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Abstract
Grid environment concerns the sharing of a large set of resources among

entities that belong to Virtual Organizations. To this aim, the environment
instantiates interactions among entities that belong to distinct administrative
domains, that are potentially unknown, and among which no trust relation-
ships exist a priori. For instance, a grid user that provides a computational
service, executes unknown applications on its local computational resources
on behalf on unknown grid users. In this context, the environment must pro-
vide an adequate support to guarantee security in these interactions.

To improve the security of the grid environment, this paper proposes to
adopt a continuous usage control model to monitor accesses to grid computa-
tional services, i.e. to monitor the behaviour of the applications executed on
these services on behalf of grid users. This approach requires the definition of
a security policy that describes the admitted application behaviour, and the
integration in the grid security infrastructure of a component that monitors
the application behaviour and that enforces this security policy.

This paper also presents the architecture of the prototype of computa-
tional service monitor we have developed, along with some performance fig-
ures and its integration into the Globus framework.

1 Introduction
Grid technology concerns the sharing of a very large set of resources among a
dynamic, large and geographically distributed set of entities. The entities that

∗Work partially supported by the STREP-project ”S3MS”, the FET-project ”SENSORIA” and
the STREP-project ”GRIDTrust”
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share their resources in the grid environment are organized in Virtual Organiza-
tions (VOs), and could be companies, universities, research institutes and other
individuals. Each of these entities exploits a grid toolkit to set up its grid services,
such as computational services, storage services, software repository services and
so on. Hence, the grid is a very large and dynamic set of services provided by a var-
ious and geographically distributed entities. A grid user exploits this environment
by composing the available grid services in the most proper way to solve its prob-
lem. As an example, the grid environment can be successfully exploited for the
execution of computational or data intensive applications, such as very large scale
simulations (e.g. earthquake simulation [15]) or image analysis (e.g. astronomy or
climate study).

Security is a very important issue in the grid environment. As a matter of fact,
a VO includes entities that belong to distinct administrative domains and, con-
sequently, the resources shared by these entities are managed by distinct admin-
istration teams that may adopt different security mechanisms and apply distinct
security policies. Moreover, no trust relationships exist a priori among the VO
participants. Hence, the entity that provides a computational service, executes on
the resources it shares unknown applications on behalf of unknown grid users. If
adequate mechanisms that allow potential grid participants to use the grid environ-
ment with confidence are not provided by the environment itself, the spreading of
the grid will be slowed down.

This paper proposes an approach to improve the security of grid computational
services that concerns access control enforcement, inspired to the concept of con-
tinuous usage control proposed by Sandhu and Park in [41] and [42]. This approach
proposes to monitor the usage of the grid computational resource due to applica-
tion executed on behalf of grid users. This can be executed integrating in the grid
security architecture a component that monitors the behaviour of the applications.

The structure of the paper is the following. Section 2 describes the main fea-
tures the grid environment and of the grid computational services. Section 3 de-
scribes some previous works that improve grid security with authorization systems.
Section 4 defines the continuous usage control model, and Section 5 describes the
security policy specification. Section 6 describes the design and some implemen-
tation details of our prototype of grid monitor dedicated to computational services
that support the execution of Java application, along with some performance fig-
ures. Section 6 also describes the integration of our prototype with the Globus
toolkit. Conclusions are drawn in Section 7.
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2 Grid Computing
The grid environment is a distributed computing environment where each partici-
pant allows any other participant to exploit its local resources by providing a grid
service [18], [21]. This environment is based on the concept of Virtual Organi-
zation (VO). A VO is a set of individual and/or institutions, e.g. companies, uni-
versities, industries and so on, who share their resources. The management of a
VO is very complex because the number of participant is typically very large, and
VOs are dynamic because during the life of a VO, some participant can leave the
VO, while new participant can join the VO. The sharing that the grid environment
is concerned with, is not primarily file exchange, but rather direct access to com-
puters, software, data and even other kind of resources [21]. These resources are
heterogeneous and geographically distributed, and each of them is managed lo-
cally and independently from the others. The heterogeneity and the dynamicity
of the resources involved in the grid environment requires considerable efforts for
the integration and the coordination that are necessary to create such a computing
environment. The solution adopted to guarantee interoperability derives from the
Web Service technology, and defines a grid services in terms of a set of standard
protocols and a standard syntax to describe the service interface [17].

The Global Grid Forum community developed a standard, the Open Grid Ser-
vice Infrastructure (OGSI) [50], that details the concept of grid services. The
Globus Toolkit 3, [16], is a reference implementation of the OGSI standard, and
this paper refers to this implementation as grid environment. However, alternative
grid environments are available, such as Gridbus [5], Legion [9], WebOS [51], and
Unicore [14]. According to OGSI, each grid service is described in terms of fea-
tures, behaviour and interface exploiting the Grid Service Description Language
(GSDL), an extension of the Web Service Description Language (WSDL) [10].

