resource provider to the VO and the rights granted by the VO to the
user, taking into account also specific restrictions applied by the resource provider
to the user.

Once the access is authorized, the Grid user is then mapped on the local account
paired with the CAS service. Hence, in the Grid resource GridMapFile there is only
one entry that pairs the CAS distinguished name with the local account used to
execute the jobs on behalf of the Grid users. This simplify the work of the local
node administrator because he has to add one local account only for each CAS
service, instead of one local account for each Grid user.
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2.2.2 PERMIS

PERMIS is a policy-based authorization system proposed by Chadwick et al. [27,
110, 28] which implements RBAC in Grid. Instead of assigning certain permissions
to a specific user directly, roles are created for various responsibilities and access
permissions are assigned to specific roles possessed by the user. The assignment of
permissions is fine-grained in comparison with ACLs, and users get the permissions
to perform particular operations through their assigned role. PERMIS is based
on a distributed architecture, that includes the following entities: i) Sources of
Authority, that are responsible for composing the rules for decision making and
credential validation services; ii) Attribute Authorities, that issue the attributes that
determine the role of users; iii) Users, that are the principals that perform operations
on the resources; and iv) Applications, that provide to the users the interfaces to
access the protected resource. Obviously, users and resources can belong to distinct
domains. A policy file written in XML contains the full definition of roles in regard
to protected resources and permissions related to a specific role. The PERMIS
toolkit provides a friendly graphical user interface for managing its policies. The
policies may be digitally signed by their authors and stored in attribute certificates,
in order to prevent them from being tampered. PERMIS is based on the Privilege
Management Infrastructure (PMI) that uses X.509 attribute certificates (ACs) to
store the user’s roles. Every AC is signed by the trusted Attribute Authority (AA)
that issued it, whilst the root of trust for the PMI target resource is called the Source
of Authority (SOA). All the ACs can be stored in one or more LDAP directories,
thus making them widely available.

PERMIS also provides the Delegation Issuing Service (DIS), which allows users
to delegate (a subset of) their privileges to other users in their domain by giving
them a role in this domain, according to the site’s delegation policy. Since PERMIS
is tightly integrated with the Globus Toolkit, authorization information for an access
decision consists of user’s DN, resource and action request. For authorization deci-
sion making, PERMIS provides a modular PDP and a credential validation service
(CVS, or PIP according to the Globus model). PERMIS implements the hierarchical
RBAC model, which means that user roles (attributes) with superior roles inheriting
the permissions of the subordinate ones. The PERMIS policy comprises two parts, a
role assignment policy (RAP) that states who is trusted to assign certain attributes
to users, and a target access policy (TAP) that defines which attributes are required
to access to what resources and under what conditions. CVS evaluates all received
credentials against the RAP, rejects untrusted ones, and forwards all validated at-
tributes to the PEP. The PEP in turn passes these to the PERMIS PDP, along with
the user’s access request, and some environmental parameters. The PDP obtains an
access control decision based on the TAP, and sends its granted or denied response
back to the PEP. Hence, in order to gain access to a protected target resource a
user has to present his credentials and the PERMIS decision engine (CVS and PDP)
validate them according to the policy in order to make an access decision. Current
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version of PERMIS Authorization Service supports SAML Authorization Callout
and provides Java APIs for accessing CVS and PDP. Technical specifications and
implementation issues can be found in [4].

2.2.3 Akenti

The paramount idea of Akenti proposed by Thompson et al. [112, 111, 1] is to pro-
vide a usable authorization system for environment consisting of highly distributed
resources shared among several stakeholders. By exploiting fine-grained authoriza-
tion for job execution and management in Grid, Akenti provides a restricted access
to resources using access control policy which does not require a central administra-
tive authority to be expressed and to be enforced.

In this model, control is not centralized. There are several stakeholders (par-
ties with authority to grant access to the resource), each of which brings its own
set of concerns in resource managing. Access control policy for a resource is repre-
sented as a set of (possibly) distributed X.509 certificates digitally signed by different
stakeholders from unrelated domains. These certificates are independently created
by authorized stakeholders and can be stored remotely or on a known secure host
(probably the resource gateway machine). They are usually self-signed and express
what attributes a user must have in order to get specific rights to a resource, who
is trusted to make such use-condition statements and who can certify user’s at-
tributes. Akenti policy is written in XML and there exists three possible types of
signed certificates: Policy certificates, Use-condition certificates and Attribute cer-
tificates. Use-condition certificates contain the constraints that control access to
a resource and specify who can confirm to the required user’s attributes and thus
who may sign Attribute certificates. Attribute certificates assign attributes to users
that are needed to satisfy the usage constraints. Complete policies specification and
language used to express them can be found on Akenti web-site [1]. When an au-
thorization decision is required, the resource gatekeeper asks a trusted Akenti server
what access the user has to the resource. Then Akenti policy engine gathers all
the relevant certificates for the user and for the resource from the local file system,
LDAP servers and web servers, verifies and validates them, and responses the user’s
rights in respect to the requested resource. Akenti assumes secure SSL/TLS con-
nection between peers and resource through the resource gateway which provides
authentication using X.509 identity certificate. Authorization algorithm in Grid
using Akenti is very similar to PERMIS and has the following stages:

1 A resource provider authenticates a requestor and validates his identity as well
as possibly some additional attributes.

2 The resource provider receives and parses the user’s request.

3 The resource provider forwards the user’s identity, attributes, and requests to
trusted Akenti server to authorize user (i.e., whether request should be granted
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or denied)

4 Finally, Akenti returns a decision to the resource provider

2.2.4 Shibboleth

Shibboleth [116, 5] , is an Internet2/MACE project implementing cross-domain
single sign-on and attribute-based authorization for systems that require inter-
institutional sharing of web resources with preservation of end user privacy. The
main idea of Shibboleth is that instead of having to login and be authorized at any
restricted site, users authenticate only once at their local site, which then forwards
the user’s attributes to the restricted sites without revealing information about user
identity.

The main components of the Shibboleth architecture are: Handle Service which
authenticates users in conjunction with a local authentication service and issues an
handle token; Attribute Service presents handle token when a user requests to access
a resource. The resource, in turn, presents the user’s handle token to the Attribute
Service and requests the attributes of the user. Target Resource: includes shibboleth
specific code to determine the user’s home organization and, consequently, which
Shibboleth attribute authority should be contacted for this user. A typical usage of
Shibboleth is as follows:

1 The user authenticates to Shibboleth Handle Service (SHS);

2 SHS requests local Organizational Authentication Service by forwarding user
authentication information to confirm his identity;

3 SHS generates a random handle and maps it to user identity. This temporal
handle is registered at Attribute Service;

4 The handle is returned to the user and notified that he was successfully au-
thenticated;

5 Then the user sends a request for a target resource with the previous handle;

6 The resource provider analyzes the handle to decide which Shibboleth service
may provide the required user attributes to make authorization decision, and
contacts it by forwarding the handle that identifies the user;

7 After validation checks on the handle have been done and the user’s identity
is known, the Attribute Release Policy is used to determine whether the user
attributes can be sent to the resource provider;

8 The Shibboleth Attribute Authority casts the attributes in the form of a SAML
attribute assertions and returns these assertions to the target resource;



2.2. STATE-OF-THE-ART: ACCESS AND USAGE CONTROL IN GRID 49

9 After receiving the attributes, the target resource provider performs an au-
thorization decision with regard to the user’s request, attributes and resource
access control policy.

Detailed specification of all Shibboleth’s functional components like Identity Provider,
Service Provider, etc. and used security protocol based on SAML can be found in
[5]. GridShib [3, 26] is a currently going research project that investigates and pro-
vides mechanisms for integration Shibboleth into Globus Toolkit. The focus of the
GridShib project is to leverage the attribute management infrastructure of Shib-
boleth, by transporting Shibboleth attributes as SAML attribute assertions to any
Globus Toolkit PDP.

2.2.5 VOMS

The Virtual Organization Membership Service (VOMS), [12, 6], is an authoriza-
tion service for Grid that has been developed by the EU projects DataGrid and
DataTAG. VOMS has a hierarchical structure with groups and subgroups; a user
in a VO is characterized by a set of attribute, 3-tuples of the form group, role,
capability. The combined values of all these 3-tuples form a unique attribute, the
Fully Qualified Attribute Name (FQAN), that is paired to the Grid user. VOMS is
implemented as a push system, where the Grid user first retrieves and then sends
to the Grid service the credentials embedding the attributes he want to exploit for
the authorization process. The VOMS system consists of the following components:

• User Server: it is a front end to a data base where all the information about the
VO users is kept. It receives requests from the client and returns information
about the user;

• User Client: contacts the server presenting the certificate of a user and obtains
the list of groups, roles and capabilities of that user;

• Administration Client: used by the VO administrators to add users, create
new groups, changing roles, and so on;

• Administration Server: accepts the requests form the client and updates the
Database.

To retrieve the authorization information the VO grants him, the Grid user ex-
ploits the VOMS User Client that contacts the VOMS User Server. The VOMS
server returns a data structure, called VOMS Pseudo-Certificate or Attribute Cer-
tificates, embedding the user’s roles, groups and capabilities. The pseudo-certificate
is signed by the VOMS User Server and it has a limited time validity. If necessary,
more than one VOMS User Server can be contacted to retrieve a proper set of cre-
dential for the Grid user. To access a Grid service the user creates a proxy certificate
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containing the pseudo-certificates that he has previously collected from the VOMS
Servers.

The Grid node, to perform the authorization process, extracts the Grid user’s
information from the user’s proxy certificate and combines them with the local
policy. Since using VOMS the Grid resource is accessed exploiting the Grid user
name, i.e., the Distinguished Name in the user’s certificate, the user name should
be added in the gridmap file of each Grid resource and paired with a local account.
To this aim, the Grid resource provider periodically queries VOMS databases to
generate a list of VO users and to update the gridmap file mapping them to local
accounts.

2.2.6 Cardea

Cardea is a distributed authorization system developed as part of the NASA In-
formation Power Grid [73]. One of the key features of Cardea is that it evaluates
authorization requests according to a set of relevant characteristics of the Grid re-
source and of the Grid user that requested the access, instead of considering the
user’s and resource’s identities. Hence, the access control policies are defined in
terms of relevant characteristics rather than in terms of identities. In this way,
Cardea allows users to access Grid resources where they don’t have existing local
accounts. Moreover, Cardea is a dynamic system, because the information required
to perform the authorization process are collected during the decision process itself.
Any characteristic of the Grid user or of the Grid resource, as well of the ones of
the current environment, can be taken into account in the authorization process.
These characteristics are represented through SAML assertions, that are exchanged
through the various components of the architecture.

From the architectural point of view, the Cardea system consists of the following
components: a SAML Policy Decision Point (SAML PDP), one or more Attribute
Authorities (AA), one or more Policy Enforcement Points (PEP), one or more refer-
ences to an Information Service, an XACML context handler, one or more XACML
Policy Administration Points, and a XACML Policy Decision Point (XACML PDP).
The main component of the system is the SAML Policy Decision Point, that accepts
authorization queries, performs the decision process and returns the authorization
decision. To exploit Cardea in the existing Grid toolkits, proper connectors, e.g., an
authorization handler in the case of the Globus toolkit, generate the authorization
query in the format accepted by the SAML PDP. The SAML PDP, depending on
the request, determine the correct XACML PDP to evaluate the request. The val-
ues of the attributes involved in the authorization request are retrieved querying the
appropriate Attribute Authorities. Finally, the PEP is the component that actually
enforces the authorization decision, and could even reside in a remote Grid node.
Hence, the final authorization decision is transmitted by the SAML PDP to the
appropriate PEP to be enforced.

The components of the Cardea system could be located on the same machine,
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and in this case their interactions are implemented through local communication
paradigms, or they could be distributed across several machines, and in this case
they act as web services.

2.2.7 PRIMA

PRIMA (PRIvilege Management and Authorization) [78] is focused on management
and enforcement of fine-grained privileges. PRIMA enables the users of the system
to manage access to their privileges directly without the need for administrative in-
tervention. The model uses on-demand accounts leasing and implements expressive
enforcement mechanisms built on existing low-overheard security primitives of the
operating systems.

PRIMA addresses the security requirements through a unique combination of
three innovative approaches: privileges : unforgeable, self-contained, fine-grained,
time limited representations of access rights externalized from the underlying oper-
ating system, privileges management is pushed down to the individuals in PRIMA;
dynamic policies : a request-specific access control policy formed from the combi-
nation of user provided privileges with a resources access control policy; dynamic
execution environments : a specifically provisioned native execution environment
limiting the use of a resource to the rights conveyed by user-supplied privileges.

PRIMA authorization system could be divided in two parts. The first part is
the privilege management layer which facilitates the delegation and selective use
of privileges. The second part is the authorization and enforcement layer. The
authorization and enforcement layers have two primary components. The first com-
ponent is the PRIMA Authorization Module. The Authorization Module plays the
role of a PEP. The second component is the PRIMA PDP which, based on poli-
cies made available to it, will respond to authorization requests from the PRIMA
Authorization Module. These policies are created using platform independent lan-
guage XACML. Two other components in the authorization and enforcement layer
are the Gatekeeper and the Privilege Revocator. The Gatekeeper is a standard
Globus Toolkit component for the management of access to Globus resources. It
was augmented with a modular interface to communicate with the authorization
components. The JobManager, also a standard component of the Globus Toolkit,
has not been modified from the original Globus distribution. It is instantiated by
the Globus Gatekeeper after successful authorization. It starts and monitors the
execution of a remote users job. The Privilege Revocator monitors the lifetime of
privileges that were used to configure execution environments. On privilege expira-
tion, the Privilege Revocator removes access rights and de-allocates the execution
environment automatically. No manual intervention from system administrators is
required.

A typical access request in PRIMA authorization system goes as follows. Step
1, the delegation of privileges and provision of policies, happens prior to a request
is issued. In step 2, subjects select the subset of privilege attributes they hold



52 CHAPTER 2. BACKGROUND AND STATE OF THE ART

for a specific (set of) Grid request(s) and group these privileges with their short
lived proxy credential using a proxy creation tool. The resulting proxy credential
is then used with standard Globus job submission tools to issue Grid service re-
quests (step 3). Upon receiving a subjects service request, the gatekeeper calls the
PRIMA authorization module (step 4). The PRIMA authorization module extracts
and verifies the privilege attributes presented to the Gatekeeper by the subject. It
then assembles all valid privileges into a dynamic policy. Dynamic policy denotes
the combination of the users privileges with the resources security policy prior to
the assessment of the users request. To validate that the privileges were issued by
an authoritative source, the Authorization Module queries the privilege manage-
ment policy via the PRIMA PDP. The multiple interactions between authorization
module and PDP are depicted in a simplified form as a single message exchange
(step 5 and 6). Once the privileges issuer authority is established, the PRIMA
Authorization Module formulates an XACML authorization request based on the
users service request and submits the request to the PDP. The PDP generates an
authorization decision based on the static access control policy of this resource. The
response will state a high-level permit or deny. In the case of a permit response,
the Authorization Module interacts with native security mechanisms to allocate an
execution environment (e.g., a UNIX user account with minimal access rights) and
provision this environment with access rights based on the dynamic policy rules
(step 7). Once the execution environment is configured, the PRIMA Authorization
Module returns the permit response together with a reference to the allocated exe-
cution environment (the user identifier) to the Gatekeeper and exits (step 8). The
following steps are unchanged from the standard Globus mechanisms. The Globus
Gatekeeper spawns a JobManager process in the provided execution environment
(step 9). The JobManager instantiates and manages the requested service (step 10).
In the case of a deny response, the Authorization Module returns an error code to
the Gatekeeper together with an informative string indicating the reason for the de-
nied authorization. The Gatekeeper in turn will protocol this error in its log, return
an error code to the Grid user (subject) and end the interaction. The Privilege Re-
vocator watches over the validity period of dynamically allocated user accounts and
all fine-grained access rights, revoking them when the associated privileges expire
(step 11).

In summary, PRIMA mechanisms enable the use of fine-grained access rights,
reduce administrative costs to resource providers, enable ad-hoc and dynamic col-
laboration scenarios, and provide improved security service to long-lived Grid com-
munities.

2.2.8 Sandhu’s Approach for Collaborative Computing

The authors of UCON recognized the usefulness of their model also for collaborative
computing systems (and hence also for Grid) and published an initial work in the
area [125, 126].
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The access and usage control framework was designed to protect a shared trusted
storage for a collaborative management of an application code by several developers
from different locations. It was enhanced to address attribute mutability (e.g. devel-
oper’s location is a mutable attribute) and continuity of control. A security policy
stated exactly the need of continuous control and access rights were determined by
authorization predicates, condition predicates and obligations.

Authors provides an architecture and initial implementation of a reference mon-
itor. The reference monitor consists of user platforms, resource providers (RPs),
and an attribute repository (AR). AR is a centralized trusted service to store and
push mutable subject and system attributes to PDP. Object attributes are stored
in a usage monitor (UM) on each RP side. A usage session is initialized when a
user submits an access request from its platform to RP (step 1). Persistent subject
attributes are pushed with the access request to the PDP (step 2). After receiving
the request, PDP contacts AR and retrieves mutable attributes of the requesting
subject (steps 3 and 4) and the object attributes from UM (step 5). Since the user
may have interest on showing good values for mutable attributes, the PDP exploit
a push model for immutable while the pull model for mutable attributes to ensure
that PDP has always fresh information. By the way, this hybrid scenario is time
sensitive and can pose security overhead. An access control decision is issued by
PDP after collecting all related information (subject, object, and system attributes)
and evaluation of security policies. The access decision is forwarded to PEP and
enforced in the execution environment of RP (step 6). As the side effect of making
the access decision, attribute updates are preformed by PDP according to corre-
sponding security policy. Updated attributes are sent back to AR (step 7), and
object attributes - to UM (step 8). When the access is in progress, any update of
subject or object attributes and any change of system conditions triggers the reeval-
uation of the policy by PDP according to the ongoing usage session and may result
in revocation of the ongoing usage or updates of attributes.

The prototype was implemented as the server-side reference monitor (both PDP
and PEP were placed on RD side). The implementation did not realize all ca-
pabilities of the model and was limited to handle a continuity of control, access
revocation, ongoing attribute updates. The reference monitor enforced usage con-
trol policy written in XACML policy language [119]. By the way, XACML is not
expressive enough to define the original UCON model completely. It was noted in
[125, 126], that XACML is only capable to specify attribute requirements before
usage and possible updates after the usage, but not during the usage.
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Chapter 3

Access and Usage Control Model
in Grid

This Chapter described our access and usage control model for Grid services based
on the UCON model. The UCON model is considered as a good candidate to express
comprehensive usage scenarios occurring in Grid due to the UCON’s peculiarities,
a continuity of control and mutability of attributes. In fact, Grid services are long-
lived and initial conditions which grant to a requestor some access rights over the
Grid service can change during the service execution. This requires a continuous
access reevaluation and the policy violation can lead to the access revocation and
the service termination.

That Chapter covers the policy level and introduces Grid model abstraction
which outlines objects to be protected on coarse- and fine-grained levels of control
(section 3.1). Section 3.2 describes U-XACML policy specification language which
enhances XACML in order to express core UCON access and usage control scenarios.
Section 3.3 shows a policy formal model based on POLPA process algebra language.
This Chapter ends giving several examples of security policies on coarse- and fine-
grained levels of control (subsection 3.4).

3.1 Grid Model Abstraction

Grid is a collaborative computational environment which is operated by several
participants: Grid user, resources providers and Grid administrators. To satisfy
security requirements of Grid participants, our access and usage control framework
proposes two levels of control: a coarse-grained level of control that manages access
and usage to Grid service instances, and a fine-grained level that monitors the usage
of underlying resources allocated for these service instances. Both levels are extended
with the UCON’s peculiarities, a continuity of control for long-lived services and
mutability of attributes as a side effect of the usage process.
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3.1.1 Coarse-grained Level of Control

A computational Grid exposes a set of Grid services to facilitate efficient execution of
jobs. The coarse-grained level of control in our framework enforces security policies
over Grid services and also specifies an authorized workflow of Grid services.

A Grid service implementation should be compliant with WS-Resource Frame-
work specification and it extends the concept of a Web service with the notion of
a state-full service [41]. Indeed, a Grid service is composed of a Web service and a
state-full resource. The Web service part provides interfaces to access the resource,
while the resource is assigned to perform some computational tasks. The resource
can be created, destroyed and accessed several times during its life-cycle. Figure 3.1
gives a representation of a Grid service.

Figure 3.1: Grid Service

When a Grid user wants to execute a job in Grid, it invokes a factory of a com-
putational Grid service. The factory service creates the new service instance, i.e.
a state-full resource. The service instance models a process that executes the sub-
mitted job. During the execution, the service instance can be contacted using Grid
Service PortTypes to check the status of the execution. The service instance sends
a notification to the Grid user once it has finished executing. Then, the service in-
stance can be destroyed. If access to create and use the Grid service instance is based
on mutable attributes which might change during the service instance execution, the
continuous control is required.

Each Grid service instance is uniquely identified. It is identified by the end point
reference (EPR) which consists of Grid Service Handler (GSH) - abstract name, and
Grid Service Reference (GSR) - used to communicate with the named Grid service
instance.

All main services used to facilitate execution of jobs in computational Grid,
i.e. GRAM, MDS, and GridFTP service, are state-full services. Instances of these
services are basic objects to be protected on the coarse-level of control. Grid users
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are subjects, and access rights are permissions to create Grid service instances and
invoke their methods.