2.1 Computational Services
Grid services may be of various kind, depending upon the resources they are built
on, such as: storage services, data base services, computational services and oth-
ers. Computational services provide computational resources where the VO partic-
ipants can execute their applications. To submit its application to a computational
service, a VO participant issues a job request, that includes the name of the applica-
tion and other parameters required for the execution. The Globus Toolkit proposes
a Resource Specification Language, RSL, to express job requests. This language
allow to express two type of information: the resource requirements, such as the
main memory size, the CPU time or the CPU number, and the job configuration,
such as the executable name and the input/output files. The following example
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shows a simple job request:

<rsl:rsl...
<gram:job\>
<gram:executable> <rsl:path>

<rsl:stringElement value="my_appl"/>
</rsl:path> </gram:executable>
...
<gram:maxMemory>

<rsl:integer value="64"/>
</gram:maxMemory>
...
<gram:maxCpuTime>

<rsl:long value="60"/>
</gram:maxCpuTime>
...

</gram:job>
</rsl:rsl>

This request concerns the execution of the application my appl and specifies that
the application uses not more than 64 MB of main memory and not more than 60
CPU seconds.

Hence, the computational service provider executes on its resource unknown
applications on behalf of unknown grid users. From the resource provider point of
view, the execution of an untrusted application represents a threat for the integrity
of its local resource. From the point of view of the user who submits the job,
instead, the execution of its application on an untrusted resource represents a threat
for the correctness of the application results. This paper is focused on the protection
of the computational resource from malicious applications.

3 Security in Grid Computing
Due to the dynamic, collaborative and distributed nature of the grid, security is a
fundamental issue in this environment. As a matter of fact, the resource sharing
implemented by the grid environment must be highly controlled, because grid ser-
vice providers, that grant access to their resources to unknown grid users, want that
these accesses are regulated by a security policy that states which actions can be
performed on the resources. Security management in the grid environment is com-
plicated by the need to establish secure relationships between a large number of
dynamically created participants among which no trust relationships exist a priori,
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and across distinct administrative domains, each with its distinct resources and its
own local security policy. In the case of computational resources, for instance, grid
service providers allow the execution of unknown applications on behalf of un-
known grid users on their resources. If an adequate security support is not adopted,
the applications could perform dangerous and even malicious actions on these re-
sources.

Even if the security threats to the grid environment fall into the standard cate-
gories, some standard solutions cannot be adopted to protect the grid environment
because, in the this case, the malicious entity could be anyone, even one of the
grid participants. For instance, a firewall cannot be trivially applied, because the
fact that the VO includes entities from distinct administrative domain, implies that
is not trivial to define what is “inside” the grid environment and what is “outside”
[38]. Hence, more complex security solutions, tailored to the grid environment, are
required, such as the one proposed in [12] to “create overlaying security perime-
ters, protecting different virtual collaborations that may exist at a time .., while
ensuring the security of each member as defined by its local administrator”.

The security requirements of the grid environment are detailed in [20], [28]
and [38]. These requirements include authentication, delegation, authorization,
privacy, message confidentiality and integrity, trust, policy and access control en-
forcement. However, these requirements are not fully implemented by the current
grid environments.

Most of the approaches that have been proposed to improve the security of the
grid environment are all related to Globus, that is one of the most used grid toolkit.
These approaches are meant to integrate in the Globus architecture an authorization
system that performs a fine grained access control on grid resources. The Globus
Security Infrastructure, GSI, assigns a unique grid identity to each VO participant.
This identity is represented by a X.509 certificate signed by the VO certification
authority, that includes the owner identity string and its public key. This certifi-
cate is used by the owner to produce proxy certificates, to authenticate himself on
some services. Once the authentication is successfully performed, the grid partic-
ipant is mapped into a local user with the proper set of right. The strength of this
mechanism is given by the secrecy of the private key that, in turn, mainly depends
upon the owner local security policy. If the workstation of a VO participant p is
violated and the private key of p is stolen, the attacker can impersonate p on the
grid, and can execute malicious applications on the grid services provided by other
participants.

Moreover, Globus provides a coarse grained access control on the resource,
because once the Globus Resource Allocation Manager [16] has authenticated a
grid user through an identity certificate issued by the VO Certification Authority,
this user is mapped onto a local account, and the security policy that is enforced
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is only the one defined by the privileges paired with the local account by the re-
source operating system. However, native operating system access control models
may not be expressive enough to define security policies suitable for the grid en-
vironment. Moreover, in general, distinct grid resources have distinct operating
systems, and distinct operating systems may not support the same kind of policies.
Hence, a proper support to guarantee security in grid computational service must
be provided.

The Community Authorization Service, CAS, has been proposed by the Globus
team in [19] and [40]. It is an implementation of an authorization service integrated
with the Globus toolkit. CAS is a service that stores a database of the VO policies,
i.e. the policies that determines what each grid user is allowed to do as VO mem-
ber. This service issues to grid users proxy certificates that embed CAS policy
assertions. The grid user that wants to use a grid resource contacts the CAS service
to request a proper credential to execute an action on this resource. The credential
returned by the CAS server will be presented by the grid user to the service it wants
to exploit. This approach requires CAS-enabled services, i.e. services that are able
to understand and enforce the policies included in the credentials released by the
CAS server.

An approach that integrates a fine grain authorization system in the grid envi-
ronment has been proposed by Keahey and Welch. In [31], they describe some of
the shortcomings of the Globus current authorization system and they state the need
for a fine grain authorization system. In [49], they address this issue by integrating
Akenti within the Globus toolkit. “Akenti is an authorization service (PDP) that
uses authenticated X.509 certificates to establish identity and distributed digitally
signed authorization policy certificates to make access decisions about distributed
resources” [48].

Another solution to adopt an advanced authorization system in the grid envi-
ronment has been presented by Stell, Sinnot and Watt in [47]. They integrate a
role based access control infrastructure, PERMIS, with the Globus toolkit to pro-
vide fine grained control on user rights. PERMIS is “a a role based access control
infrastructure that uses X.509 certificates to store users’ role. All access control
decisions are driven by an authorization policy, which is itself stored in a X.509
attribute certificate..” [8].

This paper proposes an approach to improve the security of grid computational
services that concerns access control enforcement, that is one of the grid security
requirements listed in [20], [28] and [38]. This approach is inspired to the concept
of continuous usage control. This implies that the applications executed on the
computational service are not considered as atomic entities, but all the interactions
between these applications and the local resource performed during the execution
of the application are monitored according to a security policy. The enforcement of
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a security policy to monitor the application behaviour is necessary to detect attacks
that try to circumvent the other security mechanisms, such as the authentication
one.

4 Continuous and Fine Grain Usage Control
This paper proposes to adopt a continuous and fine grain usage control model on
the grid computational resource to monitor the usage of the resource itself, i.e.
the behaviour of grid applications. Here and in the following, we denote as grid
applications those applications that are executed on the local grid computational
resource on behalf of remote grid users. This model defines the application be-
haviour that is admitted on the computational resource through a security policy,
as described in the next section.

The computational resource usage control is continuous because the applica-
tion behaviour is monitored during the whole execution time. For instance, the
main memory occupation, the execution time, the number of processes or threads
generated by the application and all the other interactions between the application
and the local resource are checked during the application execution. As a conse-
quence of these controls, the right of an application to execute an action on the local
resource could be revoked during the execution time. For instance, the right of an
application to send data to a remote host could be revoked during its execution if
a critical file has been read by the application itself, or the right to create a thread
could be revoked if the application has already created the maximum number of
threads allowed by the policy. Moreover, also the grid service usage right could be
revoked to an application during its execution if its behaviour does not satisfy the
enforced policy.

The application monitoring is history based because, to decide whether the
current interaction is permitted, the whole trace of execution of the application is
evaluated. In this way, some dependencies among the operations issued by the
application (obligation) can be imposed by the policy. For instance, the policy can
state that the read and write file operations can be executed by the application only
after the related file open operation, or that messages can be sent on a socket only
if critical files has not been read. Moreover, a policy obligation could also state that
an action can be performed only if a proper set of credentials have been submitted
by the remote grid user. Here and in the following, we define a trace of execution of
an application as the ordered list of the operations issued by this application from
the beginning to the end of its execution. The set of operations that are relevant to
define a trace is defined by the security policy, as showed in the next section.

Even conditions that evaluate dynamic factors that does not depend upon the
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application itself, like the resource status or the current local time, can be included
in the policy as well. These conditions are evaluated during the execution of the
application. For instance, a policy applied to “not important” users can state that
their applications cannot be executed when the system is overloaded, i.e. the over-
all system load is greater than a fixed threshold. Moreover, a condition could state
that communications with remote hosts can be performed during the day time only.

The computational resource usage control is also fine grained, because all the
interactions of the application with the local resource are controlled. For instance,
if the access to a file is granted to the application, the related read and write oper-
ation are monitored as well. To this aim, the security policy represents a detailed
description of the admitted application behaviour. Hence, the execution of an ap-
plication is not considered as an atomic operation, but all the interactions with the
local resource, such as memory allocations, file accesses and remote communica-
tions through sockets, are evaluated according to the security policy.

Hence, in this model the admissibility of an operation does not depend upon
a static access matrix, but it depends upon a set of dynamic factors that must be
evaluated by the grid monitor system for each access.

The model of service monitoring we propose is inspired to the UCONABC usage
control model, proposed by Sandhu and Park in [41] and [42]. UCONABC extends
the traditional access control model by taking into account three decision factors:
authorization, obligation and condition. Moreover, it introduces mutable attributes
and recognizes the continuity of access enforcement. In our case, these concepts
are mapped onto the grid environment for a specific kind of resource, the grid
computational resource. As a matter of fact, the subjects are the grid users and the
objects are the grid services. The reputation could be an attribute of the grid user.
This attribute is mutable, because the reputation of a grid user could be updated
as a consequence of the user interactions with grid services. According to the
reputation, a proper security policy can be chosen to be applied to the grid user.

This work extends the approach we described in [4] and [37].

5 Security Policy
Our approach requires the definition of a fine grain security policy detailing the
sequences of security relevant actions that the grid applications are allowed to per-
form on the grid computational service. In other words, the security policy defines
the restricted environment provided by the grid computational service. This policy
can be local, i.e. paired with the grid service, can be global, i.e. established by the
VO, or can be also a combination of these two. For instance, the VO can provide
a standard security policy, while the local resource administrator can integrate this
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policy by adding other behaviours he believe that are not dangerous for its compu-
tational resource. Moreover, distinct policies can be applied on the same service to
execute applications on behalf of distinct grid users. As an example, the policy can
be chosen according to the trust level paired with the grid user.