A computational Grid is formed by a number of distinct Grid service instances
running together. Grid users might compose Grid services on their discretion to
achieve some computational goals (e.g. see the usage example of the computational
Grid given in section 1.1 and Figure 1.3). Composition of Grid services instances
on behalf of a Grid user is named as a service workflow. In computational Grids
the service workflow usually helps to facilitate the execution of heavy computational
jobs. Each job can be decomposed on several parts and each part executed in parallel
by a single computational service. Service workflows are another type of objects to
be controlled on the coarse-grained level of control.

3.1.2 Fine-grained Level of Control

Each Grid service instance runs on its own processor, i.e. a Grid resource provider
machine, and has an internal process control. The fine-grained level of control in
our framework is enhanced with a flexible and efficient continuous control over RPs
resources and allows to specify limited access rights to resources which host Grid
service instances.

Grid users invoking Grid services hosted on RP’s resources are subjects on this
level of control. RP’s resources like software installed on the RP platform, data
files, storage, CPU, memory, network connectivity are objects. Access rights allow
an invocation of software, an opening a file, a creation of a network socket, etc.
Execution of each access rigts self is considered as a long-standing activity (e.g. an
action which allows to make a socket connection). If access to perform such actions
is based on mutable attributes which might change during the action execution, the
continuous control is required.

Since a Grid computational service executes jobs submitted by remote (and
possibly malicious) Grid users on the local resource, the fine-grained level of control
addresses also a history-based security. Instead of considering the execution of a job
as a single atomic action, we split down the monitoring in basic actions performed by
a job during its execution. In particular, since we are interested in the interactions
with the underlying resource, the actions we monitor are the system calls that jobs
invoke on the operating system level. Hence, the sequence of actions performed by
a job during its execution defines the behavior of the job itself. This sequence is
not deterministic, because it may depend on various factors, such as specific input
values. The model is history-based because the actions that a job is allowed to
perform at a given point of its execution depend on its past behavior, i.e. on the
sequence of actions previously executed by the job itself. Hence, a given action a
could be allowed only if some other actions have (not) been already executed.
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3.1.3 Integrating Two Levels of Control with Shared At-
tributes

Two levels of control are integrated by sharing attributes used to built security
policies. A security policy that specifies mapping rules between attribute on different
level of control is called a property policy. This policy is written as normal logic
programs [14] and discussed in section 4.1.1.

Examples of coarse-grained attributes are Grid user location, reputation, bal-
ance, Grid roles, number of Grid service instances created by a specific Grid user,
high-level attributes of Grid resource providers, etc. Examples of fine-grained at-
tributes are number of resources consumed by a specific Grid service instance, e.g.
number of created files, number of bytes transmitted via network, etc.

Attributes obtained at the coarse-grained level are taken into account for access
decisions at the fine-grained level and vise versa. From security point of view, the
integration of the two levels guarantees that Grid users exploit fine-grained resources
in compliance with access rights granted on the coarse-grained level. Continuous
control on both levels imposes that a violation of a security policy either on coarse-
or fine-grained level triggers a termination of a Grid service instance.

The enforcement of security policies depends on types of attributes used in the
policy specification. For these purposes, we classify attributes based on mutability
reason and provenance. The mutability reason answers why attribute can change
its value and launches the following attribute types:

• Immutable: these attributes are static during the usage and can be change
only by the administrative actions;

• Enforceable mutability : these attributes are changed as the result of a policy
enforcement only, and this changes are encoded into the policy through update
actions;

• Observable mutability : these attributes are mutable by their nature, but how
they change is not stated explicitly in a security policy. Reference monitor
enforcing the security policy may only observe these attributes.

The provenance denotes where attributes were issued and is divided on:

• Local : these attributes are created in a security domain where the policy is
enforced;

• Remote: these attributes are created in one security domain, but can be used
in others.

In fact, coarse-grained attributes are usually considered as remote and with
observable mutability regarding the fine-grained level of control and vise versa. By
the way, this might hold for any attribute on any level of control, e.g. an attribute
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Figure 3.2: U-XACML Policy Meta-model

which specifies a location of a Grid user also is remote and with observable mutability
regarding the coarse-grained level of control. In order to produce credible access
decisions, reference monitor should understand the semantics of such attributes and
trust to authorities issuing them.

3.2 Policy Specification Language: U-XACML

In this section, we propose U-XACML policy specification language, an enhancement
of the XACML with features of usage control, i.e continuity of an access decision
evaluation and mutability of attributes. U-XACML is capable to specify core UCON
scenarios.

XACML [119] is the most widely-used example of the common purpose access
control policy language. Attributes of arbitrary types can be expressed which makes
the XACML language application-independent and extensible to accommodate spe-
cific requirements of specific applications and domains. Currently, the OASIS stan-
dards organization is working on the XACML specification, and several implemen-
tations have been presented by third-party vendors1.

XACML is facilitated to express traditional access control models, where an
access decision is evaluated only once when a request to access a resource comes.
Also, the XACML policy can express obligations, a set of actions performed in
conjunction with the access decision enforcement. However, the current version of
XACML has insufficient facilities to express a continuous control afterwards the
access was granted and started.

1http://sunxacml.sourceforge.net, http://mvpos.sourceforge.net
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subject, object and access right of the UCON model are represented in
XACML (and U-XAMCL) by subject, resource and action respectively. Sub-
jects, resources and environment are associated with a set of attributes described
with the following elements: <AttributeDesignator> (states to whom and by
whom the attribute is issued), <AttributeSelector> (states where the attribute
can be found), and <AttributeValue> (contains an attribute value).

The U-XACML policy meta-model slightly extends the original XACML and is
drawn in Figure 3.2. The top-level policy elements are <PolicySet>, <Policy>, and
<Rule>.

The <Rule> has three main parts: <Target> which denotes rule’s applicability to
an access request, <Condition>s which are predicates over attributes, and <Effect>

is the result of the access decision evaluation. It returns either “Permit” or “Deny” if
the rule is satisfied and “Non Applicable” if the <Target> and/or <Condition>s are
not satisfied. Authorizations and conditions proposed in UCON are modeled in U-
XACML by means of the <Target> and <Condition> elements. <Target> element
puts constraints on the immutable attributes only, while <Condition> elements
cover mutable attributes of a subject, object and environment.

The XACML (and U-XACML) <Policy> consists of one or more <Rule> ele-
ments. An access decision implied by the <Policy> is a combination of the re-
sult of the evaluation of each <Rule> it contains. XACML identifies several com-
bining algorithms: deny-overrides, permit-overrides, first-applicable and only-one-
applicable. The access decision produced by the <Policy> is accompanied with a
set of <Obligations>.

The <PolicySet> is an optional element which provides the resulting policy
through the combining of several <Policy> elements applicable to the access request.

In the UCON access decision should be evaluated not only before granting the
access but also continuously when the access is in progress. The U-XACML policy
specifies when the access decision is made by the DecisionTime in the <Obligation>
and <Condition> elements. For example, the <Condition> element should include
the following:

<xs:element name="Condition"/> <xs:complexType
name="ConditionType">

...
<xs:attribute name="DecisionTime" type="xs:string" use="required"/>
...

</xs:complexType>

DecisionTime has values pre and on. For the pre models, the conditions are eval-
uated only once, while for the on-going models they have to hold continuously.

To represent attribute updates, we define a new element, <AttrUpdates>, that
contains a collection of <AttrUpdate> elements:

<xs:element name="AttrUpdates"
type="u-xacml:AttrUpdatesType"/> <xs:complexType
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name="AttrUpdatesType">
...
<xs:sequence>

<xs:element ref="u-xacml:AttrUpdate" maxOccurs="unbounded"/>
</xs:sequence>
...

</xs:complexType>

Each <AttrUpdate> refers to a distinct attribute and defines a single update action:

<xs:element name="AttrUpdate" type="u-xacml:AttrUpdateType"/>
<xs:complexType name="AttrUpdateType">

...
<xs:sequence>

<xs:element ref="u-xacml:UpdateExpression" minOccurs="0"/>
</xs:sequence>
...
<xs:attribute name="UpdateTime" type="xs:integer" use="required"/>
...
<xs:element ref="TriggerOn"/>
...

</xs:complexType>

The UpdateTime element defines when an update action must be preformed and
has values 1, 2, or 3 that denote, respectively, pre-, on- and post-updates. The
<UpdateExpression> element is a specific update function which is used to compute
a new value of the attribute.

When access is in progress, an invocation of obligation and update actions is trig-
gered when some conditions hold. The <ObligationExpression> and <AttrUpdate>

elements include the <TriggerOn> element which identifies conditions which trigger
the update and obligation actions:

<xs:element name="ObligationExpression"/> <xs:complexType
name="ObligationExpressionType">

...
<xs:element ref="TriggerOn"/>
...

</xs:complexType>

The <TriggerOn> has the same syntax as the <Condition> element.
These are the minimal required modifications to the XACML language specifi-

cation in order to capture attribute updates, continuous policy evaluation, and to
place conditions triggering ongoing attribute updates and obligations. These results
are promising and show how relatively easily the existing standards in access and
usage control have to be extended to express the UCON model.

3.3 Policy Formal Model: POLPA

The U-XACML policy specification language is capable to express core UCON sce-
narios which control the execution of a single long-standing access action. In fact,
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our access and usage control model surmises to specify also history-based security
control, i.e. sequences of actions, where each action is also the long-standing exe-
cution. Thus, we exploited POLPA policy language (rf. section 2.1.2) to express
formally security policies on two levels of control. The POLPA language represents
a security policy as a sequence of actions and is powerful to express UCON novelties
too.

We follow a similar approach to [127] and consider a set of actions that model
the potential activities involved in the UCON process. Every action refers to an
access request where a subject s wants to access an object o through an operation
that requires the right r. Given that the triple (s, o, r) represents the access request,
we consider the following actions:

• tryaccess(s,o,r): performed by subject s when performing a new access
request (s, o, r);

• permitaccess(s,o,r): performed by the reference monitor when granting
the access request (s, o, r);

• denyaccess(s,o,r): performed by the reference monitor when rejecting the
access request (s, o, r);

• revokeaccess(s,o,r): performed by the reference monitor when revoking an
ongoing access (s, o, r);

• endaccess(s,o,r): performed by the execution environment or the subject
when ending the access (s, o, r);

• update(attr): performed by the reference monitor to update the attribute;

• Pa (Pa): performed by the reference monitor when authorization predicates
based on attributes are (not)satisfied;

• Pb (Pb): performed by the reference monitor when obligation actions are
(not)fulfilled;

• Pc (Pc): performed by the reference monitor when condition predicates based
on environmental attributes are (not)satisfied.

An access request to create and use a computational Grid service on the coarse-
grained level of control is specified via

tryaccess(gridUser,GRAMservice,createManagedJob)

and action

endaccess(gridUser,GRAMservice,createManagedJob)
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is used to represent that the execution of the submitted job has ended and the
corresponding service instance is destroyed.

A fine-grained security policy, that regulates the interactions with the local re-
sources of jobs executed by the computational service instance on the behalf of the
remote Grid user, specifies the access request via

tryaccess(app_id,socket,accept(sd,addr,addrlen,newsd))

where the job app_id tries to access the socket resource to execute the operation
accept to wait for an incoming network connection. An attribute of the job app_id

is the distinguished name of the Grid user that submitted it to the computational
resource. Instead, the action

endaccess(app_id,socket,accept(sd,addr,addrlen,newsd))

is used to represent that the execution of the access previously described has been
terminated.

3.4 Security Policy Examples

This subsection presents several examples of security policies specified using the
POLPA formal language. The usage control scenarios encoded in these policies are
based on experiences from previous work in access and usage control in Grid and
interactions with the EU GRIDTRUST project participants. The GRIDTRUST
project was launched to improve Grid security and clearly revealed the necessity of
more sophisticated security services to adequately support continuous control over
Grid services in a variety of collaborative scenarios.

3.4.1 Example 1. Coarse-grained Security Policy

The table 3.1 gives an example of the course-grained policy informally expressed in
the introduction Chapter. The usage of a Grid service instance service1 created
by an user1 is allowed only for 20 seconds and if the user1 in the meanwhile never
tries to access the service s2.

The first line of the policy states the access request received from the user1

to call the method createManagedJob of the service1. The predicate in the sec-
ond line checks if the service2 is not invoked by the user1. The invokedServ is
the user1’s (subject) attribute containing a set of active services running on be-
half of the user1. If the predicate is satisfied, the set of active services should
be updated by inserting the service1 identifier (line 3). The predicate evalua-
tion and the attribute update are run before granting the access. Further, the
system creates the service1 instance and the ongoing usage control phase starts,
the permitaccess(user1,service1,createManagedJob) action is performed. The
service execution time is bounded by 20 seconds what is stated by on-authorization
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tryaccess(user1,service1,createManagedJob). line 1
[(service2 /∈ user1.invokedServ)]. line 2
update(user1.invokedServ = user1.invokedServ ∪ service1). line 3
permitaccess(user1,service1,createManagedJob). line 4
( ([(service1.time > 20s) or (service2 ∈ user1.invokedServ) ]. line 5

revokeaccess(user\1,service1,createManagedJob) ) line 6
or line 7

endaccess(user1,service1,createManagedJob)) line 8
). line 9
update(user1.invokedServ = user1.invokedServ \ service1) line 10

Table 3.1: Coarse-grained Security Policy 1

predicate in the line 5. Also, it specifies that during service1 usage, the user1

is forbidden to call any method of the service2. Otherwise, the access should be
revoked and execution of the service1 terminated (line 6). If the policy is not
violated during the usage, the user can end the service normally (line 8). After
the usage, the invokedServ attribute is updated since the service1 instance does
not exist anymore. Notice, that the invokedServ attribute is a multi-set and may
contains several equal elements, while the post-update action removes just one entry
of the service1.

3.4.2 Example 2. Coarse-grained Security Policy

The table 3.2 gives an example of a policy which contains 5 rules:

• Grid user’s reputation should be higher the threshold value before the usage
(pre-authorization). If it is below the threshold during the execution, the
access should be revoked and the application terminated (on-authorization).
After the usage, the resource provider updates Grid user’s reputation (post-
update). If the service was ended normally by the user, the reputation should
be increased, while if the access was revoked by the system, than the reputation
should be decreased. This rule refers to onA3 model;

• No more that 5 applications can run on behalf of the user on the resource
provider node. If the number exceeded 5, than the access should be denied
(pre-authorization). The update of the number of running applications is
required before starting a service (pre-update) and when the usage is over
(post-update). This rule refers to preA13 model;

• Grid user has to sign an agreement, e.g. that application is not malicious,
before submitting it to the execution. This rule refers to preB0 model;

• The application submitted for execution can exploit computational resources
for a particular time quota. If during the usage, application’s execution time
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tryaccess(user1,service1,createManagedJob). line 1
[(user1.reputation > 10) ∧ (user1.numOfAppl ≤ 5)]. line 2
Pb(’user1 should sign agreement’). line 3
update(user1.numOfAppl += 1). line 4
permitaccess(user1,service1,createManagedJob). line 5
Z. line 6
update(user1.numOfAppl -= 1) line 7

where

Z = ( line 8
(( line 9

({[(service1.timeQuota + 1h > environment.currTime)]. line 10
Pb(’send notification’)}) line 11

par line 12
({[(user1.credit > 0)]. line 13
update(service1.timeQuota++,user1.credit=0)}) line 14

).Z) line 15
or line 16

(endaccess(user1,service1,createManagedJob). line 17
update(user1.reputation += 1)) line 18

or line 19
([(user1.reputation ≤ 10) ∨ line 20
(service1.timeQuota < environment.currTime)]. line 20
revokeaccess(user1,service1,createManagedJob) line 21
update(user1.reputation -= 1)) line 22

) line 23

Table 3.2: Coarse-grained Security Policy 2

is 1 hour to reach the quota value, the ongoing obligation is triggered. This
obligation informs the user, that allowed execution time is elapsing and the
credit is required to proceed the execution. This rule refers to onB0 model;

• If application’s execution time exceeded the quota and no credit was submitted
by the user, the system should terminate the execution of the application
(on-authorization). Otherwise, if the credit is presented, the system triggers
attribute updates (on-update). It doubles the execution quota time limit and
sets the credit value to zero. The iterative prolonging of the usage quota can
be performed unbounded number of times. This rule refers to onA2 model;

3.4.3 Example 3. Coarse-grained Security Policy

Table 3.3 gives an example of services workflow policy (similar to one given in Figure
1.3). This policy is enforced on the coarse-grained level and control the sequence of
services invocation allowed in the Grid. The security policy allows a Grid application
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tryaccess(user1,service1,allocateResource). line 1
permitaccess(user1,service1,allocateResource). line 2
endaccess(user1,service1,allocateResource); line 3
( line 4

(tryaccess(user1,service2,createManagedJob). line 5
permitaccess(user1,service2,createManagedJob). line 6
endaccess(user1,service2,createManagedJob)) line 7

or line 8
(tryaccess(user1,service3,createManagedJob). line 9
permitaccess(user1,service3,createManagedJob). line 10
endaccess(user1,service3,createManagedJob)) line 11

); line 12
tryaccess(user1,service4,storeResults). line 13
permitaccess(user1,service4,storeResults). line 14
endaccess(user1,service4,storeResults) line 15

Table 3.3: Coarse-grained Security Policy 3

to call service service1 (lines 1-3), than to invoke any of the computational services
(i.e. either service service2 or service service3 but not both (lines 4-12)). If a
sequence of services service1 - service2 or service1 - service3 is finished the
Grid application is granted access to the service service4 (lines 13-15).

3.4.4 Example 4. Fine-grained Security Policy

tryaccess(app_id,free_mathlib,open). line 1
[property(user,non_profit)]. line 2
permitaccess(app_id,free_mathlib,open). line 3
endaccess(app_id,free_mathlib,open). line 4

i(tryaccess(app_id,free_mathlib,read). line 5
permitaccess(app_id,free_mathlib,read). line 6
endaccess(app_id,free_mathlib,read)). line 7

tryaccess(app_id,free_mathlib,close). line 8
permitaccess(app_id,free_mathlib,close). line 9
endaccess(app_id,free_mathlib,close) line 10

Table 3.4: Fine-grained Security Policy 4

Table 3.4 gives an example of the fine-grained security policy. It specifies the
the job app_id running on the behalf of the Grid user is allowed to access the
utility library free_mathlib if the user is qualified as non_profit. This attribute is
mined from the set of attributes presented on the coarse-grained level of control. The
property policy regulates mapping rules between coarse- and fine- grained attributes
and example of such policy is given in Figure 4.6.
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If the access is granted , the file should be opened first, read several times, and
eventually closed.
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Chapter 4

Enhancing Expressiveness of the
Model

This Chapter covers the policy level and presents the enhancements of access and
usage control model in Grid. These enhancements address the problems occurring
during enforcement of usage security policies in distributed settings of Grid environ-
ment.

Section 4.1 introduces a formal model to describe and collect attributes and
evaluate authorization predicates. Attributes are considered as a sensitive data,
and Grid entities participating in access and usage control iteratively disclose their
attributes to gain a certain level of trust to each other. This section describes
trust negotiation in Grid, a policy-based technique that provides entities with the
possibility to protect their own attributes and to negotiate with other entities access
to those attributes. Attributes disclosed by a Grid user during trust negotiation are
used to evaluate authorization predicates.

Section 4.2 examines uncertainties associated with mutable attributes used to
produce an access decision. These uncertainties occur in distributed environment
where notification mechanisms about new attribute values are not available. Thus,
the reference monitor operates using possibly out-of-date attributes. The risk-aware
access and usage control model introduces a probabilistic model to compute uncer-
tainties and based on the computed value to make a credible access decision - to
grant or deny the access. The foremost task of the risk-aware access and usage
control is to approximate a continuity of policy enforcement. The system generates
an efficient scheduler for querying fresh attribute values only when the further en-
forcement of the policy becomes too risky. The scheduler foresees when attributes
probably should change and, moreover, this change is going to violate a policy.
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4.1 Trust Negotiation in Grid

Security policies are based on attributes. Attributes are usually pushed with the
access request or pulled by the reference monitor enforcing the security policy. In
fact, attributes are sensitive data and Grid users want to disclose a minimum set
of attributes which solve the access control problem. In opposite side, the reference
monitor is interested in preserving privacy of security policies and is suspicious to
disclose the set of required attributes.

Trust negotiations are suggested by our access and usage control model to estab-
lish trust between Grid users and resource providers without previous interactions.
Trust negotiation is a policy-driven process allowing for automated on-the-fly disclo-
sure and exchange of sensitive attributes and security policy statements. We inte-
grate in Grid the trust negotiation model proposed by Koshutanski et al. [60, 59, 61].
This model was selected since it allows to express comprehensive negotiation sce-
narios and has security overhead of the same level regarding the existing analogues
[71].

4.1.1 Attribute-based Access Control

Security policies considered here are based on remote and immutable attributes,
protect the access to Grid service instances, and model pre-authorization UCON
scenarios on the coarse-grained level of control. The security policy is formed mainly
by authorization predicates. Table 4.1 gives a basic security policy example.

tryaccess(s,o,r). line 1
Pa. line 2
permitaccess(s,o,r). line 3
endaccess(s,o,r) line 4

Table 4.1: preA0 Security Policy

This security policy represents a usage scenario where an access decision is eval-
uated only once before the usage session starts and the access decision is done by
checking authorizations. In the following, we refer to this security policy by consid-
ering only authorizations specified via PA. The reference monitor derives the access
decision from presented attributes and authorizations using inference rules of the
formal model expressing these concepts [104].