The aim of the security policy is the recognition of dangerous or even mali-
cious behaviors of the application that could reduce the availability or could grant
unauthorized accesses to the computational service. The security policy is com-
posed of a set of limits over the usage of the local resources of the computational
service and a set of rules that defines the permitted behavior of an application. The
usage limits involve main memory occupation, CPU time, overall execution time,
number of processes or threads, and so on. The rules that describe the application
behavior, instead, concern the order in which the security relevant actions can be
performed (traces), and other various conditions, represented through predicates,
that have to be satisfied during the execution. Any behavior that does not satisfy
the rules is denied by default. In other words, any security relevant operation is
denied unless explicitly allowed by a policy rule. Some resource usage limits can
be derived from the job request, because the features of the required computational
service specified in the job request can be exploited to define the maximum limits
to the resource exploitation.

Since applications interact with the computational resource through operative
system calls, the application behavior can be monitored trough the system calls
they issues, and the application environment can be restricted by preventing the
invocation of some system calls. Hence, in the following, we assume that the
security relevant operations we are interested in correspond to system calls. As
a matter of fact, processes exploit system resources, e.g. memory or disk space,
by issuing an appropriate request to the operative system through the system call
interface.

5.1 Policy Specification
As previously described, the security policy specifies a set of limits over the re-
source usage and a set of rules that describes the admitted behavior of the applica-
tions.

Each rule of the policy results from the composition of system calls, predicates
and variable assignments. The composition operators are meant to describe the
possible execution orders of the system calls, and are described by the following
grammar:

P ::= α.P ‖ p(~x).P ‖ ~x := ~e.P ‖ PorP ‖ Pparα1,..,αn
P ‖ Z
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where P is a rule, α is a system call in a set Act, p(~x) is a predicate, ~x are
variables and Z is a constant process definition Z = P . The informal semantics is
the following:

• α.P is the sequential operator, and represents the possibility of performing
a system call α and then behave as P ;

• p(~x).P behaves as P in the case the predicate p(~x) is true;

• ~x := ~e.P assigns to variables ~x the values of the expressions ~e and then
behaves as P ;

• P1orP2 is the alternative operator, and represents the non deterministic
choice between P1 and P2;

• P1parα1,...,αn
P2 is the synchronous parallel operator. It expresses that both

P1 and P2 policies must be simultaneously satisfied.

• Z is the constant process. We assume that there is a specification for the
process Z = P and Z behaves as P .

The rigorous semantics is defined in table 1 through semantics rules given as

premises
conclusion

Other derived operators may be considered. For instance, P1parP2 is the par-
allel operator, and represents the interleaved execution of P1 and P2. It is used
when the policies P1 and P2 deal with disjoint system calls. Using the constants
definition, the iteration operator, i(P ), can be easily derived. Informally, i(P ) be-
haves as P x times, for any value of x. It can be modeled in our framework by
defining a constant Z = PparZ . Thus i(P ) is Z . Also the policy sequence opera-
tor P1;P2 may be implemented using the policy languages operators (and control
variables) (e.g., see [27]).

As an example, given that r and s represent system calls and p and q are
predicates, the following rule:

p(~x).r(~x).q(~y).s(~y).P1

describes a behavior that includes the system call r, whose parameters ~x enjoy the
conditions represented by the predicate p, followed by the system call s, whose
parameters ~y enjoy the conditions represented by the predicate q. In turn, s is
followed by a policy P1. The predicate p specifies the controls to be performed on
the parameters and on the results of r, through conditions on ~x, as showed in the
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α.P
α

−→ P

p(~n) holds where ~x = ~n in the global state
p(~n).P

ε
−→ P

where ~e evaluates to ~n in the global state
~x := ~e.P

ε
−→ P (where the values of ~x are updated with ~n)

P
α

−→ P ′

PorQ
α

−→ P ′

Q
α

−→ Q′

PorQ
α

−→ Q′

P
α

−→ P ′ and α /∈ Act

PparActQ
α

−→ P ′parActQ

Q
α

−→ Q′ and α /∈ Act

PparActQ
α

−→ PparActQ
′

Q
α

−→ Q′ and P
α

−→ P ′ and α ∈ Act

PparActQ
α

−→ P ′parActQ
′

Table 1: Rules for inferring the admissible behavior, with the symmetric rules for
the binary operators

next example. Moreover, the parameters and the results of each system call can be
assigned to variables, to be exploited in other rules of the policy. p could include
also conditions that include variables, current local time, etc. Hence, variables can
be exploited to implement interactions between distinct rules of the same policy.
They can be used to represent some aspects of the execution status, such as the
number of files currently opened by the application.

This rule also defines an ordering among the system calls represented by r and
s. As a matter of fact, s can be executed only after r. Hence, this rule represents
an obligation, because it states that the execution of r is a requirement for the
execution of s. The following example shows in more details a simple rule:

[eq(x1,“/tmp/*”) and less(OF, 9)].open(x1,x2,x3,x4).OF:=OF+1

This rule allows the execution of the open system call if the first parameter
x1, i.e. the file name, is equal to /tmp/*. As usual, the symbol * represents any
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string. The other condition in the predicate, less(OF,9), concerns the execution
state and says that the open system call can be performed only if the number of
files currently opened by this application, represented by the variable OF, is smaller
than 9. Hence, this rule grants to the application the right to open any file in the
/tmp directory. However, this right is revoked when 9 or more files are currently
opened by the application. As a matter of fact, when the right to open the file is
granted, the variable OF is incremented.

Many different execution patterns may be described with this language. For
instance, if we wish that the system call d is performed only after that a, b and c
have been performed (in any order) we may define the following policy:
(a par b par c); d

The difference between the synchronous parallel composition and the asyn-
chronous one may be exemplified as follows. The admissible traces of the policy
(a par b)

are a,b,ab and ba. So the admissible traces of
(a par a)

are a and aa. Instead, the admissible traces of
(a para a)

is simply a, since the two parallel as must synchronize.
An implementation of the Chinese Wall Security Policy (CWSP) [7] using our

policy language is shown in table 2.
The critical files are grouped in two sets, S1 and S2, and if the application

reads one (or more) files from one of the two sets, then it cannot read any file from
the other set. The first two statements represent some limits on the usage of the
CPU (secs) and of the main memory (MBs). S1 and S2 are sets of file names that
have been previously defined. The variables OS1 and OS2 indicate, respectively,
whether a file of the set S1, or S2, has been opened.

The first predicate of the first rule, p1, states that the open system call on a
file of the set S1 can be performed only if any file of the set S2 has been opened.
As a matter of fact, the condition eq(OS2, false) tests the variable OS2, that
is true only if a file of S2 has been opened. The condition in(x1, S1) checks
that the first parameter of the system call, i.e. the file name, is included in the set
S1. Moreover, the condition eq(x2, READ) states that the open system call can
be executed only in READ mode. If the open is executed, the value true is stored
in the variable OS1. fd denotes the file descriptor returned as result of the open
system call. The iterative operator allows to perform any number of read system
call on the file descriptor represented by fd. At the end, the close system call can
be executed on fd. The second rule regulates the opening of file belonging to the
S2 set, and it is symmetric to the first one.
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....
MAX CPU TIME=100
MAX MEMORY=64

OS1 := false.
OS2 := false.

([eq(OS2, false), in(x1, S1), eq(x2, READ)]. (p1)
open(x1,x2,x3,fd).
OS1:=true.
i([eq(x5, fd)]. (p2)

read(x5, x6, x7, x8));
[eq(x9, fd)]. (p3)
close(x9, x10))

par
([eq(OS1, false), in(x1, S2), eq(x2, READ)]. (p4)
open(x1,x2,x3,fd).
OS2:=true.
i([eq(x5, fd)]. (p5)

read(x5, x6, x7, x8));
[eq(x9, fd)]. (p6)
close(x9, x10))

Table 2: Implementation of the Chinese Wall security policy

This policy also implements the aggressive model of chinese wall security pol-
icy (ACWSP) [33]. As a matter of fact, the same file f may belong to both S1 and
S2. In this case, when the application wants to open f, both the rules in the policy
allows it, and rule 1 sets the variable OS2 to true, while rule 2 sets OS1 to true.
Hence, no other files from S1 and S2 can be opened by the application. This is
possible because if two (or more) rules allow the current system call, when their
predicates are evaluated, each of these rules sees the same state, i.e. the updates
executed by one rule does not affect the evaluation of the predicates of other rules.
As a matter of fact, the updates of the variables are executed only after that all the
predicates have been evaluated. The updates are executed following the same order
of the rules they belong to in the policy.

The opening of a file of S1 or S2 in write mode, instead, is denied by this
policy, because it is not explicitly allowed by any rule.
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6 A Grid Monitor Prototype
To validate the effectiveness of the framework described in the previous sections, a
prototype of grid computational service monitor, Gmon, has been developed. This
prototype monitors the behaviour of Java applications by performing a continuous
usage control on the shared computational resource where the JVM runs.

We focus on Java language because the platform independence of Java ad-
dresses the interoperability problem of the grid environment, due to the high het-
erogeneity of the resources shared in this environment. The portability of Java
applications has been already exploited to develop some distributed heterogeneous
environment such as IceT [25], Javelin [39] and Bayanihan [43].

The standard Java security architecture is based on the sandbox model, and
includes the bytecode verifier, the class loader and the security manager, [2] [23],
that provide an access control mechanism. Gmon integrates the standard access
control mechanism by performing a history based monitoring of the application
behaviour.

Other attempts have been made to improve the Java security architecture. For
instance, [46] extends the JVM with an event logging system, and exploits the log
to detect possible attacks using STAT [13], a signature based intrusion detection
engine. JSEF [26] is another security framework that integrates the Java security
architecture by introducing higher level security policies to enhance the expres-
siveness of policy rules.