In the following, we examine the syntax and semantics of authorizations. These
PA policies are written as normal logic programs [14]. A logic program is a set of
rules of the form:

A ← B1, . . . , Bn (4.1)
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A is called the head of the rule, each Bi is called a positive literal, whereas the
conjunction of Bi is called the body of the rule. If the body is empty the rule is
called a fact.

In the model we also have constraints that are rules with an empty head.

← B1, . . . , Bn (4.2)

A constraint (4.2) is used to rule out from the set of acceptable models situations
in which all Bi are true and all Cj are false.

Below we list the core predicates defined for the logical model representation at
the coarse-grained level of control.

– grant(User, Service : s, Action : p, Resource : r) a predicate denoting that a
User is granted to invoke an action p on a Grid service s which exploits an
underlying resource r.

– cred(User, Attr :a, Issuer : i) a predicate denoting a credential token of a User
having attribute a issued by i.

Notice, that User corresponds to a subject, Service :s and Resource :r - to an object,
and Action :p - to access rights. Since Grid is an open system with a priori unknown
clients we do not have a predefined set of client identities in the model. We denote
that with a variable User specifying untyped entity value in the respective fields of
the predicates above.

The access is permitted if the logical implication of the grant(User, Service : s,
Action :p, Resource :r) predicate can be drawn using presented attributes cred(User,
Attr :a, Issuer : i). Otherwise, the access is denied.

4.1.2 Feedback on Missing Attributes

The intuition behind the coarse-grained access control model is to provide Grid users
with a feedback on missing credentials in cases of not enough access rights. Also the
work by [54, 20] identifies the need of a feedback on access control requirements for
open systems. The underlying access control model [62] is data-driven by two logic
reasoning services: deduction and abduction [105]. We use deduction logic reasoning
when taking decisions on whether a Grid user has enough access rights to get a
Grid service, and abduction on logic programs as a core reasoning when computing
a feedback on missing credentials. This subsection illustrates the essence of the
interactive access control process as a core element for negotiation. We refer to
[62] for details on the two reasoning services and their deployment in an interactive
access control model.

Each Grid security domain has a security policy for access control PA and a
security policy for disclosure control PD. PA protects Grid’s resources by stipulating
what credentials a Grid user must satisfy to be authorized for a particular resource
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while, in contrast, PD defines which credentials among those occurring in PA are
disclosable so, if needed, can be demanded from a Grid user.

Each Grid user has a profile of active credentials CA available to a Grid security
domain during a negotiation process. The reference monitor keeps user’s set of
active credentials for the duration of the user’s request and its execution in Grid.
The credential profile is also accessible by the fine-grained monitoring level.

The reference monitor also keeps a set of declined credentials CN that keeps track
of what credentials a Grid user has declined to provide within a negotiation session.
Declined credentials are internal to the negotiation model and are kept only for the
duration of a current authorization process. They are not used at fine-grained level.
The purpose of the declined credentials is to avoid loops in a negotiation process
and to guarantee successful interactions in presence of alternative solutions.

AccessDecisionWithFeedback(request, PA, PD, CA, CN )

1: if request is a consequence of PA and CA then grant

2: else

3: compute a set of disclosable credentials CD entailed

by PD and CA. Remove from CD all presented

and declined credentials, i.e. CD = CD \ (CN ∪ CA),

4: compute a set of missing credentials CM such that

(i) CM ⊆ CD,

(ii) PA together with CA and CM grant request,

(iii) CA and CM preserve PA consistent.

5: if no set found then deny else ask(CM).

Figure 4.1: Coarse-grained Access Decision with Feedback on Missing Credentials

Figure 4.1 shows the core access decision algorithm with feedback on missing cre-
dentials. Input to the decision process is the service request, access policy, disclosure
policy, user’s set of active and declined credentials. First step checks if the user has
enough access rights to access the resource according to its active credentials and
Grid’s access policy. If the check succeeds the function returns grant.

In case of not enough access rights, the algorithm performs two steps to compute
a feedback on missing credentials. It first computes a set of disclosable credentials
inferred form user’s active credentials and the Grid’s disclosure policy, and from the
resulting set, it removes the already presented and declined credentials. Second,
the algorithm uses an abduction reasoning to compute a set of missing credentials,
out of the disclosable ones, that is sufficient to unlock the requested resource. The
abduction reasoning guarantees that if a solution exists then it is consistent with the
access policy and user’s active credentials. If a solution set is found it is returned
back, else a denial message is returned instead.
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The coarse-grained access control process is implemented by using the DLV sys-
tem [72] as a back-end engine for the deductive and abductive computations.

4.1.3 Negotiation-based Decision Making

We first define the three policies that Grid users (specified as clients) and Grid
resource providers (specified as servers) have:

• PA a policy for protecting opponent’s own resources based on foreign creden-
tials

• PAC a policy for protecting opponent’s own credentials based on foreign cre-
dentials

• PD a policy for disclosure the need of (missing) foreign credentials

Figure 4.2 shows the negotiation protocol. The protocol runs on both client
and server side. The meaning of CA, CNand CM is read as the set of presented
foreign credentials, the set of declined foreign credentials and the set of missing
foreign credentials, respectively. We also denote with O a set of own credentials
with respect to a negotiation opponent. We also defined the notion of suspended
credential requests to handle the fact that during a negotiation process entities may
start to request each other credentials that are already in a negotiation. The set Oneg

keeps track of the opponent’s own credentials that have been requested and which
are still in negotiations. Hence, if a request for a credential already in a negotiation
the protocol suspends the request until the respective negotiation thread is finished.
When the original thread returns an access decision the protocol resumes all threads
awaiting on the requested credential with the decision.

A negotiation process has the following main steps:

1. A client, Alice, sends a service request request and (optionally) a set of cre-
dentials Cp to a server, Bob.

2. Bob’s negotiation dispatcher receives the requests, checks if it is a service
request and runs the negotiation protocol in a new thread with new negotiation
session.

3. When the protocol is run, it updates opponent’s set of active credentials with
the newly presented ones and checks if the request is already being in a nego-
tiation (steps 1 and 2).

4. If Alice’s request is not to be suspended then Bob looks at request and if it is
a request for a service he calls for an access decision with his policy for access
to resources PA, his policy for disclosure of foreign credentials PD, the set of
Alice’s active CA and declined CN credentials (step 9).
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Negotiation session: CA, CN and Oneg. Initialization: CA= CN= Oneg= ∅.
NegotiationDispatcher{
OnReceiveRequest 〈request, Cp〉 do

1: if isService(request) then
2: reply resp = NegotiationProtocol(request, Cp); // in a new session thread.
3: else
4: reply resp = NegotiationProtocol(request, Cp); // in a new thread under the original

session.

OnSendRequest 〈request, Op〉 do

1: result = invoke NegotiationProtocol(request, Op)@Opponent; // in a new session
thread.

}
NegotiationProtocol(request, Cp){

1: CA = CA ∪ Cp ;
2: if requestinOneg then
3: suspend and await for the result on request ’s negotiation;
4: return result when resumed;
5: else
6: Oneg = Oneg ∪ {request};
7: repeat
8: if isService(request) then
9: result = AccessDecisionWithFeedback(request, PA, PD, CA, CN );

10: else
11: result = AccessDecisionWithFeedback(request, PAC , PD, CA, CN );
12: if result == ask(CM) then
13: AskCredentials(CM);
14: until result == grant or result == deny;
15: Oneg = Oneg \ {request};
16: resume all processes awaiting on request with the result of the negotiation;
17: return result;
18: end if

}
AskCredentials(CM){

1: parfor each c ∈ CM do
2: response = invoke iAccessNegotiation(c, ∅)@Opponent;
3: if response == grant then CA = CA ∪ {c} else CN = CN ∪ {c};
4: end parfor
5: while CM 6⊆ (CA ∪ CN ) do wait();

}

Figure 4.2: Negotiation Protocol
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5. If request is a request for a credential then Bob calls for an access decision
with his policy for access to own credentials PAC, his policy for disclosure of
foreign credentials PD and Alice’s active CA and declined CN credentials (step
11).

6. In the case of computed missing credentials CM (steps 12 and 13) Bob trans-
forms CM into single requests for credentials and awaits until receives all re-
sponses (steps 1–5 of AskCredentials function). At this point Bob acts as
a client, requesting Alice the set of missing credentials. Alice runs the same
protocol with swapped roles.

7. When Bob receives all responses, he restarts the loop and consults for a new
access decision.

8. When a final decision of grant or deny is taken, the respective response is
returned back to Alice.

4.1.4 Negotiation Schema Implementation

We adopted a thread-based negotiation of missing credentials by transforming the
need of missing credentials into a sequence of single requests each asking for a foreign
credential from the missing set. Each request for a credential spurs a new negotiation
thread that negotiates access to this credential.

One of the technical issues in the protocol is in the way the server requests
missing credentials back to the client. We use the keyword parfor for representing
that the body of the loop is run each time in a parallel thread. Thus, each missing
credential is requested independently from the requests of the others. At that point
of the protocol, it is important that each of the finished threads updates presented
and declined sets of credentials properly without interfering with other threads. We
note that each credential request marks (updates) the requested foreign credential
as declined after a session time expires.

The thread based implementation with shared CA and CN is necessary to allow
for a polynomial execution time of the trust negotiation protocol with respect to the
number of queries to the abduction algorithm. Indeed, without a shared memory
of received credentials it is possible to structure policies in a way that a credential
would be asked many times. In this way, the protocol queries for credentials are
bounded by the number of credentials occurring in the policy PAC.

Declining a credential in a negotiation process is when an entity is asked for it
and the same entity replies to the request with answer deny. When an entity is
asked for a credential and there is a counter request for additional credentials then
the thread started the original request awaits for the reply and treats the requested
credential as not yet released.

When a trust negotiation module is initially loaded it internally loads an ap-
plication server and sets the dispatcher module resident in the memory awaiting
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on requests. When the server receives a request it automatically redirects the re-
quest to the dispatcher which in turn transforms it from raw data to a high-level
representation.

The negotiation dispatcher is an essential component to the negotiation protocol.
The dispatcher has a role of a negotiation server that manages entities requests
and their negotiation sessions. Whenever a request arrives the dispatcher runs the
negotiation for that request in a new thread that shares same session variables CA,
CN and Oneg with other threads running under the same negotiation session.

On each received request the dispatcher analyzes the session data from the re-
quest and its local database and acts as following. If no session data is specified
in the request (and request for a service) then the dispatcher generates new session
information (CA=CN= Oneg=∅) and runs the negotiation protocol with the new
session information. If a session exists and the session data correctly maps to the
corresponding one in dispatcher’s local database then the dispatcher runs the nego-
tiation protocol in a thread under the existing session. If the specified session does
not match to any internal session then deny message is returned back.

Figure 4.3 shows the architecture and communications of the negotiation module.
The architecture logically splits a negotiation process in two levels: negotiation

Figure 4.3: Negotiation Framework Message Interoperation

requests and session management; and pure credential negotiation. The division
is driven by the goal of making efficient and scalable negotiations for a multi-user
environment such as Grid.

4.1.5 Security Policies for Trust Negotiation

Assume, a computing center decides to share part of its computational GRAM
services on a Grid platform to acquire new users. The center offers a set of free
java libraries that can be invoked by submitted user’s jobs for efficient computing
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of mathematical functions, (e.g. the Fast Fourier Transform, Matrix inversion, file
format conversion, etc). According to an internal policy of the computing center,
these libraries can be used by researchers or students of universities and by members
of non profit organizations. At the same time, the computing center also offers a
commercial version of the same libraries but used only by users that have paid a
given fee, or that belong to a set of associations (e.g., IEEE members).

Moreover, the development staff of the computing center continuously work to
improve the performances of the free libraries and the beta versions of the libraries
are tested directly by the computing center’s users. Since the beta version of the
libraries could include some errors that could, in principle, allow unfamiliar users
intentionally or unintentionally to breach a system functionality, the computing
center decides to allow only well-behaved users to access beta libraries.

COMPUTING CENTER SECURITY POLICIES:
Access Policy PA

grant(User, gramService, create, free mathlib) ← cred(User, studentPhD, universityMalaga).
grant(User, gramService, create, free mathlib) ← cred(User, researchSenior, universityMalaga).

grant(User, gramService, create, devel mathlib) ← grant(User, gramService, create, free mathlib).
grant(User, gramService, create, comm mathlib) ← grant(User, gramService, create, free mathlib),

cred(User, ieeeEnrollment, ieeeInc).
grant(User, gramService, create, comm mathlib) ← cred(User, visaCard, bankRoma),

cred(User, ssn, governmentAuth).
Credential Policy PAC
cred(computerCenter, affiliation, governmentAuth) ← cred(User, employee, anEmployer).
cred(computerCenter, visaConfirmed, visaEurope) ← .
Disclosure Policy PD

cred(User, studentPhD, universityMalaga) ← .
cred(User, researchSenior, universityMalaga) ← .

cred(User, ieeeEnrollment, ieeeInc) ← .
cred(User, visaCard, bankRoma) ← .
cred(User, ssn, governmentAuth) ← .

cred(User, employee, anEmployer) ← .

USER SECURITY POLICIES:
Credential Policy PAC
cred(marioRossi, visaCard, bankRoma) ← cred(Rprovider, visaConfirmed, visaEurope).
cred(marioRossi, ssn, governmentAuth) ← cred(Rprovider, affiliation, governmentAuth).

cred(marioRossi, employee, anEmployer) ← .
Disclosure Policy PD
cred(Rprovider, visaConfirmed, visaEurope) ← .
cred(Rprovider, affiliation, governmentAuth) ← .

Figure 4.4: Example of Trust Negotiations Policies

Figure 4.4 shows the coarse-grained security policies of the computing center and
a user underpinning our negotiation scenario. Figure presents access, credential,
and disclosure policies of the computing center, as well as, credential and disclosure
policies of the user.

We use a term starting with a capital letter (e.g., User, Rprovider, etc ) to refer
to a variable that represents any value in its field. The variable is referable from
other predicates within a same rule. Terms starting with lower case letters represent
constants in a policy (e.g., marioRossi, visaConfirmed, etc).

The coarse-grained access policy PAof the computing center governs access to a
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Figure 4.5: Grid Trust Negotiation Scenarios

computational service and its underlying resources. Access permissions vary based
on what underlying resources a user claims to utilize during execution of his submit-
ted job. For example, the invocation of the free version of the java library is granted
to senior researchers and PhD students at the University of Malaga, given that they
submitted a credential attesting their positions. It also states that access to the
beta version of the library is given to those who have access to the free version.

Students and researches at the University of Malaga officially enrolled to IEEE
community may utilize facilities of the commercial version of the computational
library without fees. Otherwise, to access the commercial version of the library a
payment transaction is required. How the payment transaction goes in Grid is out
of the scope of our model. We present an access policy governing a disclosure of
information needed by the computing center to complete a payment transaction. For
instance, a visa card credential could contain information embossed on the user’s
physical payment card. A ssn (social security number) credential could be asked
additionally by the computing center to validate the user’s account. In user’s turn,
the user could request a visa confirmed credential from the computing center to
escape frauds and prove that the computing center is eligible to complete payment
transactions.

The credential policy of the computing center allows access to computing center
affiliation credential to users that have presented a credential attesting their em-
ployee status. Access to the visa confirmed credential of the computing center is
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Property Policy:
property(User, non profit) ← cred(User, studentPhD, universityMalaga).
property(User, non profit) ← cred(User, researchSenior, universityMalaga).

property(User, commercial) ← property(User, non profit), cred(User, ieeeEnrollment, ieeeInc).
property(User,commercial) ← cred(User, visaCard, bankRoma).

Figure 4.6: Example of Property Policy

not protected and given on request. Although this credential could be additionally
protected we omit it simplifying the negotiation scenario.

The disclosure policy discloses the need of all credentials involved in the access
policy. We do not focus on negotiation strategies and how to disclose sensitive
credentials, we structure the policy as all credentials are disclosable at any request
for negotiation.

Looking at the user side, the credential policy controls an access to the social
security number and visa card credentials of the user. The policy states that the user
allows access to his visa card credential only if a computing center proves his official
agreement with Visa Inc. Similarly, the social security number credential is sent
during negotiations if the computing center is allowed to collect such information
by an appropriate government affiliation. In contrary, the credential stating user’s
employment record is disclosed freely on demand.

Figure 4.5 draws trust negotiation scenarios in time settings. In the first scenario
(a), the user requests the access to the GRAM service instance and free mathlib,
in the second scenario (b) - to the GRAM service instance and comm mathlib. In
both scenarios, no attributes are pushed with the initial request.

Attributes acquired during trust negotiations might be required for the fine-
grained monitoring, e.g. like in the fine-grained policy example given in subsection
3.4.4. The property policy regulates mapping rules between coarse- and fine- grained
attributes and example of such policy is given in ??. Notice, that this policy is
expressed using the same formalism as for the disclosure and credential policies.

4.2 Risk-aware Access and Usage Control

This section addresses the enforcement of security policies based on remote at-
tributes with observable mutability [36, 64, 63, 65].

Since attributes may change in time, fresh values of attributes are essential for
a correct decision making and policy enforcement [95, 87]. Continuity of control
requires permanent awareness about the current attribute values. Decision mak-
ing mechanisms should be supplemented with security mechanisms responsible for
timely acquisition and delivery of attributes.

Distributed settings of Grid environment hardens the design of such security
mechanisms. In fact, remote attributes with observable mutability are always asso-
ciated with some uncertainties. Attributes can be uncertain because of two types
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of causes: unintentional and intentional. Unintentional causes appear because of
distributed settings of Grid and are always present (e.g. delays in delivery, noise,
loss of connection, etc.). Intentional causes are connected with deliberate alteration
of attributes. For instance, attributes are assertions claimed by third parties (i.e. by
local certification authorities of Grid entities) which are possibly partially trusted.

Novel security mechanisms are required to count and tolerate uncertainties as-
sociated with attributes. This section proposes to enhance the policy level by spec-
ifying in the security policy the allowed uncertainty level. Uncertainties associated
with attributes are paired with a risk and its semantics denotes a probability of a
security policy failure multiplied by an impact of this failure. Analyzing the current
risk value, the system weights pros and cons of granting or revoking access using a
cost matrix and makes the most rational access decision. The formal (mathemati-
cal) model of risk-aware access and usage control is based on the cost-utility theory,
risk management, Markov chains, and semi-ring computational models.

The section is structured as follows. Subsection 4.2.1 points to access and usage
control scenarios covered in this section. Subsection 4.2.2 enlists all types of uncer-
tainties associated with attributes. Subsection 4.2.3 describes decision making in
risk-aware access and usage control. Subsection 4.2.4 calculates probabilities used
to make a decision under risk. Subsection 4.2.5 outlines a risk-aware policy enforce-
ment. Subsection 4.2.6 summarizes this section with discussions of the proposed
approach and related works.

4.2.1 Access and Usage Control Scenario

Attribute Acquisition Models

Security policies considered here are based on remote attributes with observable
mutability. An attribute is modeled as variable a which might take a value from
(in)finite domain of attribute values ATTR. Remote means that the attribute is
managed by a remote Attribute Provider which is not under control of Reference
Monitor enforcing the policy (see Figure 4.7). Observable mutability means that
Reference Monitor observes only partially how the attribute changes in time, and
moreover it cannot influence (or even block) the attribute modifications.

Figure 4.7: Attribute Acquisition Model
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An attribute might change in discrete points of time and this process is modeled
via a finite sequence

RealAttr = {(areal
i , ti)|areal

i ∈ ATTR, ti ∈ T, ∀i : ti < ti+1}
where each element (areal

i , ti) specifies the attribute value ai changed at time ti. T
is a countable infinite set of natural numbers which models time ticks. During time
interval |ti − ti+1| the attribute does not change, and the attribute value at tcurr

equals areal
i , where ti < tcurr < ti+1.

Only Attribute Provider can see RealAttr, while Reference Monitor operates
with a finite sequence of observed attributes specified via

ObservedAttr = {(〈aobs
j , tj〉, t̃j)|aobs

j ∈ ATTR, tj ∈ T, ∀j : tj ≤ t̃j}
where 〈aobs

j , tj〉 corresponds to elements (areal
i , ti) of RealAttr, i.e. ∀j = i, 〈aobs

j , tj〉 =

(areal
i , ti). t̃j specifies the time point when the attribute was delivered to Reference

Monitor and used to evaluate policy predicates. Attribute delivery and access deci-
sion making are time-consuming operations in Grid, thus t̃j is usually bigger than
tj (time when attribute was issued). Notice, that Attribute Provider and Reference
Monitor share the same trusted clocks which start to work at ttry = 0.

In access and usage control two attribute acquisition models exist: push and pull
(see Figure 4.7).

Definition 4. (Attribute Acquisition Push Model) Attribute Acquisition Push
Model defines a scenario when each new attribute value is pushed from Attribute
Provider to Reference Monitor. Formally, this means that ObservedAttr and RealAttr
have the same number of elements. i.e.

|ObservedAttr| = |RealAttr|
∀i, (areal

i , ti) ∈ RealAttr ∃j = i, (〈aobs
j , tj〉, t̃j) ∈ ObservedAttr

where |S| specifies a number of elements in a sequence S

Definition 5. (Attribute Acquisition Pull Model) Attribute Acquisition Pull
Model defines a scenario when Reference Monitor queries Attribute Provider to give
the current attribute value.