Alternative Java Virtual Machines (JVMs) that follow both the Java Language
Specification [29] and the Java Virtual Machine Specification [34] are currently
available. To develop our prototype, we have chosen the Jikes Research Virtual
Machine (RVM), that is a research oriented and open source JVM developed by
the Jalapeno project of the IBM T.J. Watson Research Center [1] [30], on top of
the Linux operating system. Jikes RVM adopts the gnu classpath library [11] to
implement the Java core classes.

As previously described, the behaviour of an application can be found out
through its interactions with the computational resource, because the only way the
application has to interact and to change the status of the computational resource
is through operating system calls. Hence, to perform the resource usage control,
these calls have to be intercepted and controlled by Gmon before they are issued
to the operating system. The Linux standard method to intercept the system calls
issued by a process exploits the ptrace() system call. The application, issuing the
ptrace() system call accept to be traced. The tracing process, instead, issues the
ptrace() system call indicating the application process identifier to catch the next
system call issued by the application. However, this method has not been adopted
in our prototype because it does not allow to trace only a subset of system calls. As
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a matter of fact, the ptrace mechanism stops the traced application and activates the
tracing process each time the application issues a system call, and it is not possible
to choose which system calls have to be traced.

The proposed architecture exploits the JVM to intercept the system calls is-
sued during the execution of the Java applications. As a matter of fact, the JVM is
a Virtual Machine and, consequently, mediates all the interactions between the ap-
plication and the resource. The JVM executes the Java applications by interpreting
the Java operations in the bytecode and implementing them by issuing the proper
sequences of operating system calls to the operating system of the resource. Actu-
ally, since the JVM is executed in user space, it exploits the libc API to issue system
calls. For instance, to execute the open system call, the JVM exploits the open
libc function. Moreover, the JVM does not exploit all the system calls provided by
the operating system, but only a subset of them. Exploiting this architecture, the
system call wrapper has been embedded in the JVM code. This approach is more
efficient and flexible than the ptrace one, and allows us to intercept only the system
calls we are interested in.

Gmon runs in a POSIX thread that is created by the JVM during its initializa-
tion, before starting the execution of the application. After its initialization, Gmon
suspends itself on a semaphore, and it is reactivated by the JVM each time to exe-
cute the Java application a system call is required. To reactivate Gmon, the system
calls in the JVM code are wrapped by inserting some hooks. An hook is a sys-
tem call wrapper that, instead of issuing the system call to the operative system,
activates Gmon and suspends the JVM.

A first kind of hooks intercept the system calls that the JVM issues to imple-
ment the operations of the Java application. These hooks are inserted in the code
that implements some methods of the classpath library, because the Java applica-
tions interact with the local resource invoking the methods of the Java core classes,
such as java.io to access the filesystem and java.net to communicate with remote
hosts.

A second kind of hooks involves the resource management operations per-
formed by the JVM, such as threads creation and scheduling, memory manage-
ment, class loading and so on. Some of these operations are implemented through
system calls, that are wrapped by some hook, as in the previous case. As an exam-
ple, when the classloader loads a new class, it interacts with the filesystems through
system calls to open and read the file that includes the class. However, these sys-
tem calls are not included in the application trace, because they depend upon the
chosen JVM implementation. Some JVM operations, instead, are not implemented
through system calls. Thread management, as an example, is fully implemented at
the JVM level, and does not exploit any operating system function. In these cases,
the hook is inserted in the JVM code to activate Gmon even if it does not wrap any
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system call. This architecture is showed in figure 1.

Gmon

hook

Classpath

java.io
hook hook

java.net

O S

JVM

Java Application

Security Policy

System Calls

Intercepted System Calls

hook

JNI

Deny

Figure 1: Gmon architecture

In our architecture, we deny the use of the Java Native Interface (JNI), because
JNI allows the execution of arbitrary code outside the JVM by invoking it in a Java
application. This implies that this code cannot be monitored through the JVM.

Once activated, Gmon checks the intercepted system call sc according to the
security policy. Since Gmon is a thread started by the JVM, it reads the parameters
of sc in the stack of the JVM thread, while the system call number has been written
in a shared variable by the wrapper. Gmon adopts the default deny model, and the
behavior of the grid application has to be consistent with the behavior described
by the security policy. An execution history that does not match the permitted
behavior is considered malicious. To determine whether, at a given time of the
execution of the application, a system call matches the permitted behavior, both
the security policy and the system calls that have been previously executed by the
application, i.e. the history of the application, have to be considered. In particular,
sc can be executed only if there is at least a rule r in the policy that includes sc, if
all the system calls that precedes sc in r have been executed, and if the predicate
paired with sc are satisfied.

As an example, in the security policy of table 2 the read system call is included
in both rules. Hence, at a given time of the application execution, the read system
call can be executed only if the open system call has been previously executed
initializing the file descriptor fd of one of the two rules and if, in the same rule, fd
is equal to the file descriptor of the read system call.

To efficiently perform the previously described checks, the security policy
along with the history of the application are represented by Gmon adopting se-

16



curity automata [44]. In the initialization phase, Gmon loads the resource usage
limits and the rules of the security policy, and creates the corresponding set of se-
curity automata. Each automaton represents a rule of the policy and, consequently,
an admitted behavior. An example of security automaton, representing the first rule
of the policy in table 2 is shown in figure 2.

Eclose()I open()
p1

read()

p2
p3O

Figure 2: Security automaton

As we can see in the example, each node of the automata represents a possible
state of the application. For instance, node I represents the initial state. An edge
from a node A to a node B, instead, represents a system call sc that can be executed
when the application is in the state A, and that leads to state B. The edge is paired
with the predicates that represent the controls to be performed on sc. Moreover,
the edge is paired also with the variable assignments that involve the parameters or
the results of the system call. In the example, the edge from the initial state, I, to
state O represents the open() system call. Hence, the execution of the open()
system call leads from state I to state O. However, the system call execution is
permitted only if predicate p1 is satisfied.

At the beginning, the current state of an automaton is the initial one, i.e. the
one that has not incoming edges. The initial state of each automaton is always
considered as a current one during the execution of the application. As a matter of
fact, an automaton can be fired more than once, to represent two instances of the
same behaviour. Each automaton instance is independent from the others. Since
an automaton for each rule is created, at a given time of the execution, the global
state of the application is represented by the union of all the states of the automata.

As an example, when a file f from set A is opened, the automaton in figure
2 is fired, O become a current state and in this state fd stores the file descriptor
of file f. When another file g from set A is opened, the same automaton is fired
again, another instance of the same automaton is created, O become the current
state of this instance, but in this state fd stores the file descriptor of g, while in the
other instance O stores the file descriptor of f. However, to save memory space, the
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same automaton is not replicated when it is fired more than once, but a compact
representation is adopted.

If the wrapped system call satisfies the security policy, it is executed by Gmon,
that reactivates the JVM and suspends itself. Instead, if the system call violates the
security policy, the application can be stopped, or an error code can be returned to
the application as result of the denied system call.

The predicate control and the system call execution are not executed as an
atomic action, because in between the time when the predicate is evaluated and
the time when the system call is executed, some actions could be performed. This
problem is known as time-to-check-to-time-of-use (TOCTTOU) flaw [6] [22]. As
an example, another thread of the application could try to modify the system calls
parameters. In this way, the parameters with which the system call is executed
are not the ones tested by Gmon. However, when Gmon is active, the JVM is
suspended, and consequently, all Java threads, i.e. the application threads, are sus-
pended. Moreover, Gmon copies the system call parameters in its local variables,
and the controls and the system call invocation exploit the local copies. Hence, the
parameters value cannot be altered by the application.

A similar problem can arise with the open() system call and symbolic links
to files. As a matter of fact, after that Gmon has tested the name of the file to be
opened, and before that the open() system call is executed, another application
can delete this file, or a directory in its path, and substitute a link with the same
name that points to a file or to a directory that cannot be read according to the
policy.

This problem is avoided by Gmon because it opens the files before the execu-
tion of all the controls, using the file names that have been passed as parameters.
When the file is opened, it cannot be deleted or unlinked and re-linked to another
file to bypass the file name control. Before the predicate evaluation, the file name
that have been passed as parameter of the system call is normalized, i.e. all sym-
bolic links in the path are resolved and the real file name is determined. Hence,
the predicate evaluation is executed on the normalized file name. If the open()
system call satisfies the security policy, Gmon reactivates the JVM and returns the
file descriptor to the application. Otherwise, the file is closed by Gmon and the
application is stopped or the JVM is reactivated an error is returned to the applica-
tion.

Another problem could arise because the values of file or socket descriptors
are reused by the operating system when the files or the sockets have been closed.
For instance, if a file whose file descriptor fd had value 9 has been closed, a new
file with fd = 9 could be opened. Hence, the same identifier could be bound to
distinct object in distinct time during the execution of the application. The use of
a outdated descriptor from Gmon, can be simply avoided by properly intercepting
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all the system calls that updates the binding between objects and descriptors and
by including them in the policy rules. As an example, when a file is opened, the
current state is updated by recording the new value of the resulting file descriptor,
and when the file is closed the current state is updated by deleting the value of the
closed descriptor.

6.1 Performances
This section evaluates the impact of the application monitoring executed by Gmon
on the performances of the Jikes RVM Java Virtual Machine. As a matter of fact,
Gmon slows down the execution of the Java applications because, for each system
call sc invoked by the JVM to interpret the application, the JVM is suspended, to
check the policy and determine whether the execution of sc is allowed or not.

The performance degradation mainly depends upon two factors: the considered
Java application and the enforced security policy. In particular, it depends upon the
ratio between invoked system calls and other computation executed by the applica-
tion itself. For instance, computational-intensive applications, that are the typical
applications that can take advantage from the grid environment, issues a number
of system calls that is not relevant with respect to the overall execution time of the
application. Consequently, the Gmon overhead will be negligible in this case.

The overhead on the execution time of a monitored system call depends also
upon the enforced policy. As a matter of fact, if the system call sc is included is
n rules of the policy, to determine whether sc is allowed, Gmon have to check all
these n rules. Hence, in general, complex security policies could take more time to
be evaluated by Gmon than simple ones.