There could be the case when Reference Monitor queries too often (more fre-
quently than the attribute changes), and as a result ObservedAttr contains redun-
dant elements, i.e.

|ObservedAttr| ≥ |RealAttr|
RealAttr = { ..., (areal

i , ti), (areal
i+1 , ti+1), ... },

ObservedAttr = { ..., (〈aobs
j , tj〉, t̃j), ..., (〈aobs

j+k, tj+k〉, t̃j+k), ... },
∀i, j ∃k ≥ 0 : ti = tj = ... = tj+k < ti+1
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In opposite, Reference Monitor might query too rare (less frequently than the
attribute changes), and as a result ObservedAttr contains insufficient elements,
i.e.

|ObservedAttr| ≤ |RealAttr|
RealAttr = { ..., (areal

i , ti), (areal
i+1 , ti+1), ..., (areal

i+k , ti+k), ... },
ObservedAttr = { ..., (〈aobs

j , tj〉, t̃j), (〈aobs
j+1, tj+1〉, t̃j+1), ... },

∀i, j ∃k ≥ 1 : ti = tj, ti+k = tj+1

Obviously, the attributes acquisition pull model with redundant elements is as
expressive as the push model, i.e. each change of the attribute will be eventually
captured by Reference Monitor. On another side, the pull model with redundant
attributes imposes implementation difficulties since often attribute queries increase
security overhead and might slowdown the overall system performance.

As example, assume attribute a specifying location of a Grid User. Domain of a
is ATTR = {locA, locB, locC}. The attributes observed by Attribute Provider and
Reference Monitor in presence of various attributes acquisition models (push and
pull insufficient) are given in Figure 4.8.

Figure 4.8: Attribute Acquisition Pull and Push Models

Notice, that the average time spent for the attribute delivery and decision mak-
ing, i.e. M tprocessing = (t̃j− tj) for each element in the observed attributes sequence,
is always bigger for the pull model than for the push model. This is because the pull
model needs two round of network traverse - from Reference Monitor to Attribute
Provider and back.

Correct Policy Enforcement

Risk-aware access and usage control concerns pre and on UCON usage scenarios
and is realized on the coarse-grained level of control. A security policy is formed
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Figure 4.9: Security Policy Enforcement with Pull Acquisition Model

mainly by authorization and condition predicates. For simplicity, each predicate is
assumed to constrain only single attribute, and the security policy consists of at
most two predicates: first specifies access control (pre-authorization), and second
- usage control (ongoing authorization). Table 4.2 gives a typical security policy
example. The security policy requires that the Grid User accessing and using some
Grid resources should remain in locB, or locC.

tryaccess(s,o,r). line 1
Ppre(a = locB or a = locC). line 2
permitaccess(s,o,r). line 3
( endaccess(s,o,r) line 4

or line 5
( Pon(a = locB or a = locC). line 6
revokeaccess(s,o,r) ) ) line 7

Table 4.2: preOnA0 Policy

Figure 4.9 shows how the policy enforcement evolves in time. It starts at ttry,
and proceeds with querying the current attribute value. Either push or pull model is
used for acquisition of attribute, Reference Monitor processes only the first received
value and evaluates Ppre only once.

Definition 6. (Correct Enforcement of Access Control) Reference Monitor
correctly enforces the security policy during pre-authorization and it grants access at
t̃decPre only if the following holds (see Figure 4.9)

Ppre(areal
attr+i) = true ∧ Ppre(areal

attr) = true

where real and observed attribute sequences are

RealAttr = { (areal
try , ttry), ..., (areal

attr , tattr), ..., (areal
attr+i, tattr+i), (areal

attr+i+1, tattr+i+1) ... }
ObservedAttr = { (〈aobs

attr, tattr〉, t̃decPre) }

and
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tattr+i ≤ t̃decPre ≤ tattr+i+1, i ≥ 0

For convenience, the notation Gtattr specifies that the access decision should be
granted at tattr, i.e. Ppre(areal

attr) = true, while Gtattr specifies the opposite. Gt̃decPre

specifies that Ppre(areal
attr+i) = true holds. In case of the correct enforcement of access

control, both events Gtattr and Gt̃decPre
should be presented.

The correct policy enforcement implies that having the observed attribute se-
quence, the policy is enforced exactly in the same fashion as it would be enforced
with the real attribute sequence. In fact, these sequences are not usually equal. Ref-
erence Monitor operates only with the observed attributes and knows only Gtattr .
Reference monitor needs additional knowledge about how the attribute changes in
time to deduce Gt̃decPre

. For instance, if Reference Monitor knows that the attribute
changes as some deterministic function of time, it could compute the real value of
the attribute at any time and show definitely whether Gt̃decPre

holds or not.
The initial assumption that the attribute is remote and has observable mutability

imposes that Reference Monitor possesses incomplete or uncertain knowledge about
real attribute vales. Assume, that this knowledge is probabilistic and

Pr[Gt̃decPre
|Gtattr ]

specifies the probability computed by Reference Monitor that the access should be
granted at time t̃decPre knowing that the security policy was satisfied at tattr. Notice,
the correct enforcement of access control requires that the access is granted if the
predicates are satisfied exactly at tattr and t̃decPre and the policy might be violated
between tattr and t̃decPre.

As example, let’s consider the enforcement of access control for real and observed
attribute sequences given in Figure 4.8. Assume, that ttry = 0 and tpermit = 7. In
this case real and observed attributes are following:

RealAttr : {(locC, 0), (locA, 4), (locB, 6)}
ObservedAttr(push) : {(〈locC, 0〉, 4)}
ObservedAttr(pull) : {(〈locC, 0〉, 6)}

Interestingly, either push or pull model is presented the same attribute value
(locC, 0) is used by Reference Monitor for the evaluation. In both cases, the predicate
Ppre(locC) = true and Reference Monitor might grant the access. For the pull
model, the grant access decision is correct, because at the time of the decision
enforcement, i.e. t̃decPre = 6, the real attribute value is a = locB, and this value also
satisfies Ppre. For the push model, the grant access decision is erroneous at the time
of the decision enforcement, i.e. t̃decPre = 4, the real attribute value is a = locA,
and this value violates Ppre. Thus, Reference Monitor enforcing the security policy
using incomplete (uncertain) knowledge might produce wrong access decisions.

Pre-authorization ends at tpermit, and usage control phase begins and Reference
Monitor continuously evaluates the predicate Pon. Since the attribute changes in
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discrete moments of time, the predicate should be evaluated every time the at-
tribute changes. If the push model is not presented in the system for the attribute
acquisition, Reference Monitor should pull the attribute several times during the
usage.

Definition 7. (Correct Enforcement of Usage Control) Reference Monitor
correctly enforces the security policy and does not revoke the access after evaluating
the policy k-th time, if the following holds (see Figure 4.9)

Pon(areal
m ) = true, ∀m ∈ {1, ..., attrOnk + i}

where real and observed attribute sequences are

RealAttr = {(areal
1 , t1), ..., (areal

attrOnk, tattrOnk), ...,

(areal
attrOnk+i, tattrOnk+i), (areal

attrOnk+i+1, tattrOnk+i+1), ... }
ObservedAttr = { ..., (〈aobs

attrOnk, tattrOnk〉, t̃decOnk), ... }

and

tpermit = t1, tattrOnk+i ≤ t̃decOnk ≤ tattrOnk+i+1, i ≥ 0

or revoke the access if the following holds

∀attrOnk, s.t. (areal
attrOnk, tareal

attrOnk
) ∈ RealAttr, Pon(areal

attrOnk) = false,

∃(〈aobs
attrOnk, tattrOnk〉, t̃decOnk) ∈ ObservedAttr, t̃decOnk = tattrOnk

For convenience, the notation G|tpermit−t̃decOnk| specifies that the access decision
should be granted and the usage session should be continued at tdecOnk. This means
that the policy has never been violated since tpermit, i.e. each attribute change was
checked and the predicate Pon was always satisfied.

In usage control the policy is evaluated every time when the attribute changes.
In case of the pull attribute acquisition model some attribute changes might be un-
noticed. Thus, Reference Monitor has less information to prove that G|tpermit−t̃decOnk|
holds and to enforce the policy correctly at t̃decOnk. Assume, that knowledge of
Reference Monitor about the predicate satisfaction in this interval is probabilistic
and

Pr[G(tpermit:t̃decOnk) |GtattrOn1
, GtattrOn2

, ..., GtattrOnk
]

specifies the probability computed by Reference Monitor that the usage session
should be continue at time t̃decOnk knowing that the predicate was satisfied at time
points when observed attributes were issued. Notice, that the interval (tpermit :
t̃decOnk) concerns all real attributes changes between tpermit and t̃decOnk but excluding
observed attribute changes.
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As example, let’s consider the enforcement of usage control for real and observed
attribute sequences given in Figure 4.8. Assume, that tpermit = 6 and real and
observed attributes are following:

RealAttr : {(locB, 6), (locC, 40), (locA, 50), (locC, 60)}
ObservedAttr(push) : {(〈locB, 6〉, 10), (〈locC, 40〉, 44), (〈locA, 50〉, 54), (〈locC, 60〉, 64)}

ObservedAttr(pull) : {(〈locB, 6〉, 13), (〈locC, 60〉, 70)}
For the push model, Reference Monitor terminates the usage session when the

attribute (〈locA, 50〉, 54) is received and processed at t̃decOnk = trevoke = 54. Al-
though, the access is revoked as soon as possible there were still 4 time ticks when
the policy was violated. This is the inevitable minimal policy violation time used
for the attribute delivery and access evaluation.

For the pull model, Reference Monitor observes only attributes which satisfy the
predicate Pon and never revokes access until the requester ends the usage session
normally at tend = 80. This is erroneous enforcement because at t = 50 the requestor
was in locA and violated the security policy. Thus, Reference Monitor enforces the
security policy using incomplete (uncertain) knowledge and might produce wrong
decisions.

Proposition 1. The correct enforcement of access and usage control is possible if
the attribute acquisition push model is presented in the system and

∀j(〈aobs
j , tj〉, t̃j) ∈ ObserverdAttributes, t̃j = tj, i.e. M tprocessing = 0

Proof This comes from the definition.

4.2.2 Intentional and Unintentional Uncertainties

Neither push no pull model in Grid can guarantee the correct enforcement of access
and usage control. This subsection summarizes uncertainties associated with the
attribute acquisition and discusses two types of uncertainties: unintentional which
corresponds to a freshness and correctness of attributes, and intentional which cor-
responds to a trustworthiness of attributes.

Freshness and Correctness of Attributes

The following types of unintentional uncertainty are identified: freshness I, II, III,
and correctness.

Freshness I corresponds to usage control scenarios where exists only the at-
tribute acquisition pull model with insufficient elements :

|ObservedAttr| < |RealAttr|
∀(〈aobs

j , tj〉, t̃j) ∈ ObservedAttr, ∃(areal
i , ti) ∈ RealAttr

s.t. 〈aobs
j , tj〉 = (areal

i , ti), and ti = tj = t̃j, i.e. M tprocessing = 0
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An attribute value can be acquired on demand but the procedure costs some re-
sources, and thus, only a part of attribute changes can be detected. Time required
to pull attribute and evaluate predicates is negligible.

As example, assume the network of sensors provides the current location of the
Grid user for Reference Monitor enforcing the policy given in Table 4.2. Sensors
have limited resources (power, bandwidth, memory), and consequently, Reference
Monitor pulls a fresh value of the location attribute only once per hour. Even if the
attribute does not satisfy the policy during this hour, Reference Monitor will make
the incorrect access decision and allow to continue the resource usage.

From the prospective of Reference Monitor, unintentional uncertainty of type
freshness I means that

PrfreshI[G(tpermit:t̃decOnk) |GtattrOn1
, GtattrOn2

, ..., GtattrOnk
] < 1

i.e. always exists a possibility of a policy violation between access control checks
despite the fact that all pulled attributes satisfy the policy.

Freshness II implies that an attribute may change during inevitable delays
M tprocessing > 0. Inevitable time delays are paid for attribute delivery and decision
making. Delivery from Attribute Provider to Reference Monitor is time costly due
to a distributed nature of Grid and a network latency. Decision making can also
affect the enforcement of policies based on volatile attributes.

From the prospective of Reference Monitor, unintentional uncertainty of type
freshness II means that

∀(〈aobs
j , tj〉, t̃j) ∈ ObservedAttr : tj < t̃j

for access control : PrfreshII[Gt̃j |Gtj ] < 1

for usage control : PrfreshII[G(tj :t̃j) |Gtj ] < 1

Freshness III introduces a scenario where a current value of an attribute is
uncertain since some update queries are pending and might not be committed by
the time when an access decision should be made. In this case, Attribute Provider
sends to Reference Monitor two attributes: the first is the last certain attribute value
and, the second contains some additional information on how the current attribute
value varies from the given value:

(areal
i , ti), (M areal

i , ti+1), where ti < ti+1

Accordingly, Reference Monitor receives:

(〈areal
i , ti〉, t̃j), (〈M areal

i , ti+1〉, t̃j)
Time required to deliver attribute and evaluate predicates is negligible, i.e. ti+1 = t̃j.

As an example, assume a policy which allows Grid users with a good reputation
to submit a huge number of applications for execution in Grid. The reputation is
updated only when the execution is ended and the system receives feedback from a
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resource provider. Applications can run concurrently and each single execution can
be long-lived and lasts days or even weeks. The access decision to submit a new job
is based on the reputation value dated by the last registered feedback and on the
number of applications currently running on the user’s behalf. Indeed, the ongoing
applications can be malicious but this fact can be discovered only afterwards. The
only way to obtain the fresh reputation value is to block the access until all running
applications terminate. Instead, the system has to be set up to make an access
decision with some uncertainty on the current reputation of the Grid user. For the
given example, M areal

i specifies how many applications were submitted for execution
in interval (ti : ti+1) and are currently ongoing.

From the prospective of Reference Monitor, unintentional uncertainty of type
freshness III means that:

for access control : PrfreshIII[Gt̃j |Gti ] < 1

for usage control : PrfreshIII[G(ti:t̃j) |Gti ] < 1

Unintentional uncertainties related to freshness of attributes can be seen as par-
ticular cases of timeliness and currency factors from Bouzeghoub and Peralta [24].
Freshness of the first type relates to the problem of defining the frequency of up-
dates (timeliness), while freshness of the second and third types is caused by natural
delays in delivery of the authorization information (currency).

Correctness of real attribute values is affected by additive noises that usually
exist in case of non-accurate measurements. For example, the location attribute can
be calculated only with a given precision. Thus, observed attributes might differ
from the corresponding real counterparts:

∀(〈aobs
j , tj〉, t̃j) ∈ ObservedAttr, ∃(areal

i , ti) ∈ RealAttr

s.t. aobs
j 6= areal

i , and ti = tj = t̃j, i.e. M tprocessing = 0

From the prospective of Reference Monitor, unintentional uncertainty of type
correctness means that:

∀j,Prcorr[Gtj ] < 1

i.e. there exists the probability that the observed attribute (〈aobs
j , tj〉, t̃j) does not

satisfy the security policy even at time of issuance tj.

Trustworthiness of Attributes

Intentional uncertainties impose that observed attributes do not correspond to the
real attributes, and trustworthiness of attributes used to produce the access decision
is not guaranteed. These uncertainties appeared as a result of altering attributes by
Attribute Provider or as the result of attacks occurred during delivery, storing, etc.
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Current approaches guarantee only integrity of an attribute by validating a signa-
ture of the entity which signs the attribute assertion, but this does not guarantee
trustworthiness of the attribute value.

Notice, that uncertainties related to trustworthiness assume that either an at-
tribute value, or a time of issuance, or both can be modified by Attribute Provider.
Indeed, on each attribute pull request Attribute Provider might respond with the
same attribute value which always satisfies a security policy.

From the prospective of Reference Monitor, unintentional uncertainty of type
trustworthiness means that:

∀j,Prtrust[Gtj ] < 1

i.e. there exists the probability that the observed attribute aobs does not satisfy the
security policy at any time.

4.2.3 Risk-aware Decision Making

Reference Monitor has to envisage and tolerate the impact of making access decisions
in the case of uncertain attributes. Making the access decision, Reference Monitor
tries to choose between two alternatives (grant access and deny/revoke access) only
one which is as good as possible. Good means that Reference Monitor grants access
to legible requestors if the security policy is satisfied, and forbids access to unautho-
rized entities if the security policy is violated. Unfortunately, when real attribute
values are unknown, Reference Monitor is unable accurately to infer whether the
security policy is violated or satisfied based on observed attributes, and, thus, to
choose the good alternative. There are four possible scenarios of how Reference
Monitor can act processing only observed attributes:

• True Positive: to grant access when the security policy is really satisfied;

• False Negative: to grant access when the security policy is really violated;

• False Positive: to deny access when the security policy is really satisfied;

• True Negative: to deny access when the security policy is really violated.

True Positive and True Negative correspond to a good-chosen alternative, while
False Negative and False Positive are erroneous access decisions. Each scenario is
associated with a utility, i.e. possible losses and benefits, which Reference Monitor
loses/gains when the scenario happens. The utilities are assigned during the security
policy design and can be either qualitative or quantitative. Here only quantitative
utilities are considered and are named as costs. For a better representation, Table
4.3 shows a utility (cost) matrix where alternatives are represented as rows of the
matrix, real states of the world as columns and cells of the matrix represent costs.

An access decision is made by comparing the benefits of granting or denying
access and choosing the alternative which surmises the best profit. For instance, in
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Policy is satisfied Policy is violated

Grant access C00 = 20 C01 = −100

Deny access C10 = −5 C11 = 10

Table 4.3: Utility (Cost) Matrix

the case of a correct policy enforcement (i.e. when observed attribute values are the
same as real attribute values and the policy is satisfied), the benefits of granting
access are 20, whereas losses to deny access are -5. Definitely, Reference Monitor
should choose the ‘grant access’ alternative.

Usually, observed and real attributes are not equal, and Reference Monitor has
insufficient information to reason about the security policy satisfaction or viola-
tion. If Reference Monitor is able to treat uncertainties associated with observed
attributes by computing the probability Pr of the security policy violation (satisfac-
tion), it means that the access decision is made under risk.

Definition 8. (Risk) Risk is the possibility of suffering harm or loss [10] and is
defined as follows :

riskij = Pr[A]× costij

where

A ∈ Ω = {“G : policy is satisfied”, “G : policy is violated”}, and Pr[Ω] = 1

A probability-weighted utility theory [46] provides a method to make an access
decision under risk. The idea behind this method is almost the same as already
has been presented and Reference Monitor compares benefits and losses of each
alternative but weighted on a probability of a security policy violation/satisfaction.

Definition 9. (Risk-aware access decision) Let Reference Monitor possesses a prob-
ability of a security policy satisfaction (or violation) and a cost matrix. Reference
Monitor

grants access if −riskgrant < −riskdeny

or

denies/revokes access if: −riskgrant ≥ −riskdeny

where

riskgrant = Pr[G] · C00 + (1−Pr[G]) · C01

riskdeny = Pr[G] · C10 + (1−Pr[G]) · C11
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Figure 4.10: Risk-aware access decision

Cost Matrix

The policy level of our framework assumes that a policy designer is responsible for
specifying a cost matrix for each security policy which is engineered using remote
attributes with observable mutability. The cost matrix entries can be updated only
by some administrative actions of the policy designer (administrator).

The cots matrix does not depend on usage time and specifies the exact benefits
and losses the system eventually gains (from a complete usage session, from the
beginning till the usage is over). Thus, semantics of a cost matrix corresponds to
‘pay-per-usage’ attributes. For instance, if a resource provider donates resources to
Grid, the maximum losses C01 are equal to costs of the resources.

It is very difficult to determine a cost matrix for every security policy and every
object it protects. Some heuristics can be used on selecting costs. For instance,
losses caused by allowing access to malicious users are surmised to be the severest,
wherefore Table 4.3 contains C01 = −100. Moreover, if Reference Monitor behaves
correctly, the profit should be positive, i.e. C00 > 0, C11 > 0 and negative in the
case of the erroneous access decisions, i.e. C01 ≤ 0, C10 ≤ 0. Finally, in the most
cases where a resource provider does not guarantee any quality of service, C10 = 0
and each equivocal request is better to deny without any possible harm.

There are some other interesting parameters that can be mined from the cost
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matrix. Figure 4.10 shows how a risk-aware access decision is made. Intersection
of alternatives identifies a probability value when Reference Monitor switches an
access decision from deny to grant. Reference Monitor grants access if Pr[G] ∈
(Prswitch, 1), and denies otherwise. For the cost matrix in Table 4.3 this probability
is Prswitch = 0.81.

Assume, that the probability of the security policy satisfaction calculated by
Reference Monitor and used to produce risk-aware access decision is correct and
always remains in Pr[G] ∈ (Prloss1,Prloss2). In this case, for the given cost matrix
the resource provider will always receive losses in average. This interval can be
reduced or eliminated by tuning initial costs or remains if the resource provider is
motivated to have losses but to guarantee a certain quality of service.

Average losses or benefits accumulated by the resource provider are specified
as average loss and can be estimated as follows. First, assume the scenario when
the probability of the security policy satisfaction calculated by Reference Monitor
always remains the same and equals to Pswitch. Accordingly to our model, Reference
Monitor should deny each access request where Pr[G] = Prswitch . Thus, the
outcome of each policy enforcement would be C11 if access really was requested
by an unauthorized user or C10 - if the user was eligible but Reference Monitor
denied access to the resource. Assuming, that the probability of the security policy
satisfaction is calculated correctly, the outcome of a single policy enforcement can
be considered as a random variable Y and mean of this variable E[Y ] equals to
average loss

average loss = E[Y ]

E[Y ] =
∑

∀y
y ·Pr[y] = C11 · (1−Pswitch) + C10 ·Prswitch

For this particular case, average loss is the minimum loss the resource provider
might suffer during risk-aware access and usage control. In Figure 4.10 average loss
is specified as min loss.

Usually, the probability of the security policy satisfaction Pr[G] calculated by
Reference Monitor for the given access request might varies. Assume, that this
probability can be considered as a random variable X taking any possible value
from 0 to 1. In this case, the outcome Y can be expressed through X and average
losses can be calculated as follows:

Y =





C11 · (1−X) + C10 ·X, where X ≤ Prswitch

C01 · (1−X) + C00 ·X where X > Prswitch

E[Y ] = C11 + C01 − (C11 − C10) · E[X ≤ Prswitch] + (C01 − C00) · E[X > Prswitch]

Probability of Correct Policy Enforcement

The probability that the policy is satisfied and enforced correctly for access control
scenarios is given by (see Definition 6)
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Prpre[G] = Prpre[Gtattr ·Gt̃decPre
]

or using conditional probabilities

Prpre[G] = Prpre[Gtattr ] ·Prpre[Gt̃decPre
|Gtattr ] (4.3)

This formula shows what the probability Prpre[Gtattr ] corresponds to trustworthiness
and correctness of attributes, and Prpre[Gt̃decPre

|Gtattr ] - to freshness of attributes.
Usually, all types of uncertainties might exist in the system and summing these
uncertainties corresponds to multiplication of their corresponding probabilities. How
to calculate a probability corresponding to a specific uncertainty will be discussed
later.

The probability that the policy is enforced correctly by time t̃decOnk for usage
control scenarios is given by (see Definition 7)

Pron[G] = Pron[G|tpermit−t̃decOnk|]

Suppose that observed attributes by Reference Monitor are

GtattrOn1
, GtattrOn2

, ..., GtattrOnk

then

Pron[G] =
Pron[G(tpermit:tattrOn1)·GtattrOn1

·G(tattrOn1:tattrOn2)·GtattrOn2
·...·GtattrOnk

·G(tattrOnk:t̃decOnk)]

or

Pron[G] = Pron[G(tpermit:t̃decOnk) ·GtattrOn1
·GtattrOn2

· ... ·GtattrOnk
]

and using conditional probabilities

Pron[G] = Pron[G(tpermit:t̃decOnk) |GtattrOn1
, GtattrOn2

, ..., GtattrOnk
] ·Pron[GtattrOn1

·
GtattrOn2

· ... ·GtattrOnk
]

This formula shows what the first probability corresponds to freshness of attributes,
and the second probability - to correctness and trustworthiness of attributes.

If trustworthiness and correctness remains constant in time, e.g. the attribute
is measured always with the same precision, the probability of the correct policy
enforcement by time t̃decOnk is given by

Pron[G] = Prfresh[G(tpermit:t̃decOnk) |GtattrOn1
, GtattrOn2

, ..., GtattrOnk
]·(Prcorr−trust[Gt])

k

(4.4)
Important result shown by this formula is that the probability of correct policy
enforcement (in presence of all type of uncertainties) decays in exponential time in
number of policy checks.
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Definition 10. (Effective Enforcement of Usage Control) Reference Moni-
tor effectively enforces the security policy under uncertainties by time t̃decOnk if the
probability of the correct enforcement of the security policy depends only on the time
passed since the last attribute was observed:

Pron[G] = Pron[G(tattrOnk:t̃decOnk) |GtattrOnk
]

Proposition 2. If only uncertainties of type freshness II or freshness III do exist
in the system, then Reference Monitor enforces the security policy effectively.

Proof This comes from the definition.

4.2.4 Computing Probabilities

A model of how an attribute changes in time is required to compute a probability
of a policy satisfaction. The attribute mutability in our approach is modeled as a
stochastic process, and Reference Monitor knows parameters of this process. Based
on this information, this subsection shows how to compute the probability of the
correct policy enforcement in the presence of uncertainties of several types.

Probabilistic Model of Attribute Mutability

Figure 4.11: Markov Chain for Location Attribute

Discrete-time Markov chain [11, 86] is applied to model changes of remote at-
tributes with observable mutability. States in this chain are possible values of the
considered attribute and transitions are possible changes of the attribute. The next
attribute value depends only on the current value.

A Markov chain for the location attribute (see the security policy example given
in Table 4.2) is depicted in Figure 4.11. The attribute domain consists of three values
ATTR = {locA, locB, locC}, and the Markov chain has three states - {A,B,C},
accordingly.

Suppose, (ai, ti) corresponds to the current attribute value, and the consecutive
attribute value is described by (ai+1, ti+1). The one-step transition probability spec-
ifies the probability that the current attribute ai = locB will change the value to
ai+1 = locA and is denoted by
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Pr
(i,i+1)
BA = Pr[ai+1 = locA | ai = locB]

and it equals to 0.2 for the Markov chain given in Figure 4.11.
The overall possible changes of the attribute are described by the one-step tran-

sition matrix which is formed by arranging one-step transition probabilities into the
matrix

Prob(i,i+1) =




Pr
(i,i+1)
AA Pr

(i,i+1)
AB Pr

(i,i+1)
AC

Pr
(i,i+1)
BA Pr

(i,i+1)
BB Pr

(i,i+1)
BC

Pr
(i,i+1)
CA Pr

(i,i+1)
CB Pr

(i,i+1)
CC




Assume that one-step transition probabilities do not change during some period
of time, i.e. the Markov chain is time-homogeneous [50]

∀i : Prob(i,i+1) = Problocation =




0 0.5 0.5

0.2 0 0.8

0.1 0.9 0




The n-step transition probability specifies the probability that the current at-
tribute ai = locB will change the value to ai+n = locA after n changes and is denoted
by

Pr
(n)
BA = Pr[ai+n = locA | ai = locB]

By analogy to the one-step case, the n-step transition probability matrix is denoted
by Prob(n) and for time-homogeneous Markov chains this matrix can be calculated
using Kolmogorov-Chapman equation

Prob(n) = Probn

where Probn specifies the matrix in power n.
Additionally to the transition matrix, it is worth to know the amount n of

attribute changes occurred in the time period between ti and tj. Our approach
uses the Poisson distribution to determine the number of attribute changes in the
time interval

Prp(n) =
λne−λ

n!

where λ = (tj − ti) ∗ nmean, and nmean is the average amount of transitions in a unit
of time.

One might observe that the discrete-time Markov chain, describing the attribute
changes, together with the Poisson distribution, describing the number of changes
in the time interval, do form the continuous-time Markov chain. But for the sake of
convenience, this explicit separation is used here.
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Figure 4.12: Markov Chain for Reputation Attribute

Another example of the Markov chain for the reputation attribute (see the exam-
ple for the freshness III in subsection 4.2.2) is depicted in Figure 4.12. The Markov
chain has five states and the state 0 corresponds to the malisious attribute value,
1 - vulnerable, 2 - suspicious, 3 - normal, and 4 - general.

Initially, the Grid user has normal reputation which will be updated to general
if the user’s application will be executed in Grid successfully and will never violate
security policies of the resource provider, or the reputation will become suspicious
- if the application execution will be terminated due to the security policy violation.
In long term prospective, the reputation of the Grid user might take any of the five
possible values.

Suppose, that the probability of a successful termination of a singe application
remains constant and equals to 0.6. In this case, the transition probability matrix
of the Markov chain describing the reputation attribute is given by

Probreputation =




0.4 0.6 0 0 0

0.4 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0.6

0 0 0 0.4 0.6




Obtaining the transition probability matrices for all wanted attributes is a hard
task in practice. Assume, that these matrices can be estimated using statistics of
past interactions with Grid users. The best way is to find the statistics for a specific
user and derive the probabilities about it directly. This approach is useful if long-
term interactions with the Grid user do exist. Another way is to get the value from
other sources (e.g. other data providers) or central authorities (similar to credit
bureaus in banking). Finally, if interactions with users are very short then similar
users can be grouped and statistics can be collected to the whole group.

Access Control in Presence of Freshness III Uncertainty

Suppose, Reference Monitor knows the Markov chain modeling behavior of the at-
tribute reputation. This information and observed attributes are used to calculate
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the probability of the security policy satisfaction in the presence of the uncertainty
of type freshness III. All other uncertainties are negligible, i.e. the attribute value
is correct and trustworthy.

tryaccess(s, o, r). line 1
Ppre(reputation = ‘normal’ or ‘general’). line 2
permitaccess(s, o, r). line 3
endaccess(s, o, r) line 4

Table 4.4: preA0 Policy

The security policy example for access control scenario preA0 is given in Table
4.4. The attribute values, i.e. states of the corresponding Markov chain, which
violate the security policy are denoted as grey circles in Figure 4.12.

Assume, the Grid user requests the Grid service and Attribute Provider pushes
the user’s reputation with the initial request. Reference Monitor receives and pro-
cesses two attributes

(〈areal
attr , tattr〉, t̃decPre), (〈M areal

attr , t̃decPre〉, t̃decPre)

The fists attribute states that at tattr the attribute value was areal
attr and, suppose,

areal
attr = ‘general′. The second attribute shows how many applications M areal

attr = n
were submitted by the Grid user and are currently running.

Based on this information, Reference Monitor should calculate the probability
of the policy satisfaction at t̃decPre (see equation 4.3)

Prpre[G] = PrfreshIII[Gt̃decPre
|Gtattr ] =

= PrfreshIII[a
real
decPre = ‘normal′ ∨ areal

decPre = ‘general′ | areal
attr = ‘general′,M areal

attr = n]

i.e. the probability that starting at the state 4 (‘general′) after n-steps transition
the Markov chain will be in the states 3 or 4.

Suppose, the vector St specifies the probabilities distribution over all states and
the element St[j] denotes the probability that the Markov chain at time t is in the
state j. For the attribute value areal

attr = ‘general′, the vector equals to Stattr =
(0, 0, 0, 0, 1). The value of the vector at time t̃decPre after n transitions can be found
using the Kolmogorov-Chapman equation and will be

St̃decPre
= ST

tattr
·Probn

reputation

When the state probability vector St̃decPre
is found, the required probability of

the security policy satisfaction can be found by summing up the values which belong
to states ‘normal′ and ‘general′

Prpre[G] =
∑

j∈{3,4}
St̃decPre

[j] (4.5)

As example, consider that the number of transitions sent in the second attribute
equals to n = 2
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St̃decPre
=




0

0

0

0

1




T

·




0.4 0.6 0 0 0

0.4 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0.6

0 0 0 0.4 0.6




2

=




0

0

0.16

0.24

0.6




T

and the probability of the policy satisfaction

Prpre[G] = St̃decPre
[3] + St̃decPre

[4] = 0.24 + 0.6 = 0.84

The probability Prpre[G] > Prswitch where Prswitch = 0.81 for the cost matrix given
in Table 4.3 and consequently Reference Monitor grants the access.

If the number of transitions equals to n = 4, the probability of the policy sat-
isfaction will be Prpre[G] = 0.26 + 0.5 = 0.76 < Prswitch = 0.81. In this case,
Reference Monitor denies the access.

Access Control in Presence of Freshness II Uncertainty

This subsection addresses how to calculate the probability of the security policy
satisfaction in the presence of uncertainty of type freshness II. The security policy
considered here is the same as in the case of the freshness III.

Meanwhile, in this scenario Reference Monitors observes and processes only one
attribute (〈areal

attr , tattr〉, t̃decPre), and also should calculate the probability of the policy
satisfaction at t̃decPre (see equation 4.3)

Prpre[G] = PrfreshIII[Gt̃decPre
|Gtattr ]

Prpre[G] = PrfreshIII[a
real
decPre = ‘normal′ ∨ areal

decPre = ‘general′ | areal
attr = ‘general′]

The number of transitions (e.g. attribute changes) between tattr and t̃decPre is
unknown but has the Poison distribution. Thus, the probability of the security
policy satisfaction is the product of probabilities computed for the case with the
freshness III but weighed on the probability that exactly n transitions has occurred

Prpre[G] =
∞∑

n=0

(Prp(n) ·
∑

j∈{3,4}
St̃decPre

[j])

Prpre[G] =
∞∑

n=0

(
λne−λ

n!
·

∑

j∈{3,4}
(ST

tattr
·Probn

reputation)[j])

where λ = (t̃decPre− tattr) ∗nmean, and nmean is the average amount of transitions in
a unit of time (assume that Reference Monitor knows this parameter).
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It is interesting to compare result for freshness III and freshness II. Assume that
λ = 2, e.g. the number of expected transitions in the interval between tattr and
t̃decPre. In this case, the probability of the policy satisfaction Prpre[G] = 0.90 >
Prswitch and Reference Monitor grants the access. If λ = 4, the probability of
the policy satisfaction will be Prpre[G] = 0.79 < Prswitch = 0.81. In this case,
Reference Monitor denies the access. By the way, in both scenarios the probability
of the policy satisfaction is higher in the case of the uncertainty of type freshness II.

Usage Control in Presence of Freshness I Uncertainty

This subsection addresses how to calculate the probability of the security policy
satisfaction in the presence of uncertainty of type freshness I. The security policy
considered here is given in Table 4.2 but only part of usage control is addressed.

In this scenario, usage control starts at tpermit and Reference Monitor pulls the
attribute value. Suppose, it receives the attribute (〈areal

attrOn1, tpermit〉, t̃decOn1).
If the observed attribute is trustworthy and correct the probability of the policy

satisfaction starting from tpermit till t̃decOn1 is given by (see also equation 4.4)

Pron1[G] = PrfreshI[G(tpermit:tattrOn1) ·GtattrOn1
·G(tattrOn1:t̃decOn1) |GtattrOn1

]

According to the definition of uncertainty of type freshness I tattrOn1 = tpermit =
t̃decOn1 and supposing that areal

attrOn1 satisfies the policy predicate (e.g. the Grid user
is in the location C), this probability equals to 1 and Reference Monitor grants the
access.

The reasonable question arises at what time tattrOn2 the next attribute should be
pulled and the security policy reevaluated? In terms of risk-aware usage control, the
attribute should be pulled when the probability of the security policy satisfaction
becomes too low

Pron1[G] = Prswitch

The probability of the policy satisfaction starting from tpermit till tattrOn2 is given
by

Pron1[G] = PrfreshI[G(tpermit:tattrOn2) |GtattrOn1
] = Prswitch

and tattrOn2 can be derived from this equation.
In the following, it is more appropriate to consider the probability of the policy

violation rather then satisfaction. This probability in terms of the location attribute
values equals to

PrfreshI[a
real
t = ‘locA′, ∀t ∈ tpermit : tattrOn2 | areal

attrOn1 = ‘locC ′] = 1−Prswitch

This probability tells whether the Markov chain, which models the attribute
behavior and starts in the state areal

attrOn1, can reach the set of states which violate
the security policy. If the Markov chain has entered such state, it could never leave
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it. These states are called absorbing and suppose Abs specifics the set of absorbing
states. For the location attribute it equals to Abs = {locA}.

A new Markov chain should be constructed to find the probability that the
original Markov chain has entered one of the absorbing states. In order to convert
the original chain to the new one, the probabilities in each row l of the original
transition matrix should be changes to values Prlm = 0 if l ∈ Abs, l 6= m, and
Prlm = 1 if l ∈ Abs, l = m. The transition matrix of the new Markov chain for the
location attribute is as specified

Problocation =




1 0 0

PrBA PrBB PrBC

PrCA PrCB PrCC


 =




1 0 0

0.2 0 0.8

0.1 0.9 0




Using the new Markov chain, the probability of the policy violation is calculated
in the similar way to the freshness II problem

∞∑
n=0

(Prp(n) ·
∑

j∈Abs

StattrOn2
[j]) = 1−Prswitch

∞∑
n=0

(
λne−λ

n!
·

∑

j∈Abs

(ST
tattrOn1

·Prob
n

location)[j]) = 1−Prswitch

Since Abs contains only the attribute value locA, the time tattrOn2 showing when
the next attribute should be pulled can be found from equations

∞∑
n=0

λne−λ

n!
· (ST

tattrOn1
·Prob

n

location)[0] = 1−Prswitch

λ = (tattrOn2 − tattrOn1) ∗ nmean

Obviously, to find tattrOn2 some numerical solving methods should be applied.
At this time the policy enforcement becomes too risky and it is very probably

that the Grid user has changed his initial location to one which violates the security
policy. In order to proceed the usage session, Reference Monitor queries fresh values
of the location attribute. Suppose, Reference Monitor can execute two type of
queries:

I to pull all changes of the attribute occurred within the interval (tpermit : tatrOn2)

II to pull only the current attribute value (〈areal
attrOn2, tattrOn2〉, t̃decOn2)

In the case of the query of the first type, Reference Monitor reevaluates the
security policy at t̃decOn2 by recomputing the probability of the policy satisfaction
in the interval from tpermit till t̃decOn2
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Pron2[G] = PrfreshI[G(tpermit:t̃decOn2) |GtattrOn1
, GtattrOn1+1

, ..., GtattrOn1+i
, ..., GtattrOn2

]

where tattrOn2 = t̃decOn2.
The first type of query allows to infer whether the policy was actually satisfied

all the interval. In fact, this probability will be 0 if there does exist at least one
value among pulled attributes which violates the security policy or 1 otherwise. If
the policy was satisfied all the interval (tpermit : t̃decOn2) the next attribute query
should be scheduled at tattrOn3. The time of this query and all consecutive queries is
computed in the same fashion as the time tattrOn2. Indeed, such policy enforcement
gives an example of the effective enforcement of usage control.

The query of the second type allows to infer whether Pr[GtattrOn2
] = 1, i.e. the

policy is actually satisfied at the querying time. But, there is no evidence that the
security policy holden also within the interval (tpermit : t̃decOn2). In fact, the Grid
user might violated the policy at some time point within the interval and the query
of the second type is inadequate to reason about this. Thus, the access decision
taken at t̃decOn2 should be aware about the risk of the policy violation within the
passed interval.

The probability of the policy satisfaction in interval from tpermit till t̃decOn2 for
the query of the second type is given by

Pron2[G] = PrfreshI[G(tpermit:t̃decOn2) |GtattrOn1
, GtattrOn2

]

Assume, that the attribute value queried at tattrOn2 equals to atattrOn2
= locC.

Thus, the Grid user initially was in the location C and at time of the second attribute
query he remains in the same location.

The number of transitions n, i.e. attribute changes, in the interval (tpermit :
t̃decOn2) is unknown. If n is odd, the probability of the policy violation will be 1
because there is no any path for the Markov chain (see Figure 4.11) which starts
and finishes in ‘locC ′, makes the odd number of transitions, and never visits ‘locA′.
Indeed, all paths which contains the location A do violate the security policy. If n
is even, then the probability of the policy violation equals to the probability that
the Markov chain absorbs in n steps to the location A. Combining two cases, the
probability Pron2[G] will be

Pron2[G] =
∞∑

n=0

Prn, Prn =





0, if n is odd

λne−λ

n!
· (ST

tattrOn1
·Prob

n

location)[0] if n is even

Obviously, the recalculated probability Pron2[G] will be less than the probability
Pron1[G] computed before querying the attribute. Accordingly to the risk-aware
usage control theory - the access should be revoked after receiving the new attribute
despite the fact that this observed attribute satisfies the security policy too. These
scenario is described in Figure 4.8 where the security policy holds when the attributes
are pulled but is violated in-between. This interesting result is the consequence of
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the characteristics of the Markov chain modeling the attribute changes, and the
attempt to preserve the correctness of the policy enforcement.

Obviously, such policy enforcement is rigorous but not effective. Let’s consider
another approach to estimate the impact of the security policy violation in the
interval (tpermit : t̃decOn2). Instead of computing the probability of the policy vio-
lation, Reference Monitor computes the average time the Grid user might spent in
‘locA′, i.e. in the location which violates the security policy. Assume, it equals to
T locA

(tpermit:t̃decOn2)
.

Then, to leverage the growth of probabilities and make the risk-aware usage
control efficient the following rule is used

(Pr[GtattrOn1
] = 1) ∧ (Pr[GtattrOn2

] = 1) ∧ (
T locA

(tpermit:t̃decOn2)

(t̃decOn2 − tpermit)
< 1−Prswitch) →

Pron2[G] = 1

i.e. if the relative policy violation time is less than (1−Prswitch) and every observed
attribute satisfies the security policy, Reference Monitor continues the usage session
and calculates the time of the next attribute query assuming that the policy was
satisfied in the interval (tpermit : t̃decOn2).

Resuming, the risk-aware usage control can be used to pull attribute queries only
when they are really needed. Such efficient schedule saves computational and com-
munication resources, on the one hand, and prevents unnoticed failures of policies
on the other.

Access Control in Presence of Uncertainty: Trustworthiness

Usually, trust management models deal with intentional uncertainties and propose
to assign trust values to attributes. Trust models varies on trust metrics, the se-
mantics of trust, how trust is calculated and how a policy based on trust should be
enforced.

The approach proposed in [36] introduces a trust model for a role-based trust
management framework (RTML) implemented on a mobile platform. RTML is
especially suitable for large-scale, distributed systems with decentralized attribute
authorities. RTML introduces delegation of credentials1, linked and parameterized
credentials, etc.

Original semantics of RTML credentials was extended with trust weights ex-
pressing a quantitative experience-based trust put by the issuer on the assertion.
For instance, the credential encoded as A.f(v) ←− D states that a principal A
trusts a principal D on a property with a degree v, where v ∈ (0, 1). Due to
transitive and distributed model of authority supported by RTML framework, the
approach allows to infer attributes of a peer and estimate their trustworthiness based
on known attributes and relations between them.