To evaluate the performance of Jikes RVM and Gmon, we have chosen the
Ashes Suite Collection benchmarks [3]. In particular, we have chosen some bench-
marks included in the Ashes Hard Test Suite Collection that are suitable to test our
framework, because they perform a large number of system calls. As a matter of
fact, other benchmarks we have tested, such as Scimark2 [45] and Linpack [35],
perform a very small number of system calls with respect to the overall computa-
tion, and they are not a good tests for our purposes.

Figure 3 shows the execution times of the chosen benchmarks. On the x axe of
the graph are listed the benchmark names along with the number of system calls
they execute, while the y axe indicates the execution time in seconds. Each test
compares the execution time of a Java application performed by the original Jikes
RVM against the one of the same application executed using the Jikes RVM with
Gmon. All benchmarks have been performed on a PC equipped with an Intel Pen-
tium 4 (2.4Ghz) processor with 512Kb of L2 cache, with 512Mb of main memory
and Linux (kernel 2.6.5) operating system.
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Figure 3: JVM performances

The policy adopted to perform each of these tests is simple, and allows to
execute only the system calls required by the benchmark. As previously described,
the adoption of more complex policies could result in lower performances.

The first benchmark of the ashes hard test suite collection we have tested is
javazoom: a mp3 to wav converter that executes about 1500 system calls in about
5.3 secs. Most of these system calls are executed to read the source mp3 file and
to write the target wav one. In this case the overhead introduced by Gmon has
been measured in about 4% of the JVM time. The second and the third bench-
marks execute, respectively, a 200×200 matrix inversion and multiplication. These
benchmarks execute about 210 system calls in, respectively, 2.2 and 1.4 secs. The
decode benchmark, instead, is an algorithm for decoding encrypted messages using
Shamir’s Secret Sharing scheme. This benchmark executes about 570 system calls
in about 12,4 secs. The overhead introduced by Gmon that has been measured in
executing these benchmarks is not more than 2% of the JVM time.

6.2 Integration with Globus
The component of the Globus architecture that implements the grid computational
service is the Globus Resource Allocation Manager, GRAM, service. “GRAM
is a fundamental GT service enabling remote clients to instantiate, manage and
monitor, in a secure fashion, computational tasks (jobs) on remote resources” [52].
The GRAM service runs on the shared computational resource. GRAM accepts the
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job requests from remote grid users, creates the environment for the job execution,
submits the job to the local resource scheduler and monitors the job status. In
Globus 3, GRAM consists of two components: the Master Hosting Environment,
MHE and the User Hosting Environment, UHE, as described in [24]. The MHE
is executed with the privilege of the “globus” user, and receives the request for the
creation of a new instance of the computational service coming from a remote grid
user. Then, Master Managed Job Factory Service, MMJFS, of the MHE checks
the credentials of the grid user to authorize the request, maps the remote grid user
in a local user through the gridmap file, and activates the UHE for the local user.
The UHE runs with the privileges of the local user and, once activated, it does not
terminate, but it waits for other requests from the same local user. Notice that the
resource provider can configure the gridmap file in a way such that distinct grid
users are mapped on the same local user, sharing the same UHE. Once the UHE is
activated, the MHE requests to the Master Job Factory Service, MJFS, that runs in
the UHE the creation of a new instance of Managed Job Service, MJS, to manage
the job request. The MJS reads the job request, translates and submits it to the local
scheduling system, and monitors the job status.

Due to the high modularity of the globus toolkit design, the integration of
Gmon has been easy. As previously stated, our prototype implements a compu-
tational service for the execution of Java jobs. To properly describe this kind of
jobs in the job request, the RSL schema has been be updated to include the “java”
jobs as a new job type. The MJS has been modified to invoke the JVM in case of
Java job. As a matter of fact, the GRAM perl scripts that submit the application
to the local scheduling system have been modified to invoke our security enhanced
JVM. Gmon is activated by the JVM, and reads both the policy file and the job
request to create the restricted environment for the execution of the application. As
a matter of fact, Gmon extracts from the job request the limits to be applied to the
resource usage. Since Java application is executed in the local user environment,
the MJS, that is executed in the same environment, has been modified to export the
job request to Gmon. This modification is straightforward because the MJS Java
implementation includes a proper class to manage the gram attributes of the job
request. Figure 4 shows the proposed solution, based on the GRAM architecture
that is presented in [24].

7 Conclusion and Future Work
This paper presented the adoption of the continuous and fine grained usage control
model on grid computational services. As a matter of fact, we improve the security
of grid computational services by monitoring the behaviour of the applications
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executed on behalf of remote grid users. A prototype implementation demonstrates
the effectiveness of this approach.

Our approach is inspired by the concept of continuous usage control proposed
by Sandhu and Park in [41] and [42]. We claim that this is a very suitable paradigm
to be used in grid environment.

Recently developed mechanisms allow the application monitor to interact with
the application, for instance, by performing specific actions to correctly end the
program (e.g., see [32]). We plan to test some of these mechanisms in our frame-
work. Moreover, some theoretical results about automatic synthesis (e.g., see [36])
of monitors for enforcing high-level security policies have been recently developed.
We plan to test also these results in our framework.
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