1Credential is a digitally signed attribute
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Suppose a security policy which allows to execute jobs in Grid certified by ACM
with a trust value above 0.80. The reference monitor can reason to execute a
submitted job having the following credentials. The first states that a principal
A (e.g. a requestor and the application producer) guarantees the job trustwor-
thiness A.isTrustedApplication(1.00) ←− JavaJob; the second constitutes that
a principal B has some collaborations with the principal A on producing trust-
worthy jobs with a degree of 0.70, B.collaborateWith(0.70) ←− A; and, finally,
the Grid service provider knows that the principal B is the ACM member with
a degree 0.99, ACMauthority.ACMmember(0.99) ←− B. The system is able to
infer the required credential by combining the chain of the presented credentials:
ACMauthority.isTrustedApplication(0.67) ←− JavaJob.

Algorithm to calculate trust weights is based on a semi-ring algebraic structure
where two operators are defined to calculate overall trust: linking (multiplication of
trust weights) and aggregation (maximum of given trust weights). Therefore, in our
example the resulting trust weight is a multiplication of trust weights in the chain
and equals to 1.00∗0.70∗0.99 = 0.67 < Prswitch, and the reference monitor deduces
that the job execution should be forbidden and denies the access.

4.2.5 Risk-aware Policy Enforcement

This subsection studies how the security policy enforcement is affected by the pres-
ence of uncertain attributes taking into account the main novelty of usage control,
i.e. continuity of control.

Non-oblivious Enforcement

Suppose, preA0 policy (see Table 4.5) based on an immutable attribute but whose
trustworthiness is uncertain. The policy grants the access to the Grid storage service
if the Grid user provides the self-signed assertion that information he wants to store
does not contain data circulation of which is illegal (i.e. it violates third party
copyrights).

tryaccess(gridUser,gridStorageService,methodStore). line 1
[(dataIsLegal == true)]. line 2
permitaccess(gridUser,gridStorageService,methodStore). line 3
endaccess(gridUser,gridStorageService, methodStore) line 4

Table 4.5: The preA0 Policy with Immutable Attribute

The required attribute dataIsLegal is pushed with the initial request, and as-
sume that only trustworthiness of the attribute is uncertain. Reference Monitor cal-
culates the trustworthiness of the attribute and suppose it equals 0.82. The access
decision is evaluated only once and assuming that the security policy is accompanied
with the cost matrix given in Table 4.3 the access is granted since
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Prpre[G] = Prtrust[G] = Prtrust[dataIsLegal = true] = 0.82 > Prswitch

Since the access is granted, the system imposes no further control and the usage
session can be ended only on the Grid user demand. But imagine, that during the
ongoing access Reference Monitor receives the evidence from some trusted party,
that the data stored by the Grid user is illegal. In this case, Reference Monitor
understands that the initial decision was incorrect and the bad alternative was cho-
sen. To mitigate this post-completion error, Reference Monitor recalculates the risk
value every time when new knowledge appear in the system about circumstances
under which risk-aware access decisions were taken. This is the crucial feature of
the risk-aware access and usage control which imposes that Reference Monitor is
not oblivious to every access decision made using uncertain attributes.

For the given example, assume that:

• E denotes the evidence that the stored data is illegal;

• Pr[E |G] denotes the probability of seeing the evidence E if the data is actually
correct, i.e. the evidence is false positive. Suppose this value equals to 0.05;

• Pr[E |G] denotes the probability of seeing the evidence E if the data is actually
illegal. This probability always equals to 1;

• Pr[G |E] denotes the probability that the stored data is illegal if the evidence
of such violation is present.

Reference Monitor revises previous estimates of the attribute trustworthiness
using Bayesian inference and the re-evaluated probability of the policy satisfaction
will be

Prpre[G] = Pr[G | E] =
Pr[E |G] ·Prtrust[G]

Pr[E |G] ·Prtrust[G] + Pr[E |G] ·Prtrust[G]
= 0.19

In fact, Pr[G |E] < Prswitch, and Reference Monitor revokes access immediately
upon receiving the evidence since keeping the usage session active becomes too risky.
Notice, that the risk revision could be forward, and backward, i.e. the evidence could
state that the stored content is perfectly good. Meanwhile, the approach is the same
- once Reference Monitor gets new information, it revises previous risk estimates and
access decisions.

In fact, such model of the risk-aware policy enforcement imposes that all pol-
icy statements which use remote attributes with observable mutability are comple-
mented with the mutable risk attribute, risk = riskdeny − riskgrant. The key point
is that the risk is the system-controlled attribute, and the system is always aware
about its freshness, correctness and trustworthiness and can guarantee the correct
enforcement of the policy based on the risk attribute. Thus, instead of the preA0
policy Reference Monitor enforces the preOnA0 policy (see Table 4.6).
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tryaccess(gridUser,gridStorageService,methodStore). line 1
[(system.risk < 0)∧(gridUser.dataIsLegal == true)]. line 2
permitaccess(gridUser,gridStorageService,methodStore). line 3
( endaccess(gridUser,gridStorageService,methodStore) line 4

or line 5
( [(system.risk ≥ 0)]. line 6

revokeaccess(gridUser,gridStorageService,methodStore ) ) ) line 7

Table 4.6: The preOnA0 Policy Example with Risk Attribute

Risk Mitigation

In usage control, a security policy violation triggers a revocation of access. Risk-
aware usage control implies that instead of the immediate policy revocation some
other system actions can be executed, e.g. querying Attribute Provider the current
attribute value. In order to preserve the coherence of the usage control model,
these actions are included into the policy specification. These actions, executed in
the result of violation of the predicate based on the risk value, are called the risk
mitigation strategies. These actions could be treated as the special case of obligations
and are engineered using atomic actions from a set of affordable countermeasures.
The policy example given in Table 4.2 assumes the following countermeasure actions:
pullAttr(a) (the enforcement level action which pulls the current attribute value
from Attribute Provider), and revokeaccess(s,o,r) (the policy level action which
terminates the usage). The policy and its risk mitigation strategy are presented in
Table 4.7.

tryaccess(s,o,r). line 1
[(system.risk < 0)∧(a = locB or a = locC)]. line 2
permitaccess(s,o,r). line 3
Z; line 4

Z =( (endaccess(s,o,r)) line 5
or line 6
( {[(system.risk ≥ 0)]. mitigate(system.risk) }.Z ) line 7
or line 8
( {[(a = locA)]. line 9
revokeaccess(s,o,r)} ) ) line 10

mitigate(system.risk):: line 11
pullAttr(a) line 12
if (system.risk ≥ 0) line 13

revokeaccess(s,o,r) line 14

Table 4.7: Risk Mitigation

Depending on the system design, other countermeasures can be presented, e.g.
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a suspension of a usage session, sending a notification to the policy administrator,
etc.

4.2.6 Discussion and Related Work

The main focus of risk-aware access and usage control is to approximate the continu-
ous control. The presented approach is generic and counts all possible uncertainties
associated with observed attributes in the unified model. It assumes a probabilistic
model of the attribute changes and gives mathematical model to calculate all types
of uncertainties.

So far, the risk-aware access and usage control is focused on attributes used to
evaluate predicates. Besides, the security policy also contains actions, e.g. attribute
updates and obligations whose fulfillment can be uncertain. The risk-aware access
and usage control should extended to capture all kind of uncertainties.

Obviously, some drawbacks do exist. First of all, the approach is based on the
assumption that the uncertainty can be modeled by the probability of the policy vi-
olation and this probabilities are known whereas generally the system possesses only
partial knowledge. Moreover, there are inevitable difficulties on assigning the initial
cost matrix, difficulties on determining probabilities, implementing risk-mitigation
strategies, etc. However, many real attributes (e.g. reputation, location) do behave
as a random process with the Markov property.

There are several related work on risk in access and usage control. Aziz et al.
[15] assess policies considering different types of risk - operational, combinatorial
and conflict of interest. The approach is focused on reconfiguration of policy in a
way to reduce its risk and save its strength. Han et al. [45] describe the approach
to pre-evaluate security of policy using risk before enforcement. We don’t consider
composing of policies and assume that they are created in a secure way. Instead, our
approach discusses peculiarities of collecting uncertain attribute values and problems
connected with this issue.

Several approaches [123, 34, 74] use risk assessment to analyze cost of possible
outcomes of access and employ a cost-benefit analysis to make an access decision.
These methods consider a static decision making process while our approach analyzes
the dynamic behavior of the system.

Few methods describe trustworthiness of policy arguments and update mecha-
nisms. Skalka et al. [106] discussed the approach to evaluate credentials for dis-
tributed authorization with risk. Nauman et al. [87] determined trustworthiness of
update mechanism analyzing and verifying its behavior. Next to paying attention
to trustworthiness of attributes our approach is also focused on their freshness and
also explicitly shows how to make a decision using risk assessment.

The approach proposed in [65] empowers UCON model with risk assessment.
This paper describes an approach for selection of service providers (data consumer)
in a service oriented architecture (SOA). The model of risk-aware usage policy en-
forcement is devoted to another problem: enforcement of policies by a resource
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provider rather by a requestor and making a rational decision about further ac-
cesses.

An examples of dealing with uncertain attribute values in UCON is given in [9].
Each remote attribute is associated with a security label which represents the trusted
status of the attribute, and could change as the result of the attribute update. Since
updates can run on a remote host, the behavior identifies whether the current value
of the attribute is trusted within a specific platform. The model examines how to
ensure the correct enforcement of the UCON policy particularly if Reference Monitor
is placed on the requestor’s side.



108 CHAPTER 4. ENHANCING EXPRESSIVENESS OF THE MODEL



Chapter 5

Enforcement of Access and Usage
Control in Grid

This Chapter details the enforcement level of our access and usage control model.
The enforcement level proposes an architecture of a state-full server-side reference

monitor which serves as a collection of security mechanisms collaborating together
to enforce security policies. Each mechanism is represented by a component in the
architecture.

This Chapter presents the overall component-based architecture of the reference
monitor on coarse- and fine-grained levels of control (see section 5.1) and interactions
between its main components during security policy enforcement (see section 5.2).
The rest of this Chapter outlines security requirements which should be counted
during the design of the reference monitor (see section 5.3).

5.1 Component-based Architecture of Reference

Monitor

This section describes a detailed high-level component-based architecture of the
reference monitor. The important aspect here is to identify the main state-full au-
thorization components necessary to enforce coarse-grained and fine-grained access
and usage control scenarios and adhere their functionality to UCON peculiarities,
i.e. continuity of control and mutuality of attributes. Also, this section outlines
supplementary components needed to facilitate security policies enforcement, e.g.
components for the efficient attributes management, risk-aware access and usage
control, and trust negotiation.

We start by symbolically dividing the reference monitor in two operational parts
(see Figure 5.1): coarse-grained c-reference monitor which protects access and usage
of Grid service instances; and fine-grained f -reference monitor which performs run-
time monitoring of jobs submitted for execution by means of Grid computational
services. The objects monitored on the coarse-grained level are Grid services hosted
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Figure 5.1: Reference Monitor

by computational Grid, while access rights grant access to the methods exposed by
these services.

Two levels of control are integrated by sharing attributes used to produce access
decisions. Property policy specifies mapping rules among attributes available on dif-
ferent levels. Besides, two levels of control are synchronized on the access revocation,
i.e. the Grid service instance terminated on the fine-grained level is automatically
revoked on the coarse-grained level and vise versa.

5.1.1 Coarse-grained Level of Control

Figure 5.2 shows the overall architecture of the coarse-grained reference monitor.
It consists of two blocks representing a Grid user and Grid-level security services
which form the coarse-grained reference monitor.

Grid User

Grid user acts as a subject in access and usage control scenarios and initiates ac-
cess requests to Grid service instances. Since Grid service instances are long-lived
resources, at some point of time the Grid user on its discretion might stop the
execution of the Grid service instance by sending the end-access message.

Besides this basic functionality, the Grid user hosts security services to support
trust negotiation with Grid resource providers. Trust Negotiation Engine is
responsible for carrying out the negotiation protocol specified in Figure 4.2. The
protocol runs over a protected channel and utilizes credential negotiation in order
to enforce (on the fly) user’s and resource provider’s mutually satisfiable require-
ments. Trust Negotiation Engine also maintains security polices relevant to the
trust negotiation, i.e. credential and disclosure policies.
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Credential Manager complements the functionalities of the trust negotiation
engine. It provides interfaces for: (i) validation and verification of credentials re-
ceived from other parties during trust negotiation, (ii) credential transformation
from transport format to logic predicates suitable for policies evaluation.

User Attributes represent a repository where all Grid user’s attributes are
stored. These attributes can be access by the trust negotiation engine and by other
parties. Disclosure of attributes is regulated by the disclosure policy.

Coarse-grained Reference Monitor

The coarse-grained reference monitor receives the service request from remote Grid
users, performs the configured security checks, and starts the requested service.
The coarse-grained reference monitor consists of (see Figure 5.2): Policy Enforce-
ment Point (C-PEP), Policy Decision Point (C-PDP), Attribute Manager (C-PIP),
Sensors, Authorizations Manager, Obligations Manager, Conditions Manager, Trust
Negotiation Engine, Risk Manager and Policy Administration Point (PAP).

C-PEP component is able to intercept invocations of security-relevant opera-
tions (access requests), suspend them before starting, and interrupt them while in
progress. The tryaccess(s, o, r) is transmitted by C-PEP to C-PDP, when it in-
tercepts and suspends a security-relevant operations waiting for the access decision
produced by C-PDP. Grid user attributes might be pushed with the initial access
request. C-PEP forwards these attributes to Attribute Manager by the push(attr).

C-PEP is responsible for the enforcement of taken access decisions. If C-PDP
responds with the permitaccess(s, o, r) the C-PEP creates the Grid service instance
and sends the end point reference to this instance to the requesting Grid user. If
C-PDP responds with the denyaccess(s, o, r) the C-PEP aborts the access request
by notifying the requesting Grid user.

Moreover, once an access request (s, o, r) has been permitted and is in progress,
C-PEP should be able to detect when the access to Grid service instance terminates
normally. Either Grid user or system environment where the Grid service instance
is hosted might stop the execution of the Grid service instance by sending the end-
access message to C-PEP. Afterwards, C-PEP issue the endaccess(s, o, r) to C-
PDP. If C-PEP receives the revokeaccess(s, o, r) from C-PDP when the access is
in progress, it should be able to terminate the usage session by destroying the Grid
service instance and notifying the requesting Grid user about the policy violation.

C-PEP might also manage meta-information associated with the usage session,
e.g. session id and the current state of the enforced coarse-grained security policy.

C-PDP produces access decisions according to the coarse-grained security pol-
icy. When C-PDP receives the access request tryaccess(s, o, r) coming from C-PEP,
C-PDP loads the coarse-grained security policy applicable to the given access re-
quest.

The coarse-grained security policy is written in POLPA language and represents
a process specified via a sequence of allowed actions. C-PDP builds security automa-
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Figure 5.2: Reference Monitor Architecture on Coarse-grained Level

ton that represents the security policy and corresponds to admitted behavior of the
system. As an example, assume the security policy represented by the sequence of
actions α.β.γ. When the action α is received, C-PDP allows the execution of α,
updates the state of the policy and remembers that α has been already executed.
Next action C-PDP expects is β.

Initial action consumed by the automaton is the tryaccess(s, o, r) and the pre-
authorization starts. Next transitions occur as the result of the performing actions
corresponding to checking authorization and condition predicates, to enforcing at-
tribute update and obligation actions. C-PDP contacts Authorizations Manager by
the get(auth) to check authorization predicates. If the predicates are satisfied, Au-
thorizations Manager returns the value = grant and C-PDP forces the transition of
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the security automaton and execution of the next action. In the same fashion C-PDP
interacts with Conditions Manager, Obligations Manager and Attribute Manager.
If any of these actions fail, the security automaton cannot transit to the next state
and C-PDP issues the denyaccess(s, o, r) and aborts the policy enforcement. Other-
wise, C-PDP sends the pertimaccess(s, o, r) to C-PEP and starts the ongoing usage
control.

The ongoing usage control phase is processed in the same manner. The secu-
rity automaton halts when some security policy statements do not hold anymore or
C-PDP receives the endaccess(s, o, r) from C-PEP. If the security automaton halts
as the result of the policy violation, C-PDP invokes C-PEP to terminate the usage
session through the revokeaccess(s, o, r) action. Notice, the revokeaccess(s, o, r) ac-
tion can be sent by C-PDP to C-PEP before that C-PEP sends the endaccess(s, o, r)
action to C-PDP. Active C-PDP and state-full interactions between C-PDP and C-
PEP are a main novelty of the UCON model implemented in our framework. Usually,
authorization engines in Grid assume a passive C-PDP, i.e. C-PDP that answers
only once to access requests.

If there were no policy violations during the enforcement, the security automaton
halts when the last action specified in the security policy is enforced. After this point,
no further interactions between the authorization components are possible.

C-PIP: Attribute Manager serves as a repository of attributes used to evalu-
ate security policies and its functionality consists in efficient attributes management
is order to keep up-to-date attribute values. Attribute Manager interacts with C-
PEP, C-PDP, Authorizations Manager, Trust Negotiation Engine, and Sensors.

C-PEP pushes to Attribute Manager initial set of attributes submitted with the
access request by the push(attr). C-PDP invokes Attribute Manager in order to
update some attributes as a result of the coarse-grained policy enforcement by the
update(attr). If Attribute Manager is able to change attribute value, it replies with
the ack message. Authorizations Manager queries attributes which are required for
authorization predicates evaluation by the get(attr). Also, Authorizations Manager
might force Attribute Manager to pull fresh attributes from remote repositories, e.g.
remote attributes of Grid users that have observable mutability.

In case of trust negotiation, Attributes Manager captures the functionality of
Credential Manager component specified for the Grid user. Attribute manager keeps
credentials for mutual trust negotiations and Grid users’ profiles of active credentials,
performs credentials validation and translation for appropriate format required by
other components. Trust Negotiation Engine contacts Attribute Manager in order
to update profiles of Grid users participating in negotiation by the update(profile)
and to get Grid disclosable credentials requested by Grid users during negotiation
by the get(attr).

Sensors are plugged into subject, object and environment attribute repositories.
They are activated every time when attributes are changed. The new value of
the attribute is forwarded to Attribute Manager if the push model of attributes
acquisition exists in the system. Otherwise, sensors are used by Attribute Manager
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to pull fresh attribute values.
Obligations Manager is invoked by C-PDP with the get(oBl) and is responsi-

ble for the obligations fulfillment. If the obligation is controllable, Obligations Man-
ager can ask the subject to perform it. Instead, if the obligation is observable only,
Obligations Manager simply tests it. Obligations Manager returns value = true to
C-PDP if the obligation is satisfied, or false otherwise. As an example, an obligation
could state that an email of agreement is sent to the obligation subject that must
accept the agreement by replying to this mail. In this case, Obligations Manager
sends the email of agreement and waits for the reply before returning true to C-PDP.
Interactions between Obligations Manager and C-PDP are state-less.

Conditions Manager is invoked by C-PDP with the get(Con) every time the
coarse-grained policy requires the evaluation of condition predicates. Conditions
Manager observes attributes of environment where the system operates. It is capable
to capture any change of attributes done by the execution environment and exploits
sensors to collect attributes. As example, Conditions Manager could retrieve the
current time, version of Grid middleware installed on Grid user machine, and so on.

Authorizations Manager is invoked by C-PDP with the get(Auth) every time
the coarse-grained policy requires the evaluation of authorization predicates.

Authorizations Manager queries Attribute Manager to get fresh attributes values.
If the set of received attributes is not sufficient to evaluate authorization predicates,
Authorizations Manager asks Trust Negotiation Engine to resolve problem of missed
credentials by starting trust negotiation. Notice, trust negotiation is applicable only
for pre-authorization scenarios and is not supported for usage control scenarios, i.e.
when the access is in progress. When trust negotiation is over, Authorizations Man-
ager queries Attribute Manager again and if the set of attributes is still insufficient
it returns value = false to C-PDP. Otherwise, Authorizations Manager invokes
Risk Manager with the get(Risk) to calculate the uncertainties associated with the
current attribute values. If the risk of the coarse-grained policy violation is low,
Authorizations Manager replies with the value = true to C-PDP.

During the ongoing usage control Authorizations Manager evaluates authoriza-
tion predicates continuously, i.e. each change of attribute triggers the predicates
reevaluation. In case of the push attribute acquisition model, new attribute values
are pushed to Authorizations Manager by Attribute Manager each time attributes
change value. In case of the pull attribute acquisition model, Authorizations Man-
ager asks Risk Manager to schedule when the policy enforcement will be too risky
and the next attribute query should be made. When this time elapses, Authoriza-
tions Manger forces Attribute Manager to query fresh attribute values. Authoriza-
tions Manager stays alive until the predicates are satisfied. When the predicates are
violated, Authorizations Manager replies with the value = false to C-PDP. Autho-
rizations Manager might also be stopped during by C-PDP if the endaccess(s, o, r)
action was received by C-PDP from C-PEP.

Trust Negotiation Engine functions in the same manner as the correspond-
ing component of the Grid User architecture. In order to achieve interoperability
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of negotiations with Grid users, there should be an instance of Trust Negotiation
Engine on the Grid side.

Risk Manager serves to compute intentional and unintentional uncertainties
associated with remote attributes. Risk Manager is invoked by Authorizations Man-
ager and returns value = true if the current risk value is less than allowed by the
cost matrix. Also, Risk Manager operates as a scheduler during ongoing usage con-
trol and estimates the time point when the policy enforcement becomes too risky
and some countermeasures should be taken to minimize the risk. Authorizations
Manager is responsible to execute such countermeasures.

C-PAP manages all security policies of Grid Administrator and other stakehold-
ers on the coarse-grained level of control. In fact, it control the following policies:

• Coarse-grained security policies which are expressed in POLPA or U-XACML
and specify access and usage control scenarios of Grid service instances, Grid
services, Grid service workflows;

• Property policies which are expressed as first-order logic rules and map at-
tributes between coarse- and fine-grained levels of control;

• Credential policies and disclosure policies which are expressed as first-order
logic rules and used for trust negotiation of the coarse-grained level of control;

• Cost matrix which are expressed as an array of values. The cost matrix de-
termines the allowed level of uncertainties associated with attributes used to
produce access decision

In conclusion, notice that each architectural component implements the part of
the security services functionality specified by OGSA and discussed in the introduc-
tion Chapter.

5.1.2 Fine-grained Level of Control

The fine-grained reference monitor performs run-time monitoring of jobs submitted
for execution on the machine donating computational resources to Grid. The fine-
grained reference monitor consists of (see Figure 5.3): Policy Enforcement Point
(F-PEP), Policy Decision Point (F-PDP), Attribute Manager (F-PIP), Sensors, Au-
thorizations Manager, Obligations Manager, Conditions Manager, and Policy Ad-
ministration Point (PAP). Underlying logic and functionality of the fine-grained
authorization components are the same an on the coarse-grained level of control.
The components only differ in security policies loaded on each level of control and
protect distinct set of objects.

The fine-grained reference monitor in our framework is designed to monitor the
execution of Java-based computational jobs and is integrated into Java Virtual Ma-
chine (JVM). Objects on this level of control are files, sockets, etc. For example,
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Figure 5.3: Reference Monitor Architecture on Fine-grained Level

if an object is a file, the open, read, write and close operations are the actions
that should be monitored by the F-PEP. If the action is not allowed, the F-PEP
terminates the job execution.

Besides, some functionality and components are omitted on the fine-grained level
of control in order to make the job execution faster. Trust negotiation, risk evalu-
ation are missed and only the push attribute acquisition model exists on the fine-
grained level.

Grid resource providers should enforce the following security policies on the fine-
grained level:

• Fine-grained security policies which are expressed in POLPA and specify ac-
cess and usage control scenarios of low-level computational resources allocated
for Grid service instances;

• Property policies which are expressed as first-order logic rules and map at-
tributes between coarse- and fine-grained levels of control;

5.2 Interactions between Components

The message flow, or so-called authorization protocol between main components of
the architecture is addressed in this section. The security policy enforcement can be
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separated in two parts: pre-authorization (or access control scenarios), and ongoing
continuous control (or usage control scenarios). Since the security policy enforce-
ment varies slightly on two levels of control, the coarse-grained security policies are
discussed.

5.2.1 Enforcement of Access Control Scenarios

Figure 5.4: preABC13 Security Policy as Security Automaton

tryaccess(s,o,r). line 1
Pa. line 2
Pb. line 3
Pc. line 4
updates(attr). line 5
permitaccess(s,o,r). line 6
endaccess(s,o,r). line 7
update(attr) line 8

Table 5.1: preABC13 Security Policy

Suppose, the preABC13 Security Policy whose authorization predicates are
built on remote, i.e. Grid users, attributes. Such security policy written in POLPA
language is given in Table 5.1 and it states that access should be granted if au-
thorization and condition predicates are satisfied, and obligation action is fulfilled.
Before granting access and when the usage session is ended some attribute updates
are required.

The enforcement of this access control scenario goes as follows (see Figure 5.2):

1. Step: a Grid user requests access to a Grid service instance. Assume, no
attributes are pushed with the initial request; C-PEP intercepts the request
and sends the tryaccess(s, o, r) to C-PDP. Afterwards, C-PEP suspends the
access request and awaits for the C-PDP reply;

2. Step: C-PDP receives this action and loads the security policy from PAP
which corresponds to the access request. Then, C-PDP creates the security
automaton that models this policy (see Figure 5.4). Inial state of the automa-
ton is 0 and in order to transit to the next state C-PDP initiates authorization
predicates check by invoking Authorizations Manager and awaits for its reply;
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3. Step: Authorizations Manager asks Attribute Manager attributes required for
the predicates evaluation. Attribute Manager replies with the nil message
because no attributes were pushed with the initial request. Then, Attribute
Manager invokes Trust Negotiation Engine to run negations on the missed
attributes and awaits for its reply;

4. Step: Trust Negotiation Engine loads from PAP credential and disclosure se-
curity policies and starts trust negotiation with corresponding authorization
components of the Grid user. During negotiation process, Trust Negotia-
tion Engine contacts Attribute Manager in order to update the Grid user
profile with new acquired attributes. When the trust negotiation process is
accomplished, Trust Negotiation Engine replies to Authorizations Manager
suspended in the step 3;

5. Step: Authorizations Manager awakes and queries again Attribute Manager on
attributes required for the predicates evaluation. It attributes received during
trust negotiation are insufficient and do not satisfy authorization predicates,
then the step access denied is taken. Otherwise, Authorizations Manager con-
tacts Risk Manager to calculate uncertainties associated with negotiated at-
tributes and awaits for its reply;

6. Step: Risk Manager loads the cost matrix from PAP, computes the probability
of the authorization predicates violation, and produces the risk-aware access
decision. The result is sent back to Authorizations Manager suspended in the
step 5;

7. Step: Authorizations Manager forwards the result of authorization predicates
evaluation to C-PDP suspended in the step 2. If predicates are satisfied, C-
PDP forces the transition of the security automaton to the state 1. Then,
C-PDP proceeds with invocation of Obligations Manager to fulfill required
obligations and awaits for its reply;

8. Step: Obligations Manager forces the obligation subject to fulfill required
obligation actions. When this is done, Obligations Manager replies to C-PDP
suspended in the previous step;

9. Step: The next action initiated by C-PDP is checking of condition predi-
cates. It is performed in the same way as obligations fulfilment. When all
decision factor are satisfied, the security automaton remains in the state 3
and the next action - update of attributes. C-PDP contacts Attribute Man-
ager to preform this update operation. After the update, C-PDP replies the
permitaccess(s, o, r) to C-PEP suspended in the step 1 and idles till the next
action is received to trigger the automaton transition;
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10. Step: C-PEP resumes the suspended access request, creates the Grid service
instance and notifies about this the Grid user. Then, C-PEP also idles until
the Grid service instance completes its tasks or the Grid user decides to stop
the service. When this happens, C-PEP contacts again C-PDP suspended in
the previous step with the endaccess(s, o, r);

11. Step: C-PDP forces the security automaton to transit to the state 6 and
the final action to be executed in this access control scenario is the attribute
update. C-PDP asks Attribute Manager to perform it. Then, C-PDP notifies
all components that the usage session is over and the access request processing
has finished;

12. Step Access Denied : this step is taken if during steps 7-9 any of managers
return that the particular policy statement does not hold. In this case, C-PDP
immediately stops the policy enforcement, destroys the security automaton
and notifies C-PEP with the denyaccess(s, o, r). C-PEP forwards this message
to the Grid user and rejects the access request. No further communications
on this access request are possible.

5.2.2 Enforcement of Usage Control Scenarios

Enforcement of usage control scenarios differ from the enforcement of access control
ones due to continuity of control and a need of revocation of violated sessions.

Figure 5.5: onA3 Security Policy as Security Automaton

tryaccess(s,o,r). line 1
permitaccess(s,o,r). line 2
(endaccess(s,o,r) or line 3
Pa.revokeaccess(s,o,r)); line 4
update(attr) line 5

Table 5.2: onA3 Security Policy

Suppose, the onA3 Security Policy whose authorization predicates are built on
remote, i.e. Grid users, attributes with observable mutability. Such security policy
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written in POLPA language is given in Table 5.5 and it states that access should
be granted when requested. During the ongoing usage, the authorization predicates
are evaluated continuously, and when they are not satisfied - the access should be
revoked. Either the usage session ends normally or is destroyed as the results of the
security policy violation, the attribute updates completes this usage control scenario.

The enforcement of this security policy goes as follows (see Figure 5.2):

1. Step: a Grid user requests access to a Grid service instance. C-PEP intercepts
the request and sends the tryaccess(s, o, r) to C-PDP. Afterwards, C-PEP
suspends the access request and awaits for the C-PDP reply;

2. Step: C-PDP receives this action and loads the security policy from PAP
which corresponds to the access request. Then, C-PDP creates the security
automaton that models this policy (see Figure 5.5). Inial state of the automa-
ton is 0. No any control is required in this usage control scenario and the
access should be granted. C-PDP transits to the state 1 and responds with
the permitaccess(s, o, r) to C-PEP suspended in the previous step. C-PEP
creates the Grid service instance and sends the end point reference of this
instance to the requesting Grid user. Then, C-PEP idles. Simultaneously,
C-PDP starts the ongoing usage control by invoking Authorizations Manager
and waits for its reply.

Authorizations Manager continuously evaluates authorization predicates. In
case of the push attribute acquisition model, Authorizations Manager asks
Attribute Manager to push fresh attribute values every time they change.
When new attributes arrive, Authorizations Manager asks Risk Manager to
compute uncertainties associated with attributes. If the policy enforcement
is not too risky, Authorizations Manager awaits until new attributes will be
pushed by Attribute Manager and iteratively repeats this procedure until the
predicates are satisfied.

In case of the pull attribute acquisition model, Authorizations Manager gets
required attributes from Attribute Manager and asks Risk Manager to com-
pute the time point when the policy enforcement will be too risky. When
this time elapses, Authorizations Manager forces Attribute Manager to pull
fresh attribute values from sensors. If new attributes satisfy authorization
predicates, Authorizations Manager again asks Risk Manager to compute the
time point of the next attribute query and predicates reevaluation. Attribute
Manager iteratively repeats this procedure until the predicates are satisfied;

3. Step: On this step the policy enforcement depends on what happens first: (i)
the Grid service instance completes its tasks or the Grid user decides to stop
the service; (ii) Authorizations Manager detects the security policy violation.

If the first alternative happens, C-PEP contacts C-PDP suspended in the pre-
vious step with the endaccess(s, o, r), C-PDP stops Authorizations Manager
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and consequently, Authorizations Manager terminates interactions with At-
tribute Manager and Risk Manager. The security automaton which model the
security policy transits from the state 1 to the state 3.

If the second alternative happens, Authorizations Manager notifies C-PDP
that authorization predicates do not hold anymore. C-PDP transits the se-
curity automaton from the state 1 to the state 2. Then, C-PDP issues a
revokeaccess(s, o, r) command to the C-PEP and the security automaton tran-
sits to the state 3. When C-PEP receives the revokeaccess(s, o, r) from C-
PDP, it destroys the Grid service instance and notifies the requesting Grid
user about the policy violation.

4. Step: Either the first or the second alternative occurs after its execution, the
security automaton remains in the state 3. Then, C-PDP forces the final action
execution - the attribute update. C-PDP asks Attribute Manager to perform
it. Then, C-PDP notifies all components that the usage session is over and
the access request processing has finished.

5.3 Security Requirements for Reference Monitor

This section ends this Chapter by describing general design requirements which
should be resolved during the implementation of components of the reference mon-
itor.

The reference monitor should implement correct and efficient enforcement of
security policies and ensures that unauthorized accesses are prevented and malicious
users can not circumvent the policy enforcement. This claim is based on successful
implementation of several design principals among which are [99]:

• Complete mediation: every access and security-sensitive action to every object
must be checked for an authority. The reference monitor is non-bypassable on
the way to the accessing resource;

• Tamper-proof : the reference monitor cannot be modified or influenced by
other processes, i.e. which could approve actions that are not allowed by
the security policy. Tamper-proof requirements also encompass the reference
monitor which governs access to the security policy itself to guarantee that
the enforced policy can not be modified too;

• Reference validation correctness : all access decisions do adhere to security
policies, and these decisions are correctly implemented.
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Chapter 6

Implementation of Access and
Usage Control in Globus

This Chapter presents the implementation level of our access and usage control
model. It discusses the implementation and integration of the reference monitor in
Globus Toolkit 4.0, the mostly used middleware to setup computational Grid. We
integrated our model exploiting the possibility to plugging third-party authorization
services, called SAMLAuthzCallout.

The coarse-grained reference monitor is realized to continuously control access
and usage of Grid service instances, while the fine-grained level is implemented for
the GRAM computational service only. The performance evaluation is given to
estimate the overhead posed by our framework. All experiments were executed on
Pentium 4 with 2.8GHz and 1GB RAM running Linux. Implementation and results
were presented in [30, 31, 58].

6.1 Implementation of Coarse-grained Reference

Monitor

This section presents the implementation of the coarse-grained reference monitor.
First, it briefly recalls the authorization framework employed in Globus Toolkit
(subsection 6.1.1). Then, the realization of the trust negotiation engine is discussed
(subsection 6.1.2). In the rest, the implementation of state-full interactions between
C-PDP and C-PEP are shown (subsection 6.1.3). The state-full coarse-grained ref-
erence monitor is able to capture continuous control over Grid service instances and
to revoke instances which violate prescribed security policies.

6.1.1 Native Authorization Framework of Globus

The main component of Globus Toolkit is Globus Container. This is a runtime
environment that provides a message processing facilities between Grid users and
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Figure 6.1: Access Control in Globus Toolkit

Grid services, creates and destroys Grid service instances, and controls access and
usage of Grid services.

Globus Container processes default access control scenarios as follows (see Figure
6.1):

• Step 1 : Grid user sends the SOAP1 message that contains the access request
SOAP(service,create) to create a new service instance;

• Step 2 : The message is handled by SOAP Engine and is translated to a for-
mat understandable by Globus Container. Each request should be authorized
before the execution and SOAP Engine contacts C-PEP for this task;

• Step 3.1 : The basic access control approach in Globus Toolkit is based on
GridMapAuthorization (rf. Chapter 1 and 2). The C-PEP asks C-PDP to
check if the Distinguished Name of the Grid user requesting the service is
among a predefined list;

• Step 3.2 : GridMapAuthorization is a very coarse approach and, addition-
ally, Globus Toolkit allows to define alternative authorization services that
best suit access control needs. The Open Grid Forum Authorization working
group has defined a standard for plugging third-party authorization services
and specifies that the communication protocol between the authorization ser-
vice and Globus Container must conform to the SAML protocol of requesting

1SOAP is a message exchange protocol adopted for interactions between Grid entities
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authorization assertion and responding to them. Thus, C-PEP creates the au-
thorization chain that includes the GridMapAuthorization and the third-party
authorization service.

• Step 4 : If the federated access decision is grant, C-PEP creates the requested
service instance;

• Step 5 : End Point Reference (EPR) of the created service instance is placed
into the SOAP envelope and SOAP Engine sends it to the Grid user.

6.1.2 Integration of Trust Negotiation

We deployed Trust Negotiation Engine (with Credential Manager, rf. Figure 5.2)
in both Grid user and Globus Container sides to make the negotiation framework
interoperable. We exploited standard Globus Toolkit mechanisms for the seamless
integration and plugged-in trust negotiations as the authorization service through
SAMLAuthzCallout. Our authorization service is integrated by simply exploiting a
Globus configuration feature, i.e. by configuring the Grid service security profile to
exploit it. Realization of the authorization service is done in Java 2.

Figure 6.2 shows the negotiation-based authorization life cycle. It consists of the
following steps:

• Grid user sends a service request (1) handled by Globus Container. Simulta-
neously, Trust Negotiation Engine of the Grid user side sends the same request
(1’) to the counterpart engine embedded into the authorization service. Once
step (1’) is done, the authorization service establishes an SSL channel (mutual
authentication) with the user’s Trust Negotiation Engine (1”).

• The real trust negotiation starts when the Globus container has processed
the service request (in step (1)) and sends a SAML authorization request
to the authorization service, step (2). On its side, the authorization service
compares the request to those requests received directly from Grid users and
starts negotiating with the user that matches to the container’s request. We
note that step (2) is independent form the occurrence of step (1”) but step (3)
takes place only if steps (1’), (1”) and (2) have taken place.

• The trust negotiation protocol (rf. Figure 4.2) runs over an SSL secure socket
connection providing message confidentiality, step 3. The SSL connection with
mutual authentication bootstraps a negotiation process with initial identity
token exchange. Once the negotiation protocol is initialized the Grid user and
authorization server negotiate on the missed attributes required to produce
the access decision. Attributes are encoded as X.509 certificate tokens and
trust negotiation phase includes exchange, validation and transformation of
these certificates to logic predicates.

2http://www.interactiveaccess.org/index v1 1.html
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Figure 6.2: Negotiation-based Access Control

• When the negotiation is over and access decision has been taken, step (4), the
authorization service sends back to the Globus container a SAML response
with the access decision, step (4’). It is the starting point when the Globus
container initiates the service creation, step (4”), and the fine-grained control,
step (5).

The negotiation process including network support and messages delivery be-
tween the trust negotiation nodes was implemented apart from the Globus trans-
portation channels and uses SSL socket connection. Message exchanges in the pro-
tocol were custom-defined and optimized for efficient message delivery.

We assume that communications over SSL are sufficiently secure for our model.
Thus, Grid user and Globus Container achieve confidentiality and integrity of autho-
rization messages and credentials transmitted during trust negotiations. Credentials
encode attributes of peers, and are digitally signed by trusted authorities.

Credentials are compliant with X.509 (v3) attribute certificate standard. All
credentials are associated with a particular identity (public key) presented for the
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SSL handshake to proof their ownership, and vanish fake credentials. During a
negotiation process some of the already presented credentials may expire before
the negotiation is completed. To deal with that, Credential Manager keeps two
sets of user profiles: raw X.509 certificates, and their logic based equivalent. The
former one is re-evaluated on any negotiation step to be performed (i.e., before an
access decision is taken), so that if any of the presented certificates expires Trust
Negotiation Engine aborts the negotiation process.

Unfortunately, the trust negotiation process might become a subject of denial-
of-the-service attacks since it is a relatively heavy computational process (due to
its design nature). Anyway, one could define a short enough bounded session time
for a round of negotiations to mitigate this kind of attacks. When the session time
expires, the session automatically is terminated.

Performance Evaluation

We tested the negotiations overhead on the coarse-grained level of control based
on scenarios and security policies presented in Chapter 4 (section 4.1.3 and Figures
4.4, 4.5), and by evaluating it with: (i) increased number of presented credentials,
(ii) increased number of negotiated (disclosable) credentials and (iii) simulated two
extreme cases of negotiation strategies giving us the boundaries of overall possible
negotiation timing.

We will first illustrate typical negotiation exchanges and their time consumption
against network delay, certificate validation and access decision making. Figure 4.5
shows two negotiation processes based on the presented Grid access control scenario.

We divide a trust negotiation overhead into (relatively independent) time cases:

• network delay for data transmission over SSL channel;

• certificate validation, verification and conversion to data structures suitable
for logic access decision. Attributes are encoded as X.509 certificates;

• logic access decision evaluation based on security policies (authorization pred-
icates checking).

Figure 4.5(a) presents a simple negotiation scenario with just few message ex-
changes. The client (Grid User) requests to obtain access rights to the free mathlib
library and the server (Computing Center, the Grid resource provider) requires a
PhD student credential to grant access. The table below shows the negotiation time
(in milliseconds) of the different cases.

network delay 83.2

certificate validation 14.0

access decision 101.5

overall time 287.0
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The overall time is counted from the point when a client initiated a request till the
time the server replied with a grant message. This time also includes the time for
user profile management such as profile generation, update and deletion.

The logic engine was called for access decision evaluation three times - once on
the client side and twice on the server side. The submitted certificate was validated
once on the server side only.

We count overall negotiation time of all steps done by both server and client
sides. However, to calculate time of concurrent processes (notice, that each missed
credential is negotiation in the separate system process) we projected all processes
on one time line in order to accurately deal with overlapping time. For instance,
for two concurrent processes we update the overall time by the difference from the
earliest process started till the latest that ended.

Figure 4.5(b) shows a negotiation case with two concurrent negotiations (in con-
current threads), where one of them is drawn in gray. The table below summarizes
the measured time performance (in milliseconds).

network delay 182.1

certificate validation 39.0

access decision 380.1

overall time 707.6

In this scenario, the logic access decision was called 10 times, 5 on each side, and
the client validated 2 certificates while the server 3.

In either cases, the certificates validation and verification had less time con-
suming part than the network delay. The conclusion from the first part of the
experimentation is that the overall negotiation time is more sensitive to network de-
lay time than to certificate validation. The more interactions during a negotiation
the more influence the network delay will have on the overall negotiation. Absolute
value of network delay time depends also on the size of the data to be processed.
There was no direct way to manage and reduce this value for the given scenario.

The access decision time had the most impact on the overall negotiation pro-
cess. Looking in Figure 4.1, the access decision depends on two main computations:
deduction part (based on the access policy and client’s set of credentials) and ab-
duction part (based on the access policy, client’s set of credentials and the set of
disclosable credentials). We performed two sets of experiments to analyze the access
decision behavior with respect to the two logic computations. We used the Grid ac-
cess control scenario in Figure 4.5(b) and its security policies (rf. Figure 4.4) for the
experiments.

First set of experiments focused on measuring access decision time of deduction
computation versus an increased number of pushed certificates to be verified, vali-
dated and transformed to logic facts. Technically, a client pushes visaCard and ssn
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Figure 6.3: Authorization Service Performance with Increased Number of Pushed
Credentials

certificates along with other artificially generated certificates along with the initial
service request. For this purpose we generated additional X.509 certificates that in
combination with the two from the scenario formed the different tests. Figure 6.3
shows the access decision performance measured in milliseconds.

The server invoked the logic engine only once on each trial and replied with
grant decision. The average time for the logic access decision almost remained the
same while the number of pushed certificates was increased from 10 to 35. The
average time was calculated based on 10 repeating measurements on each trial. The
measurement error is presented by a cursor arrow on the top of the columns.

The conclusion from the experimentation was that the logic access decision took
approximately half of the overall time and did not change during the trials. While,
the certificate validation and network delay time (included in the overall decision
time) increased during the trials and equally influenced to the overall performance.

Second set of experiments was focused on the pull model where the server deter-
mines what credentials are required to establish trust. Here, the disclosure policy
determines what credentials are disclosable (available) so that abduction reasoning
finds those that are necessary to grant a service request.

We used the scenario of Figure 4.5(b) but this time we modified the disclosure
policy (by adding new logic rules) on the server side so that the set of disclosable
credentials feed to the abduction reasoning increased on each trial.
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Figure 6.4: Authorization Service Performance Dependence on Disclosure Policy

Figure 6.4 shows the set of measurements performed. On each trial the server
computed visaCard and ssn credentials as missing credentials returned to the client.
The access decision time on every trial was very sensitive and varied considerably
to the number of disclosable credentials (i.e., a number of logic rules in the server’s
disclosure policy). The performed tests measured the logic access decision time
versus overall decision time.

Abduction reasoning time grew exponentially with increasing disclosable creden-
tials from 9 to 19. With 19 hypotheses (disclosable credentials) the logic engine took
approximately 2 minutes (99.7% of the overall time) to compute the missing creden-
tials. Here, the impact of network delay and certificate validation onto the overall
time became completely negligible. We expect at around 12 disclosable credentials
as a reasonable threshold (approximately a second) for a decision. However, such
a limitation also depends on possible negotiation strategies and negotiation session
validity. We refer to [35] for in deep analysis and results on abduction problems and
complexity.

Next and last set of experiments we performed was on the time performance of
the negotiation protocol with respect to possible negotiation strategies in terms of
number of client-server interactions.

The sequence of credential exchange during a negotiation process is controlled
by negotiation strategies [117, 118]. One can adopt variety of negotiation strategies
and privacy settings [122, 108, 19] depending on credential sensitivity, on familiarity
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Figure 6.5: Time Bounds for Trust Negotiation

with the opponent or domain/environment, type of resources being negotiated upon
etc.

The proposed negotiation protocol serves as a policy enforcement engine over the
access and disclosure policies of an opponent, i.e. the protocol is data-driven by the
deduction and abduction reasoning. In that sense, on top of the missing credentials
computed one can additionally impose a strategy controlling the disclosure of these
credentials. Here we note that such a strategy could be encoded directly in the
disclosure policy (in [61] the authors define a stepwise reasoning on the disclosure
policy structure) so that the protocol enforces the strategy directly. We also note
that multiple disclosure policies can be defined for a given access policy thus encoding
different possible strategies.

Since strategies depend on multiple factors and may take different sequences of
credential exchange, so the goal we approach is to analyze the time boundaries the
negotiation protocol performs by abstracting from a specific strategy. Essentially,
we wanted to examine the protocol behavior on two extreme negotiation modes with
the possibility of concurrent credential negotiations.

Figure 6.5 shows the time area resulted from our experimentations where all
negotiation strategies, our prototype can perform, fall into.

The upper time bound, named as mutual suspicious mode, is implied by a step-
wise disclosure of credentials where each entity discloses missing credentials consec-
utively one after the other. Thus, one credential by the server side and one by the
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client side in response, where the next credential is requested (negotiated) if the
previous negotiation has been completed. The negotiation process is run in a single
system thread on a client side and on a server side without any concurrent requests.

We assume the following negotiation scenario of this mode. A client and a
server have the same number of 11 credentials protecting sensitive resources. We
chose 11 credentials to obtain a reasonable abduction computation close to the
estimated threshold noted above. The client requests for a resource with no input
of credentials. The server computes number N of missing credentials (N ≤ 11) and
negotiates on them in suspicious mode. For each of the missing credential the client
has a counter request with a credential to the server side. The server grants the
requested credential and the client, on its turn, grants the respective credential to
the server.

In this way, for each of the server’s credential we model a negotiation round
where the client runs abduction reasoning to find a missing credential and success-
fully negotiates on it. The negotiation scenario has N + 1 invocation of abduction
reasoning over fixed number of 11 hypotheses in any test.

The opposite to suspicious mode, is the mutual greedy mode of negotiations.
This mode results in the bottom time bound in the figure. The minimum time for
negotiation is determined by the strategy that implies complete disclosure of missing
credentials in one round by client and by server side. Greedy mode utilizes multi-
threaded concurrent exchange of missing credentials on each side. To obtain the
minimum negotiation time, we modify the above scenario with the assumption that
the client and the server have recently been in contact for that resource and, being
in greedy mode, the client along with the request for the resource runs N requests
for the credentials necessary to grant server’s N missing credentials. On receiving
request for a resource, the server runs N threads requesting the missing credentials.
In this scenario, we avoid client running abduction reasoning but only deduction to
check if server’s requests are granted by the already run client’s requests. In the
greedy mode, the client and server run 2N system threads, while in the suspicious
mode they run only 2 system threads. In greedy mode we loose in memory but
profit in execution time.

Figure 6.5 illustrates how with increasing 1 ≤ N ≤ 11 the two extreme modes
perform in time. All possible negotiations lie in the hatched area. On x-axis we
show the total number of credentials necessary to complete a negotiation process,
where half of the credentials are requested by the server and the other half by the
client side. With total of 22 credentials (the server and client ask each other for 11
credentials) any negotiation strategy would remain within 1.5 to 7.5 seconds. With
8 credentials the overall negotiation time is bound by 0.9 and 3.7 seconds.

In the following we briefly relate our results with those reported for the Traust
service scenario [71, pp 14–16]. In the Traust scenario there are two subsequent
negotiation sessions: one to disclose the request to access an information portal and
one to access the portal as a rescue dog handler. The authors report an average
execution time of the whole scenario to 4.04 seconds with total of nine disclosed
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credentials. In our case, the scenario in Figure 4.5(a) approximates the interactions
of the first negotiation of the Traust scenario, while the mutual suspicious mode
with total of 8 credentials approximates (upper bound) the message exchanges of
the second negotiation phase. Our average time (sum of the two negotiations) to
simulate the scenario would be an average of 4 seconds. Although, we experimented
with slightly faster CPUs the obtained results shown that our system performs
comparably to that of Traust.

6.1.3 Integration of Usage Control in Globus

Figure 6.6: Usage Control in Globus Toolkit

UCON novelties require the implementation of the state-full coarse-grained ref-
erence monitor what is not supported by Globus Toolkit. Standard authorization
services for Globus are just limited to grant access to services without taking into
account the specific instance of them. Our approach proposes the state-full coarse-
grained reference monitor which is able to manage the interactions also in terms of
access to specific service instances, monitor continuously the execution of the meth-
ods after the access has been granted, and destroy running service instances which
violate prescribed security policies.

Our solution entails some modifications in Globus Container and assumes many-
rounds interactions between C-PEP and C-PDP during the security policy enforce-
ment. C-PDP is modeled as remote authorization service through SAMLAuthzCall-
out. Modified Globus Container processes our access and usage control scenarios as
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follows (see Figure 6.6):

• Steps 1-4 : Correspond accordingly to the enforcement of default access control
scenarios by Globus Container (rf. section 6.1.1 and Figure 6.1). The only
difference is the semantics and processing of the SAML request and responde
received and sent by C-PDP to C-PEP in the step 3.2. When C-PDP receives
a new SAML request, it behaves as described in section 5.2. But instead of
creating the complete security automaton that models the security policy, C-
PDP builds only part of it. This part models access control scenarios, and
last action accepted by the security automaton is the permitaccess(s, o, r).
When all policy statements corresponding to access control are enforced, C-
PDP replies to C-PEP with the appropriate SAML response message. Assume,
that access decision to create a new Grid service instance was positive, and
C-PEP created the new instance;

• Step 5 : SOAP Engine handles the end point reference (EPR) of the new
instance (step 5.1). Originally, EPR is immediately sent back to the Grid
user. Instead, we changed this mechanism to make additional procedures.

In step 5.2, SOAP Engine sends EPR to C-PEP.

In step 5.3, C-PEP contacts Notification Manager and subscribes to the no-
tification mechanisms. Notification Manager is the core functionality of Grid
services realized in Globus. It implements the WS-Notification specification
and operates by monitoring continuously the service instance life-cycle. Any
changes occurred with the service instance are automatically forwarded by
Notification Manager to its subscribers. Thus, C-PEP becomes aware about
the behavior of the service instance.

In step 5.4, C-PEP creates a new SAML request message addressed to C-
PDP. This request contains EPR and specifies that continuous usage con-
trol for the created service instance is required. The initial access request
is also attached to this message. C-PDP receives this SAML request, and
creates the last part of the security automaton that models the security pol-
icy. This part corresponds to pure usage control scenarios and starts with
the permitaccess(s, o, r). Then, C-PDP starts the enforcement of the security
policy and replies to C-PEP with the acknowledge SAML response message.

In step 5.5, C-PEP replies to SOAP engine that all steps regarding usage
control are accomplished and EPR can be sent back to the Grid user (step
5.6). The phase of continuous control of the Grid service instance starts.
From then, the security policy enforcement depends on what happens first:
(step 6) the Grid service instance completes its tasks or the Grid user decides
to stop the service; (step 7) C-PDP detects the security policy violation;

• Step 6 : If the Grid service instance terminates normally, Notification Man-
ager informs C-PEP about this event (step 6.1). In step 6.2, C-PEP creates



6.2. IMPLEMENTATION OF FINE-GRAINED REFERENCE MONITOR 135

a new SAML request message addressed to C-PDP. This request contains
EPR and specifies that the service instance with this EPR does not exist any-
more. C-PDP receives this SAML request, and processes the enforcement of
the endaccess(s, o, r) action. When the enforcement of the security policy is
completed, C-PDP replies to C-PEP with the acknowledge SAML response
message. C-PDP and C-PEP delete all data relating to the enforced policy
and this step ends the usage control enforcement;

• Step 7 : Instead, if C-PDP detects the security policy violation, it sends to
Globus Container the SOAP request to destroy the service instance with the
specified EPR. Globus Container handles this request as usual, and forwards to
C-PEP for the access decision evaluation. C-PEP recognizes that the massage
came from C-PDP, allows its execution, destroys the services instance. C-PDP
and C-PEP delete all data relating to the enforced policy and this step ends
the usage control enforcement.

If C-PDP is the remote authorization service, i.e. it is hosted by different re-
source provider somewhere in Grid, the security overhead posed by integration of
the state-full coarse-grained reference monitor is negligible. The system performance
is slowed down only by many-rounds interactions between C-PEP and C-PDP. All
computations regarding the evaluation of coarse-grained authorization and condition
predicates, obligation and update actions execution are placed outside the machine
which hosts requested Grid service instances.

6.2 Implementation of Fine-grained Reference Mon-

itor

This section presents the implementation of the fine-grained reference monitor pre-
sented in Figure 5.3. We integrated some components of our model within the
Globus GRAM service.

6.2.1 Monitoring of Java Jobs

First, we extended the standard Globus job description schema to define a new job
type, the java one. In this way, to execute a Java application the Grid user specifies
java as a job type in its job request. Second, we defined an alternative scheduling
system that in case of a Java application executes it on our customized Java Virtual
Machine (JVM), and we configured the Managed Job Service (MJS) component of
the Globus GRAM service to invoke this scheduler instead of the standard one. The
standard error stream is used in order to return to Grid users error messages when
an application has been stopped because of a fine-grained security policy violation.
The standard Globus mechanism to transfer files, i.e. GridFTP, is exploited to send
to the remote Grid user the log file with the error description.
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F-PDP interacts with the GRAM service in order to get the job request submitted
by the remote Grid user. This interaction is simply implemented through an XML
file that is generated by the GRAM service before invoking the security enhanced
JVM. The file name is passed to JVM which serves as F-PEP as an input parameter
and JVM, in turn, passes it to F-PDP. F-PDP reads from this file the resource
requirements in the job request which will be enforced during execution. F-PDP
also imports from Globus the user DN extracted from the proxy certificate that has
been submitted by the Grid user.

F-PDP is activated by JVM every time a Java application wants to perform an
interaction with the underlying resource. This has been implemented by modifying
the implementation of the Java core classes, i.e. the classes that manage the inter-
actions with the underlying resource. In particular, these classes have been modified
by substituting the invocations to the system libraries functions which perform the
security relevant system calls with invocation to a proper set of wrapper functions
we defined. The execution of external code through the Java Native Interface (JNI)
[75] has been disabled, since it allows interactions with underlying resource through
external libraries (e.g., non java-based ones). A wrapper function first activates
F-PDP to perform the security checks before the execution of the security relevant
system call and suspends itself (i.e. suspends the JVM). Then, after F-PDP re-
activates the wrapper function, the last enforces F-PDP access decision by either
actually invoking the system library function or by interrupting the application ex-
ecution. When the system library function has been executed the wrapper function
activates F-PDP again to perform security checks after the system call execution.
The interactions between F-PDP and JVM are implemented by using semaphores
and shared variables.

F-PDP invokes Authorization Manager sometimes during the job execution to
evaluate attributes of the Grid user submitted during the coarse-grained control.
Authorization Manager checks these attributes using Property Policy (rf. Figure
5.1) and we name such functionality as Property PDP.

F-PDP calls Property PDP as an external library function. The interactions
between the two components have a critical impact on the monitoring performance.
Property PDP has been implemented in Java but F-PDP - in C, thus we invoke
Property PDP without loading JVM every time. We use the Java Native Interface
(JNI) library that allows us to invoke Java methods from inside a C code. As a
part of the functionality of this library, we have a special command that explicitly
loads JVM when needed for a Java class execution, and also commands to obtain
links to a Java class and its methods (in our case the main class which implement
Property PDP). In this way, at initialization time, F-PDP loads JVM, creates links
to Property PDP methods, and keeps them in memory for all subsequent invocations.
When the Java application being monitored terminates, F-PDP releases JVM and
then terminates too.
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Figure 6.7: Fine-grained Monitoring Performance

6.2.2 Performance Evaluation

The security checks performed by the fine-grained monitoring introduce an over-
head in the application execution time. The main factor concerning the execution
overhead is if a java application performs more computational operations with only
few system calls – case where the overhead of security monitoring is negligible with
respect to the overall execution time, or if an application mainly performs system
calls – case where security checks impacts on the overall time.

The test presented here evaluates the execution time of a Java application by
adopting a standard JVM and a security enhanced JVM with Property PDP and
F-PDP. In particular, we adopted the Jikes RVM Java Virtual Machine developed
by the IBM T. J. Watson Research Center [13] run on Linux operating system. This
JVM has been modified to embed our security support.

The test scenario enforces the fine-grained security policy given in subsection
3.4.4, where the Java application submitted by the Grid user exploits an utility
library. In this case, the utility library consists of a collection of benchmarks that
belong to the Ashes Suite Collection benchmarks3. In particular, user’s remote
application uses a library to convert an mp3 file to a wav one. Both, the Grid user’s
application and the utility library, were monitored by our system. System calls
defined are: read the library, read an input file (in mp3 format), and write a result
file (in wav format). This application is well-suited for our test because it performs
a large number of security relevant system calls during its execution: around 1500
calls for about 5 seconds.

The fine-grained system controls if a user submitted the application has a proper

3http://www.sable.mcgill.ca/ashes
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set of credentials to open the requested utility library, and if access to the library
and to the data files is according to the admitted behavior.

Figure 6.7 shows the results of the evaluation as an average of ten trials. The av-
erage execution time of the library without any security control is 5680 milliseconds,
while the execution time with the enforcement of the fine-grained policy only is 5720
milliseconds, and the execution time with the enforcement of both the fine-grained
and the user property policies is 6130 milliseconds. F-PDP has been invoked 1489
times, while the Property PDP has been invoked only 1 time - when the applica-
tion opened the utility library file. The overhead introduced by F-PDP is about 1%,
while the overhead by both Property PDP and F-PDP is about 8% of the application
execution time. The results shown the practical aspects of F-PDP, while Property
PDP shown that the system overhead is sensitive against logic access decisions at
the fine-grained level of control.

On the fine-grained level of control, all security threats (e.g. to subvert system
functionality and block up computational resources) come from Java applications
executed by the Globus GRAM computational service. An application executed on
the platform of the Grid resource provider can not perform dangerous or forbidden
operations on platform’s resources, since every action performed by the application
is intercepted and checked before the actual execution. Moreover, the application
cannot bypass the monitoring mechanism, because the fine-grained reference mon-
itor was integrated inside JVM, and the execution of the application is completely
mediated by JVM. Additionally, we disabled the Java Native Interface support for
executing arbitrary code from a Java application. We also emphasize on the im-
portance of trust between policy decision and enforcement components on the fine-
grained level.



Chapter 7

Concluding Remarks

7.1 Summary

The advance of Grid computing technology promises to have far-reaching effects on
resource-intensive engineering and scientific applications.

This thesis discusses access and usage control framework to protect computa-
tional Grids on three levels of abstraction: policy, enforcement and implementation.
The proposed framework is based on UCON model which main novelties are conti-
nuity of control and attributes mutability [70, 32].

The policy level [64, 63, 58, 65, 36, 33] outlines a basic system abstraction for
coarse-grained and fine-grained control.

Coarse-grained objects are Grid services instances, and Grid service workflows.
Coarse-grained subjects are Grid users attempting to execute jobs in Grid by means
of its computational services. Access rights on the coarse-grained level of control
are portTypes of Grid services. A Grid service instance is a long-lived object and
access to this object is continuously evaluated. If in meanwhile attributes change
values in a such way that the security policy is not satisfied, the access is revoked
and the Grid service instance is destroyed.

Fine-grained security policy controls behavior of submitted jobs. Objects here
are low-level computational resources like files, sockets, CPU, and access rights
specify operations over these resources. Fine-grained level of control monitors jobs
execution and terminates those execution which violates security policies.

Coarse- and fine-grained levels of control share attributes used to make access
decision an revocation of access on any levels leads to the revocation of the last level.

We classify attributes on immutable, attributes with enforceable and observable
mutuality. Also, attributes may be remote and local regarding their provenance.
Access and usage control scenarios enforcement varies according to attributes used to
construct security policies. U-XACML policy specification language is introduces to
express basic access and usage scenarios. It enhances XACML policy languages with
UCON novelties - attribute mutability and continuity of control. POLPA language
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based on process algebra is exploited to express more complex usage scenarios, e.g. to
model allowed Grid service workflows on coarse-grained level and to express allowed
execution traces of submitted jobs on fine-grained level of control.

Further, the policy level of our framework introduce some enhancements, trust
negotiations and risk-aware access and usage control model.

Trust negotiations are applied on coarse-grained level of control and capture
access control scenarios based on remote attributes. Additional credential and dis-
closure policies are introduced to negotiate on the attributes needed to evaluate
authorization predicates.

A risk-aware usage control model in presented on coarse-grained level of con-
trol and capture access and usage control scenarios based on remote attributes with
observable mutability. Attributes observed by the reference monitor might not cor-
respond to real attributes values due to several reasons. Thus, the accesses decision
is produced taking into account some uncertainties associated with attributes. These
uncertainties can be intentional and unintentional. To produce access decision, the
reference monitor computes these uncertainties and weights risks to grant or deny
access. Based on the cost matrix, the reference monitor takes the less risky deci-
sion. In usage control scenarios, the uncertainties grow with the time passed since
the last attribute value was received and the security policy evaluated. When these
uncertainties are too big and the policy enforcement becomes to risky, the reference
monitor pulls new attribute values. The risk-aware access and usage control model
is used to make the efficient scheduler for attributes acquisition in usage control
scenarios.

The enforcement level [30, 31, 33, 58] outlines the architecture of the reference
monitor on coarse- and fine-grained levels of control. The interactions between main
components of the reference monitor enforcing access and usage control scenarios
are state-full.

The implementation level [30, 31, 58] proposes the integrations of our access
and usage control model in Globus Toolkit. Trust negotiations are implemented on
the coarse-grained level and show reasonable security overhead. Coarse-grained level
of control is realized to protect any WSRF-compliant Grid service. Fine-grained level
of control is realized for the GRAM computational service and protects resources
allocated for the execution of Java jobs submitted by Grid users. The integration
of our security support entails small modification in the Globus container and the
GRAM service.

7.2 Future Work

A future work concerns the improvements on every level of access and usage control
model. The policy level should be enhanced with the unified policy language capable
to capture different access and usage control scenarios. The risk-aware usage control
model should research on mining initial probabilities and cost matrix values. The



enforcement level should introduce a reference monitor with distributed components,
e.g. a single PDP might control only a part of Grid services and the security policy
over all Grid services should be enforced by providing a model of collaborations
among several PDPs which enforce only the part of the policy. The implementation
level should address the implementation of obligations and conditions managers and
attribute updates in the presence on concurrent usage sessions.

Besides, as a future work we explore other areas of UCON model applicability,
e.g. in networking and in cloud computing.
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